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Abstract 

This project is about exploring various methods to create game A.I.s with different 

personalities. A Japanese themed game Action Role Playing Game is also made for testing the 

A.I.s.  

We used three algorithms: behavior tree, behavior tree with utility based decision maker, 

and finite state machine, and made four A.I.s each with personality of: aggressive, bullying, 

cowardly and tricky. All the A.I.s is put into an NPC monster called Nue in our game: Yokai 

World and a test were conducted with 16 play testers to see each personality’s recognizability 

and believability. 
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Chapter 1: Introduction 

 

Artificial Intelligence (A.I.) is an important part of a game by bringing Non-Player 

Characters (NPC) and enemies to life. It allows NPCs to act intelligently, and able to challenge, 

impress, or even bring emotional attachment to the player. It has become a vital part of many 

games, as the gaming industry is evolves. Graphics have been getting better in last decade and 

game has been moving towards an open world genre. An open world environment allows player 

to craft their own story. With the emergence of virtual reality, immersion within the game world 

has become a more important than ever [28]. AI has an important role in interacting with the 

players; they are part of the player’s story and their involvement can either make the game 

better or make the game stagnant.  

In our experience when dealing with an A.I. enemy for Action Role Playing Game 

(ARPG), we are usually required to figure out patterns for its attack and movement, so we can 

act accordingly and exploit its weaknesses. During this process, the personality of this enemy 

character and preferences on certain actions of its A.I. are gradually revealed to us, the players. 

Different A.I. behaviors and personalities give players different attitudes and approaches toward 

them. It makes the game engaging. 

We were interested in working with AI for the project because we wanted to learn more 

about it and it was perfect for a team of all CS majors. Influenced by our research we decided 

that the direction of our project was personality AI. In this project, we made a game related with 

Japanese culture, explored different ways to create A.I.s with personality, and make various 

A.I.s with different personalities using different techniques for our game. Due to our team limited 

experience working with AI, we turned our attention to other works done by researchers to learn 

about the approaches to creating a personality AI. We used two approaches from them. One 
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was a brute force approach that requires planning out different scenario for the AI and another 

was allowing the AI to make its own decision in a less scripted method.   

Our game Yokai World is a 2D action game in which the player is trapped in an 

alternative world of Yokai. In Yokai World, players must defeat the Yokai trying to kill them. 

Players must play through the game four times, learning the different personalities of the Yokai. 

We learned about the effectiveness of our AI by getting input from the players through a session 

of play testing our game.  

In this paper we talk about the overall development of our game. In chapter 2 we talk 

about the background research that inspires the designs and gameplay of our games. In 

chapter 3, we explain the designs, the features and the gameplay that is in our game. In chapter 

4 is about the software and tool we use in our project. Chapter 5 is about the AI and Unity 

implementation. In chapter 6, we discuss in details of our play testing and the analysis. In 

chapter 7, we talk about the conclusion of our results. Finally the last chapter is the postmortem 

of the project. We talk about the highs and lows of our projects in both the technical and the 

non-technical of the project such as: what we learned, what went wrong, what went right, and 

what can be done for future works. 
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Chapter 2: Project Background 

 Before designing Yokai World, we conducted background research on three main areas 

of our game, Japanese culture, Game Artificial Intelligence, and Personality AI. The aspect of 

the Japanese culture we explored were the Japanese Folktales of Yokais and Japanese 

Temples and Shrines .Then we discussed briefly about the Game Artificial Intelligence in games 

and the algorithms that games used in gaming industries. Finally we explained the importance 

of personality AI to our project. 

 

2.1 Japanese Culture 

2.1.1 Yokai 

Yokais are supernatural beings usually depicted as ghosts, monsters, demon, and 

mostly deformed animals or human. They are mostly conjured up from either ancient folklores, 

or imagination of the writers or storytellers during the Edo Period (1603-1868) [52]. Yokai was 

used as concept that explains unscientific phenomenon. People once believed that natural 

disaster like, lightning, tsunami, earthquakes and forest fire were caused by Yokais who wanted 

to terrorize people. However not all Yokais were considered evil; there were good Yokais well 

[50]. There are no record found that explains their origin but when it comes to a database of the 

type of Yokais told in history, there are a lot of them. Yokais were not popular until the Edo era, 

the time of art and culture. The concept was used as a way to tell interesting stories. It later 

embeds itself as part of Japanese art and cultures as more and more stories are adapted to 

today media. 
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Toriyama Sekien was a scholar and artist who traveled the country and documented 

stories of yokai in his encyclopedia. His famous works were Gazu Hyakki Yagyo (The Illustrated 

Demon’s Night Parade) and Hyakki Tsurezure Bukuro (A Horde of Haunted Housewares) [22]. 

They are encyclopedias of known Yokai heard across Japan.  

Mizuki Shigeru was a manga author and artist who preserved these Yokai stories by 

compiling them into manga series. His famous work was Ge Ge Ge no Kitaro, a children manga 

series. His effort inspired others to continue the traditions by recreating the Yokai stories by 

adapting it into many different media format [50]. As a result these Yokai stories continue to 

exist to the present day. 

 

 

Figure 1: A portion of the Night Parade of the 1000 Demons Painting [50] 

 

      You can also find that today Yokai appears in the current media. For instance the 

popular game Yo-kai Watch uses Yokais from stories and legends as a theme of the game. 

Other games include Dark Souls, Pokemon, Shin Megami Tensei, Persona and Nioh. It not 

only limited to video games, but also anime, manga, TV shows and other popular form of 
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media as well. Majority of Japan population is very familiar with the concept of Yokai 

because it has been preserved so well throughout history. It is no surprise that the concept 

is so popular in Japan because generations of children, young adults, and older individuals 

grew up with it. 

      Because of its deep connection to the Japanese Culture, we decided to use Yokai as a 

theme for our game. There are multiples Yokai to choose from but since our project center is in 

Kyoto, we decided to use a Yokai named Nue, who had a history in Kyoto. In our action game, 

the player battles Nue, an evil monster who terrorized people in the legends. In addition, we 

developed four different personalities for our Nue. Each personality is inspired by stories of Nue 

and other stories. More details of the personalities are described in section 3.5. 

 Nue is well-known for a particular story told in the Heian era. During the Heian period, 

emperor Konoe had nightmares every night and eventually grew very ill. Nothing could be done 

to cure him. It was discovered that the source of his illness was an effect of a Nue so a 

legendary samurai, Minamoto no Yorimasa, was summoned to kill it. Once it was killed, 

emperor Konoe recovered completely. Due to the fear of being cursed, its body was set to drift 

down Kamo River. Eventually, it reached a shore in Hyogo where villagers gave it a burial 

mound to avoid being cursed [30]. The burial still continue to exist even today in Matsuhama 

Park in Hyogo under the name Nuezuka.  

 

`  
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Figure 2: Image of Nue and Minamoto no Yorimasa Memorialized in Matsuhama Park in Hyogo [12] 

 

 Due to the popularity of its existence in Japanese culture, Nue has been adapted in 

many media form. In the critically acclaimed game Nioh, Nue is a semi-boss that the player 

must defeat to move on. Another game series that Nue makes an appearance is the Shin 

Megami Tensei, where Nue is a potential enemy to defeat. In Okami, there is a monster that is 

called a chimera, but although its appearance differ a bit from other games mentioned, it was 

said to be based on Nue.  

 Other than video games, Nue makes appearance in anime and manga. In the anime 

Mononoke, Nue is depicted as a spirit of a rotting wood that gives people great power. It enjoys 

killing people who seek its power [8]. Nue also appears in popular anime of recent years such 

as Boruto, Bleach, and Nura: Rise of the Yokai Clan.  

 These adaptations of Nue in media make it out to be a more complicated character than 

the legend suggested. Although a beast, Nue is given human like emotions and characteristics, 

suggesting that Nue is more than just a simple beast. Because of its status as a Yokai, or evil 

spirit, Nue has many shape and form in these popular media. 
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2.1.2 Shinto Shrine and Temple 

 Having a setting and background design for our game is important so we needed to 

research on the appropriate location for the theme of our game. When you see a Yokai-

theme anime/manga, you usually see it in a temple and/or shrine. One of the religions of 

Japan is Shintoism. Shintoism is a concept of animism and worship of nature. It is 

commonly practiced at a Shinto Shrine [4]. Everything was thought to have a spirit within it. 

Some spirits were worshipped for good fortune while others were scorned for their 

misfortune; the concept of kami and Yokai are sometimes interconnected. The two 

supernatural concepts of Shintoism and Yokai meshes together very well, which is why you 

see them together often in anime/manga where supernatural is the theme. Anime/manga 

like Nura: Rise of the Yokai Clan, Natsume Yuujinchou, Uchouten Kazoku, and Ao no 

Exorcist are anime that features Yokai and each have mentions of shrines and temple as 

it’s setting [3]. Because most of the members in our group are anime watcher, we linked 

Yokai and temple/shrine unconsciously. Not only anime but we can the two together in 

games, TV shows, advertisements, and even inside shrines and temples that we visited. 

Being in Japan, we wanted temple and shrines to be the setting for our game.  

         We had the pleasure of visiting a temple in the Kyoto. We visited Entokuin, a sub-

temple of the Kodaiji Temple. It was built by Kitano Mandokoro or Nene, the wife of 

Toyotomi Hideyoshi, as a way to mourn for her late husband. Kodai-ji Temple is located in 

the Higashiyama Mountains of eastern Kyoto. It was fortunate that Kodai-ji Temple buildings 

survived a fire in 1789 and remain to be in excellent condition to this day. It is considered an 

Important Cultural Property by the Japanese Government [1]. 

Entokuin had a very calm and soothing atmosphere which reflects the temple’s purpose. 

The tatami matted rooms have little to nothing but has so much characters embed in its design. 

Each room is divided by sliding doors, which has intricate designs on them each carry different 
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meanings. One sliding door was painted with pine tree, bamboos, and plum-blossom. They are 

considered to be 3 strongest trees to survive the winter. It is used in Japanese garden as a 

symbol of being strong throughout adversary.  

 

 

Figure 3: “Syoutikubai” (pine tree and bamboo and plum-blossom) Syoutikubai means good luck [11] 

 

Inside Entokuin, there were displays of Night Parade of the 1000 Demons. Unfortunately, 

we were not allowed to take photographs of the art piece. It looked similar to Figure 1 except it 

was a section with different Yokais, but similar art style.  

You can find folklores of Yokai such as Tengu, Kitsune, Oni, and other known Yokai who 

had affiliation with temples/shrines. For example, in the story of a famous samurai, Minamoto no 

Yoshitsune, he was trained by a tengu king Sojobo at Kurama Temple, who helped him become 

the greatest swordsman to ever lived. Although a Yokai, Tengus are considered noble in 

modern Japan society [40]. You can find statues of them in temples and shrines, signifying 

importance to the culture and the location. Another instance is on February 3, a widely 

celebrated festival named Setsubun has a ritual in which people throw beans out from their 

home or at someone dressing up as an Oni while chanting “Oni wa soto, fuku wa uchi” which 

translate to “Oni outside, fortune inside”. The bean throwing tradition first emerged in the 

Muromachi period (1337 – 1573). It was used to purify the home by driving away evil spirits in 

order to bring good fortune to one's home [39]. Because of the connection, we decided it was 

worth having temple/shrine as the setting for our Yokai-theme action game. 
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2.2 Game Artificial Intelligence 

 The existence of Artificial Intelligence in games allow developers to create a unique 

and compelling experience for players. Game developers view AI as the future of gaming 

because as technologies advances, more engaging gameplay and environment are 

desired with AI being an important piece in getting the player involved and invested [34].  

Based on the readings, having a human-like AI in one’s game is very desirable, in 

theory. But in practice, it all depends on the design of the game. 

There are three factors that make up a successful AI. The AI has to be responsive, 

the AI should be challenging, and the AI should be fair [26]. An AI has to be able to give 

good feedback to the player. It means that if the player shoots, the AI should dodge and if 

player is open, the smart thing for the AI is to shoot at the player. The AI has to be alive 

and moving to match the player’s action. A challenging AI does not have to be unbeatable, 

it just needs to give the player a tough time and make the player work for the victory. In 

addition, the difficulty has to adapt to the player growth as they play the game. A fair AI 

means that it should not have access to information that the player does not have and it 

should not be again, unbeatable as a design. The AI should be on in a sense, on an equal 

playing field, no advantages that cannot be exploited.  

According to a study, it was found that people enjoyed playing against other human 

because human players are “intelligent, unpredictable and adaptive” [37]. A human-like AI 

has to be able learn and exhibits believable behavior [29]. The approach that usually goes 

with this concept is machine learning. While machine learning sounds nice, game 

industries do not use it because it is too unpredictable and make controlling the gaming 

experience even harder [41]. In addition there must be a large amount of training data the 
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AI needs to learn from in order to sufficiently function. Not to mention the resources that is 

needed for this to be successful.  

There is also another group from the same study that prefers to play against 

computer because it was more convenient [37]. The study mentioned showed that people 

play games for different reasons. There are many different people in the world. Some plays 

game to escape reality, some play games for the thrill, and some play games because they 

needed a distraction. What is considered a “fun and engaging game” is subjective and very 

difficult to gauge. Overall the desirability of achieving human-like AI depends on the design 

goals of the game and who the audience is.  

Developers would only create an illusion of intelligence in their game AI; just 

enough for players to acknowledge that the AI is behaving logically and relative to what 

they know. In our game, we aimed to show behaviors that are clear indicators of each 

personality. We wanted to ensure that the behavior we chose for each personality is logical 

and reasonable.  

  

 

Figure 4: Types of AI Architecture and Developer Control [41] 

 

 There are two general techniques game industries employ to make their AI 

believable. One strategy is the animation. Simple actions like character moving faster 
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indicate a high emotion such as anger, agitation, nervous and upset. While slow movement 

indicates calmness. Having the AI display these actions in line with the situation can be 

powerful in projecting intelligence because human acts similarly to those emotions a well. 

Simple animation practice includes having the anticipation before performing an action and 

body moving even when standing still [42]. All for the sake of enticing the player the realism 

of the AI and the game world. While this technique is useful and a standard in game 

development, we cannot use this technique in our game because none of the team 

members have experience with animations or have the ability to accomplish this. 

Another strategy is to use AI architectures to create the AI. This technique follows a 

coding approach that all members of the team are familiar with and so we knew that this 

was the approach to take in developing our AI. Architectures include scripted AI, Finite 

State Machine, Utility-Based AI, Planning and Machine Learning. Developers want the AI to 

be reactive and adapt to any situation. For the AI to be adaptive, it needs to be able to 

react to changes, from player’s action and the game environment [41]. This give the 

developers some control over the player experience in deciding how the AI reacts to 

different situations. There is no right answer to how an AI is created. All games can 

succeed by using different type of AI architecture. For examples, games like The Sims 

relied heavily on AI use architecture like Utility-Based. 

 

 

2.2.1 Algorithms 

Behavior Tree  

 Behavior Tree is a tree that consists of nodes that an agent use for decision making. A 

behavior tree starts at a root node which has many children as behaviors. Each behavior has a 
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condition that must be met before executing. Each behavior is a node. It can execute as a 

sequence node, traversing the children in order and the node only fails when one child fails. Or 

it can be executed as a selector node where if one fails, the algorithm moves on to the next 

child and if all children fail, the parent node fails [41]. 

         The tree can be as straightforward as it needs to be, meaning you can implement a 

behavior tree with many different behaviors each with only one child or it can be as complicated 

as you need it to be with any number of branches. Behavior tree is stateless, meaning it does 

not need to access any memory to know what behavior to execute. Each behavior in a behavior 

tree is independent of each other so adding and removing a behavior will not affect others. A 

drawback from behavior tree is that the algorithm can get really slow when there are too many 

behaviors to process. Decision making is slow and it can be limited by its design. The reason is 

that tree will process each behavior in sequence so if a behavior that can only be executed is at 

the end of the list of children, it can take up a lot of processing time. However the issue can be 

avoided by having a smart behavior tree design. 

         This is a standard for game AI so we figured it was a good starting point to learn how 

game AI works and what we can do with it in our game. This architecture became the 

implementation for one of four personalities described in chapter 5. 

Utility-Based 

In simple terms, a Utility-Based AI makes decisions based on the score calculated from 

some mathematical formula and select the action with the highest score [41]. Utility-Based AI 

answers the question “How much I want ……” rather than simply deciding what action to take 

[42]. It takes into account of the weights of its need, the rank, and any considerations that needs 

to factor into the decision process before deciding on the best action. This architecture is used 

in situations where there are numerous actions to choose but there are not right actions to take, 

just the most logical based on the score. 
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As the game situation changes, the scores for most of the actions will change. This 

makes the AI appears more autonomous and less predictably scripted. The system allows the 

AI to truly adapt to the changes and makes it interesting to play with or against. The 

disadvantage of the Utility-Based is finding the “right” formula for each action. Because the 

score of the actions are calculated by a formula, having the “wrong” formula can make the agent 

act unpredictably. It does make the agent appear more natural rather than robotic; however, 

sometimes you want the agent to act correctly to specific situation instead. 

A well-known game that uses utility is the Sims. In order to be able to model basic 

human behavior, there are needs that each sim possess and each of those needs affects how 

the character acts in different situation. In the Sims, the sim can live and make decision without 

the player actually controlling the sim [51]. The algorithm in the sim chooses the four best 

choice for the sim to choose from. For instance, if the sim is low in energy, they would sleep to 

avoid being cranky. If the sim is hungry it will eat to avoid being upset. If the sim is bored, it will 

entertain itself. The list goes on. 

The way that utility is used in the Sims was very interesting. It was a perfect example of 

how to model human behavior in an AI, similar to our project. We decided it was worth 

attempting to implement it in our game to model personalities.  

 

Behavior Tree with Utility Based 

 Behavior tree is a common AI architecture used in game industries. It is simple design 

that allows developer to map out how they want their agent to perform. The huge issue 

mentioned earlier with the Behavior tree is that it does not specify which actions it should do 

without traversing the all condition of the tree. In a behavior tree, each action is checked one by 

one in the tree until it reaches the end. In the Figure 5, this shows a typical behavior tree with 

options for an agent. As it stands, the leftmost node will be processed first and will either move 
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on to the next node if it failed or return the result back to the parent. The design lacks the ability 

to make a decision without fulfilling the conditions specified. 

 

 

Figure 5: Sample of A Behavior Tree [19] 

 

 To address this huge negative, a utility-based system is used together with the behavior 

tree. Utility-based system allows the agent to make a decision by choosing the highest utility 

score of all actions. The utility score should be used as a selector in order to mask the 

weakness of the behavior tree. This helps make our agent more spontaneous and less rigid in 

its execution. 

In the Figure 6, the AI is trying to decide which action sequence to take. It can seek 

medic if health is low, shoot, or seek medic again but this time comes with another condition, 

when monster is out of sight. There is duplication because you have multiple conditions that 

utilizes the same action, but at different instances. Choosing medic first ensures that the AI will 

prioritize healing. If the first fails, then it will shoot, however if it cannot shoot then it will heal 

again but this time with a different situation; notice that the developer have to plan out each 

different scenario.  
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Figure 6: Sample of Behavior Tree with Duplicate Action [15] 

 

 Figure 7 address the issue by having the Combat node to calculate the utility score of all 

three possible actions and choose one that has the highest score, thus the most logical choice 

for the situation. This eliminates the need for having duplicated actions that requires different 

condition to activate. 

  

Figure 7: Sample of Behavior Tree with Combat as Utility as selector [15] 

 

 This combination of behavior tree and utility looked very promising. It complemented well 

with each other by addressing the weaknesses that each possess. We decided to use this 

technique to develop the personalities for the AI because we never really thought about 

combining multiple architectures into one and we are interested in learning how this technique 

can make our AI better or worse in its autonomy.  
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Finite State Machine 

Finite State Machine is an algorithm that simulates an agent action using states. A state, 

in simple term, is a status of the agent at a given time. For instance, an AI agent can be in Idle 

State, where it is just standing around or Running State, where it is currently running. State 

answers the question, “What the Agent is Doing/Thinking Right Now?” The FSM can transition 

to another state or it can continue to stay in one state. Transition between states requires the 

agent to fulfill certain conditions [42]. For instance, in order to transition to Running state, it must 

check the condition that the player is within its sight radius, if the player is in the radius, the 

agent will now be in Running State and it will perform a running action, if not, the agent will 

remain in the Idle State or even transition to a different one. The process repeats every frame. 

This architecture organizes the logics.  

State Machine is very basic and it has a small learning curve. Like behavior tree, it was 

used as a way to learn about decision logic that comes with developing an AI. Since we are new 

to the game development process, we are not sure which architecture to use so state machine 

is one of several algorithm described that we wanted to explore.   

After looking into the algorithms that games uses, the next step was to figure out how to 

model the personalities. 

 

2.3 Personality AI 

 When playing a game, it is very easy for players to recognize whether the NPCs they 

interact with are satisfying or not [43]. They see patterns and repetitions. It can negatively affect 

the player experience when player’s action has no real impact on the game environment. A way 

to address this is add realism to the NPCs by giving them personalities [25]. Giving an AI 
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personalities add a new depth to it, making it a more interesting character to interact with. One 

approach to achieve this is to consider all possible scenarios that can occur from player choices 

and incorporate those into the AI. The realism that the AI can project from this approach 

depends entirely on the scenarios that developers can think of. Another is to give the AI a little 

bit of autonomy and allow it to make decision themselves. One study suggested that it is more 

worthwhile to aim for credibility instead of realism because you have more control [29]. The idea 

of credibility is consistency. For example, in a game of NBA2K18, a seven foot center should 

dunk majority of the time when he is under the basket just like in real life. Or a player with an 

aggressive personality should attack the basket more often than a player with laid back 

personality. It does not have to be human-like, it just need to behave consistently. Our approach 

to developing our AI was similar to these two approaches. Using the algorithms we learned from 

previous sections, we were able to utilize them in these approaches. And we made our AI 

behave consistently to the personality that we assigned it to.  

 One personality model that was mentioned several times in the readings was the Big 

Five Personality Model. Modeling realistic behavior in AI requires background knowledge about 

personalities. The Big Five Model offers a guide to understanding what personalities are. The 

Big Five are OCEAN, openness, conscientiousness, extraversion, agreeableness, and 

neuroticism. All five factors makes up of a personality. The general consensus in developing 

personalities was to give the AI multiple traits that can change any time thorough gameplay. 

These traits are created with the Big Five Factors in mind.  
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Figure 8: Big Five Personality Circle [7] 

 

We model our personality by showing different range of actions in different situations 

that characterizes our AI. For instance when our AI is at low health, the AI would either run at 

player or run away. If it runs away, it shows a hint of cowardice, nervousness, or disorderly. If it 

runs at the player, it shows that the AI is assertiveness, fearless, and/or predatory. The string of 

action our AI takes throughout the gameplay says something about its personality. This was the 

approach we took in displaying the personalities of our AI. Our rationale for each personality is 

described in section 3.5. 
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Chapter 3: Design & Gameplay 

3.1 Experience Goal 

3.1.1 Different Experience with Different AI Personalities 

 

The most important part of our experience goal is to let the player notice differences 

between different personalities of AI and enjoy playing with them. Ideally, the player should be 

able to tell which personality is which after playing with it for one round and give a justification 

for their decision. 

In order to make it easier for the player to feel the difference between the personalities, 

we built multiple behaviors for the AI, such as attacking with fist, charging attack and range 

attack. Different personality would have different choice of behavior, and they would also have 

different reaction to the player’s behavior. For example, when the player goes near the monster 

to attack, the monster will try to run away if it is a timid AI, while it will attack the player if it is an 

aggressive one. If it is a bully AI, it may use charging attack all the time. However, if it is an 

aggressive AI, it will be more likely to chase the player around and attack him with its fist. More 

detailed of the personalities of the Nue are explained in the Section 3.5. 

We also created plenty of animations and special effects, including sound and visual 

ones, to make the monster’s behaviors vastly different from each other. This will help the 

players to tell if the monster is acting differently and make it easier for the player to play the 

game, since vision and sounds are the only ways for the player to receive information from the 

game. 
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3.1.2 Multiple Strategies to Win 

 

We chose to let the player have multiple strategies to play through the game, because 

we didn’t want to limit the player’s options when they fight with the monster that has different 

personalities. The map is basically a large room where the player can walk up, down, left, right 

and diagonally. Although the player can only by waving his sword, there is another special 

ability of player called “Dodge”, which lets him move faster on the map and dodge the enemy’s 

attack. In many games that are made by RPG-Maker, player could get stuck by a little obstacle 

on the map, while this game allows the player to go anywhere they want on the map and the 

players are not restricted by the map tiles. 

All these features give players more options to fight the monster. They can create their 

own strategy according to different personalities of the enemy. 

 

3.1.3 Cultural Experience 

 

 All the visual effects, sound effects and art design in this game help to build an 

Japanese cultural environment. We went to temples in Kyoto, including Kodai-ji Temple and 

museums which contains historical Japanese drawings. 

         Players should be able to tell that the background is a Japanese-style room, and the 

monster should be easily known as an eastern monster, not something like a vampire or 

werewolf. We don’t want to add too many details into the environment, because we are afraid 

that the environment with too many details will attract players and divert their attention from the 

difference between personalities of the AI. 

         Each A.I. should be believable and fit the general impression or historical reference of 

the monster. 
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3.2 Gameplay 

 Our game is a top-down 2D fighting game. A fighting game is a video game genre based 

around combat between a limited amount of characters, in which they fight until they defeat their 

opponents or the time expires. For our game, it’s player versus AI and doesn’t have any time 

limitation; therefore, the player has to beat the AI to win the game. The fights consist of several 

rounds and take place in a small room. Player and monster will have different abilities. In this 

game, the player can move, dodge and attack.   

The gameplay refers to a few famous indie games. They are all top-down 2D action 

games. The reason that we chose this gameplay is, as we mentioned before, to give player 

more options on playing the game and not limiting them. They can go anywhere they want on 

the map to dodge the attack from the enemy and attack them back. 

   

3.2.1 Wizard of Legend 

 

Wizard legend is an indie roguelike video game released by American studio 

Contingent99 and Humble Bundle in May 2018 [10]. Players act as wizards as they play through 

a procedurally-generated dungeon, and they can defeat mobs, three major bosses, and a final 

boss with a wide variety of spells to become “Wizard of Legend” in the end.  
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Figure 9: A Snapshot of Wizard of Legend [46] 

 

 In our game, the player will not be able to shoot projectiles, but we implement another 

mechanic from Wizard of Legend, which is dodging. In Wizard of Legend, players are allowed to 

cast a spell to dash to a certain distance. Players of our game can dodge by pressing the space 

button, and then they can dash to a little distance to dodge the attack from their enemy.  

 We also learnt to implement the moving and camera mechanics from Wizard of Legend. 

Since our game is a top-down 2D game, just like Wizard of Legend, the moving controller of the 

player is by keyboard keys - W, A, S and D. In this game, the camera not only follows the player 

but also tries to keep every enemy inside of the camera so that players know where their 

enemies are, and we implemented this mechanic as well. 

3.2.2 Binding of Isaac 

 

The Binding of Isaac is an indie rogue like video game designed by Edmund McMillen 

and Florian Himsl [16]. Players control Isaac or one of the other characters through a 

procedurally generated rogue like dungeon. Players need to kill monsters while collecting items 

and power-ups to defeat bosses, including Isaac’s mother.   
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Figure 10: A Snapshot of Binding of Isaac [33] 

 

 One thing we learnt from this game is that we need to add visual effects to the game 

where players hit an enemy or they get hit. In Binding of Isaac, when monsters or players get hit, 

they will shine in a red color for a few times so that players will notice that they get hit or hit their 

enemies. Usually this effect will last for half a second. We designed two different visual effects, 

which show up when players get hit or hit the monster. The one for players hitting the monster is 

a reddish huge slash that shows up on the monster’s body, which is indicating that the monster 

was damaged by player’s sword. The other one for monster hitting the player is a yellow huge 

strike animation that plays on top of the player’s body. This indicates that the player was hit by 

the monster and he will receive damage. 

 Another feature we learnt from Binding of Isaac is its art design. The characters in this 

game have a big-head and small-body structure. Our art design of the protagonist refers to this 

art style because we think this art style is easy to manage and it would go well with our goal of 

keeping a sense of Japanese culture which is the manga style. 
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3.2.3 Player and Enemy Controllers 

Player Mechanics 

For the player, there are two main attributes and three main abilities. The two attributes 

are health and stamina. In this game, health is an attribute assigned to players and enemy that 

indicates how much energy they left to continue the game. Usually health is interpreted as hit 

point (HP) and players and enemy will lose certain amount of hit point when they are attack by 

someone else. When players run out of health, they lose. 

The second attribute is stamina. Stamina is an attribute assigned to player’s character 

which indicates how much energy they left to cast abilities or make actions. Every action made 

by the player, except simply moving, will cost a certain amount of stamina. Stamina will be 

recovered by 5% every 2 seconds. Actions made by players will not interrupt the recovery of 

stamina. This limited stamina mechanic could effectively stop player from spamming. We hope 

players can develop certain strategies against the monster, not just spamming keyboard to kill 

their enemy. 

In our design, the player should be able to move vertically, horizontally and diagonally. 

The reason of this is that we want the player to have more ways to attack the monster and to 

dodge the monster’s attack. This also offers the player more freedom on their movements. 

The player has a lower health than the monster, since monster “Nue”, in our background 

research, is stronger than a human. In addition, in most of the fighting games, player usually 

has a lower health as well, since they are highly intellectual comparing to the AI of bosses. In 

our game, the AI is already pretty strong; however, the monster is stilled designed with more 

health. The reason is that we want players to have a longer game experience and we hope the 

monster could fight with the player for a longer period of time so that it’s easier for players to tell 

the difference between each AI personality. 

https://en.wikipedia.org/wiki/Entity
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The player’s movement speed, however, is way faster than the monster’s speed. This is 

not only because player has a lower health, but also because we want to offer a more intense 

and exciting game experience for players. Movement speed is a statistic that represents the rate 

at which a character travels across the map. Faster movement speed requires the player to 

react at a higher pace. According to Matthew W.G. Dye: “playing action video games—

contemporary examples include God of War, Halo, Unreal Tournament, Grand Theft Auto, and 

Call of Duty—requires rapid processing of sensory information and prompt action, forcing 

players to make decisions and execute responses at a far greater pace than is typical in 

everyday life”, and “fast decisions typically mean more mistakes”. [31] It seems like player is 

over-powered by this fast speed, however, they need to learn to control this speed otherwise 

they are likely to keep making mistakes during the fight. This also means that we successfully 

created another learning experience for players during the gameplay – controlling their 

movement. 

An import ability of player is dodging. Players can dodge through a small distance in one 

direction instantly, and this will cost them 5% of their stamina. This ability can only be cast while 

player is moving. This looks like another buff for the player, however, they need to learn to use 

this ability as well. As we mentioned above, abilities cast by players will cost them stamina, 

including attack. This means the more players use their dodging ability, the less attack actions 

they can make to the monster. They need to think carefully before they move. 

Attacking is another ability of the player. There is only one way for them to attack, which 

is waving their sword in one direction to chop their enemy. It can be cast only vertically or 

horizontally, and it is a melee attack so that players need to get close to monster, walking into 

its attacking range to hit it. This melee attack also adds another learning process to our 

gameplay – players need to learn how to deal damage without being attacked by the monster. 

They need to combine dodging and their melee attack together to fight with it. 
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The last ability of player is healing. Note that before we get our game tested by others, 

we decided to give healing items to players in the beginning of each round, because it’s too 

difficult, even for us, to win the game with such small amount of health. This healing item can 

recover all the health (hit points) of the player, and players are given 3 of them in the beginning 

of each round. Here comes another thing for them to learn – when should they use the healing 

item? If they cast it immediately after being attacked, it’s a waste of healing item because it’s 

able to recover all of the hit points. If players wait until there are only few hit points left, they 

could get killed by the monster before they press the key to use healing item. 

 

Enemy Mechanics 

Just like players, enemy can move vertically, horizontally and diagonally. Its moving 

speed is around 25% of players’ moving speed. This, however, does not mean that it’s going to 

moving slowly around the map all the time. When it cast one of its abilities, it moves faster than 

player. 

Enemy controller only has one attribute and two abilities. The only attribute it has is 

health. As mentioned above, in this game health is an attribute assigned to enemies to indicate 

how much of its energy is left to continue the game. It does not have any ability to recover 

health because its health (hit point) is already enough – four times as much as the player’s 

health. 

It doesn’t have stamina attribute; however, this does not mean that there’s no limit for it 

to use its abilities. There is a cool-down mechanic for all of its abilities. In this game, cool-down 

is a period of time that the monster has to wait for before it can cast its certain ability again. Both 

of his abilities are restricted by cool-down so that it cannot keep attacking the player and this 

gives player a chance to attack the monster as well. 

https://en.wikipedia.org/wiki/Attribute_%28role-playing_games%29
https://en.wikipedia.org/wiki/Entity
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One of its abilities is punching. By punching he waves his fist in one direction and deal 

damage to players if he hits them. As its description, this attacking ability is a melee attack. 

Monster needs to go close to players to attack them. There is a 1 to 2 seconds cool-down for 

using this ability. Punching will not deal lot damage to the player, since the cool-down of it is 

short. 

The other ability is charging. Charging action can be divided into two stages. The first 

stage is charge up. Charge up means they need to stay at the same position for around 1 

second to gather its strength. This stage also reminds the player that it’s going to charge on 

them, because the monster is shaking its body while charging up. In the end of first stage, the 

monster also decides in which direction he is going to charge. The second stage is charge out. 

Charge out means that the monster could dash in a certain direction until it hits the player or the 

wall. He can charge in any direction, including diagonally, while he cannot change its charging 

direction while he is charging out. Charging attack will deal a lot of damage to players if they 

were hit by it, since it’s rather difficult to hit the player. Even if the moving speed of monster is 

faster than player’s moving speed while it’s charging out, it’s still hard to hit the player because 

players can dodge charging attack with their dodging ability. 

 

3.3 Background Design  

3.3.1 Cultural Elements: 

 In our game, we tried to keep it obvious that the player is fighting in a Japanese house. 

At least they should be able to notice the Japanese style in this room. Therefore, we went to 

several places and search on the internet to find resources to design backgrounds of the game. 
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Figure 11: Original Design of Map 

 

 

 

 

 

 

3.3.2 Temple 
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Figure 12: A room in a Japanese temple1 

 

We went to several temples in Kyoto and searched for pictures of temples online. We 

noticed that in most of the rooms the floor was made with tatami. Tatami is a traditional 

Japanese flooring material. If we put tatami into the background, the player could notice the 

Japanese cultural environment easily; however, in most of the temples, tatami is used only in 

bedrooms and the floor of other rooms are wooden. Since our game took place in a large living 

room instead of a bedroom, we chose to design a wooden floor for the background. 

 

 

Figure 13: The background of our game 

 

 

 

 

 

 

                                                 
1 Picture Taken at Entokuin Temple 



 

30 
 

3.3.3 Famous Painting “The Great Wave off Kanagawa” 

 

Figure 14: The famous Japanese painting “The Great Wave off Kanagawa” by Hokusai [49] 

 

In the background, players would notice that there is the Japanese famous painting, The 

Great Wave off Kanagawa, painted on the door. The Great Wave off Kanawaga (神奈川冲浪裏

Kanagawa-oki nami ura, "Under a wave off Kanagawa"), also known as The Great wave or 

simply The Wave, is a woodblock print by the Japanese ukiyo-e artist Hokusai. It was published 

sometime between 1829 and 1833.[49] 

We put it there to make it easier for the players, who don’t really know much about 

Japanese culture, to notice the Japanese-culture environment in this game, since this painting is 

a well-known painting from Japan and the style it paints make people think of eastern painting 

techniques. 
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3.4 Player Character Design 

 In the initial sketch of the main character, we wanted to have a character that is 

androgynous; a character that could be both view as female and male depending on the player 

perception. The reason that we wanted a character that could be of both gender because we 

wanted the player to be able to put themselves in the role of our main character as he/she plays 

our game. However, due to the team lack of an artist, when the complete sketch of the main 

character come, it looked more masculine than feminine. Changes needed to happen to get the 

right look for our character. However, around the time of our design, we felt that we needed to 

shift from our initial plan to create an RPG to only action game, due the time constraints. In 

addition, we felt that the character from the sketch did not fit the Japanese 2D game that we set 

out to make, so we needed to find a new style that fit that requirement.  

  

Figure 15: Kien’s first sketch of main character 

 

In Japan, video games that sold the most have designs that are colorful and have a 

more cartoonist style. Games like Pokemon, Yokai Watch, and Legend of Zelda. According to 
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Keiji Inafune, a video game producer, the reason for its popularity is that people in Japan grew 

up with anime and manga style of entertainment so they are more familiar with the style [6]. This 

can be seen on the streets, inside buses, advertisement, inside train station, and many other 

places in Japan. During our stay in Japan, we have seen advertisements about train created in 

anime style at Osaka Station and Kyoto Station. It is part of Japanese culture. 

 The game that inspired our character design is The Binding of Isaac and the Japanese 

subculture we discovered. The character design for The Binding of Isaac is fairly simple. The 

noticeable features are the large head and the large eyes. The approach to designing our 

character is drawing each body individually and eventually putting it together when animating it, 

making it easier to manage. Compared to the last design, this new design fit the style that we 

wanted to show in our game. It looked simpler and more manageable for a team without a true 

artist. In the initial sketch, the character has a bit of realism to it, but after discussion, having a 

realization that our game genre is fantasy makes it possible to have a character that is far from 

being realistic. In addition the style fits the current trend we found in Japan.  
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Figure 16: Kien’s second sketch of the main character 

 

 A widely known trend in Japan is what people refer to as, the “Kawaii” culture. Kawaii 

translate to cute or adorable in Japanese. This can go from clothes, accessories, hairstyles, and 

behavior to even physical appearance. In 2008, Hello Kitty, one of Japan oldest mascot became 

an ambassador for tourism for representing Japan [18]. Another mascot that we all know and 

love is Pikachu from the Pokémon series. There is even a store that dedicates itself to only sell 

Pokemon goods. The kawaii factor that exists in these two iconic characters is the 

disproportional bodies, big heads, wide eyes, a tiny nose, and little or no facial expression [18]. 

All of which can be seen in Kien design of the main character and enemy design. In Japanese 

arcade, there are pictures taking booth that allows people to have filters on their faces that is 

popular to having to make their eyes larger and rounder to achieve this “Kawaii” looks. While the 

connotation of the culture points the female population, it also extends to the male population as 

well. You have men trying to look younger by either having longer hair or shaving their legs [36]. 

The style is very distinct and it can be seen in Japanese Games like Pokemon, Yokai Watch, 

and Animal Crossings. These types of culture references can be found many JRPGs. According 

to Douglas, JRPGs are Japanese because its relevancy to the culture and trends in Japan [21].  

We wanted to create a game that has a touch of Japanese to it and using the “Kawaii” sub-

culture helps us make the game relevant.  

 

3.5 Enemy Character Design 

 The Yokai that we used for the boss of our game is Nue. According to The Tale of the 

Heike, a Nue was viewed as a chimera. It had a face of a monkey, body of a raccoon dog, legs and 

arms of a tiger and a snake for a tail. There were other variations of its appearance so calling it a 

chimera is the most appropriate. Little is known about Nue, but in legends told for century, Nue were 
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considered a “pretty evil monster” [30]. One widely known about Nue was that it makes a sound that 

is similar to a bird called White’s thrush [9]. Everytime the people hear the sound, people knew that a 

bad omen was approaching.   

  

3.5.1 Visual Appearance 

 In designing the appearance of our game Nue, Kien, one of the artists of the team, used 

several references to design the Nue. The description of Nue found on Yokai.com by Matthew 

Meyer, is very straightforward and descriptive enough to start to begin the designing process. 

Following the same style as our character, Kien designed the Nue having a large head and 

small body. For reference, Kien used Nue from the more recent Persona game, Persona 5, for 

the color scheme and stylish look.  

 

  

  

Figure 17: Kien final design of Nue 
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3.5.2 Personalities 

 The only common feature about Nue, other than its appearance, is the chaos and 

tragedy it is capable of causing. The detailed behavior and personality of Nue which brings 

destruction can vary greatly from different sources. Considering making them believable and 

matching the behavior Nue is known for, four distinct personalities are suggested and 

incorporated into the Nue agent. 

Aggressive 

Those possess the aggressive trait have common characteristics. They actively seek the 

superior position in any encounter. They do not want to submit to the rules around them. They 

are never comfortable with restrictions placed on them. They do not have sympathy for anyone. 

Finally, they have no mental brakes that prevent them from going too far [23]. Those with an 

aggressive personality want to emerge as the victor no matter what circumstances. Being the 

best drives them to behave destructively. 

An individual with aggressive personality uses aggressive behavior as a means to 

relieve their “aggressive drive”. It lives by the reward and punishment system. If one gets a 

reward for an aggressive behavior, they continue to persist, while getting a punishment for such 

behavior causes the behavior to diminish over time. A factor that causes aggression in 

individuals is through social learning. One study, the Bobo doll study, showed that children 

learned how to be aggressive by watching others’ behaviors. As soon as children gain motor 

skills, they are more likely to display aggressive behavior because they are in their learning 

phase so they would mirror what they see. The age where they are more vulnerable to picking 

up habits is two years old. One typical example is that when a parent or an adult figure hit 

themselves, lightly, to make the child laugh, this reinforces the child mind that hurting oneself 

and other is funny. This means that aggression can be learned behavior. Another factor is 
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genetics. Things like brain dysfunction, testosterone, and nutrition deficiency causes imbalance 

in the body, making the mind more susceptible to aggression than the average [24].  

Aggressiveness is a primary trait of a monster or villain of any story. In the origin story 

told in the background of this section, Nue was a very evil monster. It repeatedly caused the 

emperor misfortune until it was killed.  This inspired an idea that our Nue could possess a 

relentless trait showing its intelligence. Because Nue has an appearance of a wild animal or 

animals, it also possesses the aggressive nature found in any wild animals and even human 

beings. We decided that having an enemy that is wild and aggressive in its nature while having 

intelligence it was a great starting personality to model.  

There are two categories of aggression, proactive aggression and reactive aggression 

[38]. Proactive aggression is aggressive behavior that aims to achieve some sort of goal. It is 

usually directed to a person or thing as a way to relieve the tension. Reactive aggression refers 

to an impulse or a reaction caused by anger. The difference between the two is that proactive is 

intentional while reactive is unintentional. In our game, we focus on modeling proactive 

aggression and the stimulus for its aggression is territorial and predatory. Because our boss 

character is a Yokai, it has characteristics of a human and animal. However we do not have a 

dialogue system in our game so we cannot model the character with complex emotion and 

personality. We can display the aspect of the aggressive personality through actions of the boss 

character.  

 

Tricky 

 The only description of personality of this ancient Japanese monster is evil and people 

usually die when they encounter it. Therefore, we tried to interpret the evil of Nue in different 

ways and one of them is tricky, or a liar. 
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The reason we chose tricky as one of the personalities is, we want to create a monster 

who can compete with players on an intellectual level and win the game. The ones who win 

fights and battles are not always the strongest ones, but usually the ones with correct strategies 

and higher intelligence to trick their enemies [14]. In order to win a fight, monster needs to know 

when to attack and when to get away, which means it needs to keep a clear mind all the time. 

More importantly, the calmer a person is, the more likely this person is going to make the right 

decision [13]. Therefore, we pick tricky as a personality - it can always keep calm and stay to its 

strategy, and never be affected by its emotions. 

This personality could be found on many representative villains in different games. 

In the famous RPG Diablo, one of the villains named Belial is a demon that represents liar. He 

lies to both gods and devils to gain more power and to seize the throne of hell. [17] Characters 

with this kind of personality tend to be rational and choose the most efficient strategy to beat the 

player.  

In our game, monster with this personality will try to trick the player with its movements 

and try to predict the movement of players in order to hit them. It takes in the moving direction of 

the player as variables and then when it starts to charge it adjusts its charging direction 

according to player’s moving direction. It will also try to get away from player while the charging 

mechanic of monster is still in cooldown. There is an immediate function for it to calculate the 

way to escape from player’s attack. A more specific introduction of this mechanic will be shown 

in its implementation section. 

Bullying 

Bullying usually involves using physical or verbal violence to dominate others [47]. Out of 

all subtypes, Aggressive bullies are the most common type of bully. Out of all subtypes, 

Aggressive bullies are the most common type of bully. They are aggressive and tend to 

dominate others physically. They see everything in the environment as hostiles, even though 
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there isn’t any threat. There’s another kind of bully called Bully-victim, who have been seriously 

bullied themselves, and desperately trying to regain confidence and suppress negative feelings 

by bullying others who are weaker [27]. 

Mentioned several times in this section, Nue had always invoked fear in the average 

human. However, when Minamoto no Yorimasa injured it, it fell down and Ino Hayata finished it 

off easily [48]. It bullied people who couldn’t retaliate, but was instantly defeated by who was 

strong. Therefore we assumed that it could be a combination of aggressive bully and bully-

victim, which means aggressive when it feels like it is stronger than the player, but scared and 

start to run away when it feels like the player is actually stronger.  

Cowardly 

 Making a cowardly personality is taking everything suggested above and turns it to the 

exact opposite. What if Nue is very weak in its combat capability? According to a catchphrase 

from a movie Akuryoto, “Nights where the nue cry are dreadful” because of the disaster it brings, 

but it is never seen physically attacking or killing anyone [48]. Together with the fact that it was 

instantly finished off after exposed makes it possible to assume it was not good at fighting, and 

was only able to hide in the dark smoke and curse people. Because it loses all its witch power in 

our game, the only thing it can do is running away while trying to defend itself. 
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Chapter 4: Software and Tools 

 This section gives a brief introduction of the software, libraries or tools we used to 

develop our game, characters, animation and A.I.  

4.1 Unity 

Unity is a famous game engine which can output its products into different platforms 

[45].The reason we chose to build our game with this engine is that it’s a rather perfect and well-

supported comparing to other engines. We didn’t choose unreal engine, since we are not 

making games with 3D models and it doesn’t have a complete developing environment for 2D 

games. Cocos2dx was another tempting option, however, like it’s mentioned above, we need a 

well-supported tool in order to implement our AI technologies and Cocos2d is obviously a worse 

choice than Unity which is maintained by hundreds of people and update the software almost 

once a month. 

Another huge advantage we get by using Unity is that it supports almost every single 

platform that exists in the market. In 2018, the engine was updated to support 27 platforms, 

which means once we finish our game, we don’t need to make another version for mac and iOS 

or other platforms. [45] It would save us huge amount of time and effort so that we can focus on 

making our AI and the actual game. 

Last but not least, Unity supports writing code with C Sharp, which is another reason we 

are building our game with this engine. 

4.2 C Sharp 

C# is a programming language. It was developed by Microsoft in 2000 and then 

approved as a standard by ISO and Ecma (ECMA-334). In addition, C# is initially designed for 
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the Common Language Infrastructure, and this is why it is so widely used in famous software 

like unity [5]. 

We spent some time on getting familiar with the language and it definitely worth it. Unity 

combined its perks, such as visual game development, with C# code in an efficient way. 

Since there are plenty of tutorial videos online and we all know Java – object oriented, 

we still learned it quickly although C# was not taught in any classes in WPI. 

4.3 Spriter 

 Due to having a lack of an artist on the team, Kien became the primary artist for the 

character creation. Kien used software called spriter to animate the character walk cycle, 

attacking cycle, and idle cycle. Spriter is 2D animation software developed by BrashMonkey. It 

primary feature is animating through modular images or body parts. This is the reason that our 

character design is broken up into individual body parts. Using Spriter, modular images can be 

connected using the joint feature, which allow user to attach a “joint” to an image and allow 

users to connect individual joint together to create a fluid body movement. This feature allow 

easy tweaking because the modular images can easily be move or rotate to fit whatever position 

creators want to model. Spriter was perfect for our team because we needed to efficiently create 

character animations with less time spent of modifying as much as possible.  

 

4.4 UtilityAI  

UtilityAI is a utility based system framework developed by Bartvanderkruys. Initially it 

was used to help us further understand the implementation of a utility-based architecture. We 

decided to use it for our project when we realize the features that it offers was perfect for our 

project. It allows us to define several parameters called property to represent the status of the 
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environment, and assign each action with utility functions based on certain properties. It 

automatically calculates utility score of each action by inputting current value of properties into 

utility functions, and calls the function linked to the action with the highest score.  

Property values serve as status information of the Yokai or observations of the 

environment. Modifying how they change is one important way of modifying behavior, as they 

can increase or decrease at a faster or slower rate, controlling how utility score for each action 

changes for over time, thus changing the behavior (actions) of Yokai even if it goes through the 

same sequence of stimuli.  

Utility functions define the relationship between property values and utility value (score) 

of an action, thus different actions can be invoked when different environments are present at 

different statuses. For example, by applying a positively related function of a property to an 

action, utility score increases with that property, meaning the action is more favored when that 

property value is higher. By applying a nonlinear function like y=x^2 (y is score, x is parameter), 

when compared to a linear function like y=x, utility score increases less when property value is 

less than 1, meaning less responsive to property change, but increases more when property 

value is more than 1, meaning more sensitive to property change. Tweaking utility functions is 

another important way of modifying behavior, as different utility functions means different scores 

and potentially different actions when the same set of properties are represent. 

UtilityAI allows multiple functions of different properties for an action. They are calculated 

separately and scores for individual function are added together for the final score of that action. 

A modifier called weight can be added to each function, and the score for each individual 

function will be original score times modifier.  
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4.5 Panda BT  

Panda BT2 is a behavior tree framework from Unity Store. It is used by us to save time 

from making our own behavior tree system. We can create a tree by passing a built-in text file 

with script written in its own syntax, and invokes functions from c# scripts with a special [Task] 

flag. One of the features of Panda BT is the ability to observe the execution of the tree. There 

are three colors to the tree, red for failure, green for success and blue for running. Using this 

feature, it made debugging easier.   

 Panda BT has 10 structural nodes but we only familiarize ourselves with only 6 of them 

in our BT script. They are tree, sequence, fallback, parallel, while, and not. Tree is used to 

create a tree, while the others decide how the node in the tree should execute. Sequence node 

run its children in sequential order and only succeeds when all the children succeed. Fallback 

node runs its children the same way as sequence node except the node only succeed when one 

of its children succeed. Parallel node runs its children all at the same time and only succeed 

when all the children succeed. A while node has a condition and an action. It succeeds when 

both succeed. The not node is used in the same logic in any programing language; it succeed if 

the condition is true, fails otherwise. The mute node always succeeds. These structural nodes 

make up Panda BT. 

 

 

                                                 
2 Documentation at http://www.pandabehaviour.com/?page_id=23  

http://www.pandabehaviour.com/?page_id=23
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Chapter 5: Implementation 

5.1 Intro 

In this section we are going to talk about how we implemented each part of this game, 

including game mechanics and each AI personality. The description of implementation will be 

specific and precise. 

5.2 Class Design 

 Our game, Yokai World, is programmed by C# in unity. For most of the games made 

with unity engine, including ours, there are no main classes in their code. 

 

 

Figure 18: Class Design Diagram 

 

In the figure “Class Design Diagram”, there are two main controllers, which are enemy 

controller and player controller. The whole game is designed based on these two controllers, 

because the actions of these two controllers will be the main factors of this game. Each enemy 
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weapon controller is attached to an enemy, and each player weapon controller is attached to a 

player. One player can keep multiple weapons but one weapon can only be attached to only 

one player. 

 
Figure 19: Player and Enemy Controller 

 

Figure 19 shows attributes and methods in enemy, player and their weapon controllers. 

In the enemy controller, there’s only one attribute, which is health. In player controller there are 

two attributes, which are health and stamina. There are also different methods in these two 

controllers which stand for their different abilities and have been introduced in game design. 

However, note that there is a method called receives damage in both of the controllers. 

To introduce this method, we need to talk about the weapon controllers first. The two weapon 

controllers have an attribute called damage and this determines how much damage they can 

deal to the opponent. After weapon controller collide with an opponent, the deal damage 

method will call the receive damage method in opponent’s controller and deal a certain amount 

of damage to the opponent. 

 
Figure 20: Camera AI Tutorial Scene Controller 

 

Camera controller, as shown in Figure 20, takes in the player’s position and enemy’s 

position and calculates the correct position for the camera to keep both player and enemy in the 

shot. 
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There’s also an AI attached to each of the enemy controllers. Each AI contains a unique 

AI script which let them operates with different personalities. AI scripts can be a behavior tree, a 

state machine or behavior tree based on utility. 

The tutorial manager contains interactive instructions for the player, which means 

players can learn the control of game by going through a small tutorial session. The instructions 

will be played when the show instruction methods is called. 

Scene loader contains the name of different scenes. When a scene transfer is needed, 

load scene method can be called to load another scene. 

 
Figure 21: CutScene, Audio Visual and Game Manager 

 

In Figure 21, it shows that cut scene manager contains several cut scenes. Its mechanic 

is just like the mechanic of scene loader. It plays a cut scene when the play cutscene method is 

called. 

Audio manager takes in audio clips and play the clip by an audio source. The clips will 

only be played when the play clip method is called. 

The way that visual effect manager works is similar to the mechanic of audio manager. It 

takes in animations of visual effects and then they play it with an animator attached to the object. 

The effects will only be played when the method play effect is called. 

In game manager, it operates all the user interface elements, including health bars and 

menu. The most important methods it contains is starting the game and ending it. 
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5.3 Technical Implementations in Unity 

5.3.1 Player & Enemy & Camera 

Fundamental objects in Unity that represent characters, props and scenery are called 

gameobject, including player and enemy. Player and enemy controller are attached to the player 

and enemy gameobject. They share the same mechanic of movement, except that the function 

for movement in player controller takes input from keyboard and the function in enemy controller 

is operated by its AI. 

In player and enemy controllers, there is an element called "rigidbody" and its velocity is 

changed by a vector. Rigidbodies are attached to gameobjects and enable them to act under 

the control of physics. There are different attributes in the rigidbody, including its material, mass, 

gravity scale a body type. These attributes will determine its physical features under the physics 

engine. Therefore, adding rigidbody to gameobjects and modifying its velocity can make them 

move in a more realistic way. 

 
Figure 22: Rigidbody component in Unity 

 

Besides simply moving by changing the velocity of its rigidbody, player has another 

choice of moving. 

private void Dodge(){ 
     if player press "Space" and player is moving up{ 
          player.position.y = player.position.y + dodgeDistance; 
     } 
     ... 
} 
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Code 1: Pseudocode for dodging 

The dodge function let player dash through a distance in one selected direction. It takes 

in keyboard input "Space" and a direction key ("W, A, S, D") to operate. 

private void attack(){ 
     if player press "J"{ 
          player.animator.layerplayAttackAnimation(); 
     } 
} 

Code 2: Pseudocode for attacking 

 

 The main effect of melee attack function of players and enemies is to play their 

animation of attacking. When the animation is played, weapons will move and they collide with 

opponent, they will deal call the deal damage function to hurt its opponent. 

 

private void DealDamage(Gameobject enemy){ 
     enemy.ReceiveDamage(damage); 
} 
 
private void ReceiveDamage(int damage){ 
     health = health - damage; 
} 

Code 3: Pseudocode for dealing and receiving damage 

 

The special attack of monster, charging, is just simply locate the player’s location and 

charge. Different personalities will have their own way to determine the players' location and 

ability cooldown. 

private void LocateCamera(Gameobject player, Gameobject enemy){ 
     if player and enemy are not null { 
          camera.position = (player.position + enemy.position)/2 
     } 
} 

Code 4: Pseudocode for moving Camera 
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 Camera is one of the most important gameobject in unity. It offers all the visual feedback 

to players. Normally camera would be following the player. In our game, however, player needs 

to know the location of monster as well as their own position. Therefore, we created a method to 

take in both player’s position and enemy position to calculate a suitable position for camera. In 

the pseudo code above, there is an illustration of the method. 

5.3.2 Animation 

Animation is one of the most important part in an action game, since players need visual 

effective feedback to fight with their enemy. In our game, animation is implemented by two built-

in mechanics in unity - animator and animation. 

 

 
Figure 23: Animator Component in Unity 

 

As shown in Figure 23, animator can be attached to a gameobject in the scene, and it 

requires a reference to an animator controller which defines which animation clip to use and 

controls the transitions between them. 

 
Figure 24: Animator Controller 

Figure 24 is an example of animator controller in our game. Each block stands for either 

a clip of animation of a blend tree. The transitions between them are represented by the lines 
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arrows which linked them together. They will transfer from one clip to another when a certain 

condition is met, which can be a Boolean, a trigger or a float.  

 
Figure 25: Blend Tree 

 

Blend tree, as shown Figure 25, is different from normal animation clips. It can take in 

multiple values and visualize the manipulation on different clips according to these values. It's a 

blend tree for walking. The red point in the middle of the right figure stands for the current 

direction of walking. When the player is walking up, the point goes to the top, when player walks 

right it will move to the right side. With this mechanic, player is able to move diagonally with an 

animation, since the red point can move diagonally according to the input values. 

 
Figure 26: MC Attack Animation 

 

 With the other mechanic in unity, animation, we are able to adjust each animation clips 

frame by frame. In Figure 26, on the left side is the manual where we select clips and attributes 

of a gameobject to edit. On the right side there is the panel for frame by frame edition. Each 

rhombic piece on each frame stands for an attribute. The small narrow bar right beneath the 

time bar stands for a function that is triggered on that frame. Most of the interactions between 

gameobject that involve animations are done by this mechanic.  
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5.3.3 Collision 

 
Figure 27: Box Colliders 

 

As shown in Figure 27, there is a green box attached to the enemy, player and their 

weapons. These green boxes are called box colliders. Box collider is a  cube-shaped collision 

detector. Each of them is attached to one gameobject, and this is the unique way of unity to 

detect collisions. If the box collider is set up as a trigger, it can trigger different functions when it 

collides with other box colliders and it will not block others’ way. If it’s not set up as a trigger, 

however, it will block other box colliders. 

In Figure 27, the box colliders on weapons are triggers so they can collide on other 

colliders and overlap on other game objects. The player and monster got non-trigger box 

colliders so that they cannot overlap on each other. 

 

5.3.4 Audio Effect  

Sound implementation is done by several steps. First, we found all the free music and 

sound effects resources that we need in our game. Most of our sound effects are from a website 

called Freesound.org. 
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After downloading the clips from the websites, we did some simple modification to them, 

such as cutting out the parts which we don’t need, and splitting one clip into multiple clips. Note 

that all of these clips are in .wav format so that it’s easier for us to modify them in the future if 

needed. All these modifications are done by Audacity3. Then we import those clips into a folder 

called “audio” in unity. 

 

 
Figure 28: Audio clips imported into unity 

 

To use these clips, we created a script for them, which are called Audio Manager. Audio 

Manager contains methods that can be called in other classes to play these clips, and it also 

take in all the clips as variables. For example, in the figure below, “slashAir" is an audio clip and 

"PlayPreChargeSound" is a function which can be called in other classes to play a clip. 

 

 
Code 5: Code for Playing Charge sound 

                                                 
3 Audacity is a free and open-source digital audio editing software. 
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For players to hear the sounds, however, we still need to add an audio listener and 

several audio sources to the game objects in the scene. Audio listener is a component of a 

game object which can detect sound. It can get input from audio sources in the scene and then 

plays sounds through the computer speakers. In this game, we attached the listeners to the 

camera and camera will stick to players and enemy so that all the sounds made by player and 

enemy will be played.  

 

Figure 29: Audio Source to Play Audio in game 

 

After all these steps are done, players should be able to hear those clips played while 

playing through the game. 

 

5.3.5 Visual Effect 

Child game objects were created and attached to monster and player. Each of these 

child gameobject on player and enemy contains an animator component and several animation 

clips. These clips are the special visual effects that will be played when monster or player gets 

hit. As it is shown in Figure 30, for example, there is a red slash on the monster. It is actually the 

animation of the monster when it gets hit by player. It’s consisted of two frames which means it 
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happens rapidly and creates feeling of a real slash by sword. This animation can be played in 

other directions randomly in order to create a variety of slash. These simple mechanics is 

generated by code in C#. 

 

 

Figure 30: Slash Effect on Nue 

 

There is also another effect, camera shake, in this game. When player hits the enemy 

with his sword, the camera will shake in a small range to add a sense of motion into players 

attacking action. This effect was not added to the enemy’s punch on player because we thought 

it would be a distraction for player if camera shakes every time they got hit by the monster. 

 

5.3.6 Tutorial  

Tutorial session is an important part of this game, since it is the only way for players to 

learn to play this game. We wanted to create an interactive tutorial instead of a page showing 

the control of this game. 
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Figure 31: Tutorial for Our Game 

 

As we can see in Figure 31, all the keys to cast abilities shows up before the monster 

enter the scene. The reason that these instructions will shine is to notify players to press certain 

keys and the keys been pressed will turn yellow in the tutorial which indicates that the player 

has pressed the right key. These instructions will disappear after players complete them and 

players can go to the next scene only when they complete all the instructions. 

 

5.3.7 Cutscene 

 We wanted to add in a cutscene in our game because we wanted to make a smooth 

transition from one game scene to another. When the game starts, we wanted to give player 

time to get drawn into the game using a cutscene of the player waking up in a room as soon as 

the game starts. Because the player must fight the Yokai multiple times, we created another 

cutscene to show how the monster survive and why the Yokai appears in the next scene. It 

helps ties the game together.   

The cutscenes are done using a combination of importing animation to Unity and 

through C# code. The animation where the main character wakes up in the beginning is done 

using spriter to animate the movement. The part where the enemy, Nue moves toward the 

player in the first cutscene and the scene where the Nue runs away from the player is done 
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through a coroutine function that runs in parallel with other functions. Using the yield statement 

inside the coroutine, we were able to allow the function to run continuously which time the 

actions nicely to execute a simple an in-game cutscene.  

The pseudocode in Code 6 prevents the moving while the waking up animation for 2 

seconds. Then when the player finally is able to move on to the next scene, keyClicked returns 

true which starts the next portion of the surprise() function. The portion of the function is the 

animation of Nue pushing the player to the center of the scene and walking toward it. The scene 

is eventually changed to the battle scene after the cutscene ends. 

 

surprise(){ 
 yield return new WaitForSeconds(2.0f); 
 playerCanMove is true; 
  
 yield return new WaitUntil(keyClicked); 
 enemyAppear is true; 
 PushPlayer(); 
 SceneFadeIn(); 
 PlayLightningSound(); 
 
 yield return new WaitForSeconds(1.0f); 
 enemyIsMoving is true; 
 
 yield return new WaitForSeconds(2.0f); 
 StartNewScene(); 
} 

Code 6: Pseudo code for a Cutscene 

5.4 Personality 

5.4.1 Aggressive 

Implementation Structure  

  

For the aggressive personality, Kien used a combination of Behavior Tree and Utility 

using two frameworks to assists us, Panda BT and UtilityAI. Kien felt very familiar with behavior 
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tree and because utility-based architecture has the ability to give the AI autonomy, he felt it was 

the best way to create a semi-autonomous AI.  

Figure 32 shows a selector node, “How Should I Move”, that decides which of the three 

sequence node to execute, Charge, Walk, and Run Away, using a utility function. This selector 

tree encapsulates the three different movements that Nue can choose at any given time in the 

game. The tree can execute any action sequence at random or in order; none of the behaviors 

are wrong choices to make, but with the utility function, it will select the best.  

 

Figure 32: Aggressive Behavior Tree with Utility as Selector 
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 Figure 33 shows the RunAway sequence node of action for the AI to perform. It first 

finds the player. Then set a destination on the map to reach. Then it checks whether the 

location is safe to walk to and if yes, the AI will proceed to walk to the location.  

 The SetDestination function randomly selects a position on the map and set that position 

as the destination to arrive at. The IsSafe function is a Boolean function that checks if the 

direction of the final destination is close to the player by a radius of 3.0 float and return true if 

the direction is safe. If the function returns false, then the action is reset and reevaluate the 

utility scores of the three actions.  

 

public bool SetDestination(){ 
 destination = Random_Position_On_Map; 
 return true; 
} 

Code 7: Pseudocode for setting a destination 

 

public bool IsSafe(){ 
 if distance from destination to player in < 3 
  return true; 
 else 
  return false; 
} 

Code 8: Pseudocode for checking if destination is safe 
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Figure 33: Run Away Sequence Node 

 

 

Figure 34 shows the Walk sequence of action for the AI to perform. It first finds the 

player and then the AI will walk to the player after figuring out the direction of the player.   

 

Figure 34: Walk Sequence Node 

 

 Figure 35 shows the node sequence for charging action. It first looks around the 

environment for the player. Once complete, it will then charge up its power and then it will 

reconsider its decision before charging at the player with the confirm contact action and finally it 

then charge at the player. ConfirmContact() function checks whether the player last recorded 
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position and player current position is the same and if not, the new direction will become the 

final direction before savagely charge to that direction. 

The last action is the reaction that the AI agent received from whether its attack landed 

or not. Depending on hit or miss, it changes the agent emotional state, which affects its action 

later on. The function CheckIfHit() function will always execute because the ChargeAttack() 

function will always succeed. What the function primarily do is modifying the property’s value, 

mentioned later this section, according to whether the Nue landed the attack or not. Missing an 

attack results in becoming angrier, lowering calmness state, slightly increasing anxiety and 

losing energy from energy exerted performing the action.  

 

Figure 35: Charge Sequence Node 

 

public bool ConfirmContact(){ 
 if distance from destination to player is not 0.5 then 
  change destination to close to player; 
  
 return true; 
} 

Code 9: Pseudo Code for ConfirmContact 

 

public bool CheckIfHit(){ 
 if nue attack missed then 
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  energy value goes down; 
  anger value goes up; 
  calmness value goes up ; 
  nervous values goes up; 
  nue_miss_counter++; 
 else 
   energy value goes down; 
   calmness value goes up; 
   nervous value goes down; 
   nue_hit_counter++; 
 return true; 
} 

Code 10: Pseudo Code for CheckIfhit 

 

 

 Figure 36 is the Combat sequence tree. It has only one behavior, Melee. This Melee 

action is not part of the utility calculation because it makes more sense for an aggressive 

character to attack any chance it can get, regardless of the utility score. The Melee action has a 

sequence of conditions that must be fulfilled before executing its attack. Using Panda BT as a 

framework, the Combat tree is checked congruently with its siblings. By doing so, it will always 

sense the player at any time and attack when an opportunity come. Adding Melee to a list of 

actions for consideration can potentially make it appear less aggressive since the utility score 

for Melee may always be lower than the others and could cause it to attack less often than the 

design want it to. 
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Figure 36: Combat Sequence Node 

 

 Figure 37 shows the observation selector node that the agent must execute. There are 

no true actions in this node as it is used for the agent to sense the player’s movement and 

action at each update (one second per frame). This node is primarily used to model the 

aggressive personality by simply adjusting the properties, explained in the next section. 

Because the aggressor is easily angered and annoyed by the action of objects, living and non-

living, around it, this node shows the different ways in which the AI can get agitated. For 

instance, the more the player goes on the offensive by landing its attack on the agent, the 

angrier the agent gets. The ModifyState action is simple function that modifies the value of each 

property by increasing it by some factor. 

 

Figure 37: Observe Selector Node 
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Panda BT and UtilityAI 

 We used the Panda BT framework for creating the behavior tree. Code 11 shows an 

example implementation of creating a Charge sequence tree. It is done by using a BT script that 

came with Panda BT. The root “Charge” indicates the starting point and everything under it is 

the actions to execute. By declaring sequence, it indicates that the behaviors below will be done 

in from top to bottom and only succeed if all the actions succeed. When the sequence node 

succeeds, it will return to the parent node as seen in Code 12.  In this figure, there are three 

trees “Charge”, “Move”, and “Run Away”, similar to Figure 35 minus the details of each branch. 

All three tree are executed using fallback node, in another term, selector node, and the tree 

succeed when one child succeed and fails when all children fails. This is generally how we 

created a tree in Panda BT.  

 
Code 11: Charge Sequence tree in Panda BT script 

 

 
 

Code 12: Selector tree Panda BT script 
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 Each function that defined in the BT must use the tag [Task] attribute in C# code. 

Nothing changes from their functionality other than the fact that the function can be executed 

together with Panda BT script.  

 
Code 13: A function declared as a task for BT script 

 Panda BT is combined with the functionality of UtilityAI by executing the calculation 

using its own update function UpdateAI() in the Update() in the C# script attached to Nue. We 

used an int variable named PerformAction to determine the action to take based on the UtilityAI 

decision from the calculations. PerformAction will always be set to 0 to disallow any sequence 

from activating. Any other number would represent different action to take, for examples, 

Charge is 1, Move is 2 and RunAway is 3. In Code 11, there is a task called CanCharge which 

would only return if and only if PerformAction is 1 (Charge = 1), if not the node will fail 

preventing any further execution. DetermineTarget() gets the top action of the agent and 

PerformAction will be set to a numerical equivalent of the top action. Panda BT and UtilityAI 

runs separately but we made the two work together using the two functions in Code 14 and 

Code 15. 

 

Code 14: The function determines which action to take after calculation 
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Code 15: The function that determines whether to execute the tree nor not 

 

Properties 

 In modeling an aggressive personality, an agent needs properties or state that the utility 

functions can evaluate. All of these are made possible with UtilityAI UI. The states that we 

ended up with are anger, calmness, nervousness, and energy. Using the UtilityAI, we could 

define the maximum and the minimum of each property. Because the personality is aggressive, 

the anger state is set with a higher minimum than calmness and nervousness because an 

aggressive being is more susceptible to anger.  

Actions 

 

 The Nue agent must have an action to evaluate so there are three actions that the utility 

function needs to decide on. The actions are Charge, Move, and Run Away.  Each individual 

action needs considerations in order to make a decision. Charge takes into consideration of 

anger and energy.  

Charge action is given the highest priority of the other because it represents the most 

aggressive behavior. It deals the most damage while also making it vulnerable. As a boss 

character with an aggressive personality, it should care more about the outcome rather than the 

process. Meaning dealing more damage is more important to the Nue in gaining a dominant 

position in the battle.  
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 Figure 38 shows an example of Charge actions and its consideration. Anger and energy 

has the same weight of 1 while nervous has a lower weight of 0.6. The nervous in this instance 

represents the irrationality of the agent. This shows that anger is not only a factor to make the 

agent aggressive, but being in a high nervous state can cause the agent to interpret the 

situation as dangerous and thus enter fight or flight situation; in its case, fight. The utility score 

of this action is the average of the three considerations.   

 

 

Figure 38: UtilityAI UI Charge Action with Considerations 

 

The anger value and energy fluctuates frequently throughout the battle. Nue energy 

lowers when it charges, attack, and getting attacked. The reason to have energy as a 

consideration because we want to make the Nue be more realistic in its action. It would not 

make much sense if Nue charges all the time without much constraint. While it does make 

sense for a monstrous beast to have unlimited energy and deals big damages all the time, it 

would make Nue to be an unrealistic one-dimensional character. 

Anger consideration uses a logarithmic function. The function rises quickly from utility 

score of 0 and eventually level off near the utility score of 1. The anger value has the most 
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impact in the beginning of the graph. Energy consideration uses a exponential function.  It starts 

off slowly and rises exponentially. Because energy is important in performing a high demand 

action like charging, it requires high amount of energy to maintain it. Therefore, when energy is 

low, the utility score would also be low to prevent the agent from charging. Nervous 

consideration also uses an exponential function.  

 

Figure 39: Anger Function for Charge Action 

 

 

Figure 40: Energy Function for Charge Action 

 

Figure 41: Nervous Function for Charge Action 
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 The Move action takes into calmness and energy properties into consideration when 

choosing to move normally. Calmness consideration uses a sigmoid function with a weight of 

0.6. The function rises the quickest in the middle of the curve. Having a moderate amount of 

calmness made the agent to take on a more calming behavior. Energy consideration uses an 

inverted logistic function. Energy is important and when energy is becoming low, it is important 

for the agent to make use of the move action to act logically by focusing on recover energy 

rather than act rashly by charging more. This happens when energy is close to the half mark 

and using the opportunity to conserve as much energy as possible would make it appear 

intelligent. 

 

Figure 42: Calmness Function for Move Action 

 

 

Figure 43: Energy Function for Move Action 

 

 

 The Runaway action takes into nervousness and energy properties into consideration 

when choosing to run away from the player. Energy consideration uses an exponential decay 
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function. This means that when energy is at the lowest, the utility score is close to 1 and when 

energy is from moderate to high, the utility score is close to 0. This ensures that one of the two 

reasons for Nue to run away is when energy is close to 0.  Nervous consideration uses an 

exponential function with a weight of 0.8. So being nervous about the current situation makes 

the Nue want to run away. Combining with the energy, it makes sense that when energy is low 

and nervous is high, running away is the best possible scenario.  

 

 

Figure 44: Energy Function for Run Away Action 

 

 

Figure 45: Nervous Function for Run Away Action 

 

 All of these functions work together in order to determine the best score. For example, in 

one scenario, Nue has a normalized anger value of 0.4, normalized calmness value of 0.1, 

normalized nervous value of 0.2 and a normalized energy value of 0.7. Figure 46 shows the 

calculations to determine the best action to take. The utility score for Charge action is 0.3933. 
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The utility score for Move action is 0.115. The utility score for Run Away action is 0.027. The 

highest utility score is Charge action so Nue execute the charging child node.  

 

 

 Utility Value = PropertyUtil * Weight Utility Formula: 
= Sum(PropertiesInvolved) 
/ PropertiesInvolved 

Anger Energy Nervousness Calmness 

Action(s)      

Charge  0.5 0.65 N/A 0.03 0.3933 (Highest Score) 

Run Away N/A 0.03 0.024 N/A 0.027 

Move N/A 0.2 N/A 0.03 0.115 

Figure 46: Example of How the UtilityAI works 

 

 Let’s look at another scenario where Nue has a normalized anger value of 0.4, 

normalized calmness value of 0.1, normalized nervous value of 0.2 and a normalized energy 

value of 0.2.  Figure 47 demonstrates the calculation for this new scenario. The utility score for 

Charge action is 0.28. The utility score for Move action is 0.459. The utility score for Run Away 

action is = 0.262. In this new scenario, the highest utility score is Move action so Nue execute 

the move child node.  

 

 Utility Value = PropertyUtil * Weight Utility Formula: 
= Sum(PropertiesInvolved) 
/ PropertiesInvolved 

Anger Energy Nervousness Calmness 

Action(s)      

Charge  0.5 .003 N/A 0.03 0.28 

Run Away N/A 0.5 0.024 N/A 0.262 

Move N/A 0.9 N/A 0.018 0.459 (Highest Score) 

Figure 47: Another Example of How the UtilityAI works 
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 UtilityAI program does all these evaluations using its built-in function Evaluate() that loop 

through a list of all possible actions, evaluate the average utility score for each and then set the 

highest score in every loop until there are no more action to evaluate. The action’s utility score 

is dependent on the utility curve of its considerations and the weight using the function 

EvaluateAction(). 

 

public float Evaluate(){ 
 BestScore = 0;  
 BestAction = null; 
 for each action a in a list of actions 
  a.EvaluateAction(); 
  if a.Score() > BestScore then 
   BestScore = a.Score(); 
   BestAction = a; 
 
 return BestScore; 
} 

public void EvaluateAction(){ 
 score = 0; 
 for each consideration c in a listOfConsiderations 
  score = c.UtilityScore * c.Weight; 
 
score = score/ listOfConsiderations.Count; 
 
} 

Code 16: Pseudocode of Evaluate() and EvaluateAction() working together in UtilityAI program 

 

5.4.2 Tricky 

Implementation Structure  

Tricky personality is built on behavior tree. Behavior tree is a kind of implementation of 

AI. It determines which action the AI should take by running each child nodes from left to right 

and top to bottom. If one of the child nodes fails, which means it doesn’t met certain condition, 

then it will return “fail” to its parent node and try to run the next child node of its parent. The 

relationship between parent nodes and child nodes are selector or sequence. Selector means 

the tree will success if any of its branch successes, while sequence needs all its child nodes or 

branches to succeed in order to make itself succeed [32].  

 The reason behavior tree is used is that we found a simple but effective way to beat 

player, which is keep charging as much as it can, and this feature can be implemented by 
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behavior tree perfectly. We just need to make charge as the first rank action, move as the 

second rank action and melee attack as the third one. The structure of behavior tree made it so 

much simpler for us to do it. 

 

Figure 48: Tricky Behavior Tree 

 

In Figure 48, it shows the behavior tree of tricky personality. This tree is a selector, 

which means it will be succeed if any of its sub nodes successfully run. The tree runs from left to 

right and top to bottom. The first action it will try to do is charge. It will attempt to charge and 

check if it can charge or not. If it can, then it will do the charge action. If it cannot, which means 

charge action is failed; it will start to do the moving action and then melee attack. If any of these 

nodes succeeds or all of them fail, the tree will be ended. 

The pattern of this AI may look simple, yet follows an effective strategy. In this game, 

monster is invulnerable to player’s attack only if it is in its charging state. Once it charges out, it 

won’t receive any damage until it stops charging. The strategy of tricky personality is to utilize 

this mechanic as much as possible and to get away from players to avoid being attacked by 

them. There is a cooldown mechanic for it charging ability, which means it cannot use charging 

anytime it wants. While charging is still in cooldown, it needs to keep a distance with player in 

order to protect himself from player’s attack, since it is not invulnerable while it’s not charging. 

Note that its strategy is not to kill the player as soon as possible, but to keep itself alive and try 
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to deal as much damage as possible to player. This is also the reason why players will never 

see monster with this tricky personality chase them around the map and do a lot melee attack. 

Monster moves way slower than players do, and even if it can catch a player by walking, the 

player will still be able to deal damage to it while it’s attacking player with its fist (melee attack). 

These are the reasons why it is a bad idea to try to catch player by walking and attacking them 

with melee attack action. 

 

Tree Tricky 
     repeat selector 
          Charge 
          Move 
          Melee Attack 

Code 17: Pseudo code for main branch of behavior tree Tricky 

 

Note that this behavior tree will run over ten times in each frame, which means there is a 

function to make it repeat these behaviors. This function in our tree is called repeat, and it will 

repeatedly run certain behavior tree after they are ended. Code 17 shows how the tree is 

repeated in script. 

Action - Charge 

The first action to be considered in tricky personality behavior tree is “Charging”. As it is 

described in the game design section, charging is the most powerful ability of the monster. It let 

monster dash through a distance and deals a large amount of damage to players if it hits them. 

Another feature of charging action that makes it a powerful ability is that monster is invulnerable 

during the dash. 

 Powerful abilities, however, need to be limited otherwise player will not get a chance to 

beat this monster. In order to balance this ability, we added a cooldown mechanic to it.  
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protected void CheckChargeCooldown(){ 
     If charge cooldown is done { 
          Keep going on charge action; 
     } 
     else{ 
          Move to the next branch; 
     } 
} 
 
private void ChargeCooldownTimer(){ 
     Count time after charge ends; 
} 

Code 18: Pseudo code for charge cool down 

 

As shown in Code 18, it is unique cooldown functions which count down a certain 

number of seconds and then flip the Boolean for cooldown to positive which indicates that 

cooldown for charging is finished. This function will be called when charging ends, and then it 

will start to count down certain numbers of seconds. 

 

 
Figure 49: Charge Sequence Tree for Tricky Personality 

 

In Figure 49, it shows the behavior tree branch for charge action. This is actually the 

most important branch among three branches, and it’s the first rank action which is its cooldown 

will be checked in the very beginning. This is a sequence tree, which means all the child nodes 

have to succeed in order for the whole branch to succeed. If any of these child nodes fails, for 



 

74 
 

example cooldown for charge is not ready, the whole branch will return fail to the main branch 

and the tree will decide to move to the next branch. 

First, it will check for its cooldown to see if it is able to charge or not. If it is not able to 

charge then it will move to the next branch in the tree. If it is able to charge, however, the first 

thing it’s going to do is to find the player. 

 

protected bool FindPlayer(){ 
     Destination = player.getPostition(); 
     Return true; 
} 

Code 19: Pseudocode for finding player 

 

As it is shown in Code 19, function “find player” will find the X and Y position of player, 

and then return true which indicates that the player is found. After the position of player is found, 

monster will start to charge up. Charge up, as mentioned in game design section, is a stage in 

charge which the monster will keep relocating the position of player and shaking its body to 

indicate that it’s going to do charge attack. 

 

protected void ChargeAttack(){ 
     If player is too far { 
          MoveToNextBranch(); 
     }else{ 
     ChargeOut(); 
     StartCooldownTimer(); 
     } 
} 

Code 20: Pseudocode for ChargeAttack 

 

After confirming the player’s position for the one last time, the monster will charge out. 

Note that one big difference between tricky and other personalities is that it has its own rule of 

charging. First of all, it will not charge out if the player is not in a certain range. If the player is 

too far away from tricky, it will discard the charging action and starts the moving action instead.  
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The reason why it will do this is that it wants to get a bigger chance on hitting the player 

with charge. The farther players are, the more likely they will be able to dodge its charge attack, 

since charge attack is a linear attack, not a fan-shape one. This is also the reason why it will 

take in player’s moving direction as a variable. We noticed that when the player is already 

moving, it is more difficult for the monster to hit them with charge attack. Therefore, we added 

more code in charge attack of tricky to make it adjust its charging direction if the player is 

currently moving. 

 

 

Action - Move 

The main goal of this action is to avoid being attacked by player. 

In the beginning of this action, it will terminate all the functions that are still running for 

charge action, since charge is the action right before move. Then it will check if player is close 

enough for melee attack, if it is, go to the next branch which is melee attack.  

 

Figure 50: Move Sequence tree for Tricky Personality 

 

Like it is mentioned in section for charge action, it will check for charging cooldown 

before it actually starts the moving action and then if the cooldown for charging is ready, it will 

move to the next branch as well. This time it will move until it reaches charging action again. 
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Finally, it will check if player is far enough from it. Since the main goal of this whole 

action is to avoid being attacked by player, as long as player is far enough from the monster, 

enough that player cannot reach monster, the monster would be safe and therefore stop moving. 

However, if player is not far away enough, the monster will start moving and try to avoid 

physical contact with the player. 

 

protected void KeepDistance(){ 
     If player is in zone1 { 
          AvoidPlayer(zone2); 
     } 
     ... 
} 

Code 21: Pseudo code for keeping distance from player 

protected void AvoidPlayer(Zone zone){ 
     X = zone.x; 
     Y = zone.y; 
     Direction = (x - enemyPostion.x, y - enemyPostion.y); 
     EnemyMove(Direction, zone); 
} 

Code 22: Pseudo code for Avoiding player 

 

In function keep distance it divides the whole scene into four different sections: top-right, 

top-left, bottom-right and bottom-left. If player is in one of the section then the monster will start 

to move to another one until it is far enough from the player. In avoid player, it basically 

calculates for the specific direction for the monster to move. If player plays with tricky for a long 

period of time, they will be able to notice that there is a certain pattern in it motion, which is 

going escaping and going for corners. However, the charge action usually interrupts their 

observation and makes it more difficult for them to find its pattern. 

Action - Melee Attack 

The purpose of this action is to disperse players while it's charging action is still in 

cooldown. Since the strategy of tricky is to keep itself alive and attack player with charging 
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action, melee attack become a backup plan for tricky to make itself survive from player’s attack. 

It only does melee attack to the player if player is close enough and it is still not able to charge. 

If player try to dodge from its melee attack, it will be able to keep a larger distance with player 

and sustain longer before the charge attack cooldown ends. 

 
Figure 51: Melee Sequence Tree for Tricky Personality 

 

As shown in Figure 51, it will check for charge cooldown and if charge action is ready 

then it will end the tree, which means the tree will loop from charge action again. 

If cooldown for charge is not ready, tricky will find the player and melee attack the direction 

where the player is in. 

 

protected bool MeleeAttackWithCooldown(){ 
     If attack cooldown is ready{ 
          attack(); 
     } 
} 

Code 23: Pseudo code for Melee attack 

 

protected void cooldownTimer(){ 
     Count time after attack ends; 
} 

Code 24: Pseudo code for attack cool down 
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Note that melee attack has a cooldown mechanic just like charge attack, and the two 

cooldown functions share the same logic as well. 

 

5.4.3 Bullying 

The bullying personality is built with utility based decision maker (UtilityAI) and behavior 

tree (Panda BT), same as the aggressive personality. It is supposed to make the Yokai 

aggressive and bully the player when it feels like the player is weak and exploitable, but become 

afraid and start to run away when it feels like the player is strong.  

Properties 

In order to create this behavior, at least two properties are required:  

Anger 

 

Figure 52: Anger property 

Anger determines how aggressive Nue is when bullying the player. It ranges from 0 to 

100, and starts at 100. The reason for it to start at 100 is that we want it to aggressively bully the 

player at the start. 
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Nervousness 

 

Figure 53: Nervousness property 

Nervousness is how afraid Nue is and how willing it is to actively attack. It ranges from 0 

to 100, and starts at 0, because it should not be afraid of the player when it doesn’t even know 

how strong the player is. 

 

Two additional properties are created for better gameplay experience:  

Tiredness 

 

Figure 54: Tiredness property 

 

Tiredness determines how tired the Yokai is. It ranges from 0 to 100, and starts at 0. 

When it is tired, it is less aggressive so player can get some rest and adjust his/her positioning. 
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Player close enough 

 

Figure 55: PlayerCloseEnough property 

 

Player close enough determines whether player is in range of Nue’s melee attack. It is 

either 0 or 1, while 0 means close enough and 1 means not close enough. It functions as a 

Boolean property, but since all others are floating point properties, it is easier to process by 

making it a floating point property as well.  
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Code 25: Evaluate health 

 

Change of Properties 

For every frame, EvaluateHealth() is called and Nervousness value is changed. When 

Nue has 10 HP less than previously checked, Nervousness increases by 5. When Nue’s health 

is lower than player’s, current Nervousness value is cached and set to 100. When Nue’s health 

is higher than player’s after being lower than player’s, current Nervousness value is reset to 

previously cached value. Resetting Nervousness value allows Nue to regain confidence after 

regaining health advantage. 

 

 

Code 26: Evaluate player close enough 

 

For every frame, EvaluatePlayerCloseEnough() is called and Player Close Enough value 

is changed. If the player is within 3 units, Player Close Enough is set to 1, if not, Player Close 

Enough is set to 0. 
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Code 27: Evaluate melee hit 

 

Whenever a melee attack or charge finishes, EvaluateMeleeHit() or EvaluateChargeHit() 

is called, Anger and Nervousness values are modified. When melee or charge is hit, Anger is 

reduced by 20 and Nervousness is reduced by 20, if missed, Anger is increased by 20. This 

means that if the player is hit multiple times in a row, Nue will not be as angry and eager to kill 

the player, but relax and take more time to enjoy the hunt. However, once it starts missing hits, 

it gets angrier because the player is causing more trouble than it expected.  

 

Code 28: Tiredness decrease 

 

When Nue is in Walk mode, RegenTiredness() is called every frame, and Tiredness 
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value decreases by 5 every second.  

 

Code 29: Tiredness increase 

 

Whenever Nue charges, Tiredness value increases by 20. 

 

Actions and Utility Functions 

Charge 

 

Figure 56: Charge action 

 

Utility score of Charge is determined by Anger and Tiredness, each weighing 1. 

 

Figure 57: Charge’s relationship with Anger 
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It has a positive relationship with Anger, with utility function y=x. So the angrier Nue is, 

the higher priority Charge has.  

 

Figure 58: Charge’s relationship with Tiredness 

 

It has a negative relationship with Tiredness, with utility function y=-x. So the more tired 

Nue is, the lower priority Charge has. 

Walk 

 

Figure 59: Walk action 

 

Utility score of Walk is also determined by Anger and Tiredness, each weighing 1. 
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Figure 60: Walk’s relationship with Anger 

 

It has a positive relationship with Anger with utility function y=0.5x+0.25. It still means 

that the angrier Nue is, the higher priority Walk has compared to Actions other than Charge. 

However, assuming Tiredness provides the same utility score, Charge has a higher priority 

when Anger is higher, and Walk has a higher priority when Anger is lower.  

 

Figure 61: Walk’s relationship with Tiredness 

 

It has a positive relationship with Tiredness, with utility function y=x. So the more tired 

Nue is, the higher priority Walk has. 
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Retreat 

 

Figure 62: Retreat action 

 

Utility score of Retreat is only determined by Nervousness, weighing 2.5. The reason for 

it to weigh 2.5 is to allow it to have higher maximum utility score (2.5) than Walk or Charge (2.0), 

so Nue will always retreat when Nervousness is high, ignoring other actions.  

 

Figure 63: Retreat’s relationship with Nervousness 

 

It has a curved positive relationship with Nervousness, with utility function approximately 

y=x^2. The reason to make it a curve, is to guarantee its retreat when Nervousness is extremely 

high, while prevent it from activating too early when Nervousness is still low, due to its higher 

weight.  
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Melee 

 

Figure 64: Melee action 

 

Utility score of Melee is only determined by Nervousness, weighing 3. The reason for it 

to weigh 3 is to allow it to have higher maximum utility score (3) than any other actions, so Nue 

will always melee when Player Close Enough is 1, ignoring other actions. 

 

Figure 65: Melee’s  relationship with PlayerCloseEnough 

 

It has a positive relationship with Player Close Enough, the utility function is y=x. 

However, it functions as a discrete function, since Player Close Enough will only be either 0 or 1, 

the utility score of Melee will only be either 0 or 3. 
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Behavior Tree 

The behavior tree is run repeatedly from the Root node. Nodes with “fallback” in script, 

and “?” on diagram are selector nodes, nodes with “sequence” in script, and “->” on diagram are 

sequence nodes. Every sequence node has a gate, named “Can + action”, and only 1 gate will 

be open for each run, so only 1 action will be running at a time. A gate opens only when the 

current state (set by UtilityAI) is the gate’s action, the action is not in cooldown and there isn’t 

any ongoing action.  

The tree used for Bullying has 4 action sequence nodes: Retreat, Melee, Charge and 

Walk. Below is the raw text script for Panda BT. 
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Code 30: Panda BT Script of a Behavior Tree for Bullying 

 

 Code 30 can be translated to the diagrams below. 
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Figure 66: Behavior tree 

Retreat 

 

Figure 67: Retreat sequence node 

 

CanRetreat is the gate for Retreat. IsNotSafe also needs to be satisfied to execute 

WalkAway, but it is not controlled by UtilityAI. 
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Melee 

 

Figure 68: Melee sequence node 

 

CanMelee is the gate for Melee. Once it is satisfied, it will wait for 0.5 second before 

StartMelee for player to dodge. After StartMelee, it will wait for an additional 0.5 second and 

check if the melee attack hits or not. 
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Charge 

 

Figure 69: Charge sequence node 

 

CanCharge is the gate for Charge. ChargeReady also needs to be satisfied to run 

PrepareCharge, which plays the pre-charge animation for 2 seconds, until StartCharge. Finally it 

waits for 0.5 second for Nue to hit. 
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Walk 

 

Figure 70: Walk sequence node 

 

CanWalk is the gate for Walk. Once it is satisfied, WalkToPlayer will be executed. 

 

5.4.4 Cowardly 

The cowardly personality is built as a state machine. It is supposed to make Nue to be 

always retreating, always running away, but at the same time, be as annoying and difficult to 

defeat as other more aggressive personalities. 

States 

The state machine has 4 states: Retreat, Attack, Charge and Walk. 

Retreat 

Action sequence 

1. Walk away from the player 

Switch state conditions 

● If player closer than 6 units and charge is ready -> switch to Charge 

● Else if player closer than 3 units -> switch to Melee 

● Else if player farther than 6 units for more than 3 seconds -> switch to Walk 
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Melee 

Action sequence 

1. Wait for 0.5 second 

2. Melee attack 

3. Wait for 0.5 second 

Switch state conditions 

● If charge is ready -> switch to Charge 

● Else if player farther than 3 units -> switch to Retreat 

 

Charge 

Action sequence 

1. Wait for 2 seconds 

2. Charge away from the player / if cornered or colliding with a wall, charge alongside the 

wall 

3. Wait for 0.5 second 

Switch state conditions 

● If player is closer than 3 units -> switch to Melee 

● Else if player is closer than 6 units -> switch to Retreat 

● Else if player is farther than 6 units -> switch to Walk 

 

Walk 

Action sequence 

1. Walk towards the player 
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Switch state conditions 

● If player is closer than 6 units -> switch to Retreat 

 

 

Figure 71: State diagram 

 

Combining all the conditions above: 

1. Nue will always retreat when the player is too close (< 6 units), unless conditions for 

charge or melee is satisfied. 

2. Nue will always melee when the player is within range (< 3 units), unless conditions for 

charge is satisfied.  

3. If player is continuously chasing Nue and charge is ready, it will charge away to create 

more distance.  
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4. If charge is ready after melee attack, it will charge away regardless of whether its attack 

hits or not. Charge has an 8 second cooldown, preventing it from charging too often. 

5. Nue will walk back to the player if player is not close (> 6 units) after charge, because it 

will think that it is safe. It will also walk back to the player if player is not close (> 6 units) 

for 3 seconds when retreating, before switching its state to Retreat because it walks too 

close. This means it is always trying to keep itself at its safety zone. 

 

Implementation Structure 

Because there are delays before and after melee and charge, Coroutine is used together 

with a hanging flag.  

 

Code 31: Setting hanging flag 

 

 

Code 32: Resetting hanging flag 

 

When a Coroutine starts, hanging flag is set, when a Coroutine finishes, hanging flag is 

unset. The state machine will not switch state or perform any action when hanging flag is set, 
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preventing mismatch between current action and current state, or start a new action while 

current action is still in progress. 

 

Code 33: Sequence for every frame 

 

So for every frame: 

1. If hanging flag is set, return immediately 

2. Switch state if any state switching condition is met 

3. Perform actions of current state 
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Chapter 6: Testing and Result 

6.1 Overview 

 

 In this chapter, we describe the methodology of our playtest design and the results. The 

purpose of the playtest is to evaluate how well players can recognize the personalities of our AI 

through four sessions of playing against it. The sections in this chapter are as followed: the 

method, the survey, result and finally the analysis.  

  

6.2 Population 

  

 The sample population of our playtest design is everyone. Since our game has some 

element of Japanese culture incorporated, we wanted to know how well do the participants 

know about the existence of Nue in Japanese folklore. However, the most important data we 

want to collect is about how well participants can recognize the personalities of Nue through the 

gameplay. Having basic understanding of personalities is a must for one to give us valuable 

feedbacks. Testing these two elements in our game is important in determining how well our AI 

personalities are model.  

 

6.3 Methodology 

 The procedure of our play test session is very simple. After participants have read and 

sign the consent form, we provided a thorough instruction form for the playtesters to read before 

playing the game. We ran our playtest for the week of 9/24/18 and the slots for the week was 

from 10 AM to 6 PM. The location of our play test is in one of the sponsored lab at Ritsumeikan 

University, CM lab.  
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 There three parts to the playtest sessions. The first part of a session is to fill out a pre-

survey.  

The second part of the session is to have the playtesters play our game. Once the game 

starts, we, the investigators, leave the playtesters alone to play the game. There is a tutorial and 

sound effects in the game that we were confident in guiding the player forward so we did not 

need to be in the presence while the game starts. There are four rounds of the game, each with 

different personalities. We did not provide the playtesters the order of the personalities or 

whether there are duplicates.  

After each round, the playtesters would answer section of the survey that correspond to 

the round before moving on to the next.  We also allowed playtesters the ability to play the 

round again as many times as they wanted. This allow players an opportunity to get a second 

opinion on the personality before submitting their responses. To help make this process as 

efficient as possible, we added a cutscene and a notification screen to notify the player to fill out 

the survey. To ensure instructions were followed, we check in with the play testers from time to 

time.  

The final part of the playtest session is the post-survey. After the playtester finished the 

game, they were instructed to filled the post survey. 

 

6.4 Survey 

 All of our data are collected through surveys. The first part of the survey is for gauging 

the player testers’ knowledge of our boss character Nue. The second part of the survey is about 

collecting the playtesters thoughts and opinion on the Nue personality in each round. Figure 

6.4.1 detailed the questions that are in the survey for this section. The final part of the survey is 
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about understanding the playtesters overall impression of our game. We represent the data 

received in bar charts and pie charts.  

 
Figure 72: Second Section Survey Questions For Each Round 

 

6.5 Challenges 

One of the challenges we faced during our testing sessions was that our playtesters 

would skim the instructions and often play the game without stopping to fill out the survey before 

moving on. We decided it was best for us to check in with them once every 5 minutes, which 

was approximately how long each round of the battle is, to make sure the survey was filled.  

The second challenge was that about half of our playtesters do not have a full grasp of 

English as their secondary or third language. Thankfully, we had members in our group and our 

lab that were willing to explain the process to the playtesters in Chinese and/or Japanese. When 

there was not an opportunity to translate, we had to use gestures and limit the speaking to one 

or two words to make it easier to understand. In addition, we observed that a few of our 

playtesters used google translate to translate the questions in order to understand it. We also 
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allowed the playtesters to write in their most comfortable language and we will do our very best 

to translate it the best of our abilities.   

 

6.6 Result and Analysis 

Before getting into the details, a total of 12 responses by 3 subjects on the question “On 

a scale from 1 - 5, rate how convincing...” for each round are marked as outliers, and will not be 

counted in the analysis. They are marked yellow in the result section. The reason for this is 

three folds.  

First, the response from them on the convincing rating, especially on the Cowardly round, 

is significantly deviated from all other responses. All three of them gave a 1 of out 5 for how 

confident they are when saying the A.I. in the third round is Cowardly, while the majority of 

others gave either a 4 or 5.  

Second, the explanation of why they gave the convincing rating is questionable. The first 

subject with ID 4 said the reason he/she thinks the A.I. in round 1 is Aggressive is “it’s tried to 

kill me”, without giving any explanation of why he/she is only 3 out of 5 confident with the choice. 

The first subject also said the reason he/she thinks the A.I. in round 3 is “easier than before” but 

is not at all confident is “just stay”, which doesn’t contain any meaningful information. The 

second subject with ID 5 only gave objective opinions like “it is cute”, “it is cool”, “it is not good 

enough” and “it is fast”. The third subject with ID 6, his/her explanations contradict with his/her 

convincing rating. For example, the reason for him/her to give a 1 out of 5 in round 3 for his 

confidence of picking Cowardly is “Because the Nue appropriately runs away from the player by 

dashing.”, which means he/she is very convinced as he/she can relate the behavior of dashing 

away with Cowardly, but still gave a 1 out of 5.  

Third, two of the three subjects used Japanese as response language, while the other 

one is very likely a non-native English speaker due to the grammar and the short response.  
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Combining the facts together, it is highly likely the three subjects misunderstood the 

convincing rating question as “how good do you think the A.I. is” rating question. Therefore their 

convincing ratings will be counted as outliers, and will not be used in data analysis.  

 

6.7.1 Recognizability 

For round 1 which uses Aggressive A.I., 68.8% of subjects correctly recognized the A.I. 

is Aggressive. The average convincing rating is 3.78 (only for subjects who got it right). Out of 9 

subjects and from 1 to 5, 2 of them gave a 5, 5 of them gave a 4, 2 of them gave a 2.  

 

Figure 73: Subject’s opinion on what is the personality of A.I. in Round 1 

 

For round 2 which use Bullying A.I., 12.5% of subjects correctly recognized the A.I. is 

Bullying. The average convincing rating is 3.50 (only for subjects who got it right). Out of 2 

subjects and from 1 to 5, 1 of them gave a 3, 1 of them gave a 4.  
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Figure 74: Subject’s opinion on what is the personality of A.I. in Round 2 

 

For round 3 which use Cowardly A.I., 75.0% of subjects correctly recognized the A.I. is 

Cowardly. The average convincing rating is 4.70 (only for subjects who got it right). Out of 10 

subjects and from 1 to 5, 7 of them gave a 5, 3 of them gave a 4.  

 

Figure 6.7.3:  

Figure 75: Subject’s opinion on what is the personality of A.I. in Round 3 

 

For round 4 which use Tricky A.I., 62.5% of subjects correctly recognized the A.I. is 

Tricky. The average convincing rating is 4.38 (only for subjects who got it right). Out of 8 

subjects and from 1 to 5, 4 of them gave a 5, 3 of them gave a 4, 1 of them gave a 3.  
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Figure 76: Subject’s opinion on what is the personality of A.I. in Round 4 

 

 

In order to evaluate which A.I. is the most recognizable, a Recognizability score is made 

with function: 

Recognizability =  

Percentage of subjects correctly recognizing an A.I.’s personality 

× 

Average convincing rating of this A.I. by subjects who got it right 

 

Therefore: 

Recognizability score for Aggressive is 2.60. 

Recognizability score for Bullying is 0.44. 

Recognizability score for Cowardly is 3.53. 

Recognizability score for Tricky is 2.74. 

 

From this we can see that Cowardly is the most recognizable, Tricky being the second, 

followed closely by Aggressive, and Bullying being not at all recognizable. 
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6.7.1 Believability 

For which A.I. is the most believable: 

50% of all subjects think Aggressive A.I. best resembles what they think Nue is. 

6.3% of all subjects think Bullying A.I. best resembles what they think Nue is. 

0% of all subjects think Cowardly A.I. best resembles what they think Nue is. 

25% of all subjects think Tricky A.I. best resembles what they think Nue is. 

18.7% of all subjects think None of the 4 A.I.s resembles what they think Nue is. 

 

Figure 77: Subject’s opinion on what is the A.I. that best resembles Nue 

 

Therefore Aggressive is the most believable, followed by Tricky, Bullying and Cowardly 

are not believable at all.  
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6.7.1 Visuals 

Out of 7 subjects who know what Nue looks like, 3 of them think our Nue in the game 

visually resembles what they know about it, 4 of them think our Nue in the game does not 

visually resemble what they know about it. 

 

Figure 78: Subject’s opinion on whether the Nue in the game visually resembles what they know about it 
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Chapter 7: Conclusion 

From the analysis, we can see that Aggressive A.I. is very believable and moderately 

recognizable; Tricky A.I. is moderately believable and moderately recognizable; Cowardly A.I. is 

not at all believable but very recognizable; Bullying A.I. is not very believable and not very 

recognizable.  

The reason for Aggressive A.I.’s success is largely due to its intuitive naming, fitting well 

with the portrayed Nue character and matching people’s expectation of what an NPC in ARPG 

should be like.  

The reason for Bullying A.I.’s failure is due to its confusing definition, preventing people 

from actually knowing that it is bullying. It is also too similar to Aggressive A.I., even a bit 

weaker due to its longer delay for melee and cooldown for charge. 

The cowardly personality succeeds on recognizability by not being aggressive, but it is 

also completely detached from the Nue character and people’s expectation, therefore failed to 

convince anyone that it is what Nue should be like. 

The tricky personality succeeds on meeting people’s expectation about being aggressive, 

while not meeting people’s expectation about its behavior by charging with shorter delay and 

only charge when it has a high chance of hitting, giving people a surprise factor. It is also the 

only one that actively responds to player’s input, making it very responsive.  

We cannot draw any conclusion about which A.I. algorithm is better, as we did not make 

two A.I.s with different algorithms but same personality to compare with.  

However, the testing methodologies have issues that may affect the accuracy of the 

result. 

We can tell what a person’s personality is not because we know how to do it naturally, 

but through comparing others, and creating a standard of which personality is which in our mind. 

A.I.s in our game are different, they need to attack in order to proceed the game, therefore will 
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and must contain certain level of aggression. Because our testing asked for subjects to answer 

the survey after each round, they couldn’t compare the first round to anything, so most of them 

just guessed. For the second round the only reference for them was the first round, and since 

the second A.I. (Bullying) plays less aggressively, most of them just picked Tricky or Cowardly, 

because it is, in a sense, more cowardly than the first one. For most subjects, they only start to 

understand what the standard is when playing the third A.I. (Cowardly). This is proved by one of 

the responses for the third A.I.: “Despite my previous response, this is the cowardly Nue. He 

was cowardly the entire time and would try to walk away from me as I approached him”, as the 

subject thought the second A.I. is cowardly because he hadn’t played the third A.I. yet. 

Therefore it is better to give the survey to subjects after they played through all 4 rounds, so 

they can compare between all of them before answering questions, and recognizability of each 

A.I. should be a lot higher, especially for the first A.I. (Aggressive) and the second (Bullying).  

The wording of the convincing rating survey question is not very clear, and three 

subjects misunderstood the question as to rate how well each A.I. is. It is even confusing for us, 

the creator of the survey, when not paying attention. It should be worded like “on a scale of 1 to 

5, rate how confident you are of your answer to the previous question”. 

The definition of bullying was not explained well enough to the test subjects. Most of 

them just avoided the term, because they weren’t sure what it means exactly. Aggressive, tricky 

and cowardly are very simple and straightforward terms, but bullying is more complicated, as it 

inherits both aggressiveness and cowardness. People’s objective understanding of bullying 

varies greatly, and this prevents them from confidently picking bullying.  

Bullying A.I. is not very recognizable; therefore it is never going to be believable, as 

subjects won’t pick it as the best one if they don’t know that the second A.I. is supposed to 

represent bullying. We should tell subjects what personality each A.I. represents after they play 

through all of them, so they will at least know what they are. 
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Finally, many subjects failed to complete every round; they died before they can see the 

changes of behavior for some A.I.s over time. For example, Bullying A.I. will run away when its 

health is lower than the player’s and will be aggressive again when it regains health advantage. 

This behavior is only seen by 1 subject as he/she wrote it on the explanation.  



 

110 
 

Chapter 8: Post-Mortem 

 

 In this chapter, we assessed the experience from our game and AI development. We 

focused on the knowledge we gained from the experience, things that went well for us, things 

that went wrong for us and future development we have for the our game. 

 

8.1 What We Learned? 

 

 Throughout the process, we gained many unforgettable experiences. The most 

important thing we learned was that communication is very important to having a productive 

team work. Being in a team means being on the same page and that means talking to each 

other as much as possible, building rapport. In addition, being a team player and an 

understanding member of the team can go a long way in forming a great team dynamic. We 

learned firsthand what a poor team dynamic can lead to. That includes not knowing what each 

other wrote, not knowing who is doing what, and not knowing everyone status both personally 

and work related. Due to the dissonance in our team, we faced difficulties getting work done and 

of course speaking to each other on equal terms. Eventually we turned it around by interacting 

more and cooperating more with each other, but we definitely lost times while facing 

communication issues.  

 The second thing we learned was how to use Unity and C#. Going into this project, only 

one member of the team has experience making a game while the rest had none. Learning how 

to code in C# was not a problem for the team because the learning curve was not difficult, but 

learning to use Unity Engine took time.  
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 The third thing we learned was the game development process. We were all familiar with 

the software development cycle from our own experience in either job and/or software 

engineering course.  

 The fourth thing we learned was actually making the game. We started from scratch and 

went through the game development cycle to create a game. That includes integrating 

animations with controllers and creating game mechanics like dodging, attacking, charging, etc. 

We also learned how box colliders work and the possibilities we could do with it. We also 

learned how to make a cutscene using a combination of unity animation plugins and through 

code. It was the basics in creating a game, but they were very valuable information.  

 The final thing we learned was developing AI. Coming into this project, we had no 

substantial knowledge of AI development. We were interested in AI and it was the main 

component of our game. During the course of the project we learned about many AI 

architectures like behavior tree, utility-based, state machine and machine learning. Although we 

used a framework for behavior tree, Panda BT, we were still able to learn how it works and it 

effectiveness by creating the behavior tree ourselves to find the right combination of behaviors. 

As for the utility-based, we were also using a framework but the real work was developing 

properties and finding the right functions for each property in order to define each action that the 

AI can do. Overall, we have learned so much about AI development from this project experience.  

 

8.2 What Went Right? 

The first thing is that we have a certain style of art. The team is formed by three 

Computer Science major students but we designed a suitable art style that goes well with our 

game in the game design phase. It was a wise decision we made to go with 2D art style 

because it was easier to make than 3D art and we had a pretty satisfying result in the end. The 
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art for background and characters were done by two different people, yet the art style match 

with each other which is a good thing as well. 

Game mechanics were well polished during the game development phase. We fixed 

many small issues and bugs and added some new features in the end of game development 

phase, such as special effects and tutorial session. 

We successfully rescaled our goal of making an entire game about yokai and scaled it 

down to different personalities of one Yokai. All the personalities were finished without bugs and 

has their unique personalities. We also tried different ways, including utility AI, state machine 

and behavior tree to create these personalities as well. 

Most of our test results were positive and some of the players actually enjoyed the 

gameplay pretty much. We all think the results are good enough as evidence in a solid report. 

 

 

 

8.3 What Went Wrong? 

This project went through some horrible team communication and collaborative work 

issues.  

We relied too much on a modular game’s architecture in order to work with machine 

learning. We spent too much time on that and no one were really clear about how to implement 

that in our game. After the architecture is finally suitable for machine learning, the ML-Agents 

(v0.4 at the time) machine learning library ended up being buggy, and had to be given up 

entirely. A lot of time is wasted, and all of us lost a lot of motivation. 

ML-Agents works as intended when it calculates every frame, but the order of function 

call is messed up when using on demand decision making. Normally, for each decision cycle, it 

will observe the environment, make the decision, and take the action. After it calculates for a 
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certain number of steps, it will reset the environment, and goes through the process of resetting 

the academy (and the environment), resetting the agent, and start decision cycle again. All the 

calculations are handled by external Python scripts, and the environment parameters are 

synced between Unity and the scripts. However, for ML-Agents v0.4’s on demand decision 

making, its Unity part collects observation when it should be resetting the academy, and thus 

breaking the sync between it and the external scripts. This prevented us from performing any 

training over 1000 steps, as well as not being able to reset the environment. 

 We overestimated our ability and set the goal too high. We were going to do adaptive A.I. 

with multiple algorithms, a game with progressive abilities, a full storyline, multiple Yokais and 

background stories for each of them. We are a team with only Computer Science majors, and 

two of us are completely new at making games. We had to make a complete game and do A.I. 

research at the same time, it is simply not possible to make things too complicated. We aimed 

too high and fell short; this is the other reason why we lost our interest. 

 

8.4 Future Development 

 

 Initially, our plan for the game was to develop a full game. Our initial plan consists of 

having the ability to choose the character gender, having BGM, more battle mechanics, more 

enemies and a progression system. For the future development, we want to complete the game 

that we planned out in the beginning.  

 Currently the main character only has two combat abilities, melee and dodging. We want 

to add another option for combat, a range attack using the idea of onmyoji. This allows the 

players to have more variations in their play style.  

 Many other things to add in the game like more interactions with the environment such 

as finding items, buffing one’s abilities, and learning about the stories of Yokais. There would be 
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a progression system that allows the player to adjust their abilities as they play through the 

game.  

 In addition, we want to add more enemies to our game. There are abundant of 

interesting Yokai in Japanese Mythology so we want to incorporate their stories in our game. 

We want to make the AI adaptive by having the enemy learns from the player and make it 

tougher for the player. We also want to improve and expand on the enemy’s personality by 

giving them backstories and more interaction with the player other than combat.  
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Appendix 

Raw Survey Response 

Pre-test Survey 

ID Timestamp 

Are you from 

Japan 

Do you know 

what the Yokai, 

Nue (鵺), look 

like ？ 

Do you know 

what Nue is 

known for ? 

What is Nue 

known for ? 

Where did 

you learn 

about Nue ? 

1 

9/24/2018 

14:03:49 No Yes No   

2 

9/24/2018 

14:49:35 No No No   

3 

9/25/2018 

14:30:44 No No No   

4 

9/25/2018 

15:20:46 No No No   

5 

9/25/2018 

16:06:30 No Yes No   

6 

9/25/2018 

17:25:14 Yes No No   

7 

9/26/2018 

15:52:31 No Yes Yes monkey animation 

8 

9/26/2018 

16:11:47 No No No   

9 

9/26/2018 

16:39:33 No No No   

10 

9/26/2018 

17:07:37 Yes No No   

11 

9/26/2018 

17:36:29 Yes Yes Yes 

youkai, snake 

and tiger anime 

12 

9/27/2018 

13:44:01 No Yes No   

13 

9/27/2018 

13:45:12 No No No   

14 

9/27/2018 

13:59:19 No Yes No   

15 

9/27/2018 

14:00:19 No Yes No   
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16 

9/30/2018 

14:07:57 No No No   

Round 1 

ID 

What do you think 

the personality of 

this Nue is? 

On a scale from 1 - 

5, rate how 

convincing the Nue 

is at representing 

the personality you 

chose in the 

previous question? 

Explain your reasoning from previous two 

questions. 

1 Aggressive 5 Nue was attacking and trying to kill me 

2 Bullying 5 I can't pass the round 1. 

3 Aggressive 4 

My main reasoning for the previous 

answer is that the Nue kept attacking me 

constantly and was always chasing me. 

He never stopped chasing. 

4 Aggressive 3 It's tried to kill me 

5 Aggressive 5 かわいです 

6 Tricky/Clever 5 

鵺がプレイヤーの方向を向くのが敏感だ

ったから 

7 Aggressive 2 rest for a long time 

8 Cowardly 4 

he stays there and doesn't move for a 

long time 

9 Aggressive 4 it would suddenly attack me 

10 strong 5 he always fight with me face to face 

11 Aggressive 4 Its attacks looks strong 

12 Aggressive 2 

It would follow and then charge to attack, 

and this fit more than the other 

personalities 

13 Aggressive 4 quick movements towards the player 
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14 Aggressive 5 He is big and attacks you 

15 Tricky/Clever 3 

Would stay still then attack when I go 

closer 

16 Aggressive 4 

He just kept attacking me. But there were 

some pauses 

Round 2 

ID 

What do you think 

the personality of 

this Nue is? 

On a scale from 1 - 

5, rate how 

convincing the Nue 

is at representing 

the personality you 

chose in the 

previous question? 

Explain your reasoning from previous two 

questions. 

1 Aggressive 3 

Nue was attacking but the first round was 

more aggressive 

2 Aggressive 4 I can pass! 

3 Cowardly 5 

By the end, this nue kept running into the 

wall or corner. I thought it was bugged, 

but it must just be scared. 

4 Tricky/Clever 3 It's waiting at the corner and hit 

5 Tricky/Clever 5 かこいです 

6 Aggressive 3 

鵺がプレイヤーに向かってよく走ってき

たから 

7 Cowardly 3 not aggressive 

8 Aggressive 3 

it attacks you only when you are in a 

certain range 

9 Tricky/Clever 5 it moves very fast 

10 Aggressive 4 he will approach me and dash at me 

11 Bullying 4 this round it runs away after attack me 
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12 Bullying 3 

It tended to follow more closely and attack 

more often 

13 Tricky/Clever 3 

attack pattern makes you think they have 

given up and then they attack you 

14 Aggressive 4 

He always takes the opportunity to attack 

you when he is close by 

15 Aggressive 5 runs at you 

16 Aggressive 4 

I cannot see when it is attacking me, but it 

is aggresive 

Round 3 

ID 

What do you think the 

personality of this Nue 

is? 

On a scale 

from 1 - 5, 

rate how 

convincing the 

Nue is at 

representing 

the 

personality 

you chose in 

the previous 

question? 

Explain your reasoning from previous two 

questions. 

1 Cowardly 5 

Nue is not attacking, he just attack to 

defend himself. Actually it seems like he 

tries to be friendly but he is shy because 

he tries to stay close but when you 

approach him, he run away. 

2 Cowardly 5 I don't need to eat health. 

3 Cowardly 5 

Despite my previous response, this is the 

cowardly Nue. He was cowardly the 

entire time and would try to walk away 

from me as I approached him. 

4 easier than before 1 just stay 

5 Cowardly 1 まだです 

6 Cowardly 1 

プレイヤーに向かって走ってきたりせず

に、適当に鵺がダッシュしてたから 

7 Cowardly 5 its not attacking me at all 
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8 Cowardly 4 

he doesn't attack you if you don't attack 

him 

9 stupid 4 

he doesn't even chase me after being 

attacked by me 

10 Cowardly 4 Basically it faces backwards 

11 not clever 4 It attack other way 

12 Cowardly 5 

It ran away as you moved towards it and 

used the charge attack to flee 

13 Cowardly 5 

monster is always running away from the 

player 

14 Cowardly 5 

He runs away and only attacks when 

needed. 

15 Cowardly 4 keeps running 

16 Aggressive 4 

I am better at the game now. so the Nue 

is not as aggressive as I thought. Also 

the other options like bullying are not 

describing the behaviour of the nue 

 

Round 4 

ID 

What do you think 

the personality of 

this Nue is? 

On a scale from 1 - 

5, rate how 

convincing the Nue 

is at representing 

the personality you 

chose in the 

previous question? 

Explain your reasoning from previous two 

questions. 

1 Tricky 5 

You dont know when exactly he is going 

to attack you. A little bit tricky. It was the 

most difficult to defeat. 

2 Aggressive 5 I do not know 

3 Bullying 4 

This boss was an asshole. He kept 

charging his heavy damaging move, then 

not using it until I was too close to 

possibly dodge it. 

4 Aggressive 4 first half it very aggressive 
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5 Tricky/Clever 5 早いです 

6 Tricky/Clever 5 

鵺がよくカウンタをしてきて、動きがす

ごく敏感にプレイヤーに接近してきたか

ら 

7 Tricky/Clever 4 it reacts to my actions 

8 Tricky/Clever 3 

he sometimes pretend to run away from 

me, but once I get close to him, he will 

bump at me 

9 Aggressive 5 

he moves when I move, and I cannot 

predict when he is going to attack me. 

10 Tricky/Clever 4 

He will not come if you are away, but as 

you get closer he will attack you. 

11 Tricky/Clever 5 It find out whether I move or stop. 

12 Tricky/Clever 4 

It would lure the player in and then charge 

attack them 

13 Tricky/Clever 5 

monster runs away to draw the player in 

and then turns to attack 

14 Tricky/Clever 5 

Runs away then when you get close he 

will turn and attack you or rush onto you. 

15 Aggressive 4 keep running'sアンド cあ n：と dodge 

16 Aggressive 5 

The Nue was attacking relentlessly on this 

level 
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Post-test Survey 

 

Do you feel that 

our Nue visually 

resembles what 

you know about 

it from 

somewhere ? 

Based on your knowledge, 

which of the personality listed 

best resembles Nue ? 

Is there anything else you would like to 

comment about your experience, or do 

you have suggestions for us? 

You chose 

"None of the 

above", please 

explain why so. 

It has a look of 

what I have 

seen before None of the Above i want more blood 

Because I dont 

have 

knowledge 

about Nue's 

personality 

Yes Aggressive 

I think when I enter round 1, I didn't 

know that I need stamina to attack. A 

better tutorial is needed.  

It reminds me a 

bit of how Sun 

Wukong looks 

in some 

depictions. Tricky 

Make stamina refill more quickly and 

add music.  

no Aggressive BGM  

いいえ Aggressive がんばつて  

鵺をよく知らな

いので、完全に

似ているとは言

えないが、この

ゲームの鵺のキ

メラっぽい雰囲

気はよく出てい

たので、おそら

くだいたい似て

いると思う Aggressive 

鵺を検索してみて、画像を見たら鵺が

ライオンに近い感じだった。しかしこ

のゲームの鵺はどちらかというと毛深

い猿の感じがしたので鵺は四足歩行の

方がいいのではないか 

バトル開始時にすぐに始まってしまう

ので、少しカウントを入れてからバト

ル開始の方がいいと思った  

no Tricky none  

I don't know it None of the Above 

I don't even know this monster, I can't 

answer the above two questions 

I don't know 

what it originally 

looks like 

I don't know 

what is it None of the Above 

it feels like they all have different 

personalities. sometimes its stupid, 

sometimes its aggressive. 

I don't know this 

monster at all. 
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I don't know it. Aggressive too strong  

yes Bullying 

its a nice game, Difficulty is 

appropriate  

No, but the last 

time I heard 

about Nue was 

awhile ago. Aggressive 

Try and always keep the Nue in the 

view of the player  

no Tricky 

the attack patterns are super easy, 

and the monster will not move if you 

don't in the 4th fight  

Yes Aggressive 

Very interesting concept, hard to 

distinguish between 1 and 2 nues  

no Tricky ＠「えええ  

I never knew 

about Nue Aggressive 

I would like to see the Nue attacking 

me. The seems to be a lag or 

something.  

 

 

 

 

Joint Project with Ritsumeikan Students 

 

 We had a joint project with Ritsumeikan Students from our Lab. The project was to 

create a puzzle solving robot using a makerplot. The project had four phases. the first phase 

was being able to scan a puzzle. The second phase was being able to solve the puzzle. The 

third phase was having the program be human supported. The last phase was an full-on 

automatic solving robot. 

 The problem we ran into during the project was that it happened during the summer 

vacation for the Ritsumeikan Students. Many students either went home or completely forgot 

about the project. In addition, there was a huge language barrier in the group. The Ritsumeikan 

Students could only speak Japanese while we could only speak English. We knew they had the 

ability to read English, but they never tried to speak with in English. The lack of communication 

made it very difficult to move the project forward.  
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 In the end we could only go as far as phase one. Our robot can move and it can scan 

puzzle pieces but that was all that it could do.  
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