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ABSTRACT

Kirchhoff’s laws are well-studied for electrical networks with voltage and current
sources, and edges marked by resistors. Kirchhoff’s voltage law states that the sum of
voltages around any circuit of the network graph is zero, while Kirchhoff’s current law states
that the sum of the currents along any cutset of the network graph is zero. Given a network,
these requirements may be encoded by the circuit matrix and cutset matrix of the network
graph. The columns of these matrices are indexed by the edges of the network graph, and
their row spaces are orthogonal complements.

For (chemical or electrochemical) reaction networks, one must naturally study the
opposite problem, beginning with the stoichiometric matrix rather than the network graph.
This leads to the following question: given such a matrix, what is a suitable graphic ren-
dering of a network that properly visualizes the underlying chemical reactions? Although
we can not expect uniqueness, the goal is to prove existence of such a graph for any matrix.
Specifically, we study Kirchhoff graphs, originally introduced by Fehribach. Mathematically,
Kirchhoff graphs represent the orthocomplementarity of the row space and null space of
integer-valued matrices. After introducing the definition of Kirchhoff graphs, we will survey
Kirchhoff graphs in the context of several diverse branches of mathematics.

Beginning with combinatorial group theory, we consider Cayley graphs of the additive
group of vector spaces, and resolve the existence problem for matrices over finite fields. Mov-
ing to linear algebra, we draw a number of conclusions based on a purely matrix-theoretic
definition of Kirchhoff graphs, specifically regarding the number of edges in Kirchhoff graphs.
Next we observe a geometric approach, reviewing James Clerk Maxwell’s theory of reciprocal
figures, and presenting a number of results on Kirchhoff duality. We then turn to algebraic
combinatorics, where we study equitable partitions, quotients, and graph automorphisms.
In addition to classifying the matrices that are the quotient of an equitable partition, we
demonstrate that many Kirchhoff graphs arise from equitable edge-partitions of directed
graphs. Finally we study matroids, where we review Tutte’s algorithm for determining when
a binary matroid is graphic, and extend this method to show that every binary matroid is
Z2-Kirchhoff. The underlying theme throughout each of these investigations is determining
new ways to both recognize and construct Kirchhoff graphs.
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Introduction

Kirchhoff’s laws are well-studied for electrical networks with voltage and current
sources, and edges marked by resistors; see, for example, [92]. Kirchhoff’s voltage law states
that the sum of voltages around any circuit of the network graph is zero, while Kirchhoff’s
current law can be formulated as the requirement that the sum of the currents along any
cutset of the network graph is zero. Given a network, these requirements may be encoded by
the circuit matrix, R, and cutset matrix, X, of the network graph. The columns of R and X
are both indexed by the edges of the network graph and RX t = 0 over Z2. A network with
positive resistors is known to be uniquely solvable if and only if the subset of edges of the
network graph determined by the voltage sources does not contain a cycle, and the subset
of edges determined by the current sources does not contain a cutset. It should be noted,
however, that the network graph is typically not recoverable from the matrices R and X.

We study the opposite problem, where rather than beginning with a network graph we
now begin with a matrix. For example, an electrochemical reaction network can be encoded
by an integer-valued matrix, the stoichiometric matrix, the columns of which correspond to
reaction steps. This leads to the following question: given this matrix, what is a suitable
graphic rendering of a network that properly visualizes the underlying chemical reactions?
Although we can not expect uniqueness, the goal is to prove existence of such a graph for
any matrix.

Specifically, we will consider a relatively-new type of graph, Kirchhoff graphs. Kirch-
hoff graphs were introduced by Fehribach [28] as a mathematically precise graphic repre-
sentation of electrochemical reaction networks. Kirchhoff graphs represent the orthocomple-
mentarity of the row space and null space of the stoichiometric matrix of a reaction network
[29]. As such, a chemical engineer can use a Kirchhoff graph in the way an electrical engineer
uses a standard circuit diagram.

Our goal is to study the mathematical foundations of Kirchhoff graphs. While it
is straightforward to introduce the notion of a Kirchhoff graph, as the reader will observe
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in the course of this text, these structures can be viewed from an array of mathematical
perspectives. Therefore we will survey Kirchhoff graphs within the context of several diverse
branches of mathematics. Each distinct viewpoint will present a unique interpretation of
Kirchhoff graphs, and inspire a new set of results regarding properties of these graphical
objects.

The body of this work will be presented as a sequence of studies that seek to un-
derstand Kirchhoff graphs within a variety of mathematical disciplines. Therefore, beyond
the outline of chapters that follows, this section will forego a complete and formal introduc-
tion and literature review. Instead, each chapter will begin with a review of known results,
including references to the relevant literature. Although we will be considering a number of
different mathematical fields, these topics are not unrelated. Care will be taken throughout
to draw parallels between the various interpretations of Kirchhoff graphs, and indeed many
later definitions and results are inspired by those in earlier chapters.

After Chapter 1 reviews the fundamentals of graph theory, including our choice of
notation, the remaining chapters can be broken-down into three parts: Chapters 2 through
4, Chapters 5 through 7, and Chapters 8 through 10.

The first part, comprised of Chapters 2 through 4, studies the relationship between
matrices and Kirchhoff graphs. Chapter 2 begins by motivating our study of Kirchhoff graphs
through examining a sample chemical reaction network. This leads to a formal definition of
vector graphs and Kirchhoff graphs in Section 2.2, derived from finite subgraphs of Cayley
color graphs (a classical object in combinatorial group theory). We then resolve the exis-
tence problem of Kirchhoff graphs for matrices over finite fields. Chapter 3 introduces the
notion of a vector assignment, which is used to give an entirely matrix-based definition of
Kirchhoff graphs. This allows us to draw a number of conclusions about the number of edges
in a Kirchhoff graph, and show that identifying Kirchhoff graphs is closely related to study-
ing permutation-invariance of linear subspaces. Lastly, Chapter 4 takes a more geometric
approach to Kirchhoff graphs. After reviewing James Clerk Maxwell’s theory of reciprocal
figures, this leads us to study a notion of duality in Kirchhoff graphs.

At the heart of vector graphs and Kirchhoff graphs is a partitioning of the edges of a
digraph into a finite set of (vector) classes. Therefore the second part, Chapters 5 through
7, studies graph partitioning in general; more specifically, equitable partitions. Chapter 5
introduces the classical theory of equitable (vertex) partitions of undirected graphs. Section
5.2 presents necessary and sufficient conditions for a square matrix to be the quotient of an
equitable partition. This result, in turn, allows us to show that every equitable partition
belongs to an infinite family of equitable partitions that all share the same quotient. Next,
Chapter 6 extends the notion of equitable partitioning to the the edges of directed multi-
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graphs. We demonstrate that any equitable edge-partition with a symmetric quotient matrix
is Kirchhoff. The remainder of the chapter studies the exactness of that correspondence by
considering uniform partitions and connected graphs. Lastly, Chapter 7 presents a collec-
tion of additional topics in graph partitioning. These include examining almost equitable
edge partitions (and their relationship to Kirchhoff partitions), in addition to a number of
methods of constructing equitable edge-partitions.

A common theme underlying Chapters 2 through 7 is the relationship between graphs
and matrices. This naturally leads to a study of matroids, which were originally introduced
to understand the abstract notion of dependence as it relates to graphs and matrices. This
comprises the third and final part of this text, Chapters 8 through 10. Chapter 8 provides
an introduction to matroid theory, including a number of the most classical definitions and
results. Section 8.3 closes the chapter with an observation of the author on when a binary
matroid is graphic. Along these lines, Chapter 9 presents an algorithm due to Tutte that
determines if a binary matroid is graphic. In addition to translating Tutte’s method into
current terminology, we present an in-depth example of his algorithm. Lastly, Chapter 10
synthesizes the ideas of Chapters 2, 6, 8, and 9. Specifically, after proposing a natural def-
inition of a Z2-Kirchhoff matroid, we demonstrate that every binary matroid is Z2-Kirchhoff.

The results presented in this text inspire a number of interesting questions for fur-
ther research. Many of these open problems arise from a specific interpretation of Kirchhoff
graphs. In order to present these questions in a natural context, we will not consolidate
them in a concluding section. Much as we chose to distribute the introductory material,
the reader will find a collection of open problems sprinkled throughout the text. None of
these questions will be answered here, but instead are meant to suggest avenues of future
research. We will use the heading “Question:” to draw attention to the most interesting of
these open problems.
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Notation

As this text surveys Kirchhoff graphs within the context of a number of mathematical
disciplines, a variety of notation is introduced in the following chapters. We strive to remain
consistent with the conventions of each respective field, while also minimizing overlap be-
tween chapters. A list of universal symbols is included immediately following the Table of
Contents, which we hope is of assistance to the reader.

In general, large objects will always be denoted with capital letters, and sub-objects in
lower case. For example, G will always be a graph, and D a digraph. Vertices and edges will
be noted by v and e (or vi and ei) respectively. Matrices will always be denoted by capital
letters, most often A and B, although also occasionally M , N , and R. The (i, j)-entry of
matrix A will be denoted either by A(i, j), Ai,j, or ai,j depending on context. We will not
deal with any complex-valued matrices, and so the transpose of matrix A will be denoted
At. Vectors will implicitly be assumed to be column vectors (unless otherwise stated), and
will be denoted with bold lower case letters. If x is a vector, then we will let xi denote the
ith entry of vector x. The two distinguished exceptions to these rules are cycle vectors and
vertex incidence vectors. These will be denoted χ(C) and λ(v), respectively, and will be
assumed to be row vectors unless otherwise noted.

The letters i and j will be reserved as generic indices, and p, q, r, s, and t will also
be used. The letters k,m and n are reserved throughout to represent cardinalities or di-
mensions. It will be clear from context which sets or subspaces these letters measure. Both
functions and multiplicative scalars will be denoted with lower-case Greek letters; once again,
the specific role will be clear in context.



Chapter 1

Fundamentals of Graph Theory

We begin, as is traditional in graph theory literature, with an introduction to the terminology
and notation that will be used throughout this text. In general, we will follow the conventions
of Bollobás’ Modern Graph Theory [10]. This chapter is not intended as a complete review of
basic graph theory–standard topics such as connectivity and coloring will not be discussed.
Rather, emphasis will be placed on introducing topics that will be used in the chapters
to come. This chapter will present primarily definitions and examples, as well as a few
theorems that will be relevant in future sections. For a more comprehensive introduction to
graph theory, the reader is referred to the standard texts of Harary [55], Bollobás [10], and
Diestel [23].

1.1 Definitions

A graph G is a pair of disjoint sets (V,E) such that E is a subset of [V ]2. That is, the
elements of E are unordered pairs of elements of V . The elements of V are the vertices of
G, and the elements of E are its edges . Given a graph G = (V,E), V = V (G) is the vertex
set of G and E = E(G) is the edge set. We consider only finite graphs, meaning the sets V
and E are always finite. The usual way to depict a graph is to draw a dot for each vertex,
and to join two dots by a line if the two corresponding vertices form an edge. For example,
Figure 1.1.1 illustrates a graph with vertex and edge sets

V =
{

1, 2, 3, 4, 5
}

and E =
{
{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}

}
.
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Although a graph is defined as an ordered pair, it is more usually thought of as a collection
of vertices, some of which are joined by edges. Often the simplest way to describe small
graphs is with a drawing, a technique that will be used repeatedly in this text.

1

2

34

5

Figure 1.1.1: A graph G with vertex set V = {1, 2, 3, 4, 5} and
edge set E = {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}}.

An edge e = {u, v} ∈ E(G) is said to join the vertices u and v. Two vertices u and v
are adjacent or neighbors if {u, v} ∈ E(G). We will sometimes use the notation u ∼ v to
denote that u and v are adjacent. Vertices u and v are the endvertices of edge e, and both
u and v are incident to the edge e. Two edges are adjacent if they share a common endvertex.

A graph G with vertex set V (G) = {vi} can be entirely encoded by a matrix. The ad-
jacency matrix A = A(G) of G is a |V (G)| × |V (G)| matrix where

Ai,j =

{
1 if vertex i is adjacent to vertex j

0 Otherwise
.

For example, the graph G in Figure 1.1.1 has adjacency matrix

A(G) =



1 2 3 4 5

1 0 0 1 1 0
2 0 0 0 1 1
3 1 0 0 0 1
4 1 1 0 0 0
5 0 1 1 0 0

.
The neighborhood of a vertex v is the set of all vertices adjacent to v, and the star of v is
the set of all edges incident to v. The degree of a vertex v, denoted deg(v), is the cardinality
of its neighborhood. That is, deg(v) is the number of vertices adjacent to v or, equivalently,
the number of edges incident to vertex v. As every edge has two endvertices, the sum of the
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vertex degrees in a graph must be twice the number of edges,∑
v∈V (G)

deg(v) = 2|E(G)|. (1.1)

Justified by a standard double-counting argument, (1.1) is the classical “handshaking lemma.”
A graph is regular if all vertices have the same degree, and κ-regular if all vertices have de-
gree κ.

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. A subgraph
G′ is an induced subgraph if it contains all edges of G that join two vertices of V ′. We denote
G′, the subgraph induced on V ′, by G[V ′]. Figure 1.1.2 illustrates a subgraph and an induced
subgraph of the graph G in Figure 1.1.1. If V ′ = V we say that G′ is a spanning subgraph
of G.

1

2

34

5 2

34

5

Figure 1.1.2: A subgraph and an induced subgraph of the
graph G in Figure 1.1.1.

A graph is complete if every pair of vertices is joined by an edge. The complete graph on n
vertices will be denoted by Kn. For any integer r ≥ 2, a graph G is r-partite if V (G) can be
partitioned into r classes such that the endvertices of every edge lie in different classes. A
2-partite graph is called bipartite. A complete r-partite graph is one in which every pair of
vertices in different classes are adjacent. The complete r-partite graph with partition classes
of size n1, n2, . . . , nr is denoted by Kn1,n2,...,nr . The complete graph K5 and the complete
bipartite graph K3,3 are illustrated in Figure 1.1.3. We will return to these two graphs
repeatedly in the chapters to come. The complement G of a graph G = (V,E) has vertex set
V and edge set [V ]2\E. The graph G of Figure 1.1.1 and its complement G are illustrated
in Figure 1.1.4.
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K5 K 3,3

Figure 1.1.3: The complete graph K5 and the complete bipar-
tite graph K3,3.

Two graphs are isomorphic if there is a correspondence between their vertex sets that
preserves both adjacencies and non-adjacencies. That is, G = (V,E) is isomorphic to
G′ = (V ′, E ′) if there exists a bijection φ : V → V ′ such that {u, v} ∈ E(G) if and only
if {φ(u), φ(v)} ∈ E(G′). We use G ∼= G′ to denote that G is isomorphic to G′, and the
bijection φ is called an isomorphism. If V = V ′ we call φ an automorphism. For example,
the graph G in Figure 1.1.4 is isomorphic to its complement G. One automorphism from G
to G is given by φ, where

φ(1) = 1 φ(2) = 3 φ(3) = 5 φ(4) = 2 φ(5) = 4.

1

2

34

5

1

2

34

5

G G

Figure 1.1.4: The graph G of Figure 1.1.1 and its complement
G.

We often construct new graphs from pre-existing ones. Given a graph G = (V,E), for any
V ′ ⊆ V the graph G\V ′ is the subgraph of G obtained by deleting the vertices of V ′, and all
edges incident with a vertex of V ′. Equivalently, G\V ′ = G[V \V ′]. Similarly, if E ′ ⊆ E(G)
then G\E ′ = (V (G), E(G)\E ′). If V ′ = {v} or E ′ = {e} this notation is often simplified
to G − v and G − e. On the other hand, for any e /∈ E(G), G + e is used to denote the
graph (V,E ∪ e). Given any edge e = {u, v} ∈ E(G), the graph G/e is obtained from G by
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contracting the edge e. That is, we identify the vertices u and v, and remove any loops or
duplicate edges. For example, given G as in Figure 1.1.1, the graph G/{3, 5} is illustrated
in Figure 1.1.5. A contraction of G is any graph obtained from G by a sequence of edge
contractions, and a minor of G is any subgraph of a contraction of G.

1

2

34

5

1

2

4

3/5

G G/{3,5}

Figure 1.1.5: The contraction G/{3, 5} for the graph G as in
Figure 1.1.1.

1.2 Walks, Cycles, and Connectedness

A walk W in a graph is an alternating sequence of vertices and edges

W = v0, e1, v1, e2, . . . , ek, vk, (1.2)

where ei = {vi−1, vi} (0 < i ≤ k). The vertices vi and edges ei of a walk need not be distinct.
For each edge ei in (1.2) we say that walk W traverses edge ei, and the length of W is k. A
walk with distinct vertices is a path. That is, a path P is a graph of the form

V (P ) =
{
v0, v1, . . . , vk

}
E(P ) =

{
{v0, v1}, {v1, v2}, . . . , {vk−1, vk}

}
, (1.3)

where the vertices vi are all distinct. The vertices v0 and vk are the ends of a path, and a
u-v path is a path with ends u and v. A walk is closed if v0 = vk, and a closed walk with
distinct vertices is a cycle. That is, a cycle C is a graph of the form

V (C) =
{
v0, v1, . . . , vk

}
E(C) =

{
{v0, v1}, {v1, v2}, . . . , {vk−1, vk}, {vk, v0}

}
,

where the vertices vi are all distinct. Equivalently, C can be written as P + {vk, v0}, where
P is a path of the form (1.3). Figure 1.2.1 illustrates a path of length 3 and a cycle of length
5.
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Figure 1.2.1: A path of length 3 and a cycle of length 5.

A graph G is connected if for every pair of distinct vertices u and v there is a u-v path in
G. A component or connected component of G is a maximal connected subgraph (so, for
instance, a connected graph has one component). For example, the first graph in Figure 1.1.2
is disconnected and has 2 components, whereas the second graph is connected. A cutvertex
of G is any vertex whose deletion increases the number of components of G. Similarly a
bridge is an edge whose deletion increases the number of components.

An acyclic graph is one that does not contain cycles, and we call any acyclic graph a forest.
A connected forest is called a tree. The leaves of a tree are the vertices of degree 1, and every
tree with at least two vertices always has a leaf. Theorem 1.1 is the classical characterization
of trees, and can be found in most standard graph theory texts. We present it here without
proof.

Theorem 1.1. The following assertions are equivalent for a graph T .

(i) T is a tree.

(ii) Any pair of vertices of T are linked by a unique path in T .

(iii) T is minimally connected: T is connected but for any edge e the graph T − e is
disconnected (that is, every edge of T is a bridge).

(iv) T is maximally acyclic: T contains no cycles, but for any pair of non-adjacent
vertices u and v of T , T + {u, v} contains a cycle.

Propositions 1.1 and 1.2 are also classical results that can be found, for example, in [10].
Each will be used at various points throughout this text.

Proposition 1.1. A tree on n vertices has n − 1 edges. A forest on n vertices with k
components has n− k edges.

Proposition 1.2. Every connected graph G has a spanning tree–that is, a connected acyclic
subgraph containing every vertex of G.
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Spanning trees can be constructed by a variety of methods, two of the most standard being
breadth-first search and depth-first search [23]. Figure 1.2.2 depicts two examples of spanning
trees, one for K5 and one for K3,3. Note that the spanning tree of K5 has 4 edges (|V (K5)| =
5), and the spanning tree of K3,3 has 5 edges (|V (K3,3| = 6).

K5 K 3,3

Figure 1.2.2: Two spanning trees, one of K5 and one of K3,3.

1.3 Multigraphs and Digraphs

By definition, a graph does not contain an edge joining a vertex to itself, known as a loop, nor
does a graph contain several edges joining the same pair of endvertices, known as multiple
edges. In a multigraph, both loops and multiple edges are permitted. Occasionally to avoid
confusion, a graph without loops or multiple edges will be called a simple graph.

A directed graph (or digraph) consists of a set V of vertices and a set E of edges. Ev-
ery element of E is an ordered pair (u, v) of vertices u, v ∈ V . A digraph is finite if both V
and E are finite. An edge e = (u, v) is said to be directed from u to v, and we often say that
e exits vertex u and enters vertex v. The direction of an edge will also sometimes be referred
to as its orientation. Two vertices u and v are adjacent if either (u, v) ∈ E or (v, u) ∈ E.
The vertex u is the initial vertex of the edge (u, v) and v is the terminal vertex. Digraphs
are typically depicted by drawing a dot for each vertex, and adding an arrow from vertex u
to vertex v for every edge (u, v). For example, figure 1.3.1 illustrates a directed graph with
vertex and edge sets

V =
{

1, 2, 3, 4, 5
}

and E =
{

(1, 3), (3, 5), (5, 2), (2, 4), (4, 1)
}
.

A multi-digraph is a digraph that may have multiple edges with the same initial and terminal
vertices. Digraphs, and more specifically multi-digraphs, will be the primary focus of this
text. Occasionally to distinguish digraphs from graphs, a graph (i.e. one whose edges do not
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have a direction) will be called an undirected graph.

1

2

34

5

Figure 1.3.1: A directed graph D with vertex set V =
{1, 2, 3, 4, 5} and edge set E = {(1, 3), (3, 5), (5, 2), (2, 4), (4, 1)}.

Much as in the undirected case, a subgraph of a digraph D = (V,E) is a pair D′ = (V ′, E ′)
such that V ′ ⊆ V and E ′ ⊆ E. A digraph D′ is an induced subgraph of D if it contains
all edges of D between any two vertices of V ′. We denote the subgraph induced on V ′ by
D[V ′]. The notation for deletion of vertices and edges is analogous to that of the undirected
case. Two digraphs are isomorphic if there is a correspondence between their vertex sets
that preserves adjacency, non-adjacency, as well as initial and terminal vertices. That is,
D = (V,E) is isomorphic to D′ = (V ′, E ′) if there exists a bijection φ : V → V ′ such that
(u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E ′. The bijection φ is called an isomorphism, and if
V = V ′ we call φ an automorphism.

A walk W in a digraph is an alternating sequence of vertices and edges

W = v0, e1, v1, e2, v2 . . . , ek, vk

that may traverse edges regardless of orientation. That is, either ei = (vi−1, vi) or ei =
(vi, vi−1). When ei = (vi−1, vi) we say that ei is oriented as W . Under this definition of a
walk, paths and cycles are defined analogously to the undirected case.

Remark 1.1. Under these definitions walks, paths, and cycles may all traverse edges re-
gardless of their orientations. This is consistent with some modern graph theory texts (for
example [10]), although it is a departure from more classical references. This convention
has been chosen carefully. In this text we will study graphical objects that model physical
systems. The edges of these graphs will model processes that are reversible. That is, these
processes (specifically chemical reactions) can occur in either a forward or a backward di-
rection. Allowing walks to traverse edges regardless of orientation will allow us to faithfully
represent this inherent reversibility.
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As before, a digraph D is connected if every pair of distinct vertices are joined by a path in
D, and a component is a maximal connected subgraph. An acyclic digraph is one that does
not contain cycles. When there is no danger of confusion, we will refer to an acyclic digraph
as a forest, and a connected forest will still be a tree.

1.4 Vector Spaces Associated with Graphs

In this section we consider four classical vector spaces associated with graphs. Digraphs
will be our primary focus, therefore we define these spaces for finite digraphs, and each is a
vector space over the real numbers R (some authors, such as [10], prefer C). These vector
spaces are just as easily, and analogously, defined for undirected graphs. In that case, all
vector spaces, vectors, and dot products are taken over Z2, the field of order two. These Z2

vector spaces–defined on undirected graphs–will be more familiar to the graph theorist, and
can be found in any standard graph theory text.

Remark 1.2. To avoid confusion with this more classical case, we will always use the
notation (mod 2) to indicate when arithmetic or vectors are taken over Z2. For the remainder
of this section, all vectors and inner products will be over R.

Let D = (V (D), E(D)) be a finite directed graph, with vertex set V (D) = {v1, . . . , vn} and
edge set E(D) = {e1, . . . , em}.

Definition 1.1. The vertex space V(D) is the vector space of all functions from V (D)
into R. Similarly, the edge space E(D) is the vector space of all functions from E(D) into
R.

For each vertex vi, let νi be the function νi : V (D) → R that is zero everywhere, except
at vertex vi where it is 1. The set {ν1, . . . , νn} is the standard basis of V(D); any element
x ∈ V(D) can be expressed as the formal sum

x =
n∑
i=1

xiνi

where x(vi) = xi ∈ R. Therefore V(D) has dimension n = |V (D)|, and any element x is
often expressed as a vector of length n, x =

[
x1 · · · xn

]
. The vertex space is endowed

with an inner product under which the standard basis is orthonormal,〈
x,y

〉
=

n∑
i=1

xiyi =
[
x1 · · · xn

]
·
[
y1 · · · yn

]
.
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Similarly, for each edge ei, let εi be the function εi : E(D) → R that is zero everywhere,
except at edge ei where it is 1. The set {ε1, . . . , εm} is the standard basis of E(D); any
element u ∈ E(D) can be expressed as the formal sum

u =
m∑
i=1

uiεi

where u(ei) = ui ∈ R. Therefore E(D) has dimension m = |E(D)|, an any element u is
often expressed as a vector of length m, u =

[
u1 · · · um

]
. The edge space is endowed

with an inner product under which the standard basis is orthonormal,〈
u,w

〉
=

m∑
i=1

uiwi =
[
u1 · · · um

]
·
[
w1 · · · wm

]
.

1.4.1 The Cycle Space and the Cut Space

Let D be a multi-digraph with edge set E(D) = {ei}, and let C be any cycle in D with
cyclic orientation

C = v1 · e1 · v2 · e2 · · · vl · el · vl+1

where vertex vl+1 = v1. For each j ∈ {1, . . . , l}, edge ej ∈ E(D) has endpoints vj and vj+1.
If edge ej is oriented from vj to vj+1 we say that ej is oriented as C. That is, C traverses edge
ej consistent with its orientation. When cycle C traverses ej opposite to its orientation–so
ej is oriented from vj+1 to vj–edge ej is not oriented as C.

The oriented cycle C can be identified with an element zC ∈ E(D). Namely,

zC(ei) =


1 if ei ∈ E(C) and ei is oriented as C

−1 if ei ∈ E(C) and ei is not oriented as C

0 if cycle C does not traverse edge ei

Definition 1.2. The cycle space of D, denoted Z(D), is the subspace of E(D) spanned
by the elements zC for all cycles C in D.

As zC ∈ E(D), we can represent zC as a vector in R|E(D)|. We call this vector the charac-
teristic vector , or the cycle vector of C, denoted χ(C). For example, the oriented cycle
C = v1v4v2v1 in Figure 1.4.1 has cycle vector

χ(C) =
[ e1 e2 e3 e4 e5 e6

1 0 0 −1 0 −1
]
.
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In this case, E(C) = {e1, e4, e6} and edge e1 is oriented as C, whereas edges e4 and e6 are
not oriented as C.

v1 v2

v3v4

e3
e1

e4

e5

e2

e6

Figure 1.4.1: A cycle C with cycle vector χ(C) =[
1 0 0 −1 0 −1

]
.

Now let P = (V1, V2) be a partition of V (D). That is, V1 ∩ V2 = ∅ and V1 ∪ V2 = V (D). Let
E(V1, V2) denote the set of all directed edges in E(D) with one endpoint in V1 and the other
endpoint in V2.

Definition 1.3. A partition P = (V1, V2) of V (D) as described above is called a cut of D,
and E(V1, V2) denotes the set of cut edges.

Note that some authors refer to E(V1, V2) itself as the cut as these are the edges that one
would need to “cut” to separate the vertex sets V1 and V2 in D. Given any cut P of D, we
can identify P with an element uP ∈ E(D). Namely,

uP (ei) =


1 if ei is directed from V1 to V2

−1 if ei is directed from V2 to V1

0 if ei /∈ E(V1, V2)

That is, uP (ei) = 0 if and only if both endpoints of ei are in V1, or both are in V2.

Definition 1.4. The cut space of D, denoted U(D), is the subspace of E(D) spanned by
the elements uP for all cuts P of D.

Note that as uP ∈ E(D) we can represent uP as a vector in R|E(D)|. We will refer to this
vector as the cut vector corresponding to P , and denote it as ϑ(P ). For example, let
P = (V1, V2) be the cut of the digraph in Figure 1.4.2 where V1 = {v1, v4} and V2 = {v2, v3}.
Then E(V1, V2) = {e2, e4, e5, e6}, and

ϑ(P ) =
[ e1 e2 e3 e4 e5 e6

0 1 0 1 1 −1
]
.
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Remark 1.3. We can construct a cut in D by letting V1 be a single vertex vi ∈ V (D). In
the special case of such a cut (vi, V (D)−vi), we will call this vector in R|E(D)| the incidence
vector of vertex vi, and denote it by λ(vi). For example, in Figure 1.4.2,

λ(v1) =
[ e1 e2 e3 e4 e5 e6

1 0 0 1 1 0
]
.

v1 v2

v3v4

e3e1

e4

e5

e2

e6

V1 V2

E(V  ,V  )1   2

Figure 1.4.2: A cut P with cut vector ϑ(P ) =[
0 1 0 1 1 −1

]
.

The cycle space and the cut space of a graph provide one definition of a natural duality
between graphs. We mention it here for completeness, and will return to this idea in Chapter
4.

Definition 1.5. Two digraphs D and D′ are abstract duals if E(D) = E(D′) and the
cycle space of one is the cut space of the other. That is,

Z(D) = U(D′) and U(D) = Z(D′).

1.4.2 Orthogonality of Z(D) and U(D)

The cut space and cycle space of a graph are intimately related, as demonstrated by Theorem
1.2.

Theorem 1.2. Given a finite digraph D, the cycle space Z(D) and cut space U(D) are
orthogonal subspaces.

Proof. Let C be any cycle in D and let P = (V1, V2) be any cut in D. To prove that
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Z(D) ⊥ U(D) we must show that

〈
zC ,uP

〉
=

|E(D)|∑
i=1

zC(ei)uP (ei) = 0.

However zC(ei)uP (ei) 6= 0 if and only if both zC(ei) and uP (ei) are nonzero. For each
ei ∈ E(D) let ι(ei) ∈ V (D) denote the initial vertex of ei, and let τ(ei) ∈ E(D) denote the
terminal vertex. There are four cases in which zC(ei)uP (ei) 6= 0.

Case 1. If ι(ei) ∈ V1 and τ(ei) ∈ V2, and ei is oriented as C, then uP (ei) = 1 and
zC(ei) = 1, so

zC(ei)uP (ei) = 1.

Case 2. If τ(ei) ∈ V1 and ι(ei) ∈ V2, and ei is not oriented as C, then uP (ei) = −1
and zC(ei) = −1, so

zC(ei)uP (ei) = 1.

Remark 1.4. In both Cases 1 and 2, C traverses edge ei beginning at its V1 vertex,
and ending at its V2 vertex.

Case 3. If ι(ei) ∈ V1 and τ(ei) ∈ V2, and ei is not oriented as C, then uP (ei) = 1
and zC(ei) = −1, so

zC(ei)uP (ei) = −1.

Case 4. If τ(ei) ∈ V1 and ι(ei) ∈∈ V2, and ei is oriented as C, then uP (ei) = −1 and
zC(ei) = 1, so

zC(ei)uP (ei) = −1.

Remark 1.5. In both Cases 3 and 4, C traverses edge ei beginning at its V2 vertex,
and ending at its V1 vertex.

As C is a cycle in D, the number times C moves from a V1 vertex to a V2 vertex must be
equal to the number of times it moves from a V2 vertex to a V1 vertex. That is, the number
of times Cases 1 and 2 occur (combined) must be equal to the number of times Cases 3 and
4 occur. Therefore, ∣∣∣{i : zC(ei)uP (ei) = 1}

∣∣∣ =
∣∣∣{i : zC(ei)uP (ei) = −1}

∣∣∣
Furthermore,

|E(D)|∑
i=1

zC(ei)uP (ei) =
∣∣∣{i : zC(ei)uP (ei) = 1}

∣∣∣− ∣∣∣{i : zC(ei)uP (ei) = −1}
∣∣∣.
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Therefore, 〈
zC ,uP

〉
=

|E(D)|∑
i=1

zC(ei)uP (ei) = 0.

Given that C was an arbitrary cycle in D and P = (V1, V2) was an arbitrary cut in D it
follows that Z(D) ⊥ U(D).

Corollary 1.1. Given any vertex v ∈ V (D) and any cycle C in D,

λ(v) · χ(C) = 0.

Theorem 1.3. Let D be a finite digraph with k components. As before, let n = |V (D)| and
m = |E(D)|. Then

dim Z(D) = m− (n− k) and dim U(D) = n− k.

In other words, E(D) is the orthogonal direct sum of Z(D) and U(D),

E(D) = Z(D)⊕ U(D).

Remark 1.6. Note that it is enough to prove this theorem for the case k =1. If D has k
distinct components D1, D2, . . . Dk, then E(D) is the orthogonal direct sum

E(D) = E(D1)⊕ E(D2)⊕ · · · ⊕ E(Dk).

Moreover for each i, Z(Di) = Z(D) ∩ E(Di) and U(Di) = U(D)E(Di).

Henceforth we consider only the case k = 1, so that D is connected. The following proof can
be found in Bollobás [10].

Proof. As Z(D) ⊥ U(D) it follows that Z(D) ∩ U(D) = 0 ∈ E(D). Therefore because
dim E(D) = m, it suffices to show that:

(i) dimZ(G) ≥ m− (n− 1)

(ii) dimU(G) ≥ n− 1

Let T be a spanning tree of digraph D. Note that directed edges may be oriented in any
manner in T , and as T has n vertices, it has n − 1 edges. If necessary, relabel the edges
of D (and T ) so that E(T ) = {e1, . . . en−1}. We call e1, . . . , en−1 the tree edges of T . The
remaining edges, en, en+1 . . . , em are the chords of T . We will use T to find m − n + 1
independent vectors in Z(D) and n− 1 independent vectors in U(D).
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Proof of (i). Fix some j ≥ n. Adding chord ej to T introduces a (unique) cycle Cj in T + ej
containing edge ej. Moreover, Cj does not contain any other chord ei. Therefore as Cj is a
cycle in D,

zCj
(ej) = 1 and zCj

(ei) = 0 for i 6= j (i ≥ n).

We call the cycle Cj the fundamental cycle of ej with respect to T . Letting j range
over all chords ej (n ≤ j ≤ m), we find m−n+ 1 fundamental cycles Cn, . . . , Cm. This gives
m− n+ 1 elements zCn , zCn+1 , . . . zCm ∈ E(D) such that

zCj
(ei) =

{
1 if i = j

0 if i ≥ n and i 6= j
.

Now let 0 be the zero element of E(D). If there exists constants γn, γn+1 . . . γm such that
0 =

∑m
i=n γizCi

, then for all j ≥ n,

0 = 0(ej) =
m∑
i=n

γizCi
(ej) = γj.

That is, every coefficient γj must be 0, so zCn , . . . ,zCm are independent in E(D). As
zCi(D) ∈ Z(D) for all i, it follows that dimZ(D) ≥ m− n+ 1 = m− (n− 1).

Proof of (ii). For 1 ≤ i ≤ n − 1, as before let ι(ei) and τ(ei) denote the initial and
terminal vertices of edge ei respectively. We see that by deleting ei from T , the spanning
tree is separated into two components, denoted T i1 and T i2. Assume, without loss of general-
ity, that ι(ei) ∈ T i1 and τ(ei) ∈ T i2. Let V i

1 = V (T i1) and V i
2 = V (T i2), so that Pi = (V i

1 , V
i

2 )
is a cut of D. We call this cut (V i

1 , V
i

2 ) the fundamental cut of ei with respect to T .

As defined, ι(ei) ∈ V i
1 and τ(ei) ∈ V i

2 , so uPi
(ei) = 1. For any tree edge ej such that j 6= i,

the endpoints of the ej either both lie in T i1 or in T i2. Therefore, the endpoints of ej are either
both contained in V i

1 or both in V i
2 . As a result, for any j 6= i (1 ≤ j ≤ n− 1), we must have

uPi
(ej) = 0. Therefore letting i range over all tree edges, we find n − 1 fundamental cuts,

P1, . . . , Pn−1. This gives n− 1 elements {uP1 , . . .uPn−1} ∈ E(D) such that

uPj
(ei) =

{
1 if i = j

0 if i ≤ n− 1 and i 6= j
.
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If there exists constants µ1 . . . µn−1 such that 0 =
∑n−1

j=1 µjuPj
, then for all 1 ≤ i ≤ n− 1,

0 = 0(ei) =
n−1∑
j=1

µjuPj
(ei) = µi.

That is, every coefficient µi is 0, so uP1 , . . . ,uPn−1 are independent in E(D). As uPj
∈ U(D)

for all 1 ≤ j ≤ n− 1, it follows that dim U(D) ≥ n− 1.

This completes our review of classical graph theory. The primary purpose of this chapter
was to establish the notation and terminology conventions used in the chapters that follow.
While we presented mainly definitions and examples, complete proofs of Theorems 1.2 and
1.3 were given. These should be kept in mind, as the orthogonality of cut vectors and cycle
vectors is a theme that we will return to repeatedly throughout this text. Chapter 2 now
begins our study of Kirchhoff graphs. After starting with a motivating example, we will
introduce definitions and prove a number of fundamental results.



Chapter 2

Vector Graphs and Kirchhoff Graphs

Kirchhoff graphs were introduced by Fehribach [28] as a mathematically precise version of
the reaction route graphs discussed by Fishtik, Datta et al. [31], [32], [33], [34], to repre-
sent electrochemical reaction networks. In the context of these networks, Kirchhoff graphs
represent the orthocomplementarity of the row space and null space of the stoichiometric
matrix for a given reaction network [29]. A number of graphs have been used to study of
reaction networks; a summary can be found in [20] or [27]. A more thorough treatment
can be found in [103], and the interested reader can find a wealth of references in both
[103] and the survey in [99]. One noteworthy sequence of work on graphs and reaction net-
works is that of species-complex-linkage graphs. Beginning in 1973 with [62] and [63], these
graphs have been studied in a variety of contexts in the following decades, including [17],
[19], [89], and [97]. As noted in [29], while these graphs are useful in studying reaction ki-
netics and stability of equilibria, they are unrelated to the fundamental spaces of any matrix.

Section 2.1.1 begins with an electrochemical reaction network view of Kirchhoff graphs.
Specifically, the details of how Kirchhoff graphs depict Kirchhoff’s current and potential
laws as applied to a sample network are explained through an illustrative example. Sec-
tion 2.1 builds upon the work of [28],[29] and [94], presenting definitions, examples, and
fundamental results on Kirchhoff graphs. Motivated by reaction networks, Section 2.1.2
abstracts the ideas presented in Section 2.1.1, and gives an example of how to construct a
Kirchhoff graph for a rational-valued matrix. In the process, connections of Kirchhoff graphs
with graph theory, linear algebra, and group theory are revealed. We strive to present this
material in such a way that constructing or identifying a Kirchhoff graph will follow intu-
itively from basic principles. After Section 2.2 develops mathematically precise definitions of
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Kirchhoff graphs, 2.2.1 presents a number of fundamental results, including a generalization
of the Kirchhoff property and a natural notion of graph operations on Kirchhoff graphs.

The definitions presented in Section 2.2 are mathematically equivalent to those of [29]; Sec-
tion 2.3.1 now generalizes these to Zp-valued matrices and Zp-Kirchhoff graphs. The primary
open mathematical problem in the study of Kirchhoff graphs is the following conjecture, due
to Fehribach [28] [29].

Conjecture 2.1. Every rational-valued matrix has a Kirchhoff graph.

This is an unsolved (and probably difficult) problem in general, and no universal construction
methods are known. Specific examples are considered in [29], and [28] proves that a matrix
of either rank or nullity 1 always has a Kirchhoff graph. Section 2.3.2 now addresses this
problem for Zp-valued matrices. Theorem 2.1 will show that for any integer-valued matrix
A, there exists a nontrivial Zp-Kirchhoff graph for the matrix A (mod p) for sufficiently large
prime p. Moreover, nonzero Zp-Kirchhoff graphs are explicitly constructed for Zp-valued
matrices with an entry-wise nonzero vector in the row space.

Remark 2.1. Much of this material was presented by the author in [93].

2.1 Introduction to Kirchhoff Graphs

This section will present a general introduction to Kirchhoff graphs, before formal definitions
are given in Section 2.2. Section 2.1.1 explains how Kirchhoff graphs represent Kirchhoff’s
current and potential laws, and Section 2.1.2 begins to consider constructing Kirchhoff graphs
for integer-valued matrices.

2.1.1 Simplified Hydrogen Evolution Reaction Network

As motivation for the study of Kirchhoff graphs, let us first consider a simplified version of
the hydrogen evolution reaction (HER) network. The overall reaction is

b : 2H2O + 2e− 
 H2 + 2OH− (2.1)

but this reaction is not achieved directly. It only occurs as the result of two elementary
reaction steps,

s1 : 2H·S 
 2S + H2 ,
s2 : H·S + H2O + e− 
 S + H2 + OH− .

(2.2)
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To be clear, only the elementary steps occur in nature; the overall reaction is achieved only
as a result of the elementary steps. This reaction network consists of six reacting species:
molecular water (H2O) and hydrogen (H2), hydroxide ions (OH−), electrons (e−), and two
types of reaction sites on a catalyst, free sites (S) and sites occupied by hydrogen (H·S).

Each of the reactions s1, s2, and b are reversible. Dependent upon external factors such as
temperature, pH, or component concentrations, the reactions as written in (2.1) and (2.2)
can proceed either from left to right, or from right to left. The reactions proceeding from
left to right in (2.1) are (2.2) are the forward reactions, and the backward reactions proceed
from right to left.

This network can be studied using its stoichiometric matrix A, given in (2.3). In this matrix,
the columns correspond to the reactions (elementary steps or the overall reaction), while the
rows correspond to the reacting species.

A =



s1 s2 b

H2 1 1 1
OH− 0 1 2
H2O 0 −1 −2
e− 0 −1 −2
S 2 1 0

H·S −2 −1 0

 (2.3)

Positive entries in this matrix are stoichiometric coefficients for species on the right side of
the reactions (2.1) and (2.2), the reaction products, while negative entries are stoichiometric
coefficients for species on the left, the reactants. If a species is absent from a reaction, the
corresponding entry in the stoichiometric matrix is zero.

Each reaction step can be viewed as a vector in the stoichiometric space; the stoichiometric
coefficient of each molecule, ion or reaction site is an entry in the corresponding vector.
Products (species on the right of (2.1) and (2.2)) have positive entries, whereas reactants
are negative. In the context of this reaction network, the Kirchhoff potential law requires
that the overall reaction must be a linear combination of the two elementary steps. Clearly
from the stoichiometry,

b = 2s2 − s1. (2.4)

This vector equation (2.4) also implies that the net change in the electrochemical potential
across this combination of elementary steps is the same as the net change across the overall
reaction. Note that electrochemical potential for reversible electrochemical reactions is the
equivalent of electrical voltage for electrical circuits; we refer the reader to Newman [82]
for further details. A more thorough discussion of electrochemical potentials and reaction
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networks can be found in [26] or [30]. This net-change equivalence makes clear why (2.4)
is a version of the Kirchhoff potential law. In fact, beyond the balance of electrochemical
potential, equation (2.4) also requires that the production or consumption of each of the
reacting species across these elementary steps is the same as the production or consumption
across the overall reaction.

Now, let r1, r2, and rb denote the relative reaction rates of steps s1, s2, and b respectively.
These rates must satisfy a version of the Kirchhoff current law to prevent any of the species
from accumulating within the network (recall that current is the time rate of change in
electrical charge). For example, all of the open reaction sites (S) produced by the network
must be consumed by the network, and any H2 produced by the elementary steps must be
accounted for by the overall reaction. To balance the creation and consumption of both S
and H · S, the rate for s2 must be twice the rate of s1. That is,

r2 = 2r1. (2.5)

To balance the creation and consumption of OH−, e− and H2O, the rate for s2 must also be
twice the overall rate:

r2 = 2rb. (2.6)

The vector equation relating the elementary steps to the overall reaction (2.4) may seem
unrelated to the rate balance equations (2.5) and (2.6). In fact they can all be described in
terms of the stoichiometric matrix, A. Looking at the coefficients in (2.4), one sees that this
relationship can be encoded by the vector

[ s1 s2 b

1 −2 1
]
.

On the other hand, the coefficients of the two rate-balance equations (2.5) and (2.6) yield
the vectors [ s1 s2 b

2 1 0
]

and
[ s1 s2 b

0 1 2
]
.

More importantly, observe that

Null(A) = Span
{ [

1 −2 1
]t }

and Row(A) = Span
{ [

2 1 0
]
,
[

0 1 2
] }
,

where Null(A) and Row(A) are used to denote the null space and row space of A, respectively.
Again, the electrochemistry dictates these relationships, while of course the fundamental
theorem of linear algebra guarantees that Null(A) and Row(A) are orthogonal complements.
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Now, the Kirchhoff graph (if it exists) is defined to depict this orthogonality graphically
[27][28][29]. Speaking generally, a Kirchhoff graph is a finite digraph with labeled edges. The
notion of labeling edges, and how those labels are chosen, will be of paramount importance
in what is to follow. In this context, the labels are used to denote reaction steps and can
be repeated within the network. So, for example, the HER network will have three types of
edges: s1, s2, and b.

Remark 2.2. The orientation of each edge will represent the direction of each reaction.
An edge traversed with its orientation indicates a forward reaction, whereas a backwards
reaction is achieved by crossing an edge against its orientation.

The structure of this graph will be considered with respect to the labeling. While a more
concrete definition will be given Section 2.2, each cycle in the Kirchhoff graph must corre-
spond to a vector in Null(A), while each vertex must correspond to a vector in Row(A).
In this example, Figure 2.1.1 is a Kirchhoff graph for the simplified HER reaction network.
Methods of recognizing and constructing this graph will be explored further in the following
section.

b

s1

s2

s2

b

s1

Figure 2.1.1: A Kirchhoff graph for the simplified HER net-
work

Observe that only the stoichiometric matrix was needed to identify a Kirchhoff graph for
the HER network. Building on well-known group theoretic techniques, Section 2.2 presents
a rigorous definition of Kirchhoff graphs for a matrix.

2.1.2 A Matrix and its Kirchhoff Graph

Section 2.1.1 motivates the study of Kirchhoff graphs by presenting a simplified electro-
chemical reaction network. Observe, however, that the stoichiometric matrix was all that
was needed to construct the associated graph. In this section, we will begin with a matrix
and demonstrate how the properties of that matrix can lead to the construction of a Kirch-
hoff graph.
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Consider the matrix A, as in (2.7).

A =

[ s1 s2 s3 s4

1 0 1 2
0 1 1 1

]
(2.7)

A consists of 4 columns, s1, s2, s3 and s4, each lying in the vector space Q2.

s1 =

[
1
0

]
, s2 =

[
0
1

]
, s3 =

[
1
1

]
, s4 =

[
2
1

]
. (2.8)

Continuing as in Section 2.1.1, each cycle in a Kirchhoff graph for A must correspond to a
vector in Null(A); this correspondence will be made exact in Proposition 2.1.

Remark 2.3. Observe that the null space of any rational-valued matrix has a basis composed
of integer-valued vectors. We will use this fact implicitly in this and all future examples.
Clearly a cycle may only traverse edges an integer multiple of times, thus we specifically
compare cycles to integer-valued vectors in Null(A).

For example, [ s1 s2 s3 s4

1 1 −1 0
]
t ∈ Null(A).

That is, in light of (2.8),
s1 + s2 − s3 = 0,

where 0 denotes the all-zero vector. Therefore a labeled cycle of the form shown in Figure
2.1.2 is permitted in a Kirchhoff graph for A.

s1

s2 s3

Figure 2.1.2: A cycle permitted in a Kirchhoff graph for matrix
A, as [1, 1,−1, 0]t ∈ Null(A).

On the other hand, as [ s1 s2 s3 s4

1 1 0 −1
]
t /∈ Null(A),
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the label s3 in Figure 2.1.2 cannot be replaced by the label s4.

The requirement that all cycles correspond to elements of Null(A) necessitates that the
labeled edges will satisfy precisely the same integer dependencies (including coefficients) as
the column vectors of A. Therefore in drawing a Kirchhoff graph, each labeled edge can be
drawn as the column by which it is labeled. Observe that the edges s1, s2 and s3 in Figure
2.1.2 are each drawn as the vectors given in (2.8). On the other hand, with edges drawn as
vectors it is easy to recognize that as s1 + s2 − s4 6= 0, a cycle can ever have the form

[ s1 s2 s3 s4

1 1 0 −1
]
.

This is illustrated in Figure 2.1.3.

s1

s2
s4

Figure 2.1.3: By drawing edges as vectors, because s1 + s2 −
s4 6= 0, no cycle in a Kirchhoff graph for A can have the form
[1, 1, 0,−1].

Consider the digraph D presented in Figure 2.1.4. We embed the vertices in the plane and
label their coordinates. (Note parentheses denote points in space, and we reserve square
brackets for vectors). All labeled edges now correspond to vectors, which are precisely:

s1 =

[
1
0

]
, s2 =

[
0
1

]
, s3 =

[
1
1

]
, s4 =

[
2
1

]
.

If the vector edges in the graph form a cycle, it means the corresponding sum of vectors
−with coefficients to respect orientations and multiplicities−is zero. That is, the vector of
coefficients lies in Null(A).

Therefore, by constructing a graph on edges that are precisely the column vectors of A,
we are guaranteed that the cycles will correspond to vectors in Null(A). While a precise
definition of this coefficient vector will be given in Definition 2.3, this is easy to check. For
example, the cycle on vertices (0, 0)− (1, 0)− (2, 1)− (0, 0) traverses an s1 edge and an s3

edge each with the correct orientation, followed by an s4 edge with the opposite orientation.
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This cycle corresponds to the vector

[ s1 s2 s3 s4

1 0 1 −1
]
t ∈ Null(A).

(0,-1)

(1,0)
(0,0) (2,0)

(2,1)

s1 s1

s2

s2

s4

s4

s3

s3

Figure 2.1.4: A Kirchhoff graph for matrix A.

Remark 2.4. Using vectors as edges will play an important role in constructing Kirchhoff
graphs. One could conceivably begin with an arbitrary digraph and begin assigning edge
labels. However, finding a set of labels that reflects the desired structure of matrix A may
be difficult or even impossible. Constructing graphs with edges that are column vectors of
A guarantees that the cycles capture the desired structure. 1

Returning to Figure 2.1.4, the labeled edges incident at each vertex can be encoded by

(0, 0)/(2, 0) : ±
[ s1 s2 s3 s4

1 −1 0 1
]

(0,−1)/(2, 1) : ±
[ s1 s2 s3 s4

0 1 1 1
]

(1, 0) :
[ s1 s2 s3 s4

0 0 0 0
]

where a 1 in entry si denotes an outgoing edge labeled si, and a −1 denotes an incoming
edge. A zero indicates that the same number of si edges both enter and exit a vertex.
Observe that all of these vectors lie in the row space of A. In fact, D is a Kirchhoff graph
for matrix A.

1The columns of any matrix row equivalent to A also present a set of edge vectors.
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2.2 Vector and Kirchhoff Graphs for a Matrix

Let Γ be any group, written additively, and let H be any subset of the elements of Γ.

Definition 2.1. The Cayley color graph (Γ, H) is a directed graph with vertex set Γ and
edge set

E = {(g, g + h) : g ∈ Γ, h ∈ H}

[90][96]. That is, (Γ, H) has one vertex associated with each group element of Γ, and every
edge is colored (or labeled) by the difference vector h = (g + h)− g.

For each h ∈ H, every vertex is incident with exactly two h edges: one entering and one
exiting. The Cayley color graph is finite if and only if the group Γ is finite, and connected
if and only if H is a set of generators of the group Γ. If Γ = Zmp , any Cayley color graph for
Γ is finite, with pm vertices and |H|pm edges. For example, the Cayley color graph(

Z2
3,
{ [

1 0
]
,
[

1 1
]
,
[

1 0
] })

is illustrated in Figure 2.2.1, drawn on the flat torus.

[1,0]

[0,1]

[1,1]

a

a

b b

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

Figure 2.2.1: The Cayley color graph (Z2
3, {[1, 0], [1, 1], [0, 1]}),

drawn on the flat torus.

Cayley color graphs for vector spaces over the finite field Zp (for p a prime) will be considered
further in Section 2.3.1.

Now, let A be any m × n matrix with entries in Q, and let s1, . . . , sn ∈ Qm denote the
column vectors of A. The Cayley color graph (Qm, {s1, . . . , sn}) is an infinite directed graph
with {s1, . . . sn} as vector edges.
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Definition 2.2. Any graph obtainable from a finite subgraph of the Cayley color graph
(Qm, {s1, . . . , sn}) by assigning (positive integer) multiplicities to the edge vectors is a vector
graph for A.

That is, a vector graph for A has a finite number of vertices and vector edges, each of which
is a column vector of matrix A. Let D be any vector graph for matrix A. A cycle in D is a
closed walk with no repeated vertices, that may traverse edges regardless of orientation.

Remark 2.5. Classically, the cycles of a digraph must always traverse an edge in the di-
rection of its orientation. However the vector edges in our graphs are meant to represent
reversible processes (reactions), which have both a forward and a backward direction. Null
processes (reactions) can include these backward steps, therefore cycles must be allowed to
traverse edges regardless of orientation. Note that this matches the conventions of [10].

Definition 2.3. For each cycle C the cycle vector , denoted χ(C), is a row vector with
entries indexed by s1, . . . , sn. For each i, entry si is the net number of times cycle C
traverses an si edge. Add 1 to the ith component each time C traverses an si with the
correct orientation, and subtract 1 for each si traversed in the opposite orientation.

Proposition 2.1. For any cycle C of vector graph D, χ(C)t ∈ Null(A).

Proposition 2.1 is the “correspondence” between cycles and null space vectors alluded to in
Section 2.1.1. It is guaranteed by choosing a vector graph for A. The proof is straightforward
given Definition 2.3. The entries of χ(C) are the coefficients of vectors traversed in C. As C is
a cycle, the corresponding sum of vectors must be zero. Therefore, the vector of coefficients,
χ(C)t, must lie in Null(A).

Example 2.1. Consider the matrix A in (2.9). A consists of 4 columns, s1, s2, s3 and s4,
each lying in the vector space Q2.

A =

[ s1 s2 s3 s4

1 0 1 2
0 1 1 1

]
(2.9)

Figure 2.2.2 presents a vector graph for A. Cross-hatches are used to denote multiple edges
with the same endpoints and vector label. The cycle C = (0, 0)− (1, 0)− (1, 1)− (0, 0), for
example, has cycle vector:

χ(C)t =
[ s1 s2 s3 s4

1 1 −1 0
]
t ∈ Null(A).
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s1

s2s3

s4

s1

s3

(0,0) (1,0)

(1,1) (2,1)

Figure 2.2.2: A vector graph for matrix A. Hash marks in-
dicate multiplicity and vertex coordinates are given by ordered
pairs.

Next, consider the vector edges incident at each vertex.

Definition 2.4. For each vertex v the incidence vector , denoted λ(v), is a row vector
with entries indexed by s1, . . . , sn. For each i, entry si is the net number of si that exit
vertex v. Equivalently, it is the number of si edges exiting v minus the number of si entering.

For example, the vertex v at (1, 1) in Figure 2.2.2 has incidence vector

λ(v) =
[ s1 s2 s3 s4

1 −2 −1 0
]
.

Recall that in Section 2.1.1, Kirchhoff’s current law translated graphically to vertices that
correspond to elements of Row(A). This can be rephrased by saying that λ(v) ∈ Row(A)
for all vertices v. This leads to a precise definition of Kirchhoff graphs.

Definition 2.5. Let D be any vector graph for matrix A. If λ(v) ∈ Row(A) for all vertices
v of D, and the cycle vectors of D span Null(A), then D is a Kirchhoff graph for A.

Take a moment to consider this definition with respect to the sample network in Section
2.1.1. As D is a vector graph for A, all cycle vectors lie in Null(A), and Kirchhoff’s potential
law is satisfied. The requirement that all incidence vectors lie in Row(A) ensures satisfaction
of Kirchhoff’s current law as well. Finally, closed circuits are vital to this network: the added
requirement that the cycle vectors span Null(A) ensures that all dependency relations are
captured.

Remark 2.6. Given the stoichiometric matrix A of a reaction network, a Kirchhoff graph
for that matrix serves as a network diagram. With edge vectors corresponding to reaction
steps, Kirchhoff’s current law is guaranteed by the requirement that all vertex incidence
vectors lie in the row space of A. In order to satisfy Kirchhoff’s potential law, the labeled
edges must satisfy the same dependencies (including coefficients) as the columns of A. By
constructing a graph on edges that are precisely the column vectors of A, we are guaranteed
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that all cycle vectors will lie in Null(A). Therefore using vectors as edges plays an important
role in constructing Kirchhoff graphs.

Example 2.2. Full Hydrogen Evolution Reaction Network The full hydrogen evo-
lution reaction network has the same overall reaction as the simplified network in Section
2.1.1, with one additional elementary step,

s3 : S + H2O + e− 
 H·S + OH−. (2.10)

Thus the complete reaction network is

s1 : 2H·S 
 2S + H2

s2 : H·S + H2O + e− 
 S + H2 + OH−

s3 : S + H2O + e− 
 H·S + OH−

b : 2H2O + 2e− 
 H2 + 2OH−

(2.11)

In light of (2.11), the stoichiometric matrix of the full network is

A =



s1 s2 s3 b

H2 1 1 0 1
OH− 0 1 1 2
H2O 0 −1 −1 −2
e− 0 −1 −1 −2
S 2 1 −1 0

H·S −2 −1 1 0

. (2.12)

Both Null(A) and Row(A) are two dimensional, and each of the two vector graphs in Figure
2.2.3 are Kirchhoff graphs for this full hydrogen evolution reaction network. A more thorough
study of this network was given by Fishtik, Callaghan, Fehribach & Datta [31].

s2

s2

s3

s3

s1
b

b

b

s1 s1

s2

s2 s3

s3

Figure 2.2.3: Two Kirchhoff graphs for the HER network.
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Note that the column vectors of A lie in Q6 while any drawing necessarily lies in R2. We
choose 2-dimensional projections that make clear which vector edges are different. In this
case, projection onto the 4th and 5th entries of each column vector was chosen. Projection
onto the 2nd and 5th entries of the column vectors of the stoichiometric matrix A in (2.3)
was used to construct Figure 2.1.1.

A natural first question is whether every rational-valued matrix has a Kirchhoff graph. This
question is likely difficult to answer in general [29] and is, in fact, the primary open question
in studying Kirchhoff graphs. Section 2.3 will partially answer this question for matrices
over finite fields. On the other hand, it is already clear from Figure 2.2.3 that in the case
that a Kirchhoff graph exists, it need not be unique. This raises a number of interesting
questions, which are open for future research. For example, given a rational-valued matrix
A,

Question: If there exists a Kirchhoff graph for matrix A, what is a minimal example?
Is there a suitable notion of minimality (such as number of vertices or number of directed
edges) that leads to a well-defined canonical Kirchhoff graph for a given matrix?

Clearly both Kirchhoff graphs in Figure 2.2.3 have 8 vector edges. However the first graph
has only 4 vertices whereas the second has 5. Let v be the central vertex in the second graph
of Figure 2.2.3. Observe that

λ(v) =
[ s1 s2 s3 s4

0 0 0 0
]
.

We call any such vertex with a zero-incidence vector a null vertex . This raises a number
of additional questions.

Question: If there exists a Kirchhoff graph for matrix A, does there exist an example
with no null vertices? If the answer is “no,” can we determine the minimum number of null
vertices in a Kirchhoff graph for A?

Before moving on to Zp-valued matrices, we first observe some fundamental properties of
Kirchhoff graphs.



34

2.2.1 Elementary Properties of Kirchhoff Graphs

Sections 2.1.1 and 2.2 presented motivation and precise definitions of Kirchhoff graphs. This
section will examine elementary properties and graph operations on Kirchhoff graphs.

Let A and A′ be two rational-valued matrices that are row equivalent. Let {s1, . . . , sn}
denote the columns of A and {s′1, . . . , s′n} the columns of A′.

Proposition 2.2. If matrix A has a Kirchhoff graph, then so does A′ [28].

Proof. Let D be any Kirchhoff graph for A. Relabel every si edge in D by the vector s′i. As
A and A′ are row equivalent, the result is a vector graph D′ for A′. Moreover, the incidence
and cycle vectors of D′ are precisely those of D. Therefore, every incidence vector lies in
Row(A) = Row (A′), and the cycle vectors span Null(A) = Null(A′). Thus D′ is a Kirchhoff
graph for D′.

The Kirchhoff property also presents a simple relationship between cycle and incidence vec-
tors.

Proposition 2.3. Let D be a Kirchhoff graph for matrix some A. For any vertex v and any
cycle C,

λ(v) · χ(C) = 0. (2.13)

This condition suggests a natural way to generalize the concept of a Kirchhoff graph inde-
pendent of a matrix, which was proposed in [94]. We will call any vector graph that satisfies
(2.13) for all v and C a Kirchhoff graph .

Remark 2.7. Given a rational-valued matrix, it is always easy to construct an infinite
object with the desired properties. Let A be any matrix in Qm×n with column vectors
s1, . . . , sn. The Cayley color graph (Qm, {s1, . . . , sn}) is itself an infinite graph with vector
edges satisfying the desired cycle condition. Moreover, each vertex is incident to exactly
one incoming and one outgoing edge labeled si, for each i. That is, every vertex v is a null
vertex with λ(v) = 0, and the desired orthogonality is trivially satisfied. This infinite graph
is none too revealing for modeling real-world networks, however, hence the requirement that
a Kirchhoff graph be derived from a finite vector graph.

It is important to realize that the structure of Kirchhoff graphs is considered with respect
to the edges’ vector labels. Bearing this in mind, one can consider graph operations on
Kirchhoff graphs. Operations applied to an edge of a standard graph–now applied to a set
of vector edges in a Kirchhoff graph–maintain the Kirchhoff property.

Let D be a vector graph with edge vectors {s1, . . . , sn}. Let D\sn be obtained from D
by deleting all sn edges.
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Proposition 2.4. If D is a Kirchhoff graph, then D\sn is also a Kirchhoff graph.

Proof. Let C be any cycle of D\sn with cycle vector

χ(C) =
[ s1 ··· sn−1

x1 · · · xn−1

]
.

Clearly the edges of C are also the edges of a cycle C̃ in D, with cycle vector

χ(C̃) =
[ s1 ··· sn−1 sn

x1 · · · xn−1 0
]

=
[ s1 ··· sn−1 sn

− χ(C) − 0
]
.

Now let v be any vertex of D\sn , with incidence vector

λ(v) =
[ s1 ··· sn−1

y1 · · · yn−1

]
.

Let ṽ be the corresponding vertex in D, so that

λ(ṽ) =
[ s1 ··· sn−1 sn

y1 · · · yn−1 ∗
]

=
[ s1 ··· sn−1 sn

− λ(v) − ∗
]
,

where ∗ may be any integer including 0. Then since D is a Kirchhoff graph,

λ(v) · χ(C) =
n−1∑
i=1

xiyi =
n−1∑
i=1

xiyi + 0 = λ(ṽ) · χ(C̃) = 0.

As C and v were arbitrary, D\sn is a Kirchhoff graph.

Label sn was chosen in Proposition 2.4 simply for ease of notation. It is clear from the proof
that for any label sk, the graph D\sk obtained by deleting all sk edges is also Kirchhoff.

Corollary 2.1. Let S0 be any subset of {s1, · · · , sn} and let D\S0 be obtained from D by
deleting all edge vectors contained in S0. Then D\S0 is a Kirchhoff graph.

Alternatively, let D/sn be the graph obtained from D by contracting all sn edges.

Proposition 2.5. If D is a Kirchhoff graph, then D/sn is also a Kirchhoff graph.

Proof. Let C be any cycle of D/sn with cycle vector

χ(C) =
[ s1 ··· sn−1

x1 · · · xn−1

]
.
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Then there exists a cycle C̃ in D, with cycle vector

χ(C̃) =
[ s1 ··· sn−1 sn

x1 · · · xn−1 ∗
]

=
[ s1 ··· sn−1 sn

− χ(C) − ∗
]
,

where ∗ may be any integer, including 0. Let v be any vertex of D/sn , with incidence vector

λ(v) =
[ s1 ··· sn−1

y1 · · · yn−1

]
.

Suppose that in contracting all sn edges vertices v(1), . . . , v(k) of D are coalesced to form
vertex v in D/sn (where it may be that k = 1). Then

λ(v(1)) + λ(v(2)) + · · ·λ(v(k)) =
[ s1 ··· sn−1 sn

y1 · · · yn−1 0
]
.

Because D is a Kirchhoff graph,

λ(v) · χ(C) =
n−1∑
i=1

xiyi =
n−1∑
i=1

xiyi + 0

=
[
x1 · · · xn−1 ∗

]
·
[
y1 · · · yn−1 0

]
= χ(C̃) ·

(
λ(v(1)) + λ(v(2)) + · · ·λ(v(k))

)
= χ(C̃) · λ(v(1)) + χ(C̃) · λ(v(2)) + · · ·+ χ(C̃) · λ(v(k))

= 0 + 0 · · ·+ 0 = 0.

As C and v were arbitrary, D/sn is a Kirchhoff graph.

Once again, it is clear from the proof that for any vector sk, the graph D/sk obtained by
contracting all sk edges is also Kirchhoff.

Corollary 2.2. Let S0 be any subset of {s1, · · · , sn} and let D/S0 be obtained from D by
contracting all edge vectors contained in S0. Then D/S0 is a Kirchhoff graph.

Propositions 2.4 and 2.5 demonstrate that the operations of edge deletion and edge con-
traction, now applied to a set of vector edges in a Kirchhoff graph, maintain the Kirchhoff
property. These two results (and more specifically their converses) inspire a number of in-
teresting questions regarding the construction of Kirchhoff graphs. For example, let A be
any rational valued matrix with n columns. Now let

A′ =
[
A x

]
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be any rational valued matrix with n + 1 columns, obtained from A by adjoining a new
column. Then Proposition 2.4 ensures that any Kirchhoff graph for A′ can be used to derive
a Kirchhoff graph for the matrix A. On the other hand,

Question: Can a Kirchhoff graph for matrix A be used to construct a Kirchhoff graph for
the matrix A′?

Determining a method that answers “yes” would facilitate iterative construction of Kirch-
hoff graphs. In particular, beginning with a matrix of rank m and nullity 1, one could then
sequentially construct Kirchhoff graphs for any matrix of rank m.

2.3 Kirchhoff Graphs for Zp-valued Matrices

It should be clear thus far that Kirchhoff graphs combine elements of linear algebra, graph
theory, and group theory. As section 2.3.1 will demonstrate, the definition of Kirchhoff
graphs can easily be generalized to matrices over number fields other than Q. Moreover, the
conjecture that every Q-valued matrix has a Kirchhoff graph is an overarching open problem.
Section 2.3 will demonstrate that in most cases if Q is replaced by Zp, this conjecture becomes
a theorem. More importantly, Lemma 2.1 will show that Kirchhoff graphs for Zp-matrices
are closely related to finding Kirchhoff graphs for rational-valued matrices.

2.3.1 Zp-Kirchhoff Graphs

For p a prime, let Ap be any m× n matrix with entries in Zp (i.e. the finite field of integers
mod p). Let s1, . . . , sn denote the column vectors of Ap, now in Zmp .

Definition 2.6. Any graph obtainable from the Cayley color graph (Zmp , {s1, . . . , sn}) by
assigning (positive integer) multiplicities to the vector edges is a Zp-vector graph for Ap.

Observe that finiteness is no longer a requirement of Definition 2.6, as (Zmp , {s1, . . . , sn}) is
itself finite. Let D be a Zp-vector graph for Ap, and C any cycle of D (again, cycles may
traverse edges regardless of orientation). The cycle vector for C, now denoted χp(C), is
analogous to Definition 2.3, except all entries are taken as integers mod p.

Proposition 2.6. For any cycle C of Zp-vector graph D, χp(C)t ∈ Null(Ap).

Similarly, for each vertex v the definition of the incidence vector, now denoted λp(v), is
analogous to Definition 2.4, with all entries taken as integers mod p. This allows the notion
of Kirchhoff graphs to be extended to Zp matrices.
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Definition 2.7. Let D be any Zp-vector graph for matrix Ap. If λp(v) ∈ Row(Ap) for all
vertices v of D, and the cycle vectors of D span Null(Ap), then D is a Zp-Kirchhoff graph
for Ap.

Example 2.3. Consider the matrix A3 in (2.14), with entries in Z3.

A3 =

[ s1 s2 s3 s4

1 0 1 2
0 1 1 1

]
. (2.14)

Figure 2.3.1 presents a Z3-Kirchhoff graph for A3. All incidence vectors (taken mod 3) lie
in Row(A3), and all cycle vectors (taken mod 3) lie in Null(A3). Including Figure 2.3.1, this
section will present three vector graphs over Z2

3 (c.f. Figures 2.3.4 and 2.3.5). Each will be
drawn on the flat torus, allowing the occurrences of a given vector to have the same slope.

s1

s2

s4

s3

(0,0) (1,0) (2,0)

(0,1)
(1,1)

(2,1)

(1,2) (2,2)

a

a

b b

Figure 2.3.1: A Z3-Kirchhoff graph for matrix A3, drawn on
the flat torus. Again, hash marks indicate multiplicity; vertex
coordinates are given as ordered pairs.

The Zp-Kirchhoff property also translates to cycle and incidence vectors. Let D be a Zp-
Kirchhoff graph for matrix Ap. For any vertex v and any cycle C,

λp(v) · χp(C) ≡ 0 (mod p). (2.15)

Any vector graph that satisfies (2.15) for all v and C is a Zp-Kirchhoff graph .

Remark 2.8. Propositions 2.2, 2.4, and 2.5, and Corollaries 2.1 and 2.2 all remain true if
“Kirchhoff” is replaced by “Zp-Kirchhoff” for any prime p.
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Interest in studying Zp-Kirchhoff graphs is motivated by more than simply extending defi-
nitions. The primary focus for applications is understanding Kirchhoff graphs of rational-
valued matrices [28]. However, the rows of any Q-valued matrix can be scaled to give an
integer-valued matrix that is row equivalent. Thus, by Proposition 2.2 it is sufficient to
consider matrices with integer entries. As Lemma 2.1 demonstrates, proving existence (or
nonexistence) of Kirchhoff graphs for integer matrices is closely tied to existence of Zp-
Kirchhoff graphs.

Lemma 2.1. Let A be an integer-valued matrix, and let Ap denote the matrix A (mod p)
for any prime p. Let D be a vector graph for A. D is a Kirchhoff graph for A if and only if
for all prime p, with all edge vectors taken mod p, it is a Zp-Kirchhoff graph for Ap.

Proof. For each p, let Dp be the vector graph obtained by the mod p-reduction of all edge
vectors of D. Note that in the process of mod p-reduction, some vertices may be identified.
For example, the vertices (0, 0) and (6, 3) in Q2 become the same vertex in Z2

3
2. As D

is a vector graph for A, Dp must be a vector graph for Ap, and the cycle vectors of D
span Null(A) if and only if the (mod p) cycle vectors of Dp span Null(Ap). Finally, D is a
Kirchhoff graph if for all vertices v and all cycles C, λ(v) · χ(C) = 0. This holds if and only
if λ(v) · χ(C) ≡ 0 (mod p) for all prime p. However, this is true if and only if for all vertices
v′ and all cycles C ′ of Dp, λp(v′) · λp(C ′) ≡ 0 (mod p) for all p. That is, if and only if for all
prime p, vector graph Dp is a Zp-Kirchhoff graph.

Although constructing finite Kirchhoff graphs for integer matrices can be challenging [29],
the finite nature of the group Zmp makes the construction of Zp-Kirchhoff graphs less difficult.
Indeed one observation is straight-forward.

Proposition 2.7. For p a prime, let Ap be any m×n matrix with entries in Zp and columns
s1, . . . , sn. The Cayley color graph DAp := (Zmp , {s1, . . . , sn}) is (trivially) Kirchhoff.

Proof. DAp is clearly a Zp-vector graph for Ap with cycle vectors that span Null(Ap). As DAp

is a Cayley color graph, every incidence vector is the zero vector, and so DAp is (trivially)
Kirchhoff.

While Cayley color graphs over Zp are trivially Kirchhoff, in the sense that all incidence
vectors are zero, they are the starting point for constructing or showing the existence of
graphs that are non-trivially Kirchhoff. Section 2.3.2 will demonstrate that such Kirchhoff
graphs exist for many Zp-valued matrices. Before moving on, we emphasize that although
Cayley color graphs are trivially Kirchhoff, they are not trivial examples. Example 2.4 shows
that a Kirchhoff graph with nonzero incidence vectors, when reduced mod p, can lead to the
Cayley color graph as a Zp-Kirchhoff graph.

2A more detailed example of mod p reduction is given in Example 2.4.
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Example 2.4. Recall the rational-valued matrix A introduced in Example 2.1.

A =

[ s1 s2 s3 s4

1 0 1 2
0 1 1 1

]
(2.16)

Vector graph D in Figure 2.3.2 is a Kirchhoff graph for A. By Lemma 2.1, reducing all
edge vectors of D mod 3 leads to a Z3-Kirchhoff graph for A3 = A (mod 3). Observe that
through mod 3 reduction of edge vectors, some vertices must be identified as well. For
example, the vertices (0, 0), (3, 0), (3, 3), and (6, 3) in D must become a single vertex in the
Z3-Kirchhoff graph. After mod 3 reduction of all vector edges of D, the result is precisely the
Cayley color graph (Z2

3, {s1, . . . , s4}), with all edges doubled. In particular, although D has
nonzero incidence vectors, when reduced mod 3 the resulting Z3-Kirchhoff graph has only
zero incidence vectors. That is, although Cayley color graphs trivially satisfy the Kirchhoff
property, these Zp-Kirchhoff graphs (with all zero incidence vectors) can arise from Kirchhoff
graphs with nonzero incidence vectors.

s1

s3

s4

s2

s1

s3

s4s2

(0,0) (1,0) (2,0) (3,0)

(4,1)

(5,2)

(6,3)

(1,1)

(2,2)

(3,3) (4,3) (5,3)

Figure 2.3.2: D, a Kirchhoff graph for matrix A. When all
vectors are reduced mod 3, the result is the Cayley color graph
(Z2

3, {s1, . . . , s4}) with all edges doubled.

2.3.2 Nonzero Zp-Kirchhoff Graphs

Lemma 2.1 demonstrated that every Zp matrix has a trivial Zp-Kirchhoff graph, with all
zero incidence vectors. This section considers Zp matrices that have a Zp-Kirchhoff graph
with at least one nonzero incidence vector.

Definition 2.8. A Zp-Kirchhoff graph is nonzero if it has at least one nonzero (mod p)
incidence vector.
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Theorem 2.1 establishes the existence of nonzero Zp-Kirchhoff graphs when p is sufficiently
large compared to the matrix dimensions. For any prime p, let Ap be an m× n matrix with
entries in Zp, and columns {s1, . . . , sn}. Recall by Proposition 2.2 that it is sufficient to
consider matrices Ap with full row rank.

Theorem 2.1. If p > n/m, then Ap has a nonzero Zp-Kirchhoff graph.

Proof. Beginning with the Cayley color graph DAp = (Zmp , {s1, . . . , sn}), assign to each edge
an undetermined multiplicity, wi. As DAp has pm vertices, and each vertex is incident to 2n
vector edges, there are npm unknown multiplicities. Finding a nonzero Kirchhoff graph will
be equivalent to finding a nontrivial solution to a homogeneous system of linear equations
in these npm unknowns. First, observe that vertex incidence vectors can be written in terms
of the multiplicities wi. For example, a vertex with the vector labels and multiplicities given
in Figure 2.3.3 has incidence vector

[ s1 s2 s3

(w1 − w2) (w3 − w4) (w5 − w6)
]
. (2.17)

s1

s1

s2

s2

s3
s3

w1

w2

w3

w4

w5w6

Figure 2.3.3: An example of edge vectors with unknown mul-
tiplicities.

Therefore, the pm vertex incidence vectors can all be written in terms of the npm undeter-
mined multiplicities. A Zp-Kirchhoff graph arises whenever λ(v) · b ≡ 0 (mod p) for all
vertices v and any b ∈ Null(Ap). As Null(Ap) has dimension (n − m), this gives a homo-
geneous system of (n−m)pm equations in npm unknowns. We will demonstrate that when
mp > n there exists a solution that gives a nonzero Zp-Kirchhoff graph.

Choose some column vector si. As each vector in Zmp has order p, the si edges of DAp

are partitioned into pm−1 cycles each of length p. (for example, consider vector s2 and the
cycle v1 − v4 − v7 − v1 in Figure 2.3.4). Assigning multiplicity 1 to each edge of one such
cycle–and multiplicity 0 to all other edges–gives a solution to the system. Moreover, all
incidence vectors of the resulting vector graph are the zero vector. By considering all such
cycles for each edge vector si, we find that there are npm/p = npm−1 solutions of this form,
that are linearly independent. Moreover, any Zp-Kirchhoff graph with only zero incidence
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vectors must assign the same multiplicity to the edges in each cycle of this form. Therefore
any solution of the system that leads to a trivial Kirchhoff graph can be written as a linear
combination of these solutions. That is, the system has an npm−1 dimensional solution space
that leads to all Zp-Kirchhoff graphs with only zero incidence vectors.

Any solution to the system outside of this npm−1 dimensional space gives a set of multi-
plicities for a nonzero Zp-Kirchhoff graph (note we may always choose the multiplicities so
that 0 ≤ wi < p). Therefore, any system with a solution space of dimension greater than
npm−1 has a nonzero Kirchhoff graph. Recalling that the homogeneous system has (n−m)pm

equations in npm unknowns, the solution space has dimension at least

npm − (n−m)pm = mpn = (mp)pm−1 > npm−1 (2.18)

as mp > n. Therefore, Ap has a nonzero Kirchhoff graph.
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Figure 2.3.4: The Cayley color graph (Z2
3, {s1, s2, s3, s4}) with

unknown multiplicities wi assigned to the edges. Weights are
indicated only by their integer subscripts
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Example 2.5. Once again, we return to the matrix A3 introduced in Example 2.3.

A3 =

[ s1 s2 s3 s4

1 0 1 2
0 1 1 1

]
(2.19)

The Cayley color graph (Z2
3, {s1, s2, s3, s4}), with unknown multiplicities w1, . . . , w36 as-

signed to each edge, is shown in Figure 2.3.4 (note weights are denoted simply by the integer
subscripts). Given that {[

1 1 −1 0
]t
,
[

2 1 0 −1
]t}

is a basis for Null(A3), the system of equations can be summarized by the matrix equation
(2.20).



s1 s2 s3 s4

λ(v1) (w1 − w3) (w10 − w12) (w19 − w21) (w28 − w30)
λ(v2) (w2 − w1) (w13 − w15) (w22 − w24) (w31 − w33)
λ(v3) (w3 − w2) (w16 − w18) (w25 − w27) (w34 − w36)
λ(v4) (w4 − w6) (w11 − w10) (w26 − w25) (w32 − w31)
λ(v5) (w5 − w4) (w14 − w13) (w20 − w19) (w35 − w34)
λ(v6) (w6 − w5) (w17 − w16) (w23 − w22) (w29 − w28)
λ(v7) (w7 − w9) (w12 − w11) (w24 − w23) (w36 − w35)
λ(v8) (w8 − w7) (w15 − w14) (w27 − w26) (w30 − w29)
λ(v9) (w9 − w8) (w18 − w17) (w21 − w20) (w33 − w32)




1 2
1 1
−1 0
0 −1

 ≡


0 0
0 0
0 0
0 0

 (mod 3)

(2.20)

With m = 2, n = 4, and p = 3, clearly p > n/m and so by Theorem 2.1, A3 has a nonzero
Z3-Kirchhoff graph. One solution to the system (2.20) that leads to a nonzero Kirchhoff
graph is

{w1, w2, w17, w28} = 2 {w4, w5, w8, w10, w16, w27, w29, w32} = 1

and all other multiplicities zero. Removing all edges of multiplicity zero gives the nonzero
Z3-Kirchhoff graph originally presented in Figure 2.3.1.

Theorem 2.1 guarantees the existence of nonzero Zp-Kirchhoff graphs for sufficiently large
p, but it does not indicate how such graphs are constructed. The remaining results are
constructive. Theorem 2.2 shows how to construct a nonzero Zp-Kirchhoff graph in many
cases, and Theorem 2.3 deals with binary matrices and the construction of Z2-Kirchhoff
graphs. For p a prime, let Ap be an m×n matrix with entries in Zp, and columns {s1, . . . , sn}.

Theorem 2.2. If there exists a vector x ∈ Row(Ap) with all entries nonzero (mod p), then
Ap has a nonzero Zp-Kirchhoff graph.
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Proof. Let x1, . . . , xn denote the entries of x, where each xi may be chosen so that 0 < xi < p.
Beginning with the Cayley color graph DAp = (Zmp , {s1, . . . , sn}), we will use x to assign
multiplicities to each edge of DAp . Choose some vector si. As before, the si edges of DAp

can be partitioned into pm−1 cycles each of length p. Assign multiplicity xi to some edge
of each cycle. Following edge orientations, traverse each cycle and successively assign the
edges multiplicity 2xi, 3xi, . . . (p−1)xi, and pxi respectively. The edges assigned multiplicity
pxi may be deleted, and all other multiplicities may be reduced mod p to lie between 1 and
p− 1. Repeating this process for all vectors si, the result is a vector graph for Ap in which
λp(v) ≡ x (mod p) for all vertices v. As x ∈ Row(Ap), it follows that this vector graph is,
in fact, a nonzero Zp-Kirchhoff graph for Ap.

Corollary 2.3. Let A be an integer-valued matrix with no zero columns. Then for sufficiently
large prime p, the matrix Ap = A (mod p) has a nonzero Zp-Kirchhoff graph.

Example 2.6. Consider the matrix A′3 given in (2.21).

A′3 =

[ s1 s2 s3

1 0 1
0 1 1

]
(2.21)

Summing the two rows, observe x =
[

1 1 2
]
∈ Row(A′3). Figure 2.3.5 shows the multi-

plicities assigned in the proof of Theorem 2.2, and the resulting Z3-Kirchhoff graph.
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Figure 2.3.5: Multiplicities assigned to the Cayley color graph
(Z2

3, {s1, s2, s3}), and the resulting Z3-Kirchhoff graph for matrix
A′3.



45

2.3.3 Binary Matrices and Z2-Kirchhoff Graphs

Finally, let us turn our attention to binary matrices. The relationship between binary ma-
trices and Z2-Kirchhoff graphs will be considered much more thoroughly in Chapter 10.

Theorem 2.3. Every nonzero binary matrix has a nonzero Z2-Kirchhoff graph.

Proof. Let A2 be any m × n binary matrix with columns s1, . . . , sn, and let DA2 be the
Cayley color graph (Zm2 , {s1, . . . sn}). As each element of the additive group Zm2 is its own
inverse, the edges of DA2 occur in pairs: for each vector edge, there is a second copy of that
vector edge with the same endpoints and opposite orientation. Let x =

[
x1 · · · xn

]
be

any nonzero row of A2. For each 1 ≤ k ≤ n, if xk = 1, remove one vector edge from every
pair of sk vectors in the graph DA2 . The result is a Z2-vector graph for A2 with the same
cycles as DA2 . However, for all vertices v in the newly constructed graph, λ2(v) ≡ x (mod
2), and the result is a nonzero Z2-Kirchhoff graph for A2.

s5

s2

s1

s6

s4

s3

s1

s6

s4

s3 s5

s7

s7

(0,0,0)

(1,0,0)

(0,0,1)

(0,1,0)

(1,1,0)

(0,1,1)
s5

s2

s1s6 s4 s3

s1 s6s4s3

s5

s7

s7

Figure 2.3.6: Two drawings of a nonzero Z2-Kirchhoff graph
for A2. The first emphasizes that this graph is a subgraph of the
complete Cayley color graph, whereas the second uses symmetry
to help indicate which edges are the same vector. Note that as
1 ≡ −1 (mod 2), edge orientations have been omitted.

Given a binary matrix A2, there are often many nonzero Z2-Kirchhoff graphs for A beyond
those constructed in Theorem 2.3. For example, consider the binary matrix A2 given in
(2.22).

A2 =


s1 s2 s3 s4 s5 s6 s7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 (2.22)

Figure 2.3.6 presents two drawings of a nonzero Z2−Kirchhoff graph for the matrix A2. Note
that as 1 ≡ −1 (mod 2) edge orientations have been omitted. Moreover, this graph was not
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constructed using any of the previous proof techniques. Instead, it is a proper subgraph
of the complete Cayley color graph, obtained by deleting two vertices (in this case (1, 0, 1)
and (1, 1, 1)), and some additional edges to maintain the desired vertex conditions. Note
the distinguishing of element s2 as the only doubled edge results from the choice of deleted
vertices; deleting other pairs of vertices would result in other vector edges remaining doubled.
Beginning with the complete Cayley color graph, six vertices, as shown here, is the minimum
number of vertices in a proper subgraph with cycle vectors that span the null space of A2.

2.3.4 Discussion

The primary open problem in the study of Kirchhoff graphs is the conjecture of Fehrib-
ach that every rational-valued matrix has a Kirchhoff graph. As Lemma 2.1 demonstrated,
studying Zp-Kirchhoff graphs could well lead to proving this conjecture. In particular, Propo-
sition 2.7 demonstrated that every Zp-valued matrix has a Zp-Kirchhoff graph. This graph–
the Cayley color graph–has all zero incidence vectors. Although this structure may appear
trivial, Example 2.4 demonstrated that a Kirchhoff graph for an integer matrix A, when
reduced mod p, leads to the Cayley color graph for the matrix A (mod p). The reverse of
this procedure poses an interesting question.

Question: Given an integer-valued matrix A, can the full Cayley color graph of the matrix
A (mod p) be “unfolded” into a Kirchhoff graph for A?

The definition of nonzero Kirchhoff graphs requires that these graphs have cycle vectors
that span the null space of the corresponding matrix, but only that some nonzero element of
the row space be represented by a vertex cut. One might ask that a basis for the row space
be present in the vertex cuts; indeed this is often possible in the construction of specific
graphs. The electrochemistry application which inspires this definition, however, suggests
that the nonzero Kirchhoff graph definition is best. As was discussed in Section 2.1.1, one
wishes all reaction pathways (i.e. null space vectors) are present in the graph as cycles, but
only that the vertices preserve the rate balances (i.e. lie in the row space).

Theorem 2.1 shows that for any m × n matrix with entries in Zp, there exists a nonzero
Zp-Kirchhoff graph whenever p > n/m. The proof of this theorem was of a different na-
ture than most others presented here. First, an unknown multiplicity was assigned to each
edge of the Cayley color graph. Writing each vertex incidence vector in terms of these un-
known multiplicities lead to a homogeneous system of linear equations. Finding a nonzero
Zp-Kirchhoff graph was then equivalent to finding an appropriate solution to this system. A
similar method could be applied to rational-valued matrices. Beginning with a finite sub-
graph of the Cayley color graph, assign an unknown multiplicity to each edge and derive a
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system of linear equations. The problem then becomes,

Question: Can we always find a finite subgraph of the Cayley color graph that guaran-
tees that the corresponding system has a nonnegative integer solution?

Answering this question as “yes” would prove existence of a Kirchhoff graph for every integer-
valued matrix. A word of caution, however. This method of solution is an example of integer
linear programming: we derive an integer-valued system of linear equations and then attempt
to find a nonnegative integer-valued solution. The general problem of integer linear program-
ming is well-known to be NP-complete [38]. Thus as we consider progressively larger vector
graphs, this could become a computationally difficult problem. On the other hand,

Question: Is there an efficient (i.e. polynomial-time) method of finding a nonnegative
integer solution to these vector-graph based integer linear systems?

Alternatively, based on the dimensions and entries of the matrix, one may be able to deter-
mine an upper bound on the number of vertices or edges required to guarantee a solution
to the system. These upper bounds could then be used to constrain a computer search
algorithm.
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Chapter 3

Kirchhoff Graphs and Matrices

Vector graphs were introduced in Section 2.2 as finite subgraphs of Cayley color graphs.
Chapter 3 will now consider an alternative interpretation of vector graphs. Specifically, a
vector graph can be viewed as a directed graph with elements of some vector space assigned
to each edge. Studying the structure of the underlying digraph−in conjunction with the
structure of the vector assignments−leads to a re-interpretation of the Kirchhoff property
entirely in terms of matrices, as well as a number of interesting results.

This chapter will study vector graphs through the lens of vector assignments : functions
that assign elements of a vector space to the edges of a digraph (Definition 3.1). In fact,
these functions can be viewed as a special case of voltage assignments, which assign elements
of a group to the edges of a directed graph. A digraph together with a voltage assignment is
known as a voltage graph, originally introduced by Gross [48]. In that context, voltage graphs
were used to construct imbeddings of graphs in surfaces, using branched or unbranched cov-
erings of simpler imbeddings [53]. Gross and Tucker later generalized this theory to show
that so-called permutation voltage assignments generate all graph coverings [52]. The theory
of voltage graphs was built upon the foundations of current graphs, which were introduced
combinatorially by Gustin [54]. Gustin’s method was later used to solve the Heawood map-
coloring problem by Ringel, Youngs, Terry, and Welch [95], a problem that was revisited by
Gross and Tucker using voltage graphs [51]. The theory of current graphs was developed
into topological generality by Gross and Alpert [1], [49], and [50].

That being said, this text takes a primarily combinatorial approach to Kirchhoff graphs.
Although a topological interpretation of Kirchhoff graphs will not be considered here, it
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presents an interesting research question for the topologically-inclined.

Section 3.1 begins by reinterpreting vector graphs in terms of vector assignments on di-
graphs. This facilitates an equivalent definition of Kirchhoff graphs, now in terms of the
incidence matrix of a digraph and the characteristic matrix of the vector assignment (The-
orem 3.1). Section 3.2 then examines how this definition can be used to count vector edges.
In particular, Theorem 3.2 shows that the vector edges must occur the same number of
times in Kirchhoff graphs for most matrices of nullity 1. This leads to the notion of uniform
Kirchhoff graphs, those in which all edge vectors occur the same number of times, introduced
in Section 3.3. After Section 3.2.1 determines the equivalence classes of matrices that share
the same Kirchhoff graphs, Theorem 3.3 and Lemma 3.6 demonstrate that large classes of
matrices have exclusively uniform Kirchhoff graphs. Conversely, Theorem 3.4 shows that
any matrix with a Kirchhoff graph (and in particular, a non-uniform Kirchhoff graph) al-
ways has a uniform Kirchhoff graph. Next, Section 3.4 demonstrates that finding Kirchhoff
graphs is closely related to studying permutation-invariance of subspaces. Finally, Section
3.5 presents a few examples that examine the relationship between matrix properties and
Kirchhoff graph properties. One in particular, Lemma 3.9, will be needed in Chapter 4.

3.1 A Matrix Definition of Kirchhoff Graphs

Let D = (V (D), E(D)) be a finite directed multi-graph with vertex set V (D) and edge set
E(D). Let S = {s1, . . . , sn} be a finite set of n non-zero vectors in some vector space.

Definition 3.1. A vector assignment (or a (D,S)-vector assignment), ϕ, is any surjective
function ϕ : E(D)→ S.

As before let a cycle of D be any closed walk, with no repeated vertices, that may traverse
edges regardless of orientation. A vector assignment ϕ is consistent if for any cycle C of
D, ∑

e∈E(C)

σC(e)ϕ(e) = 0,

where σC(e) = 1 if C traverses e in the direction of its orientation, and σC(e) = −1 if C
traverses e against its orientation. That is, ϕ is consistent with D if the signed sum of vectors
around any cycle is the zero vector.

Corollary 3.1. A vector graph, as defined in Section 2.2, consists of a multi-digraph D
together with a consistent vector assignment ϕ.

Remark 3.1. Throughout this chapter, we will be studying both a vector graph and its
underlying digraph in parallel. To distinguish between the two structures, we will use a
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bar to denote corresponding parts of a vector graph. Suppose D is a digraph with vertices
{v1, . . . , vp} and edges {e1, . . . , em}. If ϕ is a consistent vector assignment on D, we let
D = (D,ϕ) denote the associated vector graph. Then D has vertices V (D) = {v1, . . . vp}.
This distinction will be of importance, for example, when studying incidence vectors. λ(vi)
is the incidence vector of vertex vi in digraph D, and is indexed by the edges e1, . . . em. λ(vi),
on the other hand, is the incidence vector of vertex vi in vector graph D and, as in Section
2.2, is indexed by the set of vector edges, s1, . . . , sn. The relationship between λ(vi) and
λ(vi) will be considered in Lemma 3.1.

Example 3.1. Consider the digraph D with vertices {v1, . . . , v4} and edges {e1, . . . , e6} as
illustrated in Figure 3.1.1.

v1 v2

v3v4

e3e1

e4

e5

e2

e6

Figure 3.1.1: A digraph D with 4 vertices and 6 edges.

Let S = {s1, . . . , s4} ⊆ Q2 be a set of 4 vectors,

S =

{
s1 =

[
0
2

]
, s2 =

[
2
0

]
, s3 =

[
2
2

]
, s4 =

[
−2
2

]}
.

Moreover, let ϕ be the (D,S)-vector assignment

ϕ : {e1, e3} 7→ s1 ϕ : {e2, e4} 7→ s2 ϕ : e5 7→ s3 ϕ : e6 7→ s4.

One may verify that ϕ is consistent with D. For example, (e1)(−e6)(−e4) is a cycle in D,
and

ϕ(e1)− ϕ(e6)− ϕ(e4) = s1 − s4 − s2 =

[
0
2

]
−
[
−2
2

]
−
[

2
0

]
=

[
0
0

]
.

Therefore D = (D,ϕ) is a vector graph. Moreover, as S ⊆ Q2, vector graph D can be drawn
in the plane where each edge is drawn as (and labeled by) its assigned vector sj, as shown
in Figure 3.1.2.
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v1 v2

v3v4

s1s1

s2

s3

s2

s4

Figure 3.1.2: Vector Graph D = (D,ϕ).

The action of a vector assignment ϕ can be represented in matrix form. For any digraph D
with vector assignment ϕ, let T be the |E(D)| × |S| matrix where

Ti,j =

{
1 if ϕ(ei) = sj

0 Otherwise
.

We will call T the characteristic matrix of ϕ. For example, the vector assignment ϕ in
Example 3.1 has characteristic matrix

T =



s1 s2 s3 s4

e1 1 0 0 0
e2 0 1 0 0
e3 1 0 0 0
e4 0 1 0 0
e5 0 0 1 0
e6 0 0 0 1

.

Remark 3.2. Let T be the characteristic matrix of some vector assignment ϕ.

(1.) Each row of T has exactly one entry 1 and all other entries 0.

(2.) Each column of T has at least one nonzero entry.

(3.) T has full column rank and, under left multiplication, represents a surjective map
R|E(D)| → R|S|.

For simplicity, we will often call any zero-one matrix satisfying (1.)-(3.) a characteristic
matrix . Moreover, let M be any matrix with |E(D)| columns. Observe that the the jth

column of the product MT is the sum of all columns of M with index i such that ϕ(ei) = sj.

For any digraph D, let Q = Q(D) be the incidence matrix of digraph D. That is, Q is a
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|V (D)| × |E(D)| matrix where

Qi,j =


1 if vi is the initial vertex of edge ej

−1 if vi is the terminal vertex of edge ej

0 if vertex vi is not an endpoint of edge ej

.

For example, the digraph in Figure 3.1.1 has incidence matrix

Q(D) =


e1 e2 e3 e4 e5 e6

v1 1 0 0 1 1 0
v2 0 0 1 −1 0 1
v3 0 −1 −1 0 −1 0
v4 −1 1 0 0 0 −1

.
For any vertex v of digraph D, recall that λ(v) denotes the incidence vector of v. That is,
λ(v) is a vector with |E(D)| entries, and jth entry 1 if v is the initial vertex of ej, −1 if
it is the terminal vertex, and 0 otherwise. For example, the vertex v1 in Figure 3.1.1 has
incidence vector

λ(v1) =
[ e1 e2 e3 e4 e5 e6

1 0 0 1 1 0
]
.

Observe that λ(vj) is the jth row of the incidence matrix Q.

Proposition 3.1. The rows of Q = Q(D) lie in and span the cut space of D.

Proof. For any vertex vi of D, consider the cut (vi, V (D)\vi). Clearly the cut vector
ϑ(vi, V (D)\vi) = λ(vi), and so the rows of Q lie in the cut space of D. On the other
hand, let (V1, V2) be any cut of D, where V1 = {vi1 , . . . , vik}. Then the cut vector ϑ(V1, V2)
satisfies

ϑ(V1, V2) = λ(vi1) + · · ·+ λ(vik).

Therefore since the rows of Q are λ(vi) (1 ≤ i ≤ |V (D)|), the rows of Q span the cut space
of D.

On the other hand, let C be any cycle of digraph D. Recall that χ(C) denotes the cycle
vector of C. That is, χ(C) has |E(D)| entries and

χ(C)j =


1 if C traverses edge ej in the direction of its orientation

−1 if C traverses ej against its orientation

0 Otherwise

.
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For example, the cycle C = v1 − v4 − v3 − v1 in Figure 3.1.1 has cycle vector

χ(C) =
[ e1 e2 e3 e4 e5 e6

1 1 0 0 −1 0
]
.

Proposition 3.2. The vectors {χ(C)t : C is a cycle of D} lie in and span Null(Q). That is,
the cycle space of D is the null space of Q.

Proof. Clearly the vectors {χ(C)t : C is a cycle of D} lie in and span the cycle space of D,
which is the orthogonal complement of the cut space. The result then follows immediately
from Proposition 3.1.

Now let D be any vector graph, arising from digraph D and consistent vector assignment ϕ.
Recall from Definition 2.4 for each vertex v of D the incidence vector λ(v) has entries indexed
by s1, . . . , sn, where the si entry is the net number of si that exit vertex v. As Lemma 3.1
illustrates, characteristic matrix T provides the link between the incidence vectors of digraph
D and vector graph D.

Lemma 3.1. For any corresponding vertices v of D, and v of D, then (using row vectors)

λ(v) = λ(v)T.

Proof. Given a vertex v of D, the incidence vector λ(v) has ith entry

λ(v)i =


1 if edge ei exits vertex v

−1 if edge ei enters vertex v

0 Otherwise

.

Similarly, for corresponding vertex v of D, the jth entry of λ(v) is

λ(v)j =
∣∣∣{i : ei exits v and ϕ(ei) = sj}

∣∣∣− ∣∣∣{i : ei enters v and ϕ(ei) = sj}
∣∣∣.

Now consider the matrix product λ(v)T . λ(v)T and has jth entry

(λ(v)T )j =
n∑
i=1

λ(v)iTi,j. (3.1)

However, λ(v)i ∈ {−1, 0, 1} and Ti,j ∈ {0, 1}. Therefore,

λ(v)iTi,j =


1 if λ(v)i = Ti,j = 1

−1 if λ(v)i = −1 and Ti,j = 1

0 Otherwise

.
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Equivalently,

λ(v)iTi,j =


1 if ei exits v and ϕ(ei) = sj

−1 if ei enters v and ϕ(ei) = sj

0 Otherwise

.

Therefore by (3.1),

(λ(v)T )j =
∣∣∣{i : ei exits v and ϕ(ei) = sj}

∣∣∣− ∣∣∣{i : ei enters v and ϕ(ei) = sj}
∣∣∣ = λ(v)j.

Thus for each j, (λ(v)T )j = λ(v)j and so for each vertex v of D,

λ(v) = λ(v)T.

Similarly, recall from Definition 2.3 that for each cycle C of vector graph D, the cycle vector
χ(C) has entries indexed by s1, . . . , sn, and entry si is the net number of times cycle C
traverses an si edge. Once again, characteristic matrix T provides the relationship between
cycle vectors of digraph D and vector graph D. The proof of Lemma 3.2 is analogous to
that of Lemma 3.1, and is omitted here.

Lemma 3.2. For any cycle C of D, and its corresponding cycle C in D,

χ(C) = χ(C)T.

Now let D be any digraph with incidence matrix Q, and suppose ϕ is a consistent vector
assignment on D, with edge vectors S = {s1, . . . , sn}. Let N be a matrix whose columns,
b1, . . . , bk, form a basis for Null(Q).

Theorem 3.1. The vector graph D = (D,ϕ) is a Kirchhoff graph if and only if the columns
of (N tT )t lie in and span Null(QT ). Put another way, D is Kirchhoff if and only if(

Null(Q)tT
)t

= Null(QT ). (3.2)

Remark 3.3. Note that we use superscript t to denote the matrix transpose in order to
avoid confusion with matrix T .

Proof. (⇐) Let v and C be any vertex and cycle of vector graph D. Then given the corre-
sponding vertex v of D, λ(v) ∈ Row(Q), meaning

λ(v) = λ(v)T ∈ Row(QT ).
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Similarly, for the corresponding cycle C in digraph D, χ(C) ∈Row(N t), meaning

χ(C) = χ(C)T ∈ Row(N tT ).

Then since the rows of (N tT )t lie in and span Null(QT ), χ(C)t ∈ Null(QT ). That is,
χ(C) · λ(v) = 0. Therefore, as v and C were arbitrary, D is a Kirchhoff graph.

(⇒) As D is a Kirchhoff graph, for any vertex vi and cycle C of D,

λ(vi) · χ(C) = 0. (3.3)

For any column bj of N , by Proposition (3.2), there exists cycles C1, . . . , Ck in D such that

btj = a1χ(C1) + · · ·+ akχ(Ck)

for some scalars a1, . . . , ak. Then for any row λ(vi) of incidence matrix Q,

λ(vi)T · btjT = λ(vi)T ·

(
k∑
r=1

arχ(Cr)

)
T

= λ(vi)T ·

(
k∑
r=1

arχ(Cr)T

)

=
k∑
r=1

ar (λ(vi)T · χ(Cr)T )

=
k∑
r=1

ar
(
λ(vi) · χ(Cr)

)
=

k∑
r=1

ar(0) by (3.3)

= 0.

Therefore for each column bj of N , (btjT )t ∈ Null(QT ), and so the columns of (N tT )t lie in
Null(QT ).

Next we show that the columns of (N tT )t span Null(QT ). Let x be any vector in Null(QT ).
In particular, x ∈ R|S|. However,

R|E(D)| = Row(Q)⊕ Row(N t).

Furthermore, under left-multiplication characteristic matrix T is a surjective map R|E(D)| →
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R|S|. Therefore x can be written as:

xt = β1b
t
1T + · · ·+ βkb

t
kT + αaT

for some constants α, β1, . . . , βk and some vector a ∈Row(Q). In particular, aT ∈Row(QT ),
so that

aT · xt = 0,

as x was chosen in Null(QT ). However, we have already shown that for each i (1 ≤ i ≤ k),
(btiT )t ∈Null(QT ). Thus for each i (1 ≤ i ≤ k),

aT · btiT = 0.

Therefore,
0 = aT · xt

= aT ·
(
β1b

t
1T + · · ·+ βkb

t
kT + αaT

)
= β1(aT · bt1T ) + · · ·+ βk(aT · btkT ) + α(aT · aT )

= 0 + · · ·+ 0 + α(aT · aT )

= α‖aT‖2.

Therefore either α = 0 or aT is the zero vector. In either case, xt ∈ span{bt1T, . . . , btkT}.
Since x ∈Null(QT ) was arbitrary, it follows that the columns of (N tT )t span Null(QT ).

Corollary 3.2. A vector graph D is Kirchhoff if and only if for all vertices v and all cycles
C,

λ(v) · χ(C) = 0.

That is, if and only if for all vertices v and all cycles C of digraph D,

λ(v)T · χ(C)T = 0.

Theorem 3.1 is significant in that it re-interprets the Kirchhoff property in terms of two
matrices–incidence matrix Q and characteristic matrix T . Moreover, neither Q nor T cap-
ture any information about the vectors s1, . . . , sn of vector graph D. Matrix Q indexes how
the vertices of D are interconnected, and matrix T only indexes which edges are assigned to
the same vector. As it turns out, given any two matrices Q and T satisfying (3.2), a set of
vector edges can be determined based on Q and T . This is demonstrated by Corollary 3.3,
which is straightforward given Theorem 3.1.

Let D be any digraph with incidence matrix Q. Let T be any zero-one characteristic matrix.
Moreover, suppose Q and T satisfy (3.2),(

Null(Q)tT
)t

= Null(QT ).
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Then let s1, . . . , sn be the columns of the product QT , and let ϕ : E(D)→ {s1, . . . , sn} be
the vector assignment from E(D) to S with characteristic matrix T .

Corollary 3.3. The vector graph D = (D,ϕ) is a Kirchhoff graph for the matrix QT .

Corollary 3.3 is a significant observation, in that it means that one need not start with a set
of vectors, or even a matrix, when studying Kirchhoff graphs. Instead, one can begin simply
with a multi-digraph D and ask,

Question: For which zero-one characteristic matrices T do Q(D) and T satisfy (3.2)?

In the case that such a T exists, a set of suitable edge vectors, namely the columns of
the product QT , can be extracted after the fact. This suggests a number of interesting
computational problems. For any digraph D, taking T to be the identity matrix satisfies
(3.2). However, should any other zero-one characteristic matrix T satisfy (3.2), this means
that D is the underlying digraph of some nontrivial Kirchhoff graph. While there are only
a finite number of possible T ’s to be checked for a given digraph, the number of such T ’s is
exponential in the number of edges of D. Thus an interesting question is,

Question: Given the incidence matrix of a digraph, is there an efficient way of deter-
mining which characteristic matrices T satisfy (3.2)?

Alternatively, one could consider the opposite problem, which is one of matrix decompo-
sition.

Question: Given an integer-valued matrix A, can A be decomposed as a product QT
where Q is the incidence matrix of a digraph, and T is the characteristic matrix of a vector
assignment?

A deterministic algorithm answering either of these questions would be a solution to the
existence problem of Kirchhoff graphs.

3.2 Vector Assignments and Edge Vector Counting

Corollary 3.3 allows us to begin considering the number of times each vector edge occurs in
a Kirchhoff graph. Let D be a vector graph with n vector edges, sn, . . . , sn. Let D and ϕ
be the underlying digraph and vector assignment of D. For each 1 ≤ j ≤ n, define ηj to be
the number of edges of D to which vector sj is assigned under ϕ. Then ηj is the number of
nonzero entries (i.e. the number of 1’s) in the jth column of matrix T . Moreover, in view of
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Remark 3.2, it follows that

Λ = T tT =


η1

η2

. . .

ηm−1

ηn


is a diagonal matrix with (j, j)−entry ηj. Now suppose D = (D,ϕ) is a Kirchhoff graph,
and let matrices Q,N and T be as in Section 3.1.

Lemma 3.3. For any vector x ∈ Null(QT ),

Λx ∈ Null(QT ).

Proof. Let x be any column vector x ∈ Null(QT ), so

QTx = 0.

Characteristic matrix T is an |E(D)|× |S| matrix where |S| ≤ |E(D)| and T has full column
rank. Therefore,

Tx 6= 0.

Given that QTx = 0, we must have Tx ∈ Null(Q). That is,

(Tx)t ∈ Row(N t).

Therefore there exists some row vector y such that

xtT t = (Tx)t = yN t.

That is,
xtT tT = yN tT.

Equivalently,
xtΛ = yN tT. (3.4)

Now since D is a Kirchhoff graph, by Theorem 3.1,

(yN tT )t ∈ Null(QT ).

Thus by (3.4),
Λx ∈ Null(QT ).
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Let D = (D,ϕ) be a Kirchhoff graph with vector edges S = {s1, . . . , sn}. As usual let Q
be the incidence matrix of D and let T be the characteristic matrix of ϕ. Suppose that the
matrix QT has a 1-dimensional null space, say

Null(QT ) = span{b}

for some bt =
[
b1 · · · bn

]
with integer entries.

Theorem 3.2. There exists a constant ω independent of j such that if bj 6= 0, then

ηj = ω.

Proof. As QT has a 1-dimensional null space,

Null(QT ) = {βb : β ∈ R}.

D is Kirchhoff and b ∈ Null(QT ), so by Lemma 3.3

Λb = ωb (3.5)

for some constant ω. Then equating the ith entries of (3.5),

ηibi = ωbi

for all i (1 ≤ i ≤ n). Therefore for any j such that bj 6= 0,

ηj = ω.

That is, there exists a constant ω such that if bj 6= 0, vector edge sj occurs exactly ω times
in Kirchhoff graph D. Moreover, if b has all nonzero entries, then all vector edges of D occur
the same number of times. We call such a Kirchhoff graph uniform, and will return to this
idea in Section 3.3.

Corollary 3.4. If the entries of b are all nonzero, then |E(D)| is divisible by |S|.

Proof. As bj 6= 0 for all j, by Theorem 3.2,

η1 = η2 = · · · = ηn.

However,
|E(D)| = η1 + η2 + · · ·+ ηn

and so |E(D)| must be divisible by n = |S|.
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3.2.1 Kirchhoff Graphs and Matrix Equivalence

While Section 2.2 defined a Kirchhoff graph for a single matrix, Theorem 3.1 and Definition
3.2 can be used to show that if there exists a Kirchhoff graph for some matrix A, there exists
a Kirchhoff graph for a number of other matrices. This will allow us, in turn, to extend the
results of Theorem 3.2. Definition 3.2 gives a more general definition of a Kirchhoff graph
for a matrix, equivalent to that in the existing literature [27], [29].

Definition 3.2. For a matrix A ∈ Zm×n, a vector graph D is a Kirchhoff graph for A if
and only if:

(i) D has n vector edges, s1, . . . , sn.

(ii) The cycle vectors of D lie in and span Null(A).

(iii) The vertex incidence vectors of D lie in Row(A).

Proposition 3.3. If D is any Kirchhoff graph for some matrix A, D is a Kirchhoff graph
for another matrix A′ if and only if A and A′ are row-equivalent.

Proof. D is a Kirchhoff graph for A if and only if the cycle vectors of D lie in and span
Null(A), and the incidence vectors of D lie in Row(A). Similarly, D is a Kirchhoff graph for
A′ if and only if the cycle vectors of D lie in and span Null(A′), and the incidence vectors of
D lie in Row(A′). Thus D is a Kirchhoff graph for both A and A′ if and only if Null(A) =
Null(A′) and Row(A) = Row(A′). That is, if and only if A and A′ are row-equivalent.

Let A ∈ Zm×n be an integer matrix with column vectors s1, . . . , sn. Suppose D is a Kirch-
hoff graph for A. Then D = (D,ϕ) for some digraph D and vector assignment ϕ with
characteristic matrix T . As before, let Q be the incidence matrix of digraph D.

Corollary 3.5. Matrices A and QT are row-equivalent.

Proof. By Corollary 3.3 D is a Kirchhoff graph for matrix QT . Therefore by Proposition
3.3, A and QT must be row-equivalent.

Now let P be any n × n permutation matrix, so that A′ = AP arises by re-ordering the
columns of A. Similarly, the matrix TP arises by re-ordering the columns of matrix T , and
thus is also a characteristic matrix. Recall that T is the matrix representation of a vector
assignment from digraph D to vector set S = {s1, . . . , sn}. Let S ′ be a re-indexed set of
these vectors, S ′ = {s′1, . . . , s′n}, where

s′j = si if and only if Pi,j = 1.

Then matrix TP is the characteristic matrix of a (D,S ′)-vector assignment, ϕ′.
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Proposition 3.4. Vector assignment ϕ′ is consistent.

Proof. Let ek be any edge of digraph D. Let i be the index such that ϕ(ek) = si and j
be the index such that ϕ′(ek) = s′j. Then Tk,i = 1 and (TP )k,j = 1. However as Tk,i = 1,
(TP )k,j = 1 if and only if Pi,j = 1. Thus since Pi,j = 1, si = s′j by definition of ϕ′, and
consistency of ϕ′ follows from consistency of ϕ.

Knowing consistency of vector assignment ϕ′, D
′
= (D,ϕ′) is thus a vector graph. Moreover,

Lemma 3.4. D
′
= (D,ϕ′) is a Kirchhoff graph for the matrix A′ = AP .

Proof. Recall that (TP ) is the characteristic matrix of vector assignment ϕ′. Let Q be the
incidence matrix of digraph D. Then for any a ∈ Row(Q) and any column b ∈ Null(Q),

a(TP ) · bt(TP ) = aT · btT,

because P is a permutation matrix, and thus unitary. However, because D = (D,ϕ) is a
Kirchhoff graph,

aT · btT = 0.

Thus for all a and b,
a(TP ) · bt(TP ) = 0,

and it follows by Theorem 3.1 that D
′
= (D,ϕ′) is a Kirchhoff graph.

Moreover, since D is a Kirchhoff graph for A, by Corollary 3.5, A and QT are row-equivalent.
As P is a permutation matrix, A′ = AP and QTP are row-equivalent. Given that TP is the
matrix representation of ϕ′, D

′
is a Kirchhoff graph for Q(TP ). Therefore since QTP is row

equivalent to A′, by Proposition 3.3 D
′

is a Kirchhoff graph for matrix A′.

This result, presented in full formality, is not at all surprising. Observe that right-multiplying
by a permutation matrix simply re-orders the columns of matrices. This column-reordering
essentially corresponds to re-labeling the vector edges used in a vector graph. Intuitively, if A
has a Kirchhoff graph D, and A′ arises by reordering the columns of A, a suitable relabeling
of the vectors in D should give a Kirchhoff graph for A′. The details presented above verify
that our definitions hold under this natural equivalence. Moreover, this demonstrates that
if some matrix A has a Kirchhoff graph, then so does a class of matrices related to A. In
particular,

Definition 3.3. Let A,A′ be two rational-valued matrices with n columns. We will say that
A and A′ are K - equivalent if there exists some matrix A0 with n columns such that:

(i) A and A0 are row-equivalent.

(ii) A′ = A0P for some n× n permutation matrix P .
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Lemma 3.5. If D is a Kirchhoff graph for matrix A, then up to vector re-labeling it is also
a Kirchhoff graph for any matrix K - equivalent to A.

Proof. This result follows from the preceding results.

3.3 Uniform Kirchhoff Graphs

Definition 3.2 and the natural notion of K-equivalence now allow us to extend the edge-
counting results of Theorem 3.2 to matrices with larger null spaces.

Definition 3.4. A Kirchhoff graph D is uniform if all edge vectors occur the same number
of times. That is, D is uniform if

η1 = η2 = · · · = ηn.

Before Theorem 3.3 presents one of the main results of this section, we first introduce one
piece of notation. Let N be any matrix with n rows and k columns (k ≤ n), and let Ik
denote the k× k identity matrix. We will say that matrix N is in I-M Form if N is of the
form:

N =


Ik

M(n−k)×k

 . (3.6)

Now let A′ be any rational-valued matrix with n columns. There exist rational-valued
matrices A and N such that

(i) A′ is K-equivalent to A.

(ii) Matrix N is in I-M form (3.6).

(iii) The columns of N are a basis for Null(A).

Theorem 3.3. If M has no zero entries, then any Kirchhoff graph D = (D,ϕ) for A is
uniform. That is, there exists a constant ω such that ϕ assigns each vector si to exactly ω
edges of E(D). Equivalently,

η1 = η2 = · · · = ηn. (3.7)

Theorem 3.3 states that most Kirchhoff graphs must be uniform. Later, Theorem 3.4 will
show that if a matrix has a Kirchhoff graph, it must always have a uniform Kirchhoff graph.
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Proof. Let Q be the incidence matrix of digraph D and, as before let Λ = T tT be the diagonal
matrix with (j, j)-entry ηj. Now let b1, . . . , bk denote the columns of N , so that {b1, . . . , bk}
are a basis for Null(A). In particular, since D is a Kirchhoff graph for A, {b1, . . . , bk} are a
basis for Null(QT ). By Lemma 3.3,

Λb1 ∈ Null(QT ).

Therefore as {b1, . . . , bk} are a basis for Null(QT ), there exist scalars γ1, . . . , γk such that

Λb1 = γ1b1 + · · ·+ γkbk. (3.8)

For each index 2 ≤ j ≤ k, consider the jth entry of (3.8). As N is in I-M form, (b1)j = 0.
Therefore since Λ is a diagonal matrix, the jth entry on the left hand side of (3.8) is 0. The
only column of N with a nonzero jth entry is bj , which has jth entry 1. Therefore the right
hand side of (3.8) has jth entry γj, and it follows that for all 2 ≤ j ≤ k,

γj = 0.

Therefore,
Λb1 = γ1b1. (3.9)

Let ω1 = γ1. Comparing the jth entries of (3.9), it follows that for any j (1 ≤ j ≤ n),

ω1(b1)j = ηj(b1)j.

Therefore if (b1)j 6= 0, it must be that ηj = ω1. That is, for all indices j such that (b1)j 6= 0,
ηj = ω1. For each i (2 ≤ i ≤ k) repeat the above argument with index i in the place of 1.
Then we find k constants ω1, . . . , ωk such that for each j,

if (bi)j 6= 0, then ηj = ωi. (3.10)

However, as sub-matrix M had no zero entries,

(bi)n 6= 0 for all 1 ≤ i ≤ k.

Therefore it follows that
ω1 = ω2 = · · · = ωk,

and moreover,
η1 = η2 = · · · = ηn.
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Corollary 3.6. Any Kirchhoff graph for matrix A′ is uniform.

Proof. As A′ is K-equivalent to A, this follows directly from Lemma 3.5.

When the hypotheses of Theorem 3.3 are met, because η1 = η2 = · · · = ηn it follows that
each column of T sums to the same value. Given that T has all entries either 0 or 1 (and
no zero-row), T must have ω · n rows for some integer ω. Recalling that vector assignment
matrix T has |E(D)| rows,

Corollary 3.7. If M has no zero entries, then in any Kirchhoff graph D
′
= (D,ϕ′) for A′,

digraph D must satisfy
|E(D)| = ω · n

for some positive integer ω.

It is clear from the proof of Theorem 3.3, that the assumption that M have no zero entries
is stronger than necessary. In fact, a number of stronger results can be obtained directly
from (3.10).

Corollary 3.8. If M has a row with all nonzero entries, then D is uniform.

Corollary 3.9. For any two distinct columns bi and bj of N , if there exists some index r
such that

(bi)r 6= 0 and (bj)r 6= 0,

then there exists a constant ωi,j where for any indices s such that either (bi)s 6= 0 or (bj)s 6= 0,

ηs = ωi,j.

Careful consideration of Corollary 3.9 reveals that the only case in which (3.7) does not hold
is if matrix N as in (3.6), up to row and column reordering, is of the form

N =


Ik1 0
0 Ik2

An1×k1 0
0 Bn2×k2

 , (3.11)

where k1 + k2 = k and n1 + n2 = (n − k). We will say a matrix N in I-M form is block
decomposable if it is K-equivalent to a matrix of the form (3.11). Let A′, A, and N be as
in Theorem 3.3.

Lemma 3.6. If matrix N is not block decomposable, then any Kirchhoff graph for A (and
thus for A′) is uniform. That is, each edge vector occurs the same number of times.

Proof. This is a direct consequence of Corollary 3.9.



66

On the other hand, more can be said if matrix N is block decomposable. Suppose that N
is block decomposable with decomposition

N =



Ik1 0 0 0
0 Ik2 0 0

0 0
. . . 0

0 0 0 Ikr
A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 Ar


, (3.12)

where k1 + · · ·+ kr = k and each Ai is ni× ki (so n1 + · · ·+ nr = (n− k)). Observe that for
each j from 1 up to r, the induced submatrix[

Ikj
Aj

]
(3.13)

is in I-M form. A block decomposition is minimal if for each j the induced submatrix
(3.13) is not itself block decomposable.

Now let A′ be any integer-valued matrix, and let A and N be as in Theorem 3.3. Sup-
pose that N is block decomposable. By Lemma 3.5, we may suppose that N has a minimal
block decomposition of the form (3.12). Observe that a minimal decomposition of this form
induces a partition (C1, . . . Cr) of the column indices, and a partition (R1, . . . Rr) of the row
indices such that

Ni,j 6= 0 if and only if i ∈ Rm and j ∈ Cm for some m (1 ≤ m ≤ r).

That is, a row with index in Rm has nonzero entries only in columns indexed by Cm, and
vice versa.

Lemma 3.7. In any Kirchhoff graph for matrix A, for each j ∈ {1, . . . , r}, there exists a
constant ωj such that

ηi = ωj for all i in index set Rj.

That is, if N is block decomposable, the vector edges can be partitioned into r classes such
that the vectors within each class must all occur the same number of times.
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Proof. As the block decomposition (3.12) of N is minimal, each induced submatrix


Cj

Ikj
Rj −−

Aj


is not block decomposable. Therefore if Rj = {j1, . . . , jM}, by Lemma 3.6

ηj1 = · · · = ηjM .

Lemma 3.7 can now be used to prove Theorem 3.4.

Theorem 3.4. Let A′ be any integer valued matrix. If there exists a Kirchhoff graph for A′,
then there exists a uniform Kirchhoff graph for A′.

Proof. As before, there exist rational-valued matrices A and N satisfying properties (i)-(iii)
as in Theorem 3.3. If N is not block decomposable, then by Lemma 3.6, any Kirchhoff graph
for A (and thus for A′) must be uniform. Otherwise N is block decomposable. We may as-
sume N has a minimal block decomposition as in (3.12). Let (C1, . . . , Cr) and (R1, . . . , Rr)
be the resulting partitions of the column and row indices of N .

For each j ∈ {1, . . . , r}, let Mj be a rational matrix with column indices Rj such that
the columns of

Nj =


···Cj ···

... Ikj
Rj −−
... Aj

 (3.14)

form a basis for Null(Mj). Then by (3.12), because there exists a Kirchhoff graph for A′ and
thus A, there must exist a Kirchhoff graph for each Mj.

For each j ∈ {1, . . . , r}, let Dj be a Kirchhoff graph for Mj. As the block decomposi-
tion of N is minimal, the matrix Nj is not block decomposable. Because Nj is in I-M form,
it follows by Lemma 3.6 that Dj is a uniform Kirchhoff graph. That is, there exists a con-
stant ωj such that all vector edges of Dj occur ωj times. Now let ω = lcm(ω1, . . . , ωr).

For each j ∈ {1, . . . , r}, let Dj
′

be a Kirchhoff graph obtained from Dj by scaling all edge

multiplicities by ω/ωj. In particular, D
′
j is a uniform Kirchhoff graph for Mj in which all

vector edges occur ω times. That is, D
′
j is a Kirchhoff graph for any matrix for which the
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columns of 
···Cj ···

... Ikj
Rj −−
... Aj


are a basis for the null space. However, (R1, . . . , Rr) was a partition of the row indices of

N . Therefore the vector edges among the D
′
j are distinct. So for example, the disjoint union

D
′
1 ∪D

′
2 is a Kirchhoff graph for any matrix for which the columns of



···C1··· ···C2···
... Ik1 0
R1 −− 0
... A1 0
... 0 Ik2
R2 0 −−
... 0 A2


are a basis for the null space. More importantly, the disjoint union D = D

′
1 ∪ · · · ∪D

′
r is a

Kirchhoff graph for any matrix for which the columns of (3.15) are a basis for the null space.



C1 C2 ··· Cr

... Ik1 0 0 0
R1 −− 0 0 0
... A1 0 0 0
... 0 Ik2 0 0
R2 0 −− 0 0
... 0 A2 0 0
... 0 0

. . . 0
... 0 0

. . . 0
... 0 0

. . . 0
... 0 0 0 Ikr
Rr 0 0 0 −−
... 0 0 0 Ar



(3.15)

Observe, however, that (3.15) is a row-reordering of matrix N . Therefore D is a Kirchhoff
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graph for matrix A. Moreover, the vector edges are distinct among the D
′
j, and each D

′
j is

uniform with ω occurrences of each edge. Therefore every vector edge of D occurs ω times,
and D is uniform.

Example 3.2. Let A be the full row-rank matrix given in (3.16).

A =


s1 s2 s3 s4 s5 s6

2 2 −1 0 2 0
3 4 0 −1 0 −2
2 −1 −1 0 −1 0
2 2 −1 0 0 −1

 (3.16)

The columns of N , as in (3.17), are a basis for Null(A). Clearly N is in I-M form, and is
block decomposable.

N =



1 2

s1 1 0
s2 0 1
s3 2 0
s4 3 0
s5 0 −1
s6 0 2

 (3.17)

This block decomposition of N is minimal, with column partition{
C1 = {1}, C2 = {2}

}
and row partition {

R1 = {s1, s3, s4}, R2 = {s2, s5, s6}
}
.

These partitions decompose N into the induced submatrices

N1 =


1

s1 1
s3 2
s4 3

 N2 =


2

s2 1
s5 −1
s6 2

.
Moreover, as in the proof of Theorem 3.4, take M1 and M2 to be the matrices

M1 =

[ s1 s3 s4

2 −1 0
3 0 −1

]
M2 =

[ s2 s5 s6

−1 −1 0
2 0 −1

]
.
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That is, for j = 1, 2, the columns of Nj form a basis for Null(Mj). A uniform Kirchhoff graph
for A can be constructed from Kirchhoff graphs for M1 and M2. Figure 3.3.1 illustrates two
such Kirchhoff graphs: D1 is a Kirchhoff graph for matrix M1, and D2 is a Kirchhoff graph
for matrix M2.

s1

s3

s3

s4 s4 s4

s6

s2

s6

s5

D1 D2

Figure 3.3.1: A Kirchhoff graphD1 for matrixM1, and a Kirch-
hoff graph D2 for matrix M2.

Observe that as neither N1 nor N2 are block decomposable, both D1 and D2 are uniform.
That is, all vector edges of D1 occur ω1 = 6 times, and those of D2 occur ω2 = 2 times. More-
over, D1 has vector edges {s1, s3, s4}, which are distinct from the vector edges {s2, s5, s6} of

D2. Therefore, let ω = lcm(ω1, ω2) = 6. Then, as in the proof of Theorem 3.4, take D
′
1 = D1,

and let D
′
2 be obtained from D2 by scaling all edge multiplicities by ω/ω2 = 3. Finally, let

D be the disjoint union D = D
′
1 ∪D

′
2, as illustrated in Figure 3.3.2. By construction, D is

a Kirchhoff graph for matrix A. Moreover, every edge vector of D occurs ω = 6 times, and
thus D is uniform.

s1

s3

s3

s4 s4 s4

s6

s2

s6

s5

D

Figure 3.3.2: The disjoint union D = D
′
1 ∪D

′
2. D is a uniform

Kirchhoff graph for matrix A.
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3.4 Kirchhoff Graphs and Permutation Invariance

Theorem 3.1 is significant in that it realizes the Kirchhoff property based solely on the in-
cidence matrix Q of a digraph, and the characteristic matrix T of a vector assignment. A
number of applications of this result, such as Theorem 3.3 have been illustrated, and this
section will present one more.

Let D be any digraph with incidence matrix Q, and let T be any |E(D)| × n character-
istic matrix of a vector assignment on D.

Lemma 3.8. There exists a Kirchhoff graph with characteristic matrix T and digraph D if
and only if the row space of Q is invariant under right multiplication by TT t.

Proof. Let N be a rational matrix with |E(D)| rows whose columns are a basis for Null(Q).
Then by Theorem 3.3, there exists a Kirchhoff graph with digraph D and characteristic
matrix T if and only if QT (N tT )t = 0. That is, if and only if

Q(TT t)N = 0. (3.18)

But (3.18) holds if and only if the rows of Q(TT t) are orthogonal to the columns of N , i.e.
if and only if the row space of Q is invariant under right multiplication by TT t.

As before, for each j ∈ {1, . . . , n}, let ηj be the sum of the jth column of T . The product
T tT is then an n× n diagonal matrix with (j, j)-entry ηj. Lemma 3.8 instead considers the
product TT t. Without loss of generality, the columns of Q can be reordered so that T has
the form

T =



1 0 0 0
... 0 0 0
1 0 0 0
0 1 0 0

0
... 0 0

0 1 0 0

0 0
. . . 0

0 0 0 1

0 0 0
...

0 0 0 1



. (3.19)

That is, the first η1 rows of T have a 1 in column 1, the next η2 rows have a 1 in column 2,
and in general, rows

∑j−1
i=1 ηi + 1 through

∑j−1
i=1 ηi + ηj have a 1 in column j. As a result,
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TT t is a block-diagonal matrix

TT t =


Jη1 0 0 0
0 Jη2 0 0

0 0
. . . 0

0 0 0 Jηn

 , (3.20)

where JM denotes the M ×M all-ones matrix. Therefore one can think of Lemma 3.8 as
saying that the row space of Q is invariant under right-multiplication by a suitable block-
diagonal 0-1 matrix. Matrices of the form (3.20) can be constructed in a variety of manners
and, in particular, arise out of a specific class of permutation matrices.

Let P be an m × m permutation matrix, and let e1, . . . , em denote the standard basis
vectors of Rm, written as row vectors. Permutation matrix P defines an equivalence relation
∼ on {e1, . . . , em}, where

ei ∼ ej if and only if eiP
k = ej for some k.

We call the equivalence classes under ∼ the orbits of permutation matrix P . It is easy to
verify the following.

Proposition 3.5. Let P be an m×m permutation matrix with orbits of equal cardinality
k,

{ei1 , . . . eik}, {ei(k+1)
, . . . , ei2k}, {ei(2k+1)

, . . . , ei3k}, {ei(m−k+1)
, . . . , eim}.

Then P k+1 = P and, moreover,

P + P 2 + · · ·+ P k =


Jk 0 0 0
0 Jk 0 0

0 0
. . . 0

0 0 0 Jk

 .
Lemma 3.8 and Proposition 3.5 combine to prove Theorem 3.5.

Let D be any multi-digraph with m edges and incidence matrix Q, and suppose there exists
a permutation matrix P such that the row space of Q is invariant under right-multiplication
by P . Without loss of generality, we may re-order the columns of Q so that the orbits of P
are

{e1, e2, . . . , ek1}, {ek1+1, ek1+2, . . . , ek1+k2}, . . . , {. . . , em−1, em}.

Theorem 3.5. If the orbits of P are all of equal cardinality k, then D is the underlying
digraph of a Kirchhoff graph in which all edge vectors occur k times.
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Proof. As Row(Q) is invariant under right multiplication by P , it is also invariant under
right multiplication by any power of P . In particular, Row(Q) is invariant under right-
multiplication by

P + P 2 + · · ·+ P k =


Jk 0 0 0
0 Jk 0 0

0 0
. . . 0

0 0 0 Jk

 .
Now let T be the |E(D)| × |E(D)|/k matrix of the form (3.19), where the first k rows of T
have a 1 in column 1, the next k rows have a 1 in column 2, and in general, rows j(k−1) + 1
through jk have a 1 in column j. Then

TT t =


Jk 0 0 0
0 Jk 0 0

0 0
. . . 0

0 0 0 Jk

 .
Therefore the row space of Q is invariant under right multiplication by TT t, and the result
follows by Lemma 3.8.

Observe from the proof of Theorem 3.5 that if a permutation has all orbits of size k, the
resulting characteristic matrix T has all columns that sum to k. That is, permutations of
this form lead to uniform Kirchhoff graphs. In light of Theorems 3.3 and 3.4, studying
permutation invariance and incidence matrices may be a worthwhile step in understanding
existence of Kirchhoff graphs. Specifically, Theorem 3.5 provides yet another way to search
for Kirchhoff graphs. Beginning with a digraph D,

Question: Can we determine permutation matrices P under which the row space of Q(D)
is invariant?

Note that when we say “determine” in this question, we mean “devise an efficient method of
recognizing.” While one could certainly begin with brute-force computation, for a digraph
D with m edges, there are m! possible permutation matrices that must be checked. While
this is a plausible approach for relatively small examples, studying large examples raises,

Question: Can properties of digraph D or incidence matrix Q(D) be used to narrow
the search for permutation matrices under which Row(Q(D)) may be invariant? Alterna-
tively, can we rule-out permutations under which it is not invariant?

On the other hand, one could begin with a permutation matrix P and study the −1/0/1-
valued matrices invariant under post multiplication by P . Linear algebra problems of this
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form have been considered previously. For example, [15] characterized the subspaces of Rn

that are invariant under P tWP for all permutation matrices P , where W is a real symmetric
matrix. More generally, permutation invariance is of interest in many computationally-driven
disciplines. For example, in quantum information theory permutation-invariant vectors (and
operators) are used to study invariant states of registers, and can be useful in performing
calculations [107]. As noted in [107], permutation-invariant vectors are also commonly stud-
ied in multilinear algebra, for example [47], [69], and [70]. Furthermore, [107] notes that
generalizations of these notions are relevant in representation theory, as explained in [45].

3.5 Properties of Matrices and Kirchhoff Graphs

Definition 3.2, which provided the link between matrices and Kirchhoff graphs, inspires many
very natural questions. Specifically, one can inquire how the structure of a matrix A informs
the structure of its Kirchhoff graphs. Problems of this sort are plentiful, and are accessible
even to undergraduate researchers with a background in linear algebra and graph theory.
For completeness, this section includes two results of this kind.

Example 3.3. Let D be a digraph with n + 1 edges, and no multiple edges. Let ϕ be a
vector assignment on D that assigns a unique vector to n− 1 of the edges, and assigns the
same vector to the remaining two edges. Can (D,ϕ) ever be Kirchhoff?

Let E(D) = {e1, . . . , en+1}, and let ϕ2 : E(D) → {s1, . . . , sn} be any vector assignment as
described above. Without loss of generality, we may re-label the vectors {s1, . . . , sn} and
the edges of E(D) so that ϕ2(e1) = ϕ2(en+1) = s1, and ϕ has characteristic matrix

T =



s1 s2 ··· sn

e1 1 0 0 0
e2 0 · · ·
... 0

... In−1
...

en 0 · · ·
en+1 1 0 0 0

. (3.21)

Lemma 3.9. D2 = (D,ϕ2) is a Kirchhoff graph if and only if e1 and en+1 are either both
bridges in D, or form a directed (oriented) cycle that is also a set of cut-edges in D.
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Proof. As D is a simple digraph, for any vertex v and any cycle C of D,

λ(v) · χ(C) =
n+1∑
i=1

λ(v)iχ(C)i = 0. (3.22)

For any vertex v of D2, λ(v) = λ(v)T . Thus by (3.21),

λ(v)i =

{
λ(v)i for 2 ≤ i ≤ n

λ(v)1 + λ(v)n+1 when i = 1
. (3.23)

Similarly, for any cycle C in D2 with corresponding cycle C in D, χ(C) = χ(C)T . Thus

χ(C)i =

{
χ(C)i for 2 ≤ i ≤ n

χ(C)1 + χ(C)n+1 when i = 1
. (3.24)

Therefore for any vertex v and any cycle C of D2,

λ(v) · χ(C) =
n∑
i=1

λ(v)iχ(C)i

= λ(v)1χ(C)1 +
n∑
i=2

λ(v)iχ(C)i

=
(
λ(v)1 + λ(v)n+1

)(
χ(C)1 + χ(C)n+1

)
+

n∑
i=2

λ(v)iχ(C)i by (3.23) and (3.24)

=
(
λ(v)1χ(C)n+1 + λ(v)n+1χ(l)1

)
+

n+1∑
i=1

λ(v)iχ(C)i

=
(
λ(v)1χ(C)n+1 + λ(v)n+1χ(C)1

)
+ 0 by (3.22)

That is,
λ(v) · χ(C) = λ(v)1χ(C)n+1 + λ(v)n+1χ(C)1. (3.25)

First, assume that e1en+1 is a directed cycle and set of cut edges in D. Then every vertex of D
is either incident with neither, or both, of e1 and en+1. If v is incident with neither, λ(v)1 =
λ(v)n+1 = 0 (and notably, λ(v)1 = −λ(v)n+1). If incident with both, λ(v)1 = −λ(v)n+1.
Moreover as directed cycle e1en+1 is a set of cut edges, any cycle C in D must traverse e1

and en+1 the same net number of times. In particular, χ(C)1 = χ(C)n+1. Therefore for all
v and C,

λ(v)1χ(C)n+1 + λ(v)n+1χ(C)1 = λ(v)1χ(C)1 − λ(v)1χ(C)1 = 0.
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By (3.25) λ(v) · χ(C) = 0, and D2 is a Kirchhoff graph. On the other hand, assume that
both e1 and en+1 are bridges in D. Then given any cycle C in D,

χ(C)1 = χ(C)n+1 = 0. (3.26)

Thus for any vertex v and any cycle C in D2, by (3.25) and (3.26):

λ(v) · χ(C) = λ(v)1χ(C)n+1 + λ(v)n+1χ(C)1

= λ(v)1(0) + λ(v)n+1(0) = 0.

Therefore, D2 is a Kirchhoff graph.

Conversely, assume that at least one of e1 and en+1 is not a bridge in D, and either e1en+1

is not a directed cycle in D, or is a directed cycle but not a cutset. Assume, without loss of
generality, e1 is not a bridge in D. Then there exists some cycle C0 in D such that χ(C0)1 6= 0.

Case 1. e1en+1 is not a directed cycle in D. As D was a simple digraph, e1 and
en+1 cannot have the same initial and terminal vertices. Moreover, because e1en+1 is not
directed cycle in D, there must exists a vertex v0 that is incident to edge en+1 but not edge
e1. In particular,

λ(v0)n+1 6= 0 and λ(v0)1 = 0.

Then taking the corresponding vertex v0 and cycle C0 in D2, by (3.25),

(v0) · χ(C0) = λ(v0)1χ(C0)m+1 + λ(v0)n+1χ(C0)1

= 0 + λ(v0)n+1χ(C0)1

= λ(v0)n+1χ(C0)1 6= 0.

Therefore, D2 is not a Kirchhoff graph.

Case 2. e1en+1 is a directed cycle but not a cut-set in D. Let vi and vj denote
the end-vertices of e1 and en+1, so that vie1vjen+1vi is the directed cycle in D. In particular,

λ(vi)1 = 1 and λ(vi)n+1 = −1

As {e1, en} is not a cut-set of D, there exists a vj − vi path P that does not traverse e1 or
en+1. Now consider the cycle:

CP = vie1vjPvi.

Then, in particular,
χ(CP )1 = 1 and χ(CP )n+1 = 0.
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Therefore by (3.25):

λ(vi) · χ(CP ) = λ(vi)1χ(CP )n+1 + λ(vi)n+1χ(CP )1

= 0 + λ(vi)n+1χ(CP )1

= (−1)(1) = −1 6= 0.

Therefore, D2 is not a Kirchhoff graph. This completes the proof of Lemma 3.9.

Example 3.4. Let A ∈ Zm×n be a m× n matrix with integer entries, and suppose column
i of A is a positive integer multiple of column j. What configurations of si and sj edges are
permitted in Kirchhoff graphs for A?

Letting e1, . . . en represent the standard basis elements of Zn. This means that

ei − pej ∈ Null(A)

for some integer p ∈ N.

Lemma 3.10. In any Kirchhoff graph for matrix A, any occurrence of edge si must occur
as part of the configuration illustrated in Figure 3.5.1, where q is some integer q ≥ 1.

.....

si

sj

pq
q q q q

sjp consecutive edges

Figure 3.5.1: The permitted configuration for si and sj. Note
that in this drawing, we only represent the edges si and sj, all
other edge vectors sk for k 6= i, j can be incident to the vertices
depicted.

Proof. Let D be any Kirchhoff graph for A. As ei − pej ∈ Null(A), for all vertices v of D,
we must have that

λ(v)(ei − pej) = 0.

That is,
λ(v)i = pλ(vj). (3.27)

In particular, λ(v)i and λ(v)j are either both zero, or both nonzero. This leads to the cycle
configuration illustrated in Figure 3.5.1, with multiplicities chosen to ensure that (3.27) is
satisfied.
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Along the lines of understanding the relationship between graphs and matrices, another rea-
sonable question is the following. Per Definition 3.2, a vector graph D is a Kirchhoff graph
for a matrix A if λ(v) ∈ Row(A) for all vertices v, and span{χ(C)t : C is a cycle of D} =
Null(A).

Question: What can be said of a Kirchhoff graph in which the roles of Row(A) and
Null(A) are reversed?

That is, suppose D′ is a vector vector graph for which λ(v) ∈ Null(A) for all vertices v,
and span{χ(C)t : C is a cycle of D′} = Row(A). What is the relationship between D′ and
D? Can one be used to construct the other? This question leads to a natural notion of
duality in Kirchhoff graphs, which is the topic of Chapter 4.



Chapter 4

Kirchhoff Graphs, Duality, and
Maxwell Reciprocal Figures

In this chapter we propose a notion of duality with respect to Kirchhoff graphs. We will
compare these new ideas to more classical notions of duality, including planarity and James
Clerk Maxwell’s theory of reciprocal figures, both of which utilize graphs embedded in R2.
In order to aid these comparisons, we distinguish those vector graphs that are embeddable
in R2. An R2-vector graph will be any vector graph whose vector edges lie in R2, and
an R2-Kirchhoff graph is defined analogously. Notice that any R2-vector graph can be
embedded in the plane where every edge vector is drawn as the assigned vector sj (this is
guaranteed by consistency of vector assignments). In this chapter we take a more geometric
approach to Kirchhoff graphs, which are geometric in the sense that the edges are vectors.
For more general discussion of geometric graphs, see [85], [86],[87], and [88].

Recall from Definition 3.2 that for a matrix A ∈ Zm×n, a vector graph D is a Kirchhoff
graph for A if and only if

(i) D has n vector edges, s1, . . . , sn.

(ii) The cycle vectors of D lie in and span Null(A).

(iii) The vertex incidence vectors of D lie in Row(A).

Moreover, recall from Definition 1.5 that two digraphs are (abstract) duals if the cycle space
of one is the cut space of the other, and vice versa. Building upon these definitions, and in
light of Theorem 1.2, we propose the following.

79
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Definition 4.1. Let A ∈ Zm×n be an integer-valued matrix, and suppose Null(A) is the
column span of Bt, for some B ∈ Zk×n. Any Kirchhoff graph for matrix B will be called a
Kirchhoff graph for Null(A).

Definition 4.2. Two Kirchhoff graphs D and D′ are dual Kirchhoff graphs if there
exists some matrix A such that D is a Kirchhoff graph for A, and D′ is a Kirchhoff graph
for Null(A). We say each vector graph is a Kirchhoff dual of the other.

One question we will begin to explore in this section is,

Question: Given a Kirchhoff graph D for a matrix A, can we use vector graph D to
construct a vector graph D′ that is a Kirchhoff graph for Null(A)? That is, can a Kirchhoff
graph be used to construct its Kirchhoff dual?

Answering this question as “yes” would be a useful step towards proving the existence of a
Kirchhoff graph for any integer-valued matrix (the primary open problem in the theory of
Kirchhoff graphs [28, 29]). This would mean that given any integer matrix A, if one can
construct a Kirchhoff graph for either A or Null(A), then there exists a Kirchhoff graph for A.

A natural place to begin exploring this idea of dual Kirchhoff graphs, and in particular
dual R2-Kirchhoff graphs, is the well-developed theory of reciprocal figures of James Clerk
Maxwell. Given a geometric graph satisfying certain properties, Maxwell’s work provides
a concrete and universal method of constructing a reciprocal diagram, where the vertex
cuts and cycles in one diagram correspond exactly with the cycles and vertex cuts in the
other. Section 4.1 presents a re-description of Maxwell’s original work in [75] using modern
mathematical terms. Given these foundations, Section 4.2 will describe commonalities be-
tween Maxwell figures and Kirchhoff graphs. Cases in which Maxwell’s theory is no longer
applicable lead us to consider other methods of finding R2-Kirchhoff duals in Section 4.3.

4.1 Maxwell Reciprocal Figures

James Clerk Maxwell introduced his idea of reciprocal figures in the mid 1860’s [74][75][76].
He describes a type of geometric reciprocity, which has applications to mechanical problems.
A “frame” is a geometric system of points connected by straight lines. In order to study
equilibrium within these frames, he suggests we think of the points as mutually acting on
each other, with forces in the direction of the lines adjoining them. Each line is thus endowed
with one of two types of forces: if the force acting between its endpoints draws the points
closer together, we call the force a tension, and if the force tends to separate the points,
we call the force a pressure. Maxwell outlines a method for drawing a diagram of force
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corresponding to this frame, where every line of the force diagram represents, in magnitude
and direction, the force acting on a line in the frame. Thus, the frame and its forces are
presented in two separate diagrams, henceforth referred to as the frame diagram and the
force diagram . In representing the forces in a separate diagram, Maxwell recognizes the
loss of some interpretability: it is not immediately clear which forces act on which points
in the frame. On the other hand, this method reduces finding the equilibrium of forces to
examining whether the force diagram has closed polygons.

We draw a force diagram where each line in the force diagram is parallel to the line on
which it acts in the frame. The lengths of these lines are proportional to the forces acting
on the frame. For a frame that is in equilibrium, when any number of lines meet at a point
in the frame, the corresponding lines in the force diagram form a closed polygon. In certain
cases, Maxwell observes, for any lines that meet in the force diagram, the corresponding
lines in the frame form a closed polygon. This is the type of geometric reciprocity Maxwell
desires: two figures are considered “‘reciprocal” if either diagram can be taken as a frame
diagram, and the other represents the system of forces that keeps that frame in equilibrium.
More precisely, in [75], he gives,

Definition 4.3. Two plane rectilinear figures are reciprocal when they consist of an equal
number of straight lines, so that the corresponding lines that meet in a point in one figure
form a closed polygon in the other, and vice versa.

The two diagrams in Figure 4.1.1 are the original example of reciprocal figures as presented
by Maxwell [75]. Note that the same letters are used to label corresponding (parallel) lines
in the frame diagram and the force diagram.

A

B

C

R

Q

P
p

q

r

b

a

c

Figure 4.1.1: Maxwell’s reciprocal figures as presented in [75].
Corresponding parallel edges are labeled with the same letter;
capitalized in the frame diagram and lower-case in the force di-
agram.

Given that the frame is in equilibrium, we may draw the force diagram as outlined below.
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For convenience, refer to points of the frame by the labels of the lines incident to it. For
example, the center point in the frame diagram is PQR.

(1) Begin by drawing line p in the force diagram, parallel to line P in the frame. Choose a
length for this line that represents the magnitude of the force acting along P . Although the
length of this first edge is an arbitrary choice, once the length of line p has been fixed, the
lengths of all other lines in the force diagram are determined.

(2) The forces acting along lines P , Q and R in the frame are in equilibrium. Therefore,
in the force diagram, draw from one endpoint of p a line parallel to Q and from the other
endpoint of p a line parallel to R. Thus, form a (closed) triangle pqr in the force diagram,
representing the equilibrium of forces acting on point PQR. Steps (1) and (2) are illustrated
in Figure 4.1.2. Note that once we fixed the length of edge p, the lengths of q and r are
therefore predetermined and represent the magnitude of the forces acting on Q and R.

p
p p

(R)

(Q)

r

q

(1.) (2.)

Figure 4.1.2: Steps (1) and (2).

(3) The other end of line P in the frame diagram meets lines B and C at a point. As the
forces at point PBC are in equilibrium, draw a triangle in the force diagram with p as one
side and lines parallel to B and C as the others. This can be done in one of two ways,
illustrated in Figure 4.1.3.
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p

q

r

p

q

r

(B)

(B)(C)

(C)

Figure 4.1.3: Two possible choices for Step (3).

Only one of these triangles belongs in the force diagram. As the force diagram is the recip-
rocal figure of the frame, look to the frame diagram to determine which of these two choices
is correct. The endpoints of line p in the force diagram correspond to closed polygons in the
frame diagram: namely, those polygons that contain P as an edge. That is, the endpoints of
p in the force diagram correspond to polygons PRB and PQC. As PRB is a closed polygon
in the frame diagram, line b in the force diagram (parallel to B) must meet lines r and p in
a point. Similarly, since PQC is a closed polygon in the frame diagram, line c in the force
diagram (parallel to C) must meet lines q and c in a point. This corresponds to choosing
the first case shown in Figure 4.1.3.

(4) Consider the equilibrium of forces at point QCA in the frame diagram. Two of the
corresponding lines of force, q and c, have already been determined in the force diagram.
Therefore, the only choice for line a (parallel to A) in the force diagram must complete
triangle qca. Step (4) is illustrated in Figure 4.1.4.

p

q

r

b

a

c
p

q

r

b

c

Figure 4.1.4: Step (4).

Remark 4.1. We can use an alternate notation to label the frame and force diagrams,
known as Bow’s notation or interval notation. In this method, we label regions of the frame
diagram and the corresponding vertices in the force diagram with the same label. A full
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description of this method can be found in [6].

Maxwell’s reciprocal figures are, in fact, geometric graphs that are dual to one another.
Therefore of particular interest to us is Maxwell’s description of diagrams that have recipro-
cal figures; namely, plane projections of (closed) polyhedra. Let P be any closed polyhedron
in R3, i.e. a region bounded by some (finite) number of intersecting planes, {Mi}.

(1) Let n1, . . . ,nn be the normal vectors to planes M1, . . .Mn. Choose a plane of projection,
M , that satisfies:

(a) M does not intersect the closed polyhedron P .

(b) For all 1 ≤ i ≤ n, a line through normal vector ni of plane Mi intersects plane M .

The standard plane projection of polyhedron P onto plane M gives one of the two figures.
Now, construct a second polyhedron P ′, which, with respect to some paraboloid of revolu-
tion, is a geometric reciprocal to the first polyhedron. The projection of P ′ onto plane of
projection M is then a reciprocal figure of the projection of P onto M . These two figures
are reciprocal in the sense that corresponding lines are perpendicular to each other. One
may obtain reciprocal figures with parallel orientation simply by rotating one figure by 90
degrees in the plane. Construct P ′ as follows.

(2) Let z0 be a fixed-point in three-space that does not lie in M , which we will call the
origin. The line perpendicular to plane of projection M that passes through point z0 will be
called the axis, denoted by z. Lastly, let zM be the point of intersection of line z with plane
M .

(3) For each 1 ≤ k ≤ n, draw a line that is normal to plane face Mk of P and passes
through point z0. This line will intersect (projection) plane M at a unique point, call it mk.
Each point mk may be thought of as the “projection” of face Mk onto plane M .

(4) For each 1 ≤ k ≤ n, let zk be the point of intersection of axis z with face Mk. This
intersection always exists, since we chose a plane M that is not parallel to any of the normal
vectors nk (and z is a normal to M). Let dk be the (three-space) vector from zM to zk. That
is, dk is the vector between the intersection points of z with M and Mk. Ultimately, let

pk = mk − dk

We will call this point in space pk the “point corresponding to face Mk of the polyhedron
P”. Steps (2)–(4) of finding a point pk corresponding to a particular face Mk are illustrated
in Figure 4.1.5.
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Mk

z0

zM M

z k

mk

z

pk

dk

-dk

Figure 4.1.5: Finding a point pk corresponding to a particular
face Mk.

In this way, we determine n points p1, · · · , pn corresponding to the faces M1, · · ·Mn of P .
These points form the vertices of polyhedron P ′.

(5) For any two faces Mi and Mj that meet in an edge in polyhedron P , draw a line be-
tween the corresponding points pi and pj. These new lines give us the edges of polyhedron P ′.

If we let MiMj denote the edge at the intersection of planes Mi and Mj and pipj denote
the line joining the corresponding points, one may check geometrically that the projection
of line MiMj onto M is perpendicular to the projection of line pipj onto M . In this way,
the projection of P ′ onto M produces a figure, every line of which is perpendicular to the
projection of the corresponding line of P onto M . What is more, for any lines that meet
at a point in one projection, the corresponding lines form a closed polygon in the other
projection. That is, the projection onto M of P and P ′ forms a pair of reciprocal figures in
the sense of Maxwell.

4.2 Maxwell Reciprocal Figures and R2-Kirchhoff Graphs

Through his theory of reciprocal figures, Maxwell deals with a pair of geometric graphs in
which the vertex-cuts of one graph correspond to the cycles in the other, and vice versa.
In this section, we discuss the relationship between Maxwell’s figures, R2-Kirchhoff graphs,
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and R2-Kirchhoff duals. To make a connection between these Maxwell figures and Kirchhoff
graphs, we define an R2 vector graph corresponding to a given Maxwell diagram. First, we
define a pair of embedded digraphs corresponding to Maxwell figures and then derive vector
graphs accordingly.

Label the edges of the frame diagram as ej and the corresponding (parallel) edges of the
force diagram as fj. We will adopt notation that indexes both vertices and cycles by these
edge labels. Let {ei, ej, ek} denote the vertex incident to edges ei, ej and ek, and use stan-
dard cycle notation for simple graphs, fifjfk. Observe that if fifjfk is a cycle in the force
diagram, there is a vertex of the form {ei, ej, ek} in the frame diagram, and vice versa. By
arbitrarily assigning directions to each edge in the frame diagram, construct a corresponding
plane-embedded digraph, D. We can then construct a plane-embedded digraph correspond-
ing to the force diagram, D′, by carefully assigning directions to each edge fi. In particular,
assign directions, such that for each cycle fifjfk . . . traversed clockwise in the in the force
diagram,

χ(fifjfk . . . ) = λ({ei, ej, ek, . . . }). (4.1)

Finally, derive a pair of vector graphs, D and D′, from D and D′ by taking the directed
edges, embedded in R2, as vectors. Let {si} denote the edge vectors of D and {ti} denote
the edge vectors of D′.

Definition 4.4. Let D and D′ be the pair of R2-vector graphs defined above. We say that D
and D′ are a pair of R2-vector graphs corresponding to the Maxwell figures. Note that
we say “a pair”, as there are many such sets of vector graphs, depending on the arbitrary
assignment of directions to edges in the frame diagram.

Example 4.1. Figure 4.2.1 displays the Maxwell reciprocal figures as in Figure 4.1.1, now
re-labeled as described above.

e1

e4

e3

e6

e2
e5

f4 f1

f3

f6 f2
f5

Figure 4.2.1: Maxwell reciprocal figures.

Figure 4.2.2 illustrates one pair of R2-vector graphs corresponding to these Maxwell recip-
rocals. In this example, every vector edge occurs exactly once. An example with repeated
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edge vectors appears at the end of this section. Taking

A =


s1 s2 s3 s4 s5 s6

1 0 1 1 0 0
0 1 1 0 0 1
0 0 0 −1 1 1

 and B =


t1 t2 t3 t4 t5 t6
1 0 0 −1 −1 0
0 1 0 0 1 −1
0 0 1 −1 0 −1

,
It is easy to verify that D is a Kirchhoff graph for A. Moreover, Null(A) is the column
span of Bt, and most importantly, D′ is a Kirchhoff graph for B. Therefore beginning with
Maxwell reciprocal diagrams, we have arbitrarily assigned directions to one diagram, then
consistently assigned directions to the other diagram. The result is two R2-vector graphs
that are both Kirchhoff and indeed are each others’ Kirchhoff dual.

t1

t2

t3

t4

t5
t6

s1

s2

s3

s4

s5

s6

D'D

Figure 4.2.2: A pair of R2-vector graphs corresponding to
Maxwell reciprocals.

Example 4.1 is but one example of a more general result. Let G be a graph embedded in
the plane, with no multiple edges, that has a reciprocal figure in the sense of Maxwell.

Lemma 4.1. If no pair of edges of G is parallel in the plane, then any vector graph corre-
sponding to G is a Kirchhoff graph.

Proof. Let D be any vector graph derived by assigning directions to each edge in G, and let
s1, . . . , sn be the resulting edge vectors. Because no edges of G were parallel in the plane,
every edge vector si occurs exactly once, and therefore D is a Kirchhoff graph.

Now let G and G′ be a pair of Maxwell reciprocal figures and D and D′ be any pair of
R2-vector graphs corresponding to G and G′.

Theorem 4.1. If G has no parallel edges in the plane, both D and D′ are Kirchhoff graphs.
Moreover, for any matrix A such that D is a Kirchhoff graph for A, D′ is a Kirchhoff graph
for Null(A). That is, D and D′ are Kirchhoff duals.
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Proof. As G has no parallel edges in the plane, its Maxwell reciprocal G′ also has no pair
of parallel edges. Therefore, both D and D′ are Kirchhoff graphs by Lemma 4.1. If D is a
Kirchhoff graph for some matrix A, then D′ is a Kirchhoff graph for Null(A) by (4.1).

Remark 4.2. Lemma 4.1 and Theorem 4.1 above demonstrate that any Maxwell frame
diagram without parallel edges leads to a number of pairs of dual R2-Kirchhoff graphs. This
means that most Maxwell diagrams will lead directly to pairs of Kirchhoff duals: given a
randomly-chosen closed polyhedron, a randomly-chosen plane projection will lead to a frame
diagram with no parallel edges.

Though Remark 4.2 shows that there is significant overlap between Maxwell reciprocals and
R2-Kirchhoff duals, arguably, the cases that make vector graphs interesting are those in
which vector edges occur more than once. The connection between Maxwell figures and
R2-Kirchhoff graphs becomes considerably more delicate when considering geometric graphs
with parallel edges. The care with which the polyhedron and projection must be constructed
in Example 4.2, however, demonstrates that these situations arise as particularly special cases
of Maxwell diagrams.

Example 4.2. In this example, we explicitly construct a graph G with the following prop-
erties:

(1) When considered as a geometric graph, G has a Maxwell reciprocal, G′.

(2) There exists an R2-vector graph G corresponding to G that is not Kirchhoff.

(3) Any R2-vector graph G′ corresponding to G′ is Kirchhoff.

Consider the system of five planes in R3 given in (4.2).

−x+ z = 0 − x+ 3y − 2z = 0 y + z = 0 5x− y + 4z = 0 z = 0 (4.2)

The three-dimensional region bounded by these five planes forms a closed, bounded polyhe-
dron in R3, as illustrated in Figure 4.2.3.

0
1

2
3

4

−2

0

2
4
0

0.5

1

1.5

2

(3,−1,0)(3,−1,0)(3,−1,0)

(4,4,0)(4,4,0)(4,4,0)

(2,2,2)(2,2,2)

(0,0,0)(0,0,0)(0,0,0)(0,0,0)(0,0,0)

(0,4,0)(0,4,0)(0,4,0)

Student Version of MATLAB

Figure 4.2.3: Closed polyhedron defined by (4.2).



89

The projection of this figure onto the xy-plane has a reciprocal figure in the sense of Maxwell.
The projection of this polyhedron is shown in Figure 4.2.4.

Remark 4.3. This was a very specifically chosen embedding of this polyhedron, that forces
two of the projected edges to be congruent. Note that these two edges of the polyhedron
were not parallel in three-space, so a randomly chosen plane projection of this polyhedron
would, in general, result in a geometric graph having no pair of congruent edges.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

(0,0)

(3,−1)

(4,4)(0,4)

(0,0)(0,0)

(2,2)

(4,4)(0,4)

(2,2)

(3,−1)

(0,0)

(3,−1)

(4,4)(0,4)

(0,0)

Student Version of MATLAB

Figure 4.2.4: Projection on the xy-plane of the polyhedron in
Figure 4.2.3.

Now, consider the projection in Figure 4.2.4 as a frame diagram. Being the plane projection
of a convex polyhedron, construct the associated force diagram. as shown in Figure 4.2.5

e1

e2

e3

e4

e5

e6 e7

e8

f1

f2

f3

f4

f6

f7
f8

f5
G G'

Figure 4.2.5: G and G′, Maxwell reciprocals.

The vector graph G shown in Figure 4.2.6 is one vector graph corresponding to the frame
diagram G in Figure 4.2.5. G has no multiple edges, and each vector edge occurs exactly
once, except for edge s1, which occurs exactly twice. Given that both occurrences of s1

are not bridges (nor a directed cycle), it follows from Lemma 3.9 that G is not a Kirchhoff
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graph. On the other hand, observe that the force diagram G′ in Figure 4.2.5 has no pair of
congruent edges, and therefore any vector graph G′ derived from G′ is a Kirchhoff graph.

s1

s1s2

s3

s4

s5

s6

s7

Figure 4.2.6: G, an R2-vector graph corresponding to G.

Remark 4.4. This example illustrates a few important differences. First, not every R2-
vector graph corresponding to a Maxwell figure is a Kirchhoff graph. Second, it is possible
that a pair of Maxwell reciprocals generates a pair of corresponding R2-vector graphs, one of
which is Kirchhoff, while the other is not. These discrepancies arise because the correspond-
ing vector graphs may have differing numbers of distinct vector edges. When constructing
Maxwell’s reciprocal figures, we are guaranteed that every pair of corresponding edges is par-
allel to each other. The length of each edge in the reciprocal figure is prescribed in Maxwell’s
construction. However, if two parallel edges in the frame diagram have the same length, the
corresponding edges in the force diagram are parallel, but need not have the same length.
For example, in Figure 4.2.5, edges e5 and e7 are parallel and have the same length. In the
reciprocal diagram, edges f5 and f7 are parallel but have different lengths.

This is not to suggest that the only Maxwell figures that correspond to dual Kirchhoff graphs
are those with no parallel edges. Symmetry in the frame diagram can lead to symmetry in
the force diagram, resulting in pairs of edges that are congruent in the plane, as illustrated
in Example 4.3.

e1 e2

e3e4

e5

e6

e7

e8

f8

f7

f6

f5

f4

f3f2

f1

Figure 4.2.7: A pair of Maxwell reciprocal figures.
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Example 4.3. Consider the pair of Maxwell reciprocal figures in Figure 4.2.7. Figure 4.2.8
illustrates a pair of R2-vector graphs corresponding to the reciprocal figures of Figure 4.2.7.

s1 s1

s2

s2

s3

s3s4

s4

t2

t2

t1 t1

t3

t3 t4

t4

Figure 4.2.8: A pair of vector graphs corresponding to the
Maxwell reciprocals in Figure 4.2.7.

One may verify that these two R2-vector graphs are Kirchhoff graphs for the matrices A and
B respectively, where

A =

[ s1 s2 s3 s4

1 0 −1 1
0 −1 1 1

]
and B =

[ t1 t2 t3 t4
1 1 1 0
−1 1 0 1

]
.

Moreover, Null(A) is the column span of Bt and these Kirchhoff graphs are, in fact, a pair
of Kirchhoff duals.

4.3 Constructing Kirchhoff Duals

Remark 4.2 and Example 4.3 illustrate that in many cases, Maxwell reciprocal figures can lead
to pairs of R2-Kirchhoff duals. Example 4.2, however, demonstrates that these two theories
do not always agree: R2 vector graphs corresponding to a Maxwell figure are not necessarily
Kirchhoff when edges are identified as vectors. Even if the vector graph corresponding to a
Maxwell figure is Kirchhoff, the vector graph corresponding to the Maxwell reciprocal need
not be Kirchhoff. Moreover, there are a number of classes of vector graphs that will never
correspond to a Maxwell figure; for instance, vector graphs with multiple edges and vector
graphs that are not the projection of a polyhedron. This leads us to begin exploring other
methods of constructing dual vector graphs, specifically dual R2-vector graphs.
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4.3.1 Planar R2-Kirchhoff Graphs

Before considering Kirchhoff graphs with multiple edges, we first illustrate an alternative
method of constructing the pair of R2-Kirchhoff duals given in Figure 4.2.8, based on pla-
narity. Rather than Maxwell reciprocals, we consider very specific embeddings of digraphs,
that are dual in the standard sense.

Example 4.4. Begin with the first vector graph in Figure 4.2.8, D. Construct a dual R2-
vector graph for D, D′, as follows. First, view D as a directed graph D embedded in R2.
Clearly no edges of D intersect in this embedding, meaning D is planar. Next, form the
standard dual graph D′ of D. The faces of D are the regions of R2 that contain no vertex or
edge of D, and are bounded by a cycle of D. The facial cycles are those that bound a face.
The faces of D form the vertices of dual graph D′. For any edge e separating two faces of D
there is an edge e′ connecting the corresponding vertices of D′. In order to assign directions
to the edges of D we choose the following convention. For each face F , traverse the facial
cycle in the clockwise direction. If edge e is traversed in the direction of its orientation, let F
be the initial vertex of edge e′ in D′. Otherwise when e is traversed against its orientation,
F is the terminal vertex of e′.

s1 s1

s2

s2

s3

s3s4

s4

t2

t2

t1

t1
t3

t3
t4

t4

Figure 4.3.1: The standard dual of digraph D.

Now for each edge labeled si in D, assign label ti to the corresponding edge of D′. This
process is illustrated in Figure 4.3.1, and leads to the following,

Question: Can we embed the vertices of D′ in R2, such that for each j, all copies of
every edge with label tj are identical vectors in R2?

In the case of vector graph D, the answer to this question is “yes”. In particular, we
can embed D′ in R2 to give the vector graph D′ as shown in Figures 4.3.2. Observe that this
is precisely the R2-vector graph D′ corresponding to Maxwell reciprocal G′ in Example 4.3.
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t2

t2

t1 t1

t3

t3 t4

t4t2

t2

t1

t1
t3

t3
t4

t4

Figure 4.3.2: Arranging vector graph D′.

Example 4.4 shows the roles of faces and vertices can be interchanged to find Kirchhoff
duals. Moreover, this method can be used to address Kirchhoff graphs with multiple edges.
Namely, multiple vector edges are replaced by consecutive (identical) vector edges in the
dual R2-vector graph, and vice versa. This will be illustrated in Example 4.5.

Remark 4.5. Non-unit entries in an incidence vector indicate multiple edges, whereas non-
unit entries in a cycle vector indicate consecutive edges. Therefore, replacement of multiple
edges by consecutive edges (and vice versa) in the construction of dual vector graphs causes
the cut space and cycle space to interchange roles.

Example 4.5. Consider the matrix

A =

[ s1 s2 s3

2 0 −1
0 2 1

]
where Null(A) = span

{ [
1 −1 2

]t }
The first R2-vector graph in Figure 4.3.3 is a Kirchhoff graph D for A. We also re-draw this
vector graph in order to better illustrate the method of addressing multiple edges.

s1 s2

s3 s3

s1 s2
s1 s2

s3 s3

Figure 4.3.3: Kirchhoff graph D for matrix A.
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As before, construct a dual directed graph and arrange the vertices to give a dual R2 vector
graph, shown in Figure 4.3.4. Observe that multiple edges in the R2-vector graph translate
consecutive edges in the dual R2-vector graph, and vice versa. One can easily verify that D′

is an R2-Kirchhoff graph for Null(A).

t1

t2

D'

t1

t2

t3 t3t2

t2

t1

t1

t3 t3

t1

t2

D'

t3

t1

t2

Figure 4.3.4: Arranging vector graph D′.

One advantage of using dual methods is graph construction. In some cases, given a matrix
A, it may be relatively straightforward to construct an R2-Kirchhoff graph for Null(A).
Using a dual vector graph method may then lead to an R2-Kirchhoff graph for A without
constructing one directly. In the example above it may not be intuitively clear how to
construct an R2-Kirchhoff graph for the matrix [1,−1, 2]. On the other hand, it is a fairly
easy task to construct an R2-Kirchhoff graph with cycle space spanned by [1,−1, 2], and an
R2-Kirchhoff graph for [1,−1, 2] was then obtained via a Kirchhoff dual.

4.3.2 Non-Planar R2-Kirchhoff Graphs

The planar R2-Kirchhoff graphs given above are not representative of R2-Kirchhoff graphs
in general, which need neither be planar nor have a geometric dual. One advantage of
Definition 4.2 is the opportunity to construct dual R2-Kirchhoff graphs in cases where no
dual graph exists under standard notions. In Example 4.6, we consider H = (K3,3, ϕ), an
R2-vector graph representation of K3,3, and present a Kirchhoff dual, H ′. On its own, this
result is significant: K3,3 is non-planar, and has no dual under any classical definitions of
duality. However, the Kirchhoff dual that we exhibit leads to a few further observations.
Kirchhoff graph H ′ is an embedding of a digraph, that has a geometric dual, and embedding
this geometric dual to create an R2-vector graph H ′′ results in a Kirchhoff graph that is–
nearly–the original H.
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Example 4.6. Consider the vector graphs H shown in Figure 4.3.5, and H ′ in Figure 4.3.6.

s1

s2

s3

s4

s5

s6

s7
s8

s9

Figure 4.3.5: An R2-Kirchhoff graph, H = (K3,3, ϕ).

Every vector edge of H occurs exactly once, and therefore H is an R2-Kirchhoff graph.
Moreover, observe that H is an embedding of K3,3 (with edge orientations). K3,3 is non-
planar, and has no geometric dual. However, H is an R2-Kirchhoff graph for the matrix A,
as in (4.3).

A =



s1 s2 s3 s4 s5 s6 s7 s8 s9

−1 1 0 0 0 0 1 0 0
0 −1 1 0 0 0 0 −1 0
0 0 −1 1 0 0 0 0 −1
0 0 0 −1 1 0 −1 0 0
0 0 0 0 −1 1 0 1 0

 (4.3)

On the other hand, the null space Null(A) is the column span of Bt, where

B =


t1 t2 t3 t4 t5 t6 t7 t8 t9
1 1 1 0 0 0 0 0 −1
0 1 1 1 0 0 −1 0 0
0 0 1 1 1 0 0 1 0
0 0 0 1 1 1 0 0 1

.
One may verify that vector graph H ′ as in Figure 4.3.6 is an R2-Kirchhoff for matrix B.
That is, H ′ is a Kirchhoff dual of H.
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t7

t7 t8

t8

t9t9 t1 t1

t6

t6

t3

t3

t2

t2

t5

t5

t4

t4

Figure 4.3.6: Dual R2-Kirchhoff graph, H ′.

Therefore, although H (i.e. K3,3) does not have a dual graph under any standard notions,
when taken as an R2-vector graph, it has a dual in the Kirchhoff sense.

Interestingly, this Kirchhoff dual H ′ can be viewed as the plane projection of a polyhe-
dron in R3, meaning H ′ has a geometric dual. This polyhedron and its geometric dual are
illustrated in Figure 4.3.7. For each edge labeled tj in H ′, we label the corresponding edge
as sj in the geometric dual.

s7

v1 v2

v3

v4v5

v6

v7v8

v9

v10 v11

v12

s2

s2

s5

s5

s3

s4

s6

s6

s1

s1

s8

s9 s9

s7s8
s3

s4

Figure 4.3.7: The polyhedron of H ′ and its geometric dual.

In order to construct this geometric dual as an R2-vector graph, H ′′, we must embed the
vertices in the plane so that all vector edges with label si are identical. This can be accom-
plished by, for each 1 ≤ j ≤ 6, mapping the pair of vertices vj and vj+6 to the same point in
the plane. This embedding is illustrated in Figure 4.3.8.
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v10v11
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s1

s2
s3

s4

s5

s6

s7

s9

s8

v12

Figure 4.3.8: Constructing R2-vector graph H ′′.

This R2-vector graph is vector graph H, with every edge doubled. As a result, H ′′ is both
an R2-Kirchhoff graph for the matrix A and a Kirchhoff dual for H ′.

By following essentially the reverse process as that outlined in Example 4.6, we can illustrate
how to directly construct an R2-Kirchhoff dual for K5 (which is also non-planar).

Example 4.7. Consider the R2-vector graph in Figure 4.3.9, K = (K5, ϕ), a vector graph
constructed from a directed complete graph on 5 vertices.

s1 s2

s3

s4

s5

s6

s7

s8 s9

s10

Figure 4.3.9: R2-Kirchhoff graph K = (K5, ϕ).

Every vector edge of K occurs exactly once, so K is Kirchhoff. Moreover, it is a Kirchhoff
graph for matrix A, where

A =


s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

−1 1 0 0 0 0 0 −1 1 0
0 −1 1 0 0 −1 1 0 0 0
0 0 −1 1 0 0 0 0 −1 1
0 0 0 −1 1 0 −1 1 0 0

.
The null space Null(A) is spanned by the columns of Bt, where
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B =



t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1 1 0 0 0 −1 0 0 0 0
0 0 1 0 0 1 0 0 0 1
0 0 0 1 1 0 0 0 0 −1
0 0 0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 0 −1 0
0 0 1 1 0 0 −1 0 0 0

.

Our goal is to construct an R2-Kirchhoff graph for matrix B. Rather than attempting to do
so directly from the matrix, we can utilize any R2-Kirchhoff graph for A. Clearly, R2-vector
graph K ′′, shown in Figure 4.3.10, is vector graph K with each vector edge doubled.

s1 s2

s3

s4

s5

s6

s7

s8 s9

s10

Figure 4.3.10: R2-vector graph K ′′.

Therefore, K ′′ is also a Kirchhoff graph for A, and any R2-Kirchhoff dual for K ′′ is also a
Kirchhoff dual for K. We will demonstrate that we can use R2-vector graph K ′′ to construct
such a Kirchhoff dual, K ′. K ′′ arises from a plane embedding of a digraph with 20 edges.
For a moment, however, suppose that this digraph had more than five vertices; some of
these vertices were then embedded at the same point when forming R2-vector graph K ′′.
Specifically, consider digraph D as in Figure 4.3.11, on 10 vertices and 20 edges.

v1

v2

v3v4

v5

v6

v7

v8 v9

v10

Figure 4.3.11: A digraph D with 10 vertices and 20 edges.
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An embedding of D, that maps the pair of vertices vj and vj+5 (1 ≤ j ≤ 5) to the same point
in the plane will produce R2-vector graph K ′′. We alternately render digraph D in Figure
4.3.12, labeling edges to indicate those that are assigned the same vector.

s2

s3

s4

s1

s3

s4

s5

s5

s1s2
s10

s9s8

s7

s6

s10

s9
s8

s7

s6

Figure 4.3.12: Labeling the edges of D to reflect which are
assigned the same vector.

This digraph D is clearly planar, so we may construct its standard dual, D′. For each edge
labeled sj in D, label the corresponding edge as tj in D′. Given dual D′, shown in Figure
4.3.13, we have returned to the previous question: can the vertices of D′ be embedded in
R2, such that all directed edges with label tj are identical vectors?

t4

t5

t1 t2

t3

t10

t9 t8

t7

t6

t10

t9t8

t7

t6

t3
t2

t1
t5 t4

Figure 4.3.13: Constructing the dual D′ of digraph D.

One such embedding of D′ is illustrated in Figure 4.3.14, forming an R2-vector graph K ′.
More importantly, one may verify that this vector graph K ′ is a Kirchhoff graph for matrix
B. That is, K ′ is a Kirchhoff dual of K = (K5, ϕ), and we have constructed K ′ directly from
one of its R2-Kirchhoff duals, K ′′.
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t1
t2

t2

t3
t3

t4
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Figure 4.3.14: R2-vector graph K ′, a Kirchhoff dual of K.

On this note we conclude our discussion of Kirchhoff duality, and thus the first part of this
text. We will return to non-planar graphs K5 and K3,3 in Chapters 9 and 10. Specifically, in
Chapter 10 we will construct undirected graphs that are dual to K5 and K3,3 in the Kirchhoff
sense. This will rely on developing so-called Kirchhoff edge partitions. Observe that any
vector graph can be viewed as a directed graph, the edges of which are partitioned into a
finite set of classes, where each vector edge si defines a class. Using this (slightly abstracted)
perspective, understanding the properties of vector assignments as edge partitions will help us
to gain further insights into Kirchhoff graphs. Therefore the next part of this text, Chapters
5 through 7, is dedicated to studying partitions of graphs.



Chapter 5

Equitable Partitions of Graphs

Chapter 3 studied Kirchhoff graphs in the context of matrices. One key component in that
theory was the characteristic matrix, T , of a vector assignment ϕ. Taking a closer look
at the structure of matrix T , observe that it indexes which edges of D are assigned to the
same vector under ϕ, regardless of the actual vectors being assigned. Therefore T can be
viewed as the characteristic matrix of an edge partitioning. That is, a vector assignment ϕ
acts to group the edges of a digraph into k disjoint subsets, one corresponding to each vector.

Therefore the next three chapters will study graph partitions, specifically so-called equi-
table partitions. Chapter 5 first introduces the classical theory of equitable vertex partitions,
and then presents some new results. Later, Chapter 6 will extend the notion of equitable
partitions to equitable edge-partitions of multi-digraphs. After demonstrating that these
edge partitions satisfy the same properties of their vertex counterparts, we show that equi-
table edge-partitions can give rise to Kirchhoff graphs.

In this chapter we study equitable vertex partitions of graphs. For a classical introduction,
see Godsil [39], Chapter 5. The term “equitable partition” was introduced by Haynsworth,
in the context of matrix partitions [57]. Equitable partitions were then extended to graphs
by Schwenk [98], to aid in calculating the characteristic polynomial of a graph. This theory
was further developed by [21], and later McKay used equitable partitions in an algorithm
to determine graph isomorphism [77][78]. Equitable graph partitions have been shown to be
significant in the study of distance-regular graphs–see for example [43] and [41]–and walk-
regular graphs, a combinatorial generalization of vertex-transitive graphs [42]. They are
closely related to completely regular subsets, introduced by Delsarte [22], and later used by
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Martin to study association schemes [71]. More recently, Godsil used equitable partitions
to study compact graphs–those for which all doubly-stochastic matrices commute with the
adjacency matrix [40].

One classical advantage of equitable partitions of graphs is that they allow one to study
the eigenvectors and eigenvalues of a graph by considering those of a smaller quotient graph.
The notion of a quotient graph was first developed by Sachs, using the term “divisor” rather
than “quotient.” An introduction to this theory can be found in [21], Chapter 4, in addition
to a wealth of additional resources. Since then, graphs in the context of combinatorial group
theory have been an active area of research. Excellent introductions can be found in both
Stillwell [102] and Lyndon [68]. Recently lifts of graphs, specifically random lifts (for exam-
ple, [3],[4], [9], and [25]) and covering graphs (for example, [2], [7], [66], and [83]) have been
of particular interest. Perhaps most notably, in 2015 Friedman used a graph-based approach
to prove the well-known Hanna Neumann conjecture on the intersection of finitely generated
subgroups of free groups [35].

Section 5.1 begins with an introduction to equitable (vertex) partitions, including the notion
of a quotient, and quotient matrix. Section 5.1.1 then defines an orbit partition and proves
that every orbit partition is equitable, in addition to considering cases in which equitable–
but not orbit–partitions can be constructed from orbit partitions. Section 5.2 then presents
necessary and sufficient conditions for an integer-valued matrix to be the quotient of an
equitable partition, Theorem 5.1. Next, Section 5.2.1 studies the relationship between parti-
tions, quotients, and matrices. Theorem 5.2 shows that any equitable partition is part of an
infinite family of equitable partitions, all having the same quotient matrix. Finally, Section
5.2.2 presents an efficient graph-based algorithm for checking the necessary and sufficient
conditions of Theorem 5.1. To the author’s knowledge, the results of Section 5.2 and its
subsections have not appeared in the literature.

5.1 Equitable Partitions

Let G be a simple undirected graph with vertices V (G) = {vi}. A partition of V (G) is a set
whose elements are disjoint, nonempty subsets of V (G) whose union is V (G). The elements
of a partition π will be called cells and occasionally classes . A partition π = (V1, . . . , Vk)
of V (G) is equitable if, for all i and j, the number of neighbors a vertex in Vi has in Vj is
independent of the choice of vertex in Vi. Put another way, let A(G) be the |V (G)|× |V (G)|
adjacency matrix of G. Then partition π is equitable if for any i, j ∈ {1, . . . , k} and for any
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vp ∈ Vi, the number

ci,j =
∑

q:vq∈Vj

A(G)p,q (5.1)

depends only on i and j, and not on the choice of vertex vp ∈ Vi. For example, the graph
GM in Figure 5.1.1, known as the McKay graph, has equitable partition π = (V1, V2) where

V1 = {v1, v2, v4, v5, v7, v8} and V2 = {v3, v6}.

Observe that c1,1 = c1,2 = 1, c2,1 = 3, and c2,2 = 0.

1

2

3 4 5 6

7

8

Figure 5.1.1: An equitable partition of the McKay graph.

Every graph has a partition that is trivially equitable, known as the discrete partition,
in which each cell contains exactly one vertex. On the other hand, the trivial partition,
consisting of exactly one cell, is equitable if and only if the graph is regular. Given an
equitable partition π = (V1, . . . , Vk), any vertex in cell Vi has the same number of neighbors
in cell Vi. Therefore for each i ∈ {1, . . . , k}, the induced subgraph G[Vi] is a regular graph (of
degree ci,i). Moreover, if a graph G has an equitable partition, then so does its complement,
G.

Proposition 5.1. If π = (V1, . . . , Vk) is an equitable partition of G, then π is also an
equitable partition of G.

Proof. Given equitable partition π = (V1, . . . , Vk), let ci,j be defined as in (5.1). Then define

ci,j =

{
|Vj| − ci,j if i 6= j

|Vi| − ci,i − 1 if i = j
. (5.2)

For any cell Vi, let u be any vertex u ∈ Vi. Then for j 6= i, in graph G vertex u has ci,j
neighbors in cell Vj. Therefore in G, u has ci,j = |Vj| − ci,j neighbors in Vj. Similarly, in G
vertex u has ci,i neighbors in cell Vi, so in G vertex u has ci,i = |Vi| − ci,i− 1 neighbors in Vi.
As ci,j is independent of u, it follows that π is an equitable partition of G.

For example, Figure 5.1.2 shows the complement of the McKay graph, GM , with the same
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partition as in Figure 5.1.1. This partition is equitable with

c1,1 = 4, c1,2 = 1, c2,1 = 3, c2,2 = 1.

Figure 5.1.2: An equitable partition of the complement of the
McKay graph.

Let G be a graph with equitable partition π = (V1, . . . , Vk). As before, let ci,j denote
the number of edges between any vertex in Vi and the vertices of Vj. We can define the
quotient of G with respect to π, denoted G/π. G/π is a directed graph with one vertex for
each partition cell V1, . . . , Vk, and ci,j edges directed from Vi to Vj for all i, j ∈ {1, . . . , k}.
Note that in general G/π has both loops and multiple edges. The quotients GM/π and
GM/π are illustrated in Figure 5.1.3.

V1 V2 V1 V2

GM GM

Figure 5.1.3: The quotients of GM and GM with respect to π.

The adjacency matrix of G/π, A(G/π), is the k×k matrix with (i, j)-entry ci,j . For example,
the graphs GM and GM under partition π have

A(GM/π) =

[ V1 V2

V1 1 1
V2 3 0

]
and A(GM/π) =

[ V1 V2

V1 4 1
V2 3 1

]
.

Observe that in light of (5.2), for any graph G with an equitable partition, the matrix A(G/π)
can be computed from A(G/π). In particular, letting Jk be the k × k all-ones matrix, and
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Ω be a k × k diagonal matrix with (i, i)-entry |Vi|,

A(G/π) + A(G/π) = Jk×kΩ− Ik.

We will also call matrix A(G/π) the quotient matrix of G with respect to π. Any such
matrix A must be square and have nonnegative integer entries, and may be the quotient
matrix of any number of graph/equitable partition pairs. For example, figure 5.1.4 shows
two equitable partitions, one on a 15-vertex graph and one on a 20-vertex graph, both having
quotient matrix 

V1 V2 V3

V1 2 4 2
V2 2 0 2
V3 1 2 2

.

V

V

V

1

2

3

Figure 5.1.4: Two graphs, one with 15 vertices and one with
20, each having an equitable partition with the same quotient
matrix.

More importantly, for any graph G with equitable partition π, the quotient matrix A(G/π)
is closely related to the adjacency matrix A(G) of G. The characteristic matrix P of
partition π = (V1, . . . , Vk) is a |V (G)|×k matrix whose jth column is the characteristic vector
of set Vj. That is, Pi,j = 1 if ei ∈ Vj and is zero otherwise. Characteristic matrix P provides
the relationship between A(G) and A(G/π).

Lemma 5.1. Let π be a partition of V (G) with characteristic matrix P . If π is equitable
then

A(G)P = PA(G/π).

Proof. For any vp ∈ V (G), suppose that vp ∈ Vi, and consider [A(G)P ]p,j. Noting that for
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all q, Pq,j = 1 if and only if vq ∈ Vj,

[A(G)P ]p,j =

|V (G)|∑
q=1

A(G)p,qPq,j =
∑

q:vq∈Vj

A(G)p,q = ci,j

by (5.1). On the other hand, as vp ∈ Vi, row p of P is zero except for a 1 in column i.
Therefore row p of PA(G/π) is row i of A(G/π), and [PA(G/π)]p,j = A(G/π)i,j = ci,j.
Therefore A(G)P = PA(G/π).

The reverse implication of Lemmas 5.1 is true as well.

Proposition 5.2. Let π be a partition of some graph G, with characteristic matrix P , and
let A = A(G). If

AP = PB

for some k × k matrix B, then π is equitable.

Proof. If AP = PB, then the columns of AP are linear combinations of the columns of P ,
and are thus constant on the cells of π. That is, if vp and vq belong to the same partition
class of π, then for any j,

[AP ]p,j = [AP ]q,j.

However for any i and j,

[AP ]i,j =
n∑
q=1

Ai,qPq,j =
∑

q:vq∼vi

Pq,j.

The last sum is the number of vertices in cell j that are adjacent to vertex vi. However as
the columns of AP are constant on the cells of π, this value depends only on the cell of π
containing vi, and not on the choice vi. Therefore π is equitable.

Building upon these well-known ideas, Section 6.1 will consider edge-partitions of directed
graphs, and introduces criteria for such a partition to be equitable. First, Section 5.1.1
demonstrates the existence of large classes of equitable partitions. Then Section 5.2 will
examine necessary and sufficient conditions for a matrix to be the quotient of an equitable
partition.

5.1.1 Orbit Partitions

Let G be a simple undirected graph with vertices V (G) = {vi}. Recall that an automorphism
of G is a bijection φ : V (G) → V (G) that preserves both adjacencies and non-adjacencies.
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That is, vi ∼ vj if and only if φ(vi) ∼ φ(vj), and any automorphism φ acts as a permutation
of V (G). It is well-known that the set of all automorphisms of G forms a group under the
operation of function composition. Denoted Aut(G), this is the automorphism group of G.
Note that the identity map, which maps each vertex to itself, is an automorphism of every
graph, and is sometimes called the trivial automorphism. Any graph whose automorphism
group consists of only the trivial automorphism is called asymmetric.

For any subgroup Π of Aut(G), the action of Π on V (G) naturally partitions the vertices
into equivalence classes, where two vertices u and v are in the same class if and only if there
is some φ ∈ Π such that φ(u) = v. These equivalence classes are called the orbits of V (G)
under Π, and any partition of V (G) arising as orbits of some Π ≤ Aut(G) is called an orbit
partition .

v1

v2

v3

v4

v5

v6

v7

Figure 5.1.5: A graph G with a 3-cell orbit partition. This
partition arises from the subgroup of Aut(G) generated by the
permutation φ = (v1)(v2v4v6)(v3v5v7).

Example 5.1. Consider the graph G on 7 vertices presented in Figure 5.1.5. Let φ be a
permutation of the vertices, with disjoint cycle form

φ = (v1)(v2v4v6)(v3v5v7).

One may verify that φ is a graph automorphism. What is more, φ is a permutation of order
3 that generates a subgroup 〈φ〉 ≤ Aut(G) of order 3. The vertex orbits under 〈φ〉 are
O1, O2, O3, where

O1 = {v1} O2 = {v2, v4, v6} O3 = {v3, v5, v7}.

That is, π = (O1, O2, O3) is an orbit partition of G. Moreover, π is an equitable partition of
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V (G), where

A(G/π) =


O1 O2 O3

O1 0 3 0
O2 1 0 2
O3 0 2 0

.
This is, in fact, a more general result.

Proposition 5.3. Every orbit partition is an equitable partition.

Proof. Let Π be any subgroup of Aut(G) with orbits O1, . . . , Op. For any orbit Oi, let
u, v ∈ Oi. In particular, there exists some automorphism φ ∈ Π such that φ(u) = v. Now for
any j ∈ {1, . . . , p}, let v1, . . . , v|Oj | denote the vertices of orbit Oj. As φ is an automorphism,
each vl is adjacent to u if and only if φ(vl) is adjacent to φ(u) = v. However, as Oj is an orbit
of Π, {φ(v1), . . . , φ(v|Oj |)} = {v1, . . . , v|Oj |} = Oj. Therefore u and v have the same number
of neighbors in cell Oj. As i and j were arbitrary, the partition (O1, . . . , Op) is equitable.

On the other hand, not all equitable partitions are orbit partitions. The McKay graph
(shown in Figure 5.1.1) is the smallest graph with an equitable partition that is not an orbit
partition. The partition given in Figure 5.1.1 is equitable, yet there is no graph automorphism
that maps, for example, v4 to v1. Other examples of equitable partitions that are not orbit
partitions are illustrated in Figure 5.1.6.

Figure 5.1.6: Three graphs with equitable partitions that are
not orbit partitions

The drawings of the four graphs in Figure 5.1.1 and 5.1.6 combined include many of the stan-
dard examples of equitable partitions that are not orbit partitions. However, the drawings
presented make it clear that each of these four graphs have symmetries, and therefore each
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has a nontrivial automorphism group. Interestingly, the cells of these equitable partitions
can all be formed from unions of cells of suitable nontrivial orbit partitions. By nontrivial,
we mean orbit partitions arising from nontrivial automorphisms. Every graph has the trivial
automorphism, and as all orbits are singleton vertices, certainly any partition cell can be
built up as a union of these orbits. Instead, we are interested in constructing an equitable
partition through unions of non-singleton cells of orbit partitions.

Example 5.2. Consider the vertex enumeration of the GM given in Figure 5.1.1. Let φ and
ψ be two permutations on V (GM) with disjoint cycle form

φ = (v1v2)(v7v8)

ψ = (v1v7)(v2v8)(v3v6)(v4v5)

One may verify that both φ and ψ are automorphisms of GM . Let 〈φ, ψ〉 be the subgroup
of Aut(GM) generated by φ and ψ. The orbits of V (GM) under 〈φ, ψ〉 are

O1 = {v1, v2, v7, v8} O2 = {v4, v5} O3 = {v3, v6}.

The partition π = (O1, O2, O3) is equitable, and is illustrated in Figure 5.1.7.

1

2

3 4 5 6

7

8

Figure 5.1.7: An equitable partition of the McKay graph.

The partition π = (O1, O2, O3) has quotient matrix

A(GM/π) =


O1 O2 O3

O1 1 0 1
O2 0 1 1
O3 2 1 0

.
Observe that c1,1 = c2,2, c1,3 = c2,3, and c1,2 = c2,1 = 0. In particular, we may combine
cells O1 and O2 without destroying equitability of the partition. That is, (O1 ∪O2, O3) is an
equitable partition of GM . In fact, (O1∪O2, O3) is precisely the equitable partition presented
in Figure 5.1.1.

Similar arguments are true for the equitable (although not orbit) partitions in Figure 5.1.6. It
is not unreasonable to wonder if this is a more general result. Can the cells of any equitable
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partition be formed from unions of cells of nontrivial orbit partitions? Example 5.3 will
answer this question in the negative.

Example 5.3. Figure 5.1.8 illustrates GF , a 4-regular graph on 24 vertices. Let π = (V1, V2)
be the partition of V (GF ) illustrated in Figure 5.1.8, where the vertices of V1 are colored
blue, and the vertices of V2 are red.

Figure 5.1.8: GF , a 4-regular graph on 24 vertices, with a 2-cell
equitable partition.

Observe that in addition to GF being 4-regular, partition π is equitable, with quotient

A(GF/π) =

[ V1 V2

V1 3 1
V2 1 3

]
.

However, the induced subgraphs GF [V1] and GF [V2] are isomorphic, and each is the Frucht
graph [36][37]. The Frucht graph is a well-known 3-regular graph on 12 vertices that is
asymmetric. In particular, Aut(GF [V1]) and Aut(GF [V2]) are both trivial. Therefore there
is no automorphism of GF mapping any blue vertex to any other blue vertex, nor any red
vertex to any other red vertex. That is, V1 and V2 cannot be constructed as unions of cells
of nontrivial orbit partitions.
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5.2 Necessary and Sufficient Conditions for the

Quotient Matrix of an Equitable Partition

In this section, we present necessary and sufficient conditions for a matrix to be the quotient
matrix of some equitable partition. Clearly any such matrix must be square, and have non-
negative entries. Moreover, for any i 6= j, if a vertex in Vi has neighbors in Vj then clearly
the vertices of Vj must have neighbors in Vi as well. Therefore for any i 6= j,

ci,j = 0 if and only if cj,i = 0. (5.3)

We will say that any matrix satisfying (5.3) has symmetric zeros. Before presenting the
main results, we first introduce some notation.

For any column vector b let ∆(b) be the diagonal matrix with (i, i)-entry bi. Let A be
any k × k matrix with (i, j) entry ai,j. For each 1 ≤ i ≤ k − 1 let ai be the 1× (k − i) row
vector

ai =
[
ai,i+1 ai,i+2 · · · ai,k−1 ai,k

]
.

Similarly, for each 1 ≤ j ≤ k − 1 let bj be the (k − j)× 1 column vector

bj =
[
aj+1,j aj+2,j · · · ak−1,j ak,j

]
.t

So, for example, if A is 4× 4, then A has the form:

a1,1 · · · a1 · · ·

...
a2,2 a2 · · ·

b1 b2
a3,3 a3

...
... b3

a4,4

Now let r be a function on {0, . . . , k − 1} defined by

r(i) =

{
0 if i = 0∑i

l=1(k − l) if 1 ≤ i ≤ k − 1
.
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Define R(A) to be the k(k+1)
2
× k matrix where for each i between 1 and k− 1, the (k− i)×

(k− i+ 1) submatrix found in rows r(i− 1) + 1 through r(i) and columns k− i+ 1 through
k is:  ati −∆(bi)

 .
For example, when A is 4× 4, R(A) is:

a1,2 −a2,1 0 0

a1,3 0 −a3,1 0

a1,4 0 0 −a4,1

0 a2,3 −a3,2 0

0 a2,4 0 −a4,2

0 0 a3,4 −a4,3

While the formal definition of matrix R(A) is rather dense, the solutions of the matrix
equation R(A)x = 0 can be described simply and transparently. In particular, given a

column vector x =
[
x1 . . . xk

]t
, the rows of the matrix product R(A)x are{

xi (ai,j)− xj (aj,i) : 1 ≤ i, j ≤ k and i 6= j
}
. (5.4)

Therefore,

Lemma 5.2. The vector x is a solution to the matrix equation R(A)x = 0 if and only if
for all i 6= j,

xiai,j − xjaj,i = 0 that is, xiai,j = xjaj,i (5.5)

Matrix R(A) now provides the necessary and sufficient conditions for a matrix A to be the
quotient matrix of an equitable partition.

Theorem 5.1. Let A be a k× k matrix with non-negative integer entries. Then there exists
a graph G with equitable partition π such that A = A(G/π) if and only if R(A)x = 0 has a
positive integer solution x.
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Remark 5.1. Note that although we know that any quotient matrix must have symmetric
zeros, this property is not included in the assumptions of Theorem 5.1. R(A)x = 0 has a
positive integer solution x if and only if for i 6= j,

xiai,j = xjaj,i.

As all xi, xj are positive, clearly ai,j = 0 if and only if aj,i = 0.

Before presenting the proof of Theorem 5.1, we first present a few intermediate results. Recall
that a graph is κ-regular if all vertices have degree κ.

Proposition 5.4. There exists a κ-regular graph on n vertices if and only if n > κ and nκ
is even.

Proof. (⇒) As every vertex has degree κ, n− 1 ≥ κ and therefore n > κ. Moreover by the
handshaking lemma,

nκ =
∑

v∈V (G)

deg(v) = 2|E(G)|

so nκ is even.

(⇐) Suppose that n > κ and nκ is even. Let G be a graph with n vertices, v1, . . . , vn.

Case 1. If κ is even, for each i add an edge from vi to vj for each

j ∈ {i− κ/2, . . . , i− 1, i+ 1, . . . , i+ κ/2} (mod n).

Observe that if j ∈ {i − κ/2, . . . , i − 1, i + 1, . . . , i + κ/2} (mod n), then necessarily
i ∈ {j − κ/2, . . . , j − 1, j + 1, . . . , j + κ/2} (mod n) so this edge relation is symmetric.
As n > κ, each vertex is assigned κ unique neighbors, meaning G is a κ-regular graph.

Case 2. Otherwise if κ is odd, then n must be even. For each i add an edge from vi
to vj for each

j ∈ {i− (κ− 1)/2, . . . , i− 1, i+ 1, . . . , i+ (κ− 1)/2} ∪ {i+ n/2} (mod n).

Observe that if j ∈ {i − κ/2, . . . , i − 1, i + 1, . . . , i + κ/2} ∪ {i + n/2} (mod n), then
necessarily i ∈ {j− (κ−1)/2, . . . , j−1, j+1, . . . , j+(κ−1)/2}∪{j+n/2} (mod n) so
this edge relation is symmetric. As n > κ, each vertex is assigned κ unique neighbors,
meaning G is a κ-regular graph.

The cases of n = 7, κ = 4 and n = 8, κ = 5 are illustrated in Figure 5.2.1.
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v1

v2

v3

v4v5

v6

v7

v1 v2

v3

v4

v5v6

v7

v8

Figure 5.2.1: Two k-regular graphs on n vertices. The first,
when n = 7 and k = 4, the second when n = 8 and k = 5.

On the other hand, recall that a simple graph G is bipartite if V (G) can be partitioned into
two components, U and W , such that all edges of G have one end in U and one end in W .
A graph is called biregular if it is bipartite, and all vertices of U have the same degree, as
do all vertices of W . If a = deg(u) for all u ∈ U and b = deg(w) for all w ∈ W , we say that
G is (a, b)-biregular.

Lemma 5.3. There exists an (a, b)-biregular with vertex bipartition (U,W ) if and only if
|W | ≥ a, and

a|U | = b|W |.

Proof. (⇒) As every vertex in U has a neighbors in W , necessarily |W | ≥ a. By direct
computation, a|U | = |E(G)| = b|W |.

(⇐) Given a and b, let m and n be any two integers such that n ≥ a and am = bn.
Let U be a set of m vertices {u1, . . . , um} and let W be a set of n vertices {w1, . . . , wn}.
Now let G be a graph with vertex set V (G) = U ∪W . We will iteratively add edges to G to
construct an (a, b)-biregular graph with vertex bipartition (U,W ). Observe that in each of
the following steps, distinctness of the chosen vertices in W is guaranteed by n ≥ a.

Step 1. Add edges between u1 and a distinct vertices in W .

Step 2. Add edges between u2 and a distinct vertices of W , beginning with vertices
of degree 0 and moving on to vertices of degree 1 if necessary.

...

Step p. Continuing in this manner, at Step p add edges between up and a distinct
vertices of W . First add these edges to vertices of W with minimum degree after Step
(p -1), and continue on to vertices of degree 1 greater if necessary.
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It is easy to verify that after Step p, G contains p · a edges. U contains p vertices with
degree a, and (m− p) vertices of degree 0. On the other hand, if

ap = qn+ r (0 ≤ r < n)

then all vertices of W have at least q neighbors in U , with r of them having exactly
q + 1. That is, W contains (n− r) vertices of degree q and r vertices of degree q + 1.

Step m. Following step (m− 1), G contains a(m− 1) edges and every vertex of U has
degree a, other than um. Moreover as am = bn,

a(m− 1) = (b− 1)n+ (n− a)

Therefore W has a vertices of degree (b− 1) and (n− a) vertices of degree b. Add an
edge from um to each vertex of W having degree (b− 1).

After step m, G contains a ·m edges, and every vertex of U has degree a. Moreover,

am = bn+ 0.

Therefore W has n vertices of degree b and 0 vertices of degree b + 1. That is, G is an
(a, b)-biregular graph with vertex partition (U,W ).

Step 1. Step 2. Step 3. Step 4.

U W U W U W U W

1

1

1

1

1

1

0

0

2

2

2

2

1

1

1

1

3

3

2

2

2

2

2

2

3

3

3

3

3

3

3

3

6(1) = 0(8) + 6 6(2) = 1(8) + 4 6(3) = 2(8) + 2 6(4) = 3(8) + 0

Figure 5.2.2: Constructing a (6, 3)-biregular graph with |U | =
4 and |W | = 8

For example, the case of constructing a (6, 3)-biregular graph with |U | = 4 and |W | = 8 is pre-
sented in 5.2.2. The degree of each vertex of W is displayed, and the equation ap = q|W |+ r
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is given beneath each step. One may check that at Step p, W contains |W | − r vertices of
degree q and r vertices of degree q + 1.

We are now prepared to present the proof of Theorem 5.1.

Proof. (⇒). Let G be a graph with equitable partition π = (V1, . . . , Vk). Then clearly
A(G/π) is a k × k matrix with non-negative integer entries ci,j, and symmetric zeros. By
definition of equitability, for each i the induced subgraph G[Vi] must be a ci,i regular graph.
Moreover, for any i 6= j, the graph induced by taking the vertices of Vi and Vj and all Vi−Vj
edges must be a (ci,j, cj,i)-biregular graph. Therefore by Lemma 5.3, for all i 6= j,

ci,j|Vi| = cj,i|Vj|.

That is, for all i 6= j,
ci,j|Vi| − cj, i|Vj| = 0.

Thus by (5.5), the column vector

xv =
[
|V1| · · · |Vk|

]t
is a solution to the equation

R(A(G/π))xv = 0.

As the entries of xv are {|Vi|}, which are positive integers, the result follows.

(⇐). Conversely, let A be any k × k matrix with non-negative integer entries ai,j. Sup-
pose x is a vector with positive integer entries solving R(A)x = 0. As any scalar multiple
of x remains in the null space of R(A), if necessary scale x by a positive integer so that for
each j, {

xj > ai,j for all i ∈ {1, . . . , k}
xjaj,j is even

(5.6)

In particular, R(A)x = 0 so by (5.5), for all 1 ≤ i, j ≤ k such that i 6= j,

xi(ai,j) = xj(aj,i). (5.7)

Now for each i, let Vi be a set of xi vertices, and let G be a graph with vertex set V (G) =
V1 ∪ · · · ∪ Vk. Add edges to G so that for each i, the induced subgraph G[Vi] is ai,i-regular.
This is guaranteed by Proposition 5.4 as |Vi|ai,i is even and |Vi| > ai,i by (5.6). For each
i 6= j, add edges so that the edges between Vi and Vj form an (ai,j, aj,i)-biregular graph.
This is guaranteed by (5.6), (5.7), and Lemma 5.3. By construction, the resulting graph G
has an equitable partition π = (V1, . . . , Vk) with quotient matrix A(G/π) = A.

Remark 5.2. Note that the sufficiency conditions for existence of regular and biregular
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graphs contain constraints on the number of vertices. Specifically, a k-regular graph must
have at least k+ 1 vertices, and an (a, b)-biregular graph must have at least a vertices in one
vertex bipartition, and at least b in the other. Although Theorem 5.1 constructs an equitable
partition by assembling regular and biregular graphs, no such constraints are included: it is
sufficient to prove only that R(A)x = 0 has a positive integer solution. As seen in the proof,
any such positive integer solution can always be scaled to find another solution satisfying all
the constraints required for regular and biregular graphs. Therefore in what follows we will
only be concerned with finding some positive integer solution to R(A)x = 0.

Example 5.4. Consider the matrix A in (5.8). A is a square matrix with nonnegative
integer entries. Although A is not symmetric, A has symmetric zeros.

A =


0 2 1 0 0 1
3 0 0 2 0 0
1 0 0 4 2 0
0 1 3 0 1 3
0 0 3 2 0 3
1 0 0 4 2 0

 (5.8)

We will use Theorem 5.1 to show that there exists a graph G with equitable partition π such
that A = A(G/π). In particular, R(A) is a 15× 5 matrix, as shown in (5.9).

R(A) =



2 −3 0 0 0 0
1 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 −1
0 0 0 0 0 0
0 2 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 −3 0 0
0 0 2 0 −3 0
0 0 0 0 0 0
0 0 0 1 −2 0
0 0 0 3 0 −4
0 0 0 0 3 −2



(5.9)

The matrix equation R(A)x = 0 has a positive integer solution x, where

xt =
[

3 2 3 4 2 3
]
. (5.10)
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Note that for a general integer-valued matrix B, finding a positive integer solution to the
matrix equation Bx = 0 may be a computationally difficult problem (this is a case of in-
teger linear programming). In the special case of R(A)x = 0, however, Section 5.2.2 will
demonstrate an efficient method that either finds a solution x or determines that none exist.

Given that the vector x in 5.10 is a positive integer solution to R(A)x = 0, by Theo-
rem 5.1 it follows that A is the quotient matrix of some equitable partition with 6 classes.
Moreover, observe that for all j,{

xj > ai,j for all i ∈ {1, . . . , k}
xjaj,j is even

Therefore no scaling of x is needed, and this equitable partition can be achieved on a graph
with 3 + 2 + 3 + 4 + 2 + 3 = 17 vertices. In this case, |Vi| = xi for each 1 ≤ i ≤ 6,

|V1| = 3 |V2| = 2 |V3| = 3 |V4| = 4 |V5| = 2 |V6| = 3

One such equitable partition is illustrated in Figure 5.2.3.

V1 V2

V3 V4

V5 V6

Figure 5.2.3: An equitable partition having (5.8) as its quotient
matrix.

5.2.1 Partitions, Quotients, and Matrices

Theorem 5.1 provided necessary and sufficient conditions for an integer matrix to be the
quotient matrix of an equitable partition. These conditions easily extend to determining
whether a digraph is the quotient of an equitable partition.
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v1 v2

v4 v3

Figure 5.2.4: A multi-digraph D. Hash marks are used to
indicate multiplicity of edges having the same initial and termi-
nal vertices. Corollary 5.1 will be used to determine if D is the
quotient of an equitable partition.

Let D be any digraph, which may have loops or multiple edges. Let A = A(D) be the
adjacency matrix of digraph D. That is, A is a |V (D)| × |V (D)| matrix whose (i, j)-entry is
the number of edges directed from vertex vi to vertex vj.

Corollary 5.1. D is the quotient of some equitable partition if and only if R(A)x = 0 has
a positive integer solution.

Example 5.5. Consider the multi-digraph D in Figure 5.2.4. D has 4 vertices, meaning
if D is the quotient of an equitable partition, that partition must have 4 classes. D has
adjacency matrix

A(D) =


v1 v2 v3 v4

v1 2 0 1 2
v2 0 1 3 1
v3 1 4 0 0
v4 3 2 0 1

.
Then by Corollary 5.1, D is the quotient of an equitable partition if and only if R(A)x = 0
has a positive integer solution x. One may verify that

xt =
[

3 4 3 2
]

is one such solution. Moreover, for all j,{
xj > ai,j for all i ∈ {1, . . . , k}
xjaj,j is even

Therefore there exists a graph G with equitable partition π = (V1, V2, V3, V4) such that
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|Vi| = xi. Moreover, A(G/π) = A, and therefore quotient G/π is precisely the digraph D.
One example of such a G and π is illustrated in Figure 5.2.5.

V1

V4
V3
V2

Figure 5.2.5: An equitable partition with quotient D.

To this point, we have presented a few examples of constructing an equitable partition with
a given quotient matrix. In each case, we first find a solution x to R(A)x = 0, and then
scale this solution to determine the size of each vertex class. That is, we determine a vector
x satisfying

R(A)x = 0 and

{
xj > ai,j for all i ∈ {1, . . . , k}
xjaj,j is even.

(5.11)

However, if x satisfies (5.11), then so does the vector βx for any β ∈ Z+. Therefore for
any β ∈ Z+, there exists an equitable partition, having quotient matrix A, with βxi vertices
in class Vi. In particular, let G be a graph with equitable partition π = (V1, . . . , Vk) and
quotient matrix A. Then the vector

xt =
[
|V1| . . . |Vk|

]
satisfies (5.11), as does βx for any β ∈ Z+. Thus for every β ∈ Z+ there exists a graph Gβ

on β|V (G)| vertices, with equitable vertex partition πβ such that

A
(
G/π

)
= A

(
Gβ/πβ

)
for all β ∈ Z+,

and the ith partition class of πβ has cardinality β|Vi|. Thus we have proven,

Theorem 5.2. Any equitable partition π lies in an infinite family of equitable partitions,
all having the same quotient matrix. That is, if A is the quotient matrix of an equitable
partition, it is the quotient matrix of an infinite family of graphs with equitable partitions.

Within these infinite families, the equitable partition on a graph of a given size graph need
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not be unique. Moreover, orbit partitions and non-orbit partitions can belong to the same
infinite family. This will be illustrated in the following examples.

1

2

3 4 5 6

7

8

Figure 5.2.6: An equitable partition of the McKay graph.

Recall the McKay graph, GM , shown in Figure 5.2.6. As labeled, GM has equitable partition
π =

(
{v1, v2, v4, v5, v7, v8}, {v3, v6}) and quotient matrix

AM = A(GM/π) =

[ V1 V2

V1 1 1
V2 3 0

]
.

By Theorem 5.2, AM is the quotient matrix of an infinite family of graphs with equitable
partitions.

Example 5.6. Within this infinite family, there may be more than one graph of a given
size. For example, the McKay graph has 8 vertices and an equitable partition with |V1| = 6
and |V2| = 2. Figure 5.2.7 illustrates another 8-vertex graph, with vertex partition satisfying
|V1| = 6 and |V2| = 2. This partition is an orbit partition, and therefore equitable. Moreover,
AM is the quotient matrix of this partition.

Figure 5.2.7: An orbit partition with |V1| = 6 and |V2| = 2,
and quotient matrix AM .

That is, there are two 8-vertex graphs, each having an equitable partition with |V1| = 6 and
|V2| = 2, with quotient matrix AM . Interestingly, only one of these partitions is an orbit
partition.



122

Example 5.7. GM has an equitable partition with |V1| = 6 and |V2| = 2, so

xt =
[
|V1| |V2|

]
=
[

6 2
]

is a solution to R(AM)x = 0 satisfying (5.11). Therefore for any positive integer N , the
vector Nx satisfies (5.11) as well. For example, 2x =

[
12 4

]
satisfies (5.11), and there

exists a graph G′ with equitable partition π′ = (V ′1 , V
′

2) where

|V ′1 | = 12 |V ′2 | = 4 and A(G′/π′) = AM .

In fact, there are many such graphs. Two examples are presented in Figure 5.2.8. Each
graph has 16 vertices, partitioned into 2 classes of sizes 12 and 4 respectively. One may
verify that each partition is equitable, and has quotient matrix AM .

Figure 5.2.8: Two equitable partitions having |V1| = 12, |V2| =
4, and quotient matrix AM . Neither is an orbit partition.

Neither of the partitions in Figure 5.2.8 is an orbit partition, though as suggested by the
drawings, each of these graphs have a number of automorphisms. This need not be the
case: Figure 5.2.9 illustrates a graph with very few nontrivial automorphisms, all of which
are permutations of order 2. However, much like the previous examples, this graph has 16
vertices and an equitable partition with quotient matrix AM .

Figure 5.2.9: Another equitable partition with quotient AM .



123

There are a number of other 16-vertex graphs having AM as the quotient matrix of an
equitable partition. If one considers disconnected graphs, 2 disjoint copies of the McKay
graph, the disjoint union of the McKay graph and the graph in Figure 5.2.7, and 2 disjoint
copies of the graph in Figure 5.2.7 are all examples. Of course the last of these examples is
an orbit partition, however, an orbit partition of a 16-vertex graph with quotient matrix AM
need not be disconnected. Figure 5.2.10 illustrates a connected graph and an orbit partition,
with quotient matrix AM , satisfying |V1| = 12 and |V2| = 4.

Figure 5.2.10: An orbit partition with |V1| = 12, |V2| = 4, and
quotient matrix AM .

Finally, Figure 5.2.11 illustrates two more members of the infinite family of equitable parti-
tions having quotient matrix AM . The first satisfies |V1| = 18 and |V2| = 6, and the second
|V1| = 24 and |V2| = 8. More generally, members of this family can be derived as follows.
First construct a 3-regular graph on 2n vertices, all in class V2. Subdivide every edge with
two new vertices, all of which belong to class V1. The result is an equitable partition having
quotient matrix AM .

Figure 5.2.11: Two additional members of the infinite family
of equitable partitions with quotient matrix AM .
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5.2.2 A graphical algorithm for solving R(A)x = 0

In this section, we present a graph-based algorithm for finding positive integer solutions
to R(A)x = 0. As before, let A be a k × k matrix with non-negative integer entries and
symmetric zeros. Associate with A a simple graph H with k vertices, v1, . . . , vk, and let
{vi, vj} ∈ E(H) if and only if matrix entry ai,j (and thus also aj,i) is nonzero. For any path
P0 = vi − vj · · · vk − vl, let ω(P0) be the product

ω(P0) = ai,j · aj,k · · · · ak,l.

Now let C = vi − vj − vk · · · vl − vi be any cycle of H, and let C̃ = vi − vl · · · vk − vj − vi be
the same cycle traversed in the opposite direction. We say that C is A-invariant if

ω(C) = ω(C̃).

That is, C is A-invariant if and only if

ai,j · aj,k · · · al,i = ai,l · · · ak,j · aj,i or equivalently,
ai,j
aj,i
· aj,k
ak,j
· · · al,i

ai,l
= 1.

Example 5.8. Consider the matrix

A =


0 2 1 2
1 1 1 2
1 2 0 2
1 2 1 1

 . (5.12)

The associated graph H is shown in Figure 5.2.12. Let C and C̃ be the cycles C = v1− v4−
v3 − v1 and C̃ = v1 − v3 − v4 − v1. Then

ω(C)

ω(C̃)
=
a1,4 · a4,3 · a3,1

a1,3 · a3,4 · a4,1

=
2 · 1 · 1
1 · 2 · 1

= 1.

Therefore cycle C is A-invariant.

v1 v2

v3 v4

Figure 5.2.12: The simple graph H corresponding to A in
(5.12). All cylces of H are A-invariant.
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Theorem 5.3 will demonstrate that finding a positive integer solution to R(A)x = 0 is equiv-
alent to checking that all cycles of H are A-invariant. One direction of this proof is simple,
while the other is constructive. In order to simplify the proof of Theorem 5.3, we first de-
fine a condition on H that is equivalent to all cycles being A-invariant. Suppose that H is
connected, and let T be a spanning tree of H rooted at vertex v1. For example, T could be
constructed using depth-first-search. Note that if H is not connected, the following may be
carried out independently on each connected component of H.

Recall that any two vertices in a tree are connected by a unique path. Let viTvj denote
the unique path from vertex vi to vertex vj in T . In particular, each vertex has a unique
path to vertex v1. This induces a partial ordering on V (H). Namely for any i 6= j, we say
that vi �T vj if vertex vi lies on the path v1Tvj. Under partial ordering �T , vertex v1 is
the unique minimal element, and all leaves of T are maximal elements. Moreover, any pair
of vertices that are adjacent in T are necessarily comparable under �T . We will use partial
ordering �T to assign weights to all edges of T . For any edge e = {vi, vj} ∈ E(T ), suppose
without loss of generality that vi �T vj. Define

w(e) =
ai,j
aj,i

.

Otherwise, for all edges e = {vi, vj} ∈ E(H)\E(T ), suppose without loss of generality that
i < j. Define

w(e) =
ai,j
aj,i

.

As such, every edge of H has now been assigned a weight. For any path P0 = uTv in
spanning tree T , define the weight of the path to be the product of the weight of its edges.
That is,

w(P0) =
∏

e∈E(P0)

w(e).

Next consider the fundamental cycles of H with respect to T . T is a tree on k vertices and
k − 1 edges. Therefore there are |E(H)| − (k − 1) edges of H not contained in T . For each
edge e ∈ E(H)\E(T ), the graph T + e contains exactly one cycle. Recall this cycle is called
the fundamental cycle of e with respect to T , which we will denote by C(e). Let e = {vi, vj}
be any edge of E(H)\E(T ) and suppose, without loss of generality, that i < j.

Proposition 5.5. Fundamental cycle C(e) contains a unique minimal vertex with respect
to �T .

Proof. If vi = v1, then the result follows as v1 is the unique minimal element with respect
to �T . Otherwise, both v1Tvi and v1Tvj are paths on at least two vertices. Beginning at vi
and vj, move down the paths viTv1 and vjTv1. These two paths must eventually meet at a
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vertex (at the very least, at vertex v1). Let ve denote the first vertex at which these paths
meet. Then fundamental cycle C(e) is of the form

C(e) = (veTvi) ∪ ({vi, vj}) ∪ (vjTve).

As by definition of �T , ve �T v for all v ∈ V (veTvi) and v ∈ V (veTvi), the result follows.

We say that C(e) is A-resolvable if

w(veTvi) · w(e) = w(veTvj),

or equivalently,

w(e) =
w(veTvj)

w(veTvi)
.

Recalling that an empty product is defined to be 1, note that if vi = v1, then w(veTvi) = 1
and this simply says w(e) = w(v1Tvj).

Definition 5.1. Spanning tree T is A-resolvable if for all e ∈ E(H)\E(T ) the fundamental
cycle C(e) is A-resolvable.

This notion is best illustrated with an example.

Example 5.9. Let A be the 4× 4 matrix given in (5.12),

A =


0 2 1 2
1 1 1 2
1 2 0 2
1 2 1 1

 ,
and let H be the simple graph presented in Figure 5.2.12. Let T be the spanning tree, rooted
at v1, as shown in Figure 5.2.13

v1 v2

v3 v4

Figure 5.2.13: A spanning tree T , for graphH, rooted at vertex
v1.
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Spanning tree T induces a partial ordering on V (H), where:

v1 �T v2 �T v4 and v1 �T v3.

We assign weights to the edges of T according to this partial ordering. Namely,

w({v1, v2}) =
a1,2

a2,1

= 2 w({v2, v4}) =
a2,4

a4,2

= 1 w({v1, v3}) =
a1,3

a3,1

= 1.

Weights are assigned to the edges of E(H)\E(T ) by

w({v3, v4}) =
a3,4

a4,3

= 2 w({v2, v3}) =
a2,3

a3,2

=
1

2
w({v1, v4}) =

a1,4

a4,1

= 2.

These weights are summarized in Figure 5.2.14. In order to demonstrate that T is A-
resolvable, we check that each fundamental cycle is A-resolvable.

v1 v2

v3 v4

E(T)
E(H)\E(T)

2

1 1

2

1/2 2

Figure 5.2.14: The edge weights of E(T ) and E(H)\E(T ).

Beginning with e = {v3, v4}, observe that ve = v1. Then

veTv3 = v1 − v3 and veTv4 = v1 − v2 − v4,

meaning
w(veTv3) = 1 and w(veTv4) = 2 · 1 = 2.

Therefore,
w(veTv3)w(e) = 2 = w(veTv4)

so C(e) is A-resolvable. This is illustrated in Figure 5.2.15.
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v1 v2

v3 v4

v Tve     4
v Tve     3

e

w = 2w = 1

2

11

2

w(v Tv )e     3 w(e) = 2 = w(v Tv )e     4

Figure 5.2.15: Fundamental cycle C({v3, v4}) is A-resolvable.

Next consider e = {v2, v3}, where ve = v1. Then

veTv2 = v1 − v2 and veTv3 = v1 − v3,

meaning
w(veTv2) = 2 and w(veTv3) = 1.

Therefore

w(veTv2)w(e) = 2 · 1

2
= 1 = w(veTv3)

so C(e) is A-resolvable. This is illustrated in Figure 5.2.16.

v1 v2

v3 v4

v Tve     3

v Tve     2

ew = 1

w = 2

2

1 1/2

w(v Tv )e     2 w(e) = 1 = w(v Tv )e     3

Figure 5.2.16: Fundamental cycle C({v2, v3}) is A-resolvable.

Finally, consider e = {v1, v4}, where ve = v1. As one endpoint of e is v1, we need only verify
that w(e) = w(v1Tv4). Observe that

w(v1Tv4) = 2 · 1 = 2 = w(e)

and so C(e) is A-resolvable. As as all fundamental cycles C(e) are A-resolvable, it follows
that spanning tree T is A-resolvable.
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v1 v2

v3 v4

v Tve     4

e w = 2

w(v Tv  )e     4 = 2 = w(e)

2

12

Figure 5.2.17: Fundamental cycle C({v1, v4}) is A-resolvable.

A-resolvability of a spanning tree is closely related to A-invariance of cycles. Let A, H, and
T be as before.

Lemma 5.4. Spanning tree T is A-resolvable if and only if all cycles of H are A-invariant.

Proof. First, suppose that T is A-resolvable. To show that all cycles of H are A-invariant,
it suffices to check that a set of fundamental cycles are A-invariant. In particular, we will
show the fundamental cycles of H with respect to T are all A-invariant. Let e = {vi, vj}
be any edge of E(H)\E(T ), and suppose, without loss of generality, that i < j. Moreover,
suppose that ve = vN for some index N , and

vNTvi = vN − vi1 − vi2 − · · · − viq − vi
vNTvj = vN − vj1 − vj2 − · · · − vjr − vj.

(5.13)

Then to show that C(e) is A-invariant, we must show that(
aN,i1
ai1,N

· ai1,i2
ai2,i1

· · ·
aiq ,i

aiq ,i

)(
ai,j
aj,i

)(
aj,jr
ajr,j
· · · aj2,j1

aj1,j2
· aj1,N
aN,j1

)
= 1. (5.14)

However, because T is A-resolvable,

w(vNTvi) · w(e) = w(vNTvj) that is, w(vNTvi) · w(e)
1

w(vNTvj)
= 1. (5.15)

But
w(vNTvi) =

aN,i1
ai1,N

· ai1,i2
ai2,i1

· · ·
aiq ,i

aiq ,i
and w(e) =

ai,j
aj,i

.

Moreover,

w(vNTvj) =
aN,j1
aj1,N

· aj1,j2
aj2,j1

· · · ajr,j
aj,jr

so
1

w(vnTvj)
=
aj,jr
ajr,j
· · · aj2,j1

aj1,j2
· aj1,N
aN,j1

.

Therefore by (5.15), equation (5.14) holds and so C(e) is A-invariant. That is, every fun-
damental cycle of H with respect to T is A-invariant and, as a result, all cycles of H are
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A-invariant.

Conversely, suppose every cycle of H is A-invariant. Let e = {vi, vj} be any edge of
E(H)\E(T ) with i < j. Suppose ve = vN for some index N , and let vNTvi and vNTvj
be as in (5.13). As C(e) is A-invariant, Equation (5.14) holds. That is,(

aN,i1
ai1,N

· ai1,i2
ai2,i1

· · ·
aiq ,i

aiq ,i

)
︸ ︷︷ ︸

w(vNTvi)

(
ai,j
aj,i

)
︸ ︷︷ ︸
w(e)

(
aj,jr
ajr,j
· · · aj2,j1

aj1,j2
· aj1,N
aN,j1

)
︸ ︷︷ ︸

1
w(vNTvj)

= 1.

Therefore w(vNTvi) · w(e) = w(vNTvj), and so C(e) is A-resolvable. Thus, (5.15) holds for
all fundamental cycles C(e), and so T is A-resolvable.

Corollary 5.2. If a spanning tree T of H is A-resolvable, then every spanning tree of H is
A-resolvable.

Finally, we may present an algorithm to find a positive integer solution to R(A)x = 0. Let
A be a k × k matrix with non-negative integer entries and symmetric zeros, and let graph
H be as before.

Theorem 5.3. The equation R(A)x = 0 has a positive integer solution x if and only if
every cycle of H is A-invariant.

Proof. First, suppose that there exists a positive x =
[
x1 x2 · · · xk

]t
such thatR(A)x =

0. In particular, in light of (5.7), for any i 6= j,

xi(ai,j) = xj(aj,i).

That is, for any i 6= j,
ai,j
aj,i

=
xj
xi
.

Now let C = vi − vi1 − vi2 · · · vil−1
− vil − vi be any cycle of H. Then

ai,i1
ai1,i
· ai1,i2
ai2,i1

· · ·
ail−1,il

ail,il−1

· ail,i
ai,il

=
xi1
xi
· xi2
xi1
· ·
xi2
· · ·

xil−1

·
· xil
xil−1

· xi
xil

= 1.

Therefore C is A-invariant. As C was an arbitrary cycle in H, all cycles of H are A-invariant.

Conversely, suppose that all cycles of C are A-invariant. Let T be a spanning tree of H
rooted at vertex v1, and assign weights to each edge of H as before. In light of Lemma 5.4,
T is A-resolvable. We will use T to find a solution x to the matrix equation R(A)x = 0. In
particular, it is sufficient to find positive integers x1, . . . , xk such that for all i 6= j,

xi(ai,j) = xj(aj,i).
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For any two vertices vi, vj of T , let dT (vi, vj) be the distance in T between vi and vj. That
is, dT (vi, vj) is the length of the (unique) vi− vj path in T . Now let Di be the set of vertices
at distance i from vertex v1,

Di = {v ∈ V (H) : dT (v1, v) = i}.

Moreover, for any vertex v (other than v1), let αT (v) be the ancestor of v in T . That is,
αT (v) is the neighbor of vertex v on the path v1Tv. Therefore {αT (v), v} ∈ E(T ), and if
v ∈ Di then αT (v) ∈ Di−1.

We will now use an iterative process to assign a positive weight W to each vertex of H.
Recall that each edge e of H was assigned a rational-valued weight, w(e). For any set
{e1, . . . , ep} of edges, let δ({e1, . . . , ep}) be the least common multiple of the denominators
of w(e1), . . . , w(ep). In particular, for each ei ∈ {e1, . . . , ep},

δ({e1, . . . , ep}) · w(ei) is an integer.

We now iteratively assign weights to the vertices of H.

Step 0. Let W (v1) = 1

Step 1a. If for any v ∈ D1, W (v1) · w({αT (v), v}) is not an integer, scale W (v1) by

δ
({
{αT (v), v} : v ∈ D1

})
.

Step 1b. For each v ∈ D1, let W (v) = W (v1) · w({αT (v), v}).

Step 2a. If for any v ∈ D2, W (αT (v)) · w({αT (v), v}) is not an integer, for all
u ∈ D0 ∪D1 scale W (u) by

δ
({
{αT (v), v} : v ∈ D2

})
.

Step 2b. For each v ∈ D2, let W (v) = W (αT (v)) · w({αT (v), v}).

Having assigned W (v) for all v ∈ D0, . . . ,Di−1

Step ia. If for any v ∈ Di, W (αT (v)) · w({αT (v), v}) is not an integer, for all u ∈
D0 ∪D1 ∪ · · · ∪Di−1 scale W (u) by

δ
({
{αT (v), v} : v ∈ Di

})
.

Step ib. For each v ∈ Di, let W (v) = W (αT (v)) · w({αT (v), v}).
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By construction, W (v) is a positive integer for every vertex V . Finally, we will show that
for all i 6= j

ai,jW (vi) = aj,iW (vj). (5.16)

First suppose e = {vi, vj} ∈ E(T ), and vi �T vj. Then by the iterative process above,
W (vi)w(e) = W (vj). However w(e) = ai,j/aj,i and therefore (5.16) holds. Otherwise, sup-
pose {vi, vj} ∈ E(H)\E(T ). Then the iterative construction and A-resolvability of T guar-
antees that W (vi)w(e) = W (vj) and, as before, (5.16) holds. Finally, if {vi, vj} /∈ E(H), then
by construction of H, ai,j = aj,i = 0, and so (5.16) trivially holds. That is, W (v1), . . . ,W (Vk)
is a set of positive integers such that for all i 6= j,

ai,jW (v1) = aj,iW (vj).

Therefore taking xt =
[
W (v1) W (v2) · · · W (vk)

]
, x is a positive integer solution of

R(A)x = 0.

Example 5.10. Let A be the 6× 6 matrix as in Example 5.4,

A =


0 2 1 0 0 1
3 0 0 2 0 0
1 0 0 4 2 0
0 1 3 0 1 3
0 0 3 2 0 3
1 0 0 4 2 0


In that example, we exhibited a positive integer solution to R(A)x = 0, where xt =[

3 2 3 4 2 3
]
. We now use the algorithm outlined above to show how we arrived

at this solution. As A is 6 × 6, first construct a simple graph H on 6 vertices, v1, . . . , v6,
such that {vi, vj} ∈ E(H) if and only if ai,j 6= 0 6= aj,i. H is illustrated in Figure 5.2.18.

v1

v2 v3

v4 v5

v6

Figure 5.2.18: The simple graph H given by matrix A.

Next choose a spanning tree T of H rooted at v1, such as that illustrated in Figure 5.2.19.
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For any edge e = {vi, vj} ∈ E(H), let

w(e) =
ai,j
aj,i

if e ∈ E(T ) and vi �T vj, or when e ∈ E(H)\E(T ) and i < j.

These edge weights are illustrated in Figure 5.2.19.

v1

v2 v3

v4 v5

v6

v1

v2 v3

v4 v5

v6

T

H\T

2/3 1

4/3
2 2/3

1

1/2

3/4 3/2

Figure 5.2.19: A spanning tree T of H and the resulting set of
weights assigned to E(H). One may verify that T is A-resolvable.

One may check that the fundamental cycles of H with respect to T are all A-resolvable.
Therefore T is A-resolvable, and by Lemma 5.4 and Theorem 5.3, R(A)x = 0 has a positive
integer solution x. To find such a solution, we assign positive integer weights to the vertices
of H using the iterative process outlined in the proof of Theorem 5.3. This procedure is
illustrated in Figure 5.2.20, where the distance sets Di are distinguished using colors.

2/3 1

4/3
2 2/3

1

1/2

3/4

D0

D1

D2

D3

1
2/3 1

4/3
2 2/3

1

1/2

3/4

3

Step 0. Step 1a. + 1b.

2 3

3/2 3/2

2/3 1

4/3
2 2/3

1

1/2

3/4

D0

D1

D2

D3

3
2/3 1

4/3
2 2/3

1

1/2

3/4

3

Step 2a. + 2b. Step 3a. + 3b.

2 32 3

4 2 4 2

3
3/2 3/2

Figure 5.2.20: Iteratively assigning weights to the vertices of
H as outlined in the proof of Theorem 5.3.

Observe that in Step 1a. W (v1) is scaled by 3 in order to guarantee that W (v2) and W (v3)
are integers. No further scaling is required in Steps 2a. or 3a. The final weights are:

W (v1) = W (v3) = W (v6) = 3 W (v2) = W (v5) = 2 W (v4) = 4
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The result is the vector xt =
[

3 2 3 4 2 3
]
, the solution to R(A)x = 0 originally

presented in Example 5.4.

Example 5.11. Now consider the matrix

A =


0 2 1 2
1 1 1 2
1 2 0 2
1 2 1 1

 .
This matrix was originally used in Example 5.9. Letting the graph H be as in that example,
it was shown that the weighted spanning tree in Figure 5.2.21 is A-resolvable.

v1

v2v3

v4

E(T)
E(H)\E(T)

21

12

1/2

2

Figure 5.2.21: A spanning tree T of H and the resulting set of
weights assigned to E(H).

Iteratively assign weights to the vertices of H as outlined in the proof of Theorem 5.3. This
process is illustrated in Figure 5.2.22. Once again, distance sets Di are differentiated using
colors, and observe that no rescaling is needed.

21

12

1/2

2

21

12

1/2

2

21

12

1/2

2

D0

D1

D2

1 1

1 2

1

1 2

2

Step 0. Step 1a. + 1b. Step 2a. + 2b.

Figure 5.2.22: Iteratively assigning weights to the vertices of
H as outlined in the proof of Theorem 5.3.
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These weights give a positive integer solution R(A)x = 0, where

xt =
[

1 2 1 2
]
.

Therefore there exists a graph G and an equitable partition π with quotient matrix A. Given
x, G can be constructed with 1 + 2 + 1 + 2 = 6 vertices. Partition π must have 4 classes,
π = (V1, V2, V3, V4) where

|V1| = 1 |V2| = 2 |V3| = 1 |V4| = 2.

One such G and π are illustrated in Figure 5.2.23.

V

V

V

V

1

2

3

4

Figure 5.2.23: An equitable partition having quotient matrix
A, constructed using solution vector x.

This completes our discussion of equitable (vertex) partitions. In Chapter 6, we extend the
notion of equitable partitioning to the edges of digraphs. After showing that these edge-
partitions satisfy many of the same properties as their vertex counterparts, we demonstrate
deep connections between equitable edge-partitions and Kirchhoff graphs.
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Chapter 6

Edge-Partitions and Kirchhoff Graphs

In this chapter we extend the study of equitable partitions to the edges of multi-digraphs. In
recent years, graph edge partitions have become an important research area , as they present
useful methods in data decomposition and distributed computing. These methods typically
involve partitioning the edges of a (large) graph into connected subgraphs, with a goal of
minimizing some objective. For example [11] studies so-called balanced edge partitions,
building upon the work of [5], [60], and [65]. Other authors have studied the computational
complexity of these problems [61], or specific applications [44]. A number of additional ref-
erences can be found in [67].

We take a more strictly combinatorial approach, partitioning the edges of a digraph into
subsets, and studying the resulting structure. Section 6.1 begins by introducing a notion of
signed adjacency between directed edges, which leads to a signed edge adjacency matrix of a
digraph. Using this matrix, Section 6.1.1 defines equitable edge-partitions, and demonstrates
that all of the classical results of Chapter 5 continue to hold, now with the edge-adjacency
matrix AE in place of adjacency matrix A. Section 6.1.2 examines orbit partitions of di-
graphs, and Theorem 6.1 demonstrates that every orbit edge-partition is equitable. To the
author’s knowledge, none of the material in Section 6.1 and its subsections, including signed
edge adjacency matrix AE, has been studied in the literature.

Building upon the results of Chapter 3, Section 6.2 presents a natural definition of Kirchhoff
edge partitions. Notably, Theorem 6.2 shows that if the quotient matrix of an equitable
edge-partition π is symmetric, then π is Kirchhoff. Sections 6.2.1 and 6.2.2 study the exact-
ness of the correspondence given in Theorem 6.2. Specifically, Section 6.2.1 exhibits both
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Kirchhoff partitions that are not equitable, and equitable partitions that are not Kirchhoff.
Section 6.2.2 presents a partial converse to Theorem 6.2 by studying uniform edge-partitions.
Finally, Section 6.3 makes the connection between Kirchhoff partitions and Kirchhoff graphs
be defining vector edge-partitions, and demonstrating that every equitable edge-partition is
a vector edge-partition.

6.1 Edge-Partitions of Directed Graphs

Let D be a directed graph, which may have multiple edges, with vertices V (D) = {vi} and
edge set E(D) = {ej}. Define two functions ι : E(D) 7→ V (D) and τ : E(D) 7→ V (D), where

ι(e) = v ∈ V (D) : v is the initial vertex of edge e

τ(e) = v ∈ V (D) : v is the terminal vertex of edge e.

That is, every edge e is of the form e = (ι(e), τ(e)). Now for each i 6= j ∈ {1, . . .m}, define

si,j =



1 if either ι(ei) = ι(ej) or τ(ei) = τ(ej)

2 if ι(ei) = ι(ej) and τ(ei) = τ(ej)

−1 if either ι(ei) = τ(ej) or τ(ei) = ι(ej)

−2 if ι(ei) = τ(ej) and τ(ei) = ι(ej)

0 Otherwise.

(6.1)

That is, |si,j| = 2 if ei and ej share both endpoints, and is negative when they have opposite
orientations. |si,j| = 1 if ei and ej share one endpoint, and is negative when that vertex is
the initial vertex of one edge and the terminal vertex of the other. For each i, let si,i = 0.
This is summarized in Figure 6.1.1.

+1 +1 -1 +2 -2s  =i,j s  =i,j s  =i,j s  =i,j s  =i,j

Figure 6.1.1: The 5 edge configurations for which si,j 6= 0.
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Definition 6.1. The signed edge adjacency matrix of D, AE(D), is the |E(D)|×|E(D)|
matrix with (i, j)-entry si,j.

e1 e2

e3

e4

e5

e6
e7

e8

v1
v2

v3

v4

v5

Figure 6.1.2: A digraph D with 5 vertices and 8 edges.

For example, the digraph D with 5 vertices and 8 edges in Figure 6.1.2 has signed edge
adjacency matrix

AE(D) =



e1 e2 e3 e4 e5 e6 e7 e8

e1 0 −1 1 0 −1 1 −1 0
e2 −1 0 0 1 1 −1 0 −1
e3 1 0 0 0 1 0 −1 1
e4 0 1 0 0 0 1 1 −1
e5 −1 1 1 0 0 −1 0 1
e6 1 −1 0 1 −1 0 1 0
e7 −1 0 −1 1 0 1 0 0
e8 0 −1 1 −1 1 0 0 0


.

For any digraph D, AE(D) is a symmetric matrix. Moreover, AE(D) can be computed from
a number of other graph matrices.

Recall that Q = Q(D) is the incidence matrix of digraph D. That is, Q is a |V (D)|× |E(D)|
matrix with (i, j)-entry 1 if vi = ι(ej), and −1 if vi = τ(ej). Otherwise, Qi,j is 0 when vertex
vi is not an endpoint of edge ej. For example, the digraph in Figure 6.1.2 has incidence
matrix

Q(D) =



e1 e2 e3 e4 e5 e6 e7 e8

v1 1 0 1 0 0 0 −1 0
v2 −1 1 0 0 1 −1 0 0
v3 0 −1 0 −1 0 0 0 1
v4 0 0 0 1 0 1 1 0
v5 0 0 −1 0 −1 0 0 −1

.
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Proposition 6.1. AE(D) = QtQ− 2I

Proof. Let qi denote the ith column of matrix Q. Then,

(QtQ)i,j = qi · qj =



1 if either ι(ei) = ι(ej) or τ(ei) = τ(ej)

2 if ι(ei) = ι(ej) and τ(ei) = τ(ej)

−1 if either ι(ei) = τ(ej) or τ(ei) = ι(ej)

−2 if ι(ei) = τ(ej) and τ(ei) = ι(ej)

0 Otherwise.

Therefore by (6.1), [QtQ− 2I]i,j = si,j.

Remark 6.1. The equation AE(D) = QtQ − 2I motivates naming AE(D) the signed edge
adjacency matrix of D. Let A be the adjacency matrix of any simple graph G. Arbitrarily
orient the edges of G, and let Q be the incidence matrix of the resulting digraph. One may
verify that1

A = diag(QQt)−QQt.

That is, the adjacency matrix A matches–up to sign and the diagonal entries–the |V (G)| ×
|V (G)| matrix QQt. On the other hand, QtQ is the |E(D)| × |E(D)| analogue of QQt.
Moreover, observe that 2I = diag(QtQ), and so Proposition 6.1 can be rewritten as

AE(D) = QtQ− diag(QtQ).

That is, the matrix AE(D) is the same as the |E(D)| × |E(D)| matrix QtQ, up to the
diagonal entries. Thus as A is the |V (G)| × |V (G)| adjacency matrix, we have chosen to call
the |E(D)| × |E(D)| matrix AE(D) the (signed) edge adjacency matrix.

Recall that the incidence vector of a vertex v, λ(v) is a vector with |E(D)| entries, and jth

entry 1 if v = ι(ej), −1 if v = τ(ej), and 0 otherwise. In particular, λ(vj) is the jth row of
the incidence matrix Q(D). In light of Proposition 6.1, the constants si,j, and therefore the
rows of AE(D), can be written in terms of vertex incidence vectors.

Proposition 6.2. For each i 6= j,

si,j = λ(ι(ei))j − λ(τ(ei))j. (6.2)

1Note the matrix QQt is also the classical combinatorial Laplacian of graph G. We will return to the
Laplacian matrix in Chapter 7.
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Proof. Observe that for i 6= j,

λ(ι(ei))j =


1 if ι(ei) = ι(ej)

−1 if ι(ei) = τ(ej)

0 Otherwise

and − λ(τ(ei))j =


1 if τ(ei) = τ(ej)

−1 if vτ(ei) = vι(ej)

0 Otherwise

(6.3)

Therefore by definition of si,j (6.1), for i 6= j equation (6.2) holds.

On the other hand, for any i, λ(ι(ei))i = −λ(τ(ei))i = 1, meaning

λ(ι(ei))i − λ(τ(ei))i − 2 = 0 = si,i. (6.4)

Let VI and VT be |E(D)| × |E(D)| matrices with jth row λ(ι(ej)) and λ(τ(ej)) respectively.
That is, VI is a square matrix whose jth row is the incidence vector of the initial vertex
of edge ej (hence the subscript I for “initial”). Similarly, the jth row of matrix VT is the
incidence vector of the terminal vertex of edge ej (T for “terminal”). Proposition 6.2 and
(6.4) combine to prove,

Corollary 6.1. AE(D) = VI − VT − 2I.

Remark 6.2. While the signed edge adjacency matrix AE successfully captures interactions
between the edges of a digraph, observe that reconstructing a graph from AE(D) is non-
trivial. For example, in light of Figure 6.1.1, there are two edge configurations for which
si,j = 1. Therefore given that AE(D)i,j = 1, we know that edges ei and ej meet at a vertex
with matching orientations. However, we do not know if they share an initial vertex or a
terminal vertex. This raises a number of interesting questions in its own right.

Question: Given the signed edge adjacency matrix A′E of a digraph, can we reconstruct a
digraph D such that AE(D) = A′E? Is the graph that is constructed unique?

6.1.1 Equitable Edge-Partitions

Let D be any digraph with signed edge adjacency matrix AE(D), and let π = (E1, . . . , Ek)
be any partition of E(D).

Definition 6.2. π is an equitable edge-partition if for any i, j ∈ {1, . . . , k} and for any
edge ep ∈ Ei, the number

di,j =
∑

q:eq∈Ej

AE(D)p,q (6.5)

depends only on i and j, and not on the choice of edge ep ∈ Ei.
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Comparing (5.1) to (6.5), observe that this definition of an equitable edge-partition is analo-
gous to that of an equitable partition, with the signed edge adjacency matrix in (6.5) taking
the place of the adjacency matrix in (5.1).

1 2

3

4

5

6
7

8
E

E

E

E

1

2

3

4

Figure 6.1.3: A digraph D with an equitable edge-partition π
with 4 classes.

For example, the digraphD in Figure 6.1.2 has an equitable edge-partition π = (E1, E2, E3, E4),
where

E1 = {e1, e2} E2 = {e3, e4} E3 = {e5, e6} E4 = {e7, e8}.

This edge-partition is illustrated with colored edges in Figure 6.1.3.

Remark 6.3. Every digraph has an edge-partition that is trivially equitable, namely the
partition for which every cell contains exactly one edge. We will let πI denote this trivially
equitable edge-partition.

Let D be a digraph with equitable edge-partition π = (E1, . . . , Ek). We can define a quo-
tient of D with respect to π, denoted D/π. D/π is a labeled digraph with one vertex for
each partition cell E1, . . . , Ek. For all i, j ∈ {1, . . . , k}, D/π has |di.j| edges directed from
Ei to Ej, each having label sign(di,j). In general, D/π may have loops and multiple edges.
Given D and π as in Figure 6.1.2, the quotient D/π is illustrated in Figure 6.1.4.

+1

-1

-1

+1

-1+1

E1 E2

E3E4

Figure 6.1.4: The quotient of D with respect to edge-partition
π.
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Now define AE(D/π) to be the k × k matrix with (i, j)-entry di,j. AE(D/π) is a signed
adjacency matrix for quotient D/π in the sense that the magnitude of the (i, j)-entry of
AE(D/π) indicates how many edges are directed from the ith vertex to the jth vertex of
D/π, and the sign of the entry indicates the label on those edges. In this example,

AE(D/π) =


E1 E2 E3 E4

E1 −1 1 0 −1
E2 1 0 1 0
E3 0 1 −1 1
E4 −1 0 1 0

.
Remark 6.4. Much as the matrix AE(D) encodes how some edge interacts with the other
edges of a digraph, matrix AE(D/π) encodes how any edge of a particular partition class
interacts with the other partition classes. For example under the coloring in Figure 6.1.4,
AE(D/π)1,2 = 1 indicates that every blue edge meets one red edge, and the orientations of
those edges match at the incident vertex.

E

E

E

1

2

3

E 4

E
5

Figure 6.1.5: Two digraphs, one with 39 edges and one with 52,
each having an equitable edge-partition with the same quotient
matrix.

Once again, we call matrix AE(D/π) the quotient matrix of D with respect to π. Any
such matrix must be square and have integer entries, and may be the quotient matrix of
any number of digraph/equitable edge-partition pairs. For example, Figure 6.1.5 shows two
equitable edge-partitions, one on a 39-edge digraph and one on a 52-edge digraph, both
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having quotient matrix 

E1 E2 E3 E4 E5

E1 4 −2 2 0 0
E2 −2 2 1 0 0
E3 4 2 1 0 0
E4 0 0 0 −2 0
E5 0 0 0 0 −2

.
Quotient matrix AE(D/π) is closely related to the signed edge adjacency matrix AE(D). Let
T be the characteristic matrix of edge-partition π. That is T is an |E(D)| × k matrix, and
Ti,j = 1 when ei ∈ Ej and is otherwise 0. T provides the relationship between AE(D/π) and
AE(D).

Lemma 6.1. Let π be a partition of E(D) with characteristic matrix T . If π is an equitable
edge-partition then

AE(D)T = TAE(D/π). (6.6)

Proof. For any p ∈ {1, . . . , k}, suppose that ep ∈ Ei, and consider [AE(D)T ]p,j. Noting that
for all q, Tq,j = 1 if and only if eq ∈ Ej,

[AE(D)T ]p,j =

|E(D)|∑
q=1

AE(D)p,qTq,j =
∑

q:eq∈Ej

AE(D)p,q = di,j

by (6.5). On the other hand, as ep ∈ Ei, row p of T is zero except for a 1 in column i.
Therefore row p of TAE(D/π) is row i of AE(D/π), and [TAE(D/π)]p,j = AE(D/π)i,j = di,j.
Therefore AE(D)T = TAE(D/π).

The reverse implications of Lemma 6.1 is true as well.

Proposition 6.3. Let π be an edge-partition with characteristic matrix T . If

AE(D)T = TR

for some k × k matrix R, then π is an equitable edge-partition.

Proof. As AE(D)T = TR, the columns of AE(D)T are linear combinations of the columns
of T , and therefore constant on the cells of π. That is, if ep and eq belong to class Ej of
edge-partition π, then

[AE(D)T ]p,j = [AE(D)T ]q,j. (6.7)

However for any i and j,

[AE(D)T ]i,j =

|E(D)|∑
q=1

AE(D)i,qTq,j =
∑

q:eq∈Ej

AE(D)i,q.
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But by (6.7), this last sum depends only on the partition class containing edge ei and not
on the choice of edge. Therefore by definition, π is an equitable edge partition.

The quotient matrix AE(D/π) can also be written in terms of vertex incidence vectors and
the characteristic matrix T . For each partition class E1, . . . , Ek, choose some representative
edge εi ∈ Ei. Let ṼI be a k × |E(D)| matrix whose ith row is λ(ι(εi)); that is, the incidence
vector of the initial vertex of εi. Similarly, let ṼT be a k × |E(D)| matrix whose ith row is
λ(τ(εi)), the incidence vector of the terminal vertex of εi.

Proposition 6.4.
AE(D/π) = (ṼI − ṼT )T − 2Ik. (6.8)

Proof. For any i 6= j ∈ {1, . . . , k} suppose, without loss of generality, that ep ∈ Ei is the
edge chosen for row i of ṼI and ṼT . Then

[
(ṼI − ṼT )T

]
i,j

=

|E(D)|∑
q=1

[λ(ι(ep))q − λ(τ(ep))q]Tq,j

=

|E(D)|∑
q=1

sp,qTq,j by Proposition 6.2

=
∑

q:eq∈Ej

sp,q =
∑

q:eq∈Ej

AE(D)p,q

= di,j = AE(D/π)i,j.

As Ii,j = 0 for i 6= j, it follows that (6.8) holds for all (i, j)-entries when i 6= j. A similar
argument shows that [(ṼI − ṼI)T ]j,j = dj,j + 2 and thus (6.8) holds.

Corollary 6.2. If π is an equitable edge-partition, then

(VI − VT )T = T
(
ṼI − ṼT

)
T (6.9)

Proof. Following previous results,

(VI − VT )T = AE(D)T + 2T by Corollary 6.1

= TAE(D/π) + 2T by Lemma 6.1

= T
(

(ṼI − ṼT )T − 2Ik

)
+ 2T by Proposition 6.4

= T
(
ṼI − ṼT

)
T.
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Corollary 6.3. If π is an equitable edge-partition of D, then for any two edges ep and eq in
the same partition cell of π,[

λ(ι(ep))− λ(τ(ep))
]
T =

[
λ(ι(eq))− λ(τ(eq))

]
T. (6.10)

Proof. Suppose, without loss of generality, that ep, eq ∈ Ei. As rows p and q of matrix T are
both zero except for a 1 in column i, it follows that rows p and q of T (ṼI − ṼT )T are the
same. Thus by (6.9) rows p and q of (VI − VT )T are the same and so (6.11) holds.

Proposition 6.5. The reverse implication of Corollary 6.3 is true as well. Let π = (E1, . . . , Ek)
be an edge-partition of a digraph D. If for any two edges ep and eq in the same partition
cell of π, [

λ(ι(ep))− λ(τ(ep))
]
T =

[
λ(ι(eq))− λ(τ(eq))

]
T, (6.11)

π is an equitable edge-partition.

Proof. For each partition class Ei, let epi be some edge epi ∈ Ei. Let R be the k × k matrix
whose ith row is [

λ(ι(epi))− λ(τ(epi))
]
T.

Then by (6.11), (
VI − VT

)
T = TR,

and as a result,

AE(D)T =
(
VI − VT − 2Im

)
T = TR− 2IT = T (R− 2Ik).

Thus by Proposition 6.3, π is an equitable edge-partition.

Section 6.1.2, and later Section 7.3, will prove the existence of large classes of equitable
edge-partitions.

6.1.2 Orbit Edge-Partitions

Let D be a digraph with vertices V (D) = {vi} and edges E(D) = {ej}. An automorphism
of D is a bijection φ : V (D)→ V (D) that preserves adjacencies, non-adjacencies, and edge
orientations. That is, the directed edge (vi, vj) ∈ E(D) if and only if (φ(vi), φ(vj)) ∈ E(D).
Any automorphism φ acts as a permutation of both V (D) and E(D). Once again, under
function composition the automorphisms of D form a group, denoted Aut(D), called the
automorphism group of D. Note that the identity map, which maps each vertex to itself, is
an automorphism of every digraph, and is sometimes called the trivial automorphism.

For any subgroup Ω of Aut(D), the action of Ω on E(D) naturally partitions the edges
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into equivalence classes, where two directed edges (vi, vj) and (v′i, v
′
j) are in the same class

if and only if there is some φ ∈ Ω such that φ(vi) = v′i and φ(vj) = v′j. These equivalence
classes are called the orbits of E(D) under Ω. We will call any partition of E(D) arising as
orbits of some Ω ≤ Aut(D) an orbit edge-partition .
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Figure 6.1.6: A digraph D with a 4-cell orbit edge-partition.
This partition arises from the subgroup of Aut(D) generated by
φ = (v1v3v5)(v2v4v6)(v7).

Example 6.1. Consider the digraph D on 7 vertices presented in Figure 6.1.6. Let φ be a
permutation of the vertices, with disjoint cycle form

φ = (v1v3v5)(v2v4v6)(v7).

One may verify that φ is a graph automorphism (given Figure 6.1.6, φ is the symmetry
“rotation by 120◦”). What is more, φ is a permutation of order 3 that generates a subgroup
〈φ〉 ≤ Aut(G) of order 3. The edge orbits under 〈φ〉 are U1, U2, U3, U4, where

U1 =
{

(v7, v1), (v7, v3), (v7, v5)
}

; U2 =
{

(v1, v2), (v3, v4), (v5, v6)
}

U3 =
{

(v2, v7), (v4, v7), (v6, v7)
}

; U4 =
{

(v3, v2), (v5, v4), (v1, v6)
}
.

That is, π = (U1, U2, U3, U4) is an orbit edge-partition of D. Moreover, π is an equitable
edge-partition of D with quotient matrix

AE(D/π) =


U1 U2 U3 U4

U1 2 −1 −3 −1
U2 −1 0 −1 2
U3 −3 −1 2 −1
U4 −1 2 −1 0

.
Choosing a different subgroup of automorphisms leads to a different equitable edge-partition



148

of D. For example, let ψ be the permutation of V (G) with disjoint cycle form

ψ = (v2v6)(v3v5)(v1)(v4)(v7).

One may verify that ψ is a graph automorphism (given Figure 6.1.6, ψ is the symmetry
“reflection across the line through v1, v7, v4”). In particular, 〈φ, ψ〉 ≤ Aut(D) is a subgroup
of automorphisms of order 6. The edge orbits under 〈φ, ψ〉 are U1, U2, U3, where

U1 =
{

(v7, v1), (v7, v3), (v7, v5)
}

U2 =
{

(v1, v2), (v3, v4), (v5, v6), (v3, v2), (v5, v4), (v1, v6)
}

U3 =
{

(v2, v7), (v4, v7), (v6, v7)
}
.

This orbit edge-partition is illustrated in Figure 6.1.7.
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Figure 6.1.7: A 3-cell orbit edge-partition on digraph D. This
partition arises from the subgroup 〈φ, ψ〉 ≤ Aut(D), where φ is
as in Figure 6.1.6 and ψ = (v2v6)(v3v5)(v1)(v4)(v7).

Once again, this edge-partition of D is equitable, with quotient matrix

AE(D/π) =


U1 U2 U3

U1 2 −2 −3
U2 −1 2 −1
U3 −3 −2 2

.
This is, in fact, a more general result. Theorem 6.1 is the edge-analogue of Proposition 5.3.

Theorem 6.1. Every orbit edge-partition is an equitable edge-partition.

Proof. Let Ω ≤ Aut(D) be a subgroup of automorphisms of a digraph D. Let U1, . . . , Ur be
the orbits of directed edges under the action of Ω on E(D). For any index i ∈ {1, . . . , r},
let e, f be two directed edges e, f ∈ Ui. To show that the orbit edge-partition (U1, . . . , Ur)
is equitable, it suffices to show that for any index j ∈ {1, . . . , r}, the following 4 conditions
hold.
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(a.) The initial vertices of edges e and f are the initial vertices of the same number of edges
in partition cell Uj,∣∣∣{ε ∈ Uj : ι(ε) = ι(e)}

∣∣∣ =
∣∣∣{ε ∈ Uj : ι(ε) = ι(f)}

∣∣∣.
(b.) The terminal vertices of edges e and f are the initial vertices of the same number of

edges in partition cell Uj,∣∣∣{ε ∈ Uj : ι(ε) = τ(e)}
∣∣∣ =

∣∣∣{ε ∈ Uj : ι(ε) = τ(f)}
∣∣∣.

(c.) The terminal vertices of edges e and f are the terminal vertices of the same number of
edges in partition cell Uj,∣∣∣{ε ∈ Uj : τ(ε) = τ(e)}

∣∣∣ =
∣∣∣{ε ∈ Uj : τ(ε) = τ(f)}

∣∣∣.
(d.) The initial vertices of edges e and f are the terminal vertices of the same number of

edges in partition cell Uj,∣∣∣{ε ∈ Uj : τ(ε) = ι(e)}
∣∣∣ =

∣∣∣{ε ∈ Uj : τ(ε) = ι(f)}
∣∣∣.

We will prove (a.), the proofs of (b.) - (d.) being analogous. Let Uj = {ε1, . . . , εp}. As e, f
are in the same cell of an orbit edge-partition, there exists an automorphism ψ such that

ψ(ι(e)) = ι(f) and ψ(τ(e)) = τ(f).

But now for any edge εl ∈ Uj, ι(e) is the initial vertex of ι(εl) if and only if ψ(ι(εl)) is the
initial vertex of ψ(ι(e)) = ι(f). However because Uj is an edge orbit, as a multi-set,{

ψ(ι(ε1)), ψ(ι(ε2)), . . . , ψ(ι(εp))
}

=
{
ι(ε1), ι(ε2), . . . , ι(εp)

}
.

Therefore ι(f) is the initial vertex of the same number of edges in Uj as ι(e), and thus (a.)
holds.

While every orbit edge-partition is equitable, not all equitable edge-partitions are orbit edge-
partitions. Consider, for example, the digraph D6 on six vertices illustrated in Figure 6.1.8.
This graph has a 6-cell equitable edge-partition π = (E1, E2, E3, E4, E5, E6), with quotient
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matrix

AE(D/π) =



E1 E2 E3 E4 E5 E6

E1 0 1 −1 −1 0 1
E2 1 0 0 1 −1 1
E3 −1 0 0 1 1 1
E4 −1 1 1 0 −1 0
E5 0 −1 1 −1 0 1
E6 1 1 1 0 1 0

.

However, edge-partition π is not an orbit edge-partition. For example, there is no auto-
morphism of D mapping vertex v1 to v2, but both are the terminal vertices of an edge in
partition cell E2.
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Figure 6.1.8: A digraph D6 with a 6-cell equitable edge-
partition. While equitable, this partition is not an orbit edge
partition.

6.2 Kirchhoff Edge-Partitions

Let D be any digraph, which may have multiple edges. Corollary 3.2 suggests a natural
definition of a Kirchhoff edge-partition of D.

Definition 6.3. An edge-partition π = {E1, . . . , Ek} of E(D) with characteristic matrix T
is Kirchhoff if for all vertices v and cycles C,

λ(v)T · χ(C)T = 0. (6.12)

Take a moment to consider the vectors λ(v)T and χ(C)T . Each has k entries, indexed by
E1, . . . , Ek. The ith entry of the vector λ(v)T is the net number of edges of class Ei that exit
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vertex v. Similarly, the ith entry of vector χ(C)T is the net number of edges of class Ei that
cycle C traverses with the correct orientation.

Every digraph has an edge-partition that is Kirchhoff, namely the trivial edge-partition
πI . In this case, the characteristic matrix T is simply the |E(D)| × |E(D)| identity matrix.
Therefore (10.1) becomes

λ(v) · χ(C) = 0,

which is the classical orthogonality of the cut and cycle spaces of digraphs, Corollary 1.1.
We will be interested in nontrivial Kirchhoff edge-partitions.
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Figure 6.2.1: A digraph D with a 4-class Kirchhoff edge-
partition.

Example 6.2. The equitable edge-partition presented in Figure 6.2.1 is Kirchhoff. This
edge partition has characteristic matrix

T =



E1 E2 E3 E4

e1 1 0 0 0
e2 1 0 0 0
e3 0 1 0 0
e4 0 1 0 0
e5 0 0 1 0
e6 0 0 1 0
e7 0 0 0 1
e8 0 0 0 1


.

One may verify that for any vertex v of D,

λ(v)T ∈
{
±
[

0 1 1 1
]
,
[

1 1 0 −1
]
,
[

0 0 0 0
] }
. (6.13)
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Similarly for any cycle C,

χ(C)T ∈ Span
{ [

1 −1 1 0
]
,
[

1 0 −1 1
] }
. (6.14)

As every vector in (6.13) is orthogonal to every vector in (6.14), edge-partition π is Kirchhoff.

Theorem 6.2 will demonstrate that finding Kirchhoff partitions is closely related to finding
equitable edge-partitions. Let D be any digraph with incidence matrix Q, and let π =
(E1, . . . , Ek) be an edge-partition of D with characteristic matrix T .

Proposition 6.6. Edge-partition π = (E1, . . . , Ek) of E(D) is Kirchhoff if and only if the
row space of Q is invariant under right multiplication by TT t.

Proof. Let N be a matrix with |E(D)| rows whose columns are a basis for Null(Q). As every
cycle vector of D lies in the null space of Q–and thus the row space of N t–π is Kirchhoff if
and only if QT (N tT )t = 0. That is, if and only if

Q(TT t)N = 0. (6.15)

But (6.15) holds if and only if the rows of Q(TT t) are orthogonal to the columns of N , i.e.
if and only if the row space of Q is invariant under right multiplication by TT t.

Theorem 6.2. Let D be a digraph with equitable edge-partition π = (E1, . . . , Ek). If quotient
matrix AE(D/π) is symmetric, then π is Kirchhoff.

Proof. Let the matrices VI , VT , ṼI , ṼT be defined as before. For any D, the matrix AE(D)
is symmetric, and thus by Corollary 6.1, the matrix (VI − VT ) is symmetric as well. By
assumption AE(D/π) is symmetric, so by Proposition 6.4, (ṼI − ṼT )T is also symmetric. As
π is equitable, by Corollary 6.2,

(VI − VT )T = T
(
ṼI − ṼT

)
T. (6.16)

Taking the transpose of (6.16),

T t (VI − VT )t = T t
(
ṼI − ṼT

)t
T t

=
[
(ṼI − ṼT )T

]t
T t.

Thus as both VI − VT and (ṼI − ṼT )T are symmetric,

T t (VI − VT ) = (ṼI − ṼT )TT t.

Therefore,
TT t (VI − VT ) = T (ṼI − ṼT )TT t,
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and by (6.16),
TT t(VI − VT ) = (VI − VT )TT t. (6.17)

However, the rows of (VI−VT ) span the row space of Q. Therefore the rows of TT t(VI−VT )
all lie in the row space of Q, and so by (6.17), each row of (VI − VT )TT t lies in Row(Q)
as well. Thus the row space of Q is invariant under right multiplication by TT t, and by
Proposition 6.6, π is Kirchhoff.

Example 6.3. Consider the digraph D presented in Figure 6.2.2. D has equitable edge-
partition π = (E1, E2, E3, E4) where

E1 = {e1, e2};E2 = {e3, e4};E3 = {e5, e6};E4 = {e7, e8}.

Edge-partition π has quotient matrix

AE(D/π) =


E1 E2 E3 E4

E1 0 0 2 2
E2 0 0 −2 2
E3 2 −2 2 0
E4 2 2 0 2

.
As AE(D/π) is symmetric, Theorem 6.2 guarantees that this partition is Kirchhoff. This
can also be checked directly. Letting T be the characteristic matrix of π, every vertex of D
satisfies

λ(v)T ∈
{
±
[

1 −1 2 0
]
,±
[

1 1 0 2
] }
,

and every cycle C of D satisfies

χ(C)T ∈ Span
{ [

1 1 0 −1
]
,
[

1 −1 −1 0
] }
. (6.18)
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Figure 6.2.2: A digraph D with an equitable edge-partition π.
AE(D/π) is symmetric, therefore π is Kirchhoff.
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Next, we present an alternate proof of Theorem 6.2, that takes a different approach. First,
we make two observations regarding cycle vectors of D and eigenvalues of AE(D). While we
typically write cycle vectors as row vectors, for ease of notation in the following three proofs
let all cycle vectors be column vectors.

Proposition 6.7. Let D be a digraph with signed edge adjacency matrix AE(D). Then any
cycle vector of D is an eigenvector of AE(D) with eigenvalue −2.

Proof. Let x be any cycle vector of D. By Corollary 6.1, AE(D) = VI − VT − 2I. However
the rows of VI and VT all lie in the row space of incidence matrix Q(D). Therefore as
x ∈ Null(Q(D)),

AE(D)x = VIx− VT x− 2Ix

= 0− 0− 2Ix

= −2x.

Proposition 6.8. If π is an equitable edge-partition with characteristic matrix T , then for
any cycle vector x of D, the row vector xtT is a left-eigenvector of AE(D/π) with eigenvalue
−2. That is,

(xtT )AE(D/π) = −2(xtT ).

Proof. By Proposition 6.7 and symmetry of AE(D),

−2(xtT ) = (−2xt)T = (xtAE(D))T

= xt(AE(D)T )

= xt(TAE(D/π)) by 6.1

= (xtT )AE(D/π).

Now we present the alternate proof of Theorem 6.2

Proof. Let D be a digraph with equitable edge-partition π. We will demonstrate that if π is
not a Kirchhoff edge-partition, then AE(D/π) is not a symmetric matrix. Observe that if a
square matrix B is symmetric, then for any column vector x,

xtB = λxt for some constant λ if and only if Bx = λx. (6.19)

In particular, given a square matrix B if there is a vector z such that

ztB = λzt for some constant λ, but Bz 6= λz, (6.20)
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then B is not symmetric. If π is not Kirchhoff, then by Proposition 6.6 there exists some
cycle vector y of D such that (QT )(T ty) 6= 0. In particular,

(ṼI − ṼT )T (T ty) 6= 0.

Therefore by Proposition 6.4,

AE(D/π)(T ty) = (ṼI − ṼT )T (T ty)− 2I(T ty) 6= −2(T ty).

However by Proposition 6.8,

(ytT )AE(D/π) = −2(ytT ).

Thus noting (6.20), AE(D/π) is not symmetric.

6.2.1 Equitable versus Kirchhoff Edge-Partitions

Theorem 6.2 proved that any equitable edge-partition with symmetric quotient matrix
AE(D/π) is Kirchhoff. This section addresses the exactness of the relationship between eq-
uitable edge-partitions and Kirchhoff edge-partitions. In particular, Example 6.4 will show
that not every Kirchhoff edge-partition is equitable. Conversely, Example 6.5 shows that not
every equitable edge-partition is Kirchhoff.
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E

E

E
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3

Figure 6.2.3: A digraph D with a Kirchhoff edge-partition that
is not equitable.

Example 6.4. Consider the digraph D shown in Figure 6.2.3 and edge-partition π =
(E1, E2, E3), where

E1 = {e1, e2};E2 = {e3, e4};E3 = {e5, e6}. (6.21)

Letting T be the characteristic matrix of partition π, all vertices v satisfy

λ(v)T ∈
{ [

1 0 2
]
,
[

0 0 0
]
,
[
−1 2 0

]
,
[

0 −2 −2
] }
,



156

and all cycles C satisfy

χ(C)T ∈
{ [

0 0 0
]
,
[

2 1 −1
] }
.

Therefore edge-partition π is Kirchhoff. However, this partition is not equitable: for exam-
ple, edges e1 and e2 belong to partition cell E1, but e1 is incident two two edges of cell E3

while edge e2 is incident to none.
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Figure 6.2.4: A digraph D′, which can be viewed as a “rear-
rangement” of D, such that edge-partition π is both equitable
and Kirchhoff.

Alternatively, consider the digraph D′ shown in figure 6.2.4. D′ can be derived from D by a
slight rearrangement of vertices and edges. Let π = (E1, E2, E3) be the same edge-partition
(6.21). Letting T be the characteristic matrix of partition π, all vertices v and cycles C
satisfy

λ(v)T ∈
{
±
[

1 0 2
]
,±
[
−1 2 0

] }
χ(C)T ∈

{ [
0 0 0

]
,
[

2 1 −1
] }
.

(6.22)
Therefore edge-partition π is Kirchhoff. Moreover, in the case of digraph D′, edge-partition
π is now equitable as well, with quotient matrix

AE(D′/π) =


E1 E2 E3

E1 0 −2 2
E2 −2 2 0
E3 2 0 2

.
This raises a number of questions about “rearranging” directed graphs.

Question: If an edge-partition is Kirchhoff, when can a “rearranged” digraph have the
same Kirchhoff edge-partition?

Question: Can any Kirchhoff edge-partition become equitable by constructing a suit-
able “rearranged” digraph?
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Remark 6.5. It should not go unnoticed that comparing (6.22) to the analogous sets in
Example 6.4, {

χ(C)T : C is a cycle of D
}

=
{
χ(C)T : C is a cycle of D′

}
span

{
λ(v)T : v ∈ V (D)

}
= span

{
λ(v)T : v ∈ V (D′)

}
.

Therefore the digraph/edge-partition pairs (D, π) and (D′, π) can be considered equivalent
in the Kirchhoff sense.
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v2v3

v4

Figure 6.2.5: A digraph D′′ with an equitable edge-partition
that is not Kirchhoff.

Example 6.5. Now consider the digraph D′′ in Figure 6.2.5, and edge-partition π =
(E1, E2, E3, E4), where

E1 = {e1, e2}, E2 = {e3, e4}, E3 = {e5}, E4 = {e6}.

Letting T be the characteristic matrix of π, and letting C be the cycle v1 − v2 − v4 − v1,

λ(v1)T · χ(C)T =
[

1 1 0 1
]
·
[

1 1 0 −1
]

= 1 6= 0,

and so edge-partition π is not Kirchhoff. However, π is equitable, with quotient matrix
(6.23).

AE(D′′/π) =


E1 E2 E3 E4

E1 0 0 1 1
E2 0 0 −1 1
E3 2 −2 0 0
E4 2 2 0 0

. (6.23)
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Figure 6.2.6 exhibits another edge-partition that is equitable, but not Kirchhoff. For example,
letting C be the cycle C = v1 − v2 − v7 − v1,

λ(v1)T · χ(C)T =
[

2 0 −1 0 0 0 0
]
·
[

1 1 1 0 0 0 0
]

= 1 6= 0.
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Figure 6.2.6: Another equitable edge-partition that is not
Kirchhoff.

The preceding examples demonstrate a lack of exact correspondence between equitable and
Kirchhoff edge-partitions. A natural next question is if the converse to Theorem 6.2 holds.
That is, if an edge-partition π is both equitable and Kirchhoff, is the matrix AE(D/π)
symmetric? This will be addressed in Section 6.2.2.

6.2.2 Uniform Edge-Partitions

Theorem 6.2 showed that if D is a digraph with equitable edge-partition π, and the quotient
matrix AE(D/π) is symmetric, then π is Kirchhoff. However, the converse to Theorem 6.2
is false, as illustrated by Example 6.6.

Example 6.6. Consider the digraph D, with edge-partition π, presented in Figure 6.2.7. D
has 9 directed edges, partitioned into 6 cells, E1, . . . , E6.
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Figure 6.2.7: An equitable edge partition that is also Kirchhoff.
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For any vertex v and cycle C, λ(v)T ∈ Row(R) and χ(C)T ∈ Row(Z), where R and Z are
the matrices

R =



E1 E2 E3 E4 E5 E6

−1 1 0 0 0 0
1 0 −1 0 0 0
0 −1 1 2 0 −2
0 0 0 −2 2 0
0 0 0 0 −2 2

 Z =

[ E1 E2 E3 E4 E5 E6

1 1 1 0 0 0
0 0 0 1 1 1

]
.

As the product RZt is the 5× 2 zero matrix, (6.12) is satisfied for all vertices and all cycles.
Therefore edge-partition π is Kirchhoff. Moreover, π is equitable, and has quotient matrix

AE(D/π) =



E1 E2 E3 E4 E5 E6

E1 0 −1 −1 0 0 0
E2 −1 0 −1 −2 0 2
E3 −1 −1 0 2 0 −2
E4 0 −1 1 2 −2 −2
E5 0 0 0 −2 2 −2
E6 0 1 −1 −2 −2 2

,

which is not symmetric. That is, edge-partition π is both equitable and Kirchhoff, but
AE(D/π) is not symmetric.

While Example 6.6 shows that the converse of Theorem 6.2 does not hold in general, a
partial converse (Corollary 6.5) can be obtained by considering the sizes of partition cells.
Let π be any edge partition with k partition cells and characteristic matrix T . Let Λ be a
k × k diagonal matrix with Λi,i = 1/|Ei|. Noting that T tT is a k × k diagonal matrix with
(i, i)-entry |Ei|, it follows that

ΛT tT = Ik. (6.24)

That is, the matrix ΛT t is a left pseudoinverse of T . Moreover, if π is equitable, by (6.6),

AE(D/π) = ΛT tTAE(D/π) = ΛT tAE(D)T. (6.25)

We give special distinction to those edge-partitions for which |Ei| is independent of i.

Definition 6.4. An edge-partition is uniform if all partition cells are the same size.

Theorem 6.3. Let D be a connected digraph with equitable edge-partition π. Then AE(D/π)
is symmetric if and only if π is uniform.

Proof. First suppose π is uniform. In particular, Λ = cI for some constant c. By (6.25),

AE(D/π) = cT tAE(D)T
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Therefore,
AE(D/π)t = (cT tAE(D)T )t

= cT tAE(D)tT

= cT tAE(D)T = AE(D/π)

and AE(D/π) is symmetric. Conversely, suppose that AE(D/π) is symmetric. Then by
(6.25), as AE(D) and Λ are both symmetric,

Λ(T tAE(D)T ) = AE(D/π) = AE(D/π)t = (ΛT tAE(D)T )t = (T tAE(D)T )Λ.

Therefore for all i 6= j,

Λi,i(T
tAE(D)T )i,j = (ΛT tAE(D)T )i,j = (T tAE(D)TΛ)i,j = (T tAE(D)T )i,jΛj,j. (6.26)

As D is connected, it follows that no simultaneous permutation of rows and columns can
transform T tAE(D)T into a block-diagonal matrix of the form[

A 0
0 B

]
.

Therefore as (6.26) is true for all i 6= j, it follows that all diagonal entries of Λ must be
equal. Therefore |Ei| is independent of i and, π is uniform.

Let D be a connected digraph with equitable edge-partition π. Corollary 6.4 is an immediate
consequence of Theorem 6.3, and Corollary 6.5 is the partial converse of Theorem 6.2 that
we desired.

Corollary 6.4. Every uniform equitable edge-partition of D is Kirchhoff.

Corollary 6.5. If equitable edge-partition π is Kirchhoff and uniform, then quotient matrix
AE(D/π) is symmetric.

6.3 Vector Edge-Partitions

Thus far we have discussed Kirchhoff edge-partitions, though have not yet made any refer-
ence to Kirchhoff graphs. Generally speaking, Kirchhoff graphs can be thought of as vector
graphs whose corresponding edge-partition is Kirchhoff. To begin we will make these ideas
more precise.

Let D be any multi-digraph with vertices V (D) = {vi} and edges E(D) = {ej}. Let
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S = {s1, . . . , sk} be a finite set of vectors in some vector space. Recall that a vector as-
signment ϕ (or a (D,S)-vector assignment) is any surjective function ϕ : E(D)→ S. Once
again, let a cycle be any closed walk in D, with no repeated vertices, that may traverse edges
regardless of orientation. Recall that a vector assignment is consistent if for any cycle C of
D, ∑

e∈E(C)

σC(e)ϕ(e) = 0,

where σC(e) = 1 if C traverses e in the direction of its orientation, and σC(e) = −1 if C
traverses e against its orientation. That is, ϕ is consistent with D if the signed sum of vectors
around any cycle is the zero vector.

Proposition 6.9. For any digraph D, and any matrix M with |E(D)| rows, the vector
assignment

ϕ(e) =
(
λ(τ(e))− λ(ι(e))

)
M

is consistent.

Proof. Let C = v1 · e1 · v2 · e2 · v3 · · · vp · ep · v1 be any cycle of D. Then for each i,

σC(ei)ϕ(ei) =
(
λ(vi+1)− λ(vi)

)
M.

Therefore,∑
e∈E(C)

σCϕ(e) =
∑

ei∈E(C)

σC(ei)
(
λ(τ(ei))− λ(ι(ei))

)
M

=
(

(λ(v2)− λ(v1)) + (λ(v3)− λ(v2)) · · ·+ (λ(v1)− λ(vp))
)
M

=
(
− λ(v1) + λ(v2)− λ(v2) + · · ·+ λ(vp)− λ(vp) + λ(v1)

)
M

= 0M = 0.

As cycle C was arbitrary, vector assignment ϕ was consistent.

Corollary 6.6. For any digraph D, the vector assignment

ϕ(e) =
(
λ(τ(e))− λ(ι(e))

)
is consistent.

A vector graph is digraph together with a consistent (D,S)-vector assignment. Observe that
every vector graph has a natural edge-partition, whose classes are the vectors to which the
edges are assigned. Namely, for any consistent (D,S)-vector assignment ϕ, let π be the
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edge-partition π = (E1, . . . , Ek) where

Ei = {e ∈ E(D) : ϕ(e) = si}.

We call π the vector edge-partition .

Corollary 6.7. A Kirchhoff graph is a vector graph whose vector edge-partition is Kirchhoff.

Moreover, observe that Corollary 6.3 and Proposition 6.5 combine to prove,

Proposition 6.10. Let π = (E1, . . . , Ek) be an edge-partition of a digraph D. Then π is
equitable if and only if for any two edges e and f in the same partition cell of π,[

λ(τ(e))− λ(ι(e))
]
T =

[
λ(τ(f))− λ(ι(f))

]
T, (6.27)

where T is the characteristic matrix of edge-partition π.

Lemma 6.2. Every equitable edge-partition is a vector edge-partition.

Proof. Let D be a digraph with equitable edge-partition π = (E1, . . . , Ek) and characteristic
matrix T . Then by Proposition 6.9, the vector assignment

ϕ(e) =
(
λ(τ(e))− λ(ι(e))

)
T

is consistent, so (D,ϕ) is a vector graph. Moreover by (6.27), for each partition class Ei,
every edge of Ei is assigned the same vector under ϕ. Therefore π is the vector edge-partition
of (D,ϕ).
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Figure 6.3.1: A digraph D with a 6-cell equitable edge-
partition, π.
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Example 6.7. Let D be the digraph illustrated in Figure 6.3.1. Let π = (E1, . . . E6) be the
edge-partition of D, where

E1 = {e1, e2} E2 = {e3, e4} E3 = {e5, e6}
E4 = {e7, e8} E5 = {e9, e10} E6 = {e11, e12}.

Edge-partition π is equitable. Therefore by Lemma 6.2, π is also a vector edge-partition.
Let T be the characteristic matrix of π, and let ϕ : E(D)→ R6 where

ϕ(ei) = [λ(τ(ei))− λ(ι(ei))]T.

Vector assignment ϕ is consistent, and any edges in the same partition class of π are assigned
the same vector under ϕ. For example,

ϕ(e1) = [λ(v1)− λ(v3)]T =
[
−2 0 −1 0 1 0 0 1 1 −1 −1 0

]
T

=
[
−2 −1 1 1 0 −1

]
ϕ(e2) = [λ(v4)− λ(v6)]T =

[
0 −2 0 −1 0 1 1 0 −1 1 0 −1

]
T

=
[
−2 −1 1 1 0 −1

]
More completely,

ϕ(e1) = ϕ(e2) = [ −2 −1 1 1 0 −1 ]

ϕ(e3) = ϕ(e4) = [ −1 −2 0 −1 1 −1 ]

ϕ(e5) = ϕ(e6) = [ 1 0 −2 −1 −1 −1 ]

ϕ(e7) = ϕ(e8) = [ 1 −1 −1 −2 1 0 ]

ϕ(e9) = ϕ(e10) = [ 0 1 −1 1 −2 −1 ]

ϕ(e11) = ϕ(e12) = [ −1 −1 −1 0 −1 −2 ].

(6.28)

Moreover, as ϕ is consistent, digraph D can be embedded in R6 in such a way that each edge
is drawn as the vector it is assigned under ϕ. Figure 6.3.1 shows the projection in R2 of one
such embedding. Observe that any two edges belonging to the same vector edge-partition
class are drawn as the same R2 vector.
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Figure 6.3.2: An equitable edge-partition π of D3

Example 6.8. Let D3 be the oriented cube illustrated in Figure 6.3.2. Let π = (E1, . . . , E6)
be the edge partition given by

E1 = {e1, e2} E2 = {e3, e4} E3 = {e5, e6}
E4 = {e7, e8} E5 = {e9, e10} E6 = {e11, e12}.

Edge-partition π is equitable. Therefore by Lemma 6.2, π is also a vector edge-partition.
Let T be the characteristic matrix of π, and let ϕ : E(D)→ R6 where

ϕ(ei) = [λ(τ(ei))− λ(ι(ei))]T

Vector assignment ϕ is consistent, and any edges in the same partition class of π are assigned
the same vector under ϕ. For example,

ϕ(e1) = [λ(v2)− λ(v1)]T =
[
−2 0 −1 0 1 0 0 1 0 0 0 −1

]
T

=
[
−2 −1 1 1 0 −1

]
ϕ(e2) = [λ(v6)− λ(v5)]T =

[
0 −2 0 −1 0 1 1 0 0 0 −1 0

]
T

=
[
−2 −1 1 1 0 −1

]
More completely,

ϕ(e1) = ϕ(e2) = [ −2 −1 1 1 0 −1 ]

ϕ(e3) = ϕ(e4) = [ −1 −2 0 −1 1 −1 ]

ϕ(e5) = ϕ(e6) = [ 1 0 −2 −1 −1 −1 ]

ϕ(e7) = ϕ(e8) = [ 1 −1 −1 −2 1 0 ]

ϕ(e9) = ϕ(e10) = [ 0 1 −1 1 −2 −1 ]

ϕ(e11) = ϕ(e12) = [ −1 −1 −1 0 −1 −2 ].

(6.29)
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Note that these vectors assigned by ϕ are identical to those of (6.28). In this case, vector
assignment ϕ is consistent with D3. However, embedding this graph in R6 is less straight-
forward than the digraph in Example 6.7. Observe, for example, that

v1 · (e1) · (e5) · (−e12) · v5

is a path in D3. However,

ϕ(e1) + ϕ(e5)− ϕ(e12) =
[
−2 −1 1 1 0 −1

]
+
[

1 0 −2 −1 −1 −1
]

−
[
−1 −1 −1 0 −1 −2

]
=
[

0 0 0 0 0 0
]
.

Therefore in any embedding of D3 in R6, if each edge is drawn as the vector it is assigned
under ϕ, vertex v1 and vertex v5 must be embedded at the same point. In a similar manner,
one finds that the pairs v2 and v6, v3 and v7, and v4 and v8 must each be embedded at the
same points. The result of any such embedding is illustrated in Figure 6.3.3. This leads to
a new digraph, which maintains an equitable edge-partition. More importantly, under this
edge-partition the digraph can be embedded in R6 on vector edges.
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2

3
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6

Figure 6.3.3: An equitable vector edge-partition arising from
a vector embedding of D3 in R6.

Remark 6.6. The three examples in Figures 6.3.1, 6.3.2, and 6.3.3 are intentionally pre-
sented together. Figure 6.3.1 is an equitable edge-partition that is not an orbit partition.
Using the corresponding vector edge-partition, the digraph may be embedded in R6 on vec-
tor edges. Figure 6.3.2 is an orbit edge-partition, and therefore equitable. However, the
digraph collapses under an embedding in R6 on the vector edges of the associated the vector
edge-partition. The collapsed embedding is presented in Figure 6.3.3. This edge-partition
is now an orbit partition, as was that of Figure 6.3.2, but also embeddable in R6 on vector
edges, as was that of Figure 6.3.1.

Although each respective edge-partition has different properties, each is a Kirchhoff par-
tition. Moreover, the three partitions may be considered equivalent in the Kirchhoff sense.



166

That is, if one considers cycles with respect to edge-partition classes, each digraph-partition
pair has exactly the same set of cycles. More specifically, for any cycle C in any of these
three graphs, letting T be the appropriate characteristic matrix,

χ(C)T ∈ span
{[

1 0 1 0 0 −1
]
,
[

1 −1 0 1 0 0
]
,
[

0 1 0 0 1 −1
]}
.

This example inspires a number of further questions. Specifically, understanding this “col-
lapsing” phenomenon is an interesting problem. For example,

Question: Given an equitable edge-partition π of a digraph D, can we determine when
the associated vector edge-partition requires that vertices be identified once edges are taken
to be vectors?



Chapter 7

Additional Topics in Graph Partitions

This chapter presents a collection of additional results on both vertex and edge-partitions.
With the exception of Sections 7.1 and 7.2, each section should be considered independently
of the others. Although the sections of Chapter 7 are not directly interrelated, each presents
interesting examples or natural extensions of the results in Chapters 5 and 6. These results
do not necessarily fit easily into the framework of those chapters, and therefore have been
collected here as additional topics.

Section 7.1 reviews so-called almost equitable partitions, introduced by Cardoso [13] as a
generalization of equitable partitions. Almost equitable partitions share many classical prop-
erties with equitable partitions when the Laplacian matrix is used in place of the adjacency
matrix. Section 7.2 then combines the ideas of Section 7.1 and Chapter 6 to define almost
equitable edge-partitions. Theorem 7.1 demonstrates that an almost equitable edge-partition
with a symmetric quotient matrix is Kirchhoff. Next, Section 7.3 shows that equitable edge-
partitions can be constructed from certain equitable (vertex) partitions. Section 7.3.1 then
uses the results of Section 7.3 to construct three infinite families of equitable edge-partitions
by examining 3 types of equitable (vertex) partitions on prism graphs. Finally, Section 7.4
explores the interactions between layers of partitions, giving an example when a pair of
quotients–taken in either order–leads to the same resultant quotient.
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7.1 Almost Equitable Partitions

Let G be a graph with equitable partition π = (V1, . . . , Vk) of V (G). Recall that for any
vp ∈ Vi,

ci,j =
∑

q:vq∈Vj

A(G)p,q

is independent of p. Observe that for each i, the induced subgraph G[Vi] must be regular
of degree ci,i. Relaxing this condition results in so-called almost equitable partitions. More
precisely, an almost equitable partition is a partition π = {V1, . . . , Vk} of V (G) such that
for all i 6= j and any vp ∈ Vi,

ci,j =
∑

q:vq∈Vj

A(G)p,q (7.1)

is independent of p. Note that the definitions of equitable and almost equitable partitions
are nearly identical, only ci,i need not be well-defined for a partition to be almost equitable.
In particular, any equitable partition is almost equitable.

Example 7.1. Consider the partition π = (V1, V2, V3) of the graph in Figure 7.1.1, where
V1 = {v1, v2, v3, v4} and V2 = {v5, v6}, and V3 = {v7}. Every vertex in V1 has 1 neighbor in
V2, and every vertex in V2 has 2 neighbors in V1. Similarly every vertex in V1 or V2 has 1
neighbor in V3, and every vertex in V3 has 4 neighbors in V1 and 2 neighbors in V2. Therefore
π is an almost equitable partition with

c1,2 = 1, c2,1 = 2, c1,3 = c2,3 = 1, c3,1 = 4, c3,2 = 2.

However, V1 = {v1, v2, v3, v4}, and v1 and v4 each have 1 neighbor in V1 while v2 and v3 each
have 2, meaning π is not equitable.

V

V

1

2

1 2 3 4

5 6

V37

Figure 7.1.1: An almost equitable vertex partition.

Remark 7.1. Much as the definitions of equitable and almost equitable are similar, the
examples one constructs are closely related as well. By definition, every equitable partition
is almost equitable. More than that, deleting all edges of an almost equitable partition with
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two endvertices in the same cell results in an equitable partition. Conversely, beginning with
any equitable partition, one may freely add and delete edges between vertices of the same
partition cell, and the result is an almost equitable partition.

Let G be a graph with vertices V (G) = {vi} and almost equitable partition π = (V1, . . . , Vk).
Many of the results in Section 5.1 continue to hold, with the Laplacian matrix L(G) now in
place of A(G). Let ∆(G) be a |V (G)|×|V (G)| diagonal matrix with (i, i)-entry

∑
k 6=iA(G)i,k.

Then the Laplacian matrix of G, L(G), is given by

L(G) = ∆(G)− A(G). (7.2)

Equivalently,

L(G)i,j =

{
−A(G)i,j if i 6= j∑

k 6=iA(G)i,k if i = j
. (7.3)

We define the Laplacian matrix of G/π analogously to (7.3).

L(G/π)i,j =

{
−ci,j if i 6= j∑

k 6=i ci,k if i = j
. (7.4)

For example, given G and π as in Figure 7.1.1,

L(G) =



v1 v2 v3 v4 v5 v6 v7

v1 2 −1 0 0 −1 0 −1
v2 −1 3 −1 0 −1 0 −1
v3 0 −1 3 −1 0 −1 −1
v4 0 0 −1 2 0 −1 −1
v5 −1 −1 0 0 3 −1 −1
v6 0 0 −1 −1 −1 3 −1
v7 −1 −1 −1 −1 −1 −1 0


and L(G/π) =


V1 V2 V3

V1 2 −1 −1
V2 −2 3 −1
V3 −4 −2 6

.

These Laplacian matrices now satisfy the almost equitable analogue of Lemma 5.1.

Lemma 7.1. Let π be a partition of V (G) with characteristic matrix P . If π is almost
equitable then

L(G)P = PL(G/π).

Proof. Let vp be any vertex of G, and suppose that vp ∈ Vi. For any j 6= i, by (7.3),

[L(G)P ]p,j =
∑

q:vq∈Vj

L(G)p,q =
∑

q:vq∈Vj

−A(G)p,q = −ci,j.
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Similarly by (7.3),

[L(G)P ]p,i =
∑
k 6=i

A(G)i,k −
∑

q:vq∈Vi

A(G)p,q =
∑
k 6=i

ci,k.

On the other hand, as vp ∈ Vi, row p of P is zero except for a 1 in column i. Therefore row
p of PL(G/π) is row i of L(G/π). Thus by (7.4),

[PA(G/π)]p,j =

{
−ci,j when j 6= i∑

k 6=i ci,k when j = i.

Therefore L(G)P = PL(G/π).

7.2 Almost Equitable Edge-Partitions

Combining the ideas presented in Sections 6.1 and 7.1, we now consider almost equitable
edge-partitions. Let D be a digraph with signed edge-adjacency matrix AE(D).

Definition 7.1. An edge-partition π = (E1, . . . , Ek) is almost equitable if for all i 6= j
and any ep ∈ Ei,

di,j =
∑

q:eq∈Ej

AE(D)p,q (7.5)

depends only on i and j, and not on the choice of edge ep ∈ Ei.

Comparing (7.5) to (7.1), the definition of an almost equitable edge-partition is analogous
to that of an almost equitable partition, with the signed edge-adjacency matrix AE(D) in
(7.5) taking the place of adjacency matrix A(G) in (7.1). Moreover, observe that the defi-
nition of an equitable edge-partition (Definition 6.2) and an almost equitable edge-partition
(Definition 7.1) are nearly identical, only di,i need not be defined for an edge-partition to be
almost equitable. If di,i is defined for all i, then the partition is equitable and, in particular,
every equitable edge-partition is almost equitable.

For example, the digraph in Figure 7.2.1 has an almost equitable edge-partition π = (E1, E2, E3, E4)
with

E1 = {e1, e2, e3, e4} E2 = {e5, e6} E3 = {e7, e8} E4 = {e9, e10}.
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For all i 6= j, the constant di,j is given by

d1,2 = 0 d1,3 = 1 d1,4 = −1
d2,1 = 0 d2,3 = 1 d2,4 = 1
d3,1 = 2 d3,2 = 1 d3,4 = −1
d4,1 = −2 d4,2 = 1 d4,3 = −1

Note that while π is almost equitable, it is not equitable. In particular, E1 = {e1, e2, e3, e4},
and edges e1 and e2 are incident to each other at a single vertex, while e3 and e4 are not
incident to any other edges of E1.

1 2
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3

4
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8
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Figure 7.2.1: An almost equitable edge-partition.

Let D be a digraph with edges {ej} and almost-equitable partition π = (E1, . . . Ek). Many of
the results of Section 6.1 continue to hold, now with a Laplacian matrix in place of AE(D).
Let ∆E(D) be an |E(D)| × |E(D)| diagonal matrix with (i, i)-entry

∆E(D)i,i =
∑
k 6=i

AE(D)i,k.

That is, ∆E(D) is the edge-incidence analogue of degree matrix ∆(G). Define the signed
edge Laplacian matrix of D, LE(D), by

LE(D) = ∆E(D)− AE(D). (7.6)

Equivalently,

LE(D)i,j =

{
−AE(D)i,j if i 6= j∑

k 6=iAE(D)i,k if i = j
. (7.7)

Or, in light of Proposition 6.1,

LE(D) = (∆E(D) + 2I)−QtQ. (7.8)
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Matrix LE(D) is always symmetric. Comparing (7.2) and (7.3) to (7.6) and (7.7), the
definition of the signed edge Laplacian is analogous to that of the Laplacian, with signed
edge-adjacency matrix AE(D) in the place of A(G). Combining (7.4) with (7.6), we naturally
define LE(D/π) as the k × k matrix such that

LE(D/π)i,j =

{
−di,j if i 6= j∑

k 6=i di,k if i = j
. (7.9)

For example, given D and π as in Figure 7.2.1,

LE(D) =



e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

e1 −1 1 0 0 0 0 −1 0 1 0
e2 1 −1 0 0 0 0 0 −1 0 1
e3 0 0 0 0 1 −1 −1 0 0 1
e4 0 0 0 0 −1 1 0 −1 1 0
e5 0 0 1 −1 2 0 0 −1 0 −1
e6 0 0 −1 1 0 2 −1 0 −1 0
e7 −1 0 −1 0 0 −1 2 0 1 0
e8 0 −1 0 −1 −1 0 0 2 0 1
e9 1 0 0 1 0 −1 1 0 −2 0
e10 0 1 1 0 −1 0 0 1 0 −2


,

and

LE(D/π) =


E1 E2 E3 E4

E1 0 0 −1 1
E2 0 2 −1 −1
E3 −2 −1 2 1
E4 2 −1 1 −2

.
Once again, matrices LE(D) and LE(D/π) are related by the characteristic matrix of π.

Lemma 7.2. Let π be a partition of E(D) with characteristic matrix T . If π is almost
equitable then

LE(D)T = TLE(D/π).

Proof. For any edge ep of D, suppose that ep ∈ Ei. For any j 6= i, by (7.7),

[LE(D)T ]p,j =
∑

q:eq∈Ej

LE(D)p,q =
∑

q:eq∈Ej

−AE(D)p,q = −di,j.

Similarly by (7.7),

[LE(D)T ]p,i =
∑
k 6=i

AE(D)i,k −
∑

q:eq∈Ei

AE(D)p,q =
∑
k 6=i

di,k.
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On the other hand, as ep ∈ Ei, row p of T is zero except for a 1 in column i. Therefore row
p of TLE(D/π) is row i of LE(D/π). Thus by (7.9),

[TLE(D/π)]p,j =

{
−di,j when j 6= i∑

k 6=i di,k when j = i.

Therefore LE(D)T = TLE(D/π).

Similar to Section 6.1, Laplacian matrices LE(D) and LE(D/π) can be written in terms of
vertex incidence vectors. Recall by (7.6),

LE(D) = ∆E(D)− AE(D),

where ∆E(D) was the |E(D)| × |E(D)| diagonal matrix with (i, i)-entry
∑

k 6=iAE(D)i,k.
Letting VI and VT be defined as previously, by Corollary 6.1,

AE(D) = VI − VT − 2I.

Therefore,
LE(D) = (VT − VI) + 2Im + ∆E(D). (7.10)

On the other hand, letting ∆E(D/π) be the k×k diagonal matrix with (i, i)-entry
∑

k 6=i di,k,

LE(D/π) = ∆E(D/π)− AE(D/π).

Moreover, taking ṼI and ṼT as defined previously, by Proposition 6.4,

AE(D/π) = (ṼI − ṼT )T − 2Ik.

Therefore,
LE(D/π) = (ṼT − ṼI)T + 2Ik + ∆E(D/π). (7.11)

Lemma 7.3. If π is an almost equitable-edge partition, then

(VT − VI)T = T
(
ṼT − ṼI

)
T.

Proof. First, observe that by definition of ∆E(D) and ∆E(D/π),

∆E(D)T = T∆E(D/π). (7.12)
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Therefore,

(VT − VI)T = LE(D)T − 2T −∆E(D)T by (7.10)

= TLE(D/π)− 2T −∆E(D)T by Lemma 7.2

= T
(

(ṼT − ṼI)T + 2Ik + ∆E(D/π)
)
− 2T −∆E(D)T by (7.11)

= T
(
ṼT − ṼI

)
T − 2T + 2T + T∆E(D/π)−∆E(D)T

= T
(
ṼT − ṼI

)
T. by (7.12)

At long last, Lemma 7.3 allows us to understand the relationship between almost equitable
edge-partitions and Kirchhoff graphs.

Theorem 7.1. Let D be a digraph with almost equitable edge-partition π = (E1, . . . , Ek). If
the matrix LE(D/π) is symmetric, then π is Kirchhoff.

Proof. For any D, the matrix LE(D) is symmetric and thus by (7.10), VT −VI is symmetric
as well. By assumption LE(D/π) is symmetric, so by (7.11), (ṼT − ṼI)T is also symmetric.
As π is almost equitable,

(VT − VI)T. = T
(
ṼT − ṼI

)
T. (7.13)

Taking the transpose of (7.13),

T t (VT − VI)t = T t
(
ṼT − ṼI

)t
T t

=
[
(ṼT − ṼI)T

]t
T t.

Thus as both VT − VI and (ṼT − ṼI)T are symmetric,

T t (VT − VI) = (ṼT − ṼI)TT t.

Therefore,
TT t (VT − VI) = T (ṼT − ṼI)TT t,

and by (7.13),
TT t(VT − VI) = (VT − VI)TT t. (7.14)

However, the rows of VT − VI span the row space of incidence matrix Q = Q(D). Therefore
the rows of TT t(VT − VI) all lie in the row space of Q, and so by (7.14), each row of
(VT − VI)TT

t lies in Row(Q) as well. Thus the row space of Q is invariant under right
multiplication by TT t, and by Proposition 6.6, π is Kirchhoff.
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Figure 7.2.2: An almost equitable edge-partition with sym-
metric quotient.

Example 7.2. Consider the digraph D with 24 edges presented in Figure 7.2.2. D has
almost equitable edge-partition π = (E1, E2, E3, E4), where

E1 = {e1, e2, e3, e4, e5, e6}
E2 = {e7, e8, e9, e10, e11, e12}
E3 = {e13, e14, e15, e16, e17, e18}
E4 = {e19, e20, e21, e22, e23, e24}.

Under edge-partition π,

LE(D/π) =


2 −3 0 1
−3 6 −3 0
0 −3 6 −3
1 0 −3 2

 .
Matrix LE(D/π) is symmetric, and therefore by Theorem 7.1, π is Kirchhoff. One may verify
that for any vertex v of D,

λ(v)T ∈
{
±
[

1 3 3 1
]
,
[
−1 0 3 2

]
,±
[

2 3 0 −1
]
,
[

0 0 0 0
] }
. (7.15)

Similarly for any cycle C,

χ(C)T ∈ Span
{ [

2 −1 0 1
]
,
[

1 0 −1 2
] }
. (7.16)

As every vector in (7.15) is orthogonal to those in (7.16), π is Kirchhoff. For completeness,
the 24× 24 matrix LE(D) is given in (7.17). One may verify that, as guaranteed by Lemma
7.2, LE(D)T = TLE(D/π).
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LE(D) =



2 0 0 0 0 0 0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 0 0 0 1 1 −1
0 2 −2 1 1 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 1 −1 −1 1 1 0
0 −2 2 1 1 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 1 −1 −1 1 1 0
0 1 1 2 −2 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1
0 1 1 −2 2 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 1
0 0 0 0 0 2 −1 −1 −1 0 0 0 −1 −1 −1 1 1 1 −1 1 1 0 0 0
0 0 0 −1 −1 −1 10 −2 −2 0 0 0 −1 −1 −1 0 0 0 −1 0 0 0 0 1
0 0 0 −1 −1 −1 −2 10 −2 0 0 0 −1 −1 −1 0 0 0 −1 0 0 0 0 1
0 0 0 −1 −1 −1 −2 −2 10 0 0 0 −1 −1 −1 0 0 0 −1 0 0 0 0 −1
−1 −1 −1 0 0 0 0 0 0 10 −2 −2 0 0 0 −1 −1 −1 1 0 0 0 0 −1
−1 −1 −1 0 0 0 0 0 0 −2 10 −2 0 0 0 −1 −1 −1 1 0 0 0 0 −1
−1 −1 −1 0 0 0 0 0 0 −2 −2 10 0 0 0 −1 −1 −1 1 0 0 0 0 −1
1 0 0 0 0 −1 −1 −1 −1 0 0 0 10 −2 −2 0 0 0 −1 0 0 −1 −1 0
1 0 0 0 0 −1 −1 −1 −1 0 0 0 −2 10 −2 0 0 0 −1 0 0 −1 −1 0
1 0 0 0 0 −1 −1 −1 −1 0 0 0 −2 −2 10 0 0 0 −1 0 0 −1 −1 0
−1 0 0 0 0 1 0 0 0 −1 −1 −1 0 0 0 10 −2 −2 0 −1 −1 0 0 −1
−1 0 0 0 0 1 0 0 0 −1 −1 −1 0 0 0 −2 10 −2 0 −1 −1 0 0 −1
−1 0 0 0 0 1 0 0 0 −1 −1 −1 0 0 0 −2 −2 10 0 −1 −1 0 0 −1
0 1 1 0 0 −1 −1 −1 −1 1 1 1 −1 −1 −1 0 0 0 2 0 0 0 0 0
0 −1 −1 1 1 1 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 2 −2 1 1 0
0 −1 −1 1 1 1 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 −2 2 1 1 0
1 1 1 −1 −1 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 1 1 2 −2 0
1 1 1 −1 −1 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 1 1 −2 2 0
−1 0 0 1 1 0 1 1 −1 −1 −1 −1 0 0 0 −1 −1 −1 0 0 0 0 0 2


(7.17)

Finally, the almost equitable analogue of Theorem 6.3 holds. Once again, for any edge-
partition π = (E1, . . . , Ek) with characteristic matrix T , let Λ be the k × k diagonal matrix
with Λi,i = 1/|Ei|. In particular,

ΛT tT = Ik. (7.18)

Moreover, if π is almost equitable, by Lemma 7.2,

LE(D/π) = ΛT tTLE(D/π) = ΛT tLE(D)T. (7.19)

Theorem 7.2. Let D be a connected digraph with almost equitable edge-partition π. Then
LE(D/π) is symmetric if and only if π is uniform.

Proof. First suppose that π is uniform. Then in particular, Λ = cI for some constant c. By
(7.19),

LE(D/π) = cT tLE(D)T.

Therefore,
LE(D/π)t = (cT tLE(D)T )t

= cT tLE(D)tT

= cT tLE(D)T = LE(D/π)
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and LE(D/π) is symmetric. Conversely, suppose that LE(D/π) is symmetric. Then by
(7.19), as LE(D) and Λ are both symmetric,

Λ(T tLE(D)T ) = LE(D/π) = LE(D/π)t = (ΛT tLE(D)T )t = (T tLE(D)T )Λ.

Therefore for all i 6= j,

Λi,i(T
tLE(D)T )i,j = (ΛT tLE(D)T )i,j = (T tLE(D)TΛ)i,j = (T tLE(D)T )i,jΛj,j. (7.20)

As D is connected, it follows that no simultaneous permutation of rows and columns can
transform T tLE(D)T into a block-diagonal matrix of the form[

A 0
0 B

]
.

Therefore as (7.20) is true for all i 6= j, it follows that all diagonal entries of Λ must be
equal. Therefore |Ei| is independent of i and, π is uniform.

7.2.1 A Word on Spectral Graph Theory

The Laplacian matrix of a graph was introduced in section 7.1. The study of graph Laplacian
eigenvalues–spectral graph theory–has developed into an extraordinarily impactful research
area. From its algebraic beginnings, when eigenvalues were used to study problems such as
connectivity and graph coloring, the applications of spectral graph theory are now broad
and far-reaching. These include graph drawing, machine learning, optimization, random
walks, Riemannian geometry, randomized algorithms, communication networks, stability of
chemical molecules, rapidly mixing Markov chains, and quasi-randomness, among countless
others. It is beyond the scope of this text to present a literature review of even the most
important spectral graph theory results, but we would be remiss if we did not acknowledge
the significance of the field. We refer the reader to the texts of Biggs [8], and Cvetković,
Doob, and Sachs [21] for an introduction to the algebraic aspects of spectral graph theory.
A thorough and more geometric treatment can be found in Chung [16]. Each of these texts
also contain a wealth of additional references. More modern approaches, including many
applications, are addressed in the texts of Brouwer and Haemmers [12], and Spielman [101].
The surveys of Mohar [80] and Merris [79], and their references, also identify a number of
interesting applications.

The Laplacian matrix L of a graph G satisfies 3 main properties.

(1.) L is a square |V (G)| × |V (G)| matrix
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(2.) L is symmetric

(3.) All rows and columns of L sum to 0.

Section 7.2 presented a natural definition of an edge Laplacian matrix, LE(D), of a digraph
D. As defined, LE(D) satisfies the same properties as its vertex counterpart,

(1.) LE(D) is a square |E(D)| × |E(D)| matrix

(2.) LE(D) is symmetric

(3.) All rows and columns of LE(D) sum to zero.

Moreover, via the incidence matrix of a graph, the edge Laplacian matrix is related to the to
the combinatorial Laplacian. Specifically, let G be a graph, and let D be a digraph obtained
from G via an arbitrary orientation of the edges. Then if Q = Q(D) is the incidence matrix
of the resulting digraph,

L = L(G) = QQt.

On the other hand, up to rescaling diagonal entries, LE(D) can be written in terms of QtQ
(see (7.8)). To the author’s knowledge edge Laplacian LE(D) is not well-studied, and explor-
ing the spectral properties of LE(D) presents an intriguing research topic in its own right.
For example,

Question: Can the eigenvalues (or eigenvectors) of LE(D) be used to determine if D
has a Kirchhoff edge-partition?

Question: Can the eigenvalues (or eigenvectors) of LE(D) be used to determine if D
has an equitable edge-partition?

The answer to these questions may well lie in (7.8). Letting D be any multi-digraph, then
the edge Laplacian matrix was defined to be

LE(D) = ∆E(D)− AE(D).

Alternatively,
LE(D) = (∆E(D) + 2I)−QtQ.

As any vector x is an eigenvector of the identity matrix, one way to study eigenvectors (and
eigenvalues) of LE(D) is to study the eigenvectors of ∆E(D) in comparison to those of QtQ.
For example, let x be any vector in the cycle space of D. That is,

xt = χ(C1) + χ(C2) + · · ·+ χ(Cp)
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for some cycles Ci of D. Then as the cycle vectors of D span the null space of Q,

QtQx = 0.

Therefore x is an eigenvector of LE(D) if and only if it is an eigenvector of ∆E(D), and
letting σL and σ∆ denote the associated eigenvalues,

σL = σ∆ − 2.

Even moving beyond the topics discussed in previous chapters,

Question: Can LE(D) be used to study connectivity or flow in digraphs?

Answers to this question would likely involve deriving eigenvalue bounds for LE(D) based
on the structure of digraph D and, more importantly, understanding why the eigenvalues of
LE(D) are significant. That is, an interpretation of what the eigenvalues of LE(D) mean
in terms of the properties of a digraph would be incredibly beneficial. For example, the
second largest eigenvalue of the Laplacian matrix of an undirected graph is often referred to
as the spectral gap. It is well-known that this eigenvalue is closely related to the expansion
properties of a graph [16]. A similar interpretation of an eigenvalue of LE(D) would further
motivate the study of edge Laplacian LE(D). Many interesting results pertaining to the
graph Laplacian–including eigenvalue bounds and associated graph properties–are accom-
plished via quadratic forms derived from the Laplacian matrix. A similar course of action,
now using the edge Laplacian LE(D), seems a natural place to start. Although spectral
properties of LE(D) will not be discussed further in this text, this would be an excellent
topic to begin and inspire future research.

In addition to edge Laplacian LE(D), another closely related matrix may prove illuminating.
Specifically, observe that

L = QQt, (7.21)

where Q is the incidence matrix of a digraph. That is, Q is a |V (D)| × |E(D)| matrix
whose ith row is λ(vi), the incidence vector of vertex vi. Now let π be any edge-partition
π = (E1, . . . , Ek) of E(D) with characteristic matrix T . Then the π-incidence vector of
vertex vi is given by

λπ(vi) = λ(vi)T.

The jth entry of the vector λπ(vi) represents the net number of edges of partition cell Ej
incident with vertex vi. Moreover, this vector is precisely the ith row of the matrix product
QT . As such, we will call QT the π-incidence matrix of D (with respect to edge-partition
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π). Building upon (7.21), consider the matrix

Lπ = (QT )(QT )t = Q(TT t)Qt.

Observe that Lπ is also |V | × |V | and symmetric, and we call Lπ the π-Laplacian matrix.

Without loss of generality, we may reorder the columns of Q (and thus the rows of T )
so that T is of the form in (3.19). That is, the first |E1| rows of T contain a 1 in column
1, the next |E2| rows contain a 1 in column 2, and so on. Then the product TT t is a
block-diagonal matrix of the form

TT t =


J|E1| 0 0 0

0 J|E2| 0 0

0 0
. . . 0

0 0 0 J|Ek|

 ,
where Jn is the n× n all-ones matrix. Alternatively, letting

Hn = Jn − In

be the matrix of all-ones except for a zero-diagonal, define H to be the matrix

H =


H|E1| 0 0 0

0 H|E2| 0 0

0 0
. . . 0

0 0 0 J|Ek|

 .
Then H is the adjacency matrix of a graph G, where G the disjoint union of complete graphs

G = K|E1| ∪K|E2| ∪ · · · ∪K|Ek|,

the eigenvalues and eigenvectors of which are well-understood. Moreover,

TT t = H + I|V (D)|.

Therefore,
Lπ = (QT )(QT )t

= Q(TT t)Qt

= Q(H + I)Qt

= QHQt +QQt

= QHQt + L.
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That is, given edge-partition π, the π-Laplacian matrix Lπ can be written as the sum of
the classical Laplacian matrix and QHQt, a term which presumably accounts for the added
structure of the edge partition. Once again, the eigenvectors (and eigenvalues) of Lπ can
be understood by studying those of L compared to those of QHQt. While this will not
be explored further here, this presents another excellent starting point for research into the
spectra of edge-partitioned graphs.

7.3 Equitable Partitions Generate

Equitable Edge-Partitions

In order to rationalize the study of equitable edge-partitions, one must verify that reasonable
classes of them exist. In fact, many graphs with equitable (vertex) partitions lead to digraphs
with equitable edge-partitions.

Lemma 7.4. Let G be a graph with equitable partition π = (V1, . . . , Vk). If A(G/π)i,i = 0
for all i ∈ {1, . . . , k}, then G and π induce a digraph with an equitable edge-partition.

Proof. Derive a digraph D from G by adding an orientation to each edge such that the
initial vertex is that belonging to the partition cell with the lower index. By assumption
A(G/π)i,i = 0 for all i, so there are no edges with both vertices in the same partition cell.
Let Π be a (doubly-indexed) edge-partition Π = (E(i,j) : i < j ∈ {1, . . . k}) such that for all
i < j,

E(i,j) = {e : ι(e) ∈ Vi and τ(e) ∈ Vj}.

Note that for ease of notation we use double indexing, and allow for empty partition cells.
To show that Π is an equitable edge-partition, we must show that for any pair of partition
cells E(i,j) and E(i′,j′), and any edge ep ∈ E(i,j), the sum∑

q:eq∈E(i′,j′)

AE(D)p,q (7.22)

is independent of p. Observe that for any ep ∈ E(i,j) and any eq ∈ E(i′,j′),

ι(ep) ∈ Vi and τ(ep) ∈ Vj ; ι(eq) ∈ Vi′ and τ(eq) ∈ Vj′ . (7.23)

The proof is now reduced to checking 5 simple cases. Note that by construction, in all cases
i < j and i′ < j′.

Case 1: {i, j, i′, j′} are distinct. By (7.23) AE(D)p,q = 0 for all ep ∈ E(i,j) and
eq ∈ E(i′,j′) therefore the sum (7.22) is 0, and independent of p.



182

Case 2: i = i′ and j 6= j′ For any ep ∈ E(i,j), ι(ep) ∈ Vi′ and ι(ep) has A(G/π)i′,j′
neighbors in Vj′ . As i = i′ < j′, there are A(G/π)i′,j′ edges in E(i′,j′) with initial vertex
ι(ep). As j 6= j′, τ(ep) is not the endvertex of any edge in E(i′,j′). Therefore (7.22) is
equal to A(G/π)i′,j′ , and independent of p.

Case 3: i 6= i′ and j = j′. For any ep ∈ E(i,j), τ(ep) ∈ Vj′ and τ(ep) has A(G/π)i′,j′
neighbors in Vi′ . As i′ < j′ = j, there are A(G/π)i′,j′ edges in E(i′,j′) with terminal
vertex τ(ep). As i 6= i′, ι(ep) is not the endvertex of any edge in E(i′,j′). Therefore
(7.22) is equal to A(G/π)i′,j′ , which is independent of p.

Case 4: i = i′ and j = j′. For any ep in E(i,j), ι(ep) has A(G/π)i,j neighbors in
Vj. As i < j, there are A(G/π)i,j − 1 edges other than ep in Ei,j with initial vertex
ι(ep). Similarly, τ(ep) has A(G/π)j,i neighbors in Vi. Thus there are A(G/π)j,i − 1
edges other than ep in E(i,j) with terminal vertex τ(ep). Therefore (7.22) is equal to
A(G/π)i,j + A(G/π)j,i − 2, and independent of p.

Case 5: i′ = j. Then for any ep ∈ E(i,j), τ(ep) ∈ Vi′ and τ(ep) has A(G/π)i′,j′
neighbors in Vj′ . As i < j = i′ < j′, there are A(G/π)i′,j′ edges in E(i′,j′) with initial
vertex τ(ep). As i < i′ < j′, ι(ep) is not the endvertex of any edges of E(i′,j′). Therefore
(7.22) is equal to −A(G/π)i′,j′ , and independent of p.

Example 7.3. Lemma 7.4 can be illustrated with the following example. Figure 7.3.1 shows
an orbit–and therefore equitable–partition

π =
(
{v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}

)
of the classical 3-cube, Q3.

v1

v2

v3

v4

v5

v6

v7

v8

V

V

V

V

1

2

3

4

Figure 7.3.1: An equitable partition π of Q3 with no edges
between vertices of the same cell.



183

Observe that under partition π,

A(Q3/π) =


V1 V2 V3 V4

V1 0 1 1 1
V2 1 0 1 1
V3 1 1 0 1
V4 1 1 1 0

,
and in particular, A(Q3/π)i,i = 0 for all i ∈ {1, . . . , 4}. Now let D3 be the digraph obtained
by orienting each edge in Q3, where the initial vertex of each edge is that belonging to the
lower-indexed cell of partition π. D3 is illustrated in Figure 7.3.2.

v1

v2

v3

v4

v5

v6

v7

v8

V

V

V

V

1

2

3

4

Figure 7.3.2: A digraph D3, obtained by orienting the edges
of Q3 according to equitable partition π, where the initial vertex
of each edge is that in the lower-indexed cell of π.

Equitable partition π of Q3 induces an equitable edge-partition Π on D3,

Π =
(
E(1,2), E(1,3), E(1,4), E(2,3), E(2,4), E(3,4)

)
,

where for each i < j, E(i,j) consists of the pair of edges with initial vertex in Vi and terminal
vertex in Vj. Equitable edge-partition Π is illustrated in Figure 7.3.3.

E

E

E

E

E

E

(1,2)

(1,3)

(1,4)

(2,3)

(2,4)

(3,4)

Figure 7.3.3: An equitable edge-partition Π of D3.
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Under edge-partition Π,

AE(D3/Π) =



E(1,2) E(1,3) E(1,4) E(2,3) E(2,4) E(3,4)

E(1,2) 0 1 1 −1 −1 0
E(1,3) 1 0 1 1 0 −1
E(1,4) 1 1 0 0 1 1
E(2,3) −1 1 0 0 1 −1
E(2,4) −1 0 1 1 0 1
E(3,4) 0 −1 1 −1 1 0

.

Two other examples of equitable edge-partitions arising in this manner are depicted in Figure
7.3.4. Before moving on, observe that equitable partitions of this type are plentiful.

Proposition 7.1. Let G be a graph with equitable (vertex) partition π = (V1, . . . , Vk). Let
G′ be the graph obtained from G by deleting all edges with endvertices in the same class of
π. Then π is an equitable partition of G′, and A(G′/π) has a zero diagonal. Alternatively, let
G′′ be the graph on vertex set V (G), whose edges connect all pairs of vertices from distinct
cells of π that are nonadjacent in G. Then π is an equitable partition of G′′ and A(G′′/π)
has a zero diagonal.

Figure 7.3.4: Two equitable edge-partitions arising from equi-
table vertex partitions.

7.3.1 Infinite Families of Equitable Edge-Partitions

Section 7.3 demonstrated that equitable edge-partitions can be derived from equitable (ver-
tex) partitions in which no two vertices in the same partition cell are joined by an edge. In
this section, we illustrate three infinite families of equitable partitions of this type. Each of
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these examples will consider equitable partitions on prism graphs.

The prism graph, denoted Yn, is a graph corresponding to the skeleton of the regular n-
prism. Specifically, Yn has 2n vertices and 3n edges. One can enumerate the vertices of Yn
by considering Yn as the Cartesian product of two common graphs. Let Cn be the cycle
graph on n vertices. That is, Cn has n vertices V (Cn) = {v1, . . . , vn}, and n edges,

E(Cn) =
{
{vi, v[i+1]n : 1 ≤ i ≤ n}

}
.

We use the notation [j]n to denote

[j]n =

{
n if j ≡ 0 (mod n)

j (mod n) Otherwise.
.

Let K2 be the complete graph on 2 vertices u1 and u2, so E(K2) = {u1, u2}. C5 and K2 are
illustrated in Figure 7.3.5.

u1 u2

v1

v2

v3v4

v5

K C2 5

Figure 7.3.5: The complete graph K2 and cycle graph C5.

The prism graph Yn is defined to be the graph Cartesian product

Yn = K2 ⊗ Cn.

That is, Yn has 2n vertices,

V (Yn) =
{

(ui, vj) : ui ∈ V (K2) and vj ∈ V (Cn)
}
,

and 3n edges. Specifically,

E(Yn) =
{
{(u1, vi), (u1, v[i+1]n)} : 1 ≤ i ≤ n

}
∪{

{(u2, vi), (u2, v[i+1]n)} : 1 ≤ i ≤ n
}
∪{

{(u1, vi), (u2, vi)} : 1 ≤ i ≤ n
}
.
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Remark 7.2. Throughout this paper, we have used (u, v) to denote an edge directed from
vertex u to vertex v. The three examples of this section, however, will deal with undi-
rected graph products. Parentheses are the standard notation for labeling vertices in graph
products, and we will stay consistent with this convention.

The prism graph Y5 is illustrated in Figure 7.3.6.

(u1,v1)

(u1,v2)

(u1,v3)(u1,v4)

(u1,v5)

(u2,v1)

(u2,v2)

(u2,v3)(u2,v4)

(u2,v5)

Figure 7.3.6: The prism graph Y5.

The prism graphs are excellent candidates for constructing equitable partitions as they are
vertex transitive. That is, any vertex of Yn can be mapped to any other vertex by an
automorphism of Yn. As a result, the prism graphs have large automorphism groups, and
many orbit partitions. What is more, while these graphs are vertex transitive they are not
edge-transitive. The full automorphism group of Yn partitions the edges into exactly 2 edge
orbits. If orientations are added to the edges, the directed edges are partitioned into at least
3 orbits. Thus although there are many orbit vertex partitions, the edge partitions arising
from these are more interesting.

Example 7.4. For even n, let Yn be the prism graph on 2n vertices enumerated as above.
For any vertex v ∈ V (Yn), there is a unique vertex of Yn with distance n/2+1 from V . Let σ
be the permutation on V (Yn) that interchanges all such pairs of vertices (σ is more commonly
known as the antipodal map). Given this enumeration, for each 1 ≤ j ≤ n, permutation σ
interchanges the vertices (u1, vj) and (u2, v[j+n/2]n). That is, σ can be written as a product
of n disjoint transpositions,

σ =
n∏
j=1

(
(u1, vj) (u2, v[j+n/2]n)

)
.

One may verify that σ is a graph automorphism of order 2. Therefore σ has n vertex orbits,
each of size 2. These induce an equitable partition π = (V1, . . . , Vn) on Yn, where

Vj =
{

(u1, vj), (u2, v[j+n/2]n)
}
,
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and there are no edges between vertices of the same partition class. The case n = 6 is
illustrated in Figure 7.3.7.

(u2,v2)

(u2,v1)

(u2,v3)

(u2,v4)

(u2,v5)(u2,v6)

(u1,v1)

(u1,v2) (u1,v3)

(u1,v4)

(u1,v5)(u1,v6)

V

V

V

V

V

V

1

2

3

4

5

6

Figure 7.3.7: A 6-cell orbit partition of the prism graph Y6.

Example 7.5. For even n, let Yn be the prism graph with vertices enumerated as above.
Let π = (V1, . . . , V4) be a 4-cell partition of V (Yn) defined as follows:

V1 =
{

(u1, vj) : j ≡ 1(mod 2)
}

V2 =
{

(u1, vj) : j ≡ 0(mod 2)
}

V3 =
{

(u2, vj) : j ≡ 1(mod 2)
}

V4 =
{

(u2, vj) : j ≡ 0(mod 2)
}

One may verify that π is an equitable partition of Yn with quotient matrix

A(Yn/π) =


V1 V2 V3 V4

V1 0 2 1 0
V2 2 0 0 1
V3 1 0 0 2
V4 0 1 2 0

.
Note that the diagonal entries of A(Yn/π) are all zero: there are no edges between vertices of
the same partition class. In fact, π is also an orbit partition. It arises from the automorphism
group generated by a single permutation ψ, that is the product of 4 disjoint n/2-cycles,

ψ =
(

(u1, v1) (u1, v3) . . . (u1, vn−1)
)(

(u1, v2) (u1, v4) . . . (u1, vn)
)

(
(u2, v1) (u2, v3) . . . (u2, vn−1)

)(
(u2, v2) (u2, v4) . . . (u2, vn)

)
The case of n = 6 is illustrated in Figure 7.3.8.
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(u2,v2)

(u2,v1)

(u2,v3)

(u2,v4)

(u2,v5)(u2,v6)

(u1,v1)

(u1,v2) (u1,v3)

(u1,v4)

(u1,v5)(u1,v6)

V

V

V

V

1

2

3

4

Figure 7.3.8: A 4-cell orbit partition of the prism graph Y6.

Example 7.6. For even n, let Yn be the prism graph with vertices enumerated as above.
Let ρ be the permutation of order 2 on V (Yn),

ρ =

n/2−1∏
j=1

(
(u1, v[1+j]n) (u1, v[1−j]n)

)(
(u2, v[1+j]n) (u2, v[1−j]n)

)
.

Permutation ρ is a product of n− 2 disjoint transpositions, and one may verify that ρ is an
automorphism of Yn. Letting σ be the antipodal map automorphism as in Example 7.4, the
subgroup generated by σ and ρ, 〈σ, ρ〉 is an automorphism group of Yn. The vertex orbits
of Yn form an equitable partition. If n ≡ 0 mod 4 this partition consists of 4 cells each of
size 2, and (n− 4)/2 cells of size 4. Otherwise when n ≡ 2 mod 4, this partition consists of
2 cells of size 2, and (n− 2)/2 cells of size 4.

(u2,v2)

(u2,v1)

(u2,v3)

(u2,v4)

(u2,v5)(u2,v6)

(u1,v1)

(u1,v2) (u1,v3)

(u1,v4)

(u1,v5)(u1,v6)

V

V

V

V

1

2

3

4
(u1,v1)

(u1,v2)

(u1,v3)

(u1,v4) (u1,v5)

(u1,v6)

(u1,v7)

(u1,v8)

(u2,v1)

(u2,v2)

(u2,v3)

(u2,v4) (u2,v5)

(u2,v6)

(u2,v7)

(u2,v8)

V

V

V

V

1

2

3

4

V

V

5

6

Figure 7.3.9: The orbit partitions of Y6 and Y8 from the auto-
morphism group 〈σ, ρ〉.
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7.4 An Interesting Example

Example 6.1 presented two orbit partitions of the same digraph. This section takes a more
in-depth look at these partitions. Specifically, consider the 3-cell equitable edge-partition π
depicted in Figure 7.4.1.

v7

v1

v2

v3

v4

v5

v6 U

U

U

1

2

3

Figure 7.4.1: A 3-cell orbit edge-partition on digraph D, aris-
ing from the subgroup 〈φ, ψ〉 ≤ Aut(D).

This partition is, in fact, an orbit partition arising from the automorphism group 〈φ, ψ〉
generated by the two automorphisms

φ = (v1v3v5)(v2v4v6)(v7) and ψ = (v2v6)(v3v5)(v1)(v4)(v7).

The quotient D/π is depicted in Figure 7.4.2. The -1 edges are drawn in black, and the +1
edges in brown. Cross-hatches are used to denote multiple edges.

U

U U

2

1 3

+1
-1

AE(D/π) =


U1 U2 U3

U1 2 −2 −3
U2 −1 2 −1
U3 −3 −2 2



Figure 7.4.2: The quotient D/π. Cross-hatches are used to
indicate multiple edges with the same endvertices.

The automorphism group 〈φ, ψ〉 generates the quotient shown in Figure 7.4.2. In this section
we demonstrate that this quotient can be constructed by taking 2 layers of equitable parti-
tions. First we will consider the orbit edge-partitions generated by the subgroups 〈φ〉 ≤ 〈φ, ψ〉
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and 〈ψ〉 ≤ 〈φ, ψ〉 individually. After taking quotients under the respective equitable edge-
partitions, we then study vertex partitions of those quotients to arrive at Figure 7.4.2.

v7

v1

v2

v3

v4

v5

v6
U

U

U

U

1

2

3

4

Figure 7.4.3: An orbit edge-partition π′ of D generated by 〈φ〉.

First, consider the orbit edge-partition generated by the automorphism group 〈φ〉. This
edge-partition π′, illustrated in Figure 7.4.3, has 4 cells of size 3

U ′1 =
{

(v7, v1), (v7, v3), (v7, v5)
}

U ′2 =
{

(v1, v2), (v3, v5), (v5, v6)
}

U ′3 =
{

(v2, v7), (v4, v7), (v6, v7)
}

U ′4 =
{

(v3, v2), (v5, v4), (v1, v6)
}
.

The quotient D/π′, and quotient matrix AE(D/π′) are given in Figure 7.4.4. Note that the
vertices of the quotient D/π′ correspond to the edges of D. Therefore in the next step we
will consider vertex partitions of quotient D/π′.

U'U'

U'

21

3

+1
-1

U'4

AE(D/π′) =


U′1 U′2 U′3 U′4

U′1 2 −1 −3 −1
U′2 −1 0 −1 2
U′3 −3 −1 2 −1
U′4 −1 2 −1 0



Figure 7.4.4: The quotient D/π′, and quotient matrix
AE(D/π′).

One can view the quotient D/π as the union of two graphs, which we will call the +1
graph and the -1 graph, denoted (D/π′)+1 and (D/π′)−1. Each has vertex set V (D/π) =
{U ′1, U ′2, U ′3, U ′4}, and (D/π′)+1 (respectively (D/π′)−1) contains all +1 (respectively -1) edges
of D/π′. The +1 and -1 graphs are illustrated in Figure 7.4.5.
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-1 +1

U'U'

U'

21

3U'4

U'U'

U'

21

3U'4

Figure 7.4.5: The -1 and +1 graphs of D/π′, (D/π′)−1 and
(D/π′)+1

The definition of an equitable (vertex) partition naturally extends from graphs to multi-
digraphs. Namely, the number of edges directed from any vertex to the set of vertices in any
partition class must be independent of the choice of vertex. We will say a vertex partition
of the quotient D/π′ is equitable if it is an equitable partition of both (D/π′)+1 and (D/π′)+1.

Observing the +1 and -1 graphs shown in Figure 7.4.5, one sees that these graphs share
a common automorphism. Specifically, the permutation of order 2

ω = (U ′2U
′
4)(U ′1)(U ′3)

is an automorphism of both (D/π′)+1 and (D/π′)−1. The vertex orbits under 〈ω〉 are

U1 =
{
U ′1
}

U2 =
{
U ′2, U

′
4

}
U3 =

{
U ′3}

and so (U1, U2, U3) is an orbit partition–and therefore an equitable partition–of both (D/π′)+1

and (D/π′)−1. That is, (U1, U2, U3) is an equitable partition of quotient D/π. The quotient
of each digraph (+1 and -1) under partition (U1, U2, U3) is shown in Figure 7.4.6. It is easy
to see that the union of these two quotients is precisely the original quotient D/π.

U

U U

2

1 3

-1

U

U U

2

1 3

+1

Figure 7.4.6: The quotients of (D/π′)−1 and (D/π′)+1 under
orbit partition (U1, U2, U3).
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Now consider the orbit edge-partition generated by the automorphism group 〈ψ〉. This
edge-partition π′′, illustrated in Figure 7.4.7, has 7 cells, 5 of size 2 and 2 of size 1

U ′′1 =
{

(v1, v2), (v1, v6)
}

U ′′2 =
{

(v2, v7),(v6, v7)
}

U ′′3 =
{

(v7, v1)
}

U ′′4 =
{

(v3, v2), (v5, v6)
}

U ′′5 =
{

(v7, v3), (v7, v5)
}

U ′′6 =
{

(v4, v7)
}

U ′′7 =
{

(v3, v4), (v5, v4)
}
.

v7

v1

v2

v3

v4

v5

v6

U

U

U

U

1

2

3

4

U

U

U

5

6

7

Figure 7.4.7: An orbit edge-partition π′′ of D generated by
〈ψ〉.

Partition π′′ is an orbit edge-partition, and therefore equitable with quotient matrix

AE(D/π) =



U′′1 U′′2 U′′3 U′′4 U′′5 U′′6 U′′7

U′′1 1 −1 −1 1 0 0 0
U′′2 −1 1 −1 −1 −1 1 0
U′′3 −2 −2 0 0 2 −1 0
U′′4 1 −1 0 0 −1 0 1
U′′5 0 −2 1 −1 1 −1 −1
U′′6 0 2 −1 0 −2 0 −2
U′′7 0 0 0 1 −1 −1 1


.

The quotient D/π′′, is given in Figure 7.4.8. Once again, we will consider vertex partitions
of D/π′′. Let (D/π′′)+1 and (D/π′′)−1 be the +1 and -1 graphs of the quotient D/π′′. In
the previous case, we found (D/π′)+1 and (D/π′)−1 shared a common automorphism, and
therefore a common orbit partition. Inspection shows that (D/π′′)+1 and (D/π′′)−1 have
very few automorphisms, and none in common. However, consider the vertex partition
(U1, U2, U3) of both (D/π′′)+1 and (D/π′′)−1, where

U1 =
{
U ′′3 , U

′′
5

}
U2 =

{
U ′′1 , U

′′
4 , U

′′
7

}
U3 =

{
U ′′2 , U

′′
6

}
This partition is illustrated in Figure 7.4.9.
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U''3

+1
-1

U''1

U''2

U''5
U''7

U''6

U''4

Figure 7.4.8: The quotient D/π′′, and quotient matrix
AE(D/π′′).

This partition is an equitable partition of both (D/π′′)+1 and (D/π′′)−1. In (D/π′′)+1, for
each i ∈ {1, 2, 3} every vertex of Ui has 2 edges directed to the vertices of Ui, and no edges
to any vertex of Uj for j 6= i. On the other hand, in (D/π′′)−1 every vertex of U1 has no
neighbors in U1, 2 edges directed to the vertices of U2, and 1 edge directed to the vertices of
U3, for example. As a result, (U1, U2, U3) is an equitable partition of quotient D/π′′.

UU U21 3

+1-1

Figure 7.4.9: An equitable partition (U1, U2, U3) of both
(D/π′′)+1 and (D/π′′)−1.

The quotient of each digraph (+1 and -1) under partition (U1, U2, U3) is shown in Figure
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7.4.10. It is easy to see that the union of these two quotients is precisely the original quotient
D/π.

U

U U

2

1 3

-1

U

U U

2

1 3

+1

Figure 7.4.10: The quotients of (D/π′′)−1 and (D/π′′)+1 under
orbit partition (U1, U2, U3).

On this note we conclude our discussion of equitable partitions, and thus the second part of
this text. We will return to the notion of edge-partitioning in Chapter 10, where we discuss
Z2-Kirchhoff edge partitions of undirected graphs. We will use these edge-partitions to
explore the relationship between Z2-valued matrices and graphs. This will be accomplished
through a study of matroids, which are the topic of the final part of this text (Chapters 8
through 10). To begin, Chapter 8 will review the fundamentals of matroid theory. After
Chapter 9 discusses classical relationships between binary matroids and graphs, Chapter 10
concludes by studying binary matroids in the context of Z2-Kirchhoff edge partitions.



Chapter 8

Matroids

In our study of Kirchhoff graphs, the preceding chapters have covered a broad range of top-
ics, from Cayley color graphs to equitable partitions. A common theme throughout has been
understanding relationships between graphs and matrices. At the heart of studying graphs
and matrices is the theory of matroids. Matroids were introduced by Whitney in 1935 [110],
aimed at understanding the fundamental properties of dependence as it relates to graphs
and matrices. This was later extended in a series of papers by Tutte, [104], [105], and [106],
whose work we will review in Chapter 9. Since then, the study of matroids has generated
interest in a variety of disciplines. Harary [56] considered a graph-theoretic approach to
matroids, and while matroids have been used to understand graphs, graph methods have
also been used to better understand matroids; see, for example, [14], [24], [72], [73], and
[100]. In [109], Whitely reviews a number of applications of matroids in discrete applied
geometry, and Murota [81] illustrates how matroids can be used to model and solve a variety
of engineering problems.

Tutte [105] specifically studied the so-called cycle matroid of a graph, and that will be
the matroid we consider in this chapter. However, graphs give rise to a number of matroids
that have generated interest in recent years. In particular, the rigidity matroid is used to
study undirected graphs embedded in Euclidean space [46]. Also known as frameworks, these
embedded graphs have edges of fixed lengths. The rigidity matroid can model stresses within
a framework, and has been used to study the unique realization problem of d-dimensional
frameworks [64]. A framework has a unique realization in Rd if every equivalent framework
(i.e. one with the same edge lengths) is congruent to it. This has applications, for exam-
ple, in studying molecule configurations [59]. Hendrickson [58] showed that every generic
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framework–one whose vertex coordinates are algebraically independent–that has a unique
realization in Rd is (d + 1)-connected and is redundantly rigid (i.e. is rigid after removal of
any one of its edges). It was shown that this is a complete characterization for d = 1 or 2
[64], but Connely showed it is not when d ≥ 3 [18].

This chapter introduces the fundamentals of matroid theory. For a complete introduction,
the reader is referred to the standard texts of Oxley [84] or Welsh [108], or the more recent
survey by Pitsoulis [91]. Section 8.1 begins by defining matroids in terms of both inde-
pendent sets and circuits. Section 8.1.2 introduces the cycle matroid of a graph, and after
8.1.3 defines matroid duality, Section 8.1.4 introduces representable matroids. Section 8.2
reviews substructure of matroids. Specifically, 8.2.1 and 8.2.2 define deletion and contrac-
tion in matroids, which leads to a discussion of matroid minors in Section 8.2.4. This allows
us to present the classic excluded-minor theorem of Tutte, which classifies all representable
matroids that are graphic. Finally, the chapter concludes with Section 8.3, that presents an
observation of the author regarding when a binary matroid is graphic. In particular, Theo-
rem 8.9 is used to verify that the classical excluded minors are not graphic. This chapter all
builds towards Chapter 9, which presents an algorithm due to Tutte that determines when
a binary matroid is graphic.

8.1 Basic Properties of Matroids

We begin with an introduction to the theory of matroids. At its core, matroids aim to
capture the abstract notion of mathematical dependence. Matroids can be defined in many
different but equivalent ways. In fact, for most standard matroid notions (such as circuits,
bases, and rank functions) is an associated set of axioms that can be used as a definition. We
will present each of these axiom systems in turn, but will not explicitly demonstrate their
equivalence. For proofs of equivalence the reader is referred to [84], [91], or [108].

8.1.1 Independent Sets and Circuits

Perhaps the most common definition of matroids, given in terms of independent sets, is
Definition 8.1, also known as the independence axioms.

Definition 8.1. A matroid M(S,I ) consists of a finite set of elements S together with a
family of subsets I of S, called independent sets, such that:

(I1) ∅ ∈ I .

(I2) If X ∈ I and Y ⊆ X then Y ∈ I .
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(I3) If X, Y ∈ I and |X| > |Y | then there exists x ∈ X − Y such that Y ∪ x ∈ I .

We often denote a matroid simply by M when the set S, called the ground set, and the family
I are clear by context. Properties (I2) and (I3) are often referred to as the hereditary and
augmentation properties of matroids, respectively.

Example 8.1. The uniform matroid Uk,n has ground set S with |S| = n and independence
family

I = {X ⊆ S : |X| ≤ k}.

Naturally, any subset X of S not in I is called dependent . A minimal (with respect to
inclusion) dependent set is called a circuit . A 1-element circuit is called a loop. The family
of circuits will be denoted by C (M). Given any subset X ⊆ S, the collection of circuits of
X is defined as:

C (X) = {Y ⊆ X : Y /∈ I and Y − {x} ∈ I for all x ∈ Y }.

An equivalent definition of matroids may be given in terms of circuits.

Definition 8.1a. A matroid M(S,C ) consists of a finite set S of elements together with
a family C = {C1, C2, . . . } of nonempty subsets of S, called circuits, satisfying the axioms:

(C1) ∅ /∈ C .

(C2) If C1, C2 ∈ C and C1 ⊆ C2 then C1 = C2.

(C3) If C1, C2 ∈ C , C1 6= C2 and x ∈ C1 ∩ C2 then there exists C3 ∈ C such that
C3 ⊆ (C1 ∪ C2)− {x}.

Property (C3) is often called the circuit elimination axiom.

Example 8.1a. The uniform matroid Uk,n has ground set S with |S| = n and circuits

C = {X ⊆ X : |X| = k + 1}.

Equivalence of (I1)-(I3) and (C1)-(C3) is demonstrated by the following theorem, the proof
of which can be found in [84].

Theorem 8.1. Let S be a finite set and C a family of subsets of S satisfying (C1)-(C3).
Let I be the family of subsets of S containing no member of C . Then (S,I ) is a matroid
having C as its family of circuits.

Two matroids M1 and M2 are isomorphic, denoted M1
∼= M2, if there is a bijection φ :

S(M1) → S(M2) such that X ∈ I (M1) if and only if φ(X) ∈ I (M2) (or equivalently,
X ∈ C (M1) if and only if φ(X) ∈ C (M2)). Before proceeding with further definitions, we
will illustrate these notions via a large class of matroids arising from graphs.
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8.1.2 Graphic Matroids: The Cycle Matroid of a Graph

Let G be any undirected, though not necessarily simple, graph. We may associate a matroid
with G by taking the set of edges E(G) as the ground set S, and the cycles of G as circuits.
That is,

C = {X ⊆ E(G) : G[X] is a cycle },

where G[X] denotes the induced subgraph of G on edge set X. It is easy to check that
both axioms (C1) and (C2) are satisfied. This matroid, denoted by M(G), is called the
cycle matroid of graph G. Alternatively, one may define the cycle matroid of a graph by
taking E(G) to be the ground set S, and the family of all acyclic subgraphs of G to be the
independent sets. That is,

I = {X ⊆ E(G) : G[X] is a forest }.

Example 8.2. Consider the graph G given in Figure 8.1.1. It is clear that G has cycle
matroid M(G) with ground set and circuits

S = {e1, e2, e3, e4, e5, e6} C = {{e1, e2, e3}, {e4, e5, e6}}.

e1

e2

e3

e4

e5

e6

Figure 8.1.1: Bowtie graph, G.

Definition 8.2. A matroid M is graphic if there exists some graph G such that M is
isomorphic to the cycle matroid M(G).

Example 8.3. Consider the matroid M having ground set and circuits:

S = {x1, x2, x3, x4, x5, x6} C = {{x1, x2, x3}, {x4, x5, x6}}.

It is easy to check that M is isomorphic to the cycle matroid of the graph G′ given in Figure
8.1.2.
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e1

e2

e3

e4

e5

e6

Figure 8.1.2: A distinct graph G′ such that M is isomorphic
to M(G′)

Therefore matroid M is graphic.

Remark 8.1. Observe that matroid M in Example 8.3 is isomorphic to the cycle matroid of
the graph G in Example 8.2. Graph G can be obtained from G′ by identifying a vertex in one
component of G′ with a vertex in the other component, and joining the two components at
that vertex. In particular, this process of “joining at a vertex” of two connected components
does not change the set of cycles in a graph. Therefore one may observe that any graphic
matroid is the cycle matroid of some connected graph. Thus in what follows, it is sufficient
to consider connected graphs.

Remark 8.2. A graphic matroid may be isomorphic to the cycle matroid of many non-
isomorphic graphs. For example, consider the matroid In on n elements in which all subsets
are independent sets (also known as the independent matroid). As In does not have any
circuits, In is isomorphic to the cycle matroid of any forest on n edges.

8.1.3 Bases and Duality

In light of axioms (I1) - (I3), in order to identify all independent sets of a matroid M , it
suffices to specify the maximal independent sets. A maximal independent set of a matroid
M is called a base or a basis of M . The family of bases is denoted by B. For any X ⊆ S
the collection of bases for X, B(X), is defined as:

B(X) = {Y ⊆ X : Y ∈ I , and Y ∪ {x} /∈ I for all x ∈ X − Y }.

Proposition 8.1. Given a matroid M(S,I ) and any X ⊆ S, all bases of X have the same
cardinality. In particular, all bases in B have the same cardinality.

Proof. Let X be any subset of S. Assume, for contradiction, there exist bases B1,B2 ∈ B(X)
with |B1| > |B2|. Since by definition B1,B2 ∈ I , by axiom (I3) there exists some x ∈ B1−B2

such that B2 ∪ {x} ∈ I . Then since x ∈ X, B2 is not a maximally independent subset of
X, a contradiction.
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The cardinality of any base B ∈ B is the rank of M . We will return to a more thorough
discussion of rank in Section 8.1.5. Much as matroids can be defined in terms of independent
sets or circuits, a matroid can also be defined in terms of its bases. The equivalence of
Definition 8.2a, known as the basis axioms, with (I1) - (I3) can be found in [91].

Definition 8.2a. A matroid M consists of a finite set S together with a family B of bases
satisfying:

(B1) B 6= ∅.

(B2) If B1,B2 ∈ B and x ∈ B1 − B2, then there exists y ∈ B2 − B1 such that (B1 −
{x}) ∪ {y} ∈ B.

Let B be a basis of matroid M . Then any x ∈ S(M) − B must be dependent upon the
elements of B. More specifically,

Proposition 8.2. Let B be a basis of matroid M . If x ∈ S(M)−B, then x is contained in
a unique circuit of M ∩ (B ∪ x), denoted C(x,B). In particular, x ∈ C(x,B), and we call
C(x,B) the fundamental circuit of x with respect to B.

Proof. By maximal independence of B, B ∪ x must contain a circuit, and all such circuits
must contain x. Now suppose C1 and C2 are two distinct circuits in B ∪ x containing x.
Then by (C3), (C1 ∪ C2)− x contains a circuit. However,

(C1 ∪ C2)− x = (C1 − x) ∪ (C2 − x) ⊆ B ⊂ I (M)

which is a contradiction. Therefore the circuit of B ∪ x containing x must be unique.

For any matroid M with bases B, we can show the existence of another matroid on the same
ground set.

Theorem 8.2. Given a matroid M with finite ground set S, the family

B∗ = {X ⊆ S : there exists a base B ∈ B such that X = S − B}

is the family of bases of a matroid on ground set S.

Proof. It can be shown that the elements of B∗ satisfy basis axioms (B1) and (B2). Full
details may be found in [91].

Definition 8.3. Let M = (S,B) be a matroid, and let B∗ be as in Theorem 8.2. Then let
M∗ denote the matroid (S,B∗), known as the dual matroid of M .

Because of the complementarity of bases of M and of M∗, the elements of B∗ are often
referred to as cobases of M . Similarly, the prefix co is used whenever referring to an element
of the dual matroid. So for example, circuits of M∗ are cocircuits of M , and independent
sets of M∗ are coindependent sets of M . A loop of M∗ is called a coloop of M .
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Example 8.4. The uniform matroid U2,4 has bases

B(U2,4) =
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
.

Now consider the family

B∗(U2,4) =
{
{1, 2, 3, 4} −X : X ⊆ B(U2,4)

}
.

These sets form the bases of the dual matroid U∗2,4 where,

B(U∗2,4) = B∗(U2,4) =
{
{3, 4}, {2, 4}, {2, 3}, {1, 4}, {1, 3}, {1, 2}

}
.

Observation reveals that S(U2,4) = S(U∗2,4) and B(U2,4) = B(U∗2,4). Therefore U2,4
∼= U∗2,4

and we say that U2,4 is self-dual.

Remark 8.3. Observe that by 2 applications of Theorem 8.2,

(M∗)∗ = M.

Before proceeding with further definitions, we will illustrate these notions through another
large class of matroids, arising from matrices.

8.1.4 Representable Matroids: The Column Matroid of a Matrix

Let A be any m × n matrix with entries in a field F. A gives rise to a matroid by letting
S be the set of columns {c1, . . . , cn} of A. Let a set X = {c1, . . . , ck} ∈ I if and only if
the vectors c1, . . . , ck are linearly independent in Fm. It is easy to check that I satisfies
(I1)-(I3), and thus I is the collection of independent sets of a matroid M . We call this
matroid the column matroid of matrix A, denoted by M [A].

Example 8.5. Let A be the matrix given in (8.1), with entries taken in Z2.

A =

[ c1 c2 c3

1 0 1
0 1 1

]
(8.1)

Letting c1, c2, c3 denote the columns of A, c1 = [1, 0]t, c2 = [0, 1]t, and c3 = [1, 1]t. Then
M [A] has ground set S = {c1, c2, c3} and independent sets

I (M [A]) =
{
∅, c1, c2, c3, {c1, c2}, {c1, c3}, {c2, c3}

}
.
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Definition 8.4. A matroid M with ground set S of size n is representable over a field F
if and only if there exists an m× n matrix A with entries belonging to F, such that

M ∼= M [A].

Such a matroid may also be called F-representable, and a binary matroid is a representable
matroid with F = Z2

Example 8.6. Let M be a matroid with ground set S = {c1, c2, c3, c4, c5}, and independent
sets

I = ∅ ∪ C1 ∪ C2 ∪ C3,

where C1 and C2 consist of all 1- and 2- subsets of S respectively, and

C3 =
{
{c1, c2, c4}, {c1, c2, c5}, {c1, c3, c4}, {c1, c3, c5}, {c1, c4, c5}, {c2, c3, c4}, {c2, c3, c5}, {c2, c4, c5}

}
.

One may check that this matroid is isomorphic to the column matroid of

A =


1 2 3 4 5

1 0 1 0 1
0 1 1 1 0
0 0 0 1 1

.
Therefore M is a binary matroid.

Let M be any representable matroid with ground set of size S(M) = {x1, . . . , xn} and
rank m. Choose some base B ∈ B of M . We may re-label the elements of M so that
B = {x1, . . . , xm}, and S(M) − B = {xm+1, . . . , xn}. Then for each i ≥ m + 1, element xi
is dependent upon {x1, . . . xm}. Therefore in any matrix representation A for M , the first
m columns are linearly independent and the remaining n −m columns can be written as a
linear combination of those m columns.

In particular, let c1, . . . , cn denote the columns of A. Then we may choose c1, . . . , cm to be
the m standard basis vectors of Fm. Then the remaining columns cm+1, . . . , cn can be deter-
mined by considering the fundamental circuits C(xi,B) for each element xi ∈ {xm+1, . . . , xn}.
That is, for each j ∈ {1, . . . ,m} and each i ∈ {m+ 1, . . . , n}, define the entries:

ci(j) =

{
1 If element xj is contained in fundamental circuit C(xi,B)

0 Otherwise
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The resulting matrix has the form

A =


c1 ··· cm cm+1 ··· cn

Im H

,
where H is a m × (n − m) nonzero matrix, and M ∼= M [A]. This is called a standard
representation matrix for M , and the matrix H is called a compact representation
matrix . (Note for duality reasons that will become clear shortly, we will also refer to
a matrix of the form

[
H | I

]
as a standard representation matrix). Every pair of

standard and compact representation matrices of a matroid M are generated by a choice of
base of M .

Remark 8.4. Observe that standard representation of matroids is closely tied to row reduc-
tion. Given a matrix A over field F, the sets of linearly independent columns of A are the
independent sets of the matroid M [A]. Any matrix row-equivalent to A has the same depen-
dence and independence of columns, and thus the same column matroid. Therefore if A does
not have full row-rank, it contains more information than necessary to define the matroid
M [A]: we may delete any row that is linearly dependent on the others without changing the
column matroid. In particular, given any F-representable matroid with matrix A, we can
obtain a representation in standard form

[
I | H

]
via a sequence of elementary row

operations, deleting zero rows, and column interchanges.

The standard representation matrix of a matroid M easily provides a standard representation
of the dual matroid, M∗.

Theorem 8.3. If A =
[
I | H

]
is a standard representation matrix for a representable

matroid M , then M∗ is representable over the same field as A, and

A∗ =
[
−H t | I

]
is a standard representation matrix of the dual matroid M∗.

Proof. 1 It is easy to verify that the columns of At∗ constitute a basis for the null space of
matrix A, Null(A). Now consider any base B = {x1, . . . , xm} of M [A]. Let ci denote the ith

column of matrix A. Then for each k ≥ m+ 1 there exist scalars αk,i such that:

ck + αk,1c1 + · · ·+ αk,mcm = 0.

Let A′ be the (n − m) × m matrix with A′(i, j) = αm+i,j, and let A′′ be the (n − m) × n
matrix:

A′′ =
[
A′ | I(n−m)

]
.

1A version of this proof can be found in [91].
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Then the columns corresponding to xm+1, . . . , xn form a basis for the column space of A′′.
Moreover, since the rows of A′′ are in Null(A) it follows that M [A′′] = M [A∗] and S−B is a
basis of M [A∗]. By reversing the roles of A and A∗ in the above argument, it can be shown
that if S − B is a base for M [A∗] then B is a base of M [A].

Corollary 8.1. If M is a representable matroid with compact representation matrix H, then
−H t is a compact representation matrix of the dual matroid M∗.

Example 8.7. The Fano matroid F7, related to the Fano plane in finite geometry, is a binary
representable matroid with standard representation matrix A and compact representation
matrix H,

A =


1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 H =


4 5 6 7

1 1 0 1
1 0 1 1
0 1 1 1


By Theorem 8.3 the dual of the Fano matroid, F ∗7 has standard representation A∗ and
compact representation H t,

A∗ =


1 2 3 4 5 6 7

1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

 H t =


1 2 3

1 1 0
1 0 1
0 1 1
1 1 1


In the special case of binary matroids, there is a close connection between the dependent
sets of M and the rows in a representation of M∗. Let M be a matroid on ground set
S = {s1, . . . , sn}. For any X ⊆ S there is a naturally corresponding characteristic vector ,
the binary n-tuple whose jth entry is 1 if and only if sj ∈ X.

Theorem 8.4. Let M and M∗ be a pair of dual binary matroids with ground set S =
{x1, x2, . . . , xn} and standard matrix representations A and A∗ respectively, as in Theorem
8.3.

(i) The rows of A∗ correspond to dependent sets in M . That is, each row of A∗ is the
characteristic vector of some dependent set in M .

(ii) If X ⊆ S is dependent in M , the characteristic vector lies in the row space of A∗.

(iii) In fact, as A∗ is a standard representation matrix, each row corresponds to a
circuit in M .
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Proof. Let ai denote the ith row of A∗. As discussed in the proof of Theorem 8.3, each ati
lies in Null(A). Therefore the columns of A corresponding to the unit entries of ai sum to
zero, are linearly dependent, and thus (i) follows. As the columns of At∗ are in fact a basis
for Null(A), (ii) follows. To prove (iii) assume, for contradiction, that some row ai does not
correspond to a circuit. Let X be the subset of S corresponding to ai. By (i) X is dependent
in M , but (by assumption) must contain some proper subset Y that is also dependent. Then
by (ii), the characteristic vector vY of Y must lie in the row space of A. Therefore vX−Y ,
the characteristic vector of X − Y must lie in Row(A) as well, and vY + vX−Y = ai. But
then since A∗ is a standard representation matrix of M∗, one of Y or X − Y includes no
elements of M∗ associated with the identity block of A∗. This contradicts that both vY and
vX−Y lie in the row space of A∗, completing the proof of (iii).

Corollary 8.2. Let M be a binary matrix with standard representation matrix A. The rows
of A correspond to cocircuits of M .

We have now seen that a matroid can be defined on a collection of (column) vectors. There
are two linear algebraic concepts naturally associated with sets of vectors, namely dimension
and span. These two notions both have matroid analogues, which we discuss in Section 8.1.5.

8.1.5 Matroid Rank and Closure

As introduced in Section 8.1.3, the rank of a matroid M is the cardinality of any base
B ∈ B(M). We may extend this notion to any subset X ⊆ S(M). Let

I |X = {I ⊆ X : I ∈ I }.

One may verify that I |X satisfy (I1)− (I3) and thus (X,I |X) is a matroid. Denoted by
M |X, we call this matroid the restriction of M to X. We will return to restrictions when
we discuss deletion in the next section, but this now allows us to define the rank of a subset
X.

Definition 8.5. For any subset X ⊂ S(M), the rank of X, denoted r(X), is the cardinality
of any basis BX of M |X. In this case we call BX a basis of X.

Observe that under this definition, r : 2S → Z is a function mapping all subsets of S(M)
into the nonnegative integers. We call r the rank function of M . Moreover, r satisfies
the following three properties.

(R1) If X ⊆ S, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ S then r(X) ≤ r(Y ).
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(R3) If X, Y ⊆ S, then

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Properties (R1) and (R2) are clear. Property (R3) is often called submodularity, and verifying
that it is satisfied by rank function r requires proof.

Proposition 8.3. Given r : 2S → Z as defined in Definition 8.5, r satisfies (R3).

Proof. [84] Let BX∩Y be a basis of X ∩Y . Then since X ∩Y ⊆ X ∪Y , BX∩Y is independent
in M |(X ∪Y ). In particular, there exists a basis BX∪Y for M |(X ∪Y ) which contains BX∩Y .
Therefore BX∪Y ∩ (X ∪ Y ) = BX∪Y , and BX∪Y ∩ (X ∩ Y ) = BX∩Y . Moreover, by definition
of r it follows that:

|BX∪Y ∩ (X ∪ Y )| = |BX∪Y | = r(X ∪ Y )

|BX∪Y ∩ (X ∩ Y )| = |BX∩Y | = r(X ∩ Y ).

Observe that BX∪Y ∩X is independent in M |X. Thus by (R1) and (R2), |BX∪Y ∩X| ≤ r(X).
Similarly, |BX∪Y ∩ Y | ≤ r(Y ). Therefore:

r(X ∪ Y ) + r(X ∩ Y ) = |BX∪Y ∩ (X ∪ Y )|+ |BX∪Y ∩ (X ∩ Y )|
= |(BX∪Y ∩X) ∪ (BX∪Y ∩ Y )|+ |(BX∪Y ∩X) ∩ (BX∪Y ∩ Y )|
= |BX∪Y ∩X|+ |BX∪Y ∩ Y |
≤ r(X) + r(Y ).

As suggested by the notation, (R1)-(R3) are known as the rank axioms of a matroid, and may
be used as an equivalent definition. The equivalence of (R1)-(R3) and (I1)-(I3) is deduced
by the following theorem, the proof of which can be found in [84].

Theorem 8.5. Let S be a set and r a function mapping 2S to the set of non-negative integers
that satisfies (R1)-(R3). Let I be the collection of subsets of X ⊆ S for which r(X) = |X|.
Then (S,I ) is a matroid having rank function r.

Independent sets, bases, and circuits can be characterized in terms of the rank function.

Proposition 8.4. Let M be a matroid with rank function r and let X ⊆ S(M). Then:

(i) X is independent if and only if |X| = r(X).

(ii) X is a basis if and only if |X| = r(X) = r(M).

(iii) X is a circuit if and only if X is non-empty and for all x ∈ X, r(X−x) = |X|−1 =
r(X).
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Proof.

(i)X ∈ I (M) ⇐⇒ X is a basis of M |X
⇐⇒ r(X) = |X|.

(ii)X ∈ B(M) ⇐⇒ X ∈ I (M) and |X| = r(M)

⇐⇒ r(X) = |X| = r(M) by (i).

(iii)X ∈ C (M) ⇐⇒ X /∈ I (M) and X − x ∈ I (M) ∀x ∈ X
⇐⇒ r(X) < |X| and r(X − x) = |X − x| = |X| − 1 ∀x ∈ X
⇐⇒ r(X − x) = |X| − 1 = r(X) ∀x ∈ X.

Rank is the matroid analogue of dimension. Recall that in a vector space, a vector v is in
the span of {v1, . . . , vn} if the subspaces spanned by {v1, . . . , vn} and {v1, . . . , vn, v} have the
same dimension. This idea allows the notion of span to be extended to matroids.

Definition 8.6. Let M be a matroid with ground set S and rank function r. Let cl be the
function cl : 2S → 2S defined for all X ⊂ S by:

cl(X) = {x ∈ S : r(X ∪ x) = r(X)}.

The function cl is known as the closure operator and we call cl(X) the closure of X in
M .

As one might expect, a subset and its closure have the same rank.

Lemma 8.1. For every X ⊆ S(M), r(X) = r(cl(X)).

Proof. Let BX be a basis for X, and take x ∈ cl(X)−X. Then since BX ⊆ BX ∪x ⊆ X ∪x,

r(Bx ∪ x) ≤ r(X ∪ x) = r(X) = |BX | = r(Bx) ≤ r(Bx ∪X)

Therefore all relations in this equation are in fact equalities, and r(BX∪x) = |BX | < |BX∪x|.
Thus BX ∪ x is dependent, BX is a basis of cl(X), and so r(X) = r(cl(X)).

The closure operator satisfies the following four properties, known as the closure axioms of
a matroid. A proof that the closure operator cl satisfies (CL1) - (CL4) can be found in [84].

(CL1) If X ⊆ S then X ⊆ cl(X).

(CL2) If X ⊆ Y ⊆ S, then cl(X) ⊆ cl(Y ).
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(CL3) If X ⊆ S then cl(cl(X)) = cl(X).

(CL4) If X ⊆ S and x ∈ S, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).

Once again, these closure axioms may be used as an equivalent matroid definition. The
equivalence of (CL1)-(CL4) with (I1)-(I3) can be deduced from the following theorem, the
proof of which can be found in [84].

Theorem 8.6. Let S be a set and cl be a function cl : 2S → 2S satisfying (CL1)-(CL4).
Let I = {X ⊂ S : x /∈ cl(X − x) for all x ∈ X}. Then (S,I ) is a matroid having closure
operator cl.

The closure operator on a matroid allows us to extend a number of more familiar concepts.
A closed set (sometimes called a flat) is any subset X ⊆ S(M) for which cl(X) = X. A
hyperplane is a closed set of rank r(M)− 1. For any X, Y ⊂ S(M), we say that X spans Y
if Y ⊂ cl(X). X is spanning if cl(X) = S(M). Bases, hyperplanes, circuits, and spanning
sets are all closely related, as demonstrated by the following proposition of [84].

Proposition 8.5. Let M be a matroid and X ⊂ S(M),

(i) X is a spanning set if and only if r(X) = r(M).

(ii) X is a basis if and only if it is both spanning and independent.

(iii) X is a basis if and only if it is a minimal spanning set.

(iv) X is a hyperplane if and only if it is a maximal non-spanning set.

(v) X is a circuit if and only if X is a minimal nonempty set such that x ∈ cl(X − x)
for all x ∈ X.

(vi) cl(X) = X ∪ {x : ∃C ∈ C (M) such that x ∈ C ⊆ X ∪ x}.

Much as subsets of dual matroid M∗ are given the prefix co- in relation to M , the spanning
sets and hyperplanes of M∗ are called cospanning and cohyperplanes. These are closely tied
to subsets of M , as described by the following proposition of [84].

Proposition 8.6. Let M be a matroid and let X ⊆ S(M),

(i) X is independent if and only if S −X is cospanning.

(ii) X is spanning if and only if S −X is coindependent.

(iii) X is a hyperplane if and only if S −X is a cocircuit.

(iv) X is a circuit if and only if E −X is a cohyperplane.



209

The corank of X ⊂ S(M), denoted by r∗(X), is the rank of X in dual matroid M∗. The
function r∗, often called the corank function of M , can be defined using rank function r.

Proposition 8.7. For all X ⊆ S(M),

r∗(X) = r(S −X) + |X| − r(M) (8.2)

The proof of this proposition is deduced from the following lemma. The proof of this lemma,
which follow from Proposition 8.6, as well as the proof of Proposition 8.7, can be found in
[84].

Lemma 8.2. Let I and I∗ be disjoint subsets of S(M) that are independent and coindepen-
dent respectively. Then M has a basis B and a cobasis B∗ such that I ⊆ B, I∗ ⊆ B∗, and B
and B∗ are disjoint.

8.2 Matroid Sub-Structure

Given a matroid M and a subset X ⊆ S(M), we have already seen that a new matroid
M |X can be defined by letting I (M |X) be the elements of I (M) contained in X. That
is, a matroid can be used to define new matroids on subsets of its ground set. This section
examines various methods of producing such sub-matroids.

8.2.1 Deletion and Restriction

Let M be a matroid on ground set S, and let X be any subset X ⊆ S. Matroid M can be
used to define a new matroid on ground set S −X, denoted by M\X.

Proposition 8.8. For a matroid M(S,C ) and X ⊆ S, the set

C (M\X) = {C ⊆ S −X : C ∈ C (M)}

is the family of circuits of a matroid on S −X.

Proof. It is easy to verify that the circuit axioms (C1) and (C2) are satisfied, as C (M\X) ⊆
C (M).

The matroid having circuits C (M\X) is called the deletion of X from M . The matroid
that deletes all elements other than X, M\(S(M) − X), is called the deletion of M to X
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or restriction of M to X and will be denoted by M |X. It is easy to verify that the
independent sets of M\X are:

I (M\X) = {I ∈ I (M) : I ⊆ X}.

Let rM denote the rank function on M . Then one may verify that the rank function of M\X,
rM\X , is the restriction of rM to the subsets of S −X. That is, for all Y ⊆ S −X,

rM\X(Y ) = rM(Y ). (8.3)

Example 8.8. We return to the example of U2,4 to illustrate matroid deletion. The circuits
of U2,4 consist of all 3-element subsets of {1, 2, 3, 4}:

C (U2,4) =
{
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}

}
.

Now consider the one-element subset X = {1}. The matroid U2,4\X has ground set
S(U2,4\X) = {2, 3, 4} and circuits:

C (U2,4\X) =
{
C ⊆ {2, 3, 4} : C ∈ C (U2,4)

}
=
{
{2, 3, 4}

}
.

As {2, 3, 4} is a minimal dependent set in ground set S(U2,4\X) = {2, 3, 4} it follows that

I (U2,4\X) =
{
∅, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}

}
.

8.2.2 Contraction

Given the definition of matroid deletion, we may introduce a second matroid operation, con-
traction. Recall that in a planar graph G (with dual graph G∗), the operations of contraction
and deletion of edges are dual operations. That is, for any e ∈ E(G), G/e = (G∗\e)∗ [23].
This suggests how to extend the notion of contraction to matroids.

Definition 8.7. For a matroid M with ground set S, the contraction of X in M is the
matroid M/X on S −X defined as:

M/X = (M∗\X)∗. (8.4)

The matroid that contracts all elements other than X in M , M/(S(M)−X), is called the
contraction of M to X and is denoted by M.X.

Example 8.9. Continuing Example 8.8 we now observe the effect of contraction on U2,4.
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Recall that U2,4 was self-dual, U2,4
∼= U∗2,4, so for any X ⊆ S(U2,4).

U∗2,4\X = U2,4\X.

Letting X = {1} as in Example 8.8, U∗2,4\X has ground set {2, 3, 4} and bases

B(U∗2,4\X) =
{
{2, 3}, {2, 4}, {3, 4}

}
.

Therefore the dual matroid (U∗2,4\X)∗ has bases

B((U∗2,4\X)∗) = B∗(U∗2,4\X) =
{
{2, 3, 4} − B : B ⊆ B(U∗2,4\X)

}
=
{
{2}, {3}, {4}

}
.

That is, the matroid contraction U2,4/X has ground set S(U2,4/X) = {2, 3, 4} and:

I (U2,4/X) =
{
∅, {2}, {3}, {4}

}
; C (U2,4/X) =

{
{2, 3}, {2, 4}, {3, 4}

}
Observe there is a distinct difference between deletion and contraction–the 2-subsets of
{2, 3, 4} are maximal independent sets of U2,4\X, but minimal dependent sets of U2,4/X.

Contraction and deletion may be considered as dual operations, in the following sense.

Proposition 8.9. For a matroid M and X ⊆ S(M),

(i) (M\X)∗ = M∗/X.

(ii) (M/X)∗ = M∗\X.

Proof. Recall from Remark 8.3 that (M∗)∗ = M . Therefore taking the dual of expression
8.4,

(M/X)∗ = ((M∗\X)∗)∗ = M∗\X.

giving (i). By considering a contraction on the dual M∗, the roles of M and M∗ in expression
8.4 reverse, giving (ii):

M∗/X = (M\X)∗.

Let M be a matroid and X ⊆ S(M). We can identify the rank function, independent sets,
and circuits of M/X from those of M . Let rM/X denote the rank function on M/X.

Proposition 8.10. For all Y ⊆ S(M)−X,

rM/X(Y ) = rM(Y ∪X)− rM(X)
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Proof. The proof relies on the equations (8.2) and (8.3) and the fact that M/X = (M∗\X)∗.
Full details can be found in [84].

In the following three propositions, let M be a matroid on ground set S and X any subset
X ⊆ S. Full proofs of each proposition can be found in [84]

Proposition 8.11. Let BX be a basis of M |X. Then

I (M/X) = {I ⊆ S −X : I ∪ BX ∈ I (M)}
= {I ⊆ S −X : M |X has a basis B such that B ∪ I ∈ I (M) }

Proposition 8.12. Let BX be a basis of M |X. Then

B(M/X) = {B′ ⊆ S −X : B′ ∪ BX ∈ B(M)}
= {B′ ⊆ S −X : M |X has a basis B such that B′ ∪ B ∈ B(M) }

Proposition 8.13. The circuits of M/X consist of the minimal non-empty members of
{C −X : C ∈ C (M)}

Take a moment to consider what this last proposition implies. Let Y be any subset of S−X.
Then if Y is dependent in M , Y remains dependent in M/X. In particular, for any circuit
C ∈ C (M) such that C ⊆ S−X, C is dependent in M/X. In order to determine C (M/X),
what remains is to check minimality.

8.2.3 Connectivity

We have already seen that familiar graph theoretic notions−such as contraction and deletion−can
be extended to matroids. In this section we extend the concept of graph connectivity. As
discussed previously, any graphic matroid is isomorphic to the cycle matroid of a connected
graph: if G1 is disconnected there exists a connected graph G2 such that M(G1) ∼= M(G2).
Thus there is no matroid notion analogous to 1-connectedness of graphs. As we will illustrate
in this section, 2-connectedness of graphs has a natural matroid analogue.

Recall that a graph G is 2-connected if the removal of any vertex v ∈ V (G) does not
separate the graph. Notice, however, that matroids do not have a natural counterpart for
the notion of vertices, so this this definition of 2-connectedness does not easily extend to
matroids. Instead, we may consider the following characterization of 2-connected graphs
[23].

Proposition 8.14. Let G be a simple graph with |V (G)| ≥ 3. Then G is 2-connected if and
only if any pair of distinct edges e and f are contained in a common cycle.
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Proof. Let e = {x, y} and f = {u, v} (where |{x, y}∩{u, v}| ≤ 1). Since G is 2-connected, by
Menger’s theorem [23] there exist 2 totally disjoint paths in G joining {x, y} to {u, v} (where
one of these paths may be the trivial path of one point in the case that |{x, y}∩{u, v}| = 1).
These two paths, in combination with edges e and f form a cycle containing both e and
f .

This notion of 2-connectedness can be adapted to matroids. Define a relation R on ground
set S(M) by xRy if either x = y or M has a circuit containing both x and y.

Proposition 8.15. For every matroid M , the relation R is an equivalence relation on S(M).

Proof. Clearly R is reflexive and symmetric. Then it suffices to show that if x, y, z ∈ S(M)
are distinct, and both xRy and yRz, then xRz. By distinctness of x, y, z there exist circuits
of M containing {x, y} and {y, z}. Choose circuits C1 3 x and C2 3 z such that C1∩C2 6= ∅
and among all such circuits, |C1 ∪ C2| is minimal. The goal is to show that there exists
C ∈ C (M) containing both x and z. The proof, which proceeds by contradiction, repeatedly
appeals to the circuit elimination axiom. Full details can be found in [84].

Definition 8.8. The R-equivalence classes of M are called the (connected) components
of matroid M .

Observe that every loop of M is a component, as is every coloop. Moreover, if X is a
component of M , observe that every circuit of M is either contained in X or in S(M)−X.

Definition 8.9. If S(M) is a component of M (or if S(M) is empty), we say that matroid
M is connected . If M is not connected, then it is disconnected.

There are many alternative characterizations of matroid connectivity. A separator of ma-
troid M is a union of components of M . Alternatively, a separator of matroid M is a subset
X ⊆ S(M) such that any circuit C ∈ C (M) is contained in either X or S(M) −X. Some
authors (and specifically Tutte in [105]), call a non-null separator which contains no other
non-null separator elementary .

Remark 8.5. Clearly the elementary separators of M are just the connected components.
In future sections, we will review an algorithm of Tutte, who prefers elementary separa-
tor terminology. We will follow this convention, but the reader should be aware that the
elementary separators are precisely the connected matroid components.

We can also characterize separators via the rank function. This will allow us to show that
the class of connected matroids is closed under duality.

Proposition 8.16. Let M be a matroid and X ⊆ S(M). Then X is a separator of M if
and only if

r(X) + r(S −X) = r(M).
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Proof. Let X be any separator of M and BX and BS−X bases of M |X and M\X. Since
all circuits of M are contained in either X or S − X, no circuit of M is contained in
B = BX ∪ BS−X . Therefore B is independent in M . By maximality of BX and BS−X in X
and S −X, B is a maximal independent subset of M . Therefore:

r(X) + r(S −X) = |BX |+ |BS−X | = |B| = r(M)

The proof of the converse is similar.

Let X be any subset of matroid M . By extending formula (8.2), one can verify that:

r(X) + r(S −X)− r(M) = r(X) + r∗(X)− |X| (8.5)

This allows us to prove the following,

Proposition 8.17. A matroid M is disconnected if and only if for some proper non-empty
subset X ⊆ S(M),

r(X) + r∗(X)− |X| = 0 (8.6)

Proof. M is disconnected if and only if S(M) is not a component of M . S(M) is not a
component of M if and only if some proper subset X ⊆ S(M) is a separator of M . By
Proposition 8.16 this occurs if and only if a proper subset X ⊆ S(M) satisfies r(X) + r(S −
X) = r(M), or equivalently, r(X) + r(S −X) − r(M) = 0. Then by equation (8.5), this is
true if and only if for some proper subset X ⊆ S(M), r(X) + r∗(X)− |X| = 0.

Corollary 8.3. A matroid M is connected if and only if M∗ is connected.

Proof. Observe that equation (8.6) is self-dual.

8.2.4 Minors and Excluded Minors

The basic properties one desires of contraction and deletion in a matroid hold, as summarized
in Proposition 8.18.

Proposition 8.18. For a matroid M and disjoint subsets X, Y ⊆ S(M),

(i) (M\X)\Y = M\(X ∪ Y ).

(ii) (M/X)/Y = M/(X ∪ Y ).

(iii) (M/X)\Y = (M\Y )/X.
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This demonstrates that the order in which elements are contracted or deleted from a matroid
is irrelevant. Let M0,M1,M2, . . . ,Mn be a sequence of matroids such that Mi+1 is obtained
from Mi by deletion or contraction of a single element. Let X be the set of elements
contracted on, and Y the set of elements deleted in this sequence. Then Proposition 8.18
says that:

Mn = (M0/X)\Y = (M0\Y )/X.

Definition 8.10. For a matroid M and disjoint subsets X, Y ⊆ S(M), the matroid M\X/Y
is called a minor of M .

A class of matroids is minor-closed if every minor of each matroid in that class also belongs
in the class. The two classes of matroids we have introduced, graphic matroids and repre-
sentable matroids, are both minor-closed as we will now demonstrate. There are classes of
matroids that are not minor-closed, such as transversal matroids and strict gammoids, the
interested reader can find details in [84].

Proposition 8.19. The class of graphic matroids if minor-closed.

Proof. Let G be any graph with graphic matroid M(G), and X any subset of edges X ⊆
E(G). Recall that G\X is the graph obtained from G by removing the edges in X. Similarly,
G/X is obtained from G by contracting all edges in X. Then to prove that the graphic
matroids are minor closed it suffices to show that

M(G)\X = M(G\X) and M(G)/X = M(G/X).

The fact that M(G)\X = M(G\X) is straightforward. To show that M(G)/X = M(G/X),
it suffices to show that for any edge e ∈ E(G), M(G)/e = M(G/e). The result then follows
by induction on |X|. If e is a loop of G then G/e = G\e, and the result follows by the first
case. Otherwise, let J ⊆ E(G)−e. Then J ∪e contains no cycle of G if and only if J contains
no cycle of G\e. Therefore I (M(G)/e) = I (M(G/e)) and thus M(G)/e = M(G/e).

Proposition 8.20. For any field F, the class of F-representable matroids is minor-closed.

Proof. We have already seen that for any F-representable matroid M , the dual matroid M∗ is
also F-representable. Now for any X ⊆ S(M), by definition of contraction M/X = (M∗\X)∗.
Therefore since F-representable matroids are closed under duality, to show that the F-
representable matroids are minor-closed it suffices to show that M\X is F-representable.
But now let A be any matrix over F such that M [A] ∼= M . Then X represents a subset of
the column labels of A, and let A\X be the matrix obtained from A by deleting all columns
whose labels are in X. Then it is easy to check that

M\X ∼= M [A]\X = M [A\X].

Therefore M\X is F-representable, and the result follows.
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One advantage of studying matroid minors is that large classes of matroids may be charac-
terized using excluded minor theorems. The following gives a characterization of all graphic
matroids, in terms of a (small) finite number of forbidden minors. Here K5 denotes the com-
plete graph on 5 vertices, and K3,3 the complete bipartite graph. F7 is the Fano matroid,
introduced in Section 8.1.4.

Theorem 8.7. A matroid M is graphic if and only if it has no minor isomorphic to
U2,4, F7, F

∗
7 ,M

∗(K5) and M∗(K3,3).

The result of this theorem, due to Tutte, is powerful–any matroid that is not graphic must
have a minor isomorphic to one matroid in this finite (and very small) family. The proof
relies, in part, on the relationship between planar graphs and dual matroids. The proof,
which also uses Kuratowski’s theorem on forbidden minors in planar graphs, will not be
presented here (see, for example, [108]).

Another excluded minor theorem, presented by Tutte, classifies binary representable ma-
troids.

Theorem 8.8. A matroid M is binary if and only if it has no minor isomorphic to U2,4.

8.3 An Observation on Graphic Binary Matroids

In this section we present a way of recognizing when a binary matroid is graphic. This
method may be more efficient than checking all possible minors and relying on the standard
excluded minor result in Theorem 8.7.

Before proceeding to the main results, we first introduce some terminology. Let x =[
x1 x2 · · · xn

]
be any vector in Zn2 and let G be any graph on n labeled edges, {e1, . . . , en}.

Definition 8.11. x is a path vector for G if there exists a path P in G such that:

ei ∈ E(P ) if and only if xi = 1.

For example, given G in Figure 8.1.1, the vector x =
[
1 1 0 0 1 1

]
is a path vector for

G.

Lemma 8.3. Let M be any Z2-representable matroid with |S(M)| = n and rank r. M is
a graphic matroid if and only if there exists a compact representation matrix H for dual
matroid M∗, and a labeled tree T with r edges such that each row of H is a path vector for
T .
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Proof. (⇒) Suppose M is graphic with |S| = n, and let A′ be any matrix representation of
M . Let G be a connected graph for which M is isomorphic to M(G). Let T be a spanning
tree of G. Without loss of generality, by relabeling the edges of G (and the elements of M)
we may assume that E(T ) = {e1, . . . , er} and E(G) − E(T ) = {er+1, . . . , en}. A standard
graph-theoretic result2 shows that for each ei ∈ E(G) − E(T ), the graph T ∪ ei contains
exactly one cycle, Ci. The cycle-vectors ci corresponding to these fundamental cycles form
a basis for the cycle space of G. Since M is isomorphic to M(G), there is a one-to-one
correspondence between cycles in G and circuits of M . By definition of a column matroid,
the vectors corresponding to the circuits of M generate Null(A). Therefore {ctr+1, . . . , c

t
n}

is a basis for Null(A), and the matrix N with rows cr+1, . . . , cn is a representation matrix
of M∗. By choice of labeling, N is a standard representation matrix of M∗ with compact
representation matrix H, N =

[
H | I

]
. As each row of N corresponds to a cycle in

G, and each row has a single nonzero entry corresponding to a non-tree edge (located in the
last n− r columns), each row of H must be a path vector for T , and as a result, G.

(⇐) Conversely suppose there exists a compact (n − r) × r representation matrix H for
dual matroid M∗ and a labeled tree T on r edges. For each column j of H, label the corre-
sponding edge as ej in T . For each row hi of matrix H, let Pi be the corresponding path in T .
For each i (1 ≤ i ≤ n−r) add an edge labeled er+i between the two endpoints of Pi in T (if hi
is the zero vector, and a loop edge at an arbitrary vertex of T ). Let G be the graph obtained
from T by adding n−r edges er+1, . . . , en in this manner, and let N =

[
H | I(n−r)

]
. By

construction, the rows of N are the cycle vectors of the fundamental cycles of G with respect
to T , so N is a standard representation matrix of M∗(G). Therefore since H is a compact
representation matrix of M∗, M∗ ∼= M∗(G), so M ∼= M(G) and so M is graphic.

This result gives a method of identifying those binary matroids that are graphic. However,
it is an impractical means of determining whether or not a given binary matroid is not
graphic. In particular, to use Lemma 8.3 to show that a binary matroid is non-graphic, one
would need to check all possible standard representation matrices. However, we can prove
a strictly stronger result that eases identification of non-graphic matroids. In particular,
Theorem 8.9 demonstrates that we need only check one compact representation matrix of
the dual matroid.

Theorem 8.9. Let M be any Z2-representable matroid as in Lemma 8.3. M is a graphic
matroid if and only if for any compact representation matrix H of dual M∗, there exists a
labeled tree T with r edges such that each row of H is a path vector for T .

Proof. (⇐) The reverse implication follows from the proof of Lemma 8.3.

(⇒) Let M be a graphic matroid, and suppose there exists a compact representation matrix

2See, for example, [55]
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H for M∗ for which there exist no labeled tree T on r edges having the rows of H as path
vectors. Let G be any connected graph for which M is isomorphic to M(G), and let the
edges e1, . . . er be those corresponding to the columns of H. Then the edge set {e1, . . . er}
does not induce a forest in G. Therefore G contains a cycle on {e1, . . . , er}. The cycle vector
for such a cycle is clearly linearly independent of the rows of the matrix N =

[
H | I

]
,

contradicting that H is a compact representation matrix for M∗. Therefore such a labeled
tree must exist.

8.3.1 Non-Graphic Matroids

Theorem 8.9 provides a method of determining when a binary matroid is not graphic. Using
this method, we will demonstrate that the excluded matroids of Theorem 8.7 are not graphic.

Recall from Example 10.3 that the Fano matroid, F7, and its dual, F ∗7 , have compact repre-
sentation matrices H and H∗ = H t respectively,

H =

h1 1 1 0 1
h2 1 0 1 1
h3 0 1 1 1

 H∗ =


h1∗ 1 1 0
h2∗ 1 0 1
h3∗ 0 1 1
h4∗ 1 1 1


Proposition 8.21. The Fano matroid F7 is not graphic.

Proof. As H∗ is a compact representation matrix of F ∗7 , it suffices to show there is no labeled
tree on 3 edges having the rows of H∗ as path vectors. Suppose there is a tree T on 3 edges
having the rows of H∗ as path vectors. Letting hi∗ denote the ith row of H∗, the only tree T
having h1∗,h2∗ and h3∗ as path vectors is the star on four vertices, shown in Figure 8.3.1.

e1

e2

e3

Figure 8.3.1: The only T having h1∗,h2∗ and h3∗ as path
vectors.

Clearly this labeled tree T does not have h4∗ =
[
1 1 1

]
as a path vector, and so F7 is not

graphic by Theorem 8.9.
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Proposition 8.22. The dual of the Fano matroid, F ∗7 is not graphic.

Proof. As H is a compact representation matrix of F7 = (F ∗7 )∗ it suffices to show there is no
labeled tree on 4 edges having the rows of H as path vectors. Let hi denote the ith row of
H. There are three trees on 3 edges having h3 as a path vector, given as T1, T2, and T3 in
Figure 8.3.2.

e2 e3 e4

e3 e2 e4

e2 e4 e3

T1

T2

T3

T4

T5

e2 e4 e3

e2 e4 e3

e1

e1

Figure 8.3.2: T1, T2, T3: Three trees having h3 as a path vector.
T4, T5: The only two trees with h3 and h2 as path vectors and
no T1 or T2 subtree.

It is clear that tree T1 does not have h1 as a path vector, and T2 does not have h2 as a path
vector. Therefore neither T1 nor T2 can be a sub-tree of the desired labeled tree. There are
only two trees having h3 and h2 as path vectors, and no T1 or T2 subtree. These are T4

and T5 in Figure 8.3.2. It is clear that neither has h1 as a path vector, and thus no labeled
tree on 4 edges has the rows of H as path vectors. Therefore F ∗7 is not graphic by Theorem
8.9.

Proposition 8.23. M∗(K3,3) is not graphic.

Proof. By choosing a suitable spanning tree of K3,3, M(K3,3) has compact representation
matrix

H =


h1 1 1 0 0
h2 1 1 0 1
h3 1 1 1 1
h4 1 0 1 1
h5 1 0 1 0

.
Therefore H is a compact representation matrix of (M∗(K3,3))∗, and thus it suffices to show
there is no labeled tree on 4 edges having the rows of H as path vectors. As before, let hi
represent ith row of H. There are exactly 4 trees having h1, h2 and h5 as path vectors.
These are shown in Figure 8.3.3. It is clear that T1, T3, and T4 do not have h4 as a path
vector, and T2 does not have h3 as a path vector. Thus no labeled tree on 4 edges has the
rows of H as path vectors, and M∗(K3,3) is not graphic by Theorem 8.9.
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e1 e2
e3

e1 e2e3

T1

e1 e2
e3

e1 e2e3

e4 e4

e4 e4

T2

T3

T4

Figure 8.3.3: The 4 trees having h1,h2 and h5 as path vectors

Proposition 8.24. M∗(K5) is not graphic.

Proof. By choosing a suitable spanning tree of K5, M(K5) has compact representation

H =


h1 1 0 1 0 1 0
h2 1 1 0 1 0 0
h3 0 1 1 0 0 1
h4 0 0 0 1 1 1

.
As H is a compact representation matrix of (M∗(K5))∗, it suffices to show there is no labeled
tree on 6 edges having the rows hi of H as path vectors. Any tree having the rows of H as
path vectors must have one of the following three paths in Figure 8.3.4

e1 e3 e5

e3 e1 e5

e1 e5 e3

T1

T2

T3

Figure 8.3.4: Three trees paths having h1 as a path vector.

We will show that there is no such tree having T1 as a sub-tree. There are exactly 4 trees on
five edges having h2 as a path vector and T1 as a sub-tree. These are shown in Figure 8.3.5.
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e1 e3 e5

e1 e3 e5

e1 e3 e5

e1 e3 e5

e2

e4

e2

e4

e4

e2

e4

e2

T4

T5

T6

T7

Figure 8.3.5: 4 five-edge trees having h2 as a path vector and
a T1 sub-tree.

It is clear that in adding e6 to T4, T5 or T7, if h3 is a path vector then we must introduce
a cycle. On the other hand, there are only two trees having T6 as a subgraph and h3 as a
path vector. These are shown in Figure 8.3.6.

e1 e3 e5

e2

e4

e1 e3 e5

e2

e4

T8 T9

e6

e6

Figure 8.3.6: 2 six-edge trees having h3 as a path vector and
a T6 sub-tree.

It is clear that neither T8 nor T9 have h4 as a path vector. Therefore there is no labeled tree
on 6 edges having the rows of H as path vectors and T1 as a subtree. A similar case-by-case
argument shows that no such labeled tree has T2 or T3 as a subtree either. Thus no labeled
tree on 6 edges has the rows of H as path vectors, and so M∗(K5) is not graphic by Theorem
8.9.

Theorem 8.9 presents one method of recognizing when a binary matroid is graphic. This
section then used this result to verify that the standard excluded minors of Theorem 8.7 are
not graphic. The relationship between binary matroids and graphic matroids was studied
extensively by Tutte in the 1960’s. His methods are the topic of Chapter 9.
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Chapter 9

Graphic Binary Matroids: Tutte’s
Algorithm

As alluded to in the introduction of Chapter 8, our interest in matroids was motivated by
understanding relationships between graphs and matrices. A classical question in this vein
is the following.

Which binary matrices naturally correspond to undirected graphs?

In terms of matroids, this question can be rephrased by asking when a binary matroid is
graphic. Corollary 9.1, which follows directly from Theorem 8.7 in Chapter 8, provides the
standard characterization of graphic binary matroids.

Corollary 9.1. A binary matroid is graphic if and only if it has no minor isomorphic to
F7, F

∗
7 ,M

∗(K5) and M∗(K3, 3).

While Corollary 9.1 completely characterizes those binary matroids that are graphic, if one
wants to determine if some specific binary matroid is graphic, it would require checking all
possible minors. In 1960, Tutte presented a deterministic algorithm for deciding whether a
binary matroid is graphic [105]. The notation and terminology preferred by Tutte were not
adopted in the years since that publication, so we dedicate this chapter to presenting Tutte’s
method using current mathematical conventions. A version of this process is presented as
a decomposition result in [91]. We will also work-through (in detail) the example originally
presented by Tutte in order to illustrate his process. Beyond notational updates, there is one
important difference in Tutte’s description of representable matroids that leads to changes
in our presentation. When Tutte refers to the “standard representation matrix” of a matroid
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M , the matrix he describes, by current conventions, is actually a representation of the dual
matroid M∗.

Before presenting Tutte’s method, Section 9.1 will first introduce a number of definitions
and results. In particular, Theorems 9.1, 9.2, 9.3, and 9.4 present a set of necessary condi-
tions of graphic matroids. Tutte’s method, presented in Section 9.2.1, begins with a binary
matroid and sequentially checks each of these necessary conditions. If any are not met, we
conclude that the matroid is not graphic. Otherwise the process is repeated on a specified
set of matroid minors. Section 9.2.2 illustrates a worked example of this process. If after it-
eration none of the necessary conditions prove false, Tutte renders these conditions sufficient
by constructing the desired graph. Section 9.2.3 introduces the machinery used in Tutte’s
graph construction method, which is presented in Section 9.2.4. Section 9.2.5 continues the
example of Section 9.2.2, and constructs a graph.

9.1 Preliminaries to Tutte’s Algorithm

For a graph G with V (G) = {vi} and E(G) = {ej}, the binary incidence matrix RG is
the |V (G)| × |E(G)| matrix with a 1 in entry (i, j) if and only if edge ej is incident to vertex
vi.

Proposition 9.1. Let G be a graph with binary incidence matrix RG. RG is a matrix
representation of M(G). That is, M(G) ∼= M [RG].

Proof. [91] For any X ⊆ E(G), it suffices to show X is a linearly dependent set of columns
in RG if and only if the induced subgraph G[X] contains a cycle. First assume that G[X]
contains a cycle, C. The columns of RG corresponding to C form a submatrix RC , the
incidence matrix of C. Then since each row of RC has exactly 2 ones, it follows that the
sum of the columns of RG corresponding to C must be zero. Conversely, suppose that X is
a linearly dependent set of columns of RG, and let C ⊆ X be a minimally dependent subset
of X. Then the columns of RG corresponding to C must sum to zero. In particular, G[C]
has no vertex of odd degree. Therefore G[C] has no vertex of degree one, and thus is not a
forest [23]. Therefore G[C] and hence G[X] must contain a cycle.

Corollary 9.2. Every graphic matroid is a binary matroid.

By a similar argument, one can show that graphic matroids are representable over any field
F. Such matroids are given special distinction.

Definition 9.1. A matroid is regular if it is representable over every field F.
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In particular, all graphic matroids are regular. In Section 8.1.2 we introduced the cycle
matroid of a graph. In fact, there is another matroid naturally associated with a graph,
known as the bond matroid . Recall that a bond of a graph G is a minimal (with respect
to inclusion) nonempty set of cut edges [23]. The bond matroid of G, M ′(G), is defined by
taking the set of edges E(G) as the ground set S, and the bonds of G as circuits. One may
check that, as defined, this matroid satisfies circuit axioms (C1) and (C2).

Remark 9.1. The orthogonality of the cycle space and cut space of graphs leads to a natural
connection between the cycle and bond matroids of a graph. Specifically for any graph G,

(M(G))∗ = M ′(G).

This can be seen by considering binary matrix representations of M(G) and M(G)∗. Let A
and A∗ be standard matrix representations of M(G) and M(G)∗ respectively. While A is a
matrix representation of the cycle matroid of G, the rows of A correspond to bonds of G.
On the other hand, while A∗ is a matrix representation of the bond matroid of G, the rows
of A∗ correspond to cycles of G.

In view of these remarks, this leads to another description binary graphic matroids.

Proposition 9.2. A binary matroid M is graphic if and only if dual matroid M∗ is the
bond matroid of some graph G.

9.1.1 Bridges and Y -components

Recall that a separator of a matroid M is a subset X ⊆ S(M) such that any circuit
C ∈ C (M) is contained in either X or S(M) − X. It is clear that S(M) and ∅ are al-
ways separators of M . Moreover, recall that a matroid that has no separators other than
S(M) and ∅ is called connected.

The elementary separators (i.e. connected components) of a matroid M are disjoint and
their union is M . When M is binary, the elementary separators can be recognized by par-
titioning the columns of a standard matrix representation or, in view of Theorem 8.4, by
considering the standard matrix representation of M∗.

Example 9.1. Consider the binary matroid M [R], where

R =


1 2 3 4 5 6

1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 1

.
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Letting s1, . . . , s6 denote the columns of R (and thus the ground set of M [R]), partition the
columns as S1 = {s1, s2, s5} and S2 = {s3, s4, s6}. Reordering the elements, we find the
following block form 

1 2 5 3 4 6

1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

.
It is clear that any minimal dependent set of columns (i.e. any circuit of M [R]) must lie
either completely in S1 or S2, and no further partitioning of the columns maintains this
property. Therefore S1 and S2 are elementary separators of M [R]. Alternatively, the matrix
R∗ (9.1) is a standard representation of dual matroid M [R]∗.

R∗ =

[ 1 2 3 4 5 6

1 1 0 0 1 0
0 0 1 1 0 1

]
(9.1)

By Theorem 8.4, the rows of R∗ correspond to circuits of M [R], and any circuit must lie
in the row space of R∗. Therefore it is clear that any circuit of M [R] must lie in either
S1 = {s1, s2, s5} or S2 = {s3, s4, s6}.

The following rule, which we present without proof, is often useful in calculations involving
matroids.

Proposition 9.3. A subset X ⊆ S(M) is a separator of matroid M if and only if

M |S = M.S.

Example 9.2. We can check the “only if” direction of this statement in the context of
M [R] as in Example 9.1. Taking elementary separator S1 = {s1, s2, s5}, a representation of
M [R]|S1 is obtained by deleting from R all columns other than those of S1. The resulting
matrix is given in (9.2). 

1 2 5

1 0 1
0 1 1
0 0 0
0 0 0

 (9.2)

On the other hand, M [R].S1 = (M [R]∗|S1)∗. Beginning with representation R∗ for M [R]∗,
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observe M [R]∗|S1 has representation R0 and standard representation R′0, where

R0 =

[ 1 2 5

1 1 1
0 0 0

]
R′0 =

[ 1 2 5

1 1 1
]
.

Matrix R′0, in turn, is used to obtain a standard representation matrix of (M [R]∗|S1)∗ =
M [R].S1, given in (9.3). Clearly the representation of M [R].S1 in (9.3) is row-equivalent to
the representation of M [R]|S1 in (9.2). Therefore M [R]|S1 = M [R].S1.

[ 1 2 5

1 0 1
0 1 1

]
(9.3)

Now let M be any binary matroid and Y any cocircuit of M .

Definition 9.2. The bridges of Y in M are the elementary separators of the matroid M\Y .

A detailed example of finding representations of bridges in the binary case will be given in
Section 9.2.2. The number of bridges of a cocircuit are of particular interest in studying
graphic matroids, as illustrated by the following theorem.

Theorem 9.1. Let M be the cycle matroid of a graph G, and Y a cocircuit of M having at
most one bridge in M . Then there is a vertex of G such that Y is the set of edges incident
to that vertex (i.e. Y is the star of a vertex in G).

Proof. The edges of Y are a bond (minimal separating set of edges) of graph G. Thus G−Y
has two connected components, G1 and G2, and Y = E(G1, G2). That is, Y is the set of all
edges in G with one end in G1 and one end in G2. Recall that E(G1) is always a separator
of M(G1), so if E(G1) is nonempty, M [G1] must contain a minimal nonempty separator–
i.e. an elementary separator. But now observe that the elementary separators of M(G1)
and M(G2) are also elementary separators of M\Y . Therefore if E(G1) and E(G2) are both
nonempty, M\Y must have at least two elementary separators, a contradicting that Y had
at most one bridge. Therefore without loss of generality, G1 is connected and contains no
edges. That is, G1 is a single vertex v. As Y = E(G1, G2), Y is the star of vertex v.

Definition 9.3. For each bridge B of cocircuit Y , the matroid M.(B ∪ Y ) is known as a
Y -component of M .

The following result is well-known [91][105].

Lemma 9.1. If Y is a cocircuit of a connected matroid M , then each Y -component of M is
connected.
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9.1.2 Bridge Partitioning and Even Cocircuits

Let M be a matroid and Y any cocircuit of M . For any bridge B of cocircuit Y , let
π(M,B, Y ) be the collection of all non-null subsets of Y that can be written as an intersection
of cocircuits M.(B ∪ Y ). Tutte showed that in certain cases, the members of π(M,B, Y )
partition Y [104].

Lemma 9.2. If M is a regular matroid and Y is a cocircuit of M , then the members of
π(M,B, Y ) are disjoint and their union is Y .

On the other hand, in the case of binary matroids the members of π(M,B, Y ) are related to
a certain minor of Y -component M.(B ∪ Y ) [91]:

Lemma 9.3. If Y is a cocircuit of a binary matroid M , then

π(M,B, Y ) = C ∗(M.B ∪ Y )|Y )

Since every regular matroid is also binary, if M is regular then the cocircuits of M.(B ∪
Y )|Y form disjoint subsets S1, S2, . . . , Sk of Y whose union is Y . In this case we say B
partitions Y and that {S1, . . . , Sk} is the partition of Y determined by B. A binary standard
representation matrix of M.(B∪Y )|Y will have exactly one nonzero element in each column.
As every graphic matroid is regular, we have the following necessary condition for graphic
matroids.

Theorem 9.2. If M is a graphic matroid, every bridge partitions its respective cocircuit.

Given a cocircuit Y of matroid M , let B and B′ be bridges of Y that partition Y into
{S1, . . . , Sk} and {T1, . . . , Tm} respectively.

Definition 9.4. If there exist Si and Tj such that Si ∪ Tj = Y , we say that bridges B
and B′ are non-overlapping, otherwise they are said to overlap. Bridges which overlap are
sometimes said to avoid. We call Y an even cocircuit of M if each bridge of Y partitions
Y , and the bridges of Y can be separated into two disjoint classes such that no members of
the same class overlap.

An example of recognizing non-overlapping bridges and even cocircuits in binary matroids
will be given in Section 9.2.2. Once again, even cocircuits are a necessary condition of graphic
matroids.

Theorem 9.3. In a graphic matroid, every cocircuit is even [104].

Proof. [91] Let M be a graphic matroid and Y ∈ C ∗(M). Each bridge of Y partitions Y
by Theorem 9.2, so it suffices to show the bridges can be partitioned into non-overlapping
classes. Let G be a graph such that M = M(G), and let G1 and G2 be the two connected
components of G\Y . Partition the bridges of Y by their membership in components G1 and
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G2 (note that by minimality, each bridge must be contained entirely in G1 or G2). That is,
for i = 1, 2, define:

Li = {B ⊆ E(M) : B is a bridge of Y and G[B] is a subgraph of component Gi}

Assume for contradiction that Y is not even: then any two-class partition of its bridges
must have some class containing an overlapping pair. Without loss of generality, suppose L1

contains bridges B1 and B2 that overlap. For any vertex v ∈ V (G1\B1), let C(B1, v) denote
the component of G1\B1 containing v, and Y (B1, v) the set of edges in Y with one end in
C(B1, v). One may show, using results of Section 9 in [106] for example, that there exists
a vertex v1 ∈ V (G[B1]) such that G[B2] is a subgraph of C(B1, v1). Similarly, there exists
v2 ∈ V (G[B2]) such that G[B1] is a subgraph of C(B2, v2) and V (G1) ⊆ V (C(B1, v1)) ∪
V (C(B2, v2)). Moreover, in [106] it is then shown that Y (B1, v1) ∪ Y (B2, v2) = Y , contra-
dicting that B1 and B2 overlap.

9.1.3 A Worked Example of Necessary Conditions

The following example demonstrates some of the necessary conditions of graphic matroids
discussed in the previous sections.

Example 9.3. Consider the graph G and cocircuit Y as given in Figure 9.1.1a.

Yy1

y2

y3
y4

y5

G

(a) Graph G with cocircuit Y

B1

B2

B3

B4

G\Y

(b) Elementary separators of M(G)\Y

Figure 9.1.1: Bridges of a cocircuit in a graph

Figure 9.1.1b shows the elementary separators of M(G)\Y –that is, the bridges of Y . Note
that Bi is the set of edges in each circled subgraph. Every cycle of G\Y is either contained
in G[Bi] or G[(E(G\Y ) − Bi)], so each Bi is a separator. As each edge set Bi is minimal
with respect to this property, these are the elementary separators of M(G)\Y . Figure 9.1.2
illustrates the Y -component G.(Bi ∪ Y ) for each bridge Bi. Observe that for each i, the
Y -component G.(Bi ∪ Y ) is obtained by contracting all edges e /∈ Bi ∪ Y .
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y1

y2

y3
y4
y5

y1

y3

y2

y4
y5

G.(B1 U Y) G.(B3 U Y)

y1

y2

y3
y4

y5

y1

y2

y3

y4
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Figure 9.1.2: Y -components G.(Bi ∪ Y ).

Finally, we construct the graphs G.(Bi ∪ Y )|Y . These are obtained from the Y -components
in Figure 9.1.2 by deleting the edges of Bi for each i. This is illustrated in Figure 9.1.3.

y1

y2

y3
y4
y5

y1

y3

y2

y4
y5

G.(B1 U Y)|Y G.(B3 U Y)|Y

y1

y2

y3
y4

y5

y1

y2

y3

y4

y5

G.(B2 U Y)|Y G.(B4 U Y)|Y

Figure 9.1.3: Graphs of G.(Bi ∪ Y )|Y .

By considering the four graphs in Figure 9.1.3, we see that the bonds of each graph G.(Bi ∪
Y )|Y partition the edges of Y . Therefore each bridge Bi partitions Y , as necessitated by
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Theorem 9.2. In particular,

π(M(G), B1, Y ) =
{
{y1}, {y2, y3, y4, y5}

}
π(M(G), B3, Y ) =

{
{y1, y3}, {y2, y4, y5}

}
π(M(G), B2, Y ) =

{
{y1, y2}, {y3, y4, y5}

}
π(M(G), B4, Y ) =

{
{y1, y2, y3, y4}, {y5}

}
Moreover, observe that {y2, y3, y4, y5} ∪ {y1, y2} = Y , so B1 and B2 are non-overlapping.
Similarly, {y2, y4, y5} ∪ {y1, y2, y3, y4} = Y , meaning B3 and B4 are non-overlapping as well.
Therefore if we partition the bridges as {B1, B2} and {B3, B4}, no two bridges of the same
class overlap and Y is an even cocircuit of M(G), as necessitated by Theorem 9.3. Notice
that B1 and B2 lie in the same connected component of G\Y , which is different from that
component that contains B3 and B4. Thus the partition {B1, B2} and {B3, B4} is exactly
that considered in the proof of Theorem 9.3.

Before moving to the presentation of Tutte’s algorithm, we need a few results relating graphic
matroids and minors.

9.1.4 Graphic Matroids and Minors

Lemma 9.4. If M is graphic and X ⊆ S(M), then M.X is also graphic.

The proof of this theorem is straightforward, arising because the notions of matroid con-
traction and deletion align with the well-defined notions of edge deletion and contraction
in graphs. A partial converse to this statement, given in terms of Y -components (recall
Definition 9.3), is a key step in Tutte’s procedure.

Theorem 9.4. Let Y be an even cocircuit of a connected binary matroid M such that every
Y -component of M is graphic. Then M is graphic.

Proof. [91] Assume there exists a binary matroid M and a cocircuit Y ∈ C ∗(M) such that
the result fails. Among such M and Y , choose one for which |S(M)| is minimal. We will
reach a contradiction by finding a graph G such that M = M(G). If M has only one bridge,
M = M.(B ∪ Y ) which is graphic by assumption. Thus we may assume that Y has at least
two bridges. Since Y is even, its bridges can be partitioned into classes U1 and U2 such that
any pair of bridges in the same class avoid each other. For i = 1, 2, let Ei be the set of edges
contained in all bridges of class i. That is,

Ei =
⋃
B∈Ui

B.

From here the proof can be divided into three parts. First, we demonstrate that the matroids
M.(E1 ∪ Y ) and M.(E2 ∪ Y ) are graphic. Next we construct two graphs, G1 and G2 such
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that M(Gi) = M.(Ei∪Y ), and combine these graphs into a third graph G. Finally, we show
that M = M(G). These steps can be found in detail in [91]. In addition to the theory that
guarantees existence, an example of constructing the graphs G1, G2 and G will be given in
Sections 9.2.4 and 9.2.5.

9.2 Tutte’s Algorithm

Section 9.1 presented a number of necessary conditions for a matroid to be graphic. If a
cocircuit has only one bridge, it must be the star of a vertex in the corresponding graph
(Theorem 9.1). Any bridge must partition its respective cocircuit (Theorem 9.2), and every
cocircuit must be even (Theorem 9.3). Tutte’s algorithm begins with a binary matroid,
and sequentially checks these necessary conditions. If at any point one such condition fails,
the algorithm terminates and concludes that the matroid is not graphic. Otherwise if each
condition is satisfied, it then appeals to Theorem 9.4 and repeats to successively determine
if each Y component is graphic. A flow-chart of this algorithm is presented in Figure A.1 of
Appendix A. The reader will likely find it helpful to follow this reference in parallel to the
following description.

9.2.1 Tutte’s Recognition Algorithm

Let M be any connected binary matroid. First, construct a standard matrix representation
of M , R. If no column of R has more than 2 nonzero entries, adjoin to R (as a new row)
the mod 2 sum of the rows of R. The result is the binary incidence matrix of a graph whose
cycle matroid, by Proposition 9.1, is M . Otherwise some column of R contains at least
three nonzero elements. Without loss of generality, assume the last column of R has nonzero
elements in the first, second, and third rows.

By Theorem 8.4, the first row of R is the characteristic vector of a cocircuit Y1 of M .
We wish to consider the Y1 components of M , so first we construct a representation of the
matroid M\Y1. This matrix R′ is obtained by removing the first row from R, as well as all
columns that have a unit entry in the first row. From R′, we identify the elementary sep-
arators of Y1 (for example, by either method described in Example 9.1), giving the bridges
B1, . . . , Bk of Y1.

It may be the case that Y1 has only one bridge in M . If so, repeat this process with
Y2, the cocircuit corresponding to the second row of R. If Y2 has only one bridge, continue
with cocircuit Y3 corresponding to row 3. If this cocircuit also has only one bridge, we may
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conclude that the matroid is not graphic. If M were graphic, then by Theorem 9.1, the last
column of R corresponds to an edge that is incident with three distinct vertices. This is
clearly impossible.

Otherwise, assume without loss of generality that Y1 has at least two bridges in M . For
each bridge Bi, construct a standard representation matrix of the Y1-component M.(Bi∪Y1).
This is accomplished with a few straightforward steps:

(1) Identify the rows of R′ (the representation matrix of M\Y1) representing bridge Bi.

(2) Extract the corresponding rows of matrix R.

(3) Adjoin the first row (i.e. the row corresponding to Y1) and delete any zero columns.

Now for each i, use this matrix representation of M.(Bi ∪ Y1) to find a standard represen-
tation matrix of M.(Bi ∪ Y1)|Y1. This can be accomplished by first deleting all columns
without a 1 in the first row, and then performing row operations. If each column of the
resulting matrix has exactly one unit entry, then Bi partitions Y1. Otherwise bridge Bi does
not partition Y1, and by Theorem 9.2 M is not graphic.

If each bridge Bi partitions Y1, we examine to see which bridges overlap. If Y1 is not even,
then by Theorem 9.3, M is not graphic. Otherwise if Y1 is even, we have now simplified the
problem. Specifically, M is graphic if and only if its Y1 components are graphic by Lemma
9.4 and Theorem 9.4. Notice we have already constructed standard representation matrices
for the Y1-components of M . Moreover, by Lemma 9.1, each of these Y1-components is con-
nected and (because Y1 has more than one bridge) has lower rank than M . Therefore we
repeat the above procedure for each Y1-component of M , and continue in this manner until
the process eventually terminates.

If there exist graphs for each Y -component of a graphic matroid M , then these graphs
can be used to construct a graph for matroid M . These constructions are described in [104]
and will be presented in Section 9.2.4.

9.2.2 A Worked Example of Tutte’s Algorithm

The following is the example originally used by Tutte to illustrate his method. We will work
through this example in detail. Consider the binary matroid M = M [R], where R is the
standard binary representation given in (9.4). Throughout this example, we use the integers
{1, . . . , 15} to denote the elements of matroid M . To help illustrate the various matrix
operations performed, the jth row of matrix R will be labeled j∗. These conventions will be
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used through the end of this chapter, as well as in Chapter 10.

R =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1∗ 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
2∗ 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
3∗ 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0
4∗ 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
6∗ 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0
7∗ 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1


(9.4)

There are several columns with at least 3 nonzero entries, let us consider column 13. The first
row having a unit entry in column 13 is row 5–let Y denote the cocircuit of M corresponding
to row 5. That is, Y = {5, 8, 9, 10, 11, 12, 13}. Removing the 5th row of R and every column
with a 1 in this row, we obtain the standard representation matrix R′ of M\Y ,

R′ =



1 2 3 4 6 7 14 15

1∗ 1 0 0 0 0 0 0 1
2∗ 0 1 0 0 0 0 1 0
3∗ 0 0 1 0 0 0 1 0
4∗ 0 0 0 1 0 0 1 0
6∗ 0 0 0 0 1 0 0 0
7∗ 0 0 0 0 0 1 0 1

.

Next we determine the bridges of Y in M , that is, the elementary separators of M\Y . Given
the standard representation matrix R′, the rule for identifying an elementary separator is as
follows.

(1) Choose an arbitrary row of R′.

(2) Add to this row vector every row of R′ having a 1 in the same column as a 1 in the
row from (1).

(3) Add to the result every row having a 1 in the same column as a 1 in the row chosen
in (2).

(4) Continue in this manner until no such further rows exist. The elementary separator
corresponds to the columns with a nonzero entry in the resulting row vector.

(5) To find another elementary separator, choose a row which was not previously chosen
in (1)-(4), and begin again at (1).

Using this process, we see that the bridges of Y in M are B1 = {6}, B2 = {1, 7, 15} and
B3 = {2, 3, 4, 14}. For each bridge Bi, we construct a standard representation matrix for
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M.(Bi∪Y )|Y via the three-step procedure described in Section 9.2 (notice in step 3, we adjoin
the row corresponding to Y , in this case that is the 5th row of R). The following matrices,
R1, R2, R3 are the standard representation matrices of the Y -components M.(Bi ∪ Y ). In
each case the last row represents cocircuit Y .

R1 =

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6∗ 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0

]

R2 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1∗ 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
7∗ 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0



R3 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2∗ 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
3∗ 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0
4∗ 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0


If zero columns are removed, by permuting the columns each Ri can be seen to be a standard
binary representation matrix. For each 1 ≤ i ≤ 3, let Mi = M [Ri]. We will return to the
matroids M1,M2 and M3 shortly.

The next step is to examine if each of B1, B2, and B3 partition Y . To do so, we con-
struct a matrix representation of M.(Bi ∪ Y )|Y . Given that Ri is a matrix representation
of M.(Bi ∪ Y ), this is accomplished by removing all columns of Ri having a zero in the last
row (i.e. the row corresponding to Y ). This gives R′1, R

′
2, and R′3 as in (9.2.2), the matrix

representations of M.(Bi ∪ Y )|Y .

R′1 =

[ 5 8 9 10 11 12 13

6∗ 0 1 1 1 0 1 1
5∗ 1 1 1 1 1 1 1

]
R′2 =


5 8 9 10 11 12 13

1∗ 0 1 1 0 0 0 0
7∗ 0 1 1 0 0 1 1
5∗ 1 1 1 1 1 1 1



R′3 =


5 8 9 10 11 12 13

2∗ 0 1 0 1 0 0 0
3∗ 0 1 0 1 1 0 0
4∗ 0 1 1 1 1 1 0
5∗ 1 1 1 1 1 1 1

 (9.5)

Via row operations, each of these matrices is transformed to a matrix R′′i that is, up to a
permutation of columns, a standard representation matrix of M.(Bi∪Y )|Y . These are given
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in (9.2.2).

R′′1 =

[ 5 8 9 10 11 12 13

6∗ 0 1 1 1 0 1 1
(5∗+6∗) 1 0 0 0 1 0 0

]
R′′2 =


5 8 9 10 11 12 13

1∗ 0 1 1 0 0 0 0
(7∗+1∗) 0 0 0 0 0 1 1
(5∗+7∗) 1 0 0 1 1 0 0



R′′3 =


5 8 9 10 11 12 13

2∗ 0 1 0 1 0 0 0
(3∗+2∗) 0 0 0 0 1 0 0
(4∗+3∗) 0 0 1 0 0 1 0
(5∗+4∗) 1 0 0 0 0 0 1

 (9.6)

Clearly each standard representation matrix has a single 1 in each column, and thus each
of B1, B2, and B3 partitions Y . Letting Pi denote the partition of Y determined by Bi, we
have:

P1 =
{
{5, 11}, {8, 9, 10, 12, 13}

}
P2 =

{
{5, 10, 11}, {8, 9}, {12, 13}

}
P3 =

{
{5, 13}, {8, 10}, {9, 12}, {11}

}
.

If the bridges Bi had not all partitioned Y –that is, if one of the matrices R′′i had two nonzero
entries in some column–then the algorithm would terminate and conclude that M was not
graphic. However since each Bi partitions Y we must check if Y is even. Notice that
{8, 9, 10, 12, 13} is a member of partition P1, {5, 10, 11} is a member of partition P2, and
{8, 9, 10, 12, 13} ∪ {5, 10, 11} = Y . Then bridges B1 and B2 are non-overlapping, and the
bridges can be divided into disjoint classes {B1, B2} and {B3} such that no two members
of the same class overlap. Therefore Y is even. If we had found the bridges could not be
arranged in this manner, then Y is not even, and the algorithm would terminate concluding
that M is not graphic.

Thus we have now reduced the problem, and we can assert that M is graphic if and only if
matroids M1,M2 and M3 are graphic. We repeat this algorithm, now applied to standard
representation matrices R1, R2 and R3 respectively.

M1 is graphic because R1 has at most two 1’s in each column. By applying the algorithm
to R2 and R3, we find that both M2 and M3 are graphic as well. Therefore the algorithm
terminates and concludes that matroid M is graphic.
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9.2.3 Graph Operations: Twisting and Star Composition

While Tutte’s algorithm determines whether a binary matroid is graphic, constructing the
associated graph is also desirable. The matroid minors considered by Tutte’s algorithm can
be utilized to construct such a graph. Before describing this construction process, some
theory is in order.

A 2-separation of a graph G is a partition {X, Y } of the edges such that

min{|X|, |Y |} ≥ 2 and |V (G[X]) ∩ V (G[Y ])| = 2

Let {X, Y } be a 2-separation in a graph G such that V (G[X]) ∩ V (G[Y ]) = {u, v}. The
twisting of G about u and v is obtained by interchanging u and v in every edge of X.
Of particular importance is that if G′ is obtained from G by a twisting, then the cycles
and bonds of G′ are exactly the cycles and bonds of G. Figure 9.2.1 gives an example of
twisting, where one may observe that the cycles and bonds are unchanged. As described in
[91], we can think of twisting as separating G[X] and G[Y ] at the vertices u and v, twisting
either subgraph about an axis perpendicular to the line that passes through u and v, and
reconnecting.

G

u

v

XY

G'

u

v

XY

e1

e2

e3

e1

e2

e3

e4

e4

e5

e6

e7

e5

e6

e7

Figure 9.2.1: An example of Twisting.

Theorem 9.5. Let Y be a cocircuit of a connected graphic matroid such that any two bridges
of Y avoid each other. Then there exists a 2-connected graph G where Y is a star of a vertex
in G, and M = M(G).

Proof. Since M is graphic, there exists a 2-connected graph G such that M(G) = M and Y
is a bond in G. Let G1, G2 be the two components of G\Y . The proof proceeds by finding
a sequence of 2-separations which, by a series of twistings on the associated intersection
vertices, reduce the size of G1 successively until we are left with a single vertex whose star
is Y . As each successive graph is obtained by a twisting, the bonds and cycles of each graph
in the sequence are identical to those of G. Thus we arrive at a 2-connected graph G′ such
that M(G′) ∼= M(G) ∼= M and Y is the star of a vertex in G′. Full details of this proof can
be found in Theorem 5.5 of [91].
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Example 9.4. The sequence of graphs G,G′, and G′′ in Figure 9.2.2 that illustrates the
process sketched above. Each is obtained from the previous by a twisting, and we see that
Y = {y1, y2, y3} is a cocircuit in each. In particular, Y is the star of vertex w in G′′.

y1 y1
y1

y2 y2 y2

y3
y3

y3

G G' G''

u

v

u'

v'

w

Figure 9.2.2: A sequence of twistings.

Let G1 and G2 be two labeled graphs, and Y set of edge labels such that Y ∈ E(G1)∩E(G2).
Moreover, suppose there are vertices v1 ∈ V (G1) and v2 ∈ V (G2) such that Y is the star of
vertices v1 and v2. We construct a graph G with E(G) = E(G1)∪E(G2) by adjoining G1\v1

and G2\v2 as follows. For any edge e ∈ Y , add an edge between the endvertex of e (other
than v1) in G1, and the endvertex of e (other than v2) in G2. Label this new edge e. By
construction, Y is a bond of the resulting graph, G. G is known as the star composition
of G1 and G2 in Y , denoted G = G1 ?Y G2.

Now consider the incidence matrices of G1 and G2, and examine the matrix operation associ-
ated with the graph operation of star composition. By re-ordering the columns and vertices,
each incidence matrix may be written in the form

RG1 =


E(G1)\Y Y

V (G1)\v1 R1,1 R1,2

v1 0 · · · 0 1 · · · 1

 RG2 =


E(G2)\Y Y

V (G2)\v2 R2,1 R2,2

v2 0 · · · 0 1 · · · 1


The incidence matrix of the star composition G = G1 ?Y G2 of G1 and G2 is given by the
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star composition of the corresponding matrices, defined as

RG = RG1?Y G2 = RG1 ? RG2 =



E(G1)\Y E(G2)\Y Y

V (G1)\v1 R1,1 0 R1,2

V (G2)\v2 0 R2,1 R2,2

,

where 0 represents the all-zeros matrix of the correct size.

Example 9.5. Consider the two labeled graphs, G1 and G2 in Figure 9.2.3a. In each graph,
Y = {y1, y2, y3} is the star of a vertex labeled vi, as described above.
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(a) Two labeled graphs G1 and G2
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f2 e1

e2 e3

e4
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u2

u3

w1

w2

w3

w4

(b) Star composition G = G1 ?Y G2

Figure 9.2.3: Star composition of graphs.

The binary incidence matrices of G1 and G2 are

RG1 =


f1 f2 y1 y2 y3

u1 1 1 1 0 0
u2 0 1 0 1 0
u3 1 0 0 0 1
v1 0 0 1 1 1

 RG2 =



e1 e1 e3 e4 y1 y2 y3

w1 1 0 0 1 0 1 0
w2 1 1 0 0 0 0 1
w3 0 1 1 0 1 0 0
w4 0 0 1 1 0 0 0
v2 0 0 0 0 1 1 1

.

Figure 9.2.3b is the graph G = G1 ?Y G2, the star composition of G1 and G2 in Y . The
incidence matrix of G, RG, is given by the star composition of the incidence matrices, RG1

and RG2 ,



240

RG = RG1 ? RG2 =



f1 f2 e2 e2 e3 e4 y1 y2 y3

u1 1 1 0 0 0 0 1 0 0
u2 0 1 0 0 0 0 0 1 0
u3 1 0 0 0 0 0 0 0 1
w1 0 0 1 0 0 1 0 1 0
w2 0 0 1 1 0 0 0 0 1
w3 0 0 0 1 1 0 1 0 0
w4 0 0 0 0 1 1 0 0 0


.

One may check that this matrix RG is, in fact, the binary incidence matrix of the star
composition G = G1 ?Y G2 in Figure 9.2.3b.

9.2.4 Tutte’s Graph Construction Method

The graph and matrix operations introduced in Section 9.2.3 can be harnessed to construct
a graph when Tutte’s algorithm determines that a binary matroid is graphic. Begin with a
binary matroid M and a cocircuit Y , having bridges {B1, B2, . . . , Bn}. If Tutte’s algorithm
determines M is graphic, a number of necessary conditions must be true:

• Each bridge Bi partitions Y .

• The bridges can be partitioned into classes U1 and U2 such that in each class, any pair
of bridges is non-overlapping. By re-labeling bridges if necessary, we may assume

U1 = {B1, B2, . . . , Bm} and U2 = {Bm+1, . . . , Bn}.

• Each Y -component M.(Bi ∪ Y ) is graphic.

As each M.(Bi ∪ Y ) is graphic, let Ri be the incidence matrix of a graph Gi such that
M(Gi) ∼= M.(Bi ∪ Y ). Such a matrix may be obtained in the course of the algorithm, or by
beginning with the matroid M.(Bi∪Y ) and applying the following procedure (here described
for M).

Observe that each Y -component M.(Bi ∪ Y ) is connected, has Y as a cocircuit, and Bi

is the only bridge of Y in M.(Bi ∪ Y ). Therefore by Theorem 9.5 there exists a 2-connected
graph G′i such that M(G′i)

∼= M.(Bi ∪ Y ) and Y is the star of a vertex in G′i. This graph
can be obtained from the graph Gi by applying a sequence of twistings, as described in the
proof of Theorem 9.5, or by applying a sequence of elementary row operations to matrix Ri.
Let R′i be the resulting binary incidence matrix of graph G′i.
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Next consider the bridge-class U1 = {B1, B2, . . . , BM}. The goal is to use a sequence of
successive star compositions to obtain a graph G1 for the matroid

M1
∼= M.

(( ⋃
B∈U1

B
)
∪ Y

)
.

A flowchart of this process is presented in Figure A.2 of Appendix A. The basic ideas of this
construction are as follows. Suppose we can construct a graph H ′i such that Y is the star of
a vertex in H ′i, and

M(H ′i)
∼= M.

(
(B1 ∪ · · · ∪Bi) ∪ Y

)
.

Then taking the star composition G′i+1 ?Y H
′
i gives a graph Hi+1 satisfying

M(Hi+1) ∼= M.
(

(B1 ∪ · · · ∪Bi ∪Bi+1) ∪ Y
)
.

Via a sequence of twistings we can obtain a graph H ′i+1 having Y as a star, and continue in
this manner.

Begin by taking the star composition H2 = G′2 ?Y G
′
1. The graph H2 satisfies

M(H2) ∼= M.(B1 ∪B2 ∪ Y )

(this is proven, for example, in the course of Theorem 5.6 in [91]). Therefore M.(B1∪B2∪Y )
is a graphic matroid with cocircuit Y and bridges B1 and B2. As B1, B2 ∈ U1, they
are non-overlapping, and by Theorem 9.5, there exists a 2-connected graph H ′2 such that
M(H ′2) ∼= M.(B1 ∪ B2 ∪ Y ) and Y is the star of a vertex in H ′2. H ′2 may be obtained from
H2 by a sequence of twistings.

Next take the star composition of this graph with G′3. That is, we construct H3 = G′3 ?Y H
′
2,

satisfying
M(H3) ∼= M.(B1 ∪B2 ∪B3 ∪ Y ).

Once again, Y is a cocircuit of M.(B1 ∪B2 ∪B3 ∪ Y ) having all-avoiding bridges B1, B2 and
B3. Thus by Theorem 9.5, a sequence of twistings on H3 results in a 2-connected graph H ′3,
with M(H ′3) ∼= M(H3), having Y as the star of a vertex.

Continuing in this manner, by successive star compositions we obtain a graph G1 such that

M(G1) ∼= M.
(( ⋃

B∈U1

B
)
∪ Y

)
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and G1 has Y as the star of a vertex. On the other hand, starting with bridge class U2 =
{Bm+1, . . . , Bn}, the same procedure leads to a graph G2 such that Y is the star of a vertex
and

M(G2) ∼= M.
(( ⋃

B∈U2

B
)
∪ Y

)
.

Finally, we take the star composition G = G1 ?Y G2. As proven, for example, in Theorem 5.6
of [91], the resulting graph G satisfies M(G) ∼= M . Therefore, not only has Tutte’s method
concluded that binary matroid M was graphic, but we have constructed a graph, G, such
that M(G) ∼= M .

9.2.5 A Worked Example of Graph Construction

Section 9.2.2 examined Tutte’s algorithm on a specific example, the binary matroid M with
standard representation matrix

R =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1∗ 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
2∗ 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
3∗ 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0
4∗ 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
6∗ 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0
7∗ 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1


We chose cocircuit Y = {5, 8, 9, 10, 11, 12, 13}, with bridges B1 = {6}, B2 = {1, 7, 15} and
B3 = {2, 3, 4, 14}. Each bridge partitioned Y , and Y was even with non-overlapping bridge
classes U1 = {B1, B2} and U2 = {B3}. Proceeding as described in Section 9.2.4, we will
construct a graph for M .

Begin by considering bridge class U1. Both M.(B1 ∪ Y ) and M.(B2 ∪ Y ) are graphic, with
standard representations

R1 =

[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6∗ 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0

]

R2 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1∗ 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
7∗ 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0


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Via elementary row operations (and adding new rows within the row space, if necessary), we
can transform these matrices into binary incidence matrices. That is, for i = 1, 2 we construct
matrices R′i such that M [R′i]

∼= M [Ri] ∼= M.(Bi ∪ Y ), and R′i is the binary incidence matrix
of a graph G′i having Y as the star of a vertex.

R′1 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 1 0 1 1 1 0 1 1 0 0
0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0 0 0



R′2 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 0 0 0 0 1 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 1


In particular, R′1 obtained from R1 by adding a third row that is the sum of rows 1 and
2 of R1. R′2 arises by adding row 1 of R2 to row 2, and adding a fourth row that is the
column sums of the resulting matrix. The graphs G′1 and G′2, having R′1 and R′2 as binary
incidence matrices, are shown in Figure 9.2.4. For clarity, the edges have been labeled only
with subscript numbers (i.e. 5 instead of e5).
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Figure 9.2.4: Graphs G′1 and G′2.

Next we take the star composition H2 = G′1 ?Y G
′
2 of G′1 and G′2 along Y . The resulting

graph H2 satisfies M(H2) ∼= M.(B1 ∪B2 ∪ Y ), and is shown in Figure 9.2.5a.

Via Theorem 9.5, construct a graph H ′2 such that M(H ′2) ∼= M(H2) and Y is the star
of a vertex in H ′2. This can be accomplished either by a sequence of twistings on the graph
H2 or a sequence of elementary row operations on the incidence matrix of H2. Observe that
a single twisting on {u, v} in H2 produces the desired graph H ′2, shown in Figure 9.2.5b.
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(a) Star composition H2 = G′1 ?Y G′2.
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(b) The graph H ′2 obtained by twisting on {u, v}.

Figure 9.2.5: Constructing the graph H ′2.

That is, M(H ′2) ∼= M.(B1 ∪B2 ∪ Y ), and Y is the star of a vertex in H ′2. As U1 = {B1, B2},
let G1 = H ′2. Therefore, we have constructed a graph G1 for

M.
(( ⋃

B∈U1

B
)
∪ Y

)
,

and now turn our attention to U2 = {B3}. Recall that M.(B3 ∪ Y ) had standard represen-
tation matrix:

R3 =


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2∗ 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
3∗ 0 0 1 0 0 0 0 1 0 1 1 0 0 1 0
4∗ 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0
5∗ 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0


Once again, by elementary row operations we may obtain from R3 a matrix R′3 that is the
binary incidence matrix for a graph with Y as the star of a vertex. Specifically, add rows
1 and 4 of R3 to rows 2 and 3, respectively. Then adjoin a fifth row that is the sum of the
resulting 4 rows. This gives

R′3 =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1 1 1 1 1 1 0 0
0 0 1 1 0 0 0 0 1 0 0 1 0 0 0


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The graph with binary incidence matrix R′3, G′3, is shown in Figure 9.2.6. As U2 = {B3}, it
follows that G′3 is the graph G2 for

M.
(( ⋃

B∈U2

B
)
∪ Y

)
.
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Figure 9.2.6: The graph G′3.

The final step is to take the star composition G = G1 ?Y G2. This is shown in Figures 9.2.7
and 9.2.8.
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Figure 9.2.7: The graphs G1 and G2.

The graph G, illustrated in Figure 9.2.8, satisfies M(G) ∼= M = M [R]. To verify this,
one may take the incidence matrix of G (equivalently, the star composition of the incidence
matrices of G1 and G2), and check that it is row-equivalent to R.
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Figure 9.2.8: A graph G such that M(G) = M .

This concludes our exploration of Tutte’s algorithm for determining when a binary matroid
is graphic. The idea behind Tutte’s method is beautifully simple. After determining a set
of necessary conditions of a graphic matroid, we sequentially check each of these conditions
on a given binary matroid. If any condition fails, we may conclude that the binary matroid
is not graphic. On the other hand if all conditions are met, these necessary conditions are
rendered sufficient by constructing the desired graph.

On the other hand, there are many binary matroids that are not graphic. In Chapter 2
we showed that every binary matrix has a Z2-Kirchhoff graph. We will reconcile these no-
tions in Chapter 10 by introducing Z2-Kirchhoff partitions. Moreover, we will illustrate a
number of examples where a slight modification of Tutte’s algorithm permits us to construct
Z2-Kirchhoff partitions for binary matroids that are not graphic.



Chapter 10

Binary Matroids and Z2-Kirchhoff
Partitions

This chapter synthesizes the discussions of Chapters 6, 8, and 9. Specifically, although
every graphic matroid is binary, not every binary matroid is graphic. This chapter seeks
a full converse of Corollary 9.2, in the form of a graphical structure that can capture the
dependencies of any binary matroid. Before proceeding, we first determine the properties of
graphic matroids that we aim to preserve in this structure, outlined by Proposition 10.1.1

Proposition 10.1. Suppose M is a graphic matroid, M ∼= M(G) for some graph G. Then

(1) Each circuit of M corresponds to a cycle in G.

(2) Each cycle of G corresponds to a dependent set in M .

(3) Each vertex cut of G corresponds to a disjoint union of cocircuits, i.e. circuits of
dual matroid M∗.

Keeping properties (1)-(3) in mind, the main motivation for this chapter is the following. In
some sense, graphs are limited by the fact that each edge, and thus each matroid element,
appears only once. By allowing cells of an edge partition–rather than the edges themselves–
to correspond to matroid elements, we can thereby achieve repetition of matroid elements in
the graph. The added flexibility of repeated elements will permit these structures to capture
additional dependencies of binary matroids.

1Note that these are not the strongest-possible conditions: (2) could be strengthened by replacing “de-
pendent” with “a circuit.”

247
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Section 10.1 begins by introducing Z2-Kirchhoff edge-partitions on undirected graphs. Sec-
tion 10.2 then reinterprets Proposition 10.1 in order to define a Z2-Kirchhoff matroid. Specif-
ically, a matroid is Z2-Kirchhoff if the cycles and vertex cuts of some graph–with respect to
a Z2-Kirchhoff edge-partition–satisfy Proposition 10.1. Examples 10.3 and 10.4 demonstrate
that two classically non-graphic binary matroids, F7 and M∗(K3,3), are both Z2-Kirchhoff.
These are special cases of Theorem 10.1, the main result of this chapter, which states that ev-
ery binary matroid is Z2-Kirchhoff. Section 10.2.1 presents the proof of this result. Finally,
Section 10.3 presents a sequence of examples that construct Z2-Kirchhoff edge-partitions.
Specifically, we execute Tutte’s algorithm on non-graphic binary matroids. At the point
at which Tutte’s algorithm terminates (and concludes “not graphic”) we introduce edge-
partitions and follow an analogue of Tutte’s method to construct the desired Z2-Kirchhoff
edge-partitions. This process is carried out on the each of the standard excluded minors,
M∗(K3,3) (Section 10.3.1), M∗(K5) (Section 10.3.2), F7 (Section 10.3.3), and F ∗7 (Section
10.3.4).

10.1 Z2-Kirchhoff Edge-Partitions

Let G = (V,E) be a finite undirected graph with vertex set V (G) = {vi} and edge set
E(G) = {ej}. All graphs in this chapter will be undirected, and may have multiple edges.
For any vertex v, let λ(v) be the binary incidence vector of v. That is, λ(v) is a vector with
|E(D)| entries, and jth entry 1 if v is an endpoint of edge ej. As before, let a cycle in G be
any closed walk with non-repeating vertices. For any cycle C, let the binary cycle vector of
C, denoted χ(C), be a vector with |E(D)| entries, and jth entry 1 if C traverses edge ej. It
is well-known that for all vertices v and all cycles C,

λ(v) · χ(C) ≡ 0 (mod 2). (10.1)

Now let π = (E1, . . . , Ek) be an edge-partition of G. The following definition is analogous
to that of Section 6.2.

Definition 10.1. An edge-partition π = {E1, . . . , Ek} of E(G) with characteristic matrix T
is Z2-Kirchhoff if for all vertices v and cycles C,

λ(v)T · χ(C)T ≡ 0 (mod 2). (10.2)

We say that a Z2-Kirchhoff edge partition is nontrivial if for some vertex v, the vector
λ(v)T is nonzero (mod 2).

Take a moment to consider the vectors λ(v)T and χ(C)T . Each has k entries, indexed by
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E1, . . . , Ek. The ith entry of the vector λ(v)T is the net number of edges of class Ei that have
vertex v as an endpoint. That is, λ(v)T can be thought of as a vertex incidence vector with
respect to edge-partition π. We will call this vector the π-incidence vector , and denote
it λπ(v). Similarly, the ith entry of vector χ(C)T is the net number of edges of class Ei that
cycle C traverses. Thus χ(C)T can be thought of as a cycle vector with respect to edge-
partition π. We will call this vector the π-cycle vector , and denote it χπ(C). Therefore an
edge-partition is Z2-Kirchhoff when the classical orthogonality of vertex and cycle vectors is
maintained with respect to the structure of the edge-partition,

λπ(v) · χπ(C) ≡ 0 (mod 2)

for all vertices v and cycles C.

Example 10.1. In this chapter, an edge-partition of a graph G will typically be presented
via a drawing with edge labels that indicate the subscript of the partition cell containing
each edge. For example, Figure 10.1.1 presents a graph with a 5 cell edge-partition π =
(E1, . . . , E5). Let C be the cycle around the perimeter of G1, and v the central vertex as
drawn. Then

χπ(C) =
[ E1 E2 E3 E4 E5

1 2 0 0 1
]

and λπ(v) =
[ E1 E2 E3 E4 E5

0 0 3 2 1
]
.
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Figure 10.1.1: An undirected multigraph G1 with edge parti-
tion π.

Once again, every graph has an edge-partition that is trivially Z2-Kirchhoff, namely the
partition for which every cell contains exactly one edge. In this case the characteristic
matrix T is simply the |E(G)|× |E(G)| identity matrix, and equation (10.2) becomes (10.1).

Example 10.2. Consider graph G2 with edge-partition π as presented in Figure 10.1.2.
Observe that any vertex v satisfies

λπ(v) ∈ U =
{ [ E1 E2 E3 E4

1 1 1 0
]
,
[ E1 E2 E3 E4

1 1 0 1
]
,
[ E1 E2 E3 E4

0 0 2 2
] }

,
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and any cycle C satisfies

χπ(C) ∈ Z =
{ [ E1 E2 E3 E4

0 1 1 1
]
,
[ E1 E2 E3 E4

1 0 1 1
]
,
[ E1 E2 E3 E4

1 1 2 0
]
,

[ E1 E2 E3 E4

1 1 0 2
]
,
[ E1 E2 E3 E4

2 2 0 0
] }

.

Moreover, each element of U is orthogonal (mod 2) to each element of Z. Therefore, edge-
partition π of graph G2 is Z2-Kirchhoff.

1

2

2

34

43

1

Figure 10.1.2: An undirected graph G2 with a Z2-Kirchhoff
edge-partition.

10.2 Z2-Kirchhoff Matroids

The cycle matroids of graphs are classically constructed by considering edge dependencies,
specifically cycles, with respect to edge enumeration. That is, given a graph G, enumerate
the edges and let each be an element of the ground set S(M(G)). Edge enumeration, how-
ever, is an edge-partition in which each edge is assigned to a distinct partition class. In this
section we explore the relationship between binary matroids and edge-partitions in general.
By studying graph structure with respect to the partition, edge-partitions offer the added
flexibility of multiple-element partition classes. This equates to allowing a matroid element
to appear more than once in the graph.

Let M be a binary matroid with ground set S.

Definition 10.2. For any X ⊆ S the indicator of X, denoted ΥX , is a binary vector with
entries labeled by S, such that ΥX(j) = 1 if and only if j ∈ X.

Given this notation, Proposition 10.1 may be re-formulated as follows.
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Corollary 10.1. Let M be a binary matroid that is graphic, say M ∼= M(G).

(1) For any circuit X of M , ΥX ≡ χ(C) (mod 2) for some cycle C of G.

(2) If C is a cycle of G, then χ(C) ≡ ΥX (mod 2) for some dependent set X of M .

(3) For any vertex v, λ(v) is the indicator of a disjoint union of circuits of M∗.

For any Z2-Kirchhoff graph, the cycle vectors χπ(C) (mod 2) are well-defined and have all
entries 0 or 1. This suggests a natural way to extend Corollary 10.1.

Definition 10.3. Let M be a matroid with ground set S of cardinality k. M is Z2-
Kirchhoff if there exists a graph G with nontrivial Z2-Kirchhoff edge-partition π (on k
classes) such that

(i) For any circuit X of M , ΥX ≡ χπ(C) (mod 2) for some cycle C of G.

(ii) For any cycle C of G, if χπ(C) 6= 0 (mod 2) then there exists some dependent set
X in M such that χπ(C) ≡ ΥX (mod 2).

We also say that edge-partition π of G is Z2-Kirchhoff with respect to M.

Remark 10.1. Observe that Definition 10.3 does not specifically address property (3), as
it is guaranteed by the orthogonality maintained by Z2-Kirchhoff edge-partitions.

Remark 10.2. The restriction to nontrivial Z2-Kirchhoff graphs in Definition 10.3 is in-
cluded rule-out undesirable trivial cases introduced by the field Z2. For example, one could
construct a sequence of disjoint cycles (corresponding to circuits of M), and double all la-
beled edges. This forces all binary π-incidence vectors to be the zero vector (mod 2). The
result is a graph that is trivially Z2-Kirchhoff, and satisfies (i) and (ii). It does not, however,
illuminate any properties of the underlying matroid.

Corollary 10.2. Every graphic matroid is Z2-Kirchhoff.

Proof. Let M be a graphic matroid and G any graph such that M(G) ∼= M . Then if E(G) =
{e1, . . . , en}, the trivial edge-partition π = ({e1}, . . . , {en}) is Z2-Kirchhoff. Moreover, as
M(G) ∼= M , the conditions of Definition 10.3 are satisfied.

Z2-Kirchhoff matroids may be viewed as an extension of graphic matroids. In this chapter, we
will demonstrate that all binary matroids are Z2-Kirchhoff. As Examples 10.3 and 10.4 will
show, the most fundamental non-graphic binary matroids (namely, those listed in Theorem
8.7) are Z2-Kirchhoff.
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Example 10.3. The Fano Matroid is Z2-Kirchhoff. The Fano matroid, F7, is a binary
matroid on 7 elements with the following standard representation matrix

AF7 =


1 2 3 4 5 6 7

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

. (10.3)

The Fano matroid has 14 circuits: 7 each of cardinalities 3 and 4. Under this representation,

C (F7) =

{
{1, 2, 4}, {1, 3, 5}, {1, 6, 7}, {2, 3, 6}, {2, 5, 7}, {3, 4, 7}, {4, 5, 6}
{1, 4, 5, 7}, {1, 2, 3, 7}, {1, 3, 4, 6}, {1, 2, 5, 6}, {2, 3, 4, 5}, {2, 4, 6, 7}, {3, 5, 6, 7}

}
.

(10.4)
Now consider the graph GF7 with edge-partition π as depicted in Figure 10.2.1. One may
verify that edge-partition π is, in fact, Z2-Kirchhoff. As before, cross-hatches are used to
denote edges (with the same endpoints) contained in the same partition class.
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Figure 10.2.1: A graph GF7 with Z2-Kirchhoff edge-partition
with respect for the Fano matroid F7.

One may check that for any circuit X of F7 listed in (10.4), there is a cycle C of GF7 such
that

ΥX ≡ χπ(C) (mod 2). (10.5)

Conversely, for any cycle C of GF7 such that χπ(C) 6= 0 (mod 2), there exists a dependent
set X of F7 such that (10.5) is satisfied. This can easily be checked by showing that for any
cycle C,

[AF7 ] [χπ(C)]t ≡ 0 (mod 2).

Therefore the Fano matroid is Z2-Kirchhoff. This demonstrates the flexibility afforded by Z2-
Kirchhoff partitions: although F7 is not graphic, an edge-partition can capture the structure
of F7.
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Example 10.4. M∗(K3,3) is Z2-Kirchhoff. The following is a binary standard representa-
tion of M∗(K3,3),

AK3,3 =


1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 0 0 0
1 1 1 0 0 0 1 0 0
0 1 1 1 0 0 0 1 0
0 0 1 1 1 0 0 0 1

. (10.6)

Consider the graph GK3,3 with edge-partition π as depicted in Figure 10.2.2. Edge-partition
π is Z2 Kirchhoff.
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Figure 10.2.2: A graph GK3,3 , with edge-partition π, a Z2-
Kirchhoff edge-partition for M∗(K3,3).

One may check that the for any minimally dependent set of columns X of matrix (10.6),
there exists a cycle C in graph GK3,3 such that

ΥX ≡ χπ(C) (mod 2).

Conversely, for any cycle C of GK3,3 ,[
AK3,3

]
[χπ(C)]t ≡ 0 (mod 2).

Therefore matroid M∗(K3,3) is Z2-Kirchhoff. Observe that although K3,3 has no dual graph
under any classical notions, it has a dual Z2-Kirchhoff edge-partition.

It can also be demonstrated that the remaining two excluded minors of Theorem 8.7, F ∗7
and M∗(K5), are both Z2-Kirchhoff. This can be concluded from the following overarching
theorem.

Theorem 10.1. All binary matroids are Z2-Kirchhoff.
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The remainder of this section will present the full proof of Theorem 10.1. First, Theorem
10.2, reduces the problem to studying a single binary matroid of each rank. Next, Theorem
10.3 shows that those selected matroids satisfy the desired properties to prove Theorem 10.1.

10.2.1 Proof of Theorem 10.1

Recall that for a matroid M , any X ⊆ S(M) not containing a circuit is independent and
a maximal independent set is a base. As shown in [84] (or any standard matroid text), all
bases of M have the same cardinality, called the rank of M and often denoted r(M). If M
is representable, any standard representation matrix for M has exactly r(M) rows.

Lemma 10.1. Every binary matroid of rank 1 or 2 is graphic.

Proof. Let M be any binary matroid of rank 1 or 2 with standard representation matrix A.
Form a new matrix A′ by adjoining to A an additional row that is the (mod 2) sum of the
row(s) of A. As this additional row lies in the row space of A, M [A] ∼= M [A′]. Moreover,
every column of A′ has exactly two unit entries. Therefore A′ is the binary incidence matrix
of some graph G, and M [A′] ∼= M(G). Therefore M = M [A] ∼= M [A′] ∼= M(G) and so M is
graphic.

Corollary 10.3. Every binary matroid of rank 1 or 2 is Z2-Kirchhoff.

Next consider binary matroids of larger rank. A similar argument to Corollary 10.3 and
Lemma 10.1 cannot be used: the Fano matroid F7 is a binary matroid of rank 3 that is
not graphic. For any matroid of rank n, Theorem 10.2 will reduce the problem to studying
exactly one matroid of rank n.

Let B be any binary matrix with k − 1 columns. Let A be any k-column binary matrix
obtained from B by adjoining a kth column, that duplicates an existing column of B. Without
loss of generality, assume that this kth column is identical to column k − 1. Now suppose
M [B] is Z2-Kirchhoff. That is, there exists a graph GB with edge-partition πB that is Z2-
Kirchhoff with respect to B. Necessarily, edge-partition πB has k − 1 classes, E1, . . . , Ek−1.
Construct a new graph, GA, with edge-partition πA, as follows. For every edge of GB in
partition class Ek−1, add a new edge. Let all such additional edges belong to a new cell, Ek,
and let πA = πB ∪ Ek.

Lemma 10.2. Edge-partition πA of GA is Z2-Kirchhoff with respect to M [A].

Proof. First, we show that edge-partition πA of graph GA is Z2-Kirchhoff. Let v be any
vertex in GA, and let xi denote the ith entry of incidence vector λπA(v). By construction,
xk−1 = xk, so

λπA(v) =
[
x1 x2 · · · xk−1 xk−1

]
.
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Moreover, [
x1 x2 · · · xk−1

]
= λπB(ṽ)

for some vertex ṽ in graph GB. Now let C be any cycle of GA with

χπA(C) =
[
y1 y2 · · · yk−1 yk

]
.

We will show that λπA(v) · χπA(C) ≡ 0 (mod 2). By construction, the cycles C of GA with
nonzero cycle vectors break into three cases.

Case 1: C has cycle vector
[ Ek−1 Ek

0 · · · 0 1 1
]
. Then

λπA(v) · χπA(C) ≡
k∑
i=1

xiyi = xk−1 + xk−1 ≡ 0 (mod 2).

Case 2: C does not traverse any edges of cell Ek. Then yk = 0, and
[
y1 y2 · · · yk−1

]
=

χ(C̃) for some cycle C̃ of graph GB. Then since edge-partition πB of GB is Z2-Kirchhoff,

λπA(v) · χπA(C) ≡
k∑
i=1

xiyi ≡
k−1∑
i=1

xiyi + 0 ≡
k−1∑
i=1

xiyi ≡ λπB(ṽ) · χπB(C̃) ≡ 0 (mod 2).

Case 3: C traverses some edges of cell Ek. Let C̃ be the cycle in GB obtained from C
by replacing each occurrence of an edge of cell k with its matching edge of cell k − 1. Then

χπB(C̃) =
[
y1 y2 · · · yk−2 (yk−1 + yk)

]
.

Thus as edge-partition πB is Z2-Kirchhoff,

λπA(v) · χπA(C) ≡
k∑
i=1

xiyi

≡
k−2∑
i=1

xiyi + xk−1yk−1 + xk−1yk

≡
k−2∑
i=1

xiyi + xk−1(yk−1 + yk)

≡ λπB(ṽ) · χπB(C̃) ≡ 0 (mod 2).

This completes the proof that edge-partition πA of graph GA is Z2-Kirchhoff.

Now consider the circuits of M [A] compared to those of M [B]. As matrix A is obtained
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from B by adding an additional column equal to the final column of B, the minimal column
dependencies of A are

C (M [A]) =
{
k−1, k

}
∪
{
X : X ∈ C (M [B])

}
∪
{
X\(k−1)∪k : X ∈ C (M [B]) and k−1 ∈ X

}
.

Observe that each of these three types of circuits fall exactly into the three cases presented
above. Clearly Υ{k−1,k} is a πA-cycle vector of GA. For any circuit X ∈ C (M [B]), since
edge-partition πB is Z2-Kirchhoff, it follows by Case 2 that there is a cycle in GA with πA-
cycle vector ΥX . Finally consider any cycle of the form X\(k − 1) ∪ k for X ∈ C (M [B]).
Let CB be the cycle in GB with cycle vector ΥX , and let CA be the cycle in GA obtained
replacing all occurrences of an edge of cell k − 1 in CB with its matching edge of cell
k. It follows from Case 3 that χπA(CA) = ΥX\(k−1)∪k. Therefore, For any X ∈ C (M) =
C (M [A]) there is a cycle C in GA such that χπA(C) ≡ ΥX (mod 2).

Conversely given Cases 1- 3, it is clear that any nonzero πA-cycle vector of GA is the indicator
of a dependent set in M . As GB is nonzero, so is GA. Therefore M [A] and GA satisfy all
conditions of Definition 10.3. That is, partition πA of graph GA is Z2-Kirchhoff graphic with
respect to M [A].

Corollary 10.4. Let B be any binary matrix, and suppose a binary matrix A can be obtained
from B by appending any number of additional columns, each of which is a column of B. If
M [B] is Z2-Kirchhoff, then M [A] is also Z2-Kirchhoff.

Thus given a binary matrix B, if M [B] is Z2-Kirchhoff then we can freely replicate the
columns of matrix B and construct a graph with a Z2-Kirchhoff edge-partition for the re-
sulting matrix. As Lemma 10.3 will show, a similar result holds for deleting columns.

Remark 10.3. Corollary 10.4 demonstrates that it is sufficient to study binary matrices
with distinct columns. In terms of matroids, this means it is sufficient to consider binary
matroids with no 2-element circuits.

Let M be a binary matroid, and suppose that M is Z2-Kirchhoff with respect to some graph
G and edge-partition π.

Definition 10.4. If for any circuit X ∈ C (M), there is a cycle C in G such that

χπ(C) = ΥX (10.7)

we say that M is strongly Z2-Kirchhoff . Moreover, we say that edge-partition π of G is
strongly Z2-Kirchhoff with respect to M .

Observe that (10.7) is vector equality over the rational numbers, and thus is a stronger as-
sumption than ΥX being equivalent (mod 2) to a π-cycle vector of G. For a matroid to be
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Z2-Kirchhoff, we only require that χπ(C) ≡ ΥX (mod 2) for some cycle C. In a strongly
Z2-Kirchhoff matroid, however, each circuit occurs as precisely the set of edge labels of a
cycle. This will play a crucial role when considering element deletion.

Let A be any k-column binary matrix, and let B be obtained from A by deleting some
(labeled) subset X of p columns. Without loss of generality, we may suppose these are the
last p columns of A, {k − p + 1, . . . , k − 1, k}. Suppose that there exists a graph GA with
edge-partition πA that is strongly Z2-Kirchhoff with respect to M [A]. Moreover, suppose
that for some j /∈ X and some vertex v, λπA(v)j 6= 0 (mod 2). Let GB be a graph obtained
from GA by deleting all edges of partition classes k − p + 1, . . . , k of πA. Let πB be the
(k − p)-cell edge-partition of GB induced by πA.

Lemma 10.3. Edge-partition πB of GB is Z2-Kirchhoff with respect to the matroid M [B].

Proof. First we prove that πB is Z2-Kirchhoff. Let C be any cycle of GB, and let yi be the
ith entry of cycle vector χπB(C). Clearly the edges of C are precisely the edges of a cycle C̃
in GA, with cycle vector

χπA(C̃) =
[
y1 · · · yk−p 0 · · · 0

]
.

Now let v be any vertex of GB, and let xi denote the ith entry of incidence vector λπB(v).
Let ṽ be the corresponding vertex in GA, so

λπA(ṽ) =
[
x1 · · · xk−p ∗ · · · ∗

]
,

where a ∗ may be any integer including 0. Then as πA is Z2-Kirchhoff,

0 ≡ λπA(ṽ) · χπA(C̃) ≡
k−p∑
i=1

xiyi + 0 ≡ λπB(v) · χπB(C) (mod 2).

Therefore since C and v were arbitrary in GB, πB is Z2-Kirchhoff. Observe M [B] = M [A]\X,
so to show that M [B] is Z2-Kirchhoff, it suffices to show that M [A]\X is Z2-Kirchhoff. Recall
from Section 8.2.1 that

C (M [A]\X) = {Y ⊆ S(M [A])−X : Y ∈ C (M [A])} .

That is, the circuits of M [A]\X are precisely the circuits of M [A] that do not contain any
elements of X. For any circuit Y ∈ C (M [A]), because πA is strongly Z2-Kirchhoff, there is
a cycle in GA with edges whose partition cells are exactly those elements of C. Therefore in
deleting all edges with labels from X, each such cycle (corresponding to a circuit of M [A]\X)
is maintained. Therefore for each circuit Y ∈ C (M [A]\X) there exists a cycle in GB whose
πB-cycle vector is ΥY . Conversely, since every πA-cycle vector of GA is the indicator of a
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dependent set in M [A], it follows that every πB-cycle vector of GB is the indicator of a
dependent set in M [B]. Finally, πB is guaranteed to be nontrivial by the assumption that
for some j /∈ X and some vertex v, the λπA(v)j 6= 0 (mod 2). Therefore M [B] and πB satisfy
the conditions of Definition 10.3, and πB is Z2-Kirchhoff with respect to M [B].

Now let Mn be the n× 2n matrix where column i, denoted mi, is the binary representation
of the integer (i− 1). Corollary 10.4 and Lemma 10.3 lead to the following.

Theorem 10.2. Suppose there exists a graph Gn, with edge-partition πn, that is strongly Z2-
Kirchhoff with respect to M [Mn]. Moreover, suppose that for some row r of Mn, and every
vertex v of Gn, λπn(v) ≡ r (mod 2). Then every binary matroid of rank n is Z2-Kirchhoff.

Proof. Let M be any binary matroid of rank n with standard representation matrix A. By
construction, the columns of Mn are unique, and are all possible vectors in Zn2 . Therefore
the matrix A can be obtained, up to column relabeling, from Mn in two steps.

(1.) First delete a (possibly empty) set of columns Y from Mn. Let M ′
n denote the

resulting matrix.

(2.) Add a (possibly empty) set of new columns to M ′
n, each of which is a column of

M ′
n. Let M ′′

n denote the resulting matrix.

By assumption, there exists a graph Gn, with edge-partition πn, that is strongly Z2-Kirchhoff
with respect to M [Mn]. We claim that there exists a label p /∈ Y , and a vertex v, such that
λπn(v)p 6= 0 (mod 2). Suppose not. By assumption, for any vertex v, λπn(v) = r (mod
2). Therefore, it must be the case that {j : rj = 1} ⊆ Y . Then if r was the ith row of
Mn, it follows that the ith row of the matrix M ′

n must contain only zeros. However, this
contradicts that matrix A (and thus matroid M) has rank n. Therefore by Lemma 10.3,
M [M ′

n] is Z2-Kirchhoff. Furthermore, by Corollary 10.4, M [M ′′
n ] is also Z2-Kirchhoff. Since

M [M ′′
n ] ∼= M [A] ∼= M , M is Z2-Kirchhoff. As M was an arbitrary binary matroid of rank n,

the result is proven.

Theorem 10.2 is significant in that it greatly reduces the problem of proving that all binary
matroids are Z2-Kirchhoff. In particular, to prove that any binary matroid of rank n is
Z2-Kirchhoff, it suffices to show the following.

Theorem 10.3. For any n there exists a graph Gn, with edge-partition πn, that is strongly
Z2-Kirchhoff with respect to M [Mn]. Moreover, for some row r of Mn, and every vertex v
of Gn, λπn(v) ≡ r (mod 2).

Proof. The proof of this theorem is constructive. It utilizes the fact that the columns of Mn

are the complete set of elements of the vector space Zn2 , and essentially builds the Cayley
color graph. For completeness, an alternate (inductive) proof is given in Appendix B.
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Let n be given, and let Gn be a graph on 2n vertices, {v1, . . . , v2n}, with an edge between all
pairs of vertices, and a loop at each vertex. Let πn = (E1 . . . E2n) be a 2n-cell edge-partition
of Gn defined as follows. For each 1 ≤ i, j ≤ 2n, edge {vi, vj} ∈ Ek, where k is the index
such that

mk ≡mi + mj (mod 2). (10.8)

For any edge in a partition cell Ek with odd index k > 1, add a second edge, also in cell Ek,
with the same end points. Thus Gn is a complete graph with a loop (contained in cell E1)
at each vertex, and all edges in odd-indexed cells of πn occur in pairs.

Proposition 10.2. Let vi be any vertex of Gn. For any index k, vi has a unique neighbor
vj to which it is connected by an edge of partition class Ek.

Proof. Let j be the index such that mj ≡mk + mi (mod 2). Such a j must exist since the
columns of Mn are all possible binary vectors of length n. Moreover,

mi + mj ≡mi + (mk + mi) ≡mk (mod 2),

so by (10.8), {vi, vj} ∈ Ek. Now suppose there exist j1, j2 such that {vi, vj1}, {vi, vj2} ∈ Ek.
Then by (10.8), mi +mj1 ≡mi +mj2 . Therefore mj1 ≡mj2 and j1 = j2 since the columns
of Mn are pairwise distinct.

Observe that by construction if k = 1, i = j and {vi, vj} is a loop. If k is even, edge {vi, vj}
is unique, and if k > 1 is odd, there are exactly two edges between vi and vj.

Corollary 10.5. For any vertex vi,

λπn(vi) =
[

0 1 0 1 · · · 0 1
]

(mod 2).

Moreover, observe that r1 =
[

0 1 0 1 · · · 0 1
]

is the first row of matrix Mn, and so
for all vertices vi of G,

λπn(vi) ≡ r1 (mod 2).

Proposition 10.3 illustrates the key property of this edge-partition. For any edge e, let ϕ(e)
be the index k such that e ∈ Ek. In particular, by (10.8),

mϕ({vi,vj}) ≡mi + mj (mod 2).

Proposition 10.3. For any walk W = vi1 · vi2 · vi3 · · · viN in Gn with edges E(W ) ={
{vi1 , vi2}, {vi2 , vi3}, . . . {viN−1

, viN}
}

,∑
e∈E(W )

mϕ(e) ≡mi1 + miN (mod 2).
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Proof. By (10.8), if e = {vil , vil+1
}, then mϕ(e) ≡ mil + mil+1

. As a result the sum is
telescoping,∑

e∈E(W )

mϕ(e) ≡ (mi1 + mi2) + (mi2 + mi3) + · · ·+ (miN−1
+ miN )

≡mi1 + (mi2 + mi2) + (mi3 + mi3) + · · ·+ (miN−1
+ miN−1

) + miN

≡mi1 + miN (mod 2).

Lemma 10.4. Let C = vi1 · vi2 · · · viN · vi1 be any cycle of Gn with edges E(C). Then

[Mn] [χπn(C)]t ≡ 0 (mod 2).

Proof. Let X be the indices of the unit entries of χπn(C) (mod 2). Then it suffices to show
that

∑
k∈X mk ≡ 0 (mod 2). Observe that for any index k ∈ X, partition cell Ek contains

an odd number of edges of E(C), whereas for any label k /∈ X, cell Ek must contain an even
number. Therefore, ∑

k∈X

mk ≡
∑

e∈E(C)

mϕ(e) (mod 2)

≡mi1 + mi1 (mod 2) by Proposition 10.3

≡ 0 (mod 2).

Corollary 10.6. Edge-partition πn of Gn is Z2-Kirchhoff.

Proof. Let v be any vertex, and let C be any cycle of Gn. By Proposition 10.2,

λπn(v) =
[

0 1 0 1 · · · 0 1
]

(mod 2) ∈ Row (Mn),

and by Lemma 10.4,
[Mn] [χπn(C)]t ≡ 0 (mod 2).

Therefore,
λπn(v) · χπn(C) ≡ 0 (mod 2).

Next we show that πn is strongly Z2-Kirchhoff with respect to the matroid M [Mn].

Corollary 10.7. For any cycle C of Gn, if χπn(C) is nonzero (mod 2), then

χπn(C) ≡ ΥX (mod 2)
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for some dependent set X of M [Mn].

Proof. Let C be any cycle of Gn for which χπn(C) 6= 0 (mod 2). Then by Lemma 10.4,
[Mn] [χπn(C)]t ≡ 0 (mod 2). Therefore letting X be the indices of the unit entries of χπn(C)
(mod 2), X is a set of columns of Mn that sum to 0, and thus a dependent set of M [Mn].

Lemma 10.5. Let X be any circuit of M [Mn]. Then there exists a cycle C in Gn such that

χπn(C) = ΥX .

Proof. Suppose X = {k1, k2, . . . , kN}. Choose any initial vertex vi0 . By Proposition 10.2
there exists a unique vertex vi1 such that ϕ({vi0 , vi1}) = k1. Similarly, vi1 has a unique
neighbor vi2 such that ϕ({vi1 , vi2}) = k2. Continuing in this manner, construct a walk
C = vi0 · vi1 · vi2 · · · viN such that ϕ({vim−1 , vim}) = km. Since X is a circuit of M [Mn],∑N

j=1 mkj ≡ 0 (mod 2). Thus by Proposition 10.3,

0 ≡
N∑
j=1

mkj ≡
∑

e∈E(C)

mϕ(e) ≡mi0 + miN (mod 2).

As the columns of Mn are unique, necessarily i0 = iN . Therefore vi0 = viN and C is a closed
walk in Gn. Suppose C is not a cycle of Gn. Then there exists 1 ≤ s < t ≤ N such that
t− s < N and vis−1 · vis · · · vit · vis−1 is a cycle in Gn. Then by Corollary 10.7, {ks, . . . , kt} is
dependent in M [Mn]. However {ks, . . . , kt} ( X, contradicting that X is a circuit. Therefore
C is a cycle of Gn and clearly χπn(C) = ΥX .

This completes the proof of Theorem 10.3 and, as a result, the proof of Theorem 10.1.

10.3 Constructing Z2-Kirchhoff Edge-Partitions

The remaining sections of Chapter 10 will illustrate various constructions of Z2-Kirchhoff
partitions. Specifically, the classical non-graphic binary matroids M∗(K3,3), M∗(K5), F7, and
F ∗7 will be considered. In each case, beginning with a binary representation matrix we proceed
as in Tutte’s algorithm, described in Chapter 9. At the point where Tutte’s algorithm would
classically terminate and conclude “not graphic,” we will utilize the flexibility of repeated
elements (afforded by edge-partitions) to construct a graph with the desired Z2-Kirchhoff
edge-partition. The intermediate steps of each example will be presented as graphs with edge
labels. The final product of each construction will be presented in color to aid visualization
of the edge partition.
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Remark 10.4. This Section will give 4 interesting examples of constructing Z2-Kirchhoff
partitions based on extensions of Tutte’s algorithm. However, determining a general con-
struction method is not an open problem. A universal method of building a Z2-Kirchhoff
edge partition for any binary matroid was used to prove Theorem 10.1.

10.3.1 The Dual of the Cycle Matroid of K3,3, M
∗(K3,3)

The matrix A3 given in (10.9) is a standard binary representation of the matroid M∗(K3,3).

A3 =


1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
2∗ 1 1 1 0 0 0 1 0 0
3∗ 0 1 1 1 0 0 0 1 0
4∗ 0 0 1 1 1 0 0 0 1

 (10.9)

Remark 10.5. Note that we index the rows of A3 with starred integers. This construction
will include many matrix operations, and this row indexing will add transparency to many
steps. The stars are included to distinguish row indices from the column labels, which
correspond to matroid elements.

Letting M3 = M [A3], it is well-known that M∗(K3,3), and thus M3, is not graphic. Therefore
Tutte’s algorithm performed on matrix A3 will always terminate at a step where a graph
cannot be constructed. Instead of constructing a graph, we will modify Tutte’s algorithm to
construct a graph with an edge partition that is Z2-Kirchhoff with respect to M3.

Begin with the cocircuit Y of M3 corresponding to the first row of A3, Y = {1, 2, 3, 4, 5, 6}.
First, find the bridges of Y (i.e. the elementary separators of M3\Y ). The binary matrix
representation of M3\Y is given in (10.10).

M3\Y :


7 8 9

1 0 0
0 1 0
0 0 1

 (10.10)

Clearly the elementary separators are

B1 = {7} B2 = {8} B3 = {9}.

Consider these bridges one at a time.
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To begin, take the bridge B1 = {7}. The matrix representation of Y -component M3.(B1∪Y )
is

M3.(B1 ∪ Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
2∗ 1 1 1 0 0 0 1 0 0

]
.

Therefore, the restriction of M3.(B1 ∪ Y ) to Y has matrix representation

M3.(B1 ∪ Y )|Y :

[ 1 2 3 4 5 6

1 1 1 1 1 1
1 1 1 0 0 0

]
. (10.11)

Adding the second row of (10.11) to the first,

[ 1 2 3 4 5 6

1 1 1 1 1 1
1 1 1 0 0 0

]
−→

[ 1 2 3 4 5 6

0 0 0 1 1 1
1 1 1 0 0 0

]
,

row operations show that B1 partitions Y , with partition

{1, 2, 3}, {4, 5, 6}.

Moreover, M3.(B1 ∪ Y ) is a binary matroid of rank 2, and thus is graphic. The incidence
matrix of a graph can be obtained by appending a third row to the matrix representation of
M3.(B1 ∪ Y ),

M3.(B1∪Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
2∗ 1 1 1 0 0 0 1 0 0

]
−→


1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
2∗ 1 1 1 0 0 0 1 0 0

(1∗+2∗) 0 0 0 1 1 1 1 0 0

.
This graph, G1, has Y = {1, 2, 3, 4, 5, 6} as the star of a vertex, and is illustrated in Figure
10.3.1.
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1
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5
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Figure 10.3.1: A graph G1 for Y -component M3.(B1 ∪ Y ).
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Next take the bridge B2 = {8}. The matrix representation of Y -component M3.(B2 ∪ Y ) is

M3.(B2 ∪ Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
3∗ 0 1 1 1 0 0 0 1 0

]
.

The restriction of M3.(B2 ∪ Y ) to Y has matrix representation

M3.(B2 ∪ Y )|Y :

[ 1 2 3 4 5 6

1 1 1 1 1 1
0 1 1 1 0 0

]
. (10.12)

Adding the second row of (10.12) to the first,

[ 1 2 3 4 5 6

1 1 1 1 1 1
0 1 1 1 0 0

]
−→

[ 1 2 3 4 5 6

1 0 0 0 1 1
0 1 1 1 0 0

]
row operations show that B2 partitions Y , with partition

{1, 5, 6}, {2, 3, 4}.

Moreover, M3.(B2 ∪ Y ) is a binary matroid of rank 2, and thus is graphic. Once again,
appending a third row gives the incidence matrix of a graph,

M3.(B2∪Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
3∗ 0 1 1 1 0 0 0 1 0

]
−→


1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
3∗ 0 1 1 1 0 0 0 1 0

(1∗+3∗) 1 0 0 0 1 1 0 1 0

.
This graph, G2, has Y = {1, 2, 3, 4, 5, 6} as the star of a vertex, and is illustrated in Figure
10.3.2.
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Figure 10.3.2: A graph G2 for Y -component M3.(B2 ∪ Y ).
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Finally, take the bridge B3 = {9}. The matrix representation of M3.(B3 ∪ Y ) is

M3.(B3 ∪ Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
4∗ 0 0 1 1 1 0 0 0 1

]
.

The restriction of M3.(B3 ∪ Y ) to Y has matrix representation

M3.(B3 ∪ Y )|Y :

[ 1 2 3 4 5 6

1 1 1 1 1 1
0 0 1 1 1 0

]
. (10.13)

Adding the second row of (10.13) to the first,

[ 1 2 3 4 5 6

1 1 1 1 1 1
0 0 1 1 1 0

]
−→

[ 1 2 3 4 5 6

1 1 0 0 0 1
0 0 1 1 1 0

]
row operations show that B3 partitions Y , with partition

{1, 2, 6}, {3, 4, 5}.

Moreover, M3.(B3 ∪ Y ) is a binary matroid of rank 2, and thus is graphic. Row operations
lead to the incidence matrix of a graph,

M3.(B3∪Y ) :

[ 1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
4∗ 0 0 1 1 1 0 0 0 1

]
−→


1 2 3 4 5 6 7 8 9

1∗ 1 1 1 1 1 1 0 0 0
4∗ 0 0 1 1 1 0 0 0 1

(1∗+4∗) 1 1 0 0 0 1 0 0 1

.
This graph, G3, has Y = {1, 2, 3, 4, 5, 6} as the star of a vertex, and is illustrated in figure
10.3.3.
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Figure 10.3.3: A graph G3 for Y -component M3.(B3 ∪ Y ).
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Therefore cocircuit Y has 3 bridges, each of which partitions Y . Specifically, the partitions
are:

B1 : {1, 2, 3}, {4, 5, 6}
B2 : {1, 5, 6}, {2, 3, 4}
B3 : {1, 2, 6}, {3, 4, 5}.

Observe that B1 and B2 overlap, B1 and B3 overlap, and B2 and B3 overlap. Therefore we
cannot find the non-overlapping families of bridges U1 and U2 required by Tutte’s algorithm.
At this point, Tutte’s algorithm terminates and concludes that M∗(K3,3) is not graphic.

However, we have already demonstrated that each Y -component is graphic. Moreover,
Tutte’s star-composition technique can be used to build a graph G3,3, with edge-partition
π3,3, that is Z2-Kirchhoff with respect to M3.

Remark 10.6. Throughout the following graph construction, lines were chosen to make
each intermediate step as simply-drawn as possible. Line segments that appear congruent
do not reflect edges contained in the same partition cell.

First, let H2 be the star composition H2 = G1 ?Y G2, illustrated in Figure 10.3.4.
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Figure 10.3.4: The star composition H2 = G1 ?Y G2.

Notice that H2 does not have Y = {1, 2, 3, 4, 5, 6} as the star of a vertex. Beginning with
H2, we will construct a graph H ′2, with edge-partition π′2, such that Y = {1, 2, 3, 4, 5, 6} is
the star of a vertex with respect to partition π′2. That is, there exists a vertex v ∈ H ′2 such
that

λπ′2(v) ≡
[ 1 2 3 4 5 6 7 8

1 1 1 1 1 1 0 0
]
≡ ΥY (mod 2).

Moreover, H ′2 can be constructed so that for any cycle C of H ′2, the vector χπ′2(C) (mod 2)
is a cycle vector of H. Therefore with respect to matroid elements, the cycles and vertices of
H ′2 are identical to those of H2. Specifically, H ′2 can be constructed by duplicating, rotating,
and adjoining a second copy of H2 to itself. This construction is illustrated in Figure 10.3.5a,
and H ′2 is given in Figure 10.3.5b.
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Join these two graphs along this edge.

(a) Constructing H ′2
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(b) The result, H ′2

Figure 10.3.5: A graph H ′2, with an edge partition π′2, consist-
ing of 8 cells each of cardinality 2.

Observe that H ′2 has two vertices with Y = {1, 2, 3, 4, 5, 6} as the star, that is,

λπ′2(v) ≡ ΥY (mod 2). (10.14)

Thus we may now take the star composition of H ′2 with G3. In fact, we take the star
composition of H ′2 with two copies of G3, one at each vertex of H ′2 satisfying (10.14), as
illustrated in Figure 10.3.6.
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Figure 10.3.6: Double star composition of H ′2 with G3.

In the process of star composition, choose one vertex of G3 (other than the one with star
Y ), and let the two copies of that vertex be the endpoints of all edges of partition cell 8.
The result is the graph G3,3, with edge-partition π3,3, depicted in Figure 10.3.7.
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Figure 10.3.7: A graph G3,3 with edge-partition π3,3. π3,3 is
Z2-Kirchhoff with respect to M3, and therefore M∗(K3,3).

One may verify that for any vertex v and any cycle C of G3,3,

λπ3,3(v) · χπ3,3(C) ≡ 0( mod 2).

Moreover, π3,3 is Z2-Kirchhoff with respect to M3, and thus with respect to M∗(K3,3). Per-
haps more interestingly, this edge-partition was constructed by following the machinery of
Tutte’s algorithm, and utilizing the multiplicity afforded by edge-partitions when the classi-
cal algorithm terminated.

10.3.2 The Dual of the Cycle Matroid of K5, M
∗(K5)

The matrix A5 as in (10.15) is a standard binary representation of the matroid M∗(K5).

A5 =



1 2 3 4 5 6 7 8 9 10

1∗ 1 1 1 1 1 0 0 0 0 0
2∗ 0 1 1 0 0 1 0 0 0 0
3∗ 1 1 0 0 0 0 1 0 0 0
4∗ 0 0 1 1 0 0 0 1 0 0
5∗ 1 1 1 0 0 0 0 0 1 0
6∗ 0 1 1 1 0 0 0 0 0 1

 (10.15)

Letting M5 = M [A5], it is well-known that M∗(K5), and thus M5, is not graphic. As in Sec-
tion 10.3.1, Tutte’s algorithm can be modified to produce a graph, G5, with an edge-partition
that is Z2-Kirchhoff with respect to M5. Begin with the cocircuit Y of M5 corresponding
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to the last row of A5, Y = {2, 3, 4, 10}. The bridges of Y are the elementary separators of
M5\Y . The binary matrix representation of M5\Y is given in (10.16).

M5\Y :



1 5 6 7 8 9

1 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 1

 (10.16)

Therefore the elementary separators of M5\Y are

B1 = {1, 5, 7, 9} B2 = {6} B3 = {8}.

Consider these bridges one at a time. First, take the bridge B1 = {1, 5, 7, 9}. The matrix
representation of Y -component M5.(B1 ∪ Y ) is

M5.(B1 ∪ Y ) :


1 2 3 4 5 6 7 8 9 10

1∗ 1 1 1 1 1 0 0 0 0 0
3∗ 1 1 0 0 0 0 1 0 0 0
5∗ 1 1 1 0 0 0 0 0 1 0
6∗ 0 1 1 1 0 0 0 0 0 1

.
Therefore, the restriction of M5.(B1 ∪ Y ) to Y has matrix representation

M5.(B1 ∪ Y )|Y :


2 3 4 10

1 1 1 0
1 0 0 0
1 1 0 0
1 1 1 1

. (10.17)

No manner of row operations can transform this matrix into one with exactly one nonzero
entry in each column. Therefore, bridge B1 does not partition Y , and Tutte’s algorithm
terminates at this step, concluding that M∗(K5) is not graphic. Nevertheless, we will con-
tinue to follow the outline of Tutte’s algorithm, and ultimately construct a graph with a
Z2-Kirchhoff edge-partition.

Although B1 does not partition Y , M5.(B1 ∪ Y ) is graphic. Row operations on (10.17)
and appending a new row (in the row space of (10.17)) result in the incidence matrix of a
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graph,


1 2 3 4 5 6 7 8 9 10

1∗ 1 1 1 1 1 0 0 0 0 0
3∗ 1 1 0 0 0 0 1 0 0 0
5∗ 1 1 1 0 0 0 0 0 1 0
6∗ 0 1 1 1 0 0 0 0 0 1

 −→


1 2 3 4 5 6 7 8 9 10

(1∗+6∗) 1 0 0 0 1 0 0 0 0 1
3∗ 1 1 0 0 0 0 1 0 0 0

(3∗+5∗) 0 0 1 0 0 0 1 0 1 0
6∗ 0 1 1 1 0 0 0 0 0 1

(1∗+5∗) 0 0 0 1 1 0 0 0 1 0

.
This graph, G1, has Y = {2, 3, 4, 10} as the star of a vertex, and is given in Figure 10.3.8.
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Figure 10.3.8: A graph G1 for Y -component M5.(B1 ∪ Y ).

Next take the bridge B2 = {6}. The matrix representation of Y -component M5.(B2 ∪ Y ) is

M5.(B2 ∪ Y ) :

[ 1 2 3 4 5 6 7 8 9 10

2∗ 0 1 1 0 0 1 0 0 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

]
.

The restriction of M5.(B2 ∪ Y ) to Y has matrix representation

M5.(B2 ∪ Y )|Y :

[ 2 3 4 10

1 1 0 0
1 1 1 1

]
. (10.18)

Adding the first row of (10.18) to the second, row operations show that B2 partitions Y ,
with partition {2, 3}, {4, 10}. Moreover, M5.(B2 ∪ Y ) is a binary matroid of rank 2, and is
thus graphic. The incidence matrix of a graph can be derived via row operations,

[ 1 2 3 4 5 6 7 8 9 10

2∗ 0 1 1 0 0 1 0 0 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

]
−→


1 2 3 4 5 6 7 8 9 10

2∗ 0 1 1 0 0 1 0 0 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

(2∗+6∗) 0 0 0 1 0 1 0 0 0 1

.
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This graph, G2, has Y = {2, 3, 4, 10} as the star of a vertex, illustrated in Figure 10.3.9.
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Figure 10.3.9: A graph G2 for Y -component M5.(B2 ∪ Y ).

Finally, take the bridge B3 = {8}. The matrix representation of M5.(B3 ∪ Y ) is

M5.(B3 ∪ Y ) :

[ 1 2 3 4 5 6 7 8 9 10

4∗ 0 0 1 1 0 0 0 1 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

]
.

The restriction of of M5.(B3 ∪ Y ) to Y has matrix representation

M5.(B3 ∪ Y )|Y :

[ 2 3 4 10

0 1 1 0
1 1 1 1

]
. (10.19)

Adding the first row of (10.19) to the second, row operations show that B3 partitions Y with
partition {2, 10}, {3, 4}. Moreover, M5.(B3 ∪ Y ) is a binary matroid of rank 2 and is thus
graphic. The incidence matrix of a graph can be derived via row operations,

[ 1 2 3 4 5 6 7 8 9 10

4∗ 0 0 1 1 0 0 0 1 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

]
−→


1 2 3 4 5 6 7 8 9 10

4∗ 0 0 1 1 0 0 0 1 0 0
6∗ 0 1 1 1 0 0 0 0 0 1

(4∗+6∗) 0 1 0 0 0 0 0 1 0 1

.
This graph, G3, has Y = {2, 3, 4, 10} as the star of a vertex, illustrated in Figure 10.3.10.
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Figure 10.3.10: A graph G3 for Y -component M5.(B3 ∪ Y ).
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Therefore, cocircuit Y of M5 has 3 bridges, and each Y -component is graphic. As in Section
10.3.1, Tutte’s star-composition technique can be used to construct a graph with a suitable
Z2-Kirchhoff edge-partition. First, let the graph H2 be the star composition H2 = G2 ?Y G3,
illustrated in Figure 10.3.11.
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Figure 10.3.11: The star composition H2 = G2 ?Y G3.

Notice that H2 does not have Y = {2, 3, 4, 10} as the star of a vertex. Beginning with H2,
we will construct a graph H ′2, with edge-partition π′2, such that Y = {2, 3, 4, 10} is the star
of a vertex with respect to partition π′2. That is, there exists a vertex v ∈ H ′2 such that

λπ′2(v) ≡
[ 1 2 3 4 5 6 7 8 9 10

0 1 1 1 0 0 0 0 0 1
]

(mod 2).

Moreover, H ′2 can be constructed so that for any cycle C of H ′2, the vector χπ′2(C) (mod 2) is
a cycle vector of H. Therefore with respect to matroid elements, the cycles and vertices of H ′2
are identical to those of H2. Specifically, H ′2 can be constructed by duplicating, rotating, and
adjoining a second copy of H2 to itself. This construction is illustrated in Figure 10.3.12a,
and H ′2 is illustrated in Figure 10.3.12b.
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(a) Constructing H ′2.
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(b) The result, H ′2

Figure 10.3.12: A graph H ′2, with edge-partition π′2 consisting
of 6 cells, each of cardinality 2.
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Observe that H ′2 has two vertices with Y = {2, 3, 4, 10} as the star, that is,

λπ′2(v) ≡ ΥY (mod 2). (10.20)

Thus we may now take the star composition of H ′2 with G1. In fact, we take the star
composition of H ′2 with two copies of G1, illustrated in Figure 10.3.13.
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Figure 10.3.13: Double star composition of H ′2 with G1.

Once again, in the process of star composition, choose one vertex of G3 (other than the one
with star Y ), and let the two copies of that vertex be the endpoints of all edges of partition
cell 8. The result is the graph G5, with edge-partition π5, depicted in Figure 10.3.14.
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Figure 10.3.14: A graph G5 with edge-partition π5. π5 is Z2-
Kirchhoff with respect to M5, and therefore M∗(K5).
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One may verify that for any vertex, v, and any cycle, C, of G5,

λπ5(v) · χπ5(C) ≡ 0 (mod 2).

Moreover, π5 is Z2-Kirchhoff with respect to M5, and thus with respect to M∗(K5). Once
again, this edge-partition was constructed by following the machinery of Tutte’s algorithm,
and utilizing edge-partitions when the classical algorithm terminated.

10.3.3 The Fano Matroid, F7

The Fano matroid, F7, is a binary matroid on 7 elements that is not graphic. The standard
binary representation of F7 is given in (10.21).

F7 :


1 2 3 4 5 6 7

1∗ 1 0 0 1 1 0 1
2∗ 0 1 0 1 0 1 1
2∗ 0 0 1 0 1 1 1

 (10.21)

Notice that the only element contained in more than 2 rows of this standard representation
matrix is element 7. First consider the cocircuit Y1 = {1, 4, 5, 7} corresponding to the first
row of (10.21). The binary representation of F7\Y1 is given in (10.22).

F7\Y1 :


2 3 6

0 0 0
1 0 1
0 1 1

 F7\Y2 :


1 3 5

1 0 1
0 0 0
0 1 1

 F7\Y3 :


1 2 4

1 0 1
0 1 1
0 0 0

 (10.22)

This matrix demonstrates that F7\Y1 has only one elementary separator, meaning Y1 has
only one bridge. Next consider the cocircuit Y2 = {2, 4, 6}, corresponding to the second row
of (10.21). The binary representation of F7\Y2 is given in (10.22). Observe that F7\Y2 has
only one elementary separator, so Y2 has only one bridge as well. Lastly consider the cocir-
cuit Y3 = {1, 4, 5, 7} corresponding to the third row of (10.21). The binary representation of
F7\Y3 is given in (10.22), and notice that Y3 has only one bridge as well. Therefore Y1, Y2 and
Y3 are three cocircuits of F7, each having exactly one bridge, and each containing element
7. Therefore Tutte’s algorithm terminates at this point, and concludes that F7 is not graphic.

Once again, we would like to continue in a constructive manner to find a graph with an
edge-partition that is Z2-Kirchhoff with respect to F7. In the case of F7, we cannot pro-
ceed via star composition as in Sections 10.3.1 and 10.3.2, as each cocircuit Yi has only a
single Y -component. Instead, consider the underlying theme of Tutte’s construction. The
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algorithm considers a very specific set of matroid minors. In the case that these minors are
graphic, Tutte joins the graphs of these minors in a specific way (star composition) to build
a graph for the desired matroid.

A similar construction can be used to build an edge-partition that is Z2-Kirchhoff with
respect to F7. In particular, we know that every minor of F7 is graphic (and thus also
Z2-Kirchhoff). Let F ′7 be the minor obtained from F7 by deleting element 7. The standard
representation matrix F ′7 is given in (10.23).

F ′7 :


1 2 3 4 5 6

1∗ 1 0 0 1 1 0
2∗ 0 1 0 1 0 1
3∗ 0 0 1 0 1 1

 (10.23)

Each row of this matrix has at most two nonzero entries−adjoining a fourth row gives the
incidence matrix of a graph, given in (10.24). This graph, G1, is illustrated in Figure 10.3.15.


1 2 3 4 5 6

1∗ 1 0 0 1 1 0
2∗ 0 1 0 1 0 1
3∗ 0 0 1 0 1 1

(1∗+2∗+3∗) 1 1 1 0 0 0

 (10.24)

5

2

1 6

4 3

Figure 10.3.15: A graph G1 for matroid F ′7 = F7\7.

Next follow a similar method as the constructions in Sections 10.3.1 and 10.3.2. By replicat-
ing, rotating, and joining a second copy of this graph G1, we can construct a new graph G2,
with edge-partition π2, as illustrated in Figure 10.3.16. Edge-partition π2 has 6 partition
cells and, moreover, is Z2-Kirchhoff with respect to F ′7
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Figure 10.3.16: A graph G2 with edge-partition π2. π2 is Z2-
Kirchhoff with respect to the matroid F ′7 = F7\7.

The matroid F ′7 was obtained by deletion of element 7 from the Fano matroid F7. Therefore
rather than proceed via star composition, the goal is to re-introduce element 7 into our
edge-partition. That is, beginning with G2 and π2, we construct a new graph with a 7-cell
edge partition that is Z2-Kirchhoff with respect to F7. For example, consider the graph G7,
with edge-partition π7, as illustrated in Figure 10.3.17. G7 and π7 were obtained from G2

and π2 by adding two new edges, each contained in cell 7 of π7.
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Figure 10.3.17: A graph G7 with edge-partition π7. π7 is Z2-
Kirchhoff with respect to F7.

For any vertex, v, and any cycle, C, of G7, one may check that λπ7(v) · χπ7(C) ≡ 0 (mod 2).
Therefore edge-partition π7 is Z2-Kirchhoff. Moreover, by introducing 2 edges of cell 7 in
this manner, one may verify that π7 is Z2-Kirchhoff with respect to F7.
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10.3.4 The Dual of the Fano Matroid F ∗7

The dual of the Fano matroid, F ∗7 , is the last of the excluded minors. The standard binary
matrix representation of of F ∗7 is given in (10.25).

F ∗7 :


1 2 3 4 5 6 7

1∗ 1 0 0 0 1 1 0
2∗ 0 1 0 0 1 0 1
3∗ 0 0 1 0 0 1 1
4∗ 0 0 0 1 1 1 1

 (10.25)

Sections 10.3.1, 10.3.2, and 10.3.3 demonstrated two methods of constructing Z2-Kirchhoff
partitions for non-graphic binary matroids. For M∗(K3,3) and M∗(K5), Sections 10.3.1 and
10.3.2 followed Tutte’s method of graph construction, now utilizing the repetition of ma-
troid elements afforded by edge-partitions. In the case of F7, Section 10.3.3 instead deleted a
matroid element, constructed a Z2-Kirchhoff partition for the resulting matroid minor, and
then re-introduced the deleted element. This section will show that a Z2-Kirchhoff partition
F ∗7 can be constructed via either method.

First we proceed by Tutte’s method. Consider the cocircuit Y = {4, 5, 6, 7} correspond-
ing to the fourth row of (10.25). F ∗7 \Y has matrix representation

F ∗7 \Y :


1 2 3

1 0 0
0 1 0
0 0 1
0 0 0

.
Thus Y has three bridges, B1 = {1}, B2 = {2}, and B3 = {3}, and we consider the three
Y -components, F ∗7 .(Bi ∪ Y ). Y -component F ∗7 .(B1 ∪ Y ) has standard representation matrix

F ∗7 .(B1 ∪ Y ) :

[ 1 2 3 4 5 6 7

1 0 0 0 1 1 0
0 0 0 1 1 1 1

]
.

Sections 10.3.1 and 10.3.2 presented−in full−six examples of Y -components of rank 2, so
similar details will be omitted here. B1 partitions Y , and F ∗7 .(B1 ∪ Y ) is graphic. Figure
10.3.18 illustrates a graph G1 such that M(G1) ∼= F ∗7 .(B1 ∪ Y ).
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Figure 10.3.18: A graph G1 for F ∗7 .(B1 ∪ Y ).

Next, Y -component F ∗7 .(B2 ∪ Y ) has standard representation matrix

F ∗7 .(B2 ∪ Y ) :

[ 1 2 3 4 5 6 7

1∗ 0 1 0 0 1 0 1
4∗ 0 0 0 1 1 1 1

]
.

Once again, F ∗7 .(B2 ∪ Y ) has rank 2, so B2 partitions Y , and F ∗7 .(B2 ∪ Y ) is graphic. Figure
10.3.19 presents a graph G2 for which M(G2) ∼= F ∗7 .(B2 ∪ Y ).
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Figure 10.3.19: A graph G2 for F ∗7 .(B2 ∪ Y ).

Lastly, Y -component F ∗7 .(B3 ∪ Y ) has standard representation matrix

F ∗7 .(B3 ∪ Y ) :

[ 1 2 3 4 5 6 7

1∗ 0 0 1 0 0 1 1
4∗ 0 0 0 1 1 1 1

]
.

F ∗7 .(B3 ∪ Y ) has rank 2, so B3 partitions Y , and F ∗7 .(B3 ∪ Y ) is graphic. Figure 10.3.20
provides a graph G3 satisfying M(G3) ∼= F ∗7 .(B3 ∪ Y ).
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Figure 10.3.20: A graph G3 for F ∗7 .(B3 ∪ Y ).
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Proceeding as before, graphs G1, G2, and G3 will be used to construct the desired graph
and edge-partition. First, let H2 be the star composition G1 ?Y G2 as illustrated in Figure
10.3.21.
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Figure 10.3.21: The star composition H2 = G1 ?Y G2.

Notice that H2 does not have Y = {4, 5, 6, 7} as the star of a vertex. As before, duplicate,
rotate, and then join a second copy of H2, resulting in a new graph H ′2, with edge-partition
π′2, as illustrated in Figure 10.3.22.
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Figure 10.3.22: A graph H ′2 with edge-partition π′2.

Observe there are two vertices of H ′2 such that

λπ′2 ≡ ΥY ≡
[ 1 2 3 4 5 6 7

0 0 0 1 1 1 1
]

(mod 2). (10.26)

Therefore take the double star composition of H ′2 with two copies of G3, one at each vertex
of H ′2 satisfying (10.26), as illustrated in Figure 10.3.23.
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Figure 10.3.23: Double star composition of H ′2 with G3.

As before, choose one vertex of G3 (other than the one with star Y ), and let the two copies
of that vertex be the endpoints of all edges of partition cell 2. The result is the graph G7∗ ,
with edge-partition π7∗ , depicted in Figure 10.3.24.
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Figure 10.3.24: A graph G7∗ with edge-partition π7∗ . π7∗ is
Z2-Kirchhoff with respect to F ∗7 .

One may verify that edge-partition π7∗ is Z2-Kirchhoff with respect to F ∗7 .
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Next we demonstrate that an edge-partition that is Z2-Kirchhoff with respect to F ∗7 can
be constructed using element deletion and reintroduction, as in Section 10.3.3. Given the
standard representation (10.25) of F ∗7 , (10.27) is the standard binary representation of F ∗7 \7.

F ∗7 \7 :


1 2 3 4 5 6

1∗ 1 0 0 0 1 1
2∗ 0 1 0 0 1 0
3∗ 0 0 1 0 0 1
4∗ 0 0 0 1 1 1

 (10.27)

Any minor of F7∗, and in particular the matroid F ∗7 \7, is graphic. Adding row 1 of (10.27)
to row 4, and adjoining a fifth row gives the matrix



1 2 3 4 5 6

1∗ 1 0 0 0 1 1
2∗ 0 1 0 0 1 0
3∗ 0 0 1 0 0 1

(4∗+1∗) 1 0 0 1 0 0
(1∗+2∗+3∗+4∗) 0 1 1 1 0 0

.
This matrix has exactly two ones in each column, and is the incidence matrix of the graph
H given in Figure 10.3.25.
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Figure 10.3.25: A graph H satisfying M(H) = F ∗7 \7.

Once again replicate, rotate, and join a second copy of H to itself, giving a new graph
H ′, with edge-partition π′, as illustrated in Figure 10.3.26. In fact, edge-partition π′ is
Z2-Kirchhoff with respect to the matroid F ∗7 \7.
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Figure 10.3.26: A graph H ′ with edge-partition π′. π′ is Z2-
Kirchhoff with respect to F ∗7 \7.

Beginning with H ′ and π′, construct a new graph with a 7-cell edge partition that is Z2-
Kirchhoff with respect to F ∗7 . Specifically, consider the graph G′7∗, with edge-partition π′7∗ ,
illustrated in Figure 10.3.31. G′7∗ and π′7∗ were obtained from H ′ and π′ by adding two new
edges, each contained in cell 7.

1

5

6

3
4

2

3

6

1

2

5

7

7

Figure 10.3.27: A graph G′7∗ with edge-partition π′7∗ . π′7∗ is
Z2-Kirchhoff with respect to F ∗7 .

For any vertex, v, and any cycle, C, of G′7∗ , one may check that

λπ′
7∗

(v) · χπ′
7∗

(C) ≡ 0 (mod 2).

Therefore edge-partition π′7∗ is Z2-Kirchhoff. Moreover, by introducing 2 edges of cell 7 in
this manner, one may verify that π′7∗ is Z2-Kirchhoff with respect to F ∗7 .
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10.3.5 Two Further Examples of Z2-Kirchhoff Edge-Partitions

Sections 10.3.1 through 10.3.4 showed that although binary matroids M∗(K3,3),M∗(K5), F7

and F ∗7 are not graphic, they are Z2-Kirchhoff. Moreover, in each case Z2-Kirchhoff edge-
partitions were constructed via methods analogous Tutte’s construction algorithm. These
examples, however, are minimal in the sense that deletion of a single element results in a
graphic matroid. For completeness, this section considers two larger binary matroids. Each
contains the Fano dual F ∗7 as a nontrivial minor, and therefore is nongraphic. These exam-
ples present one distinction from those given up to this point. In Sections 10.3.1 through
10.3.4, the basic building blocks used in each construction were graphs. In these examples,
the basic building blocks will be graphs with edge-partitions.

Let M ′ be the binary matroid with standard representation


1 2 3 4 5 6 7 8

1∗ 1 0 0 0 1 1 0 1
2∗ 0 1 0 0 1 0 1 0
3∗ 0 0 1 0 0 1 1 1
4∗ 0 0 0 1 1 1 1 0

 (10.28)

Notice that deleting the 8th column of (10.28) gives a binary representation of F ∗7 . Consider
the cocircuit Y = {4, 5, 6, 7} of M ′, corresponding to row 4 of (10.28). Then M ′\Y has
standard representation matrix

M ′\Y :


1 2 3 8

1 0 0 1
0 1 0 0
0 0 1 1

.
M\Y has two elementary separators, and thus Y has two bridges, B1 = {1, 3, 8} and B2 =
{2}. The Y -component M ′.(B2 ∪ Y ) has rank 2 and is therefore graphic. Figure 10.3.28
illustrates a graph G2 for which M(G2) ∼= M ′.(B2 ∪ Y ).
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Figure 10.3.28: A graph G2 for M ′.(B2 ∪ Y ).
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On the other hand, the Y -component M ′.(B1 ∪ Y ) has standard representation matrix

M.(B1 ∪ Y ) :


1 2 3 4 5 6 7 8

1∗ 1 0 0 0 1 1 0 1
3∗ 0 0 1 0 0 1 1 1
4∗ 0 0 0 1 1 1 1 0

,
which is a matrix representation of the Fano matroid. Although F7 is not graphic, it is Z2-
Kirchhoff. Figure 10.3.29 presents a graph G1, with edge partition π1, that is Z2-Kirchhoff
with respect to M ′.(B1 ∪ Y ).

5
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36 6

8

4

4

8

1 7

1 7

Figure 10.3.29: A graph G1, with edge-partition π1 that is
Z2-Kirchhoff with respect to M ′.(B1 ∪ Y ).

But now observe that Y = {4, 5, 6, 7} is the star of a vertex in graph G2, and G1 has two
vertices such that

λπ1(v) ≡ ΥY ≡
[ 1 2 3 4 5 6 7 8

0 0 0 1 1 1 1 0
]

(mod 2).

Therefore as before, take the double-star composition of G1 with two copies of G2. The
result is a graph G′, with edge-partition π′, as illustrated in Figure 10.3.30. One may verify
that edge-partition π′ is not only Z2-Kirchhoff, but is Z2-Kirchhoff with respect to matroid
M ′.
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Figure 10.3.30: A graph G′, with edge-partition π′ that is
Z2-Kirchhoff with respect to M ′.

Finally, let M ′′ be the binary matroid with standard representation


1 2 3 4 5 6 7 8

1∗ 1 0 0 0 1 1 0 1
2∗ 0 1 0 0 1 0 1 1
3∗ 0 0 1 0 0 1 1 1
4∗ 0 0 0 1 1 1 1 0

. (10.29)

Observe that deleting column 8 of (10.29) gives a binary standard representation of F ∗7 .
Therefore as F ∗7 is Z2-Kirchhoff, so is M ′′\8. Figure 10.3.31 presents a graph G1, with
edge-partition π1, that is Z2-Kirchhoff with respect to M ′′\8.
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Figure 10.3.31: A graph G1 with edge-partition π1 that is
Z2-Kirchhoff with respect to M ′′\8.

There is no way to introduce new edges to G1, belonging to an 8th partition cell, in a manner
that produces a Z2-Kirchhoff edge-partition with respect to M ′′. Therefore we proceed as
before: replicate, rotate, and join a second copy of G1 to itself. However, G1 has an edge-
partition with all cells of cardinality 2. Therefore rather than join the copies of G1 along a
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single edge, we join them along a pair of edges belonging to the same partition cell. The
resulting graph, G′1, with edge-partition π′1, is drawn on the flat torus in Figure 10.3.32. One
may verify that π′1 is Z2-Kirchhoff with respect to M ′′\8.
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Figure 10.3.32: A graph G′1, with edge-partition π′1 that is
Z2-Kirchhoff with respect to M ′′\8, drawn on the flat torus.

Finally introduce four new edges, each belonging to partition cell 8, as shown in Figure
10.3.33. The result is a graph G′′, with an edge partition π′′. One may verify that edge-
partition π′′ is not only Z2-Kirchhoff, but is Z2-Kirchhoff with respect to matroid M ′′.
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Figure 10.3.33: A graph G′′, with edge-partition π′′ that is
Z2-Kirchhoff with respect to M ′′.



Appendix A

Algorithm Flow Charts

This chapter presents flowcharts for Tutte’s algorithm. First, A.1 summarizes Tutte’s recog-
nition method (Section 9.2), and then A.2 illustrates Tutte’s graph construction algorithm
(Section 9.2.4).
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Figure A.1: Flowchart of Tutte’s Algorithm
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Bridge class:
U  = {B  , ... , B   }

For each i in {1, ... , m} construct
a graph G'  such that M(G' ) = M.(B  U Y)
and Y is the star of a vertex

[Exists by Theorem 9.6]

Take the star composition in Y:

               H  = G'  * H'

[Note M(H ) = M.(B  U ... U B  U Y]

i = 2

Via a sequence of twistings, obtain graph:

                          H'

Where Y is the star of a vertex in H'  and
M(H' ) = M(H )

i = m?

Bridge class:
U  = {B          , ... , B  }

For each i in {m+1, ... , n} construct
a graph G'  such that M(G' ) = M.(B  U Y)
and Y is the star of a vertex

[Exists by Theorem 9.6]

Take the star composition in Y:

               H  = G'  * H'

[Note M(H ) = M.(B          U ... U B  U Y]

i = m+2

Via a sequence of twistings, obtain graph:

                          H'

Where Y is the star of a vertex in H'  and
M(H' ) = M(H )
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Figure A.2: Flowchart of Graph Construction



Appendix B

An Alternate Proof of Theorem 10.3

This section presents an alternate statement and proof of Theorem 10.3, in the form of
Theorems B.1 and B.2. It is included for completeness, as it utilizes a number of novel−if
not interesting−matrix constructions that encode the structure of edge-partitions. For ease
of notation, the cells of an edge- partition π = (E1, . . . , Ek) will often be referred to by their
integer indices. As before, for any edge e we let ϕ(e) denote the subscript of the partition
cell containing edge e. That is,

ϕ(e) = j ⇔ e ∈ Ej.

Throughout this chapter, all graphs will be undirected and may have multiple edges. Al-
though strictly speaking these are multigraphs, we will frequently refer to them simply as
graphs, denoted G, without fear of confusion.

Definition B.1. An edge-partition π is simple if any pair of edges in G sharing the same
endpoints are contained in the same cell of π. In this case, we say that G is π-simple.

Let G be an undirected graph on n vertices (which may have multiple edges). Moreover, let
π be a simple edge-partition of G. The structure of π with respect to G can be encoded by
a pair of matrices..

Definition B.2. Let A be the n × n adjacency matrix of mulitgraph G. That is, the
rows and columns of A are indexed by {v1, . . . , vn}, and

A(vi, vj) =
∣∣{e ∈ E(G) : e = {vi, vj}

∣∣.
Definition B.3. Let B be a square matrix, with rows and columns indexed by vertices

291
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{v1, . . . vn}, such that

B(vi, vj) =

{
ϕ({vi, vj}) if {vi, vj} ∈ E(G)

0 Otherwise.

B(vi, vj) is well-defined as G is π-simple. Call B the cell matrix of G with respect to π.

Example B.1. Figure B.1 presents a graph H, with a simple edge-partition π.

4

2

2

4

1

1

45

7 5

7

6 6

3

3

v1

v2

v3

v4

v5

v6

Figure B.1: A graph H with simple edge-partition π.

Accordingly, we may construct the adjacency matrix AH , and cell matrix BH , of H with
respect to π.

AH =



v1 v2 v3 v4 v5 v6

v1 0 1 1 1 1 2
v2 1 0 1 1 2 1
v3 1 1 0 2 1 1
v4 1 1 2 0 1 1
v5 1 2 1 1 0 1
v6 2 1 1 1 1 0

 BH =



v1 v2 v3 v4 v5 v6

v1 0 3 2 6 7 4
v2 3 0 1 5 4 7
v3 2 1 0 4 5 6
v4 6 5 4 0 1 2
v5 7 4 5 1 0 3
v6 4 7 6 2 3 0


Observe that the adjacency and cell matrices are sufficient to reconstruct a graph with a
simple edge-partition. That is, any graph/edge-partition pair having adjacency and cell
matrices AH and BH must be precisely the graph H, with partition π, as depicted in Figure
B.1.

Any graph G, with a simple edge-partition π = (E1, . . . , EK), is uniquely determined by its
pair of adjacency and cell matrices. Therefore the π-incidence and π-cycle vectors of G can
be computed from matrices A and B.
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Let vi be any vertex of G, with π-incidence vector

λπ(vi) =
[
x1 · · · xk

]
.

Recall that xr is the number of times vi occurs as the endpoint of an edge of cell r. The
vertices vj adjacent to vi by an edge of cell r are identified by the columns of B having an r
in row vi. The number of such edges is given by A(vi, vj). Therefore,

xr =
∑

j : B(vi,vj)=r

A(vi, vj). (B.1)

Next let C be any cycle of G with cycle vector

χπ(C) =
[
y1 · · · yk

]
.

Recall that yr is the the number of edges of cell r traversed by C. If C = vC1vC2 · · · vCM
vC1 ,

then it follows that yr is the number of times integer r occurs in the multi-set{
B(vC1 , vC2), B(vC2 , vC3), . . . , B(vCM−1

, vCM
), B(vCM

, vC1)
}
.

Example B.2. Consider the vertex v1, of graph H, as given in Figure B.1. Then the v1

rows of AH and BH are:

BH(v1, :) =
[ v1 v2 v3 v4 v5 v6

0 3 2 6 7 4
]

and AH(v1, :) =
[ v1 v2 v3 v4 v5 v6

0 1 1 1 1 2
]
.

Therefore,

λπ(v1) =
[ 1 2 3 4 5 6 7

0 1 1 2 0 1 1
]
.

Similarly, consider the cycle C = v1-v2-v5-v1. Then AH(v1, v2) = 3, AH(v2, v5) = 4, and
AH(v4, v1) = 7. Therefore

χπ(C) =
[ 1 2 3 4 5 6 7

0 0 1 1 0 0 1
]
.

Recall that an edge-partition is Z2-Kirchhoff if for all vertices v and all cycles C, the π-
incidence vector of v is orthogonal (mod 2) to the π-cycle vector of C,

λπ(v) · χπ(C) ≡ 0 (mod 2). (B.2)

Therefore the adjacency and cell matrices A and B can be used to determine if an edge-
partition is Z2 Kirchhoff. Theorem B.1 is the main result we are trying to prove.
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Theorem B.1. For n ≥ 3, let M∗
n be a n × 2n − 1 matrix whose columns are all of the

non-zero vectors of Zn2 . Then M [M∗
n] is strongly Z2-Kirchhoff.

This result is a corollary of Theorem B.2, the proof of which is constructive, by induction.

Theorem B.2. For n ≥ 1, let M∗
n be a n × 2n − 1 matrix whose columns are all of the

non-zero vectors of Zn2 . Then there exists a graph Gn, with simple edge-partition πn, such
that

(1.) Gn has 2n vertices, each pair of which is connected by an edge. Edge-partition πn
has 2n − 1 cells, indexed by {1, 2, . . . , 2n − 1}.

(2.) For any partition cell k and any vertex v of Gn, v is incident to an edge of cell k.

(3.) Edge-partition πn is Z2-Kirchhoff.

(4.) For every cycle C of Gn, if χπn(C) 6= 0 (mod 2), then it is the indicator of some
dependent set of M [M∗

n].

(5.) Let X be any circuit of M [M∗
n] and k any matroid element contained in X. Then

for any edge e in partition cell k, there exists a cycle C in Gn, containing e, such that
χπn(C) = ΥX (where ΥX is the indicator vector of X).

Letting An and Bn be the adjacency and cell matrices of graph Gn with respect to partition
πn, the proof of this theorem is by induction.

Base Case n = 1. In this trivial case,

M∗
1 =

[ 1

1
]
.

Then M [M∗
1 ] has no circuits and one element. Consider the graph G1 having two vertices

connected by a single edge e. Let π1 be the edge partition π = (E1) where e ∈ E1. It is easy
to check that G1 and π1 satisfy (1.)-(5.). Moreover, G1 has adjacency and cell matrices A1

and B1 given by:

A1 =

[ v1 v2

v1 0 1
v2 1 0

]
B1 =

[ v1 v2

v1 0 1
v2 1 0

]
.

Base Case n = 2. Matrix M∗
2 can be written as

M∗
2 =

[ 1 2 3

1 0 1
0 1 1

]
=

[ 1 2 3

M∗
1 0 M∗

1

0 1 1

]
.
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Consider the graph G2, with simple edge-partition π2, as illustrated in Figure B.2. One may
check that G2 and π2 satisfy (1.)-(5.) of the theorem.

v1 v2

v3v4

1

1

33

2

2

Figure B.2: A graph G2 with edge-partition π2 that is strongly
Z2-Kirchhoff with respect to M [M∗

2 ].

Graph G2 and edge-partition π2 have adjacency and cell matrices A2 and B2, where

A2 =


v1 v2 v3 v4

v1 0 1 2 1
v2 1 0 1 2
v3 2 1 0 1
v4 1 2 1 0

 B2 =


v1 v2 v3 v4

v1 0 1 2 3
v2 1 0 3 2
v3 2 3 0 1
v4 3 2 1 0

.
Letting In denote the n× n identity matrix, and Jn denote the n× n ones matrix, observe
that:

A2 =


A1 A1 + 2I2

A1 + 2I2 A1

 B2 =


B1 B1 + 2J2

B1 + 2J2 B1

 .

This observation is the key step to this inductive proof.

Inductive Step. Suppose the theorem is true in case n, for some graph Gn, with simple
edge-partition πn. Let An and Bn be the adjacency and cell matrices of Gn with respect to
πn. Then Gn is a graph on 2n vertices, and πn has 2n − 1 cells indexed by {1, . . . , 2n − 1}.
Matrix M∗

(n+1) can be written in the form
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M∗
(n+1) =


1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

0

M∗
n

... M∗
n

0
0 · · · 0 1 1 · · · 1

. (B.3)

Let Gn+1 be a graph, with simple edge-partition πn+1, defined defined by the following
adjacency and cell matrices, An+1 and Bn+1.

An+1 =



v1 ··· v2n v(1+2n) ··· v(2n+2n)

v1
...
v2n

An An + 2I2n

v(1+2n)

...
v(2n+2n)

An + 2I2n An



Bn+1 =



v1 ··· v2n v(1+2n) ··· v(2n+2n)

v1
...
v2n

Bn Bn + 2nJ2n

v(1+2n)

...
v(2n+2n)

Bn + 2nJ2n Bn


Note that both An+1 and Bn+1 are symmetric and integer valued, thereby giving a well-
defined πn+1-simple graph Gn+1. We will demonstrate that Gn+1 and πn+1 satisfy each of
(1.) - (5.).

(1.) Gn+1 has 2n+1 vertices, each pair of which is connected by an edge. Edge-
partition πn+1 has 2n+1−1 cells indexed by {1, 2, . . . , 2n+1−1}. Equivalently, it suffices
to show that cell matrix Bn+1 is 2n+1 × 2n+1, with all off-diagonal entries nonzero, and con-
taining each of the integers 1, 2, . . . , 2n+1 − 1 as an entry. As Gn and πn satisfy (1.), matrix
Bn is 2n×2n, contains entries 0, 1, 2, . . . , 2n−1, and has zeros precisely on the main diagonal.
Therefore the matrix Bn + J2n has entries 2n, 2n + 1, . . . 2n + 2n − 1. By construction,

Bn+1 =

[
Bn Bn + 2nJ2n

Bn + 2nJ2n Bn

]
(B.4)

and it is clear that Bn+1 satisfies the desired conditions.

(2.) For any partition cell k and any vertex v of Gn+1, v is incident to an edge
of cell k. Equivalently, it suffices to show that each row of Bn+1 contains every index of
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{1, 2, . . . , 2n+1 − 1}. As Gn and πn satisfy (2.), each row of Bn contains 0, 1, 2, . . . , 2n − 1
as entries. Therefore each row of Bn + J2n contains 2n, 2n + 1, . . . 2n+1 − 1 as entries. By
construction of Bn+1 (B.4), the desired condition holds. Note that although this condition
follows easily by construction, it will become important in proving (5.).

Before checking that Gn+1 and πn+1 satisfy (3.), we first make a few observations. First, by
construction, for 1 ≤ i, j ≤ 2n, the entries of Bn+1 satisfy:

Bn+1

(
vi, v(j+2n)

)
= Bn+1 (vi, vj) + 2n

Bn+1

(
v(i+2n), vj

)
= Bn+1 (vi, vj) + 2n

Bn+1

(
v(i+2n), v(j+2n)

)
= Bn+1 (vi, vj) .

(B.5)

Moreover, observe that the vertices of Gn+1 fall into a natural bipartition,

U = {v1, . . . , v2n} W =
{
v(1+2n), . . . , v2n+1

}
.

For any X ⊆ V (Gn+1), let Gn+1[X] denote the induced graph X, with edge-partition induced
by πn+1. That is, Gn+1[X] has verticesX and all edges ofGn+1 with both endpoints contained
in X. The edges of Gn+1[X] can be partitioned according to the cells of πn+1. Then by
construction, observe that

Gn+1[U ] ∼= Gn and Gn+1[W ] ∼= Gn. (B.6)

Proposition B.1. Every edge of Gn+1 in a partition cell of index {1, . . . , 2n − 1} lies in
either G[U ] or G[W ]. Any edge partitioned into a cell of index {2n, 1 + 2n, . . . 2n+1 − 1} has
one endpoint in U and the other in W . We will call such edges UW edges.

(3.) πn+1 is Z2-Kirchhoff. The proof of this condition will require a number of intermediate
results.

Proposition B.2. Let v be any vertex of Gn+1. Then the πn+1-incidence vector of v satisfies:

λπn+1(v) ≡
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

λπn(ṽ) 0 λπn(ṽ)
]

(mod 2), (B.7)

where λπn(ṽ) is the πn-incidence vector of some vertex ṽ of Gn.

Proof. Recall that πn+1-incidence vectors can be computed from the rows of matrices An+1

and Bn+1. Observe that by (B.4) any entry of 2n in Bn+1 arises from a 0 entry of Bn. Since
Bn satisfies (1.), these are precisely the entries

Bn+1(vi, v(i+2n)) and Bn+1(v(i+2n), vi)



298

for 1 ≤ i ≤ 2n. By construction, adjacency matrices An and An+1 satisfy

An+1 =

[
An An + 2I2n

An + 2I2n An

]
. (B.8)

Because An+1(vi, v(i+2n)) = An+1(v(i+2n), vi) = 2, edges in cell 2n always occur in pairs.
Therefore by (B.1), entry 2n of λπn+1(v) is 0 (mod 2). The remaining entries of (B.7) follow
directly from (B.5) and (B.8).

Proposition B.3. Every cycle C of Gn+1 is of one of the following three types:

Type 1. All edges of C lie in Gn+1[U ].

Type 2. All edges of C lie in Gn+1[W ].

Type 3. C may be written as a sequence of the following form:

e1·(Path in Gn+1[U ])·e2·(Path in Gn+1[W ])·e3·(Path in Gn+1[U ])·e4 · · · (Path in Gn+1[W ])

where each ei is a UW edge and all paths in Gn+1[U ] (respectively Gn+1[W ]) are
vertex-disjoint from each other, and each may be the trivial path on a single vertex.

It suffices to prove that for any cycle C of each type in Proposition B.3, and any vertex v of
Gn+1,

λπn+1(v) · χπn+1(C) ≡ 0 (mod 2). (B.9)

Type 1 and 2. Let C be any cycle of Gn+1 of Type 1. Then since C is contained in Gn+1[U ],

and Gn+1[U ] ∼= Gn, the partition cells of edges of C are identical to those of some cycle C̃
in Gn. That is,

χπn+1(C) =
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

χπn(C̃) 0 0 · · · 0
]
.

For any vertex v of Gn+1, by Proposition B.2,

λπn+1(v) =
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

λπn(ṽ) 0 λπn(ṽ)
]

where λπn(ṽ) is the πn-incidence vector of some vertex ṽ of Gn. Then

λπn+1(v) · χπn+1(C) ≡ λπn(ṽ) · χπn(C̃) + 0 · 0 + λπn(ṽ) · [0 · · · 0]

≡ λπn(ṽ) · χπn(C̃)

≡ 0 (mod 2)



299

since πn is Z2-Kirchhoff. Thus for any cycle C of Type 1, and any vertex v of Gn+1,

λπn+1(v) · χπn+1(C) ≡ 0 (mod 2).

Because Gn+1[W ] ∼= Gn as well, the proof for cycles of Type 2 is analogous and omitted here.

Type 3. All that remains is to verify (B.9) for any cycle of Type 3. This will first re-
quire a few lemmas.

Lemma B.1. Let C be any cycle of Type 3. Then the edge set of C can be written as the
symmetric difference of a collection of edge sets of cycles of Gn+1[U ], cycles of Gn+1[W ], and
triangles containing two UW edges and either one edge of Gn+1[U ] or one edge of Gn+1[W ].

Proof. Let C be any cycle of Type 3. Then C can be written as a sequence of the form:

(e1)U1(e2)W1(e3)U2(e4)W2(e5) · · ·Wk/2 (for some even k) (B.10)

Where each ei is a UW edge with endpoints ui ∈ Gn+1[U ] and wi ∈ Gn+1[W ]. Each Uj is
a path in Gn+1[U ] with terminal vertices u2j−1 and u2j, and all paths Uj are vertex-disjoint
from each other. Similarly, each Wl is a path in Gn+1[W ] with terminal vertices w2l and
w2l+1 (where wk+1 = w1), and all paths Wl are vertex-disjoint from each other.

Remark B.1. For each j, u2j−1 and u2j need not be distinct; if not, Uj is the trivial path on
one vertex. Similarly, for each l, w2l and u2l+1 need not be distinct; if not, Wl is the trivial
path on one vertex.

Recalling that all vertices of Gn+1 are connected by an edge, let {vi, vj} denote the edge
between vertices vi and vj. Then (B.10) can be rewritten as

{w1, u1}U1{u2, w2}W1{w3, u3}U2{u4, w4}W2 · · ·Wk/2.

Moreover, given the labeling described above, observe that:

C1 = {w1, w2}W1{w3, w4}W2 · · · {wk−1, wk}Wk/2

traces out a cycle in Gn+1[W ]. Next, let C2 be the collection of cycles of Gn+1[U ] of the form

C2 =
{
U(j+1)/2 · {uj+1, uj} : j is odd and U(j+1)/2 is not the trivial path

}
.

Let C3 be the collection of cycles

C3 =
{
ej · {uj, uj+1} · {uj+1, wj} : j is odd and U(j+1)/2 is not the trivial path

}
.

Note the restriction that U(j+1)/2 is not the trivial path guarantees that each closed walk
in C3 is a triangle: if U(j+1)/2 were the path on a single point, then uj = uj+1. Moreover,
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observe that for each odd j, both ej and {uj+1, wj} are UW edges, and {uj, uj+1} is an edge
in Gn+1[U ].

Finally, let C4 be the collection of cycles

C4 =
{
{wj, uj+1} · ej+1 · {wj+1, wj} : j is odd

}
.

Each closed walk in C4 is a triangle in G with one edge in G[W ] ({wj+1, wj}) and two UW
edges (ej+1 and {wj, uj+1}). Letting ∆ denote symmetric difference of sets, observe that for
each odd j,{
ej, {uj, uj+1}, {uj+1, wj}

}
∆
{
{wj, uj+1}, ej+1, {wj+1, wj}

}
∆
{
E(U(j+1)/2), {uj+1, uj}

}
=
{
ej, ej+1, E(U(j+1)/2), {wj+1, wj}

}
.

Moreover, for each odd j,

{wj+1, wj}, E(W(j+1)/2) ∈ E(C1).

Finally, recall that by construction

E(C) = {e1, e2, . . . } ∪ {E(U1), E(U2), . . . } ∪ {E(W1), E(W2), . . . }.

Therefore letting E(Ci) denote the set of edges that occur in cycles contained in collection
Ci, it follows that:

E(C) = E(C1)∆E(C2)∆E(C3)∆E(C4).
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Example B.3. Figure B.3 illustrates a cycle of Type 3. Note that not all vertices of G are
depicted, only those contained in the cycle.

W

U

Figure B.3: A cycle of Type 3

Letting the left-most vertex (as drawn in Figure B.3) of W be w1, this cycle is labeled as
depicted in Figure B.4.

W

U

w1

u1 u2

w2 w3

u3 u4

w4 w5

u5 u6

w6

e1 e2 e3 e4 e5 e6

U1
U2

U3

W1 W2

W3

Figure B.4: Labeling a cycle of Type 3.

First, construct cycle C1 in W . In Figure B.5, C1 is outlined in red. The family C2 of cycles
in U is outlined in blue. Finally we construct two families of triangles: C3 is outlined in
green, while C4 is outlined in purple.



302

W

U

w1

u1
u2

w2 w3

u3 u4

w4 w5

u5 u6

w6

e1 e2 e3 e4 e5 e6

C1

C2

C3
C4

Figure B.5: Decomposing a cycle of Type 3 into 4 families of
cycles. C1 is outlined in red. The family C2 of cycles in U is
outlined in blue. The two families of triangles, C3 and C4, are
outlined in green and purple, respectively.

Observe that taking the union of all edges in these 4 families, each edge of C appears exactly
once, while each edge not contained in C appears exactly twice. Therefore as desired,

E(C) = E(C1)∆E(C2)∆E(C3)∆(C4).

Lemma B.2. Let C be any triangle of Gn+1 containing 2 UW edges, and either one edge
of Gn+1[U ] or one edge of Gn+1[W ]. Then for any vertex v of Gn+1,

λπn+1(v) · χπn+1(C) ≡ 0 (mod 2).

Proof. Let C be any triangle of Gn+1 with two UW edges and one edge of Gn+1[U ]. Then
C has vertices

V (C) = vi, vj, vk+2n for some 1 ≤ i, j, k ≤ 2n,

and thus the partition cells of the edges of C are

Bn+1(vi, vj), Bn+1(vj, vk+2n), Bn+1(vk+2n , vi).

Case 1: i, j, k are distinct. Then vi, vj, vk are the vertices of a triangle C̃ in Gn+1[U ] ∼= Gn.

The partition cells of the edges in C̃ are:

Bn+1(vi, vj), Bn+1(vj, vk), Bn+1(vk, vi).
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But recall that by construction of Bn+1 (B.5),

Bn+1(vj, vk+2n) = Bn+1(vj, vk) + 2n and Bn+1(vk+2n , vi) = Bn+1(vk, vi) + 2n.

Therefore the πn+1-cycle vector of C can be written as

χπn+1(C) ≡
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

χS(C) 0 χT (C)
]

(mod 2),

where χS(C) and χT (C) are binary vectors such that

χS(C) + χT (C) ≡ χπn(C̃) (mod 2).

Let v be any vertex of Gn+1. Then by Proposition B.2,

λπn+1(v) =
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

λπn(ṽ) 0 λπn(ṽ)
]

where λπn(ṽ) is the πn-incidence vector of some vertex ṽ of Gn. Then

λπn+1(v) · χπn+1(C) ≡ λπn(ṽ) · χS(C) + 0 · 0 + λπn(ṽ) · χT (C)

≡ λπn(ṽ) · [χS(C) + χT (C)]

≡ λπn(ṽ) · χπn(C̃)

≡ 0 (mod 2) as πn is Z2-Kirchhoff.

Case 2: i, j, k are not distinct. For C to have the given form, it must have vertices

V (C) = vi, vj, vj+2n for some 1 ≤ i 6= j ≤ 2n.

Then the partition cells of C are

Bn+1(vi, vj), Bn+1(vj, vj+2n), Bn+1(vj+2n , vi).

However by (B.5),

Bn+1(vj, vj+2n) = 2n and Bn+1(vj+2n , vi) = Bn+1(vi, vj) + 2n

Therefore C has binary πn+1-cycle vector

χπn+1(C) ≡
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

X 1 X
]

(mod 2)
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for some binary vector X of size 2n − 1. Now let v be any vertex of G. Again, for some ṽ of
Gn,

λπn+1(v) =
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

λπn(ṽ) 0 λπn(ṽ)
]
.

Therefore,
λπn+1(v) · χπn+1(C) ≡ λπn(ṽ) ·X + 0 · 1 + λπn(ṽ) ·X

≡ 2λπn(ṽ) ·X
≡ 0 (mod 2).

Therefore for any triangle C of Gn+1 with two UW edges and one edge of Gn+1[U ],

λπn+1(v) · χπn+1(C) ≡ 0 (mod 2)

for all vertices v of Gn+1. The case when C has one edge of Gn+1[W ] is analogous, and so
the proof is omitted here.

Now let C be any cycle of Type 3. Then by Lemma B.1, E(C) can be written as

E = E(C1)∆E(C2)∆E(C3)∆E(C4),

where C1 is a cycle in Gn+1[W ], C2 a family of cycles in Gn+1[U ], and C3 and C4 are families
of triangles containing two UW edges and one edge of Gn+1[U ] or Gn+1[W ] respectively.
Therefore,

χπn+1(C) ≡ χπn+1(C1) +
∑
Ci∈C2

χπn+1(Ci) +
∑
Cj∈C3

χπn+1(Cj) +
∑
Ck∈C4

χπn+1(Ck) (mod 2). (B.11)

Thus for any vertex v of Gn+1,

χπn+1(C) · λπn+1(v) ≡ χπn+1(C1) · λπn+1(v) +
∑
Ci∈C2

χπn+1(Ci) · λπn+1(v)

+
∑
Cj∈C3

χπn+1(Cj) · λπn+1(v) +
∑
Ck∈C4

χπn+1(Ck) · λπn+1(v) (mod 2).

(B.12)
However C1 is a cycle of Type 2, and every cycle Ci ∈ C2 is a cycle of Type 1, so

χπn+1(C1) · λπn+1(v) ≡ 0 (mod 2) and χπn+1(Ci) · λπn+1(v) ≡ 0 (mod 2).

Finally, by Lemma B.2, for any Cj ∈ C3 or Ck ∈ C4,

χπn+1(Cj) · λπn+1(v) ≡ 0 (mod 2) and χπn+1(Ck) · λπn+1(v) ≡ 0 (mod 2).
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Therefore by (B.12),
χπn+1(C) · λπn+1(v) ≡ 0 (mod 2).

As a result, for any vertex v of G and any cycle C of Type 1, 2, or 3,

χπn+1(C) · λπn+1(v) ≡ 0 (mod 2).

As all cycles of Gn+1 are of one of these three types, this completes the proof that πn+1 is
Z2-Kirchhoff.

Before proving (4.) and (5.) we make a few additional observations. Recall that by in-
duction, Gn satisfies (4.) and (5.), and moreover that M∗

n+1 is written as

M∗
(n+1) =


1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

0

M∗
n

... M∗
n

0
0 · · · 0 1 1 · · · 1

. (B.13)

Proposition B.4. If i > 2n, by (B.13) columns i and i− 2n of M∗
n+1 are equal in all except

row n+ 1. In row n+ 1, column i has a 1 whereas column i− 2n has a 0.

Corollary B.1. Let mi denote the ith column of matrix M∗
n+1. If i < 2n,

mi + m2n = mi+2n .

If i, j < 2n,
mi + mj = mi+2n + mj+2n .

For ease of notation, Φ(i, j) be the index of the partition cell containing edge {vi, vj}. That
is,

Φ(i, j) := ϕ({vi, vj}) ≡ Bn+1(vi, vj)

Observe that by (B.5), for 1 ≤ i, j ≤ 2n,

Φ(i, j + 2n) = Φ(i, j) + 2n

Φ(i+ 2n, j) = Φ(i, j) + 2n

Φ(i+ 2n, j + 2n) = Φ(i, j)

Φ(i, i+ 2n) = Φ(i+ 2n, i) = 2n.

(B.14)

(4.) For every cycle C of Gn, χπn(C) (mod 2) is the indicator of some dependent
set of M [M∗

n]. It suffices to prove that for any cycle C of each type in Proposition B.3,
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there exists some dependent X of M [M∗
n+1] such that

χπn+1(C) ≡ ΥX (mod 2).

Let C be any cycle of Type 1. As previously, there exists some cycle C̃ in Gn such that

χπn+1(C) =
[ 1 ··· 2n−1 2n 1+2n ··· (2n−1)+2n

χπn(C̃) 0 0 · · · 0
]
. (B.15)

Since Gn satisfies (4.) for M [M∗
n], there exists some dependent set X of M [M∗

n] such that

χπn(C̃) ≡ ΥX (mod 2).

However by considering the first 2n− 1 columns of M∗
n+1 in (B.13), it is clear any dependent

set of M [M∗
n] is dependent in M [M∗

n+1] as well. Thus by (B.15), χπn+1(C) is the indicator of
a dependent set of M∗

n+1, and the result hold for cycles of Type 1. Because Gn+1[W ] ∼= Gn

as well, the proof for cycles of Type 2 is analogous and omitted here.

Finally, we must show that for any cycle of Type 3, there exists a dependent set X of
M [M∗

n+1] such that χπn+1(C) ≡ ΥX (mod 2). As (4.) holds for all cycles of Type 1 or 2,
by (B.11) it suffices to show that (4.) holds for any triangle T with two UW edges. Let T
be any triangle of Gn+1 with two UW edges and one edge of Gn+1[U ] (once again, the case
when the third edge lies in Gn+1[W ] is analogous). Then T has vertices

V (T ) = vi, vj, vk+2n for some 1 ≤ i, j, k ≤ 2n.

The partition cells of E(T ) are

Φ(i, j),Φ(j, k + 2n),Φ(k + 2n, i).

Therefore, we must show that {Φ(i, j),Φ(j, k + 2n),Φ(k + 2n, i)} is a dependent set of
M [M∗

n+1]. Recalling that mi denotes the ith column of matrix M∗
n+1, it suffices to show

that
mΦ(i,j) + mΦ(j,k+2n) + mΦ(k+2n,i) ≡ 0 (mod 2).

Case 1: i, j, k are distinct. Then vi, vj, vk are the vertices of a triangle T̃ in Gn+1[U ] ∼= Gn.
Since Gn satisfies (4.), Φ(i, j),Φ(j, k), and Φ(k, i) are a dependent set in M [M∗

n]. As M [M∗
n]

has no circuits of size 1 or 2, by (B.13) it follows that

mΦ(i,j) + mΦ(j,k) + mΦ(k,i) ≡ 0 (mod 2).
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Then by Corollary B.1,

mΦ(i,j) + mΦ(j,k)+2n + mΦ(k,i)+2n ≡ 0 (mod 2).

But by (B.14),

Φ(j, k) + 2n = Φ(j, k + 2n) and Φ(k, i) + 2n = Φ(k + 2n, i).

Therefore as desired,

mΦ(i,j) + mΦ(j,k+2n) + mΦ(k+2n,i) ≡ 0 (mod 2).

Case 2: i, j, k are not distinct. For T to have the given form, it must have vertices

V (T ) = vi, vj, vj+2n for some 1 ≤ i, j ≤ 2n,

and so the partition cells of E(T ) are

Φ(i, j),Φ(j, j + 2n),Φ(j + 2n, i).

However by (B.14),

Φ(j, j + 2n) = 2n and Φ(j + 2n, i) = Φ(i, j) + 2n

Therefore by Corollary B.1,

mΦ(i,j) + mΦ(j,j+2n) + mΦ(j+2n,i) = mΦ(i,j) + m2n + mΦ(i,j)+2n

= 2m2n

≡ 0 (mod 2), as desired.

This completes the proof that Gn+1 satisfies (4.).

(5.) Let X be any circuit of M [M∗
n] and k any matroid element contained in

X. Then for any edge e in partition cell k, there exists a cycle C in Gn, contain-
ing e, such that χπn(C) = ΥX.

Proposition B.5. Every circuit X of M [M∗
n+1] belongs to one of the following three classes:1

Class 1. X ⊆ {1, 2, . . . , 2n − 1}.

Class 2. X ⊆ {2n, . . . 2n+1 − 1}.
1The three circuit classes of Proposition B.5 are not correlated to the three cycle types of Proposition

B.3.



308

Class 3. X = Y ∪ Z where Y ⊆ {1, 2, . . . , 2n − 1}, Z ⊆ {2n, . . . 2n+1 − 1} and∑
i∈Y

mi ≡
∑
j∈Z

mj (mod 2).

Therefore it suffices to prove that (5.) holds for any circuit of each class in Proposition B.5.

Class 1. X ⊆ {1, 2, . . . , 2n − 1}. For any circuit X of class 1, X is also a circuit of M [M∗
n].

Let k be any element of X, and e any edge of Gn+1 of cell k. As k ∈ {1, 2, . . . , 2n − 1},
by Proposition B.1 either e ∈ Gn+1[U ] or e ∈ Gn+1[W ]. Without loss of generality, sup-
pose e ∈ Gn+1[U ]. By assumption, Gn satisfies (5.) for matrix M∗

n. Therefore, since
Gn+1[U ] ∼= Gn, there exists a cycle C in Gn+1[U ], and hence in Gn+1, containing e such that
χπn+1(C) = ΥX .

Class 2. X ⊆ {2n, . . . 2n+1− 1}. Let X be any circuit of class 2, so
∑

j∈X mj ≡ 0 (mod 2).

As columns 2n, . . . 2n+1 − 1 of Mn+1 all have a 1 in row n+ 1, X must have even cardinality
m. Moreover, observe the following.

Proposition B.6. Suppose X ⊆ {2n+1, . . . 2n+1−1} is a circuit of M [M∗
n+1] not containing

2n. Then
∑

j∈X mj ≡ 0 (mod 2). However by Corollary B.1 it follows that∑
j∈X

mj−2n ≡ 0 (mod 2).

Therefore {j − 2n : j ∈ X} is either a circuit of class 1 or a disjoint union of circuits of class
1.

This reduces class 2 into three cases.

Class 2a: 2n /∈ X and {j − 2n : j ∈ X} is a circuit of class 1. Let k be any ele-
ment of X, and e any edge of Gn+1 of cell k. As k ∈ {2n + 1, . . . , 2n+1 − 1}, by Proposition
B.1 e must be a UW edge, say

e = {vi1 , vi2+2n}

for some 1 ≤ i1, i2 ≤ 2n. Then by (B.5), {vi1 , vi2} is an edge of Gn+1 in partition cell k− 2n.
However, {i − 2n : i ∈ X} is a circuit of M [M∗

n+1] of class 1 containing k − 2n. Therefore
there exists a cycle C in Gn+1 containing {vi1 , vi2} such that χ(C)πn+1 = ΥX . By the proof
of class 1, we may assume (without loss of generality) that C is contained in G[U ]. That is
there exist m distinct vertices vi1 , vi2 , vi3 , . . . vim (where ip ≤ 2n for all p) such that:{

Φ(i1, i2),Φ(i2, i3),Φ(i3, i4), . . . ,Φ(im−1, im),Φ(im, i1)
}

= {j − 2n : j ∈ X}.
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Recalling that m = |X| is even, it follows from (B.14) that{
Φ(i1, i2+2n),Φ(i2+2n, i3),Φ(i3, i4+2n), . . . ,Φ(im−1, im+2n),Φ(im+2n, i1))

}
= {j : j ∈ X}.

Therefore, letting C ′ be the cycle

C ′ = vi1 · vi2+2n · vi3 · vi4+2n · · · vim−1 · vim+2n · vi1

of Gn+1, C ′ contains edge e and
χπn+1(C

′) = ΥX .

Class 2b: 2n ∈ X. Then columns {j : j ∈ X\2n} of M∗
n+1 must be a minimal set of columns

summing to column 2n. Moreover, it follows by Proposition B.4 that columns {j − 2n : j ∈
X\2n} must be a minimally dependent set of columns. Therefore {j − 2n : j ∈ X\2n} is a
circuit of M [M∗

n+1] of class 1. Let k be any element of X and e any edge of Gn+1 in partition
cell k. First suppose k 6= 2n. As previously, e must be a UW edge, say e = {vi1 , vi2+2n}.
Following as in Class 2a, there must exist m− 1 distinct vertices vi1 , vi2 , vi3 , . . . viM−1

(where
ip ≤ 2n for all p) such that{

Φ(i1, i2),Φ(i2, i3), . . . ,Φ(im−2, im−1,Φ(im−1, i1)
}

= {j − 2n : j ∈ X\2n}.

As m− 1 = |X| − 1 is odd, it follows from (B.14) that{
Φ(i1+2n, i1),Φ(i1, i2+2n),Φ(i2+2n, i3), . . . ,Φ(im−2+2n, im−1),Φ(im−1, i1+2n)

}
= {j : j ∈ X}.

Therefore, letting C ′′ be the cycle

C ′′ = vi1 · vi2+2n · vi3 · vi4+2n · · · vim−1 · vi1+2n · vi1

of Gn+1, C ′′ contains edge e and
χπn+1(C

′′) = ΥX .

Otherwise suppose k = 2n and let e be any edge of Gn+1 of partition cell 2n. Then e =
{vi1 , vi1+2n} for some 1 ≤ i1 ≤ 2n. Let j ∈ X\2n be any element of circuit X other than 2n.
Then since Gn+1 satisfies (2.), vertex vi1 is incident to some edge f = {vi1 , vi2+2n} of cell j.
Proceeding as above, there exists a cycle

C ′′′ = vi1 · vi2+2n · vi3 · vi4+2n · · · vim−1 · vi1+2n · vi1

of Gn+1, containing edge e (and f) such that

χπn+1(C
′′) = ΥX .
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Class 2c: 2n /∈ X and {j − 2n : j ∈ X} is a disjoint union of circuits of class 1.
Lemma B.3 will be useful both in completing Class 2c here, and Class 3 which follows.

Lemma B.3. Let X be a circuit of M [M∗
n+1]. Suppose there exists some x of M [M∗

n+1] and
a decomposition X = X1 ∪X2 such that both X1 ∪ x and X2 ∪ x are circuits of M [M∗

n+1]. If
(5.) holds for both X1 ∪ x and X2 ∪ x, then (5.) holds for X as well.

Proof. Let k be any element of X; without loss of generality, assume that k ∈ X1. Let
e = {vi1 , vi2} be any edge of Gn+1 in partition cell k. As X1 ∪ x is a circuit of M [M∗

n+1] for
which (5.) holds, there is a cycle C1 = vi1 · vi2 · · · vi|X1|+1

· vi1 of size |X1| + 1 containing e
such that {

Φ(i1, i2),Φ(i2, i3), . . . ,Φ(i|X1|, i|X1|+1),Φ(i|X1|+1, i1)
}

= X1 ∪ x.

In particular, some edge f = {viM , viM+1
} of C1 is contained in the partition cell of index

x. However, X2 ∪ x is a circuit containing x for which (5.) holds. Then there exists a cycle
C2 = viM+1

· viM · vj1 · vj2 · · · vj|X2|−1
· viM+1

of size |X2|+ 1 containing f such that{
Φ(iM+1, iM),Φ(iM , j1),Φ(j1, j2), . . . ,Φ(j|X2|−2, j|X2|−1),Φ(j|X2|−1, iM+1)

}
= X2 ∪ x.

As a result,

C = vi1 · vi2 · · · viM · vj1 · vj2 · · · vj|X2|−2
· vj|X2|−1

· viM+1
· viM+2

· · · vi|X1|+1
· vi1

is a closed walk in Gn+1 of length |X1|+ |X2| = |X| such that{
Φ(i1, i2),Φ(i2, i3), . . . ,Φ(iM , j1),Φ(j1, j1), . . .

. . .Φ(j|X2|−1, iM+1),Φ(iM+1, iM+2), . . . ,Φ(i|X1|+1, i1)
}

= X1 ∪X2 = X.

Let E(C) denote the set of edges traversed in walk C, and assume for contradiction that C
is not a cycle of Gn+1. Some proper subset of edges F ⊂ E(C) must induce a cycle C0 in
Gn+1. Observe that the edges of C each belong to distinct cells of edge-partition πn+1. Then

χ(C0) = Υ{ϕ(e):e∈F},

and {ϕ(e) : e ∈ F} is a proper subset of X. However Gn+1 satisfies (4.), meaning {ϕ(e) :
e ∈ F} is a dependent set of M [M∗

n+1], contradicting that X is a circuit. Therefore C is a
cycle of Gn+1 containing edge e such that χπn+1(C) = ΥX .

Returning to Class 2c, let Y be any subset of X such that {i − 2n : i ∈ Y } is a circuit of
class 1. Then by Proposition B.6,

∑
i∈Y mi−2n ≡ 0 (mod 2). However because X is a circuit
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of M [M∗
n+1],

∑
i∈Y mi 6= 0 (mod 2). Therefore it must be that:∑

i∈Y

mi−2n = m2n = [0, · · · , 0, 1]T

As Y was arbitrary, it follows that {j − 2n : j ∈ X} must be a disjoint union of exactly 2
circuits of class 1 (more or less than 2 would contradict that X is a circuit). Thus assume
that X = X1 ∪X2 where {i − 2n : i ∈ X1} and {l − 2n : l ∈ X2} are both circuits of class
1. Moreover, X1 ∪ 2n and X2 ∪ 2n are both circuits of Class 2b. As (5.) holds for circuits of
Class 2b, it also holds for Class 2c by Lemma B.3.

Class 3. X = Y ∪ Z where each Y ⊆ {1, 2, . . . , 2n − 1}, Z ⊆ {2n, . . . 2n+1 − 1} and∑
i∈Y

mi ≡
∑
j∈Z

mj (mod 2).

First we demonstrate that (5.) holds in the case that |Y | = 1, and the general case of class
3 will then follow.

Proposition B.7. Let X = y∪Z be a circuit of M [M∗
n+1] where y ∈ {1, 2, . . . , 2n− 1}, and

Z ⊆ {2n, . . . , 2n+1 − 1}, so that
∑

j∈Z mj = y. Then (5.) holds for circuit X.

Proof. Circuits of this type can be broken down into four sub-classes.

Class 3a: Z = {2n, y + 2n}. That is, X = {y, 2n, y + 2n}. Any edge of partition cell
y is either of the form {vi, vj} or {vk+2n , vl+2n} (i, j, k, l ≤ 2n). In each case by (B.5),
vi ·vj ·vj+2n ·vi or vk+2n ·vl+2n ·vl ·vk+2n are triangles with edges in the desired partition cells.
Any edge of cell 2n is of the form {vi, vi+2n}. Since Gn+1 satisfies (2.), vi is incident to an
edge of cell y, say ϕ({vi, vj}) = y. Then vi · vj · vi+2n · vi is the desired triangle. Finally any
edge of cell y+2n is a UW edge, of the form {vi, vj+2n} (i, j ≤ 2n). Once again, vi ·vj ·vj+2n ·vi
is the desired triangle.

Class 3b: Z = Z1 ∪ (y + 2n), where |Z1| > 2 and
∑

i∈Z1
mi = m2n. Since X is a

circuit, 2n /∈ Z1, and Z1 ∪ 2n is a circuit of Class 2. Moreover {y, y + 2n, 2n} is a circuit of
Class 3a, and X = {y, y+ 2n}∪Z1. Therefore by Lemma B.3, (5.) holds for circuits of Class
3b.

Class 3c: Z = 2n ∪ Z2, where |Z2| > 1 and
∑

j∈Z2
mj = my+2n. Since X is a cir-

cuit, y + 2n /∈ Z2 and Z2 ∪ (y + 2n) is a circuit of Class 3b. Moreover {y, y + 2n, 2n} is a
circuit of Class 3a, and X = {y, 2n} ∪ Z2. Therefore by Lemma B.3, (5.) holds for circuits
of Class 3c.
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Class 3d: Z = Z1 ∪ Z2 where |Z1|, |Z2| > 1,
∑

i∈Z1
mi = m2n, and

∑
j∈Z2

mj = my+2n.
Combining the previous three cases, we see that Z1 ∪ 2n is a circuit of Class 3c and
{y, y + 2n, 2n} is a circuit of Class 3a. By Lemma B.3, (5.) holds for Z1 ∪ {y, y + 2n}.
However Z2 ∪ y + 2n is a circuit of Class 3b. Therefore again by Lemma B.3, (5.) holds for
Z1 ∪ Z2 ∪ y = Z ∪ y = X.

Now let X be any circuit of Class 3. As X is a circuit of M [M∗
n+1], it follows that

∑
i∈Y mi ≡∑

j∈Z mj 6= 0 (mod 2). Moreover, because columns 1, 2, . . . , 2n − 1 of Mn+1 all have a zero
in row n+ 1, it follows that ∑

i∈Y

mi ≡
∑
j∈Z

mj ≡mP (mod 2)

For some P ∈ {1, 2, . . . , 2n − 1}\Y . In particular, Y ∪ P must be a circuit of Class 1, and
therefore (5.) holds. Moreover Z ∪ P is a circuit of the type addressed in Proposition B.7,
and thus (5.) holds as well. Therefore by Lemma B.3, (5.) holds for X = Y ∪ Z, and thus
for any circuit of Class 3.

This completes the proof that (5.) holds for Gn+1, and thus the proof of Theorem B.2.

Example B.4. Figure B.2 illustrated a graph G2, with simple edge-partition π2, satisfying
the conditions of Theorem B.2. In particular, π2 is strongly Z2-Kirchhoff with respect to
M [M∗

2 ]. Moreover, G2 and π2 have adjacency and cell matrices

A2 =


v1 v2 v3 v4

v1 0 1 2 1
v2 1 0 1 2
v3 2 1 0 1
v4 1 2 1 0

 B2 =


v1 v2 v3 v4

v1 0 1 2 3
v2 1 0 3 2
v3 2 3 0 1
v4 3 2 1 0

.
Now let M∗

3 be the matrix

M∗
3 =


1 2 3 4 5 6 7

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

.
Following the proof of Theorem B.2 we construct a graph G3, with edge-partition π3, that
is strongly Z2-Kirchhoff with respect to M [M∗

3 ]. In particular, G3 is the graph on 8 vertices
with adjacency matrix A3, and π3 is the simple edge-partition of G3 with cell matrix B3

defined by
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A3 =

[
A2 A2 + 2I4

A2 + 2I4 A2

]
B3 =

[
B2 B2 + 4J4

B2 + 4J4 B2

]
.

That is,

A3 =



v1 v2 v3 v4 v5 v6 v7 v8

v1 0 1 2 1 2 1 2 1
v2 1 0 1 2 1 2 1 2
v3 2 1 0 1 2 1 2 1
v4 1 2 1 0 1 2 1 2
v5 2 1 2 1 0 1 2 1
v6 1 2 1 2 1 0 1 2
v7 2 1 2 1 2 1 0 1
v8 1 2 1 2 1 2 1 0


B3 =



v1 v2 v3 v4 v5 v6 v7 v8

v1 0 1 2 3 4 5 6 7
v2 1 0 3 2 5 4 7 6
v3 2 3 0 1 6 7 4 5
v4 3 2 1 0 7 6 5 4
v5 4 5 6 7 0 1 2 3
v6 5 4 7 6 1 0 3 2
v7 6 7 4 5 2 3 0 1
v8 7 6 5 4 3 2 1 0


.

Graph G3, with edge-partition π3, is illustrated in Figure B.6. By the proof of Theorem B.2,
we are guaranteed that π3 is strongly Z2-Kirchhoff with respect to M [M∗

3 ].

v1 v2

v3v4

v5

v6

v7

v8

1

2

3

4

5

6
7
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5

4
7

6

1

6 7
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6
5

4
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1
2
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1

3

Figure B.6: The graph G3, with edge-partition π3, that is
strongly Z2-Kirchhoff with respect to M [M∗

3 ].
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for a matrix, 38
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Zp-vector graph, 37
cycle vector, 37
incidence vector, 37

abstract duals, 16
almost equitable edge-partition, 170
almost equitable partition, 168

block decomposable, 65
minimal, 66

bridge, 10

Cayley color graph, 29
characteristic matrix, 52
cut, 15

cut vector, 15
cut space, 15
cycle, 9

A-invariant, 124
A-resolvable, 126
characteristic vector, 14
cycle vector, 53
fundamental cycle, 125

cycle space, 14

directed graph, 11
automorphism, 146

automorphism group, 146
orbits, 147

dual Kirchhoff graphs, 80

edge, 5
contraction, 9
endvertices, 6
orientation, 11

edge space, 13
edge-partition

Z2-Kirchhoff, 248
cell matrix, 292
simple, 291

equitable edge-partition, 141
quotient, 142
quotient matrix, 143

equitable partition, 102
quotient, 104
quotient matrix, 105

force diagram, 81
frame diagram, 81

graph, 5
κ-regular, 7, 113
2-separation, 237
adjacency matrix, 6
asymmetric, 107
automorphism, 8, 106
automorphism group, 107
binary incidence matrix, 224
bipartite, 7, 114
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biregular, 114
complement, 7
complete, 7
component, 10
connected, 10
isomorphism, 8
orbits, 107
regular, 7
vertex transitive, 186

I-M form, 63
incidence matrix, 52
indicator, 250

K-equivalence, 62
Kirchhoff dual, 80
Kirchhoff edge-partition, 150
Kirchhoff graph, 34

for Null(A), 80
for a matrix, 31
uniform, 63

Laplacian matrix, 169
loop, 11

matroid, 196
Y -component, 227
Z2-Kirchhoff, 251
base, 199
basis, 199, 205
binary, 202
bond matroid, 225
bridge, 227
characteristic vector, 204
circuit, 197
closure, 207
cobase, 200
cocircuit, 200
column matroid, 201
compact representation matrix, 203
connected, 213
connected components, 213

contraction, 210
corank, 209
cycle matroid, 198
deletion, 209
dependent, 197
dual, 200
elementary separator, 213
even cocircuit, 228
fundamental circuit, 200
graphic, 198
independent set, 196
minor, 215
minor-closed, 215
rank, 200
rank function, 205
regular, 224
representable, 202
restriction, 205, 210
separator, 213
standard representation matrix, 203
strongly Z2-Kirchhoff, 256
uniform matroid, 197

multigraph, 11
adjacency matrix, 291

null vertex, 33

orbit edge-partition, 147
orbits of permutation matrices, 72

partition, 102
cells, 102
characteristic matrix, 105
classes, 102
discrete, 103
orbit partition, 107

path vector, 216
prism graph, 185

reciprocal figures, 81
reversible reaction, 23
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signed edge adjacency matrix, 139
signed edge Laplacian matrix, 171
star composition, 238
stoichiometric matrix, 23
subgraph, 7

induced, 7
spanning, 7

symmetric zeros, 111

tree, 10
A-resolvable, 126
distance, 131
ordering, 125
rooted, 125

twisting, 237

uniform edge-partition, 159

vector assignment, 50
characteristic matrix, 52
consistent, 50

vector edge-partition, 162
vector graph, 50

cycle vector, 30
for a matrix, 30
incidence vector, 31

vertex, 5
adjacent, 6
cutvertex, 10
degree, 6
incidence vector, 16, 53
initial vertex, 11
neighborhood, 6
star, 6

vertex space, 13

walk, 9, 12
closed, 9
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