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Abstract 
 

Battery life has been the slowest growing resource on mobile systems for several 

decades.  Although much work has been done on designing new chips and peripherals that use 

less energy, there has not been much work on reducing energy consumption by removing energy 

intensive tasks from graphics algorithms.  In our work, we focus on energy consumption of the 

ray tracing task because it is a resource-intensive, global-illumination algorithm.  We focus our 

effort on ray tracing dynamic scenes, thus we concentrate on identifying the major elements 

determining the energy consumption of acceleration structures.  We believe acceleration 

structures are critical in reducing energy consumption because they need to be built 

inexpensively, but must also be complex enough to boost rendering speed. 

We conducted tests on a Pentium 1.6 GHz laptop with GeForce Go 6800 GPU.  In our 

experiments, we investigated various elements that modify the acceleration structure build 

algorithm, and we compared the energy usage of CPU and GPU rendering with different 

acceleration structures.  Furthermore, the energy per frame when ray tracing dynamic scenes was 

gathered and compared to identify the best acceleration structure that provides a good balance 

between building energy consumption and rendering energy consumption.   

We found the bounding volume hierarchy to be the best acceleration structure when 

rendering dynamic scenes with the GPU on our test system.  A bounding volume hierarchy is not 

the most inexpensive structure to build, but it can be rendered cheaply on the GPU while 

introducing acceptable energy overhead when rebuilding.  In addition, we found the fastest 

algorithm was also the most inexpensive in terms of energy consumption.  We propose an energy 

model based on this finding.   
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1 Introduction 

1.1 Introduction 

Photorealistic images are essential in today's movies; interactivity is also desirable in 

applications such as computer games.  Combining photorealism with interactivity has been a 

challenging research problem in computer graphics.  Over the past decade, research has focused 

on making global illumination algorithms such as ray tracing, photon mapping, and radiosity, run 

at interactive frame rates.  New, powerful Graphics Processing Units (GPUs), which can process 

billions of triangles per second, provide new processing platforms for global illumination 

algorithms.  This means interactive global illumination calculation is possible by utilizing GPUs.  

The demand for high-quality graphics on mobile devices is growing as well, such as playing 3D 

games on cell phones, or allowing real-estate customers to take a virtual tour of a new house.  

Although mobile devices are faster and more powerful than in the past, they are resource limited 

especially in terms of energy.  As shown in Figure 1, the energy capacity has only grown by a 

factor of three, while CPU speed, Disk Capacity, and available RAM have grown by factors of 

more than a hundred since 1990. 

 
Figure 1 Technology for Laptop from 1990 to 2001, adapted from [Starner 2003] 
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The battery energy density curve from Figure 1 shows that more energy equals heavier 

and bigger batteries, which goes against the current trend towards smaller and thinner mobile 

devices.  Researchers have tried to solve this problem by designing new, smarter CPUs and 

GPUs that consume less energy while retaining the relatively same performance compared to 

older generations of chips.  The introduction of mobile GPUs, such as the GeForce Go series 

from nVidia and the Mobility Radeon series from ATI for notebooks, are good examples of 

GPUs that feature power management technology to reduce energy consumption.  Newer dual-

core CPUs from Intel and AMD also emphasize energy saving features.  This shows chip 

designers are aware of the energy limitations, and more work is being redirected to address the 

energy issue. 

Recent work on ray tracing with GPUs and SIMD (Single Instruction, Multiple Data) 

CPUs, where ray tracing takes advantage of the SIMD instruction set, allows ray tracing systems 

to achieve interactive rendering with shadows, reflections, refractions, motion blur, and more.  It 

has even been shown that it is possible to ray trace animations at interactive rates.  However, can 

it be done using less battery energy?  Knowing that battery energy will continue to be the 

limiting resource for some time in the future, we are interested in finding out the primary 

components of ray tracing that consume the majority of energy.  We focus our effort on the 

acceleration structures used to speed up ray tracing because ray tracing engines typically spend 

most of their processing time building, traversing acceleration structures, and calculating 

intersections. 

1.2 Thesis Goal 

Recent work on the CPU and GPU have shown interactive ray tracing is possible.  With 

the continuous advances in speed of the CPU and GPU, we believe one day that the same 

algorithm that today can only achieve five frames per second will eventually be able to run at 30 

frames per second or higher, and become a suitable rendering technique for interactive 3D 

applications such as video games.  The only problem left is energy; the algorithms are more 

likely to consume more energy as the processors get faster.  We might be able to have interactive 

ray traced images, but we will not be able to view them long enough to enjoy them because of 

the battery limitation on the mobile devices.  Thus, we focus on identifying the major 

components in the building of acceleration structures that stress the battery the most.  
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Furthermore, we study the energy consumption of today’s hardware with CPU and GPU ray 

tracing rendering of static and dynamic scenes.  In doing so, we hope to allow future studies to 

improve the energy efficiency of ray tracing.  
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2 Background 
In this section, basic ray tracing will be described.  After introducing ray tracing, we will 

describe GPU-based ray tracing and recent work that has enabled ray tracing to render at 

interactive rates for both static and dynamic scenes. 

2.1 Ray Tracing 

Ray tracing is a global-illumination algorithm that can easily generate physically correct 

reflections, refractions, and shadows.  The basic idea for global illumination is to capture all the 

light properties in the environment.  One way to do this is to shoot rays from the lights.  If a light 

ray hits an object, it will light the object based on its surface properties.  A light ray that lands on 

that object can bounce off in different directions, creating shadows, reflections, and refractions.  

The light ray will eventually end up in the viewer’s eye.  At this point, the viewer should see the 

color gathered by this light ray, hence the term ray tracing.  This approach can be very 

computationally intensive because not all the light rays will end at the viewer’s eye and the light 

rays can be infinitely long.  Therefore, ray tracing usually traces rays from the viewer’s eye to 

the lights because only the light rays visible to the viewer are generated.  Figure 2 illustrates the 

process of ray tracing. 

 
Figure 2 Ray Tracing Illustration, adapted from [Glassner 1989] 

 
The ray coming from the eye, E, is the primary ray.  This ray determines the color and 

shape of the objects a viewer will see.  In Figure 2, the primary ray intersects with a plane with 
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reflective and refractive properties; therefore, reflection and refraction rays are generated, 

labeled R1 and T1 in the figure.  The reflection ray hits a plane labeled 9, and the refraction ray 

hits a ball labeled 6.  This means the viewer should see the color of plane 9 reflected on plane 3 

and the refracted color from ball 6.  In addition, the visibility of the primary ray needs to be 

tested by shooting a shadow ray towards the light.  The shadow rays are shown as dotted lines in 

the figure.  If the shadow ray is blocked by another object, the point must be in shadow; 

otherwise, the viewer should see the surface with the color gathered from reflection, refraction 

and primary rays.  This process is repeated for all the visible points from the current viewer’s 

viewing angle.  Furthermore, the reflection and refraction rays are not limited to one bounce; 

they can bounce forever until the viewer is satisfied with the final image.  However, the 

computational costs grow exponentially as more bounces are allowed. 

The process of only shooting the primary rays from the eye into the scene (and not 

shooting reflection, refraction, and shadow rays) is called ray casting and it can only produce 

direct illumination lighting effects similar to the scan-line algorithm used on commercial 

graphics cards.  It is the ability to cast additional reflection, refraction, and shadow rays that 

makes ray tracing able to produce photorealistic images.  Ray tracing can also be easily extended 

to produce motion blur, camera lens focal effects, caustics, and more. 

Another advantage of ray tracing over the traditional scan-line algorithms is that it is not 

limited to trianglular geometries.  It can be extended to recognize spheres, planes, tetrahedrons, 

and various shapes defined by mathematical equations.  This allows more flexibility in 

representing models and saves the trouble of approximating analytical objects with triangles. 

Ray tracing has traditionally been used as an off-line technique because it has not been 

possible to render the images at interactive rates due to the massive number of computations 

required.  The majority of computations come from ray-triangle intersection tests.  This 

intersection test reports the location and the object intersected for the ray in question.  Knowing 

the location of all the intersection points, the algorithm can color the point based on the objects’ 

surface properties and shoot reflection, refraction, and shadow rays.  Given 1,300 triangles in a 

scene, drawing this model at a 10242 screen resolution with only primary rays requires 1.3 billion 

ray-triangle intersections.  With the addition of shadow, reflection, and refraction rays, a total of 

5.2 billion ray-triangle intersections are required to finish this image assuming one bounce for 
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reflection and refraction.  Assuming each intersection test can be completed in one nanosecond, 

the image needs 5.2 seconds to render.  Furthermore, this is for a model with only 1,300 

triangles.  A typical 3D game or animation can contain more than 50,000 triangles in a scene.  

This translates to roughly three minutes per frame, an unacceptable time to be considered as 

interactive. 

One solution for speeding up ray tracing is to use acceleration structures which help by 

reducing the number of ray-triangle intersections per ray.  In the ideal case, every ray only 

performs one ray-triangle intersection, which adds up to one million ray-triangle intersection 

tests.  If each intersection test can be completed in one nanosecond, the scene with 1,300 

triangles can now be completed in 0.5 milliseconds, and the image can be rendered at 2,000 

frames per second.  Acceleration structures partition the triangles in the scene to help the rays 

avoid unnecessary ray-triangle intersection tests, thus boosting ray tracing performance 

tremendously.  It is typically not possible to build an acceleration structure that achieves one ray-

triangle intersection per ray for all possible geometry arrangements; nevertheless, every 

acceleration structure strives to achieve this goal.  The most commonly used acceleration 

structures are the uniform grid, Kd-Tree and Bounding Volume Hierarchy (BVH).  They are 

described in more detail in Section 3.  Besides acceleration structures, clever implementations 

that make efficient use of CPU caches and Single Instruction Multiple Data (SIMD) instructions 

have been shown to further improve ray tracing performance [Wald 2004]. 

2.2 GPU Assisted Ray Tracing 

Graphics processing units (GPUs) are the main processing chips residing on commercial 

graphics cards.  They are designed to process a large number of triangles quickly in parallel to 

present interactive 3D images.  Graphics cards implement the scan-line algorithm in hardware 

and are getting faster every year.   

Figure 3 shows that GPUs are faster than CPUs on floating point calculations and that 

GPU performance grows by a factor of 30 or more each year.  This suggests that the GPU is a 

good working platform for floating-point-intensive tasks such as ray tracing where ray-triangle 

intersection testing is a floating-point task.  Therefore, it is desirable to bring ray tracing onto the 

GPU to take advantage of the GPU’s processing power.  With the introduction of programmable 
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GPUs, it is now possible to utilize the GPU for non-traditional graphics tasks, with certain 

limitations. 

 
Figure 3 GPU Growth Rate [ Buck 2004] 

The GPU is designed to process batches of data at once, but it processes each individual 

data element with similar computations in parallel.  This is also known as stream processing.  

This means the GPU can only process one “kernel” at a time but many instances of them in 

parallel.  A kernel represents a set of operations that are identical across each individual data 

element.  Basically, the GPU provides data parallelism, and is best suited for large data sets with 

minimal dependency between data elements that require the same computations with minimal 

memory access. 

Ray tracing is highly parallel but requires frequent memory accesses.  Triangles cannot 

be accessed from the traditional geometry pipeline in scan-line algorithms because each pixel 

needs to access multiple triangles.  The triangles must be packed into textures and accessed in a 

random access fashion for GPU ray tracing.  This goes against the design philosophy of the GPU 

because each pixel requires varying numbers of triangle accesses via textures.  The algorithm 

cannot guarantee minimal memory access and the GPU texture caches might not be utilized 

effectively because triangles are accessed in a random fashion. 

Another limitation is that the GPU cannot do complex logic control as well as the CPU.  

In fact, earlier GPU models could not do looping at all; they could perform a limited amount of 
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looping by unrolling loops.  Recent GPUs can perform loops a limited number of times but still 

not very efficiently.  Unfortunately, ray tracing requires frequent looping control, therefore, 

hindering GPU performance. 

The last general limitation is the speed of the traffic between the CPU and the GPU.  The 

GPU cannot access CPU memory directly and vise versa.  Therefore, we must pay the cost of 

sending data from CPU memory to GPU on-board memory, and the transfer rate can be limited 

by the bus technology on the motherboard.  This can become a major bottleneck when the GPU 

is not receiving new data fast enough and spends some time idle.  Despite these limitations, GPU 

ray tracing has been attempted in the past four years and is still viewed as a feasible route for 

performing ray tracing. 

2.3 Related Work 

In this section, we will describe the previous work done on ray tracing on both GPU and 

CPU platforms.  Some work concentrated on improving ray tracing static scenes and some 

looked at dynamic scenes.  The work related to rendering dynamic scenes usually focused on the 

building of the acceleration structures; they are the driving forces that directed us to concentrate 

our experiments on acceleration structures. 

2.3.1 GPU-based Ray Tracing 

GPU-based ray tracing started in 2002 with the Ray Engine [Carr et al. 2002] and Purcell 

et al.’s state-based GPU ray tracer [Purcell et al. 2002].  The Ray Engine had the GPU handle 

computationally intensive ray-triangle intersections and the CPU fed buckets of coherent rays 

and proximate geometry to the GPU.  This division aimed to maximize the advantage of both 

processors, but was bottlenecked by the transfer speed over the bus. 

This communication bottleneck can be avoided by directly implementing all the stages of 

ray tracing on the GPU.  Tim Purcell at Stanford University decomposed ray tracing into four 

GPU kernels where each kernel is a fragment shading program that handles a different aspect of 

ray tracing: generating eye rays, traversal, intersection, and shading.  He was able to achieve 114 

million intersection tests per second with an ATI Radeon GPU, which outperformed the best 

CPU implementation at the time.  Figure 4 shows the kernels used for his GPU Ray Tracer.  His 

approach was innovative but still limited at the time because the GPU was not capable of doing 

true looping logic besides loop unrolling, and so could not fully utilize the GPU effectively. 
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Figure 4 Purcell’s kernels for GPU ray tracing [Purcell et. al. 2002] 

Nevertheless, Purcell’s result was very promising and showed there is still a lot of room 

for improvement.  This was in fact the case with the follow up implementation of two GPU-

based ray tracers from two different Masters theses.  Christen implemented a GPU ray tracer 

using both OpenGL and DirectX to demonstrate the implementation was feasible using different 

graphics APIs [Christen 2005].  Karlsson and Ljungstedt implemented a proximity-cloud 

uniform grid on the GPU and obtained a 37-50% speed up on some scenes [Karlsson and 

Ljungstedt 2004].  Both implementations used a uniform grid because it is the easiest data 

structure to implement on the GPU. Furthermore, Purcell suggested the uniform grid is probably 

the best acceleration structure on the GPU.   

Researchers have also implemented other acceleration structure algorithms on the GPU 

such as the Kd-Tree and the BVH.  Both the Kd-Tree and the BVH require stack operations on 

the CPU; however, it is not feasible to implement a stack on the GPU.  Thus, GPU-friendly 

traversal algorithms should not rely on the stack.  Foley and Sugerman implemented two 

stackless GPU Kd-Tree traversal algorithms: kd-restart and kd-backtrack [Foley and Sugerman 

2005]. Knowing that the Kd-Tree had been shown to be the best overall acceleration structure for 

ray tracing static scenes at the time [Havran et al. 2000], an algorithm to allow the Kd-Tree to 

run on the GPU was unavoidable.  While their work showed that hierarchy traversals other than a 

simple uniform grid were feasible, they did not achieve a performance comparable to an 

optimized Kd-Tree CPU implementation.  Nevertheless, they demonstrated that the GPU Kd-

Tree implementation outperforms the GPU uniform grid implementation on scenes with high 

variation in scene triangle density.  Thrane and Simonsen did a performance comparison study of 
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different GPU acceleration structures and implemented the BVH traversal algorithm on the GPU 

[Thrane and Simonsen 2005].  They concluded that the BVH was the best acceleration structure 

at the time on the GPU, and that the BVH could outperform other acceleration structures by a 

factor of nine in some cases.  In 2006, Carr et al. implemented a hybrid approach using a BVH 

with geometry images on the GPU and demonstrated competitive performance against other 

acceleration structures on the GPU [Carr et al. 2006].  Furthermore, Carr’s implementation could 

handle deforming models on the GPU.   

We based our GPU ray tracer on the related work described above.  Our GPU uniform 

grid implementation follows Purcell et al.’s paper [Purcell et al. 2002].  The Kd-Tree 

implementation is based on Foley’s paper [Foley and Sugerman 2005].  Lastly, we implemented 

the GPU BVH traversal according to Thrane’s paper [Thrane and Simonsen 2005] and we 

improved our existing GPU implementations with the provided shader code from Thrane’s paper 

[Thrane and Simonsen 2005]. 

2.3.2 CPU-based Ray Tracing 

Traditional ray tracing can only perform one ray-triangle intersection test, and traverse a 

single acceleration structure node, at a time.  With the introduction of packet traversal and 

intersection test by Wald in 2004 [Wald 2004], we could traverse several rays in parallel on the 

CPU with SIMD instructions. Unlike the GPU, where the usage of complex logic and data 

structures is limited, the CPU does not have these limitations, but offers less-powerful parallel 

floating-point computation with SIMD instruction sets.  Wald’s implementation achieved 92-100 

million intersection tests per second with packet ray-triangle intersection tests on the CPU.  His 

system can render a static scene with 43 thousand triangles at four frames per second, and two 

frames per second for a dynamic scene of the same model.  Wald continues to work on better ray 

tracing systems using both single CPUs and clusters of CPUs.  In 2006, Wald published a 

coherent grid traversal method which was able to achieve 29 frames per second with pure ray 

casting and seven frames per second with full ray tracing effects on an 11,000-triangle, animated 

scene at a 10242 screen resolution [Wald et al. 2006].  His approach allowed the uniform grid to 

achieve high rendering performance by traversing several rays in parallel into the cells with a 

frustum-packet traversal.  Since the uniform grid can be rebuilt quickly for all types of models, 
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Wald’s method can adapt to any triangle movements, as well as abrupt changes in the number of 

triangles in the scene. 

Wald and Havran looked at how the Surface-Area-Heuristic (SAH) Kd-Tree can be built 

faster on the CPU.  They proposed a method to build the Kd-Tree in O(n log n) time and their 

method was faster than the usual O(n log 2 n) or O(n2) implementations [Wald and Havran 

2006].  

Besides speeding up the Kd-Tree, hybrid tree structures have also been investigated.  

Havran presented the H-trees, a combination of  the spatial Kd-Tree with bounding volumes, in 

his paper [Havran et al. 2006] and showed that H-trees can be built 2.4 to 11.7 times faster than 

Kd-Trees, and can perform as well as the Kd-Tree in terms of traversal and intersection testing. 

Although a carefully optimized Kd-Tree is the best acceleration structure for static 

scenes, it is not the best acceleration structure for dynamic scenes because it cannot be updated 

or rebuilt fast enough to maintain adequate performance.  On the other hand, the BVH has been 

shown to be more adaptable to dynamic scenes with deforming models.  Lauterbach et al. 

proposed a simple BVH update algorithm that modifies the bounding volume as the triangles 

move in dynamic scenes [Lauterbach et al. 2006].  His method will gradually degrade the 

performance of the BVH, and he detects the degradation and rebuilds the BVH at that point.  His 

ray tracing system can render a 40k-triangle dynamic scene at 12 frames per second at a 5122 

screen resolution.  Wald also proposed a BVH implementation using a variant of SAH to render 

deformable models and achieved 8.5 frames per second for a 78k-triangle dynamic scene at a 

10242 screen resolution [Wald et al. 2006a]. 

We were not able to implement all the latest work on acceleration structures because 

many of them are so new; however, we implemented the BVH update algorithm based on 

Lauterbach et al.’s paper because it is simple to understand.  We do not follow his 

implementation completely and the differences are discussed in Section 3.3.2.  We hope to 

incorporate more-recent improvements to acceleration structures in our future work. 



12 

3 Energy-Conscious Ray Tracing (ENCORE) 
In this section, the high level implementation details of ENCORE will be described.  

ENCORE was developed with scalability and extensibility in mind, so it is generally not 

optimized for speed, and is a ray casting system.  The three major components of ENCORE are 

the Scene Manager, the Accelerator and the Renderer, as shown in Figure 5. 

 
Figure 5 System Overview 

 
The Scene Manager is responsible for loading 3DS (3D Studio Max file), PLY (a file 

format developed by Stanford University for their 3D scan repository), and OBJ files (a file 

format developed by Autodesk & Alias for Wavefront's Advanced Visualizer application) 

specified in description file (in house format).  It stores the geometry data and creates a single list 

containing all the triangles in the scene. 

The Accelerator is the interface for acceleration structures.  Its main job is to provide and 

call a virtual build function for all acceleration structures implemented in the system.  This 

allows new acceleration structures to be added in the future without changing the main system 

code.  ENCORE currently supports three acceleration structures: uniform grid, Kd-Tree and 

BVH.  Each acceleration structure queries the scene for changes before rebuilding.  If there are 

no changes in the scene, the acceleration structure does nothing; otherwise, it requests a new list 

of triangles from the scene manager and rebuilds.  In addition, all acceleration structures can be 

converted into textures which can be used to render on the GPU. 
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The Renderer is the interface for the rendering algorithm.  Its main job is to ensure that 

every renderer implemented in the system has a render function.  It also passes the triangle list 

and the acceleration structure into the renderer using an init function.  The interface and virtual 

function declarations can be found in Appendix B. 

In the following section, the uniform grid, Kd-Tree and BVH implementations will be 

explained in detail.  The transition from CPU ray tracing to GPU ray tracing will be explained 

along with the uniform grid.  Since the process is similar for the Kd-Tree and the BVH, only the 

uniform grid section contains an explanation of GPU ray tracing.  To aid the discussion, Table 1 

describes the notation used in the descriptions. 

Table 1 Short hand notations for ENCORE Implementation 

Short-hand 
Notation 

 
Description 

#T Number of triangles in the scene 
AABB Axis-aligned bounding box 
Voxel Individual uniform cell in the uniform grid 
Model The geometry that makes up the scene.  Scene and model mean the same in the 

context of this discussion 
BVH Bounding Volume Hierarchy 
Texture 2D image to map onto 3D geometry 
Grid Short hand for uniform grid 

Subscript s Scene bounding box 
Subscript t Triangle bounding box 

 

3.1 Uniform Grid 

3.1.1 Build 

Partitioning the space into uniformly distributed cells is the main idea behind a uniform 

grid.  The cells in the grid can be uniform in size, same length in x, y, and z axes, or uniform in 

number where the number of cells along the x, y, and z axes are the same.  The former creates 

uniform-sized cells but uneven cell numbers along each dimension.  The latter creates non-

uniform length across the different axes, but the cell length along a single dimension is uniform.  

The ENCORE implementation uses the later approach.  There are numerous ways to determine 

the grid division in the x, y, and z directions, and the ENCORE implementation uses the cube 

root of #T to determine the number of grid divisions.  Given a scene with 7,532 triangles, for 
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example, 3√7,532 = 19.6 ≈ 20 segments, assuming the size of bounding box enclosing the scene 

is 100x80x120. This results in a 20x20x20 uniform grid with a cell size of 5x4x6. 

The next step is to insert triangle references into the cells containing the triangles.  The 

bounding regions between triangles and cells can be calculated using algebra.  Continuing from 

the above example, the scene bounding box has a minimum point at (0,0,0) and maximum point 

at (100,80,120).  Given a triangle with a bounding box starting at (13,55,30) and end at 

(24,60,50), the cell indices that overlap this bounding box can be calculated with the following 

equations for each dimension. 

Starting x cell index = ( x-mint – x-mins ) / cell size in x  
Ending x cell index  = ( x-maxt – x-mins ) / cell size in x  
 
The numbers are rounded down fractional results.  The y and z values can be found by replacing 

the x with y or z in the above calculations.  This example would yield an x index at (2,4), y index 

at (13,15), and z index at (5,8).  This method is simple and fast but not entirely accurate. Figure 6 

illustrates the reason. 

 
Figure 6 Triangle-Box Intersection 

  
Figure 6 shows that a triangle bounding box can overlap cells not covered by the triangle.  

This introduces cells with false triangle references, leading to unnecessary ray-triangle 
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Triangles are 
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covered in 6 cells 
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intersection tests when rendering the uniform grid.  The exact triangle coverage in each cell can 

be found by performing a triangle-box intersection test outlined by Akenine-Moller [Akenine-

Moller 2001].  Doing the triangle-box intersection test not only produces a more-physically 

accurate allocation of the triangles in the grid, it also creates a more-compacted grid that uses 

less memory.  We started the initial uniform grid implementation using code from Bikker 

[Bikker 2005] and modified the implementation.  The pseudo-code for the uniform grid build 

follows. 

1. let bbox = AABB enclosing the scene 
2. Divide bbox into M x M x M cells 
3. for every triangle 
4.     count triangles AABB –  bbox overlap 
5. allocate memory on the number computed in step 4 
6. For every triangle 
7.    Find triangle AABB – bbox overlap 
8.         For every voxel 
9.              If  triangle-box overlap 
10.                 Insert triangle reference in the voxel 
 

This algorithm still functions if Steps 3 to 5 are removed.  Steps 3 to 5 introduce 

redundant calculations that calculate the bounding region between triangles and cells because the 

bounding region is calculated again in Step 7.  The redundant step computes the maximum 

memory needed to store all the triangles in the grid.  Doing so avoids the usage of dynamic data 

structures such as C++ standard template library vector, list, or queue during Step 10.  This 

algorithm builds faster and produces consistent build times compared to the algorithm using 

dynamic data structures.  This idea is described by Haines [Haines 1999].  Removing Step 9 

increases the build speed by roughly 250% and we name this algorithm the non-triangle-box 

intersection build.  The energy consumption ratio between this coarser build and an accurate 

build (the uniform grid implementation with the triangle-box intersection) allows us to compare 

the benefits of triangle-box intersection against the impact on rendering time later on.  

3.1.2  Traversal 

The goal of an acceleration structure is to reduce the ray-triangle intersection tests by 

avoiding them if possible.  An acceleration structure does so by replacing the ray-triangle 

intersection with the acceleration structure traversal; therefore, the traversal computation needs 

to be much cheaper than the ray-triangle intersection to speed up ray tracing.  We implemented a 
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fast voxel-traversal algorithm outlined by Amanatides and Woo [Amanatides and Woo 1987].  

Figure 6 illustrates the algorithm in 2D. 

 
Figure 7 Uniform Grid Traversal Illustration 

  
A ray enters the middle cell of a uniform grid in Figure 7.  Assuming no triangles are in 

the first cell, the algorithm calculates the maximum hit time (tMax) for the ray to hit the 

boundary of the cell in x and y axes.  The smallest tMax is used to determine the cell that the ray 

should traverse next.  In Figure 7, the smallest tMax lies on the x axis so the ray steps in the x 

direction.  If there are triangles in the second cell, the algorithm will perform ray-triangle 

intersection tests on all the triangles in the cell.  If a valid triangle hit is found and the hit time is 

smaller than the tMax of current cell’s boundary, the algorithm returns with the hit information.  

Otherwise, the algorithm continues the traversal.  This algorithm costs six additions and three 

multiplications which is much cheaper than the cost of a ray-triangle intersection test.  The ray-

triangle intersection test is implemented using Moller and Trumbore. [Moller and Trumbore 

1997].  An optimized version of the ray-triangle algorithm can be found in Wald [Wald 2004], 

however, his approach requires additional pre-computations for each triangle so we chose not to 

implement it.  Overall, we found the uniform grid simple to implement and understand; it is an 

ideal example for a beginner to learn acceleration structures. 

3.1.3 Moving to GPU 

Unlike CPUs, GPUs do not have data structures such as arrays, lists, and stacks.  Access 

to GPU memory is limited, so only viable option for inputting non-vertex information into the 

GPU is via textures, because textures can be used as random access memories in the GPU.  Each 

individual pixel in a texture can be read in random order in GPU shaders, and this enables a 
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texture to act as a random access memory.  The conventional method of inputting triangle 

vertices, normals, and texels into the GPU is not suitable for GPU ray tracing because we need to 

access triangles in random order.  Therefore, we store the triangles into textures.  Figure 8 

illustrates the conversion of CPU data into GPU textures.  We break a vertex array into three 

separate vertex textures, holding the value of first, second and third vertices of the triangles, 

respectively.  This allows a maximum of 16 million vertices in memory with a maximum texture 

size at 40962.  The information in the uniform grid must also be translated into a texture.  We are 

allowed to store a maximum of four values into a texel.  Since we cannot use any dynamic data 

structures on the GPU, the data in each uniform grid cell needs to be represented in another 

fashion.  The triangles referenced by the uniform grid are stored in the vertex texture in the order 

they appear in the uniform grid.  We do not use a triangle index texture to reference repeated 

triangles; they are simply stored into the textures again.  With the vertex texture set up in this 

fashion, the uniform grid texture can store the beginning vertex index in each cell and the 

number of triangles in each cell into the R and G components of the texels.  We leave the B and 

the alpha components empty in the uniform grid texture, but they can be utilized in some way to 

maximize texture utilization in future work.   

 
Figure 8 CPU Memory to GPU Texture 
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Purcell et al. use another level of indirection that requires another texture to represent the 

triangle index on CPU [Purcell et al. 2002].  This implementation produces smaller vertex 

textures at the cost of an additional texture access.  We chose to repeat the triangle data in the 

vertex textures to avoid the additional texture access.  With the textures set up properly, we could 

begin the execution of the ray-tracing shaders.  A shader is the execution code for programmable 

GPUs.  There are three main shaders in ENCORE: the Ray Generator, the Traversal-Intersection 

shader, and the Phong-Lighting shader.  Figure 9 shows the execution flow of the shaders in 

ENCORE.  Again, we follow the implementation described Purcell et al. [Purcell et al. 2002].   

 

Figure 9 Kernel Diagram for ENCORE GPU Ray Tracer 

The Ray Generator generates eye-ray textures where each ray shoots at a pixel location 

on the screen.  The Traversal-Intersection shader computes the ray-triangle intersection with the 

same algorithm used on the CPU using textures as random access memories.  Purcell separated 

the uniform grid traversal and the ray-triangle intersection into two different shaders because he 

needed to control the looping of shaders with the CPU.  With shader model 3.0, programmable 

GPUs can perform up to 65,536 iterations in a nested for-loop. Thrane utilized this new feature 

to combine the traversal and the ray-triangle intersection shaders into one shader [Thrane and 

Simonsen 2005].  His approach eliminates the need to swap shader executions between the 

traversal and the ray-triangle intersection, thus improving performance.  Ultimately, the 

Traversal-Intersection shader produces triangle-hit information at each pixel as a texture and 
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passes the texture down the pipeline.  The Phong-Lighting shader computes the color with the 

triangle-hit information texture and displays the image on the screen.  The shader code for the 

Ray Generator, uniform grid traversal and Phong-lighting are provided in Appendix C.  The 

shader code for the Kd-Tree and BVH are not included; see Foley and Sugerman [Foley and 

Sugerman 2005] and Thrane and Simonsen [Thrane and Simonsen 2005] for more detail. 

3.2 Kd-Tree 

3.2.1 Build 

The Kd-Tree and uniform grid are both spatial subdivision algorithms.  A uniform grid 

organizes the space into uniformly distributed cells.  A Kd-Tree takes a non-uniform approach 

and organizes the space into a binary tree (Figure 10).  The ENCORE Kd-Tree implementation is 

based on Pharr and Humphries [Pharr and Humphries 2004, page 198].  The algorithm builds the 

tree in O(n log2 n) time.  We changed some parameter values in the algorithm to speed up the 

rendering of our test scenes, but their custom memory allocation method is not implemented. 

 
 
 

The Kd-Tree stores the split locations in interior nodes and lists of triangles in leaf nodes.  

Figure 10 is misleading because the root node actually stores the split location indicated in the 

Root 

Figure 10 Kd-Tree 
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second box pointed to by the second arrow.  However, the arrows in Figure 10 represent the 

space corresponding to the nodes and not the data stored in the nodes.  The decision of where to 

split the space can vastly change the topology of the tree, as well as its ray-tracing performance.  

Thus, it is critical to employ a good splitting criterion.  The ENCORE Kd-Tree is implemented 

using two methods: a Surface-Area Heuristic (SAH) and Spatial Median Split (SMS).  SMS is a 

very simple approach that always splits the axis in half on the current bounding volume and the 

splitting axis is chosen in round-robin fashion.  This method can build the tree 2-4 times faster 

than the SAH approach, however, it does not always produce a balanced tree. 

The SAH uses the area ratio of parent and child nodes to find the best possible splitting 

location.  Our SAH implementation is outlined in Pharr and Humphries [Pharr and Humphries 

2004, page 206] and we will not go into the implementation detail for the SAH.  The SAH Kd-

Tree usually produces a fairly balanced tree that speeds up ray tracing performance, however, it 

is slower to build.   

Besides the split location, it is also important to specify the termination criteria for a 

build; otherwise, the build algorithm can go on splitting the space forever.  Typical termination 

criteria limit the depth of the tree and the maximum number of triangles in the leaf nodes. Pharr 

and Humphries set the maximum depth of the tree equal to 8 + 1.3 * log(#T) and the maximum 

number of triangles to 16 for leaf nodes [Pharr and Humphries 2004, page 213].  They allow 

three retries when a better splitting location is not found by the SAH, and then create a leaf node, 

ignoring the triangle count.  We use 11 + 1.3 * log(#T) for the maximum tree depth, 10 for the 

maximum triangle size in leaf node, and five for the number of retries.  If the scene has less than 

5,000 triangles, the maximum triangle size for the leaf node is set to two.  The pseudo-code for 

the ENCORE Kd-Tree follows.  The ‘left’ and ‘right’ variables are global arrays allocated to 

have size #T in the scene before the build algorithm starts.  Build is a recursive function. 

 
Build(id, depth, numRetry, triangle_count, prev_triangle_count ) 
1.   If(prev_triangle_count – triangle_count <= 3 ) 
          numRetry++ 
2.   If ( depth >= maxDepth or numRetry >= 5 or triangle_count <= 10 )  
3.      Create a leaf node, return 
4.   determine the split axis and find the split location 
5.   If( id equals 0 ) // indicates this is the root node 
6.       for each triangle in the scene // all the triangles in the scene 
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7.           if ( the triangle intersects with the left cell ) 
8.                insert the triangle into left            // replace the old value 
9.           if ( the triangle intersects with the right cell ) 
10.              push the triangle into right           // append to the old values 
11. If( id equals left ) // indicate this is for left node 
12.    for each triangle in left array // only the triangle in left array 
13.        do step 5-9 
14. If( id equals right ) // indicate this is for right node 
15.     for triangle_count triangles on top of right array   // only the triangle for the current node 
16.         do step 5-9 
17  If ( tree-node array is too small ) 
18.    allocate new array with size = 2 * tree-node array size 
19.    copy the old array into new array and deallocate old array 
20. create parent node 
21. build(left, depth+1, numRetry, number of triangles inserted in left, triangle_count) 
22. build(right, depth+1, numRetry, number of triangles inserted in right, triangle_count) 
 

The above implementation uses two global arrays to store the triangles. However, a 

simpler implementation can eliminate Steps 11 to 16 and create left and right arrays locally using 

dynamic data structures.  The simpler implementation would also need to pass the local array in 

Step 21 and 22.  Allocating dynamic data structures slows down the algorithm because new 

memory allocations are needed in each recursive build function call.  Each leaf node requires a 

dynamic allocation to hold the triangle references as well.  The use of global left and right arrays 

in Step 5 to 16 eliminates the need to allocate more memory to hold the triangle references.  It 

does not eliminate the need to allocate memory for the leaf nodes.  The use of a global array to 

avoid memory allocation is not part of Pharr and Humphries [Pharr and Humphries 2004] and we 

have yet to read any literature using this technique.  A cleaner approach would be the use of a 

custom memory pool. 

Since the build function always builds left first (Step 21), the left array can be reused on 

every recursive call because the triangles in the left array are guaranteed to be redistributed by 

Step 11 to 13.  The right array is treated like a stack that contains batches of triangles.  The top 

batch of triangles contains the triangles used by the first build(right) function call.  Step 15 

shows that the algorithm can only use the number of triangles intended for the working node at 

the time.  The right array needs to allocate more memory when the array is full because we are 

adding the triangle references to the array on every recursive call.   It is not reflected in the 

pseudo-code, but we use the C++ standard library vector for the right array and we use the 
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reserve function to allocate the desired memory.  Figure 11 illustrates the use of global arrays for 

the ENCORE Kd-Tree build. 

 
Figure 11 Global left/right arrays for Kd-Tree Build 

 
In Figure 11, the triangles are first split into two sets, 1 and 2.  The build(left) function-

call at Step 21 is executed and the left array is used, therefore, set 1 is separated into sets 3 and 4.  

Set 3 replaces the original content in the left array, but set 4 is appended on top of the right array.  

Assuming the next build(left) function-call produces a leaf node, the algorithm reaches Step 22, 

and build(right) is executed.  Only the set 4 data in the right array are used in Step 15 and the 

new set, 6, is appended on top of the right array again.  The build algorithm is 2 to 3 times faster 

than the original implementation that used the C++ standard library list to store the triangles.  We 

expect a greater speed up can be achieved by eliminating the memory allocation in the creation 

of the leaf nodes.   

The most complex part of the Kd-Tree algorithm is the SAH implementation.  Since it is 

covered in Pharr and Humphries [Pharr and Humphries 2004] and Wald also goes into extensive 

length in describing how to build a good SAH Kd-Tree [Wald 2004], the SAH implementation is 

not described in this thesis.  

3.2.2 Traversal 

The Kd-Tree traversal is much cheaper than the uniform grid traversal.  It requires only 

one subtraction and one multiplication for each traversal operation.  The first step in the traversal 

process is determining if the ray hits the bounding box of the scene (Figure 12). The traversal 

algorithm is implemented using Pharr and Humphries [Pharr and Humphries 2004, page 215]. 
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The ray can return immediately if the ray misses the scene completely.  The smallest hit time 

when the ray entered the scene AABB is recorded in the variable tMin.  tMax stores the smallest 

hit time when the ray exited the scene AABB.  The algorithm starts at the root node and the time 

for the ray to hit the split axis (tPlane) is calculated.  Furthermore, the ray direction is used to 

determine the order of traversal.  A positive ray direction means the ray must visit the left node 

first then the right node.  A negative ray direction means right then left.  The algorithm can only 

traverse one node at a time.  If the ray visited both nodes, the farther node is pushed onto the 

stack and the closer node is traversed.  The traversal step continues until a leaf node is found and 

the algorithm performs ray-triangle intersection tests on all triangles in the node.  The algorithm 

pops a node off the stack after the intersection tests and continues on.  

 
Figure 12 Kd-Tree Traversal 

 
Figure 12 shows that tPlane can be used to determine the next node for traversal.  Similar 

to the uniform grid, the Kd-Tree is traversed in front-to-back order, and the triangle hit time can 

be returned when the first valid hit is found in a leaf node. 

The Kd-Tree is stored into the texture in a similar fashion as the uniform grid.  An 

interior node is stored with (left child index, split position, none, split axis/leaf node indicator).  

A leaf node uses (start index, none, none, triangle count).  The traversal on the GPU is similar to 

the CPU implementation.  The ray traverses down the nodes until a leaf node is found.  If the ray 

misses all triangles in one leaf node, the tMin and tMax of the ray are moved forward and the ray 
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restarts from the root node again. Since the tMin value is moved forward, the ray takes a 

different path down the tree and ends up in the next leaf node.   

3.3 Bounding Volume Hierarchy (BVH) 

3.3.1 Build 

Unlike the previous two acceleration structures, the BVH is a geometry-partition 

algorithm.  The algorithm partitions the geometry and not the space around the geometry (Figure 

13).  The BVH is also a binary tree structure like the Kd-Tree, but stores the bounding volume 

enclosing the triangles in the scene.  The bounding volumes are collapsed or expanded to exactly 

enclose the triangles in the target area, so the tree will never have a node containing no triangles.  

Each triangle is represented only once in the BVH, because every split operation divides the 

geometry. 

 
Figure 13 shows the bounding boxes are resized to fit the triangles, even if the split 

position leaves some space.  The picture also shows that a triangle is not represented in two 

nodes if the split location lies in the middle of the triangle.  The CPU implementation of the 

BVH is based on the description provided by Lauterbach et al. [Lauterbach et al. 2006].  They 
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uses SMS as the splitting criteria because it is the simplest and fastest approach.  They continue 

to split the tree until there is only one triangle in all leaf nodes, resulting in a tree with 2*#T – 1 

maximum nodes.  The tree-node array can be pre-allocated based on this computation. and there 

is no dynamic allocation needed for each leaf node because it will always contain exactly one 

triangle.  This approach is fast to build and can perform as well as a SAH Kd-Tree.  We did not 

modify any parameters for the BVH.  The pseudo-code for the ENCORE BVH follows. 

build(id, triangle_count)  
1.   if( triangle_count equals 2 )  
2.      make 2 leaf nodes // left and right child node of current node  
3.       return 
4.   if( triangle_count equals 1 )  
5.       make current node leaf , return 
6.   choose axis in round-robin fashion and find spatial median as the split location 
7.   if( triangle bounding box min. point less than the splitting location )  
8.       insert in the left array 
9.   else  
10.       insert in the right array 
11.   if ( left or right is empty )  // mean the split can't produce two child at this location  
12.       try other two axes  
13.   if( left or right is still empty ) // not possible to split them, so force it into two halves  
14.       insert half of the triangles in the left array 
15.       insert other half in the right array 
16. build(left)  
17. build(right)  
 

We used the same memory preallocation technique for the BVH, but it is not shown in 

the pseudo-code.  Step 13 divides the triangles in the current node in half because the spatial 

median split point cannot guarantee the left and right have an equal number of triangles.  If the 

algorithm used the geometry median, where the split location is the median of the triangles in the 

current bounding volume, Step 13 to 15 can be avoid. 

3.3.2 Update 

Since every leaf node contains only one triangle, we can update the BVH without 

rebuilding it from scratch when the triangle locations change (Figure 14).  We can loop through 

all leaf nodes and check the stored AABB against the corresponding triangle’s AABB when 

rendering a dynamic scene.  If the AABBs are not the same, the AABB in the leaf node is 

updated as well as all its parent nodes.  This is the update algorithm proposed by Lauterbach et 

al. [Lauterbach et al. 2006]. 
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Figure 14 BVH Update Method 

This method is surprisingly simple yet effective.  The only problem is that the rendering 

performance will be degraded if the new triangle location does not fit well with the existing tree 

topology.  Thus, the BVH needs to be rebuilt when the triangle movement passes beyond some 

threshold.  We have yet to implement the automatically rebuilt mechanism described by 

Lauterbach et al., and it is left as future work.  The update method only works on deforming 

models, animated models that do not increase in triangle count, and per-frame rebuild is needed 

if the testing scene contains non-deforming models. 

3.3.3 Traversal 

The BVH traversal algorithm is similar to the Kd-Tree, however, it uses two ray-AABB 

intersections per node to determine the path to walk down the tree.  Since the nodes are not 

guarantee to be stored in front-to-back order, early termination is not possible without additional 

calculations to insure traversal in front-to-back order.  Lauterbach et al. [2006] described a 

method to determine ‘near’ and ‘far’ child nodes by storing the maximum distance between the 

child nodes.  We did not follow the approach because we did not fully understand the algorithm 

at the time, and instead use the hit time information returned from ray-AABB intersection to 
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determine if the node should be traversed further.  When a ray-triangle hit time is found after 

examining a leaf node, the value is stored in the variable bestHit.  If at tMin, the time when the 

ray entered the AABB, is greater than bestHit, we can skip that parent node and its children 

completely because all hit times found within that path are behind the bestHit.  This method will 

not speed up the BVH traversal if the first bestHit found happens to be the farthest triangle in the 

scene.  The BVH rendered much faster with this approach for all of our test scenes, so we did not 

search for better BVH early termination techniques.  Our approach is based on our observations 

of the behavior of BVH traversal and was not found from any literature. However, we believe 

this approach must already have been used in the past.  The BVH GPU traversal did not 

implement this early termination check. 
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4 Test Environment 
The purpose of this thesis is to identify the major elements that stress the battery during 

ray tracing. Therefore, the battery discharge rates are measured for a wide range of scenes with 

different acceleration structures at different screen resolutions.  In this section, we describe the 

hardware environment, machine specifications, software settings, and operating system 

environment for the tests.  The test scenes and the methods used to measure power and time are 

presented here as well. 

4.1 Hardware Settings 

The test machine was a Dell Inspiron 9300 laptop.  It had a 1.6GHz Intel® Pentium® M 

processor and 1.25GB of RAM.  It was equipped with a PCIe x16 nVidia GeForce Go 6800 

graphics card with 256 MB of video memory.  The stock battery was a Dell rechargeable Li-ion 

Type D5318, Rating 11.1V, 4800mAh, with 53WH capacity.  For all the tests, the laptop monitor 

was set to have 50% brightness to reduce the energy used by the monitor.  Doing so allowed 

more tests to run to completion before the battery ran down.  In addition, on-board network 

devices were disabled to reduce energy consumption and unstable battery discharge rates.  The 

battery was recharged back to 98% or more after each batch of tests (see below). 

4.2 Software Settings 

The operating system on the machine was Windows XP Professional Version 2002 

Service Pack 2.  The graphics driver is nVidia ForceWare version 83.60.  The ENCORE 

executable was built using Microsoft Visual Studio 2003 in release mode.  The tests were run 

using Windows batch files, where each batch file contained six to nine tests.  Several versions of 

ENCORE executables were built to allow easier batch file control by changing the executable 

names in the batch file.   

Each batch file contained a list of statements in of the form: <ENCORE executable> 

<description file>.  The description file specified the setting for the ENCORE executable.  It set 

the render screen size, the acceleration structure, the renderer (CPU, GPU, or OpenGL), the 

scene files, the maximum running time of the application, the information to print, and the power 

measurement setting.  We will not go into detail on the content of the description file.   

Each test was set to run for three minutes and 10 seconds (see below). A single batch file 

executed for 20-30 minutes, leaving the battery life at around 40-60% when the execution ended.  
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At this point, the battery was recharged back to 98% or more before running the next batch file.  

We did not wait until the battery was recharged back to 100% because we believe 98% or more 

is good enough to be considered fully charged.  In addition, we did not run tests until the battery 

capacity dropped to 0% because we found the battery tended to discharge faster when it had a 

low capacity.  The tests conducted with low battery life always had higher discharge rates even 

for identical tests.  We worked around this issue by recharging the battery back to full before the 

battery life drops below 40%.  If the battery life was below 40% at the end of a batch file 

execution, the last three test data were discarded.  The battery was recharged and the last three 

tests in the batch file were tested again. 

We ran a total of 225 tests and no test was repeated, unless the data seemed unexpected 

and we used the second run to double check the data.  The data for the repeated run was not 

saved; therefore, we do not have variances for each individual test.  We do have the variances of 

the discharge rates during the execution of each test and these data are in given Appendix A. 

The machine was left untouched during the duration of the test.  The monitor auto 

shutdown option was off and the screen saver was disabled.  There was no keyboard or mouse 

inputs either.  All user-mode background software, such as anti-virus and firewall software, were 

shutdown before the test began, and the Windows auto-update option is disabled.  We did not 

tamper with the system processes, and cannot guarantee that no other system tasks were 

scheduled by the operating system during the duration of the test. However, we tried to insure 

that all tests ran under the same software conditions. 

4.3 Test Scenes 

There are 14 scenes that were used for our experiments.  Table 2 shows the image, the 

name, the number of the triangles, the model file names, the file source, and the test conducted 

for all the scenes.  Most models are publicly available by going to the source Website.  A blank 

source means the source is unknown but we can make the model available if needed. 
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Table 2 Test Scenes 

Image Detail 
Name SingleTri 

Model File 
Name 

SingleTri.ply 

Source A (-1,-1,1), (1,1,-1), and (1,-1,1) 
triangle made by us 

Number of 
Triangles 

1 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 

Name Scissors 

Model File 
Name 

Scissors.ply 

Source  

Number of 
Triangles 

604 

 

Used in 
(section) 

5.1.2 

Name Wheel 

Model File 
Name 

Steeringweel.ply 

Source  

Number of 
Triangles 

1,368 

 

Used in 
(section) 

5.1.2 
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Name Mug 

Model File 
Name 

Mug.ply 

Source  

Number of 
Triangles 

3,450 

 

Used in 
(section) 

5.1.2 

Name Cow 

Model File 
Name 

Cow.ply 

Source  

Number of 
Triangles 

5,804 

 

Used in 
(section) 

5.1.2 

Name Porsche 

Model File 
Name 

Big_porsche.ply 

Source  

Number of 
Triangles 

10,474 

 

Used in 
(section) 

5.1.2 
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Name Toaster 
Model File 
Name 

Toasters004.obj 

Source The Utah 3D Animation Repository 
Number of 
Triangles 

11,141 

 

Used in 
(section) 

5.1, 5.2, 5.3 

Name Sdragon 

Model File 
Name 

Dragon3.ply 

Source The Stanford 3D Scanning Repository 

Number of 
Triangles 

47,794 

 

Used in 
(section) 

5.1, 5.2, 5.3 

Name Bbunny 

Model File 
Name 

Bunny1.ply 

Source The Stanford 3D Scanning Repository 

Number of 
Triangles 

69,451 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 
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Name Complex 

Model File 
Name 

Urn2.ply, torus.3ds, big_spider.ply 
bunny1.ply, big_dodge.ply  

Source Stanford 3D Scanning Repository, 
RenderMonkey 

Number of 
Triangles 

98,867 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 

Name 200k 

Model File 
Name 

Dragon2.ply 

Source The Stanford 3D Scanning Repository 

Number of 
Triangles 

202,520 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 

Name 400k 

Model File 
Name 

F000.obj, dragon3.ply, bundha2.ply 

Source Stanford 3D Scanning Repository, 
Utah 3D Animation Repository 

Number of 
Triangles 

436,942 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 
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Name Fairy 

Model File 
Name 

F000.obj, bunny1.ply, dragon2.ply, 
galleon.ply, ElephantBody.3ds, 
bundha2.ply 

Source Stanford 3D Scanning Repository, 
Utah 3D Animation Repository, 
RenderMonkey 

Number of 
Triangles 

679,531 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 

Name 990k 

Model File 
Name 

Buddha1.ply 

Source The Stanford 3D Scanning Repository 

Number of 
Triangles 

1,087,716 

 

Used in 
(section) 

5.1.1, 5.1.4, 5.1.5 

 
Some scenes were composed of several models, such as the ‘Complex’ and ‘Fairy’ 

scenes.  The models were chosen based on the number of triangles, but their distribution was not 

considered.  The camera angle and position were not important for any scenes except the Toaster 

and the Sdragon because they were the only two scenes used in rendering tests.  The camera had 

a 90 degree viewing angle and was stationed at (0, 0, 25) from the origin.  The Toaster and the 

Sdragon were scaled to cover approximately 70% of the rendering windows during rendering 

tests. 

4.4 Software Measurement Tool 

4.4.1 Power 

Power was measured using the CallNTPowerInformation function in the Windows API.  

For a detailed description of this function, please see MSDN at http://msdn.microsoft.com/library 
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/default.asp?url=/library/en-us/power/base/callntpowerinformation.asp.  We used this function to 

retrieve battery information into the SYSTEM_BATTERY_STATE structure.  The information 

for the structure is referenced in the MSDN Website as well.  There are 11 variables in the 

structure, however, we only used the information in the Rate and RemainingCapacity variables.  

Rate returns the rate of discharge of the battery in milliWatts.  RemainingCapacity returns the 

estimated remaining capacity of the battery in milliWatthours.  The CallNTPowerInformation 

function has a limited update rate of 3-6 seconds.  If the function is called more often than this, 

the variables will not change, which means the information returned is the same when the 

function is called a hundred times within one second and when it is called one time within two 

seconds.  The hundred calls case will simply give us a hundred repeated values.  This is 

problematic because all our tests can finish execution within one second.  The function will 

report there are no changes in the discharge rate of the battery because the application does not 

run long enough. 

To work around this problem, we ran the tests for more than three seconds.  In fact, we 

had to run the tests much longer than three seconds to gain enough discharge rate samples.  The 

running length was set to three minutes for all the tests.  Three minutes might seem too short 

because it only gives us roughly 45 meaningful samples due to the limited power sampling 

resolution.  A longer testing length was considered and tested.  Five minutes of testing was used, 

but we found little variance compared to three-minute testing.  Therefore, we settled on a three-

minute testing length because shorter running time allowed more tests to complete before the 

battery had to be recharged. 

4.4.2 Power Test Settings 

The CallNTPowerInformation ran in a different thread and the power data was queried 

every second.  With a sampling rate of 3-6 seconds, we had roughly four repeated samples on 

average.  The three minute 10 second testing length gave 190 samples and the average discharge 

rate was calculated from these samples.  The data were output to a comma-separated values 

(CSV) file just prior to application termination. 

The tests were divided into three major categories, the build test, the static rendering test 

and the dynamic rendering test, as explained in Section 5.  The build tests and dynamic rendering 

tests started after the application loaded the triangles into the system memory.  The static 



36 

rendering tests started after the application built the acceleration structures.  The processing 

before the testing target is referred to as the preprocess.  We wanted to isolate the power used by 

the preprocessing from the target so the application was set to sleep for 10 seconds before the 

test began, allowing the power draw to drop back down to the idle stage so the preprocessing 

power did not show up in the measurement.  The power measurement started after the 10-second 

sleep.  There was another 10-second sleep after the test ended so the fall of the discharge rate 

back down to the idle stage can be plotted.  This gives us a clear picture of how the discharge 

rate rose and fell over the duration of a test.  Figure 15 shows a representative test result. 
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Figure 15 Discharge Rate Graph 

 
Figure 15 shows how the discharge rate rises above 34W in the beginning and drops back 

down to 19 W in the end.  The tiny plateaus are clear evidence of repeated discharge rate values.  

The 10-second sleep time is added to the testing length; therefore, we have a total running length 

of 3 minutes and 10 seconds.  In addition, the average discharge rate is calculated by removing 

the samples below 24W in the CSV file because they represent the power used by the system 

when the application was in a sleep state.  The average discharge rates and the standard 

deviations are reported in Appendix A. 

4.4.3 Time 

Time was measured with the timeGetTime function in the Windows API.  A detailed 

description of this function can be found on the MSDN Website as well.  The function returns 
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time in millisecond resolution.  This function is used to manage all the timers in the application 

such as the 10-second sleep and three-minute running length for the power measurement tests.  If 

the application is in the middle of a loop when the three-minute timer is triggered, it will wait for 

the loop to complete before terminating the program.  The acceleration structure build time and 

the rendering time are calculated by taking the total run time of the application divided by the 

number of completed loops where the total run time refers to the running length of the target 

operations such as the build or the rendering.  When rendering dynamic scenes, the total run time 

includes the build time, transfer time from CPU to GPU, and the rendering time. 
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5 Measurement Results and Discussion 
In this section, we present three categories of power measurement, power measurement 

results for building acceleration structures, rendering results without rebuilding acceleration 

structures, and rendering results with acceleration structures rebuilt per frame.  They will be 

referred to as build results, static rendering results, and dynamic rendering results.  Each 

category is further broken down into smaller sub-categories which are organized by different 

testing parameters.   

Table 3 lists all the values gathered or derived from the experiment results.  The term 

“operation” in this table refers to the targeted energy; if the test is conducted while rendering, 

then the operation is rendering.  If the test is for building acceleration structures, then operation 

refers to build.  It is used to aid the explanation of the experiment results in this section. 

Table 3 Measurement Values 

Name Short Notation Type Unit Equation Note 
Triangle # T# Given    
Completed 
Operations 

Loop Measured    

Time to 
Completion 

T Measured Millisecond 
(ms) 

  

Discharge Rate Rate Measured milliWatt 
(mW) 

  

Malloc Count MC Measured    
Malloc Size MS Measured Byte   
Triangle-Box 
Intersection 

 Measured   uniform grid 

Total Tree Node  Measured   Kd-Tree, BVH 
Total Tree Leaf  Measured   Kd-Tree, BVH 
Standard 
deviation 

stdev Calculated mW  Appendix A 

Time/Operation TpO Calculated Ms T/Loop  
Energy/Operation EpO Calculated milliJoule  

(mJ) 
Rate*(TpO/1000)  

Energy/Triangle EpT Calculated mJ EpO/T#  
Standard Error STDEV Calculated mW   
Grid Size  Calculated   uniform grid 

Max. Tree Depth  Calculated   Kd-Tree, BVH 
Total Energy 

Loss 
EL Calculated milliWatthour 

(mWh) 
Rate*(T/1000)/3600  

 

5.1 Acceleration Structure Energy Measurement 

The energy measurements for building the uniform grid (UG), Kd-Tree (KdT) and 

Bounding Volume Hierarchies (BVH) are presented in this section.  They are further analyzed by 
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considering model size, memory allocation size, triangle-box intersection counts and build time.  

The build energy used by the acceleration structure is very important because it distinguishes a 

static rendering task from a dynamic rendering task.  The acceleration structure needs to be 

rebuilt every frame in the dynamic rendering task and its topology affects the performance of 

rendering.  Thus, identifying the major elements that stress energy consumption in the building 

of the acceleration structure is the goal of this section.  We tested nine scenes with a range of one 

to one million triangles, which we believe provided enough data samples to demonstrate the 

energy usage trend when building acceleration structures. 

5.1.1 Model Size 

Model size is an important factor to look at because it affects the rendering and building 

speed.  Building the acceleration structure for larger models can take more time, and they can 

have a longer rendering time.  Since model size and time have a linear relationship, we were 

interested in finding out the relationship between energy and time.   
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Figure 16 Data for Joule per Build with each acceleration structure 

Figure 16 shows the energy (Joules) per build data for eight different scenes.  The 

smallest scene has eleven thousand triangles and the biggest scene has about one million 

triangles.  The data represented in the diamond markers are the energy measurements of uniform 

grid with triangle-box intersection tests.  The square markers represent data for Kd-Tree (KdT) 

using SAH.  The triangular markers are BVH data.  The y axis, energy per build, is in 



40 

logarithmic scale, but the x axis is not in logarithmic scale.  Building KdT uses about ten times 

more energy than the other two data structures; furthermore, KdT energy usage also increases 

more quickly than in the other two data structures.  On the other hand, BVH and UG use much 

less energy per build.  They start off with similar energy usage but UG uses less energy per build 

after the model size increases over 100k. 

Tables 4 and 5 show the average discharge rates (ADR) and standard deviations 

(STDEV) for each test.  The singleTri results are not plotted in Figure 16 but it is shown in the 

tables.  To find the energy (Joules) per build data from these tables, use the equation labeled 

Energy/Operation in Table 3. 

Table 4 Build Data Standard Deviation, Part 1 

 Uniform grid Kd-Tree (SAH) Kd-Tree (median) 
 ADR STDEV ADR STDEV ADR STDEV 
singleTri 33,119 218 34,901 238 35,176 216 
Toaster 33,733 714 34,539 191 35,054 262 
Sdragon 33,716 507 34,053 216 34,628 176 
Bbunny 34,871 316 33,758 351 34,939 448 
Complex 32,801 453 33,068 349 33,926 421 
200k 32,786 397 33,848 393 34,446 342 
400k 32,351 421 33,135 642 33,917 382 
Fairy 33,913 258 35,075 357 35,613 317 
990k 34,504 299 33,862 846 34,912 514 

 

Table 5 Build Data Standard Deviation, Part 2 

 BVH BVH update  
(best case) 

BVH update 
(average case) 

BVH update  
(worst case) 

 ADR STDEV ADR STDEV ADR STDEV ADR STDEV 
singleTri 34,669 332 34,705 265 34,303 1428 34,217 583 
Toaster 34,600 288 33,751 346 34,742 295 34,787 374 
Sdragon 33,622 275 32,473 390 34,494 289 34,219 413 
Bbunny 33,172 302 32,010 329 33,960 389 33,480 364 
Complex 31,818 430 30,718 260 32,649 474 32,275 365 
200k 33,032 579 32,143 245 34,106 296 33,914 482 
400k 32,539 322 31,636 320 33,594 374 33,014 322 
Fairy 34,161 469 33,077 296 35,269 288 34,983 400 
990k 33,642 523 32,575 180 34,751 342 34,471 342 
 

The data show very little variance in Tables 4 and 5.  Their standard deviations are small 

and all of them deviate about 1% from their averages, thus, we believe our average data is 

accurate.   



41 

We take another look at the model-size versus energy trend by plotting the energy per 

Triangle graph for each acceleration structure.  The naïve KdT (KdT with the spatial median split 

method) and the BVH update data are added to the graph as well.  We are interested in the 

amount of energy that can be saved from using the naïve KdT and BVH update when compared 

to their complete build counterpart.  The BVH update results are further broken down into best, 

average, and worst case scenarios.  This is necessary because the BVH update algorithm does not 

depend on the size of the model, but rather on the amount of bounding volume update due to the 

triangle movement.  This dependency can be reflected by performing the test on animated 

scenes; however, the animation process itself consumes additional energy that we would need to 

isolate.  This additional energy is the energy used to update the triangles per frame and we do not 

wish to include that energy usage in the equation.   One solution is that the program can sleep for 

few seconds before and after all the triangles updated their positions.  The sleep allows the 

isolation of the energy on updating the triangles and updating the BVH, so only the data for 

updating the BVH is gathered.  The second method is to emulate the update dependency with 

random number.  Each leaf node is assigned a random chance to update, even though the triangle 

position does not change.  We pick the emulation method because it is easier to control and 

produces reproducible results.  We plot the best, worst and average cases for the BVH update.  

The best case represents the scenario where no update is necessary.  This is equivalent of calling 

the BVH update on the same set of triangles.  The average case has 60% chance that a leaf node 

will update itself and its corresponding parent nodes.  The worst case is the scenario where all 

the triangles in the scene moved and all the BVH nodes have to update their bounding volumes.  
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Model Size VS Energy/Triangle
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Figure 17 Energy (Joules) spent per Triangle Versus Model Size 

 
Figure 17 shows energy spent per triangle for eight different scenes.  The y axis is in 

logarithmic scale.  The energy per triangle is plotted instead of the energy per build because we 

want to investigate whether the energy per triangle changed as the model size increases.  Most of 

the lines in the graph are almost horizontal, thus suggesting that the energy spent on each triangle 

does not vary as the model size increases.  This also means more triangles in the scene equals 

more energy per build.  The naïve KdT has a disappointing improvement where it used 50% less 

energy than the SAH KdT, but still uses more energy than the BVH even though both algorithms 

use the median split method.  BVH update is the most energy efficient build method in this 

graph.  Its worst case performance results are similar to the uniform grid energy usage.  Its best 

case results represent the scenario where no updates are necessary but they still have the 

overhead of checking the triangle position at each node.  The best case results do not represent 

the results of not calling the update algorithm because the algorithm still loops through all the 

leaf nodes to check if updating the bounding volumes is necessary.  Overall, the BVH update 

algorithm uses the least amount of energy per triangle; however, it is not suited for all types of 

models.  Specifically, the BVH update does not work when the scene suddenly introduces new 

triangles.  Furthermore, it requires occasional BVH rebuild if the triangles move beyond a certain 

threshold in order to maintain a suitable tree for rendering.  In comparison, the uniform grid can 
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be built from scratch every time and uses fairly low amount of energy to do so.  The uniform grid 

is more energy efficient when building without triangle-box intersections (UG-N).  We do not 

have the complete build data for UG-N but here are two measured energy per build results for 

the Toaster and Sdragon scenes. 

Table 6 Joule per Build for Two Cases of UG-N 

 UG UG-N Worst BVH 
update 

Average BVH 
update 

Toaster (11k) 0.7 0.3 0.4 0.2 
Sdragon (48k) 2.9 1.1 1.7 0.9 
 

Table 6 shows that UG-N energy consumption lies between the worst and average BVH 

update cases.  Although this table only represents two data point, we believe this is enough to 

make the point that UG-N can be competitive against BVH update in term of energy.  The UG-N 

requires slightly more energy than the average BVH update method.  Future work should include 

complete UG-N results on the same test scenes. 

5.1.2 Memory Allocation 

Memory Allocation was found to affect build speed if handled naïvely as described in 

Section 3.  The memory allocation issues are briefly discussed here to serve as a reminder.  A 

typical UG implementation requires dynamic allocation of memory when inserting triangles into 

their associated cells.  Kd-Tree (KdT) and BVH have recursive build functions that require 

memory allocation per function call.  Furthermore, each KdT leaf node requires a dynamic array 

to hold any triangle references associated with the node.  The memory issue can be solved with a 

custom memory pool.  Doing smart memory allocation speeds the build process up by a factor of 

two or more; therefore, it is interesting to see if doing so gives similar benefits in term of energy. 

In this experiment, we emulated the benefit of a custom memory pool without 

implementing it.  A custom memory pool is a memory management class that allocates a large 

amount of memory from the system.  The class assigns memory via pointer to the application so 

no further memory allocation is required from the system.  Since we are looping the build 

function for three minutes, we can have the program reuse the memory allocated in the initial 

loop to avoid further memory allocations.  The energy measurement starts after the initial loop 

and the measured energy is the build method without memory allocations.   
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The memory allocation experiments were conducted on smaller models.  The model size 

ranges from ~600 to ~10,000 triangles.  The scenes in Section 5.1.1 are not used because we 

suspect there is a crossover in the energy usage between BVH and UG when the model size is 

small.  The result shows there is no crossover; therefore, it is not discussed or graphed.  Figure 

18 shows the Joule per build before and after the custom memory pool emulation. 

 

Eliminating memory allocation does reduce build energy.  The BVH result shows 

consistent improvement as the model size increases in Figure 18.  The KdT result shows an 

irregular energy usage pattern and it does not grow linearly as the model size increases.  

Furthermore, the energy reduction is not consistent across different models.  The model with 

1368 triangles uses a lot less energy after the emulation while the others do not have the same 

amount of energy saving.  The cause of this irregularity was not investigated and should be 

looked at in future work.  Nevertheless, both graphs show memory allocation does contribute to 

the energy for building the acceleration structure.  The average discharge rates and the standard 

deviation of the results are in Appendix A.  Although the BVH and KdT are both tree structures, 

the BVH does not have significant energy saving when compared to the KdT.  We believe this is 

related to the total memory size allocated so the memory allocation size is graphed in Figure 19. 

Figure 18 Energy Usage Reduction for Kd-Tree and BVH  
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Figure 19 Total Memory Allocated Chart for Kd-Tree and BVH 

 
Figure 19 shows that the BVH allocated less memory than the KdT and this explains why 

the BVH does not have significant energy saving with the emulation.  The BVH allocated more 

memory as the model size increases which explains the linear pattern for the BVH shown in 

Figure 18.  On the other hand, the KdT does not always allocate more memory as the model size 

increases.  The model with 1368 triangles allocates 500 KB but the model with 5804 triangles 

allocates only 300 KB.  Figure 19 suggests that memory allocated size might be the cause of the 

irregular energy usage pattern for the KdT; however, it does not answer why the ‘1368 model’ 

saves the most energy.  This issue is discussed further in the following section. 

5.1.3 Memory Allocation Test Result Discussion 

From Figure 19, the KdT always uses more memory than the BVH.  The size of the 

memory allocated has been discussed; we now focus on the frequency of memory allocation.  

The number of memory allocation function calls might reveal more information about the effect 

of removing memory allocation.  Figure 20 shows the number of memory allocation function 

calls during the building of KdT and BVH.  For the purpose of this discussion, malloc will be 

used to represent the functions allocating memory from the system.  
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Figure 20 Memory Allocation Request Graph 

 
From Figure 20, we see that the BVH never uses more than six malloc calls, but the KdT 

uses thousands.  From Figures 20 and 19, we can conclude that the KdT allocates smaller 

memory blocks frequently and the BVH allocates bigger memory blocks only occasionally.  This 

suggests that eliminating thousands of small malloc calls can lower energy consumption more 

effectively than erasing a few large malloc calls where ‘small’ and ‘large’ refer to the size of the 

memory allocated. 

However, the reason for the significant energy saving from the KdT ‘1368 model’ is still 

unanswered.  We believe there are other elements that influence the energy savings when 

memory allocations are removed from the KdT build.  We hypothesize that these could be cache 

usage, contingency of the memory allocated, and deallocation which should be investigated 

further in future work.  Nevertheless, Eliminating or reducing memory allocations does improve 

energy efficiency. 

5.1.4 Uniform Grid Triangle-Box Intersection 

Uniform grid (UG) is not in section 5.1.2 because it already used custom memory pool.  

UG build mostly involves computation and the most intensive computation is the triangle-box 

intersection test.  Section 3.1.1 shows that the triangle-box intersection test is necessary to 

produce an accurate UG.  Furthermore, running the UG algorithm through a profiler has shown 
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that the most expensive function is the triangle-box intersection.  This makes triangle-box 

intersection test an important factor to look at when determining the energy per build for the UG.  

We hypothesize that if two scenes have the same number of triangle-box intersection tests, they 

will have similar energy consumption.  Figure 21 graphs the energy per build against the number 

of triangle-box intersections per build. 
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Figure 21 Triangle-Box Intersection Versus Energy per Build 

Figure 21 shows a near-linear growth and the energy per build increases as the number of 

triangle-box intersection increases.  The line has a slope about 3/100,000 and this suggests every 

100k intersection equals 3 Joule of energy.  The data does not reveal the amount of energy used 

by the triangle-box intersection tests and should be included in the future work.  There are only 

two scenes, Toaster and Sdragon, which have data for non-triangle-box intersection UG build.  

The results are in Table 6 and they each show an energy reduction of around 61% and 66%.  This 

suggests coarser non-triangle-box intersection UG build should be used if the rendering overhead 

is smaller than the energy saved from the build. 

Finding models that produce the same number of triangle-box intersections is not trivial; 

bbuny (69k) and complex (98k) are the only scenes with similar triangle-box intersection counts 
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in our data.  They are the two dots overlaying each other near the 200,000 mark on the x axis.  

Table 7 shows the two models in more detail. 

Table 7 Energy Comparsion on Intersection Count 

Model Size Build Time (ms) # of intersections Build Energy (J) 
69k 123 13k 4.2 
98k 137 12k 4.5 
 

Table 7 shows the 98k model has fewer triangle-box intersections than the 69k model.  

The 98k model uses more energy despite the fact that it has fewer triangle-box intersections.  

The effect of triangle-box intersection is not as dominant as we had believed because the bigger 

model still uses more energy to build.  Going from 123 ms to 137 ms is an 11% increase, but 4.2 

to 4.5 only represents a 7% increase.  Thus, this data suggests the 8% decrease in the number of 

triangle-box intersection does lower energy consumption in minor percentage.  We are not able 

to prove our hypothesis on the triangle-box intersection because we do not have enough samples 

and future work should be investigated on more models with the same amount of triangle-box 

intersection. 

5.1.5 Build Time 

It is intuitive to think that less running time equals less energy consumed.  Everyone in 

the ray tracing community had always tried to minimize the running time and if less time means 

less energy; it is another reason to reduce the running time more aggressively.  If time does not 

relate to energy, it is still a major finding because no one has looked at the energy consumption 

for ray tracing before.  We expected the graph to come out somewhat linear because the test 

results have similar discharge rates and the equation for energy per build is build time multiplied 

by the discharge rate for the given operation.  Figure 22 is the energy versus time graph. 
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Figure 22 Build Energy versus Build Time 

 
Both axes are in logarithmic scale in Figure 22.  The line has a slope of about 34 J/S 

which is the average discharge of the system at 100 % CPU utility when running the build tests.  

Figure 22 implies that less time equals less energy because the energy per build increases as the 

build time increases.  The calculated average discharge rate for all the build tests is 33.6 J/S and 

has a standard deviation of 1 J/S.  The confidence interval of 95% is 0.25 J/S with 63 samples.  

The equation for energy per build is average discharge rate * build time.  Since we know the 

average discharge rate is 33.6 J/S, it becomes the constant for the equation.  The equation 

becomes 33.6 * build time.  Since the build time is the only variant, it determines the energy per 

build. 

We were expecting different acceleration structures to have very different discharge rate, 

thus they will have different rate of change; however, they turned out to have similar discharge 

rates.  This suggests that all build algorithms have similar CPU utilization which has a 33.6 ±  

0.25 J/S discharge rate on the testing machine. 

5.1.6 Build Energy Discussion 

The simple relationship between time and energy is surprising.  It suggests that work 

should be focused on reducing the running time, and that reduction in energy will be an 
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additional benefit.  Our original hypothesis states that energy is not directly related to time; 

however, we found a strong correlation between energy consumed during the build and build 

time.  Faster algorithms are not necessarily more complex or use more power. The build 

algorithm complexity does not affect the battery discharge rate; therefore, faster algorithms 

consume less energy overall.   

Looking at acceleration structures in general, they are algorithms that partition data so 

that unnecessary triangle-ray intersections can be avoided.  This type of algorithm typically 

involves the allocation of memory before the algorithm begins.  The algorithm does computation 

to find the triangle’s corresponding location in the structure and inserts the triangle reference.  

The major difference is the amount of energy required during the computation stage to find the 

location for each triangle.  In another words, we are only comparing the amount of computation 

required for each build algorithm.  The build algorithms do not fit well with our hypothesis 

because they are not complex algorithms that run to completion quickly.  The KdT is the most 

complex to build but it requires a lot of time to complete.  The UG is the simplest and takes little 

time to complete.  We do not see the real difference between each algorithm, but also fail to 

define how the complexity should be measured.  It is possible that beyond a certain level of 

complexity, the CPU runs at almost 100% utilization.  So if two algorithms run at almost 100% 

utilization, their battery drain rate will be similar.  Since all three build algorithms are 

computation intensive algorithms, they can be seen as having the same complexity.  Therefore, 

they have similar discharge rates.  If the build algorithms have different operations, we expect to 

see different discharge rates.  For example, we can compare a memory allocation heavy 

algorithm to a computation intensive algorithm.  Our preliminary studies show an algorithm 

doing memory allocation and deallocation of 340 KB has a 32.5 J/S discharge rate, while an 

algorithm doing two additions and multiplications requires 29 J/S. 

Another important concept is that improvements carried out to minimize time tend to 

reduce wasted work by avoiding expensive computations and increasing memory efficiency.  

Avoiding work means saving the energy required to carry out work.  Increasing memory 

efficiency means less paging and cache fetches, thus reducing work and wasted energy as well. 

The fact that the testing machine has a 33.6 J/S discharge rate is not discouraging.  The 

energy consumption can be predicted if the build time is known.  The 33.6 J/S is the overall 
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discharge rate of the system when running the build algorithms.  The energy consumed by the 

algorithm alone can be calculated by subtracting the idle discharge rate from 33.6 J/S.  The idle 

discharge rate is the discharge rate when the system is only running the energy measurement 

algorithm and the operating system.  The average discharge rate will not be the same if the tests 

are conducted on a different machine; however, we believe the following equation will apply by 

finding the average discharge rate of any acceleration structure on the machine.  The energy per 

build can be calculated using the following formula.   

EpB = (33.6-IdleB)*bt 
where 
bt = build time in second. 
IdleB = discharge rate in the idle mode 
EpB = energy (Joule) per build 

To conclude, time is the most dominant factor affecting the build energy.  Uniform grid is 

the cheapest structure to build in terms of energy and time.  It is scalable because it has low 

energy consumption per triangle.  In addition, it can handle animated scenes that change their 

triangle counts per frame.  BVH is the best choice when the scene only contains deformable 

models because it can update the tree with low cost.  It is not suited for all general scenes 

because the update algorithm is dependent on the movement of the triangles in the scene.  The 

Kd-Tree should be avoided if one plan to build the structure repeatedly, and an efficient update 

mechanism would does not penalize the rendering performance needs to be investigated.  Lastly, 

memory allocation and computation reduction should be explored to optimize the energy 

consumption of the acceleration structure build algorithm. 

5.2 Static Rendering Energy Measurement 

Static rendering energy consumption is not the focus of this paper, but the data is 

necessary to isolate energy consumption during the dynamic rendering test.  The only difference 

between dynamic and static rendering is the building acceleration structure step.  Dynamic 

rendering requires per frame acceleration structure rebuild whereas static rendering does not.  In 

static rendering, we measure the energy per render of the Toaster (11k) and Sdragon (48k) 

scenes.  The tests are conducted in two different resolutions: 256x256 and 768x768.  Every scene 

is rendered using 5 different acceleration structure builds: the naïve Kd-Tree, the SAH Kd-Tree, 

the uniform grid with the triangle-box intersection, the uniform grid without the triangle box 
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intersection, and the Bounding Volume Hierarchy.  The short notations used for each structure 

are the following: 

 KDN: Kd-Tree with naïve split ( spatial median ) 
 KDS: Kd-Tree with SAH split  ( surface area heuristic ) 
 UGT: Uniform grid with the triangle-box intersection 
 UGN: Uniform grid without the triangle-box intersection 
 BVH: Bounding Volume Hierarchy 

The BVH does not have an alternative build method because the BVH update does not 

produce a different structure if the triangles do not move.  The alternative build methods for Kd-

Tree and UG produce different topologies of the acceleration structure that are likely to impact 

upon the rendering time; therefore, they are included as testing parameters.  Furthermore, the 

benefit of the coarser builds and the decrease in rendering performance can be compared. 

The tests are conducted on both CPU and GPU.  CPU represents the algorithm running 

completely on the CPU and GPU represents the rendering algorithm running on the GPU.  The 

results are presented per scene in each sub-section.  The average discharge rate and the standard 

deviation can be found in Appendix A. 

5.2.1 11K Model Results 

The 11k model result is the rendering energy consumption of the Toaster scene.  The 

picture of this model can be found in Section 4.3.  The Toaster scene is a box with a few toys 

inside.  The original coordinate has the box lying flat on the z axis.  The test has the camera 

rotate around the model as described in Section 4.3.  This makes static scene testing non-trivial 

because the rendering engine has to generate new eye rays and traverse different paths into the 

acceleration structure per frame.  Due to the rotating camera, the rendering time per frame is not 

the same for every frame and the results have more variance.  We believe that a better test 

decision would be not to rotate the camera so that a more accurate average discharge rate and 

rendering time could be obtained.  Figure 23 shows the energy per frame for each acceleration 

structure on the CPU and the GPU at 256x256 screen resolution.  Figure 24 represents the result 

at 768x768 screen resolution.  
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Figure 23 Energy Comparison Rendering 11k Model at 256x256 Resolution 
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Figure 24 Energy Comparison Rendering 11k Model at 768x768 Resolution 

 

The terms lower and higher resolution are used to refer to 256x256 and 768x768 screen 

resolutions, respectively, in this section.  As shown in Figures 22 and 23, KDS uses the least 

amount of energy per frame in the CPU tests; however, KDS perform poorly on the GPU.  UG 

and BVH use similar energy per frame and they use the least amount of energy on the GPU in 

the higher resolution.  At the lower resolution, the GPU UG and the GPU BVH only differ from 
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the CPU KDS by 2 Joules.  This confirms the effectiveness of GPU ray tracing.  The GPU KDN 

data are not presented because the algorithm did not render the image correctly due to a 

limitation on the number of loop iterations in the shader code that limited the traversal depth; 

therefore, the data is removed from all the graphs.  Future work should correct this seek ways to 

overcome this limitation. 

Table 8 Energy Reduction from Coarser Build for 11k Model 

 CPU Kd-Tree CPU UG GPU UG 
Screen Resolution lower higher lower higher Lower higher 
Energy reduction 
from coarser build 

(Joule) 

 
20.8 

 
0.5 

 
0.5 

Energy increased in 
rendering (Joule) 

2.3 42 0 7.3 0.8 3.6 

Total energy saved 
(Joule) 

18.5 -21.2 0.5 -6.8 -0.3 -3.1 

 
Table 8 shows the benefits of coarser builds and the rendering overhead.  The KDN and 

the UGN use more energy at higher resolutions.  They received no benefit from the coarser build 

methods.  The CPU KDN and UGN exhibited some energy saving at lower resolutions because 

the rendering overheads are minor.  The table suggests that a coarser building method is not 

beneficial in general; however, more samples are required to confirm this conclusion.  Future 

work should include more rendering results to verify this.  

Figures 23 and 24 do not give a clear picture of the percentage increases when the screen 

resolution increases.  Figure 25 presents a bar graph with the percentage increase in energy per 

frame, comparing the lower resolution to the higher resolution.  From Figure 25, we can see that 

CPU algorithms adapt poorly as the screen resolution increases.  The CPU KDN requires 12 

times more energy and the CPU UGT needs 10 times more.  The higher resolution requires 9 

times more pixels to be painted than the lower resolution.  The CPU rendering algorithms grows 

linearly as the screen resolution increases.  On the other hand, the GPU algorithms only use 3 to 

5 times more energy.  This results show that the GPU was not fully utilized at the lower 

resolution.  Overall, the GPU is more adaptable to screen resolution changes.  
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Figure 25 Percentage Energy Usage Increase from 256 to 768 Resolution 11k Model 

 
Knowing that the GPU is more efficient at higher resolutions, we want to know how 

much improvement in energy the GPU can provide at the same resolutions.  Figure 26 shows the 

percentage of energy saved from moving CPU rendering into the GPU.   

Figure 26 shows that the Kd-Tree does not benefit from the GPU and its performance is 

better than that of the CPU.  On the other hand, UG and BVH reduce their energy consumption 

about 40 percent with the GPU in the lower resolution and 80 percent in the higher resolution.  
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Figure 26 Percentage Energy Reduction in Moving Rendering Task to GPU (11k Model) 
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Nevertheless, the GPU has been shown to be a good platform for ray tracing.  It is scalable in 

terms of screen resolutions and it requires less energy to render a frame with the UG and the 

BVH.  CPU does better on the lower resolution and KDS can render an image with the least 

amount of energy. 

5.2.2 48K Model Results 

In this section, the Sdragon scene (48k model) results are presented.  The same sets of the 

graphs similar to Section 5.2.1 are drawn.  Table 9 shows the benefit of the coarser builds for the 

Sdragon scene. 

Table 9 Energy Reduction from Coarser Build for 48k Model 

 CPU Kd-Tree CPU UG GPU UG 
Screen Resolution lower higher lower higher lower higher 
Energy reduction 
from coarser build 

(Joule) 

 
73 

 
1.8 

 
1.8 

Energy increased in 
rendering (Joule) 

3.1 26.9 0 2.9 1.2 4.4 

Total energy saved 
(Joule) 

69.9 46.1 1.8 -1.1 0.6 -2.6 

 
Unlike in the 11k results, the Kd-Tree benefits from the coarser KDN build for the 48k 

model in both screen resolutions.  The coarse UG build still consumes more energy in the higher 

resolution setting.  The trade off between the coarse build and rendering performance is 

interesting and remains a question for future work.   

Figure 27 shows the energy per frame for each acceleration structure on the CPU and the 

GPU with 256x256 screen resolution.  Figure 28 is the result with 768x768 screen resolution. 



57 

CPU VS GPU, 48k Model 

256x256 Screen Resolution

0

5

10

15

20

25

30

35

40

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

 
Figure 27 Energy Comparison Rendering 48k Model at 256x256 Resolution 

 

CPU VS GPU, 48k Model 

768x768 Screen Resolution

0

50

100

150

200

250

KDN KDS UGT UGN BVH

J
o
u
le

CPU

GPU

 
Figure 28 Energy Comparison Rendering 48k Model at 768x768 Resolution 

 
Not surprisingly, the KDS is very efficient in terms of energy; however, the BVH 

actually use least amount of energy for the 48k model.  Similar to the 11k model result, the GPU 

UG and the GPU BVH use the least amount of energy at the higher resolution.  The major 

difference between the 11k result and 48k result is that CPU BVH is as energy efficient as its 

GPU counterpart.   
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Figures 29 and 30 do not exhibit significant differences when compared with the 11k 

model results; thus Figures 29 and 30 are not discussed. 
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Figure 29 Percentage Energy Usage Increase from 256 to 768 Resolution 48K Model 

 

 

5.2.3 Static Rendering Discussion 

From the data, we can say the static rendering energy consumption depended on both the 

acceleration structure (AC) used to render and the screen resolution (SR).  Rendering a model 

with the wrong AC will cost more energy.  Even though there is no universal AC that always 

Figure 30 Percentage Energy Reduction in Moving Rendering Task to GPU (48k Model) 
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gives the best rendering performance, the data show that SAH Kd-Tree is a good choice on the 

CPU platform.  This confirms the statement from Wald in his PhD dissertation [Wald 2004] that 

a good SAH Kd-Tree is generally the best acceleration structure for static scenes.  Unfortunately, 

the SAH Kd-Tree does not have the same performance on the GPU cases.  The BVH and UG do 

much better on the GPU.  The GPU BVH outperforms every other AC and it does almost as well 

as the CPU KDS at the lower resolution.  Table 10 summarizes these findings.  It is important to 

realize that these are just general guidelines, as there are always models that will heavily favor a 

particular AC.  This only applies to single-ray ray tracing. 

Table 10 Rendering Platform Recommendation 

 Best Combination 
Low Resolution CPU-KDS or GPU-BVH 
High Resolution GPU-BVH 

 
The rendering data with CPU has an average discharge rate of 34.6 J/S ± 0.4 J/S.  The 

confidence interval is calculated with 95% confidence and 20 samples.  The GPU data has an 

average discharge rate of 40.2 J/S ± 0.8 J/S.  The confidence interval is calculated with 95% 

confidence and 16 samples.  The data can be reproduced using the average discharge rates and 

the standard deviations for the static rendering result in Appendix A.  The GPU rendering 

algorithms have much higher variance.  Figure 31 demonstrates the average discharge rate for 

each acceleration structure when rendering the 11k model.  KD represents Kd-Tree in Figure 31.   
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Figure 31 Average Discharge Rate with 11k Model 
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Figure 31 shows that BVH and Kd-Tree use 40-42 J/S when rendering but UG requires 

only 38 J/S.  The GPU average discharge rates exhibit greater variance, suggesting that the GPU 

is not utilized to its full capacity.  Future work could focus on improving the efficiency of the 

GPU algorithms.  The difference in the GPU average discharge rate suggests that the GPU 

rendering cases do not have the same rate of energy growth.  If all three acceleration structures 

can complete a model in the same amount of the time, the results should show that the GPU UG 

uses the least amount of energy.  The GPU UG does match up closely with the energy 

consumption of the GPU BVH in Figure 23, 24, 27 and 28.  Knowing that the UG is the cheapest 

acceleration structure to build, GPU UG might be the best method for rendering most dynamic 

scenes.   

5.3 Dynamic Rendering Energy Measurement 

Dynamic rendering tests use scenes, screen resolutions and acceleration structures from 

static rendering tests.  The two models are the Toaster model from the Utah Animation 

Repository and the Dragon model from the Stanford 3D Scanning Repository.  Dynamic scenes 

have a typical execution cycle consisting of updating the triangles, building the acceleration 

structure and rendering.  These models are not animated, and the triangles do not update from 

frame to frame.  The acceleration structures are set to rebuild per frame even if there are no 

changes in the scene.  This emulates the effect of running an animated scene without the 

overhead of updating all the triangles.  We do this to avoid adding the energy used to update the 

triangles into the energy measurement, as it will be hard to distinguish the energy used to update 

the triangles from the build and rendering.  Also, the amount of energy used to update the 

triangles is small when compared to the build and the rendering.  Finally, identifying the energy 

used to update the triangles is not likely to result in additional information.  Therefore, the 

method of forcing the acceleration structure to rebuild is chosen to represent the dynamic 

rendering energy. 

Like the static rendering tests, the tests were divided into GPU and CPU rendering tests.  

They are further divided into 6 tests with different acceleration structures.  The following is a list 

of all the acceleration structures with their short-hand notations and descriptions: 

UG-A – Uniform grid with the triangle-box intersection. 
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UG-N – Uniform grid without the triangle-box intersection. 
KD-M – Naïve Kd-tree (spatial median split) 
KD- S – SAH Kd-tree  
BV- F – BVH that rebuild per frame 
BV- U – BVH that updates every node and does not rebuild 

BV-U represents the BVH update worst case scenario from Section 5.1.  It forces all leaf 

nodes to execute the update function.  Since the triangles in the scene do not move, BV-U will 

not produce a different tree topology.  The acceleration structure will always rebuild itself and 

the rendering algorithm will always traverse the same structure.  The camera is set to rotate 

around the model.  As discussed in Section 5.2.1, the camera should be fixed to generate a more 

accurate energy measurement.  Since the resolution of the energy measurement function is 3-5 

seconds, the camera should not rotate before the energy sampling function samples the energy at 

a particular camera angle for more than 5 seconds.  Future work using the same energy sampling 

function should take this into consideration. 

We hypothesize that the dynamic rendering energy on the CPU will represent the 

addition of the build and the static rendering energy.  The energy per frame on the GPU, on the 

other hand, will not be equal to this simple addition because GPU rendering ray tracer requires 

an additional process before the GPU can render the image, specifically, the translation of data in 

array format into texture.  Described in Section 3.1.3, the triangles and the acceleration structures 

need to be converted into texture so the GPU algorithm can use the textures as random access 

memory.  In addition, textures are not created in the GPU memory, and therefore need to be 

copied from the CPU memory to the GPU memory.  This step requires additional time and 

energy.  The translation into texture and the transfer of the texture into the GPU memory will be 

referred as the transfer in the following section.  The energy and time used by the transfer will 

be referred as transfer energy and transfer time.  We hypothesize that the transfer process can 

become a major bottleneck, causing additional energy usage when rendering with the GPU. 

The average discharge rate of dynamic rendering is measured by looping the build and 

static rendering functions.  The energy per frame is calculated by the multiplication of the 

average discharge rate and the time per loop.  The energy per build found in section 5.1 is 

subtracted from the energy per frame, meaning that the remainder is the energy per rendering.  

The transfer energy can be obtained with subtraction as well.   

Transfer energy per frame = energy per frame – energy per build – energy per render 
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The equation to determine transfer energy only applies to the GPU data.  Rendering on 

the CPU does not require the transfer step.  The accuracy of this simple subtraction can be 

checked by adding the energy found in build tests (section 5.1) to that found in the static 

rendering tests (section 5.2).  We found the measured and the calculated results to be similar but 

not the same.  This is expected because we are using averages.  The standard deviations and 

average discharge rates for the dynamic rendering test can be found in Appendix A.   

5.3.1 11K Model Measurement Results 

The data is normalized to the worst data, the data with biggest energy per frame, across 

the screen resolutions.  Figures 32 and 33 provide the data for the 11k model in two screen 

resolution. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C-

KD-M

C-

KD-S

C-

UG-A

C-

UG-N

C-

BV-F

C-

BV-U

G-

KD-M

G-

KD-S

G-

UG-A

G-

UG-N

G-

BV-F

G-

BV-U

N
o
rm

a
li
z
e
d
 E
n
e
rg
y
 &
 T
im
e

256x256 Energy Distribution per Frame with 11k Model

Build Energy Render Energy Transfer Energy

Build Time Render Time Transfer Time

 
Figure 32 Normalized Energy and Time Chart for 11k Model at 256x256 Resolution 
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Figure 33 Normalized Energy and Time Chart for 11k Model at 768x768 Resolution 

 
The stack represents data with the following order from top to bottom: transfer, render 

and build.  The CPU results do not include transfer energy and time so there are only two stacks. 

The dotted bar represents time and the solid bar represents energy.  From Figures 31 and 32, it 

can be seen that the time and energy columns are parallel, suggesting that energy increases as 

time increases.  From Section 5.2.3, we know that rendering on the GPU has a higher discharge 

rate.  This is reflected here again because the GPU energy bars are usually higher than the time 

bars, whereas the CPU energy bars have same height as the time bars.  This suggests if both CPU 

and GPU rendered a scene in the same amount of time, the CPU would use less energy than the 

GPU.   

Kd-Tree is not the best option on the CPU platform because of the high build energy 

requirement; however, it is still the best CPU option at the 768x768 screen resolution where the 

rendering energy is significantly higher than the build energy for all CPU tests.  The transfer 

process does not have a significant impact on the GPU energy consumption as we had 

hypothesized.  It uses some additional energy but not enough to penalize the GPU performance 

on all the GPU tests.  Overall, GPU-BVH and GPU-UG are the best combination in rendering 

the 11k model with per frame acceleration structure rebuilds. 
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From Figures 32 and 33, we can see that build energy contributes to less than 20% of the 

energy when rendering a dynamic scene.  The majority of the energy and time are used to render 

the image.  The only exception is Kd-Tree where the build takes more energy and time than 

rendering the image at the 256x256 screen resolution.  This suggests that balancing the energy 

used to build the acceleration and the rendering is important.  Attempting for an extreme amount 

of power conservation on one end of the scale can cause more energy consumption on the other 

end.  The Kd-Tree data for 256x256 screen resolution is a good example of this.  It is reflected in 

Table 8 in Section 5.2.1, where the coarse KD-M build shows an energy saving of 18.5 Joules 

per frame.  Figure 32 confirms this because KD-M uses less energy per frame than KD-S.   

5.3.2 48K Model Energy Measurement Results 

The results are normalized to the highest energy per frame across both screen resolutions 

for the 48k model.  Figures 34 and 35 represent the results for the 48k model. 
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Figure 34 Normalized Energy and Time Chart for 48k Model at 256x256 Resolution 
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Figure 35 Normalized Energy and Time Chart for 48k Model at 768x768 Resolution 

 
In term of the 256x256 resolution, the CPU BV-U uses the least amount of the energy per 

frame.  Unlike the 11k model result, the BVH build for this model is more expensive and needs 

more energy than the rendering on the lower resolution.  Despite this, BVH still uses the least 

amount of energy overall in both screen resolutions.  The KD-M uses less energy than the KD-S 

in both resolutions, verifying the finding in Table 9. 

There is no all-round best acceleration structure for the CPU when rendering a dynamic 

scene.  The 48k data shows that CPU BVH uses the least amount of energy while the 11k model 

performs best using the CPU Kd-Tree.  The CPU UG looks promising at the lower resolution but 

does not scale well on the higher resolution.  GPU BVH and GPU UG remains the most scalable 

solution with consistent performance.  GPU BVH can usually finish a frame faster with the 

updating algorithm.  Thus, we conclude that GPU BVH is the best choice for single-ray ray 

tracing on dynamic scenes in general. 

5.3.3 Dynamic Rendering Energy Measurement Discussion 

The average discharge rate for all the CPU dynamic rendering results is 34.2 J/S ± 0.37 

J/S.  This discharge rate is the same as the static rendering results in Section 5.2.3 because their 

confidence intervals overlap.   The average discharge for all the GPU results is 39.1 J/S ± 0.97 

J/S.  The discharge rate for the GPU has a larger variant because of the large difference in 
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discharge rates between the build and the GPU rendering.  Figure 36 provides a graph of the 

dynamic rendering discharge rate for BVH at 256x256 screen resolution.  
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Figure 36 Discharge Rate Comparison for 11k Model Rendered with BVH 

 
Figure 36 shows that the discharge rate of the dynamic test is between the build and the 

render discharge rates.  We suspect that the combined discharge rate is the addition of render and 

builds at different biases.  GPU BVH in Figure 36 spends 200 ms on rendering and 100 ms on 

building and the combined discharge rate is closer to the rendering line.  This leads us to believe 

that the combined average discharge rate is biased towards rendering because the rendering takes 

more time.  If this is true, the discharge rate when rendering a dynamic scene with the GPU can 

be approximated with the following equation: 

The average discharge rate = cpuJ*Bt/(Bt+Rt) + gpuJ*Rt/(Bt+Rt) 
where 
Bt = build time, Rt = render time 
cpuJ = build discharge rate, gpuJ = render discharge rate 

The above discharge rate approximation ignores transfer power.  A more accurate method 

should incorporate the discharge rate and run time during the transfer process.  Further tests are 

needed in future work to confirm this discharge rate approximation for the GPU. 

Rendering with the GPU requires additional energy for the GPU to complete its 

execution of the shaders.  As a result, more energy was used, and the uneven column between 
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time and energy on the GPU bars in Figure 33 are good evidence of this.  It might be intuitive to 

think that using additional energy to drive more devices on a PC consumes more energy; 

however, it is shown that even with additional energy fed into the GPU, it is still more energy 

efficient to render a single-ray ray traced scene with the GPU because the benefit of a shortened 

runtime outweighs the increase in discharge rate. 

5.4 Discussion of System and Experiment Limitations 

The experiment results suggest that energy increases as running time increases.  This is 

reasonable because less work equals less energy.  However, we feel that the results do not reveal 

the true energy consumption in the algorithms at which we have looked.  The data reveal the 

average discharge of the algorithm but do not disclose the energy usage trends during the 

execution of the algorithm.  We do not know which parts of the operation inside the algorithm 

use more or less energy.  Since the CallNtPowerInformation function offers limited resolution, 

we cannot obtain energy consumption information for each individual component of the 

algorithm.  An energy measurement tool with a finer resolution is required if we are to further 

understand energy behavior when the system executes an algorithm.   

Another way to solve this problem would necessitate finding the energy expands of 

different CPU operations individually.  The base case is the energy needed when running the 

empty loop.  Each individual operation in an algorithm can then be added gradually to observe 

the changes in the discharge rate. 

The results in the static rendering and the dynamic rendering sections are interesting, but 

more data is needed to verify the finding.  We only have data for two different models in two 

different resolutions.  More models need to be tested to confirm that GPU BVH is really the best 

overall rendering method for dynamic scene.  Furthermore, the testing scenes need to include 

more models.  Real world 3D applications typically have more than ten models on the screen at 

once.  It is more meaningful to test scenes that match closely with real world scenes than 

rendering a single complex model.  In the experiment, each test runs once for three minutes and 

we do not run the test again.  The same test should run multiple times so that the information on 

the variance between each run can be gathered.  

Another possible error is the rotating camera.  Mentioned in Section 5.2 and 5.3, the 

camera should be kept still for the rendering test.  The rotating camera introduces more variance 
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to the rendering energy because each frame is not rendered in the same amount of time after the 

camera position changes.  The variance in the rendering energy per frame causes inaccuracy in 

the calculation for transfer energy because the transfer energy is derived from the rendering 

energy.  Figures 32, 33, 34 and 35 show the transfer energy; however, we cannot derive too 

much information from the data because we suspect that they do not correctly represent transfer 

energy.  We will only mention on the trend that suggests that transfer energy does not 

significantly increase the energy usage on the GPU. 

Lastly, the rendering data discussed in this paper only applies to traditional single-ray ray 

tracing.  Our implementation is not the fastest, but it is sufficient for energy measurement 

purposes.  The SIMD implementations published in recent papers will likely speed up the 

rendering process.  Utilizing SIMD instructions on the CPU might produce a different discharge 

rate, and this is an interesting topic for future work.   
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6 Modeling Energy Usage 
Knowing that time can translate directly to energy, we can predict the energy 

consumption during ray tracing if the average discharge rate is known.  Assuming the 

algorithms, both build and rendering, have similar CPU utilization, the average discharge rate 

and the frame per second of the ray tracing application are enough to predict the energy per 

frame.  The following is an example of the process: 

Assuming the following data is gathered when running dynamic scenes. 
Let CJ = current battery capacity in Joule 
cpuJ = discharge rate of CPU at 100% utilization 
gpuJ = discharge rate of GPU when running shaders 
tranJ = discharge rate when transferring data to GPU 
Bt = build time, Rt = render time, Tt = transfer time 
Fps = frame per second 
Fpj = frame per Joule 
Jpb = joule per build 
Jpr = joule per render 
 
When rendering on the CPU: 
Bt and Rt are measured in seconds. 
Fps = 1/(Bt+Rt) 
Jpb = cpuJ*Bt,  Jpr = cpuJ*Rt 
Fpj = 1/(Jpb+Jpr) = 1/(cpuJ*(Bt+Rt)) = Fps * 1/cpuJ = Fps/cpuJ 
 
The frame per Joule is simply the frame per second divided by the average discharge rate. 
We used CPU UG data with the 11k model data rendered at 256x256 screen resolution to verify 
this equation. 
 
Measured variables: 
Bt = 0.02s, Rt = 0.4s 
cpuJ = 34 Watts 
 
Derived values: 
Fps = 2.38 
Fpj = 2.38 / 34 = 0.07 
 

CPU UG needs 14.3 Joule per frame and the calculated value is 1/0.07 = 14.28 J, which 

is fairly close to the measured value.  The maximum number of frames that a system can render 

with its current energy is CJ*Fpj.  If the confidence interval is known for the average discharge 

rate, this can be used to derive the interval for the calculated Joule per frame. 
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The energy needed when rendering on the GPU can be calculated with the frame per 

second divided by the average discharge rate as well.  This is not as accurate as the CPU because 

the GPU discharge rate has a larger variance.  The calculation for the average discharge rate is 

more involved but more error prone in the GPU case.  The average discharge rates for the build, 

GPU rendering and transfer data to the GPU need to be measured.  Their corresponding runtimes 

are required as well.  Knowing these values, we can extend the equation in Section 5.3.3 to 

include the transfer energy and time.  The equation is as follows: 

average discharge rate = Rate = cpuJ*Bt/(Bt+Rt+Tt) + gpuJ*Rt(Bt+Rt+Tt) + tranJ*Tt(Bt+Rt+Tt) 
and Fpj = Fps/Rate 

The equation calculates the overall system energy consumption and it does not take into 

account the other miscellaneous tasks running on the system.  The equation will likely fail if 

there are other applications sharing resources with the ray tracer application.   

Lastly, the equation is a hypothesis and needs to be validated on different models and on 

different machines.  We do not validate the equation in this paper but this is a necessary 

experiment in future work.     
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7 Conclusion and Future Work 

7.1 Conclusion 

After testing the energy usage of three popular acceleration structures for ray tracing, and 

the energy usage when rendering dynamic scenes using the CPU and the GPU as rendering 

platforms, we found time to be the dominant factor affecting energy usage, and the trend is that 

energy increases as time increases.  We have shown rendering on the GPU with the BVH uses 

the least amount of energy in most of our test cases.  We found that dynamic scenes are mostly 

bottlenecked by rendering performance. However, balancing the build time and the render time 

is essential for saving energy.  The Kd-Tree is not well suited for rendering dynamic scenes 

because the building of the Kd-Tree is not fast enough.  We show that the GPU can render 

scenes faster than the CPU with less energy at higher screen resolution.  However, a good 

acceleration structure on the CPU is comparable to the GPU implementation at lower screen 

resolutions.  In addition, we found that our GPU implementations do not fully utilize the GPU, 

and that more work can be done to improve the efficiency of our GPU algorithm.  With this 

finding, we firmly believe that the GPU will continue to play an important role in boosting 

global-illumination algorithm performance and extending the battery life on mobile devices in 

the future. 

7.2 Future Work 

We feel more work can be added to extend our work.  First, we will discuss topics that 

will make our work more complete.  Second, we will talk about ray-tracing implementation 

improvements, and lastly, other possible future work.  In our experiments, we did not have 

enough data samples for build-energy measurement for the non-triangle-box uniform grid; this 

should be included in the future to complete the build data.  The GPU Kd-Tree is not 

implemented fully, as it is not able to render every scene correctly, and it should be fixed in the 

future.  The equation in Section 6 needs to be validated through further data collection, and we 

hope to include this verification in the future.  As mentioned in Section 6, we do not have enough 

data samples for the static and dynamic rendering tests and more samples are needed to validate 

our claim.  More samples are needed for the uniform grid triangle-box intersection test as well.  

More samples should make the result statistically more accurate. 
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The implementation can be improved to better utilize the CPU and the GPU.  We feel the 

ENCORE implementation is not complete, as it can only do ray casting, and the ability to render 

reflections, shadows and refractions should be added.  The CPU ray tracer can be improved by 

implementing the SIMD traversal and SIMD ray-triangle intersection testing to speed up the 

rendering.  In addition, the rending image should be broken up into smaller tiles to allow better 

cache efficiency on both the CPU and GPU.  We can possibly speed up the building by 

incorporate threading [Lauterbach et al. 2006].  There are also papers looking at hybrid 

approaches to building the Kd-Tree [Havran et al. 2006].  Coherent ray tracing, supporting 

multiple rays per pixel, or multi-level ray tracing is also interesting future work. 

In terms of energy measurements, a more-accurate measurement might be obtainable 

through a programmable multimeter that can record data through a USB port to a PC.  With the 

aid of profilers, we can look at different elements, such as cache usage, memory allocation 

patterns, and CPU-instruction usage to aid in the understanding of energy behavior.  Each 

acceleration structure can be examined in more detail by comparing the data structure topology, 

triangle density in the scene, and triangle access patterns.  We can test other acceleration 

structures such as hierarchical uniform grids and octrees.  Scenes more closely resembling 

commercial 3D applications could be used in addition to our simple ones.  The energy 

consumption of a multithreaded SIMD ray tracing algorithm running on a dual-core CPU is 

interesting as well.  The list of possible future work is infinite, but we hope our work inspires 

new research and continued interest in ray tracing and energy aware computing.  
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Appendix A 
 
Average Discharge Rate and Standard Deviation Data 

 
ADR = average discharte rate (mW) 
STDEV = standard deviation for ADR 
 
Table – build standard deviation, part 1 
 Uniform grid Kd-Tree (SAH) Kd-Tree (median) 
 ADR STDEV ADR STDEV ADR STDEV 
singleTri 33119 218 34901 238 35176 216 
Toaster 33733 714 34539 191 35054 262 
Sdragon 33716 507 34053 216 34628 176 
Bbunny 34871 316 33758 351 34939 448 
Complex 32801 453 33068 349 33926 421 
200k 32786 397 33848 393 34446 342 
400k 32351 421 33135 642 33917 382 
Fairy 33913 258 35075 357 35613 317 
990k 34504 299 33862 846 34912 514 
 
Table – build standard deviation, part 2 
 BVH BVH update  

(best case) 
BVH update 
(average case) 

BVH update  
(worst case) 

 ADR STDEV ADR STDEV ADR STDEV ADR STDEV 
singleTri 34669 332 34705 265 34303 1428 34217 583 
Toaster 34600 288 33751 346 34742 295 34787 374 
Sdragon 33622 275 32473 390 34494 289 34219 413 
Bbunny 33172 302 32010 329 33960 389 33480 364 
Complex 31818 430 30718 260 32649 474 32275 365 
200k 33032 579 32143 245 34106 296 33914 482 
400k 32539 322 31636 320 33594 374 33014 322 
Fairy 34161 469 33077 296 35269 288 34983 400 
990k 33642 523 32575 180 34751 342 34471 342 
 
M – no memory pool emulation is done.  The data structures calls malloc function or new 
operator when new memory is needed and releases them when deleted. 
N – memory pool emulation is in effect.  The data structures reuse previous allocated spaces. 
 
Table – memory test build standard deviation 
 Kd-Tree (M) Kd-Tree (N) BVH (M) BVH (N) 
 ADR STDEV ADR STDEV ADR STDEV ADR STDEV 
Scissor 32902 382 33078 1180 34131 354 34535 495 
Wheel 34886 332 34051 478 33803 240 34003 273 
Mug 34406 395 33699 279 33497 293 33757 293 
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Cow 34270 238 33477 667 32968 310 33255 306 
Porsche 32646 365 32090 299 32617 493 32940 308 
 
C-KD-M = CPU Kd-Tree with median split 
C-KD-S  = CPU Kd-Tree with SAH split 
C-UG-A  = CPU uniform grid with triangle-box intersection test 
C-UG-N  = CPU uniform grid without triangle-box intersection test 
C-BV-F   = CPU BVH without update 
C-BV-U  = CPU BVH update 
G-            = GPU  
 
Table – Build Data for Combine Test 
  C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U 

       
ADR 33806 33838 33838 32820 35560 34553 

11k 

STDEV 226 1342 131 335 417 346 

       
ADR 34250 34371 34770 33803 35920 34973 

48k 

STDEV 433 412 246 260 434 282 

 
Table – Render Data for Combine Test, CPU 
  C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U 

       
ADR 34037 35256 35304 33770 32731  

256x256 
11k 

STDEV 321 167 384 264 362  
       
ADR 34380 35662 35430 34537 33059  

256x256 
48k 

STDEV 265 303 398 591 152  
       
ADR 34068 34971 34927 34219 34722  

768x768 
11k 

STDEV 293 253 298 435 523  
       
ADR 34448 35275 34868 34319 35168  

768x768 
48k 

STDEV 280 209 153 279 201  
 
Table – Render Data for Combine Test, GPU 
  G-KD-M G-KD-S G-UG-A G-UG-N G-BV-F G-BV-U 

       
ADR  40387 37475 38282 40693  

256x256 
11k 

STDEV  1305 906 845 1089  
       
ADR  41788 38280 39938 41258  

256x256 
48k 

STDEV  2777 712 873 2908  
       768x768 

11k ADR  40659 38001 39561 42450  
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STDEV  1090 484 839 1146  
       
ADR  41716 39269 41016 42540  

768x768 
48k 

STDEV  1380 1022 1678 1030  
 
Table – Combine Test Data, CPU 
  C-KD-M C-KD-S C-UG-A C-UG-N C-BV-F C-BV-U 

       
ADR 33559 33784 33852 33915 34609 31512 

256x256 
11k 

STDEV 339 431 361 227 404 497 

       
ADR 34493 34387 34064 34242 35391 32654 

256x256 
48k 

STDEV 361 508 357 418 590 326 

       
ADR 35739 34245 34215 33918 34807 33783 

768x768 
11k 

STDEV 315 331 339 389 689 356 

       
ADR 35970 34501 34315 34276 35276 34393 

768x768 
48k 

STDEV 520 410 334 578 719 585 

 
Table – Combine Test Data, GPU 
  G-KD-M G-KD-S G-UG-A G-UG-N G-BV-F G-BV-U 

       
ADR  36894 39428 39575 36919 37950 

256x256 
11k 

STDEV  2822 912 1376 1352 1025 

       
ADR  36254 39869 39878 34663 37029 

256x256 
48k 

STDEV  1783 1998 1416 988 1503 

       
ADR  38617 42627 39362 40944 41242 

768x768 
11k 

STDEV  2611 1509 581 1792 2744 

       
ADR  36763 42478 40018 39306 42158 

768x768 
48k 

STDEV  3012 2040 968 3122 1565 
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Appendix B 
 
ENCORE Interface Code 

 
Only the interfaces for acceleration structure (AccelerationStructure) and renderer are included.  
The implementation files (.C files) are not shown for these header files 
 
/*************** 
* AccelerationStructure Class 
***************/ 
class AccelerationStructure 
{ 
public: 
     
    virtual ~AccelerationStructure() {} 
 
    // usage: 
    // prints out the options that the AccelerationStructure can read from 
       the config file 
    virtual void usage( void ) = 0; 
 
    // configure: 
    // set of options that are read in from the config file  
    virtual void configure( Options* l_pOptions ) = 0; 
 
    // build: 
    // builds the AccelerationStructure from the Scene 
    virtual void build(std::list<IModel*> &modelList) = 0; 
 
    // update: 
    // implement this if the AC can update itself 
    // otherwise, this method simply call build method 
    virtual void update(std::list<IModel*> &modelList); 
 
    // buildGPU: 
    // builds the accelerationStructure into the GPUAccelerationStructureData  
       reference 
    virtual void buildGPU(std::list<IModel*> &modelList, std::list<Triangle*>  
    &triangleList, GPUAccelerationStructureData& l_pASD ) = 0; 
 
    // setGPUParameters 
    // set the shader parameters that the accel struct needs to pass in 
    virtual void setGPUParameters( CShader& l_Shader,  
    GPUAccelerationStructureData& l_ASD ) = 0; 
 
    // intersect: 
    // returns the HitInfo of the first successful intersection  
    // of the ray with the Primitives in the AccelerationStructure 
    virtual HitInfo intersect( Ray& l_Ray ) = 0; 
 
    // keyboard: 
    // defines how the AcceleratioStructure should react to keyboard input 
    virtual void keyboard( unsigned char key ) = 0; 
}; 
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/*************** 
* Renderer Class 
***************/ 
class Renderer 
{ 
public: 
 
    Renderer(); 
    virtual ~Renderer(); 
 
    // usage: 
    // prints out the options that the Renderer can read from the config file 
    virtual void usage( void ) = 0; 
 
    // init: 
    // uses the Scene and the Camera to build the AccelerationStructure 
    // along with any data structures needed for the renderer 
    virtual void init( Scene* l_pScene, AccelerationStructure*  
    l_pAccelStruct, Camera* l_pCamera ) = 0; 
 
    // configure: 
    // a map of options and values that are read in from the config file  
    virtual void configure( Options* l_pOptions ) = 0; 
 
    // render: 
    // renders the scene 
    virtual void render( void ) = 0; 
 
    // deinit: 
    // removes any AC that were built during the running of the Renderer 
    // turns off any OpenGL options that were needed to render 
    virtual void deinit( void ) = 0; 
 
    // keyboard: 
    // defines how the Renderer should react to keyboard input 
    virtual void keyboard( unsigned char key ) = 0; 
 
protected: 
    Scene* m_pScene; 
    Camera* m_pCamera; 
}; 
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Appendix C 
 
Uniform Grid Shader Code 

 

The shader code for Traversal and intersection is shown below.  The shader codes for eye ray 
generation and Phong light are omitted. 
 
// voxel .w : 0 mean keep going, 1 mean done 
// hitinfo  : x = t, y = u, z = v, w = index 
struct stepinfo 
{ 
    float4 hitinfo  : COL0; 
    float4 voxel    : COL1; 
    float4 tMax     : COL2; 
}; 
 
//code adapted from thrane’s thesis paper 
// determine if the ray-box intersect 
bool ray_box_intersect(float3 rayD, float3 gmin, float3 gmax, float3 eyePos, 
out float t_hit) 
{ 
    float3 tmin, tmax; 
     
    tmin = (gmin-eyePos)/rayD; 
    tmax = (gmax-eyePos)/rayD; 
     
    float3 r_min = min(tmin, tmax); 
    float3 r_max = max(tmin, tmax); 
     
    float minmax = min(min(r_max.x, r_max.y), r_max.z); 
    float maxmin = max(max(r_min.x, r_min.y), r_min.z); 
    t_hit = maxmin; 
    return minmax > maxmin; 
} 
 
// return correct voxel index in the correct range 
float3 getvoxelindex(float3 p, float3 gmin, float3 gridsize, float3 len) 
{ 
    return clamp(floor((p-gmin)/len),float3(0.0,0.0,0.0), (gridsize- 
    float3(1.0,1.0,1.0))); 
} 
 
// return the voxel intersect by the ray 
stepinfo getvoxel(float3 rayD, float3 gmin, float3 gmax, float3 eyePos, 
float3 cell_width, float3 resolution, out float time) 
{ 
    stepinfo o; 
    float t; 
    float3 gridOrig = eyePos; 
    o.tMax = float4(INF(),INF(),INF(), 1); 
 
    // if the ray hit a cell in the grid 
    if( ray_box_intersect( rayD, gmin, gmax, eyePos, t ) ) 
    { 
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        gridOrig = time > 0.0f ? eyePos+rayD*t : gridOrig; 
        o.voxel.xyz = getvoxelindex(gridOrig, gmin, resolution, cell_width); 
        o.voxel.w = 0; 
    } 
    else 
    { 
        // ray outside of box, so it'll never intersect 
        o.tMax.w = -1; 
    } 
     
    time = t > 0.0f ? t : 0; 
    float3 cell_min, cell_max; 
 
    cell_min = gmin+cell_width*o.voxel.xyz; 
    cell_max = cell_min + cell_width; 
 
    float3 t1 = (cell_min-gridOrig)/rayD; 
    float3 t2 = (cell_max-gridOrig)/rayD; 
 
    float3 p = sign(rayD.xyz) == float3(1,1,1); 
    float3 n = sign(rayD.xyz) == float3(-1,-1,-1); 
 
    // calculate tMax for the intersected cell 
    o.tMax.xyz = t1*n + t2*p;  
 
    if(rayD.x < EP && rayD.x > -EP) o.tMax.x = INF(); 
    if(rayD.y < EP && rayD.y > -EP) o.tMax.y = INF(); 
    if(rayD.z < EP && rayD.z > -EP) o.tMax.z = INF(); 
 
    // add the time from ray origin to the uniform grid 
    o.tMax.xyz += time; 
 
    return o; 
} 
 
// v0, v1, v2 = 3 vertex of triangle 
// rayD, rayStart is self explain 
// lasthit is a hit from last intersect that is valid 
// index is index of this triangle 
// adapted from thrane’s thesis paper 
float4 intersect(float3 v0, float3 v1, float3 v2, float3 rayDir, float3 
rayStart, float4 lasthit, float index) 
{ 
    float3 edge1, edge2; 
    float3 pvec, tvec, qvec; 
    float det, inv_det, t, u, v; 
     
    edge1 = v1 - v0; 
    edge2 = v2 - v0;     
     
    pvec = cross(rayDir, edge2); 
    det = dot(pvec, edge1); 
    bool isHit = det > EP; 
     
    inv_det = 1/det; 
 
    tvec = rayStart - v0; 
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    u = dot(pvec, tvec)*inv_det; 
 
    qvec = cross(tvec, edge1); 
    v = dot(qvec, rayDir)*inv_det;           
    t = dot(qvec, edge2)*inv_det; 
     
    isHit = (u >= 0) && (v >= 0) && (u+v <= 1.0) 
             && (t > 0.0) && (t < lasthit.x) ; 
     
    return isHit ? float4(t,u,v,index) : lasthit; 
} 
 
// cell_info contain index to triangle, number of triangle, 0 ,0 
// voxel status: 2 mean there is a hit, 0 mean has not been traversed at all, 
1 mean its out of bound, dont check 
stepinfo main( 
    uniform samplerRECT rayDirMap, 
    uniform samplerRECT rayStartMap, 
    uniform samplerRECT cellData0, 
    uniform samplerRECT hitInfoMap, 
    uniform samplerRECT trav0Map, 
    uniform samplerRECT trav1Map, 
    uniform samplerRECT v0t, 
    uniform samplerRECT v1t, 
    uniform samplerRECT v2t, 
    uniform float len, 
    uniform float gridsize, 
    uniform float gmin, 
    uniform float gmax, 
    uniform float maxloop, 
    float2 texc : TEXCOORD0) 
{ 
    stepinfo o; 
 
    float4 timeInfo = texRECT( trav1Map, texc ); 
    // x = tMax x 
    // y = tMax y 
    // z = tMax z 
    // w = -1: finished 
    //      0: initial state 
    //      1: traversing or intersecting 
     
    // finished, then don't process 
    if ( timeInfo.w == -1 ) 
        discard; 
     
    // get some information 
    float3 rayD = texRECT(rayDirMap, texc).xyz; 
    float3 resolution = float3(gridsize,gridsize,gridsize); 
    float3 cell_width = float3(len,len,len); 
 
    // figure out step direction and boundary 
    float3 eyePos = texRECT(rayStartMap, texc).xyz; 
    float3 step = sign(rayD); 
    float3 delta = abs(cell_width/rayD); 
    if(rayD.x < EP && rayD.x > -EP) delta.x = INF(); 
    if(rayD.y < EP && rayD.y > -EP) delta.y = INF(); 
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    if(rayD.z < EP && rayD.z > -EP) delta.z = INF(); 
    float t; 
 
    // if first pass, then generate some data 
    if ( all( timeInfo == float4(0,0,0,0) ) ) 
    { 
        o = getvoxel(rayD, gmin, gmax, eyePos, cell_width, resolution, t); 
    } 
    else 
    { 
        // read it in from textures 
        o.tMax = timeInfo; 
         
        o.voxel = texRECT( trav0Map, texc ); 
        // x = voxel x 
        // y = voxel y 
        // z = voxel z 
        // w = 0 : initial state (traversing) 
        //     1+: intersecting with index w-1 triangle 
    } 
 
    // hit information is always read in from texture 
    o.hitinfo = texRECT( hitInfoMap, texc ); 
 
    float maxloops = 2500; 
    float3 v0,v1,v2; 
    float2 index; 
 
    while(o.tMax.w != -1 && maxloops > 0) 
    { 
   // find the correct texture index 
        index.x = o.voxel.x + o.voxel.y*gridsize +  
        o.voxel.z*gridsize*gridsize; 
        index.x = modf(index.x*0.000244140625, index.y)*4096; 
         
        // format : triangle index, triangle count,0,0 
        float4 info = texRECT(cellData0, index); 
 
        // if there are triangles in this voxel 
        // then intersect with them 
        float start = info.x + o.voxel.w; 
        float end = info.x+info.y; 
        while(start < end && maxloops > 0) // start intersect test 
        { 
            index.x = modf(start*0.000244140625, index.y)*4096; 
 
            v0 = texRECT(v0t, index).xyz; 
            v1 = texRECT(v1t, index).xyz; 
            v2 = texRECT(v2t, index).xyz; 
            o.hitinfo = intersect(v0,v1,v2,rayD,eyePos,o.hitinfo,start); 
            start++; 
            maxloops--; 
        } // end intersect test 
 
        // do we still have loops left? 
        if ( maxloops > 0 ) 
        { 
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            float tMin = min( o.tMax.x, min( o.tMax.y, o.tMax.z ) ); 
             
            // we have a hit 
            if ( o.hitinfo.w >= 0 ) 
            { 
      // did not check against the tMax in the cell 
      // possible to return incorrect hit time but rare 
                o.tMax.w = -1; // for now indicate we are done 
            } 
             
            //traverse 
            float3 mask = float3(tMin, tMin, tMin) == o.tMax.xyz; 
 
            // update voxel and t value 
            o.voxel.xyz = o.voxel.xyz + step*mask; 
            o.tMax.xyz = o.tMax.xyz + delta*mask; 
 
            // find out if we stepped outside the grid 
            float3 lt = o.voxel.xyz >= resolution; 
            float3 gt = o.voxel.xyz < float3(0.0,0.0,0.0); 
            if(any(lt) || any(gt)) 
                o.tMax.w = -1; 
        } 
   
        maxloops--;       
    } 
     
    return o; 
}  


