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Abstract 

 

The standard deviation of surface EMG (EMGσ) is often related to muscle force; the 

accuracy of EMGσ estimation is valuable for many application areas such as clinical 

biomechanics, prostheses control and sports medicine. Numerous researchers have 

developed methods to optimize EMGσ estimation. Whitening the EMG signal has been proved 

to improve the statistical efficiency of EMGσ estimation, but conventional linear whitening 

filters fail at low contraction level. An adaptive whitening filter was proposed by Clancy and 

Farry[14]. This technique has a better performance than prior whitening methods, however, 

the adaptive whitening filter needs to be calibrated each time electrodes are applied, which 

increase the complexity of the implementation. We designed a universal whitening filter which 

can omit most calibration steps for the adaptive whitening filter in future use. We used the 

ensemble mean of the power spectrum of 512 EMG recordings to form a general shape of a 

fixed whitening filter that can applied on any EMG signal. The test error on an EMG-torque 

task based on universal whitening over 512 subjects had a mean error of 4.80% maximum 

voluntary contraction (MVC) and standard deviation (std) of 2.03% MVC, compared with an 

original adaptive whitening filter error of 4.84±1.98% MVC. 

Additionally, the rest contraction modeling hasn’t received enough attention. Existing 

RMS estimates of EMGσ subtract noise in either the amplitude or power domain. These 

procedures have never been modeled analytically. We show that power domain noise 

subtraction is optimal. But rest contractions which are processed using power domain noise 

subtraction only estimate a zero-valued EMGσ approximately 50% of the time, which is 

undesirable in prosthesis-control. The prosthesis has a 50% possibility to slowly drift based 

on the current RMS estimator. We propose a new estimator to improve the zero-amplitude 

estimation probability during rest. We used 512 rest contraction recordings to validate the 

probability distribution of rest EMG signal showing that it only has 1.6% difference compared 

with Gaussian distribution. We also evaluated the percent of zero-valued EMGσ estimates 

using power domain noise subtraction and our new estimator, matching experimental findings 

to the theoretic predictions. 
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1. Introduction 

1.1 Contributions to this project 

This project has two stages, both of which were team project cooperated with two other 

graduate students at WPI, He Wang and Kiriaki J. Rajotte. The first stage is the universal 

whitening filter design. The second stage is the EMG rest contraction analysis. Both stages 

are under the supervision of Dr. Clancy. In the first stage, I calibrated the 512 EMG recordings 

to generate the coefficient matrix of universal whitening filter and compare the performance of 

our new universal whitening filter with the original subject-specific calibrated filter on an EMG-

torque model. For the second stage, I followed the theoretical analysis of Dr. Clancy’s 

mathematical description of EMG rest contractions, and experimentally demonstrate the 

modeling of probability density function and power spectrum of rest contraction EMG signal. 

1.2 Main content of the thesis 

This thesis contains two parts of study, both aimed at improving EMG modulation and 

standard deviation estimation. The first part of the thesis describes a new whitening technique 

that simplifies the adaptive whitening filter process and tested a new whitening technique on 

EMG-torque models which showed an identical performance with original adaptive whitening. 

The second part uses 512 rest contraction recordings to show that the probability distribution 

of rest contraction is very closely Gaussian distributed. Based on the Gaussian distribution, 

we formed a new RMS processor with a gain factor applied to the noise. I demonstrated that 

the new RMS processor can reject additional noise during rest contraction. All the studies in 

the thesis were performed off-line in MATLAB. One conference paper has been published and 

an appendix of rest contraction modeling was written by Dr. Clancy. 

1.3 Electromyogram 

Electromyogram (EMG) is a recording of the electrical activity produced by skeletal 

muscles. It presents the electrical potential generated by muscle cells whenever the cells are 

electrically or neurologically excited [23]. Skeletal muscles are connected to the skeleton to 

form part of the mechanical system which moves the limbs and other parts of the body. The 

whole muscle is comprised of (usually parallel) muscle fascicles. Figure 1.1 shows a detailed 

structure of skeletal muscle. A collection of muscle fibers form muscle fascicles. There are two 

types of muscle fibers: Type I which is also known as “slow-twitch” fibers and Type II known 
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as “fast-twitch” fibers. “Slow-twitch” fibers generate more ATP from aerobic metabolism and 

the contractions of “slow-twitch” fibers are slower and less forceful. On the contrary, “fast-

twitch” fibers generate more ATP from glucose and provide faster and more forceful 

contractions. 

 

 

Figure 1.1 Detailed structure of skeletal muscle [2]. 

 

1.4 Muscle electrical activity generation 

The first recorded muscle electrical activity and the term “electromyogram” was given in 

the 1890s [6]. Clinical electromyograms are commonly acquired by attaching electrodes to the 

muscles or skin surface. Recordings collected from the skin surface are referred to as surface 

EMG or sEMG [7]. sEMG is often comprised of frequencies under 600Hz [24], and sEMG 

could be modeled as amplitude-modulated with additive Gaussian noise [25]. We often use 

the standard deviation(EMGσ) of sEMG as EMG amplitude [26] and it contains valuable 

information. EMGσ is related to muscular effort, lower muscular effort means lower EMGσ and 

vice versa. The muscle force in overall muscle is regulated by two aspects: the number of 

active motor units and firing rate. It is observed that the standard deviation of the raw EMG 

signal is monotonically related to the number of the activated motor units and the rate of their 

activation. The definition of a motor unit is one motor nerve and all innervated muscle fibers 

(Figure 1.2 shows the structure of a motor unit). The muscle fibers in one motor unit are the 

same type. If the motor unit is activated, all the innervated muscle fibers contract, the muscle 

fibers follow the “all or nothing” rule.  
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Figure 1.2 Structure of motor unit [3]. 

The electrical “action potential” recorded from a motor unit is the sum of voltages due to 

each muscle fiber. Figure 1.3 presents the typical transmembrane potential of a muscle cell. 

The rest potential is at around –70 mV. When muscle fibers are activated, the action potential 

peaks could reach to +30 mV. The duration of one action potential is usually 2–4 ms or longer 

[27]. During muscle contraction, the single motor unit will continuously generate similar shape 

action potentials. And, the shape of action potentials between different motor units are 

generally different. Figure 1.4 shows the model of one individual motor unit.  

So, the EMG recording is the summation of the impulse responses generated by multiple 

active motor units. And since it’s the summation of multiple independent, rather identically 

shaped pulses, it could be modulated as Gaussian random process. A model for generation 

of the surface EMG signal is shown as Figure 1.5. An additive noise comes along with the 

EMG signal recording. 

 

Figure 1.3 typical transmembrane potential of a muscle cell [4]. 
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Figure 1.4 Schematic for the motor unit action potential train [5]. 

 

 

Figure 1.5 Complete engineering model of motor unit action potential [5]. 

1.5 EMGσ estimation 

The recorded EMG from an electrode described from section 1.4 is also referred to as the 

raw EMG signal. Surface EMG collects a non-invasive measure of muscle activation and the 

raw EMG signal data used in this thesis are all from surface EMG. 
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After recording the raw EMG signal, we need to run through several signal processing 

steps to get an estimated EMGσ. EMGσ has been used in many fields and real-world 

applications, such as myoelectric prostheses control, ergonomics gait analysis and sports [28]. 

Plenty of studies have been developed to improve the estimation of EMGσ [14, 16, 29, 30]. 

(Figure 1.6 shows EMGσ estimation). 

 

Figure 1.6 EMGσ estimation [9]. 

 

The two basic EMGσ estimators are: moving-average-root-mean-square (RMS) 

processor and moving-average-mean-absolute-value (MAMAV) processor. EMG can be 

modeled as an amplitude modulated zero-mean stochastic process as below: 

𝑚[𝑛] = 𝑠[𝑛] ∗ 𝑣[𝑛] 

where 𝑚[𝑛] is raw EMG signal, 𝑠[𝑛] is EMGσ and 𝑣[𝑛] is a random noise process with unit 

variance. And the two estimators can be described as: 

MARMS processor: 

𝑠̂RMS = √
1

𝐿
∗ ∑ 𝑚2[𝑘]

𝑛

𝑘=𝑛−𝐿+1

 

MAMAV processor: 

𝑠̂MAV = 
1

𝐿
∗ ∑ |𝑚[𝑘]|

𝑛

𝑘=𝑛−𝐿+1

 

where L refers to window length. 

The moving average in these two processors performs as low-pass filtering; the window 

length could be considered as cut-off frequency. A longer window means lower cut-off 

frequency which is suitable for slowly changing EMGσ. In contrast, a shorter window means 

higher cut-off frequency that could be used on rapidly changing EMGσ. So, the simple method 
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of EMGσ estimation can be considered as three steps described in Figure 1.7. For the MAMAV 

processor, we can skip the relinearization step because d=1 in the detection. 

 

Figure 1.7 EMGσ estimator: 1. non-linear detection; 2. Low-pass filter (smoother) 

3. Relinearize [10]. 

For a single site of EMG signal, several techniques have been proved to improve the 

estimation of EMGσ [14,16]. First, applying a high-pass filter prior to the RMS or MAV 

processor can help attenuate motion artifact noise. The cut-off frequency is often set up to 10-

20 Hz because the power of motion artifacts is usually concentrated below 20 Hz. A higher 

cut-off frequency for the highpass filter might cause loss of useful EMG signal. Second, 

whitening the signal can increase the statistical bandwidth of EMG and reduce the variance of 

the EMGσ estimate at the same time. Different whitening techniques have been applied to 

improve estimation accuracy, such as reduced electrode spacing [12], digital filtering (off-line) 

[13], and analog filtering [13]. The whitening techniques have been widely used in EMGσ 

estimation, such as relating EMG-torque models. However, conventional whitening techniques 

might fail at low-level contractions. The adaptive whitening method [14] proposed by Clancy 

and Farry has overcome this issue. Figure1.8 shows a detailed process of optimal single site 

EMG amplitude estimation. 

 

Figure 1.8: Optimal single site EMGσ estimation [11]. 
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Beyond single site EMG recording optimized estimation, there are studies on multiple 

channel combinations of EMG signal [12, 13, 15, 16]. The combination of EMG signal recorded 

from different electrodes placed adjacent to each other can improve the signal-to-noise ratio. 

However, we need a gain normalization process to eliminate the gain difference between 

electrodes, so that each electrode is equally contributing to the recording. Research has 

shown that using several electrodes for measuring the EMG improves the accuracy of EMGσ 

estimation [16]. Overall, the multi-channel optimal EMGamp estimation has six stages: 1. 

Noise rejection/highpass filter; 2. Adaptive whitening; 3. Multiple Channel Combination and 

Gain Normalization; 4. Rectification and Demodulation; 5. Smoothing and 6. Relinearization 

(shown in Figure 1.9). 

 

Figure 1.9 Six Stages Multi-Channel EMGσ Processor [17]. 

 

A precise EMGσ estimate could help improve EMG-torque modeling [21]. The goal of 

EMG-torque models is to simulate the natural relationship between the central nervous system 

(as evidenced in the surface EMG) and peripheral joints/muscles. The muscle tension is 

related to EMG. When muscle tension increases, EMG increases, but it’s difficult to measure 

individual motor unit tension and tension in whole muscle. On the contrary, joint torque is easy 

to be measured or estimated accurately. So, developing an EMG-torque model can help 

interpret the EMG-force relation better. The general steps of relating EMG to torque is shown 

in Figure 1.10. Four surface electrodes are attached the muscles (biceps and triceps) to record 

the EMG signals as shown. The raw EMG signal is used to estimate EMGσ. The EMGσ 
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estimations for flexion and extension are decimated. The amplitude estimates are used as two 

inputs to a system identification algorithm to predict the joint torque. 

 

 

Figure 1.10 EMG-torque estimation model [18]. 

1.6 Experimental data 

Experimental data were utilized from four prior experiments [14,19-21], combined to form 

a new data set containing 64 subjects in total. Those data re-use was approved and 

supervised by the WPI Institutional Review Board (WPI IRB). Each subject has 8 EMG 

channels, four elbow extension channels and four elbow flexion channels. Each channel has 

a corresponding rest contraction (0% MVC). All contractions were constant-posture [21]. Five 

second duration, constant-force contractions at 50% MVC extension, 50% MVC flexion and at 

rest were recorded, the data sampling frequency is 4096 Hz [21]. A total of 1024 raw EMG 

recordings (512 0% MVC recordings, 512 50% MVC extension or flexion recordings) are used 

for analysis in this thesis. The data were collected by eight separate electrodes attached to 

the skin surface of subjects. Four electrodes on biceps and four electrodes on triceps. The 

subjects were seated and strapped in the straight-back chair (Figure 1.11) by belts. The right 

shoulder was fixed by a belt and their arms are parallel with ground. The angle between their 

upper arm and forearm is 90𝑜, their right wrists were perpendicular to the floor and tightly 

cuffed to a load cell. The skin above biceps and triceps was disinfected by alcohol before 

attaching the electrodes. The electrodes were placed across the muscle group, in the midway 

between elbow and the midpoint of upper arm with elastic bandages. All contractions were 

constant-posture. Subjects warmed up before data collection. Separate extension and flexion 

MVCs were measured when subjects slowly increased their force to MVC and maintained 

constant for two seconds. The average load cell value was taken as the MVC. Then, 5-second, 
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constant-force contractions at 50% MVC extension and 50% MVC flexion and at rest were 

recorded. Three minutes rest was provided between each trial to avoid cumulative fatigue. 

 

 

Figure 1.11 Subject posture and electrode placement [21]. 
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2. Simplified adaptive whitening filter design 

Whitening the surface electromyogram (EMG) has been proved to improve EMGσ 

estimation and minimize error in relating the surface EMG to elbow joint torque [14]. But 

conventional linear whitening filters can fail at low EMG amplitude levels. A three-stage 

adaptive whitening filter [14] was designed to overcome this problem. 

 

Figure. 2.1 Single site EMG adaptive whitening filter [14]. 

 

The first stage of the adaptive whitening filter is a fixed whitening filter that whitens the 

noise-free portion of the signal but also passes a filtered version of the additive noise at the 

same time. The second stage is an adaptive Wiener filter that attenuates the additive noise 

and estimates the noise-free whitened signal. The third stage applies an adaptive gain 

correction to preserve EMG amplitude scaling [14]. After adaptive whitening, the EMGσ is 

estimated in the conventional way: root-mean-square (RMS) processor or mean-absolute-

value (MAV) processing. 

The whole filter with three stages needs to be calibrated from two, constant-angle, 

constant-force contractions, one at a reference level [e.g. 50% maximum voluntary contraction 

(MVC)], and another one at 0% MVC (rest contraction). This whitening technique is not widely 

used mainly because the whiteners are calibrated to each subject, which makes the 

implementation more complex. Since the fixed whitening filter calibrated by different subjects 

has similar shapes, low gain at low frequencies and higher gain at high frequencies, we 

designed an “Universal” fixed whitening shape, and combined it with an adaptive noise 

canceller to form a new adaptive whitening process. 



 

11 

 
 

 

 

Figure 2.2 Two-stage adaptive whitening filter. 

2.1 Universal fixed whitening filter calibration 

We used a total of 512 recordings at each of 0% MVC and 50% MVC (64 subjects x 8 

channels) to calibrate the fixed whitening filter. Each channel was individually processed. 

Because of the EMG gain or the force level differences between subjects, we need to 

normalize each recording to a same level of magnitude. We formed a normalization gain using 

the root mean square of 50% MVC: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑔𝑎𝑖𝑛 =  
0.5

√∑ 𝑚𝑖
2𝑁

1

𝑁

 

where 𝑚 is the raw EMG signal. 

And we multiplied this same gain by the 0% MVC recordings corresponding to the 50% 

MVC. After normalization, each recording was highpass filtered by a fifth-order Butterworth 

filter at 15 Hz cut-off frequency to remove the mean and attenuate motion artifacts. And the 

fixed whitening filter shape was derived from the inverse of the square root of power 

subtraction between 50%MVC and 0% MVC [14]. We have 512 sets of filter coefficients from 

which to form a universal whitening shape. We extracted power spectrum estimates from all 

512 subjects, and computed the ensemble mean to create our new filter. We saved the filter 

coefficient in a matrix and use this filter shape as the first stage of adaptive whitening. Thus, 

we don’t need to calibrate the fixed whitening filter for each recording in the future. 

2.2 Testing the performance of universal whitening filter 

     We applied the new universal whitening filter to EMGσ estimation, and related EMG to 

force, using the test error as the indication of whitening performance. The data used in testing 

were described in section 1.6. 
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We tested it on 8 individual channels using a 15th order quadratic model. Coefficients were 

determined using least square via the Moore-Penrose inverse, with a tolerance of 0.0056 [21]. 

The original subject-specific whitening filter used two trials of EMG signal data for calibration 

and tested on the third trial. The mean error and the standard deviation over 512 subjects was 

4.84±1.98% MVC, which set a baseline for our new technique testing. The new filter was 

evaluated on the EMG-force model in the similar way, producing an average ± std. dev. test 

error of 4.80±2.03% MVC which is similar to the performance of the subject-specific whitening 

filters. 

 Test error mean Test error std 

Subject-specific whitening 4.84% 1.98% 

Universal whitening 4.80% 2.03% 

 

Table 2.1 Testing error of original and new whitening techniques 
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3. EMG signal model evaluation (PDF and PSD) 

3.1 Probability density evaluation of 0% MVC and 50% MVC 

EMG signal 

The probability density function (PDF) of the surface electromyogram (EMG) signal has 

been modeled with Gaussian and Laplacian distribution functions [22]. Knowing the probability 

density of the EMG signal could help us refine the EMGσ estimators. So, we used a total of 

512 recordings each of 0% and 50% MVC (64 subjects x 8 electrodes/subject) to evaluate the 

probability density model of rest EMG and EMG from a constant force level.  

The initial evaluation was applied on processed EMG signal without whitening. Each 

recording was sent through a fourth-order Butterworth highpass filter at 15-Hz cut-off 

frequency to remove the mean and attenuate motion artifacts. We then omitted first 500ms of 

data to remove start-up transients due to the filter.  

Then we normalized the signal by subtracting the mean and dividing by the standard 

deviation of each recording to form a zero-mean, unit variance random process. And all the 

subjects are now in the same amplitude range so that we could take the ensemble average in 

later analysis. If 𝑥[𝑛] represents the signal after highpass filter and removed start-up transient, 

form a new signal vector 𝑦[𝑛] by normalization: 

𝑦[𝑛] =  
𝑥[𝑛] − 𝐸(𝑥[𝑛])

𝑠𝑡𝑑(𝑥[𝑛])
 

we can easily derive the mean and standard deviation of 𝑦[𝑛]: 

𝑚𝑒𝑎𝑛(𝑦[𝑛]) = 𝐸(𝑦[𝑛]) =
𝐸(𝑥[𝑛]) − 𝐸(𝐸(𝑥[𝑛]))

𝑠𝑡𝑑(𝑥[𝑛])
= 0 

and  

𝑠𝑡𝑑(𝑦[𝑛]) =
𝑠𝑡𝑑(𝑥[𝑛] − 𝐸(𝑥[𝑛]))

𝑠𝑡𝑑(𝑥[𝑛])
= 1 

The normalization step is a linear operation, so it won’t change the distribution type. 

We created a histogram estimation with 501 bins equally distributed from -5 to 5 with an 

increment of 0.02 for each recording. The area of the histogram is normalized to 1 to force the 

Y-axis to display the probability.  

After processing and creating PDF estimates for each recording, we have 1024 PDF 

estimations for 0% MVC trials and 50% MVC trials. The ensemble sample mean and standard 

deviation of the PDF from 512 0% MVC trials and 512 50% MVC trials gives us a general PDF 

estimation of rest EMG and 50% MVC EMG. 
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Each recording’s probability distribution has zero-mean. The mean value of the ensemble 

sample average is obviously. We compared the ensemble average PDF with Gaussian and 

Laplacian distribution. 

The ensemble sample mean and standard deviation through 512 0% MVC subjects and 

512 50% MVC subjects are shown in Figure 3.1 and Figure 3.2 separately, along with ideal 

zero-mean, unit-variance Gaussian and Laplacian distributions.  

 

 

 

Figure 3.1 Ensemble average histogram estimate of unwhitened 0% MVC PDF (cyan), 

standard deviation between subjects (blue bar), ideal Gaussian distribution (black) and ideal 

Laplacian distribution (magenta).  
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Figure 3.2. Ensemble average histogram estimate of unwhitened 50% MVC PDF (cyan), 

standard deviation between subjects (blue bar), ideal Gaussian distribution (black) and ideal 

Laplacian distribution (magnet).   

 

For unwhitened signal, we calculate the absolute area difference between ensemble 

average versus a zero-mean unit-variance Gaussian distribution and Laplacian distribution to 

identify the similarity between EMG signal PDF and ideal distribution shape. EMG signal 

versus Gaussian difference was found to be 0.0514 for 0% MVC and 0.0764 for 50% MVC; 

and EMG signal versus a Laplacian density was found to be 0.3174 for 0% MVC and 0.2151 

for 50% MVC. 

Unwhitened signal Gaussian Laplacian 

0% MVC 0.0514 0.3174 

50% MVC 0.0764 0.2151 

 

Table 3.1. The absolute area difference between unwhitened EMG signal versus Gaussian 

and Laplacian density. 
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The Gaussian and Laplacian distribution in above figures are all unit-variance, we can 

select different standard deviations to get a better fit for the probability distribution. We 

compared the absolute area differences between EMG signal PDF estimate with Gaussian 

distribution and Laplacian distribution with different stds. The standard deviation ranges from 

0.5 to 2 with an increment of 0.05. Figure 3.3 and 3.4 show the absolute area differences 

versus standard deviation of ideal Gaussian and Laplacian distribution. 

The minimum absolute area difference of 0% MVC is 0.0514 when comparing with 

Gaussian distribution of standard deviation = 1. The minimum absolute area difference of 50% 

MVC is 0.0534 when comparing with Gaussian distribution of standard deviation = 0.95. 

 

 

Figure 3.3 Absolute area difference versus standard deviation with both Gaussian and 

Laplacian (0% MVC unwhitened signal). 
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Figure 3.4 Absolute area difference versus standard deviation with both Gaussian and 

Laplacian (50% MVC unwhitened signal). 

 

Based on the minimum absolute area difference of 0% MVC and 50% MVC, we can see 

Gaussian model is a better fit for both unwhitened 0% MVC and 50% MVC EMG signal. We 

provided the best fit of PDF estimate of 0% MVC and 50% MVC in Figure 3.5. Gaussian model 

for 0% MVC has a standard deviation of 1, and gaussian model for 50% MVC has a standard 

deviation of 0.95.  
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Figure 3.5 Best fit of unwhitened 0% MVC and 50% MVC PDF. 

 

     Then, we evaluate the PDF distribution of whitened 0% MVC and 50% MVC signals. Each 

recording was high passed by a fourth-order Butterworth filter at 15-Hz cut-off frequency to 

remove the mean and attenuate motion artifacts and then passed an adaptive whitening filter 

to temporally uncorrelate the signal and lower the variance. The adaptive whitening filter [14] 

was set to a band limit of 600 Hz. We omit the first 500 ms of data to remove start-up transients. 

We then normalized the signal with the same way of unwhitened signal analysis. Each 

recording is a zero-mean, unit variance random process.  We created a histogram PDF 

estimation with 501 bins equally distributed from -5 to 5 with an increment of 0.02 for each 

recording. The area of the histogram is normalized to 1 to force the Y-axis to display the 

probability.  

     Then we created the plot of ensemble sample mean and standard deviation through 512 

0% MVC trials and 512 50% MVC trials, along with ideal zero-mean, unit-variance Gaussian 

and Laplacian distributions (Figure 3.6 and Figure 3.7). 
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Figure 3.6 Ensemble average histogram estimate of whitened 0% MVC PDF (cyan), standard 

deviation between subjects (blue bar) ideal Gaussian distribution (black) and ideal Laplacian 

distribution (magenta).  

 

Figure 3.7 Ensemble average histogram estimate of whitened 50% MVC PDF (cyan), standard 

deviation between subjects (blue bar), ideal Gaussian distribution(black) and ideal Laplacian 

distribution(magenta). 
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      For whitened signals, the absolute area difference between the ensemble average versus 

a Gaussian distribution was found to be 0.0160 for 0% MVC and 0.1141 for 50% MVC; and 

ensemble average versus a Laplacian distribution was found to be 0.2789 for 0% MVC and 

0.1831 for 50% MVC. 

 

Whitened signal Gaussian Laplacian 

0% MVC 0.0160 0.2789 

50% MVC 0.1141 0.1831 

Table 3.2. The absolute area difference between whitened EMG signal versus Gaussian and 

Laplacian density. 

 

The Gaussian and Laplacian distribution in above figures are all unit-variance, we can 

select different standard deviations to get a better fit for the probability distribution. We 

compared the absolute area differences between whitened EMG signal PDF estimate with 

Gaussian distribution and Laplacian distribution with different stds. The standard deviation 

ranges from 0.5 to 2 with an increment of 0.05. Figure 3.8 and 3.9 show the absolute area 

differences versus standard deviation of ideal Gaussian and Laplacian distribution. 

The minimum absolute area difference of 0% MVC is 0.0160 when comparing with 

Gaussian distribution of standard deviation = 1. The minimum absolute area difference of 50% 

MVC is 0.0741 when comparing with Gaussian distribution of standard deviation = 0.90. 

Both 0% MVC and 50% MVC have PDF estimates closer to ideal Gaussian and Laplacian 

distributions after whitening. Thus, if we modeled EMG signal as Gaussian or Laplacian 

distribution, whitening can improve the accuracy of EMGσ estimates. 
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Figure 3.8 Absolute area difference versus standard deviation with both Gaussian and 

Laplacian (0% MVC whitened signal). 

 

 

Figure 3.9 Absolute area difference versus standard deviation with both Gaussian and 

Laplacian (50% MVC unwhitened signal). 
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     Based on the minimum absolute area difference of 0% MVC and 50% MVC, we provided 

the best fit of PDF estimate of 0% MVC and 50% MVC in Figure 3.10. 

 

Figure 3.10 Best fit of whitened 0% MVC and 50% MVC PDF. 

  

Based on the Table 3.1 and Table 3.2, we can notice that the rest contraction EMG signal 

is extremely well modeled as Gaussian, especially after whitening, which provides us 

confidence in this model of the rest contraction signal. For 50% MVC, the minimum absolute 

area difference comparing with Gaussian model is 0.0748 and 0.1535 with Laplacian model, 

neither Gaussian nor Laplacian model is as good as 0% MVC Gaussian model. For future 

work, it’s reasonable to explore a combination of Gaussian and Laplacian model for higher 

contraction level EMG signals. 
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3.2 Power spectrum density of 0% MVC and 50% MVC EMG 

signal 

     Next, the 0% MVC and 50% MVC power spectrum density (PSD) estimations were 

produced by 512 subjects for each. Initially, we evaluated unwhitened signals. Each recording 

was sent through a fourth-order Butterworth highpass filter at 15-Hz cut-off frequency to 

remove the mean and attenuate motion artifacts. Then the first 500 ms was omitted to account 

for filter start-up transients. For normalization, we cannot use the same method as creating 

PDF estimation, because if we normalize both 0% MVC and 50% MVC to zero-mean and unit-

variance random processes, we’ll lose the power difference between the different force level.  

     So, two trials from the same subject and same electrode (0% MVC and 50% MVC) were 

divided by the standard deviation of the 50% MVC to preserve the relative power differences 

between 50% MVC and 0% MVC trials within the same subject and electrode. We used the 

Welch method (Hamming window, 50% overlap and 2048-length DFT) to form a PSD estimate 

for each recording. The ensemble sample mean PSD estimates of 0% MVC and 50% MVC 

recordings are shown in the same figure (Figure. 3.11). 

 

Figure 3.11 Power spectrum density of unwhitened 0% MVC and 50% MVC. 

 

     From the figure above we can notice that there are several spikes in the PSD which are 

caused by power-line interference. We used second-order IIR-notch filters to attenuate the 

power-line interference at some certain frequency locations corresponding to different 

subjects. The notch filter frequency locations and bandwidth are listed in Table 3.3 – Table 

3.6 (PSD after notch filtering is in Figure 3.12). 
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 Subject 'LA' 

Frequency(Hz) 60 533.7 866.6 1031.1 1031.5 1446.8 1453.8 1638.9 1927.2 

Bandwidth(Hz) 0.25 0.8 0.8 1.2 1.2 1.2 1.2 1.5 1.5 

Table 3.3 Power-line attenuation frequency location and bandwidth of subject ‘LA’ 

 

Subject ‘LB’ 

Frequency(*59.97Hz) 1 2 3 5 6 7 8 9 11 13 15 16 

Bandwidth(Hz) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.8 0.8 0.8 0.8 0.8 

Frequency(*59.97Hz) 17 19 20 21 23 24 25 27 29 30 31 33 

Bandwidth(Hz) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5 

Table 3.4 Power-line attenuation frequency location and bandwidth of subject ‘LB’ 

 

Subject ‘wx’ 

Frequency(*59.99Hz) 1 7 11 13 15 17 19 21 

Bandwidth(Hz) 0.25 0.25 0.8 0.8 0.8 1.2 1.2 1.2 

Frequency(*59.99Hz) 23 25 27 29 31 33 1996.5/59.99 

Bandwidth(Hz) 1.2 1.2 1.5 1.5 1.5 1.5 1.5 

Table 3.5 Power-line attenuation frequency location and bandwidth of subject ‘wx’ 

 

Subject ‘ww’ 

Frequency(*59.99Hz) 1 7 11 13 15 17 19 21 

Bandwidth(Hz) 0.25 0.25 0.8 0.8 0.8 1.2 1.2 1.2 

Frequency(*59.99Hz) 23 25 27 29 31 33 1996.5/59.99 

Bandwidth(Hz) 1.2 1.2 1.5 1.5 1.5 1.5 1.5 

Table 3.6 Power-line attenuation frequency location and bandwidth of subject ‘ww’ 

 



 

25 

 
 

 

 

Figure 3.12 Power spectrum density of 0% MVC and 50% MVC after power-line attenuation. 

 

Then, we estimate the power spectrum of whitened 0%MVC and 50% MVC signal. As 

above, each recording was sent through a fourth-order Butterworth highpass filter at 15-Hz 

cut-off frequency to remove the mean and attenuate motion artifacts, and then passed an 

adaptive whitening filter with band limit at 600 Hz, and IIR notch filtered to attenuate the power-

line interference at the specific frequency locations described above. Then the first 500 ms 

were omitted to account for filter start-up transients. The whitening filter preserved the power 

differences between 0% MVC and 50% MVC. We used the Welch method (Hamming window, 

50% overlap and 2048-length DFT) to form a PSD estimation for each recording. The 

ensemble sample mean PSD estimates of whitened 0% MVC and 50% MVC recordings are 

shown in the same figure (Figure 3.13 shows the PSD of whitened signal). 

 

Figure 3.13 Power spectrum density of whitened 0% MVC and 50% MVC. 
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4. Probability of estimating a zero-value in 

Gaussian model rest contraction 

(The mathematical analysis was first derived by Prof.Clancy. The description follows his 

calculation process and replicates the math.) 

Chapter 3 shows that the empirical PDF of rest (0% MVC) EMG is very close to Gaussian. 

So, in this chapter we use a Gaussian model to estimate EMGσ during rest. 

In general, the measured EMG signal during constant-force contraction follows the amplitude 

modulated model: 

𝑚[𝑛] = 𝑠 ∙ 𝑥[𝑛] + 𝑣[𝑛],    0 ≤ 𝑛 < 𝑁       (1) 

where n is the discrete-time sample index, 𝑠 is the standard deviation of true EMG, (𝑠 ∙ 𝑥[𝑛]) 

is the noise-free EMG signal and 𝑣[𝑛] is additive noise (i.e., the signal recorded when the 

muscle is at rest). Let 𝑥[𝑛]  and 𝑣[𝑛]  be jointly Gaussian random vectors that are both 

uncorrelated, zero-mean, wide-sense stationary and correlation-ergodic; the only difference is 

𝑥[𝑛] has unit variance but 𝑣[𝑛] is of variance equal to 𝑞2. 𝑚[𝑛] is a jointly Gaussian random 

vector with zero mean and a covariance matrix equal to: 𝐾𝑚𝑚 = 𝜎𝑚
2  𝐼, where 𝜎𝑚

2 = 𝑠2 + 𝑞2 and 

I is the identity matrix. Then use the maximum likelihood estimate method to determine the 

optimal estimate of 𝑠 (i. e. , EMGσ) . 

The probability density function (PDF) for zero-mean vector 𝑚[𝑛], given that the standard 

deviation of the true EMG is the known value 𝑠̂ is: 

𝑝𝑚|𝑠(𝑀|𝑠̂) =
𝑒

−𝑀𝑇 𝐾𝑚𝑚 
−1  𝑀

2

(2𝜋)𝑁/2 |𝐾𝑚𝑚|
1/2 =

𝑒

−∑ 𝑀[𝑛]2𝑁−1
𝑛=0
2(𝑠̂2+𝑞2)

[2𝜋(𝑠̂2+𝑞2)]𝑁/2
,                              (2) 

where 𝑀 denotes an instance of the random vector and −∞ ≤ 𝑀𝑛 ≤ ∞. 

The maximum likelihood estimate of the standard deviation is the value of 𝑠̂  which 

maximizes the above density. Takes the natural logarithm of (2): 

ln[𝑝𝑚|𝑠(𝑀|𝑠̂)] = −
𝑁

2
 ln(2𝜋) −

𝑁

2
 ln(𝑠̂2 + 𝑞2) −

∑ 𝑀[𝑛]2𝑁−1
𝑛=0

2(𝑠̂2+𝑞2)
.                   (3) 

Differentiating equation(3) with respect to 𝑠̂ gives: 

𝜕 ln[𝑝𝑚|𝑠(𝑀|𝑠̂)]

𝜕 𝑠̂
= −

𝑁

2
 
2𝑠̂

𝑠̂2+𝑞2
+
𝑠̂ ∑ 𝑀[𝑛]2𝑁−1

𝑛=0

(𝑠̂2+𝑞2)2
.                                 (4) 

Setting the derivative to zero and solving for 𝑠̂: 

𝑠̂ = √(
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
) − 𝑞2.                     (5) 

This equation means we subtract noise in the power domain. The term inside the round 

parentheses is the mean square value of the EMG signal. 
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Evaluation of the second derivative of (3), with respect to 𝑠̂, verifies that (5) is indeed a 

local maximum —but only when the RMS in (5) exceeds the noise variance 𝑞2. This condition 

is almost always satisfied during active muscle contraction, but not during low-level 

contractions or rest. For such a case, maximization with respect to 𝑠̂ of the PDF occurs at the 

boundary constraint where 𝑠̂ = 0. Hence, the complete solution for this estimator is: 

𝑠̂RMS = √max [0, (
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
) − 𝑔2𝑞2],                           (6) 

where g≥0 is a gain factor that scales the subtraction term. The maximum likelihood estimate 

is found when g = 1. 

Denote the term in the rounded parenthesis of (6) as random variable y. Note that when 

the muscle is at rest, 𝑠 = 0 and y is Gamma distributed as: 

𝑝𝑦,𝑅𝑒𝑠𝑡(𝑌) =

{
 
 

 
 𝑌

𝑁
2
−1
 𝑒

−𝑌∙𝑁

2𝑞2

(𝑞√
2

𝑁
)

𝑁

 Γ(
𝑁

2
)

, 𝑌 > 0

0, otherwise

.                                           (7) 

Further, the probability of estimating a zero value during rest is the cumulative density function 

(CDF) of y, evaluated at 𝑌 = 𝑔2𝑞2. This CDF, for N even, is: 

𝑃𝑦≤𝑔2𝑞2,𝑅𝑒𝑠𝑡(𝑌)|𝑌=𝑔2𝑞2,𝑠=0
= 1 −∑

(
𝑁
2)

𝑘

 𝑔2𝑘 𝑒
−𝑔2𝑁
2

𝑘!
,     𝑌 > 0,𝑁 even.                              

𝑁
2
−1

𝑘=0

(8) 

Note that this probability is only a function of N. This result shows that the probability of 

estimating a zero value is unrelated to the standard deviation of the noise—it is only related 

to the smoothing window length. The probability of estimating a zero value versus smoothing 

window length is shown in Figure 4.1. 

     Based on the theoretical result from equation (8), we computed the probability of estimating 

zero values with window length ranges from 10 to 200. When the window length equals to 200, 

when g=1, 51.33% of the EMGσ estimates are zero, 84.73% of estimates are zero when 

g=1.05, and only 16.48% are zero when g=0.95. 
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Figure 4.1 Theoretic result of fraction of zero values versus window duration. 

 

For g=1, we only have around 50% possibility to estimate EMGσ = 0 during rest. In rest 

contractions, we intuitively desire an EMGσ estimate of zero with higher probability. For 

example, myoelectric prosthesis control software very much desires a control signal that 

equals zero whenever the user’s muscles are at rest.  Else, the prosthesis will slowly “drift” 

and change its posture when the user intends the device to remain in its current pose. A 

reasonable approach to further increase the probability of a zero output during muscle rest is 

to increase the gain factor “g”.  

We empirically computed the fraction of times in which a zero EMGσ value was found 

during test with three different gain factors, which are g greater, equal and less than 1, 

respectively. Using the RMS processor described in equation (6), we computed the fraction of 

estimated zero values versus window length with g equal to 0.95, 1 and 1.05 separately. We 

used 512 whitened 0% MVC recordings. Each recording was highpass filtered by a fourth-

order Butterworth filter at 15-Hz cut-off frequency to remove mean and attenuate motion 

artifacts and passed through an adaptive whitening filter [14] with bandwidth limited at 600 Hz. 

Then the first 500 ms was omitted to remove filter start-up transients. We then applied the 

RMS processer described as equation (6) to estimate EMGσ, evaluating the fraction of 
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samples were zero-valued for each subject, using each gain factor. The 𝑞2 fraction in equation 

(6) was estimated for each recording as its sample variance. We varied the window length 

from 10 samples to 1250 samples (Sample frequency is 4096 Hz) The ensemble mean and 

standard deviation computed through 512 recordings are shown in Figure 4.2. 

 

Figure 4.2 Fraction of zero values. (Yellow “-*” with purple error bar is “g   1”, green “-o” with 

blue error bar is “g   1.05”, blue “-+” with orange error bar is “g   0.95”) 

 

As we can see from the plot, the result from 512 0% MVC subjects has the same trend 

comparing with theoretical result at each “g” value. The only difference is the length of x-axis. 

The theory assumed perfectly uncorrelated samples, the correlation of true data leads to a 

longer x-axis. 

As we described in chapter 1, a longer window length is suitable for slow EMGσ changes, 

since this thesis used constant-force data, a larger window duration is appropriate. As window 

length increases to 1250, when g=1, 53.33% of the EMGσ estimates are zero, 83.47% of 

estimates are zero when g=1.05, and only 20.26% are zero when g=0.95. In conclusion, we 

could increase a gain factor applied to noise during the power domain subtraction to ensure 

we have a larger portion of zero EMGσ values during rest. Of course, we do so at the cost of 

suppressing low EMGσ values. 
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5. Conclusion and future prospects 

By using adaptive whitening filter to improve EMG amplitude estimation, we successfully 

replaced the subject-specific whitening filter by a universal whitening filter without performance 

loss. This simplified whitening filter has the same quality as the original adaptive whitening 

filter, which overcome the low-contraction noise issue of conventional linear whitening filters. 

The omitted the calibration step for each subject eases implementation of the whitening filter. 

And there are still prospects to further improve universal whitening. For example, the general 

shape of the universal fixed whitening filter is high-pass filter, thus we could find a conventional 

FIR filter that has similar shape, so that instead of saving and loading the coefficient matrix, 

we can directly use a FIR filter design to achieve the same effect. 

The rest contraction modeling showed that the resting EMG signal is extremely well 

modeled as Gaussian, with only a 1.6% difference compared to the ideal Gaussian distribution. 

The new RMS estimator (with gain “g” multiplied by the noise standard deviation) addresses 

the drifting problem of prosthesis control during rest. On the other hand, the 50% MVC model 

is less accurate. Neither the Gaussian distribution nor the Laplacian distribution had a PDF 

area difference between real 50% MVC probability distribution below 7%. Because the rest 

EMG is more Gaussian, and EMG with active force has a PDF that is more Laplacian, we 

could investigate the combination of Gaussian and Laplacian distribution to modulate 50% 

MVC in future work. 
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6. Conference paper (Author’s copy) 

Simplified Implementation of Optimized Whitening of the Electromyogram Signal 

He Wang1, Kiriaki J. Rajotte1, Haopeng Wang1, Chenyun Dai2, Ziling Zhu1, Moinuddin Bhuiyan1, 

Edward A. Clancy1 
1 Worcester Polytechnic Institute (WPI), USA; 2Fudan University, China 

Introduction: The surface electromyogram (EMG) signal is well modeled as an amplitude 

modulated, correlated random process. The amplitude modulation, defined as the time-

varying standard deviation (EMGσ) of the signal, is used in various applications as a measure 

of muscle effort, e.g., EMG-force models, prosthesis control, clinical biomechanics and 

ergonomics assessment. EMGσ can be estimated by rectifying the EMG and then lowpass 

filtering (cutoff ~1 Hz). However, it has long been known that the correlated nature of EMG 

reduces the statistical efficiency of the EMGσ estimate, producing a large variance. 

To combat this problem, a whitening filter can be used prior to the rectifier. Whitening removes 

signal correlation—while preserving signal standard deviation—producing a substantially 

improved EMGσ. The ad-vantages of whitening filters have been known since at least 1974 

[3]—yet, few researchers use them. A key limitation to widespread use is that most whiteners 

are “calibrated” to each subject, making them cumbersome to implement. 

Since EMG whitening filters have low gain at low frequencies and higher gain at high 

frequencies, Potvin [4] implemented simple whitening via a fixed, low-order, FIR, highpass 

filter that was not calibrated to individual sub-jects. This approach was not compared to the 

established technique of subject-specific whitening filters. 

Our work reported herein describes development of a simplified whitening technique that relies 

only on EMG magnitude normalization (a measure that is already common). We compare this 

technique to state-of the art subject-specific whitening. 

Experimental Methods: Pre-existing data from 64 sub-jects [5] were used and did not require 

human studies supervision per the WPI IRB. Four electrodes over the biceps and four over 

the triceps muscles were acquired during three trials of 30-s duration, constant-posture, force-

varying elbow contractions in which subjects followed a target displaying a 1 Hz bandlimited, 

uniform and random process, spanning 50% maximum voluntary contraction (MVC) flexion to 

50% MVC extension. Using our existing subject-specific technique to form whitening filters for 

each electrode (calibrated from additional 5-s rest recordings and constant-effort 50% MVC 

trials, and limited to 600 Hz in frequency [6,7]), we related EMGσ to force. This EMGσ-force 
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model used each of the eight EMGσ values as inputs, a 15th-order dynamic FIR model per 

EMGσ, additionally included the squared value of each EMGσ at the 15 time lags (to model 

the EMG-force non-linearity), and was trained from two trials using least squares. The average 

± std. dev. test error on the distinct third trials was 4.84±1.98% flexion MVC (%MVCF). This 

error served as our “baseline” performance. 

 

Fig. 1.  Two-stage adaptive whitening filter [6]. 

 

Analysis Methods and Results: Our whitening filters (Fig. 1) are comprised of a fixed 

whitening filter followed by an adaptive noise canceller (with variance preservation). The first 

stage is a fixed linear filter whose magnitude response is the inverse of the square root of the 

power spectral den-sity (PSD) of the noise-free EMG signal (estimated by subtracting the 0% 

MVC PSD from the 50% MVC PSD). This filter has low gain at low frequencies and higher 

gain at high frequencies—the opposite of the spectral content of EMG. The second stage 

cancels high frequency noise, above the dominant frequency of EMG. This filter is a time-

varying lowpass filter, with a cut-off frequency that is lower at lower effort levels. This filter also 

provides a gain that preserves the overall power of the noise-free signal, so that the full 

whitening process does not alter EMGσ. 

 

We contrasted subject-specific whitening filter calibration to “universal” calibration. Each EMG 

was gain normalized, to account for gain variations between channels. Thereafter, the 0% 

MVC PSDs and (separately) the 50% MVC PSDs were ensemble-averaged across the 512 

calibration recordings (64 subjects x 8 electrodes/subject). The one, ensemble-averaged 0% 

MVC and the one, ensemble-averaged 50% MVC were then used to form a single “universal” 

two-stage whitening filter. This filter was then similarly evaluated on the EMG-force data, 
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producing an average ± std. dev. test error of 4.80±2.03 %MVCF—essentially identical to the 

performance found when using the subject-specific whitening filters. 

 

Conclusions: Our work, combined that of Potvin [4], suggests that the PSD of EMG is 

sufficiently consistent subject-to-subject that subject-specific calibration of PSDs for EMG 

whitening may not be necessary (for noise cancellation). Only a gain normalization may be 

needed per channel. Note that PSD shapes are known to vary with inter-electrode distance [1] 

and might vary muscle-to-muscle. Also, this set of dynamic contractions may not be 

particularly sensitive to the magnitude of the noise power, since few of the active-trial 

contractions were near 0% MVC. (Noise is most impactful at low contraction levels.) 
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Appendix 

Appendix I Subjects used in this thesis 

Experiment ‘LA’ 

#  '01'; '02';  '03';  '04';  '05';  '06';  '07';  '10';  '13';  '14';  '15';  '16';  '17';  '18';  '19';  '20';  '21'; 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’             0%MVC 

Trial ’10’             50% Extension 

Trial ‘12’             50% Flexion 

 e found subject ‘LA18’ trial ‘15’ is a bad rest recording, we substitute this recording by trial 

‘32’ of subject ‘LA18’ 

 

Experiment ‘LB’ 

# '02';  '03';  '05';  '07';  '08';  '09';  '10';  '12';  '13';  '16';  '17';  '18';  '19';  '20';  '21'; 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’             0%MVC 

Trial ’10’             50% Extension 

Trial ‘12’             50% Flexion 

 

Experiment ‘wx’ 

# '01';  '02';  '04';  '05';  '06';  '07';  '08';  '09';  '10';  '11';  '12';  '13';  '14';  '17';  '18';  '19';  '20'; 

'22';  '23';  '24';  '25' 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’             0%MVC 

Trial ’10’             50% Extension 

Trial ‘13’             50% Flexion 

 

Experiment ‘ww’ 

# '01';  '02';  '03';  '04';  '05';  '06';  '08';  '09';  '10';  '11';  '12'] 

Trial number for 0%MVC and 50% MVC extension and flexion 

Trial ‘15’             0%MVC 

Trial ’10’             50% Extension 

Trial ‘12’             50% Flexion 

 e found subject ‘ww05’ trial ‘15’ is a bad rest recording, we substitute this recording by trial 

‘39’ of subject ‘ww05’ 
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Appendix II EMG-torque model testing 

EMG-torque model testing mentioned in chapter 2 was based on Dr. Dai’s work and 

publication. He tested different techniques and parameters of the EMG-torque model, we used 

one of his model, which is 1x8 channel, 15th-order quadratic model with the tolerance of 0.0056. 

The abstract and introduction of his publication are listed below with important graphic result: 

 

Chenyun Dai, Berj Bardizbanian and Edward A. Clancy, "Comparison of Constant-Posture Force-

Varying EMG-Force Dynamic Models About the Elbow," IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, Vol. 25, No. 9, pp. 1529–1538, 2017. 

 

Abstract—Numerous techniques have been used to minimize error in relating the surface 

electromyogram (EMG) to elbow joint torque. We compare the use of three techniques to 

further reduce error. First, most EMG-torque models only use estimates of EMG standard 

deviation as inputs. We studied the additional features of average waveform length, slope sign 

change rate and zero crossing rate. Second, multiple channels of EMG from the biceps, and 

separately from the triceps, have been combined to produce two low-variance model inputs. 

We contrasted this channel combination with using each EMG separately. Third, we previously 

modeled nonlinearity in the EMG-torque relationship via a polynomial. We contrasted our 

model vs. that of the classic exponential power law of Vredenbregt and Rau. Results from 65 

subjects performing constant-posture, force-varying contraction gave a “baseline” comparison 

error (i.e., error with none of the new techniques) of 5.5 ± 2.3% maximum flexion voluntary 

contraction (%MVCF). Combining the techniques of multiple features with individual channels 

reduced error to 4.8 ± 2.2 %MVCF, while combining individual channels with the power-law 

model reduced error to 4.7 ± 2.0 %MVCF. The new techniques further reduced error from that 

of the baseline by ≈15%. 

 

Example EMGσ-torque estimation results for selected models. Butterworth model (2 Hz 

lowpass filter cut-off) exhibited an RMS error of 10.2 %MVC. Eight-channel EMGσ model (Q 

= 15 order, pseudo-inverse tolerance of Tol = 0.005) exhibited an RMS error of 4.5 %MVC. 

“Truth” refers to the recorded load cell values. Subject LA04, trial 45. Shown in figure below. 

 



 

39 

 
 

 

 

 

 

 



 

40 

 
 

 

Appendix III Gaussian Model, Rest contractions (Written by 

Edward A. Clancy, Included with Permission) 

(Derivation of the optimal processor from this case is from (Clancy, 1991)). Consider an 

amplitude modulated model of the measured EMG signal, m[n], during constant-effort 

contraction as: 

𝑚[𝑛] = 𝑠 ∙ 𝑥[𝑛] + 𝑣[𝑛],    0 ≤ 𝑛 < 𝑁 

where n is the discrete-time sample index, 𝑠 is the standard deviation (i.e., modulation) of the 

noise-free (true) EMG, (𝑠 ∙ 𝑥[𝑛]) is the noise-free EMG signal and 𝑣[𝑛] is additive noise (i.e., 

the signal recorded when the muscle is at rest). Let 𝑥[𝑛] be zero mean, unit-variance, wide-

sense stationary and correlation-ergodic. Let 𝑣[𝑛] be a similarly specified, but of variance 

equal to 𝑞2. Variables 𝑥[𝑛] and 𝑣[𝑛] are assumed to have uncorrelated samples (via pre-

whitening) and be independent. Let 𝑚, 𝑥 and 𝑣 be vectors comprised of N samples of each 

respective random variable.  

Let both 𝑥 and 𝑣 be jointly Gaussian random vectors. With these assumptions, 𝑚 is 

a jointly Gaussian random vector with zero mean and a covariance matrix equal to: 

𝐾𝑚𝑚 = 𝜎𝑚
2  𝐼 , where 𝜎𝑚

2 = 𝑠2 + 𝑞2  and I is the identity matrix. Thus, the probability 

density function (PDF) for zero-mean vector 𝑚, given that the standard deviation of 

the true EMG is the known value 𝑠̂ is: 

𝑝𝑚|𝑠(𝑀|𝑠̂) =
𝑒

−𝑀𝑇 𝐾𝑚𝑚 
−1  𝑀

2

(2𝜋)𝑁/2 |𝐾𝑚𝑚|
1/2 =

𝑒

−∑ 𝑀[𝑛]2𝑁−1
𝑛=0
2(𝑠̂2+𝑞2)

[2𝜋(𝑠̂2+𝑞2)]𝑁/2
, 

where 𝑀 denotes an instance of the random vector and −∞ ≤ 𝑀𝑛 ≤ ∞. 

 The maximum likelihood estimate of the standard deviation is the value of 𝑠̂ 

which maximizes the above density. A monotonic transformation of the PDF does not 

alter the location of the maximum. Thus, taking the natural logarithm yields: 

ln[𝑝𝑚|𝑠(𝑀|𝑠̂)] = −
𝑁

2
 ln(2𝜋) −

𝑁

2
 ln(𝑠̂2 + 𝑞2) −

∑ 𝑀[𝑛]2𝑁−1
𝑛=0

2(𝑠̂2+𝑞2)
. 

Differentiating the above with respect to 𝑠̂ gives: 

𝜕 ln[𝑝𝑚|𝑠(𝑀|𝑠̂)]

𝜕 𝑠̂
= −

𝑁

2
 
2𝑠̂

𝑠̂2+𝑞2
+
𝑠̂ ∑ 𝑀[𝑛]2𝑁−1

𝑛=0

(𝑠̂2+𝑞2)2
. 
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Setting this derivative to zero and manipulating leads to a quadratic equation for 𝑠̂2, 

the square root of which provides our result. The quadratic equation has two solutions. 

But, one of these solutions is not real-valued, so can be eliminated. The retained result 

is: 

𝑠̂ = √(
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
) − 𝑞2. 

The left-hand term within the square root is the RMS value.  ence, the noise “offset” 

correction is made in the power domain. 

 Evaluation of the second derivative of (3), with respect to 𝑠̂, verifies that (5) is 

indeed a local maximum (and not a minimum)—but only when the RMS in (5) exceeds 

the noise variance 𝑞2. This condition is almost always satisfied during active muscle 

contraction, but not during low-level contractions or rest. For such a case, 

maximization with respect to 𝑠̂ of the PDF occurs at the boundary constraint where 

𝑠̂ = 0. Hence, the complete solution for this estimator is: 

𝑠̂RMS = √max [0, (
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
) − 𝑞2],     (6) 

where “max” denotes the maximum value operator and the “RMS” subscript emphasizes the 

use of an RMS processor. 

The term inside the rounded parentheses can be re-written as: 

𝑦 = ∑ (
𝑀[𝑛]

√𝑁
)

2𝑁−1

𝑛=0

, 

where the new random variables 
𝑀[𝑛]

√𝑁
 are jointly Gaussian, white (thus, for Gaussian random 

variables, independent), wide-sense stationary, correlation-ergodic, zero-mean and of 

standard deviation 
𝜎𝑚

√𝑁
. In general, Papoulis (Papoulis, 1984) showed that if 𝑥 is an N-length, 

jointly Gaussian, white, wide-sense stationary, correlation-ergodic, random vector of zero 

mean and standard deviation σ, then 𝑦 = ∑ 𝑥2[𝑛]𝑁−1
𝑛=0  is Chi-square distributed as: 

𝑝𝑦(𝑌) =

{
 
 

 
 𝑌

𝑁
2
−1 𝑒

−𝑌
2𝜎2

(𝜎√2)
𝑁
 Γ (

𝑁
2)
, 𝑌 > 0

0, otherwise,

 

where Γ(∙) is the Gamma function, defined for α positive as: 
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Γ(𝛼) = ∫ 𝑥𝛼−1 𝑒−𝑥 𝑑𝑥,     𝛼 > 0.

∞

𝑥=0

 

Note that if 𝛼  is a positive integer, Γ(𝛼) = (𝛼 − 1)! . Substituting the known value for the 

standard deviation of the original Gaussian variables gives: 

𝑝𝑦(𝑌) =

{
 
 

 
 𝑌

𝑁
2
−1 𝑒

−𝑌∙𝑁

2𝜎𝑚
2

(𝜎𝑚√
2
𝑁)

𝑁

 Γ (
𝑁
2
)

, 𝑌 > 0

0, otherwise.

 

Miller and Freund (Miller & Freund, 1977) list this distribution as the Gamma PDF [as does 

Papoulis (Papoulis, 1984), albeit with distinct notation], as: 

𝑝𝑥(𝑋) = {
𝑋𝑎−1 𝑒

−𝑋
𝑏

𝑏𝑎 Γ(𝑎)
, 𝑋 > 0,   𝑎 > 0,   𝑏 > 0

0, otherwise

≡ Gamma(𝑎, 𝑏), 

where 𝐸(𝑥) = 𝑎𝑏 and 𝜎𝑥
2 = 𝑎 𝑏2. Comparison of the numerators of px(X) and py(Y) shows that 

𝑎 =
𝑁

2
 and 𝑏 =

2 𝜎𝑚
2

𝑁
. As a check, substituting these values into the denominator of px(X) 

correctly equates to the denominator of py(Y): 

𝑏𝑎 Γ(𝑎) = (
2 𝜎𝑚

2

𝑁
)

𝑁
2

 Γ (
𝑁

2
) = (𝜎𝑚√

2

𝑁
)

𝑁

 Γ (
𝑁

2
),     𝜎𝑚 ≥ 0. 

Hence, the moment formulae from Miller and Freund provide these moments of y: 

𝐸(𝑦) = 𝑎𝑏 =
𝑁

2
∙
2 𝜎𝑚

2

𝑁
= 𝜎𝑚

2      and     𝜎𝑦
2 = 𝑎 𝑏2 =

𝑁

2
∙ (
2 𝜎𝑚

2

𝑁
)

2

=
2 𝜎𝑚

4

𝑁
. 

In general, the Gamma distribution does not have a closed-form expression for its cumulative 

density function, but can be readily evaluated numerically by commonly available software.  

However, if N is even-valued, its CDF for y can be written as (Leon-Garcia, 1994): 

𝑃𝑦≤(𝑌) = 1 − ∑

(
𝑁
2 𝜎𝑚

2 )
𝑘

 𝑌𝑘  𝑒
−𝑌∙𝑁

2𝜎𝑚
2

𝑘!

𝑁
2
−1

𝑘=0

,     𝑌 > 0,𝑁 even. 

 Now, when the muscle is fully at rest, 𝑠 = 0, and 𝜎𝑚
2 = 𝑞2; or 𝜎𝑚 = 𝑞. Thus, the PDF 

for y becomes: 

𝑝𝑦,𝑅𝑒𝑠𝑡(𝑌) =

{
 
 

 
 𝑌

𝑁
2
−1 𝑒

−𝑌∙𝑁
2𝑞2

(𝑞√
2
𝑁)

𝑁

 Γ (
𝑁
2)

, 𝑌 > 0

0, otherwise

= Gamma(
𝑁

2
,
2 𝑞2

𝑁
). 
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Hence, when computing 𝑠̂RMS during rest contractions, the probability of estimating a zero 

value (i.e., the probability that the subtraction within the maximizing function will yield a 

negative value) equals the cumulative density for y evaluated at q2 during the rest condition, 

or 𝑃𝑦≤𝑞2,𝑅𝑒𝑠𝑡(𝑌).  Substituting into the CDF above (for N even) using the fact that 𝜎𝑚
2 = 𝑞2 at 

rest gives: 

𝑃𝑦≤𝑞2,𝑅𝑒𝑠𝑡(𝑌)|𝑌=𝑞2,𝜎𝑚2 =𝑞2
= 1 − ∑

(
𝑁
2 𝑞2

)
𝑘

 (𝑞2)𝑘 𝑒
−𝑞2∙𝑁
2𝑞2

𝑘!

𝑁
2
−1

𝑘=0

= 1 − ∑
(
𝑁
2
)
𝑘

 𝑒
−𝑁
2

𝑘!
,     𝑌 > 0,𝑁 even.

𝑁
2
−1

𝑘=0

 

This result shows that the probability of estimating a zero value is unrelated to the standard 

deviation of the noise—it is only related to the smoothing window length. 

For the Gaussian model and its corresponding RMS processor, the figure below shows 

the probability of estimating a zero 𝑠̂RMS value during rest as a function of even values of NEq 

between 2 and 200. It would appear that this plot is approaching 0.5 as NEq increases above 

200. Over the practical range of NEq, this probability does not vary appreciably—it remains 

near 0.5. Thus, at rest, the maximum likelihood estimate only provides an estimate of zero 

standard deviation about one half of the samples. 

 

 
Figure: Plots of theoretical (black “.”, for NEq even-valued) and empirical (black “x”) 

probability of estimating a zero value, as a function of window duration. Empirical 

results used a noise standard deviation of q=5, and 100 million sample duration 

simulated EMG in MATLAB. Magenta results are for g=1.05 (see below) and cyan 

results are for g=0.95. 
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 It may be appropriate to form an estimator that provides an EMGσ estimate of zero 

with higher probability when the muscle is at rest.  For example, myoelectric prosthesis control 

software very much desires a control signal that equals zero whenever the user’s muscles are 

at rest.  Else, the prosthesis will slowly “drift” and change its posture when the user intends 

the device to remain in its current pose. A reasonable approach to further increase the 

probability of a zero output during muscle rest is to create the estimate 𝑠̂RMS−g as: 

𝑠̂RMS_G = √max [0, (
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
)− 𝑔2𝑞2] , 

where g≥0 is a gain factor that scales the subtraction term. A value of g>1 will increase the 

probability of providing a zero-valued EMGσ estimate. Substituting into the CDF above (for N 

even) using the fact that 𝜎𝑚
2 = 𝑞2 at rest gives: 

𝑃𝑦≤𝑔2𝑞2,𝑅𝑒𝑠𝑡(𝑌)|𝑌=𝑔2𝑞2,𝜎𝑚2 =𝑞2
= 1 − ∑

(
𝑁
2 𝑞2

)
𝑘

 (𝑔2𝑞2)𝑘 𝑒
−𝑔2𝑞2∙𝑁
2𝑞2

𝑘!

𝑁
2
−1

𝑘=0

 

or 

𝑃𝑦≤𝑔2𝑞2,𝑅𝑒𝑠𝑡(𝑌)|𝑌=𝑔2𝑞2,𝜎𝑚2 =𝑞2
= 1 − ∑

(
𝑁
2)

𝑘

 𝑔2𝑘 𝑒
−𝑔2𝑁
2

𝑘!
,     𝑁 even.

𝑁
2
−1

𝑘=0

 

 The figure above shows the probability of estimating a zero 𝑠̂RMS value during rest as 

a function of even values of N between 2 and 200, when g = 0.95, 1 and 1.05.  The plots are 

quite sensitive to this noise gain value. From the plot, it appears that the probability of 

estimating a zero 𝑠̂RMS value tends towards 0.5 for g=1, towards 1 for g>1, and towards 0 for 

g<1. 

 

Gaussian Model: MATLAB Validation/Testing 

MATLAB was used to test the above Gaussian model formulae.  First, one hundred 

million one hundred (NN) independent, zero-mean, unit-variance Gaussian random deviates 

were arranged into vector 𝑥 . One hundred million one hundred independent, zero-mean 

Gaussian random deviates of standard deviation equal to q=5 were arranged into vector 𝑣. 

Vector 𝑥 was initially multiplied by s=23, to set the standard deviation of the true EMG signal. 

The scaled 𝑥 vector was added to the noise vector 𝑣 to form the measured EMG vector 𝑚.  

Vector 𝑚 was then squared and moving average filtered using a window length of N=100. The 

first N=100 samples in this result were deleted (to remove the filter startup transient), forming 

the random vector 𝑦, which should have the PDF 𝑝𝑦(𝑌) described in this section. A histogram 

estimate of the PDF of y was generated from vector 𝑦 using 101 bins (shown in cyan below) 
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and compared to the 𝑝𝑦(𝑌) equation (i.e., theory) derived herein (shown as magenta circles 

in the figure below) and to the MATLAB function that computes the PDF for a Gamma density 

with the a and b parameters as given above (black “x”s). The different techniques compare 

well.  Also shown is the value of 𝑝𝑦≤(𝑞
2) value computed using the MATLAB Gamma CDF 

function as well as the fraction of 𝑦 values that were less than q2. Again, these values are 

equivalent, as expected. 

 

 Second, a rest contraction was simulated by setting s=0 and re-computing all results 

(i.e., using a new instance of random vectors for 𝑥 and 𝑣). That result is shown below. All 

results were consistent with theory, showing that, at rest, 51.99% of the RMS values are lower 

than the noise floor. 

 
Figure: Shows histogram estimate of PDF (cyan), theoretic estimate of PDF based on 

the analysis of this section (magenta circles) and theoretic Gamma PDF function of 

MATLAB (black “x”s). Parameters are: s = 23, q = 5, N = 100 and NN = 10,000,000. 
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 Third, another rest contraction was simulated by setting s=0, but now also altering the 

noise intensity be setting the standard deviation of the noise to q=47. All results were re-

computed using a new instance of random vectors for 𝑥 and 𝑣. That result is shown below. 

Again, all results were consistent with theory, showing that, at rest, 51.99% of the RMS values 

are lower than the noise floor. 

 
Figure: Shows histogram estimate of PDF (cyan), theoretic estimate of PDF based on 

the analysis of this section (magenta circles) and theoretic Gamma PDF function of 

MATLAB (black “x”s). Parameters are: s = 0, q = 5, N = 100 and NN = 10,000,000. 
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 Fourth, another rest contraction was simulated by setting s=0, returning the noise 

intensity to q=5, but setting the smoothing window duration to N=200. All results were re-

computed using a new instance of random vectors for 𝑥 and 𝑣. That result is shown below. 

Again, all results were consistent with theory, showing that, at rest, 51.39% of the RMS values 

are lower than the noise floor. 

 
Figure: Shows histogram estimate of PDF (cyan), theoretic estimate of PDF based on the 

analysis of this section (magenta circles) and theoretic Gamma PDF function of MATLAB 

(black “x”s). Parameters are: s = 0, q = 47, N = 100 and NN = 10,000,000. 
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Derived Density: Absolute Value of the Laplacian Density 

 A zero mean Laplacian random variable, x, has the probability density function (PDF) 

(Drake, 1967): 

𝑝𝑥(𝑋) =
√2

2 𝜎
 𝑒
−√2
𝜎
 |𝑋| ,    − ∞ ≤ 𝑋 ≤ ∞ 

where σ is the standard deviation. Form random variable y as: 𝑦 = |𝑥|.  Because of the 

symmetry about the x-axis exhibited by the Laplacian density, the cumulative density function 

(CDF) for y can be written as: 

𝑃𝑦≤(𝑌) = {
∫ 𝑝𝑥(𝑋) 𝑑𝑋

𝑌

𝑋=−𝑌

, 𝑌 > 0

0, otherwise.

. 

Substituting the Laplacian density into the integral: 

𝑃𝑦≤(𝑌) = ∫
√2

2 𝜎
 𝑒
−√2
𝜎
 |𝑋| 𝑑𝑋

𝑌

𝑋=−𝑌

=
√2

2 𝜎
 [ ∫ 𝑒

√2
𝜎
𝑋 𝑑𝑋

0

𝑋=−𝑌

+ ∫ 𝑒
−√2
𝜎
 𝑋 𝑑𝑋

𝑌

𝑋=0

] 

 
Figure: Shows histogram estimate of PDF (cyan), theoretic estimate of PDF based on the 

analysis of this section (magenta circles) and theoretic Gamma PDF function of MATLAB 

(black “x”s). Parameters are: s = 0, q = 5, N = 200 and NN = 10,000,000. 
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=
√2

2 𝜎
 

[
 
 
 𝑒

√2
𝜎
𝑋

√2
𝜎

|

𝑋=−𝑌

0

+
𝑒
−√2
𝜎
𝑋

−√2
𝜎

|

𝑋=0

𝑌

]
 
 
 
=
1

2
 [𝑒

√2
𝜎
𝑋|
𝑋=−𝑌

0

− 𝑒
−√2
𝜎
𝑋|
𝑋=0

𝑌

] 

=

(𝑒
√2
𝜎
∙0 − 𝑒

√2
𝜎
 (−𝑌)

) − (𝑒
−√2
𝜎
𝑌 − 𝑒

−√2
𝜎
∙0
)

2
=
1 − 𝑒

−√2
𝜎
𝑌 − 𝑒

−√2
𝜎
𝑌 + 1

2
 

𝑃𝑦≤(𝑌) = {1 − 𝑒
−√2
𝜎
𝑌, 𝑌 > 0

0, otherwise.
 

To determine the PDF for y, we differentiate this CDF with respect to Y: 

𝑝𝑦(𝑌) =
𝑑 𝑃𝑦≤(𝑌)

𝑑𝑌
=

𝑑 (1 − 𝑒
−√2
𝜎
𝑌
)

𝑑𝑌
= −

−√2

𝜎
 𝑒
−√2
𝜎
𝑌
 

𝑝𝑦(𝑌) = {
√2

𝜎
 𝑒
−√2
𝜎
𝑌, 𝑌 > 0

0, otherwise.

 

This resulting PDF is exponential, with expected value: 𝐸(𝑦) =  
𝜎

√2
 (Drake, 1967). 

 

Derived Density: Square of the Erlang Density 

 An Erlang random variable, x, with parameter N has the PDF (Drake, 1967): 

𝑝𝑥(𝑋) = {

𝑎𝑁  𝑋𝑁−1 𝑒−𝑎𝑋

(𝑁 − 1)!
𝑋 > 0,   𝑎 > 0

0, otherwise,

 

where 𝐸(𝑥) =
𝑁

𝑎
, 𝜎𝑥 =

√𝑁

𝑎
 and N is an integer. Form random variable y as: 𝑦 = 𝑥2. The CDF for 

y can be found as: 

𝑃𝑦≤(𝑌) =

{
 

 
∫ 𝑝𝑥(𝑋) 𝑑𝑋

√𝑌

𝑋=0

, 𝑌 > 0

0, otherwise.

 

Substituting the N-Erlang density into the integral: 

𝑃𝑦≤(𝑌) = ∫
𝑎𝑁  𝑋𝑁−1 𝑒−𝑎𝑋

(𝑁 − 1)!
 𝑑𝑋

√𝑌

𝑋=0

=
𝑎𝑁

(𝑁 − 1)!
∫ 𝑋𝑁−1 𝑒−𝑎𝑋 𝑑𝑋

√𝑌

𝑋=0

. 

For N an integer, Gradshteyn and Ryzik (Gradshteyn & Ryzhik, 1980) solve this integral using 

successive stages of integration by parts, giving: 

𝑃𝑦≤(𝑌) =
𝑎𝑁

(𝑁 − 1)!
 {𝑒−𝑎𝑋 [

𝑋𝑁−1

−𝑎
+ ∑(−1)𝑘  

(𝑁 − 1)(𝑁 − 2)⋯(𝑁 − 𝑘)

(−𝑎)𝑘+1

𝑁−1

𝑘=1

 𝑋𝑁−1−𝑘]}|

𝑋=0

√𝑌

. 
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Note that for a>0, 
(−1)𝑘

(−𝑎)𝑘+1
=

−1

𝑎𝑘+1
.  Also note that: (𝑁 − 1)(𝑁 − 2)⋯(𝑁 − 𝑘) =

(𝑁−1)!

(𝑁−1−𝑘)!
. Thus, 

𝑃𝑦≤(𝑌) =
−(𝑎𝑁)

(𝑁 − 1)!
 {𝑒−𝑎𝑋 [

𝑋𝑁−1

𝑎
+ ∑  

(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 𝑋𝑁−1−𝑘]}|

𝑋=0

√𝑌

. 

Evaluating the limits of this definite integral: 

𝑃𝑦≤(𝑌) =
−(𝑎𝑁)

(𝑁 − 1)!
 {𝑒−𝑎√𝑌 [

√𝑌
𝑁−1

𝑎
+ ∑  

(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 √𝑌
𝑁−1−𝑘

]

− 𝑒−𝑎∙0 [
0𝑁−1

𝑎
+ ∑  

(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 0𝑁−1−𝑘]}. 

Several of the terms involving the evaluation at X=0 can be simplified as: 

• 𝑒−𝑎∙0 = 1,   for 𝑎 > 0; 

• 
0𝑁−1

𝑎
= 0,   for an integer 𝑁 > 1; 

•  0𝑁−1−𝑘 = 0 for all terms in the sum except for the final term when 𝑘 = 𝑁 − 1. 

At this term, 0𝑁−1−𝑘|𝑘=𝑁−1 = 0
𝑁−1−(𝑁−1) = 00 = 1.  Hence, only the final term in 

the sum is non-zero and the entire sum simplifies to: 

∑  
(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 0𝑁−1−𝑘 =
(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1
  0𝑁−1−𝑘|

𝑘=𝑁−1

=
(𝑁 − 1)!

0! 𝑎𝑁

=
(𝑁 − 1)!

𝑎𝑁
. 

Incorporating each of these simplification into the equation for 𝑃𝑦≤(𝑌) gives; 

𝑃𝑦≤(𝑌) =
−(𝑎𝑁)

(𝑁 − 1)!
 {𝑒−𝑎√𝑌 [

√𝑌
𝑁−1

𝑎
+ ∑  

(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 √𝑌
𝑁−1−𝑘

] −
(𝑁 − 1)!

𝑎𝑁
}, 

=
𝑎𝑁

(𝑁 − 1)!
 {
(𝑁 − 1)!

𝑎𝑁
−𝑒−𝑎√𝑌 [

𝑌
𝑁−1
2

𝑎
+ ∑  

(𝑁 − 1)!

(𝑁 − 1 − 𝑘)! 𝑎𝑘+1

𝑁−1

𝑘=1

 𝑌
𝑁−1−𝑘

2 ]}, 

or 

𝑃𝑦≤(𝑌) =  

{
 

 
1−𝑒−𝑎√𝑌 [

𝑎𝑁−1 𝑌
𝑁−1
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

 𝑌
𝑁−1−𝑘

2 ] 𝑌 > 0

0, otherwise.

 

To determine the PDF for y, we differentiate this CDF with respect to Y: 

𝑝𝑦(𝑌) =
𝑑 𝑃𝑦≤(𝑌)

𝑑𝑌
=

𝑑 (1−𝑒−𝑎𝑌
1
2 [
𝑎𝑁−1 𝑌

𝑁−1
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!
𝑁−1
𝑘=1  𝑌

𝑁−1−𝑘
2 ])

𝑑𝑌
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= −𝑒−𝑎𝑌
1
2 ∙

𝑑 (
𝑎𝑁−1 𝑌

𝑁−1
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!
𝑁−1
𝑘=1  𝑌

𝑁−1−𝑘
2 )

𝑑𝑌
+
𝑑 (−𝑒−𝑎𝑌

1
2)

𝑑𝑌

∙ (
𝑎𝑁−1 𝑌

𝑁−1
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

 𝑌
𝑁−1−𝑘

2 ) 

𝑝𝑦(𝑌) = −𝑒
−𝑎𝑌

1
2 ∙ (

𝑎𝑁−1

(𝑁 − 1)!
∙
(𝑁 − 1) 𝑌

𝑁−3
2

2
+ ∑  

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

∙
(𝑁 − 1 − 𝑘) 𝑌

𝑁−3−𝑘
2

2
)

− (
−𝑎 𝑒−𝑎𝑌

1
2

2 𝑌
1
2

) ∙ (
𝑎𝑁−1 𝑌

𝑁−1
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘−1 𝑌
𝑁−1−𝑘

2

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

) 

When 𝑘 = 𝑁 − 1 in the first sum, the summed term simplifies to: 

𝑎𝑁−𝑘−1

(𝑁 − 1 − 𝑘)!
∙
(𝑁 − 1 − 𝑘) 𝑌

𝑁−3−𝑘
2

2
|

𝑘=𝑁−1

=
𝑎𝑁−(𝑁−1)−1

(𝑁 − 1 − (𝑁 − 1))!
∙
(𝑁 − 1 − (𝑁 − 1)) 𝑌

𝑁−3−(𝑁−1)
2

2

=
𝑎0

(0)!
∙
(0) 𝑌

−2
2

2
=
1

1
∙
(0) 𝑌−1

2
=

0

2 𝑌
= 0. 

Thus, this final term in the sum is always zero. This term can be removed from the sum, such 

that the sum ends at index 𝑘 = 𝑁 − 2. Incorporating this change, switching the order of the 

two major terms and simplifying/combining gives: 

𝑝𝑦(𝑌) = (
𝑒−𝑎𝑌

1
2

2
) ∙ (

𝑎𝑁  𝑌
𝑁−2
2

(𝑁 − 1)!
+ ∑  

𝑎𝑁−𝑘 𝑌
𝑁−2−𝑘

2

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

)− (
𝑒−𝑎𝑌

1
2

2
)

∙ (
𝑎𝑁−1 𝑌

𝑁−3
2

(𝑁 − 2)!
+ ∑  

𝑎𝑁−𝑘−1 𝑌
𝑁−3−𝑘

2

(𝑁 − 2 − 𝑘)!

𝑁−2

𝑘=1

) 

𝑝𝑦(𝑌) = 

{
 

 𝑎𝑁  𝑌
𝑁−2
2  𝑒−𝑎𝑌

1
2

2
∙ (

1

(𝑁 − 1)!
+ ∑  

𝑎−𝑘  𝑌
−𝑘
2

(𝑁 − 1 − 𝑘)!

𝑁−1

𝑘=1

−
𝑎−1 𝑌

−1
2

(𝑁 − 2)!
− ∑  

𝑎−𝑘−1 𝑌
−1−𝑘
2

(𝑁 − 2 − 𝑘)!

𝑁−2

𝑘=1

) , 𝑌 > 0

0, otherwise.

 

 

Derived Density: 𝒚𝟐𝒈 is the Square Root of 𝒚𝟏𝒈, Gaussian Model 

The maximum likelihood estimate for the Gaussian case is formed as  

𝑦2𝑔 = √𝑦1𝑔, 

where 
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𝑦1𝑔 = max [0, (
∑ 𝑀[𝑛]2𝑁−1
𝑛=0

𝑁
)− 𝑔2𝑞2], 

and is has already been shown that 

𝑝𝑦1𝐺(𝑌1𝐺) =

{
 
 
 
 
 

 
 
 
 
 

0, 𝑌1𝐺 < 0

[
 
 
 
 

1 − ∑
(

𝑁
2 (𝑠2 + 𝑞2)

)
𝑘

 (𝑔2𝑞2)𝑘 𝑒
−(𝑔2𝑞2)∙𝑁

2 (𝑠2+𝑞2)

𝑘!
 

𝑁
2
−1

𝑘=0

]
 
 
 
 

𝛿(𝑌1𝐺), 𝑌1𝐺 = 0,𝑁 even

(𝑌1𝐺 + 𝑔
2𝑞2)

𝑁
2
−1 𝑒

−(𝑌1𝐺+𝑔
2𝑞2)∙𝑁

2 (𝑠2+𝑞2)

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2
)

, 𝑌1𝐺 > 0,𝑁 even.

 

Cumulative Density Function 

We wish to determine the CDF for 𝑦2𝑔, which is the probability 𝑃𝑦2𝑔≤(𝑌2𝐺). 

• Case 1: 𝑌2𝐺 < 0: 

o The CDF for 𝑦2𝑔  is zero for 𝑌2𝐺 < 0, since 𝑝𝑦1𝐺(𝑌1𝐺) = 0 for 𝑌1𝐺 < 0, and 

√0 = 0. No probability is accumulated. 

• Case 2: 𝑌2𝐺 = 0: 

o Since the square root of zero equals zero, the impulsive probability 

associated with the value zero is not altered by the square root function.  

Thus, the same impulse of probability will remain associated with this 

location.  Since there is no accumulated probability prior to  𝑌2𝐺 = 0 

(scanning back to −∞) and the CDF integrates this impulsive probability at 

 𝑌2𝐺 = 0, 

𝑃𝑦2𝐺≤(𝑌2𝐺)

=

[
 
 
 
 

1 − ∑
(

𝑁
2 (𝑠2 + 𝑞2)

)
𝑘

 (𝑔2𝑞2)𝑘 𝑒
−(𝑔2𝑞2)∙𝑁

2 (𝑠2+𝑞2)

𝑘!
 

𝑁
2
−1

𝑘=0

]
 
 
 
 

𝜇(𝑌2𝐺) ≡ 𝑃𝑦2𝐺≤(𝑌2𝐺 = 0), 𝑁 even, 

where 𝜇(𝑌2𝐺) = {
0, 𝑌2𝐺 < 0
1, 𝑌2𝐺 ≥ 0

 is the unit step function. 

• Case 3: 𝑌2𝐺 > 0: 

o In this case, the CDF for 𝑦2𝐺 will accumulate the probability associated with 

𝑌2𝐺 = 0 as well as the probability associated with 𝑌2𝐺 > 0
+: 
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𝑃𝑦2𝐺≤(𝑌2𝐺) = 𝑃𝑦2𝐺≤(𝑌2𝐺 = 0) + ∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

. 

Focusing on the integral: 

∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

= ∫
(𝑌1𝐺 + 𝑔

2𝑞2)
𝑁
2
−1 𝑒

−(𝑌1𝐺+𝑔
2𝑞2)∙𝑁

2 (𝑠2+𝑞2)

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

 

=
∫ (𝑌1𝐺 + 𝑔

2𝑞2)
𝑁
2
−1 𝑒

−(𝑌1𝐺+𝑔
2𝑞2)∙𝑁

2 (𝑠2+𝑞2)  𝑑𝑌1𝐺
𝑌2𝐺
2

𝑌1𝐺=0

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

. 

Since 𝑁  is even-valued, 
𝑁

2
≡ 𝑀  is an integer. Let 𝑎 = 𝑔2𝑞2  and 𝑏 =

𝑁

2 (𝑠2+𝑞2)
=

𝑀

(𝑠2+𝑞2)
. The integral becomes: 

∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

=
∫ (𝑌1𝐺 + 𝑎)

𝑀−1 𝑒−𝑏(𝑌1𝐺+𝑎) 𝑑𝑌1𝐺
𝑌2𝐺
2

𝑌1𝐺=0

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

. 

Using the on-line Wolfram Alpha web site (2019/04/01), this integral is 

solved, providing 

∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺 =
−(𝑌1𝐺 + 𝑎)

𝑀[𝑏(𝑌1𝐺 + 𝑎)]
−𝑀 Γ𝐼𝑛𝑐[𝑀, 𝑏(𝑌1𝐺 + 𝑎)]|𝑌1𝐺=0

𝑌2𝐺
2

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

𝑌2𝐺
2

𝑌1𝐺=0

, 

where Γ𝐼𝑛𝑐(∙) is the upper incomplete Gamma function, defined as 

Γ𝑈𝑝(𝛼, 𝑥) ≡ ∫ 𝑡𝛼−1𝑒−𝑡 𝑑𝑡

∞

𝑡=𝑥

. 

Substituting the definite limits of the integral: 

∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

=
−(𝑌2𝐺

2 + 𝑎)𝑀[𝑏(𝑌2𝐺
2 + 𝑎)]−𝑀 Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] − −(0 + 𝑎)𝑀[𝑏(0 + 𝑎)]−𝑀 Γ𝑈𝑝[𝑀, 𝑏(0 + 𝑎)]

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)
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=
−(𝑌2𝐺

2 + 𝑎)𝑀[𝑏(𝑌2𝐺
2 + 𝑎)]−𝑀 Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] + 𝑎𝑀 (𝑏 ∙ 𝑎)−𝑀 Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎]

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

, 

=
−𝑏−𝑀 Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] +  𝑏−𝑀 Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎]

(√
2 (𝑠2 + 𝑞2)

𝑁 )

𝑁

 Γ (
𝑁
2)

. 

From the definitions above,  

(√
2 (𝑠2 + 𝑞2)

𝑁
)

𝑁

 Γ (
𝑁

2
) = (√𝑏−1)

𝑁

 Γ(𝑀) = 𝑏
−𝑁
2   Γ(𝑀) = 𝑏−𝑀  Γ(𝑀). 

Thus, 

∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

=
−𝑏−𝑀 Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] +  𝑏−𝑀 Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎]

𝑏−𝑀  Γ(𝑀)
, 

=
−Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] + Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎]

Γ(𝑀)
 

Then, the complete CDF for this case is: 

𝑃𝑦2𝐺≤(𝑌2𝐺) = 𝑃𝑦2𝐺≤(𝑌2𝐺 = 0) + ∫ 𝑝𝑦1𝐺(𝑌1𝐺) 𝑑𝑌1𝐺

𝑌2𝐺
2

𝑌1𝐺=0

, 

 

=

[
 
 
 
 

1 − ∑
(

𝑁
2 (𝑠2 + 𝑞2)

)
𝑘

 (𝑔2𝑞2)𝑘 𝑒
−(𝑔2𝑞2)∙𝑁

2 (𝑠2+𝑞2)

𝑘!
 

𝑁
2
−1

𝑘=0

]
 
 
 
 

𝜇(𝑌2𝐺)

+
−Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)] + Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎]

Γ(𝑀)
 𝜇(𝑌2𝐺), 

or 

𝑃𝑦2𝐺≤(𝑌2𝐺) = [1 − ∑
𝑏𝑘 𝑎𝑘  𝑒−𝑎∙𝑏

𝑘!
 

𝑀−1

𝑘=0

+
Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎] − Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺

2 + 𝑎)]

Γ(𝑀)
]  𝜇(𝑌2𝐺). 

     Note that  ikipedia (see “Special values” in 

https://en.wikipedia.org/wiki/Incomplete_gamma_function, accessed 2019/04/03) and   

https://en.wikipedia.org/wiki/Incomplete_gamma_function


 

55 

 
 

 

Wolfram MathWorld (http://mathworld.wolfram.com/IncompleteGammaFunction.html, 

accessed 2019/04/03) claim for 𝛼 a positive integer, 

Γ𝑈𝑝(𝛼, 𝑥) = (𝛼 − 1)! 𝑒
−𝑥  ∑

𝑥𝑘

𝑘!
.

𝛼−1

𝑘=0

 

Thus, the right-most term in the square brackets above can be written as: 

Γ𝑈𝑝[𝑀, 𝑏 ∙ 𝑎] − Γ𝑈𝑝[𝑀, 𝑏(𝑌2𝐺
2 + 𝑎)]

Γ(𝑀)

=
(𝑀 − 1)! 𝑒−𝑏∙𝑎  ∑

(𝑏 ∙ 𝑎)𝑘

𝑘!
𝑀−1
𝑘=0 − (𝑀 − 1)! 𝑒− 𝑏(𝑌2𝐺

2 +𝑎)  ∑
(𝑏(𝑌2𝐺

2 + 𝑎))
𝑘

𝑘!
𝑀−1
𝑘=0

(𝑀 − 1)!
 

= 𝑒−𝑏∙𝑎  ∑
(𝑏 ∙ 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

− 𝑒− 𝑏𝑎−𝑏𝑌2𝐺
2
 ∑

( 𝑏(𝑌2𝐺
2 + 𝑎))

𝑘

𝑘!

𝑀−1

𝑘=0

 

= 𝑒−𝑏∙𝑎  [∑
(𝑏 ∙ 𝑎)𝑘 − 𝑒−𝑏𝑌2𝐺

2
 ( 𝑏(𝑌2𝐺

2 + 𝑎))
𝑘

𝑘!

𝑀−1

𝑘=0

] 

= 𝑒−𝑏∙𝑎  [∑
𝑏𝑘 [𝑎𝑘 − 𝑒−𝑏𝑌2𝐺

2
 ( 𝑌2𝐺

2 + 𝑎)𝑘]

𝑘!

𝑀−1

𝑘=0

] 

Re-combining gives the CDF expression: 

𝑃𝑦2𝐺≤(𝑌2𝐺) = {1 − ∑
𝑏𝑘 𝑎𝑘  𝑒−𝑎∙𝑏

𝑘!
 

𝑀−1

𝑘=0

+ 𝑒−𝑏∙𝑎  [∑
𝑏𝑘 [𝑎𝑘 − 𝑒−𝑏𝑌2𝐺

2
 ( 𝑌2𝐺

2 + 𝑎)𝑘]

𝑘!

𝑀−1

𝑘=0

]}  𝜇(𝑌2𝐺),

𝑁 even. 

Note, however, that the sum on the left side cancels with the first term of the sum on the right 

side. Thus, the CDF can more simply be written as: 

𝑃𝑦2𝐺≤(𝑌2𝐺) = {1 + 𝑒
−𝑏∙𝑎  [∑

𝑏𝑘 [−𝑒−𝑏𝑌2𝐺
2
 ( 𝑌2𝐺

2 + 𝑎)𝑘]

𝑘!

𝑀−1

𝑘=0

]}  𝜇(𝑌2𝐺) 

= [1 − 𝑒−𝑏∙𝑎  ∑
𝑏𝑘 𝑒−𝑏𝑌2𝐺

2
 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

]  𝜇(𝑌2𝐺) 

𝑃𝑦2𝐺≤(𝑌2𝐺) = [1 − 𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)  ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

]  𝜇(𝑌2𝐺), 𝑁 even 

with  𝑀 =
𝑁

2
 an integer, 𝑎 = 𝑔2𝑞2, and 𝑏 =

𝑁

2 (𝑠2+𝑞2)
=

𝑀

(𝑠2+𝑞2)
.  Note that this function has a step 

discontinuity at 𝑌2𝐺 = 0, which produces an impulse at this location in the corresponding PDF. 

Probability Density Function 

http://mathworld.wolfram.com/IncompleteGammaFunction.html
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 The PDF 𝑝𝑦2𝐺(𝑌2𝐺) is found by differentiating the CDF 𝑃𝑦2𝐺≤(𝑌2𝐺).   Note that 𝑃𝑦2𝐺≤(𝑌2𝐺) 

equals zero for 𝑌2𝐺 < 0, steps up to the value given by 𝑃𝑦2𝐺≤(𝑌2𝐺 = 0) F at 𝑌2𝐺 = 0, and then 

increases smoothly towards a value of one for 𝑌2𝐺 > 0.  Hence: 

• Case 1: 𝑌2𝐺 < 0: 

o The PDF for 𝑦2𝑔 is zero for 𝑌2𝐺 < 0, since 𝑃𝑦2𝐺≤(𝑌2𝐺) = 0 for 𝑌2𝐺 < 0. 

• Case 2: 𝑌2𝐺 = 0: 

o An impulse of probability will exist at this location. We can arrive at this 

conclusion in two manners.  First, random variable 𝑦1𝐺 has an impulse at 

𝑦1𝐺 = 0 and the square root operation does not alter this impulse (√0 = 0).  

That is, all values that were zero prior to the square root operation will 

remain zero, and all values that were greater than zero will remain so.  Thus, 

𝑦2𝐺  will have the identical probability impulse at 𝑦2𝐺 = 0  as does 𝑦1𝐺 .  

Second, we can differentiate the equation for 𝑃𝑦2𝐺≤(𝑌2𝐺). Since 𝑃𝑦2𝐺≤(𝑌2𝐺) 

has a step change at zero, this step change height (i.e., the CDF value at 

𝑌2𝐺 = 0) becomes the area of the impulse at  𝑌2𝐺 = 0.  Thus, 

𝑝𝑦2𝐺(𝑌2𝐺) = 1 − ∑
𝑏𝑘 𝑎𝑘  𝑒−𝑎∙𝑏

𝑘!
  𝛿(𝑌2𝐺)

𝑀−1

𝑘=0

. 

• Case 3: 𝑌2𝐺 > 0: 

o Ignoring the step change in value at 𝑌2𝐺 = 0 (it is already accounted for in 

the prior case), the PDF is found by differentiating the CDF: 

𝑝𝑦2𝐺(𝑌2𝐺) =
𝑑 {𝑃𝑦2𝐺≤(𝑌2𝐺)}

𝑑 𝑌2𝐺
 

 

𝑝𝑦2𝐺(𝑌2𝐺) =
𝑑 {1 − 𝑒−𝑏∙( 𝑌2𝐺

2 +𝑎)  ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!
𝑀−1
𝑘=0 }

𝑑 𝑌2𝐺
 

 

=
𝑑 {−𝑒−𝑏∙( 𝑌2𝐺

2 +𝑎)  ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!
𝑀−1
𝑘=0 }

𝑑 𝑌2𝐺
 

 

= −𝑒−𝑏∙( 𝑌2𝐺
2 +𝑎)  

𝑑 {∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!
𝑀−1
𝑘=0 }

𝑑 𝑌2𝐺
+
𝑑 {−𝑒−𝑏∙( 𝑌2𝐺

2 +𝑎)}

𝑑 𝑌2𝐺
∑

𝑏𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0
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= −𝑒−𝑏∙( 𝑌2𝐺
2 +𝑎)  

𝑑 {
𝑏0 ( 𝑌2𝐺

2 + 𝑎)0

0!
+ ∑

𝑏𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘

𝑘!
𝑀−1
𝑘=1 }

𝑑 𝑌2𝐺

+ [2 𝑏 𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)] ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

 

 

= −𝑒−𝑏∙( 𝑌2𝐺
2 +𝑎)  

𝑑 {1 + ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!
𝑀−1
𝑘=1 }

𝑑 𝑌2𝐺
+ [2 𝑏 𝑌2𝐺  𝑒

−𝑏∙( 𝑌2𝐺
2 +𝑎)] ∑

𝑏𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

 

 

= −𝑒−𝑏∙( 𝑌2𝐺
2 +𝑎)  [∑

𝑏𝑘 𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘−1

𝑘!
∙ 2  𝑌2𝐺

𝑀−1

𝑘=1

] + [2 𝑏 𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)] ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

 

 

= −2  𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)  {[∑
𝑏𝑘 𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘−1

𝑘!

𝑀−1

𝑘=1

] − 𝑏 ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=0

} 

 

= −2  𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)  {[∑
𝑏𝑘 𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘−1

𝑘!

𝑀−1

𝑘=1

] − 𝑏 [1 + ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=1

]} 

 

= −2  𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)  {−𝑏 + ∑
𝑏𝑘 𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘−1

𝑘!

𝑀−1

𝑘=1

− 𝑏 ∑
𝑏𝑘 ( 𝑌2𝐺

2 + 𝑎)𝑘

𝑘!

𝑀−1

𝑘=1

} 

 

= 2  𝑌2𝐺  𝑒
−𝑏∙( 𝑌2𝐺

2 +𝑎)  {𝑏 + ∑
𝑏𝑘 [𝑏 ( 𝑌2𝐺

2 + 𝑎)𝑘 − 𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘−1]

𝑘!

𝑀−1

𝑘=1

} 

 

Thus, the full solution for the PDF is: 

𝑝𝑦2𝐺(𝑌2𝐺) =

{
  
 

  
 

0, 𝑌2𝐺 < 0

[1 − ∑
𝑏𝑘 𝑎𝑘  𝑒−𝑎∙𝑏

𝑘!
 

𝑀−1

𝑘=0

] 𝛿(𝑌2𝐺), 𝑌2𝐺 = 0,𝑁 even

2 𝑌2𝐺  𝑒
−𝑏∙(𝑌2𝐺

2 +𝑎) {𝑏 + ∑
𝑏𝑘 [𝑏 ( 𝑌2𝐺

2 + 𝑎)𝑘 − 𝑘 ( 𝑌2𝐺
2 + 𝑎)𝑘−1]

𝑘!

𝑀−1

𝑘=1

} , 𝑌2𝐺 > 0,𝑁 even,

 

with  𝑀 =
𝑁

2
 an integer, 𝑎 = 𝑔2𝑞2, and 𝑏 =

𝑁

2 (𝑠2+𝑞2)
=

𝑀

(𝑠2+𝑞2)
. 
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