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Abstract

Estimation of the covariance matrix of asset returns is a key com-
ponent of portfolio optimization. Inherent in any estimation technique
is the capacity to inaccurately reflect current market conditions. Typ-
ical of Markowitz portfolio optimization theory, which we use as the
basis for our analysis, is to assume that asset returns are stationary.
This assumption inevitably causes an optimized portfolio to fail during
a market crash since estimates of covariance matrices of asset returns
no longer reflect current conditions. We use the market crash of 2008
to exemplify this fact. A current industry-standard benchmark for
estimation is the Ledoit covariance matrix, which attempts to adjust
a portfolio’s aggressiveness during varying market conditions. We test
this technique against the CALM (Covariance Adjustment for Liabil-
ity Management Method), which incorporates forward-looking signals
for market volatility to reduce portfolio variance, and assess under
certain criteria how well each model performs during recent market
crash. We show that CALM should be preferred against the sample
convariance matrix and Ledoit covariance matrix under some reason-
able weight constraints.

Key Words: covariance matrix estimation, Ledoit’s model, shrink-
age parameter, CALM, forward looking signal
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1 Introduction

This work is a continuation of the Summer 2012 WPI Center for Industrial
Mathematics & Statistics NSF funded Research Experience for Undergrad-
uates (REU) Financial Mathematics project sponsored by Wellington Man-
agement. The project remained under the direction of WPI Professor Marcel
Blais and includes work from Masters candidates Yafei Zhang and Gregory
McArthur.

A well-known problem with Markowitz portfolio theory is the assumption
of stationarity of asset returns [12]. In other words, the joint distribution of
asset returns does not change over time. The covariance matrix of asset re-
turns is used to determine, in a Markowitz setting, how much an investor
should choose to hold in the context of diversification. This calculation is
used to create a mean-variance portfolio, which determines how much risk
we will have to incur for an expected return. Accurately estimating a co-
variance matrix is important to the study of portfolio optimization and risk
management.

Markowitz originally proposed using the sample covariance matrix; how-
ever, we have come to realize that this is certainly not the best technique.
Essentially when the number of stocks, N , is large relative to the historical
data, estimation error occurs. Also since Markowitz portfolio theory assumes
the stationarity of asset returns, a sample covariance matrix tells us nothing
about how to invest given a variety of possible market changes.

Designing a covariance matrix estimate that can work around this issue
has been an important study for many years. Currently, the Ledoit [1] covari-
ance matrix is one of the industry-standard benchmarks. In order to reflect
market reality, Ledoit developed a shrinkage parameter, which can adjust
the aggressiveness of a portfolio automatically according to different market
conditions. We show in this paper that Ledoit is certainly a good choice, but
that under certain mathematical conditions, other models may be preferred.
In our case, we test against the CALM (Covariance Adjustment for Liability
Management) model.

CALM originated from the Summer 2012 REU Financial Mathematics
project at WPI. The aim of CALM is to use shrinkage based information
on forward-looking signals to create a covariance matrix that better reflects
market conditions. Essentially the goal is to try and improve upon the Ledoit
covariance matrix. For more information on this topic, we refer to Incorporat-
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ing Forward-Looking Signals Into Covariance Matrix Estimation for Portfolio
Optimization [2] .

We study the mathematics behind the two models and compare their
performance in last financial crisis from 2007 to 2009.
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2 Background

This section attempts to explain the mathematics behind the shrinkage esti-
mator of the covariance matrix introduced by Ledoit.

2.1 Ledoit’s Model

2.1.1 Statistical Model

We first focus on understanding the Ledoit technique [1] for estimating the
covariance matrix of stock returns, as it is currently an industry-standard.

Let X denote an N×T matrix of T observations on a system of N random
variables representing T returns on a universe of N stocks.

Assumption 1. Stock returns are independent and indentically dstributed
(iid) through time and are not assumed to be normally distributed.

This assumption implies that the time-series representing stock returns
are stationary. We note that actual stock returns do not verify this assump-
tion.

Assumption 2. The number of stocks N is fixed and finite, while the number
of observations T goes to infinity.

Assumption 3. Stock returns have a finite fourth moment:

∀ i, j, k, l = 1, . . . , n ∀ t = 1, . . . , T E [|xitxjtxktxlt|] <∞.

A fourth moment is a measure of the peak of a distribution. A finite
fourth moment implies that a peak is not infinite, and hence we have a finite
variance (and covariance) and can apply the central limit theorem.

2.1.2 Sample Covariance Matrix

We define the sample mean vector m and the sample covariance matrix S
by:

m =
1

T
X1,
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and

S =
1

T
X

(
I− 1

T
11′
)
X′. (1)

Here, 1 is a conformable vector of 1’s, 1′ represents its transpose. S represents
a T × 1 vector of ones, I is a T × T identity matrix.

2.1.3 Single-Index Covariance Matrix Estimator

Sharpe’s single-index model assumes that stock returns are generated by:

xit = αi + βix0t + εit. (2)

Here the residuals V arεit are uncorrelated to market returns x0t and to one
another. We also have that V ar (εit) = δii, which gives that the variance
between stocks is constant. We can see this by taking V ar (xit) ,∀t.

The covariance matrix implied by this model is:

Φ = σ2
00ββ

′ + ∆. (3)

Here σ2
00 is the N × N covariance matrix of market returns, β is the N × 1

vector of slopes, and ∆ is the N × N diagonal matrix containing residual
variances δii. We denote φij by the (i, j)-th entry of Φ.

We note that this model can be estimated by running a regression of stock
i′s returns on the market. Call bi the slope estimate and dii the residual
variance estimate, then the single-index model yields the following estimator
for the covariance matrix of stock returns:

F = s200bb
′ + D. (4)

Here, s200 is the sample variance of market returns, b is the vector of slope es-
timates, and D is the diagonal matrix containing residual variance estimates
dii. Call fij the (i, j)-th entry of F.

Assumption 4. Φ 6= Σ, where Σ is the sample covariance matrix.

Assumption 5. The returns of market portfolio has positive variance, that
is, σ2

00 > 0.
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2.1.4 Formula for the Optimal Shrinkage Intensity

In order to understand the Ledoit covariance matrix, we need to understand
shrinkage.

When considering a large number of stocks, the estimated sample co-
variance matrix tends to have a large error. The error implies that extreme
coefficients tend to not be representative of the true covariance matrix. This,
in turn, causes a mean-variance portfolio optimizer to place its biggest bets
on those coefficients which are extremely unreliable.

The main idea behind shrinkage is that coefficients with positive error
need to be compensated for by pulling them downward and the reverse for
coefficients with negative error. Essentially we are shrinking the error to-
wards the center.

We need to question what it is we are shrinking and to what intensity.
Consider the model:

Fδ + (1− δ)S. (5)

F is defined by (4), S by (1), and δ is our shrinkage estimate to be found.
We consider a quadratic loss function defined by:

L (δ) = ‖δF + (1− δ)S − Σ‖2F . (6)

Notice how we are calculating the distance between our shrinkage model
and the sample covarance matrix of stock returns, Σ. This is a quadratic
measure of distance between the true and the estimated covariance matrices
based on the Frobenius norm.

Now consider

R (δ) = E [L (δ)] . (7)

We can rewrite (7) in summation form which considers the components of
the matrices. This in conjunction with (6) yields
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R (δ) = E (L (δ)) =
N∑
i=1

N∑
j=1

E(fijδ + (1− δ) sij − σij)2

=
N∑
i=1

N∑
j=1

V ar (fijδ + (1− δ) sij) + [E (δfij + (1− δ) sij − σ)]2

=
N∑
i=1

N∑
j=1

δ2V ar(fij) + (1− δ)2V ar(sij) + 2δ(1− δ)Cov(fij, sij) + δ2(φij − σij)2.

We achieve these equations using the properties of variance.

We want to now minimize the risk of R (δ) with respect to δ. To do this
we calculate the first two derivatives of R (δ). We have

R′(δ) = 2
N∑
i=1

N∑
j=1

δV ar(fij)− (1− δ)V ar(sij) + (1− 2δ)Cov(fij, sij) + δ (φij − σij)2,

R′′ (δ) = 2
N∑
i=1

N∑
j=1

V ar(fij − sij) + (φij − σij)2.

We set R′ (δ) = 0, and we find that

δ∗ =

N∑
i=1

N∑
j=1

V ar(sij)− Cov(fij, sij)

N∑
i=1

N∑
j=1

V ar(fij − sij) + (φij − σij)2
.

We note that since R′′ (δ) is positive everywhere, this solution minimizes the
risk function.

Let θ̂ denote the an estimator for parameter vector θ, and
√
n
(
θ̂ − θ

)
→

n (0, V ) in distribution, then θ̂ → n
(
θ, 1

n
V
)

asymptotically. The term 1
n
V is

called the ’asymptotic variance or covariance’. [6]
Let π denote the sum of asymptotic variances of the entries of the sample

covariance matrix scaled by
√
T : π =

N∑
i=1

N∑
j=1

AsyV ar
[√

Tsij

]
. Similarly let

ρ denote the sum of the asymptotic covariances of the entries of the single-
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index covariance matrix with the entries of the sample covariance matrix

scaled by
√
T : ρ =

N∑
i=1

N∑
j=1

AsyCov
[√

Tfij,
√
Tsij

]
. Finally let γ measure the

misspecification of the single-index model: γ =
N∑
i=1

N∑
j=1

(φij − σij)2. Then the

optimal shrinkage δ∗ satisfies: [1]

δ∗ =
1

T

π − ρ
γ

+O
(

1

T 2

)
. (8)

From equation (8), we have that:

Tδ∗ =

N∑
i=1

N∑
j=1

V ar(
√
Tsij)− Cov(

√
Tfij,

√
Tsij)

N∑
i=1

N∑
j=1

V ar(fij − sij) + (φij − σij)2
.

Using the assumptions 1 and 3, that the data is iid and from finite fourth
moments, we have that:

N∑
i=1

N∑
j=1

V ar(
√
Tsij)→ π,

N∑
i=1

N∑
j=1

Cov(
√
Tfij,

√
Tsij)→ ρ,

N∑
i=1

N∑
j=1

V ar(fij − sij) = O(
1

T
).

Hence the optimal shrinkage is constant k = π−ρ
γ

[1] .
Finally, using this notation, the shrinkage estimator for the stock return

covariance matrix that Ledoit recommend is:

S =
k

T
F + (1− k

T
)S. (9)
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Since the shrinkage estimator captures the current market status, it con-
tains forward looking signal that will make the covariance matrix estimate
more responsive to the changes in market.

2.2 CALM Model

Covariance Adjustment for Liability Management (CALM) is a new model
that incorporates signals for market volatility to minimize portfolio variance.
This model originated from the REU aforementioned in the Introduction
section of this paper.[2].

We wish to construct a covariance matrix such that it accurately reflects
a stressed market. Stressed market regimes are commonly observed to have
higher correlations between stocks [3]. We shall try to account for this prop-
erty by incorporating high correlations into a stressed covariance matrix, H.
We construct a covariance matrix with constant high correlation with the
method used by Bollerslev [4].

Let C be a high correlation matrix with a constant high correlation. Then
Ci,i = 1 and Ci,j = ρhigh. Let V be the diagonal volatility matrix. Then,

H = VCV (10)

We call H the stressed covariance matrix and expect that when the mar-
ket is in turmoil, ρhigh approximates the stock correlations and H approxi-
mates Σ. In addition we continue to use the shrinkage parameter defined in
Ledoit’s Model to balance the weights between the sample covariance matrix
S and highly structured matrix H.

2.2.1 The Choice of Constant ρhigh

A qualified highly structured correlation matrix should also be invertible. We
derive the range of ρhigh in which the correlation matrix is positive definite
and thus invertible.

Let p denote the constant value of ρhigh and C denote the N ×N highly



9

structured correlation matrix,

C =


1 p p · · · p
p 1 p · · · p
p p 1 · · · p
...

...
...

. . .
...

p p p · · · 1

 .

We calculate the 1st to 3rd principle minor of C below:

∆1 = 1,
∆2 = 1− p2,
∆3 = 2p3 − 3p2 + 1 = (1− p)2 (1 + 2p) .

Further C′s 4th principle minor is:

∆4 = (1− p)3 (1 + 3p) . (11)

The N th principle minor is

∆n = (1− p)n−1 [1 + (n− 1) p] .

We calculate the determinant of C using Gaussian elimination∣∣∣∣∣∣∣∣∣∣∣

1 p p · · · p
p 1 p · · · p
p p 1 · · · p
...

...
...

. . .
...

p p p · · · 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 + (n− 1)p 1 + (n− 1)p 1 + (n− 1)p · · · 1 + (n− 1)p
p 1 p · · · p
p p 1 · · · p
...

...
...

. . .
...

p p p · · · 1

∣∣∣∣∣∣∣∣∣∣∣

= [1 + (n− 1) p]

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
p 1 p · · · p
p p 1 · · · p
...

...
...

. . .
...

p p p · · · 1

∣∣∣∣∣∣∣∣∣∣∣
= [1 + (n− 1) p]

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
0 1− p 0 · · · 0
0 0 1− p · · · 0
...

...
...

. . .
...

0 0 0 · · · 1− p

∣∣∣∣∣∣∣∣∣∣∣
= [1 + (n− 1) p] (1− p)n−1 = ∆n.

In order to be positive definite, each kth principle minor of C has to be
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positive for every k.

∆1 = 1 > 0,
∆2 = 1− p2 = (1− p) (1 + p) > 0⇒ p ∈ (−1, 1) ,

∆3 = (1− p)2 (1 + 2p) > 0⇒ p ∈
(
−1

2
, 1
)⋃

(1,+∞),

∆4 = (1− p)3 (1 + 3p) > 0⇒ p ∈
(
−1

3
, 1
)
,

...

∆n = (1− p)n−1 [1 + (n− 1) p] > 0⇒ p ∈
(
− 1
n−1 , 1

)
.

Thus as long as p ∈
(
− 1
n−1 , 1

)
, C is positive definite and invertible for

each n. As n gets large, the range of p converges to (0, 1).
We use a value of 0.7 and 0.9 for p, which came empirically from observing

the average correlation as implied market volatility rises. This concept was
support by Engles in a recent article regarding the use of a constant for high
correlation [5].
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3 Empirical Results

In order to test the portfolio performance under different covariance matrix
estimates, we use Markowitz optimization theory [7] to calculate tangency
weights on a standard Markowitz model, and also Ledoit’s model and the
CALM model [2] with constant correlation 0.7 and 0.9.

Markowitz portfolio theory is based on the assumption that the past
market behavior is consistent with future behavior. We relax this assumption
here, assuming that market behavior changes dramatically during a crisis.
We examine how the covariance matrix estimates change after implementing
the forward-looking signals from a crisis across the four different models. We
choose weekly data from 2007 to 2009 as our holding period to perform the
back-testing. This time interval allows us to test under a pre-crisis bubble,
the actual crash, and the steady market recovery.

The key method we used to obtain the historical data is from a sliding
window observation. A sliding window observation considers data from the
past n days and is applied each day starting from the n+ 1 day. Our holding
period is designed to be 3 years. We use 1 year as our length of sliding
window. In order to simplify our project, we used a rectangular window, in
which every past net return has a weight of 1.

A popular approach to manage risk is through diversification. Consider
our portfolio as a linear combination of N risky assets; investing in a diversi-
fied portfolio can help to reduce the risk from market changes and lower the
portfolio volatility as long as the assets correlation coefficient is less than 1.

3.1 Assets Overview

Our portfolio is composed by 29 stocks traded on the NYSE. The construction
of our portfolio is based on following principles:

1. Diversification: Markowitz portfolio theory is especially useful when
the portfolio contains a significant number of assets. Since market in-
dices are generally well diversified, investing in a market index is a
reasonable choice. The Dow Jones Industrial Average only contains 30
stocks and we decided to construct our portfolio by investing in every
component of the the Dow. Since our back-test starts at the beginning
of 2007, we use the historical components of the Dow as of Nov 21,
2005.
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One of the major historical components of the Dow in 2005 was Gen-
eral Motor Corporation (GM). GM Corporation filed for bankruptcy
on July 8 2009, making its historical prices unattainable for the late
holding period. So we exclude GM Corporation, and for that reason
there are only 29 stocks in our portfolio, rather than 30.

2. Fully invested: All of our available capital is invested in the risky
assets.

3.2 Test for Properties of a Covariance Matrix

Before using these estimators of a covariance matrix to calculate our tan-
gency weights, we first need to make sure that these estimators contain some
essential necessary properties of a covariance matrix.

A covariance matrix should have the following property:

• The covariance matrix must be a positive semi-definite matrix.

Standard Markowitz Model: Our covariance matrix estimator is the
sample covariance matrix, S.

First, Let X denote an N × T matrix of T observations on a vector of
N random variables representing T returns on a universe of N stocks. Let
1 denote a conformable vector of ones and I denote a conformable identity
matrix. We assume that N is a finite number while T goes to infinity. We
note that

(
I− 1

T
11′
)

is a T × T matrix, X′ is a T ×N matrix.

S =
1

T
X

(
I− 1

T
11′
)
X′. (12)

Given two matrices, A and B, we know that the rank of the product AB
is less than or equal to the minimum of the ranks of A and B i.e.,

rank (AB) ≤ min {rank (A) , rank (B)} . (13)

Applying (12) to property (13), we get:

rank (S) = rank

(
1

T
X

(
I− 1

T
11′
)
X′
)
≤ min

{
rank (X) , rank

(
I− 1

T
11′
)}

,
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where X is assumed to have full rank since we can take X inverse. Thus(
I− 1

T
11′
)

has smaller rank than X. As a result

rank (S) ≤ rank

(
I− 1

T
11′
)
.

Using Gaussian elimination, we can show that

rank

(
I− 1

T
11′
)

= T− 1.

Thus
rank (S) ≤ T− 1.

As an N ×N matrix, as long as T > N , S has full rank and is invertible.
In our portfolio, N = 29 and T = 3 × 52 = 156. Notice that T is larger

than N . Hence, S is invertible.
Since the sample covariance matrix S is also a covariance matrix, it is posi-

tive semi-definite. Thus the estimator S does not lose this necessart property.

Ledoit Model: Our covariance matrix estimator is k
T
F + (1− k

T
S).

As stated before, F is the covariance matrix implied by the single factor
model. Since F is also a covariance matrix, it is positive semi-definite as well.

We know that if M is positive semi-definite and r > 0 is a real number,
then rM is positive semi-definite. If M and N are positive semi-definite,
then M + N is also positive semi-definite. Since our shrinkage parameter k

T

is between 0 and 1, k
T
H+ (1− k

T
S) is also positive semi-definite. Ledoit’s es-

timator, implemented in the Markowitz portfolio framework, maintains this
necessary property of a covariance matrix.

CALM Model: Our covariance matrix estimator is k
T
H + (1 − k

T
S),

where H is as defined in (10).
Here S is the same sample covariance matrix used within the standard

Markowitz model, so it is positive semi-definite. As we previously proved, as
long as the off-diagonal constant number p ∈ (0, 1), all kth principle minors
of H are positive and hence H is also positive definite, which implies H must
be positive semi-definite. For the same reason, since shrinkage parameter k

T

is between 0 and 1, k
T
H + (1− k

T
S) is positive semi-definite.

We can conclude that the CALM estimator also has the desired property
of a covariance matrix.
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3.3 Tangency Weight Programming

As stated before, the length of our sliding window is 1 year. US Treasury
bills are issued by the United States government, which can be considered
free of risk. To match the window length, we choose the return of the 1 year
Treasury bill as our risk-free rate. The data was obtained from the Federal
Reserve’s website [11].

The unconstrained tangency portfolio is useful theoretically, but has sev-
eral problems in practice. The method requires the inverse of the covariance
matrix; however, numerical error can occur when the covariance matrix is
nearly singular. In addition, elements of w (the portfolio weights) can be
negative, which represents shorting assets. This involves borrowing stock
on margin, which is a form of leveraging and easily can trigger margin calls.
Moreover, the unconstrained method for obtaining a minimum variance port-
folio does not limit portfolio turnover. The weight vector can change sub-
stantially without restriction between time periods, which means that asset
turnover has the potential to be high, and we may need to long or short
large amounts of stock on each rebalance date. In practice this causes trans-
action fees to cut into profit. In order to avoid large negative weights and
margin calls, we used constrained quadratic programming. Quadratic pro-
gramming is used to minimize a quadratic objective function subject to linear
constraints [12]. In this project we try the following two constraints.

1. We permit shorting stocks but limit the maximum shorting weight to
be -0.2 and the maximum longing weight to be 0.2.

2. We prohibit short selling, limiting all tangency weights to be between
0 and 1.

We calculate unconstrained weights and two different constrained weights
for the four models and compared their return distributions. Hence we have
12 models to analyze. We used MATLAB to calculate the initial tangency
portfolio weights and formed our portfolio beginning on Jan 1, 2007. Our
principle amount was $1 million. During the holding period we used weekly
returns and rebalanced the portfolio monthly.
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3.4 Comparison Across Models

3.4.1 Holding period return

Comparing across different strategies, as we can see from Table 1, the con-
straint [-0.2 0.2] gave the best returns while the unconstrained models gave
the worst of all our tests. The highly structured correlation matrix with
constant 0.9 and constraint [-0.2 0.2] has the highest holding period return,
while the unconstrained highly structured matrices have the greatest loss.

Table 1: Holding Period Net Return
Unconstrained [-0.2 0.2] [0 1]

Markowitz -0.70 0.61 -0.08
Ledoit -0.71 0.38 0.03
p = 0.7 -1.21 0.42 -0.10
p = 0.9 -1.21 0.64 -0.07

Unconstrained Weights: Unconstrained weights imply significant lia-
bility and hence high margin requirements. This result indicates that during
a market catastrophe, the theory that one should continue to take risk to
garner large gains does not hold. Moreover, since unconstrained weights per-
formed the worst, they are both unrealistic and unprofitable for this portfolio
- no matter which model is used.

Constrained Weights [-0.2 0.2]: This allows short selling but limits
the percentage of the short position for each stock and properly balances
the risks and rewards. Portfolios under this constraint have the capacity to
garner positive return in a bear or bull market. For this reason we believe
that this model performed best out of the 4 possible models.

Constrained Weights [0 1]: Short selling is prohibited under this con-
straint. For the conservative and cautious investor, these weights are ideal
since these constraints imply zero liability and no risk of being margin called.
However, since this long-only constraint takes less risk by not short selling
any stock, the portfolio is not able to earn a return on stocks for which prices
are dropping. Hence this constraint makes less money than a portfolio that
allows short selling during a normal market and has zero profit (or a loss)
when market is in catastrophe. This is the reason why 3 of the 4 models
have negative returns under this constraint for our specific portfolio.
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3.4.2 Leverage Ratio

Table 2: Leverage Ratio
Unconstrained [-0.2 0.2] [0 1]

Markowitz 27.4 3.4 1.0
Ledoit 5.8 2.6 1.0
p = 0.7 22.5 3.1 1.0
p = 0.9 22.5 3.4 1.0

Leverage =

n∑
i=1

|wi|
n∑
i=1

wi

(14)

The Leverage ratio is defined as the sum of absolute value of each tangency
weight divided by the sum of each tangency weight. Unconstrained portfolio
optimization models may introduce significant short sell positions. Therefore,
as we can see from the Table 2, their leverage ratios are also very high. How-
ever, portfolios with a large leverage ratio are not only very risky (as stated
before, they have unlimited potential liability) but also have to meet large
margin requirements. Rarely is a portfolio manager is willing to construct
his or her portfolio using unconstrained weights. Since unconstrained models
are neither realistic nor profitable, we consider the unconstrained cases only
as basic case general models but not as practical models. The rest of this
report only analyzes the performances of 8 constrained models.

3.4.3 Yearly Return Comparison Across Models

As stated before, we use weekly data to calculate the expected returns and
covariance matrix estimates and rebalance the portfolio on the first day of
each month according to the new tangency weights. During each month we
hold the portfolio and do not make any changes. We only observe and track
the portfolios’ weekly performances based on the monthly initial weights. At
the end of holding period we collect 156 returns for each model. We plot the
weekly returns in MATLAB using a BOXPLOT function and group by year
and model. We can see this in Fig. 1.
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Figure 1: Yearly Performance Comparison Across Models

BOXPLOT provides a clear comparison of model performance for each
year. On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles and the whiskers extend to the most extreme
data points are considered as outliers.

If we divide the 8 models into two groups by their weight constraints, we
get four models with [-0.2, 0.2] constraints and four models with [0 1] con-
straints. Generally, the [-0.2, 0.2] constrained models perform better than [0
1] constrained models.
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Table 3: Yearly Performance Comparison Across Models
Marko [-0.2, 0.2] Ledoit [-0.2, 0.2]

2007 2008 2009 2007 2008 2009
Mean 0.0049 -0.0013 -0.0008 0.0035 0.0015 -0.0039
Std. deviation 0.0182 0.0473 0.0340 0.0174 0.0379 0.0333

CALM 0.7 [-0.2, 0.2] CALM 0.9 [-0.2, 0.2]
2007 2008 2009 2007 2008 2009

Mean 0.005 0.0011 -0.0022 0.005 0.0001 -0.0011
Std. deviation 0.0179 0.0435 0.0321 0.0180 0.0468 0.0338

Marko [0 1] Ledoit [0 1]
2007 2008 2009 2007 2008 2009

Mean 0.0017 -0.0010 0.0015 0.0021 -0.0008 0.0015
Std. deviation 0.0190 0.0351 0.0489 0.0185 0.0350 0.0487

CALM 0.7 [0 1] CALM 0.9 [0 1]
2007 2008 2009 2007 2008 2009

median 0.0019 -0.0010 0.0015 0.0018 -0.001 0.0016
Std. deviation 0.0189 0.0354 0.0489 0.0189 0.0353 0.0489

[-0.2, 0.2] Constraint: Before the 2008 crisis, Markowitz, CALM 0.7
and CALM 0.9 outperformed Ledoit. They either have lower risk or higher
return. Except for the Ledoit model, the other 3 models experienced return
deteriorations in 2008, but rapidly recovered from it once market conditions
improved. This means the shrinkage parameter takes effect under the [-0.2
0.2] constraint by lifting the median return despite lifting risk as well. The
Ledoit model performed best among the 4 models during the crisis. If we
use the return standard deviation as the measure of risk, it had the highest
return and the lowest risk and should be considered the best model for use
in 2008. Despite having the lowest return of 2009, its risk was the lowest.

[0 1] Constraint: We observe that every model with [0 1] constraint
experienced return deterioration from 2007 to 2009. Their returns kept de-
creasing while risk increased. We consider the [0 1] an inferior constraint
compared to the [-0.2, 0.2] constraint.

A good portfolio should have either higher returns given a specific level
of risk or lower risks given a specific level of return. These 4 [0 1] constrained
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models do not meet this criteria well. Since the U.S. equity market started to
recover in 2009, the [0 1] constraints weakened the model’s ability to capture
this market characteristic and adjust shrinkage parameters in time.

Each model under [-0.2, 0.2] constraint has its own strengths; we will
focus on these 4 models in the following analysis.

3.4.4 Performance Ratio

It is not comprehensive to focus only on the final holding period returns. In
order to compare the weekly performance over these 4 models, we calculate
their Sharpe Ratio, Treynor Ratio and Information Ratio using the DJIA as
a benchmark.

Sharpe’s Ratio
Sharpe’s ratio (SR) is the industry standard for measuring risk-adjusted

return. Sharpe’s ratio is what reward an investor could expect on average
for investing in a risky asset versus a risk-free asset. The numerator of
the ratio is the expected portfolio return Rp less the risk-free rate Rf , and
the denominator is the portfolio return’s volatility or standard deviation of
returns σp (less that of the risk-free asset’s standard deviation, which is zero).
The resulting ratio isolates the expected excess return that the portfolio could
be expected to generate per unit of portfolio return variability. Sharpe ratio
uses actual instead of expected returns and is calculated as: [12]

Sharpe′sRatio =
RP −Rf

σp
.

Table 4: Sharpe’s Ratio from 2007 to 2009
Unconstrained [-0.2 0.2] [0 1]

Markowitz -0.1714 0.2818 0.0142
Ledoit -0.0291 0.2173 0.0419
p = 0.7 -0.0635 0.2964 0.0169
p = 0.9 -0.0635 0.2933 0.0170

Sharpe’s ratio informs an investor what portion of a portfolio’s perfor-
mance is associated with risk taking. It measures a portfolio’s added value
relative to its total risk. Table 4 shows the Sharpe’s Ratio for the 12 com-
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binations of correlations and constraints. The risk-free rate is chosen to be
the 4-week treasury bill rate.

Generally Sharpe’s ratio is useful in pratice but it has its own set of limi-
tations to consider. It is based on Markowitz portfolio theory, which proposes
that a portfolio can be described by just two measures: its mean return and
its variance of returns. Sharpe’s ratio measures only one dimension of risk,
the variance. Sharpe’s ratio is designed to be applied to investment strate-
gies that have normal expected return distributions; it is not suitable for
measuring investments that are expected to have asymmetric returns. The
study on whether our portfolio has an asymmetric return will be performed
by fitting a normal and a student t-distribution according to the parameters
we estimated from the available data. Details will be discussed later.

There are two obvious downfalls in using Sharpe’s Ratio [13], even in the
framework of normally distributed returns:

• Sharpe’s ratio cannot tell an investor whether a high standard deviation
is due to large upside deviations or downside deviations; the Sharpe
ratio penalizes both equally.

• Negative Sharpe ratios, such as those arising during portfolio under
performance (which often occurs during bear markets) are also unin-
formative.

For the CALM model with constant 0.9 and constraint [-0.2, 0.2], its
Sharpe ratio is slightly smaller than the one with constant 0.7. However, if
we look at their normal distribution fitting results, the mean for CALM 0.9
is higher than CALM 0.7, along with their standard deviations, respectively.
The normal fitting did not tell us whether this high standard deviation was
due to large upside or downside deviations. Sharpe’s ratio does not distin-
guish between them.

Treynor’s Ratio
Let σMP denote the return covariance between market portfolio and our

portfolio, and σ2
M denote the market portfolio’s return variance, Treynor’s

ratio is defined as the following: [12]

Treynor′sRatio =
RP −Rf

βp
,
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where
βp =

σMP

σ2
M

.

Unlike Sharpe’s ratio, Treynor’s ratio (TR) uses beta in the denominator
instead of the standard deviation. The beta measures only the portfolio’s
sensitivity to the market movement, while the standard deviation is a mea-
sure of the total volatility (upside as well as downside). The Treynor ratio
relates excess return over the risk-free rate to the additional risk taken; how-
ever, systematic risk is used instead of total risk.[12] The Treynor ratio is
interpreted as excess returns per unit of systematic risk. As our portfolio
contains 29 stocks and can be considered well diversified, we can say that the
effect of unsystematic risk is very small. Table 5 summarizes the Treynor’s
Ratio of the 12 models.

Table 5: Treynor’s Ratio from 2007 to 2009
Unconstrained [-0.2 0.2] [0 1]

Markowitz 0.1102 -0.0909 0.0114
Ledoit 0.0088 -0.0445 0.0342
p = 0.7 0.0108 -0.0753 0.0142
p = 0.9 0.0108 -0.0842 0.0137

Among our 12 combinations of models and constraints, only long-only
portfolios have a positive beta. This means only long-only portfolios are pos-
itively correlated to market. Many negative TR appeared, which are uninfor-
mative. The unconstrained Markowitz model had the highest TR. However,
its distribution fitting result shows that it may not be a good model because
of the large negative return and standard deviation.

Information Ratio
The information ratio (IR) is often referred to as a variation or general-

ized version of the Sharpe ratio. It evolved as users of the Sharpe ratio began
substituting passive benchmarks for the risk-free rate. The information ratio
tells an investor how much excess return is generated from the amount of
excess risk taken relative to the benchmark. The information ratio is calcu-
lated by dividing the portfolio’s mean excess return relative to its benchmark
by the variability of that excess return. The portfolio’s excess return is also
known as its active return, and the variability of the excess return is also
referred to as active risk.[12]
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InformationRatio =
RP −RB

σP−B
.

Table 6: Information Ratio from 2007 to 2009
unconstrained [-0.2 0.2] [0 1]

Markowitz -0.1054 0.2430 0.0753
Ledoit -0.0155 0.1889 0.0962

const 0.7 -0.0484 0.2416 0.0772
const 0.9 -0.0484 0.2481 0.0773

Table 6 shows the CALM model with constant 0.9 and constraint [-0.2,
0.2] had the highest IR using the DJIA as the benchmark. Other models
with weight constraint [-0.2, 0.2] also have comparative IR’s, while models
with other weight constrainst have worse IR’s.

Generally when evaluating the information ratio we consider the higher IR
to be the better. However, if we move into more detailed criterion, evaluating
the information ratio for portfolio is more challenging [13]. Grinold and
Kahn [8] contended that top-quartile active equity managers generally have
information ratios of 0.50 or higher. In another work, Grinold and Kahn
[9] rated an information ratio of 1.0 as “exceptional”, 0.75 as “very good”,
and 0.50 as “good”. Goodwin [10] measured IR’s over a 10-year period and
found that even among consistently outperforming long-only managers, very
few are able to sustain an IR of 0.50 or higher, suggesting that the ranking
criteria may be too high. Goodwin further suggested that IR’s are most
useful when comparing managers within their own style universe rather than
among styles. A general consensus among the investment profession is that
an IR of 0.20 or 0.30 is superior. Since our IR is 0.248, we can conclude that
our investment performance is within good standing, especially during the
period of financial crisis.

3.4.5 Normal Distribution Fitting

We fit our portfolio’s weekly return to a normal distribution and performed
a hypothesis test to determine if the returns distribution is consistent with
the fitted distribution. Moreover, we use 2-D and 3-D figures to demonstrate
how their distributions change over time.
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The hypothesis tests of Chi square goodness of fit test that we used to
determine whether or not our data fit a normal distribution is as follows:

• H0: Portfolio daily returns were taken from a normal distribution.

• H1: Portfolio daily returns were not taken from a normal distribution.

Figure 2, 3, 4 and 5 are the histograms and normal distribution fitting
results over time for 4 [-0.2, 0.2] constrained models.

Unlike the [0 1] models, the post-crisis 2-D fitted distributions have more
peak than those during the crisis, indicating a post-crisis portfolio is less
risky. This is evidence that these [-0.2, 0.2] constrained models are more
effective in reducing risk than [0 1] constrained models. (In order to avoid
tediousness, we do not put all the normal fitting for the [0 1] constrained
models here. Instead, we include them in the appendix.) Moreover, pre-
crisis and post-crisis portfolio returns cannot reject the null hypothesis at
a 5% significant level while returns during crisis reject the null hypothesis.
Since the crisis, the returns distribution of each stock in the market is no
longer normal because they are severely negatively skewed. No matter what
weights we use, the portfolio return distribution cannot be normal.

Also from both 2-D and 3-D plot, it is well demonstrated that the time-
series of portfolio returns are not stationary during the holding period.

3.4.6 Tests for Normality

If we want to test the normality of the returns distribution considering the
entire holding period, we can use a Q-Q plot. The Figure 6 is the Q-Q plots
for 4 [-0.2, 0.2] constrained models.

There is not much difference in normality for the 4 models. If the two
distributions being compared are similar, the points in the Q-Q plot will
approximately lie on the line y = x. The linearity of the points suggests that
the data is normally distributed. Only the middle part of the portfolio returns
lie on the y = x line, large deviation from y = x happens on the upper and
lower tails. The extreme outliers may be caused by market catastrophe. The
Ledoit model improves the normality of the upper tail, however, its severely
deviated lower tail still shows that the entire distribution is not normal.
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Figure 2: Yearly Normal Distribution Fitting Result for Markowitz model
with constraint [-0.2, 0.2]
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Figure 3: Yearly Normal Distribution Fitting Result for Ledoit’s model with
constraint [-0.2, 0.2]
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Figure 4: Yearly Normal Distribution Fitting Result for CALM 0.7 model
with constraint [-0.2, 0.2]
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Figure 5: Yearly Normal Distribution Fitting Result for CALM 0.9 model
with constraint [-0.2, 0.2]
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Normal Probability Plot   Markowitz [−0.2, 0.2]

−0.1 −0.05 0 0.05
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Normal Probability Plot   Ledoit [−0.2, 0.2]
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Normal Probability Plot   CALM 0.7 [−0.2, 0.2]

−0.15 −0.1 −0.05 0 0.05 0.1
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Normal Probability Plot   CALM 0.9 [−0.2, 0.2]

Figure 6: Q-Q Plot for Four [-0.2, 0.2] Constrained Models
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4 Conclusion

Our empirical analysis based on the portfolio performance from the financial
crisis from 2007 to 2009 indicates that incorporating forward-looking signals
into covariance matrix estimation is an effective method to improve return
and reduce risk in market catastrophes.

Among the 12 combinations of models and constraints, Ledoit’s model
does not perform as well as the other 3 models as measured by Sharpe’s Ratio,
holding period return, and weekly return and risk. CALM with constant
0.7 and 0.9 performed similarly, indicating that the value of the constant
number in a highly structured correlation matrix may not have a large impact
on a portfolio’s performance. The standard Markowitz model performed
moderately well among these 4 models.

We found that [-0.2, 0.2] constrained models outperformed unconstrained
and [0 1] constrained models. Although their leverage ratios are higher and
take more risk than the [0 1] models, they obtain enough rewards, indicating
that the excess risk is worth taking.

When the market is in a pre-crisis state, the standard Markowitz model
performed the greatest. Since the market is calm before a crisis, the assump-
tion that market behavior in the future is consistent with the past holds.
If we include a highly structured correlation matrix, the covariance matrix
overestimates the market risk and thus the model instructs us to invest con-
servatively and take less risk. As a result, the return is lower. However,
during a post-crisis, the Ledoit model and CALM overcome the weaknesses
of the Markowitz model and fairly measure the market risk. Thus they obtain
better returns.

Should we decide to change investment models over time, Markowitz’
model with constraint [-0.2, 0.2] works well during periods of relative ease.
When market conditions worsen, we should switch to CALM 0.7 or CALM
0.9 in order to achieve better results.
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A Appendix

A.1 Matlab Code

The following is the core code computing the tangency weights for con-
strained Ledoit’s Model and CALM.

[t,n]=size(data);

meanasset=mean(data);

data=data-meanasset(ones(t,1),:);

% compute sample covariance matrix

sample=(1/t).*(data’*data);

% compute prior

var=diag(sample);

sqrtvar=sqrt(var);

rBar=(sum(sum(sample./(sqrtvar(:,ones(n,1)).*sqrtvar(:,ones(n,1))’)))-n)...

/(n*(n-1));

prior=rBar*sqrtvar(:,ones(n,1)).*sqrtvar(:,ones(n,1))’;

prior(logical(eye(n)))=var;

%compute prior for CALM

%constant = 0.9;

%prior = constant*ones(n,n);

% what we call phi-hat

y=data.^2;

phiMat=y’*y/t - 2*(data’*data).*sample/t + sample.^2;

phi=sum(sum(phiMat));

% what we call rho-hat

term1=((data.^3)’*data)/t;

help = data’*data/t;

helpDiag=diag(help);

term2=helpDiag(:,ones(n,1)).*sample;

term3=help.*var(:,ones(n,1));



31

term4=var(:,ones(n,1)).*sample;

thetaMat=term1-term2-term3+term4;

thetaMat(logical(eye(n)))=zeros(n,1);

rho=sum(diag(phiMat))+rBar*sum(sum(((1./sqrtvar)*sqrtvar’).*thetaMat));

% what we call gamma-hat

gamma=norm(sample-prior,’fro’)^2;

% compute shrinkage constant

kappa=(phi-rho)/gamma;

shrinkage=max(0,min(1,kappa/t));

% compute the estimator

sigma=shrinkage*prior+(1-shrinkage)*sample

bOmega = sigma;

bmu = mean(asset);

ngrid = 50;

muP= linspace(rf,max(bmu),ngrid);

weights = zeros(29,ngrid);

sigmaP = muP;

LB = 0*ones(29,1);

UB = 1*ones(29,1);

Aeq = [ones(1,29);bmu];

f = zeros(29,1);

for i = 1:1:ngrid

beq = [1;muP(i)];

w = quadprog(bOmega,f,’’,’’,Aeq,beq,LB,UB);

weights(:,i) = w;

sigmaP(i) = sqrt(w’*bOmega*w);

end

Imin = find(sigmaP == min(sigmaP));

Ieff = (muP >= muP(Imin));
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sharperatio = (muP-rf)./sigmaP;

Itangency = find(sharperatio == max(sharperatio));

weightsT=weights(:,Itangency)

ExpReturnT=bmu*weightsT;

VarT=weightsT’*bOmega*weightsT;

The following code fit the data with normal and run chi2gof test to test
whether the data were taken from a specific distribution.

netreturn7 = 100*netreturn7;

% fit the distribution of original data with normal dist.

pd_norm = fitdist(netreturn7,’Normal’)

[h,p] = chi2gof(netreturn7,’cdf’,pd_norm)

[f,x] = hist(netreturn7,15);

subplot(3,1,1)

% plot the percentage histogram

bar(x,f/sum(f));

title(’Histogram for CALM 0.9 [-0.2, 0.2] Year 2007’);

xlim([-15,10])

This code gives us the 2D and 3D surface plot of portfolio return.

xrange = 0.8;

x = [-xrange:.005:xrange];

% normal distribution fitting

return09 = xlsread(’DATA_DOW’,’weighted return’,’AF3:AF54’);

pd_norm09 = fitdist(return09,’Normal’);

norm09 = normpdf(x,pd_norm09.mu,pd_norm09.sigma);

return08 = xlsread(’DATA_DOW’,’weighted return’,’AF56:AF107’);

pd_norm08 = fitdist(return08,’Normal’);

norm08 = normpdf(x,pd_norm08.mu,pd_norm08.sigma);

return07 = xlsread(’DATA_DOW’,’weighted return’,’AF109:AF161’);

pd_norm07 = fitdist(return07,’Normal’);
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norm07 = normpdf(x,pd_norm07.mu,pd_norm07.sigma);

% 2D plot

plot(x,norm09,x,norm08,x,norm07)

legend(’2009’,’2008’,’2007’)

%3D surface plot

norm = [norm07; norm08; norm09;];

xx = x(ones(3,1),:);

t = [2007:1:2009]’;

tt = t(:,ones(length(x),1));

z = norm;

mesh(x,t,z)

set(gca,’YTick’,[2007 2008 2009])

xlim([-xrange,xrange])
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