Etd

Asymmetric Synthesis of Prostaglandins

Public

Downloadable Content

open in viewer

Prostaglandins (PGs) are medicinally interesting because of the wide variety of roles they play in the body. PGs are ubiquitous and can be found in the reproductive system, the nervous system, the cardiovascular system, and the immune system. Accordingly, PGs are an important therapeutic target for pharmaceutical companies, and an efficient synthesis is highly desirable. Past research indicates that an approach to prostaglandins via a chiral acetylenic ester or amide provides a promising method for control of C-15 geometry. This project seeks to validate a key stereospecific reduction of an enantiomerically pure cyclopentenone intermediate. This is in turn available from a chiral acetylenic ester or amide via a formal [3+2] cycloaddition step. Several methods have been investigated for asymmetric synthesis of the requisite chiral acetylenic acid derivative including asymmetric conjugate addition, CBS-oxazaborolidine reduction of a ketone, and the separation of diastereomers of a chiral amide. With the optically pure cyclopentenone in hand, we will investigate hydroxyl directed conjugate reduction of the cyclopentenone double bond.

Creator
Contributors
Degree
Unit
Publisher
Language
  • English
Identifier
  • etd-050505-131337
Keyword
Advisor
Defense date
Year
  • 2005
Date created
  • 2005-05-05
Resource type
Rights statement

Relations

In Collection:

Items

Items

Permanent link to this page: https://digital.wpi.edu/show/tm70mv24n