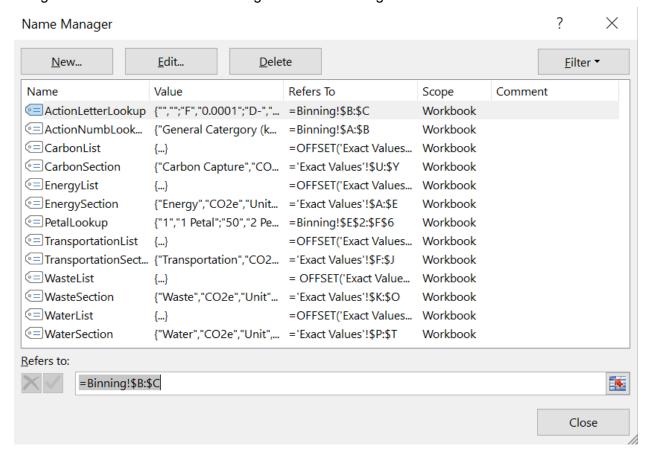
Program Carbon Emission Scorecard Technical Document

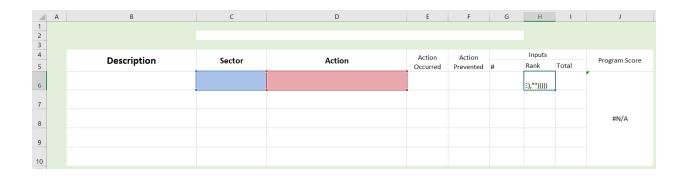
By: Brigitte Lefebvre


Excel Formulas	3
Defined Names and Ranges	3
Main User Interface	3
Rank Calculation	3
Total Calculation	4
Program Score Calculation	4
Unprotected Cells	4
Conditional Formatting	5
Dropdown Menus	5
Exact Values	6
Ranking Actions	6
Binnig	6
"Exact Value" CO2e Calculations	7
Energy	7
Standard Grid Electricity Use (1 kWh)	7
Powershop Electricity Use (1 kWh)	7
Brown-coal Electricity Use (1 kWh)	8
Transportation	9
Petrol (1 L)	9
Diesel (1 L)	9
CO2 emissions of different vehicles in Melbourne	10
CO2 emissions of cars in Australia	11
Waste	12
[Various materials] Landfill (1 kg) and bought new (1 kg)	12
Compostables in composting bay (1 kg)	16
Water	17
Potable Water (1 L)	17
Carbon Capture	18
Saltmarsh, Mangroves, and Seagrass (1 m^2)	18

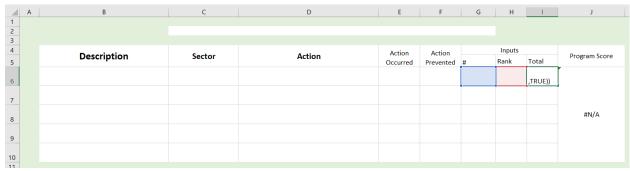
Excel Formulas

These formulas are the basis for how the scorecard works, while the original Excel file is in protected mode to prevent formulas from being disrupted while the scorecard is used, it is not password protected so anyone can enter the excel review tab and unprotect the sheets to make changes. If this occurs, these formulas can be put back into the scorecard in their indicated squares if an original version of the scorecard can't be recovered.

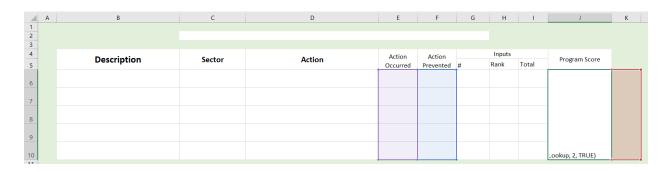
Defined Names and Ranges


The name manager can be found using the search bar in Excel and searching for "Name Manger". The defined names and ranges are used throughout the formulas in the excel sheet.

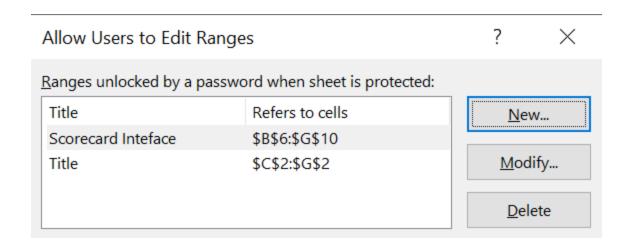
Main User Interface


Rank Calculation

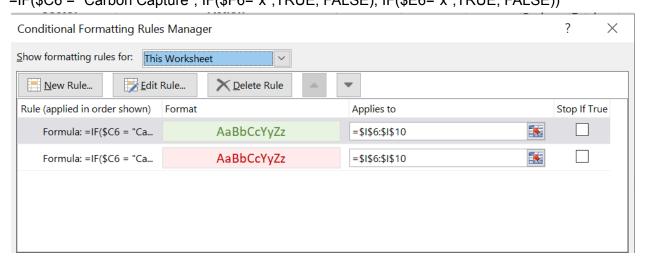
=IF(\$C6="Energy",VLOOKUP(D6,EnergySection,5,FALSE),IF(\$C6="Transportation",VLOOKUP (D6,TransportationSection,5,FALSE),IF(\$C6="Waste",VLOOKUP(D6,WasteSection,5,FALSE),IF (\$C6="Water",VLOOKUP(D6,WasteSection,5,FALSE),IF(\$C6="Carbon Capture",VLOOKUP(D6,CarbonSection,5,FALSE),"")))))


Total Calculation

=IF(ISBLANK(\$G6),"",VLOOKUP((VLOOKUP(H6,ActionLetterLookup,2,FALSE)*G6),ActionNumbLookup,2,TRUE))


Program Score Calculation

 $= VLOOKUP((SUMIF(F6:F10,"x",K6:K10)*1)-(SUMIF(E6:E10,"x",K6:K10)*1),PetalLookup,\ 2,\ TRUE)$


Unprotected Cells

These unprotected cells allow the scorecard to be used while the formulas are proceted from accidental tampering

Conditional Formatting

=IF(\$C6 = "Carbon Capture", IF(\$E6="x",TRUE, FALSE), IF(\$F6="x",TRUE, FALSE))
=IF(\$C6 = "Carbon Capture", IF(\$F6="x",TRUE, FALSE), IF(\$E6="x",TRUE, FALSE))

Dropdown Menus

The sector and action columns both use drop down menus to select inputs, these drop down menus are defined in the data validation function using the following formulas Sector) Energy, Transportation, Waste, Water, Carbon Capture

Action) = IF(\$C6="Energy" Energy ist IF(\$C6="Transportation" Transportation ist

Action) =IF(\$C6="Energy",EnergyList, IF(\$C6="Transportation",TransportationList, IF(\$C6="Waste", WasteList, IF(\$C6="Water", WaterList, IF(\$C6="Carbon Capture",CarbonList,"")))))

Exact Values

Ranking Actions

=IF(B2<10, "F", VLOOKUP((B2/1000),ActionNumbLookup,2,TRUE))

	А	В	С	D	Е
1	Energy	CO2e	Unit	Source	Ranking
2	Standard Grid Electricity Use (1 kWh)	733	g CO2 / kWł	https://clim),2,TRUE))
3	Powershop Energy Use (1 kWh)	0	g CO2 / kWł	https://www	F
4	Brown-coal Electricity (1 kWh)	1404	g CO2/ kWh	https://www	D+
5	Natural gas (1 kWh)	0.004	g CO2/ kWh	https://www	F

Binnig

While there are no formulas of this sheet, these ranges, ActionLetterLookup, ActionNumberLookup, and PetalLookup form the foundation of many of the formulas and so if these ranges are deleted or values are deleted, the entire scorecard will break.

4	Α	В	С	D	Е	F
1	General C	atergory (k	(g)		Petal Cate	egories
2	0.0001	F	0.0001		1	1 Petal
3	0.001	D-	0.001		50	2 Petals
4	0.1	D	0.1		200	3 Petals
5	1	D+	1		800	4 Petals
6	5	C-	5		1000	5 Petals
7	25	С	25			
8	50	C+	50			
9	100	B-	100			
10	150	В	150			
11	200	B+	200			
12	400	Α-	400			
13	600	Α	600			
14	800	Α+	800			
15	1000	A++	1000			

"Exact Value" CO2e Calculations

Energy

Standard Grid Electricity Use (1 kWh)

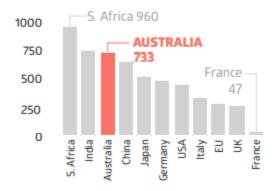
Source:

 $\underline{https://climateanalytics.org/media/australiaclimatefactsheets 2018-electricity sector-climateanalytics. and the results of the property of$

cs.pdf

Year: 2018

Region of Study: Australia


Calculations:

Carbon Emission for electricity use (pg 1)

Electricity Emissions Intensity

g CO₂ / kWh

2017 Rank: 3rd last of 11

733 g CO2 per kWh

Powershop Electricity Use (1 kWh)

Source: Carbon Neutral Certification - Powershop

Year: 2021

Region of Study: Australia

Calculations:

Carbon offsets through Carbon Certificates

Meridian Energy Australia, Powershop (us), and all our operations are certified carbon neutral under the Climate Active Carbon Neutral Standard. But importantly for our customers, the carbon neutral certification applies to our product as well. So if you're a Powershop customer all your energy usage is certified carbon neutral.

0 g CO2 per kWh

Brown-coal Electricity Use (1 kWh)

Source:

https://www.portphillip.vic.gov.au/media/c12b5uyh/copp-report-smallest-file-size_pages.pdf

Year: 2005

Region of Study: Port Phillip (Yallourn power station)

Calculations:

Brown Coal electricity CO2e creation (pg 33)

indeed in the world⁵⁹. The carbon intensity of Yallourn power station, for example, is 1.404 tonnes of carbon dioxide per megawatt-hour of energy produced⁶⁰. This is significantly more than other forms of power

1.404 tonnes CO2e per MWh x 1000000 g per metric ton = 1404000 g per MWh 1404000 g per MWh / 1000 kWh per MWh = 1404 g CO2e per kWh

Transportation

Petrol (1 L)

Source: Ecoscore

Year: 2021

Region of Study: European Union

Calculations:

Petrol CO2

Petrol:

1 liter of petrol weighs 750 grammes. Petrol consists for 87% of carbon, or 652 grammes of carbon per liter of petrol. In order to combust this carbon to CO_2 , 1740 grammes of oxygen is needed. The sum is then 652 + 1740 = 2392 grammes of CO_2 /liter of petrol.

2392 g CO2/L

Diesel (1 L)

Source: Ecoscore

Year: 2021

Region of Study: European Union

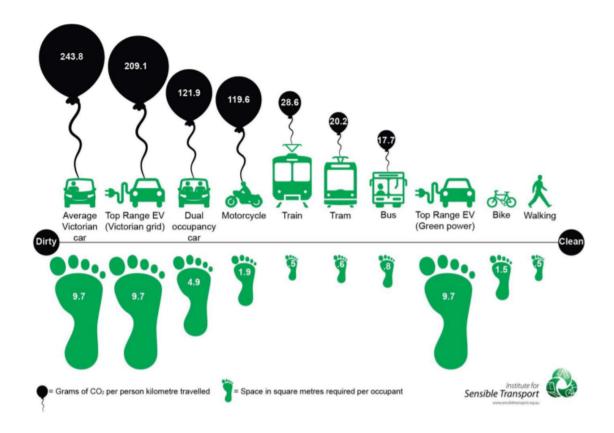
Calculations:

Diesel CO2

Diesel:

1 liter of diesel weighs 835 grammes. Diesel consist for 86,2% of carbon, or 720 grammes of carbon per liter diesel. In order to combust this carbon to CO_2 , 1920 grammes of oxygen is needed. The sum is then 720 + 1920 = 2640 grammes of CO_2 /liter diesel.

2640 g CO2/L


CO2 emissions of different vehicles in Melbourne

Source: <u>Transport Strategy Refresh</u>

Year: 2018

Region of Study: Melbourne

Vehicle CO2e emissions (pg 4)

CO2 emissions of cars in Australia

Source: https://apo.org.au/sites/default/files/resource-files/2020-06/apo-nid306386.pdf

Year: 2020

Region of Study: Australia

Vehicle CO2e emissions (pg 30)

Table 12: Average emissions intensity and annual sales by segment, 2018 and 2019

		sions intensity km)		Sales		
Segment	2018	2019	Change from 2018 to 2019 (%)*	2018	2019	
SUV Medium	174	171	-2.1	206,450	201,371	
Pick-up/Chassis 4×4	224	226	0.9	173,263	168,584	
Small	151	148	-1.6	199,123	163,243	
SUV Small	157	157	0.5	139,163	138,883	
SUV Large	207	205	-1.1	132,662	122,681	
Light	135	134	-0.2	76,664	63,050	
Medium	153	150	-1.9	46,231	42,994	
Pick-up/Chassis 4×2	219	221	0.6	37,668	32,783	
Vans/Cab Chassis	205	204	-0.5	23,328	20,898	
SUV Upper Large	259	257	-0.8	16,933	19,738	
Sports	219	214	-2.0	18,571	14,344	
People Movers	217	217	0.2	13,357	12,543	
Large	202	189	-6.5	15,405	11,422	
Micro	129	129	-0.2	7,819	6,505	
Upper Large	206	219	6.1	1,109	943	
Light Buses	258	258	0.0	2,642	857	
Total	181	181	-0.2	1,110,388	1,020,839	

^{*} Due to rounding, average emissions intensity may appear the same for 2018 and 2019 in some rows of the table. However, the percentage change considers the unrounded figure.

Calculating an EcoCentre Average using the average of all small and medium values
(151 + 148 + 157 + 157 + 135 + 134 + 153 + 150 + 174 + 171) = 1530 g CO2e per km
1530 g CO2e per km / 10 = 153 g CO2e per km

Waste

The calculations for waste draw from several sources

[Various materials] Landfill (1 kg) and bought new (1 kg)

https://www.legislation.gov.au/Details/F2020C00600

Year: 2020

Region: Australia

- Operates by starting with a total volume of waste in a landfill and calculating percentage
 of waste types in the landfill. This makes it difficult to calculate values for small scales
 and for one type of waste. Could be adapted for scorecard but finding individual values
 is difficult and could cause uncertainties to be greater
- Has categories for the environment in the landfills and defines Victoria landfills as dry,temperate. This can be applied in the WARM database. (Chapter 5 Part 5.2 Division 5.2.2 Sec 5.14)

				k values for Solid Waste at a Landfill				
				Item	State or Territory	Waste mix type	k values	
				1	NSW	Food	0.185	
						Paper and cardboard	0.06	
						Garden and Green	0.10	
						Wood	0.03	
						Textiles	0.06	
						Sludge	0.185	
						Nappies	0.06	
k value	s for Solid Waste at a Landfil	l				Rubber and Leather	0.06	
Item	Landfill classification	Waste mix type	k values			Alternative waste treatment residue	0.06	
1	Temperate dry	Food	0.06	2	VIC, WA, SA, TAS, ACT	Food	0.06	
		Paper and cardboard	0.04			Paper and cardboard	0.04	
		Garden and Green	0.05			Garden and Green	0.05	
		Wood	0.02			Wood	0.02	
		Textiles	0.04			Textiles	0.04	
		Sludge	0.06			Sludge	0.06	
		Nappies	0.04			Nappies	0.04	
		Rubber and Leather	0.04			Rubber and Leather	0.04	
		Alternative waste treatment residue	0.04			Alternative waste treatment residue	0.04	

https://www.epa.gov/sites/production/files/2020-12/documents/warm_management_practices_v 15_10-29-2020.pdf

and

https://www.epa.gov/sites/production/files/2020-12/documents/warm_background_v15_10-29-2020.pdf

Year: 2020 Region: USA

- Points of interest are the Source reduction, landfilling, and compost data.
- Source Reduction: Isn't exact to Australian standards, but takes into account industrial
 manufacture practices averages so can apply to australia pretty closely. There also isn't
 much similar values in any Australian sources.
 - Source Reduction refers to the practice of reducing the use of a material by redesigning a product to use less material, extending its useful lifespan, reusing

- materials before sending them to end of life processing, or preventing their use altogether. (Pg 1-1)
- Mixed Recyclables, Organics, and MSW cannot be reduced because the category is too broad. Reducing specific recyclables, organic waste, and MSW must be modeled instead (Pg 1-4)
- Landfilling: Based of a laboratory study so the raw values are applicable to Australia
 - The values for landfilling emissions were taken from a simulated landfill test of many types of matter done at North Carolina State University by Barlaz etc al.(Pg 6-4)
- Compost: Looks at large scale mechanically turned compost so none of the data is relevant.

Source Reduction and Landfilling Emissions in MT CO2e/Short Ton from WARM (Pg 1-4)

Material	Net Source Reduction Emissions for 100% Virgin Inputs	Net Landfilling Emissions
Mixed Paper	(7.61)	0.07
Mixed Plastics	(1.94)	0.02
Mixed Electronics*	(18.57)	0.02
Food Waste (Fruit and Veggies)	(0.44)	0.50
Glass	(0.60)	0.02

^{*}Values were taken from the average of all electronics listed in the sheet

Parentheses indicate that emissions are saved, non-parentheses indicate emissions are released

- 1 MT = 1,000,000 g
- 1 Short Ton = 907.185 kg
- 1 MT/ 1 Short Ton = 1,000,000/907.185 = 1102.31 g CO2/kg <- Conversion Factor

Source Reduction and Landfilling Emissions in g CO2e/kg adapted from WARM (Pg 1-4)

Material	Net Source Reduction Emissions for 100% Virgin Inputs	Net Landfilling Emissions
Mixed Paper	(8386)	77
Mixed Plastics	(2138)	22
Mixed Electronics*	(20470)	22
Food Waste (Fruit	(485)	550

and Veggies)		
Glass	(661)	22

*Values were taken from the average of all electronics listed in the sheet
Parentheses indicate that emissions are saved, non-parentheses indicate emissions are released

Exhibit 1-1: Greenhouse Gas Emissions from Management Options Modeled in WARM (MTCO₂E/Short Ton of Material)

Exhibit 1-1: Greenhouse Gas Emis			uons Mode	iea in WARN	I (IVI I CU2E/SI	TORE TON OF	iviaterialj
Material	Net Source Reduction Emissions for	Net Source Reduction Emissions	Net Recycling	Net Composting	Net Combustion	Net Landfilling	Net Wet Anaerobic Digestion
	Current Mix of	for 100% Virgin Inputs	Emissions	Emissions	Emissions	Emissions	with curing
Corrugated Containers	(5.58)	(8.09)	(3.14)	NA	(0.49)	0.18	NA
Magazines/Third-class Mail	(8.57)	(8.86)	(3.14)	NA NA	(0.45)	(0.43)	NA NA
Newspaper	(4.68)	(5.74)	(2.71)	NA NA	(0.56)	(0.43)	NA NA
Office Paper	(7.95)	(8.23)	(2.86)	NA NA	(0.47)	1.13	NA NA
Phonebooks	(6.17)	(6.17)	(2.62)	NA NA	(0.56)	(0.85)	NA
Textbooks	(9.02)	(9.32)	(3.10)	NA	(0.47)	1.13	NA
Mixed Paper (general)	(6.07)	(7.61)	(3.55)	NA	(0.49)	0.07	NA
Mixed Paper (primarily residential)	(6.00)	(7.64)	(3.55)	NA	(0.49)	0.02	NA
Mixed Paper (primarily from offices)	(7.37)	(7.93)	(3.58)	NA	(0.45)	0.11	NA
Food Waste	(3.66)	(3.66)	NA	(0.12)	(0.13)	0.50	(0.06)
Food Waste (non-meat)	(0.76)	(0.76)	NA	(0.12)	(0.13)	0.50	(0.06)
Food Waste (meat only)	(15.10)	(15.10)	NA	(0.12)	(0.13)	0.50	(0.06)
Beef	(30.09)	(30.09)	NA	(0.12)	(0.13)	0.50	(0.06)
Poultry	(2.45)	(2.45)	NA	(0.12)	(0.13)	0.50	(0.06)
Grains	(0.62)	(0.62)	NA	(0.12)	(0.13)	0.50	(0.06)
Bread	(0.66)	(0.66)	NA	(0.12)	(0.13)	0.50	(0.06)
Fruits and Vegetables	(0.44)	(0.44)	NA	(0.12)	(0.13)	0.50	(0.06)
Dairy Products	(1.75)	(1.75)	NA	(0.12)	(0.13)	0.50	(0.06)
Yard Trimmings	NA	NA	NA	(0.05)	(0.17)	(0.20)	NA
Grass	NA	NA	NA	(0.05)	(0.17)	0.12	NA
Leaves	NA	NA	NA	(0.05)	(0.17)	(0.53)	NA
Branches	NA	NA	NA	(0.05)	(0.17)	(0.54)	NA
HDPE	(1.42)	(1.52)	(0.76)	NA	1.29	0.02	NA
LDPE	(1.80)	(1.80)	NA	NA	1.29	0.02	NA
PET	(2.17)	(2.21)	(1.04)	NA	1.24	0.02	NA
LLDPE	(1.58)	(1.58)	NA	NA	1.29	0.02	NA
PP	(1.54)	(1.54)	(0.79)	NA	1.29	0.02	NA
PS	(2.50)	(2.50)	NA	NA	1.65	0.02	NA
PVC	(1.93)	(1.93)	NA	NA	0.66	0.02	NA
Mixed Plastics	(1.87)	(1.94)	(0.93)	NA	1.26	0.02	NA
PLA	(2.45)	(2.45)	NA	(0.09)	(0.63)	(1.64)	NA
Desktop CPUs	(20.86)	(20.86)	(1.49)	NA	(0.66)	0.02	NA
Portable Electronic Devices	(29.83)	(29.83)	(1.06)	NA	0.65	0.02	NA
Flat-Panel Displays	(24.19)	(24.19)	(0.99)	NA	0.03	0.02	NA
CRT Displays	NA	NA	(0.57)	NA	0.45	0.02	NA
Electronic Peripherals	(10.32)	(10.32)	(0.36)	NA	2.08	0.02	NA
Hard-Copy Devices	(7.65)	(7.65)	(0.56)	NA	1.20	0.02	NA
Mixed Electronics	NA	NA	(0.79)	NA	0.39	0.02	NA
Aluminum Cans	(4.80)	(10.99)	(9.13)	NA	0.03	0.02	NA
Aluminum Ingot	(7.48)	(7.48)	(7.20)	NA	0.03	0.02	NA
Steel Cans	(3.03)	(3.64)	(1.83)	NA	(1.59)	0.02	NA
Copper Wire	(6.72)	(6.78)	(4.49)	NA	0.03	0.02	NA
Mixed Metals	(3.65)	(6.22)	(4.39)	NA	(1.02)	0.02	NA
Glass	(0.53)	(0.60)	(0.28)	NA	0.03	0.02	NA
Asphalt Concrete	(0.11)	(0.11)	(0.08)	NA NA	NA (0.25)	0.02	NA NA
Asphalt Shingles	(0.19)	(0.19)	(0.09)	NA NA	(0.35)	0.02	NA NA
Clay Bricks	(3.68)	(3.68)	(2.38)	NA NA	1.10	0.02	NA NA
Clay Bricks	(0.27)	(0.27)	(0.01)	NA NA	NA NA	0.02	NA NA
Concrete Dimensional Lumber	NA (2.13)	NA (2.13)	(0.01)	NA NA	(0.59)	(0.02)	NA NA
Dimensional Lumber	(2.13)	(2.13)	(2.66) ^a	NA NA	(0.58)	(0.92)	NA NA
Drywall Fiberglass Insulation	(0.22)	(0.22)	0.03	NA NA	NA NA	(0.06)	NA NA
	(0.38) NA	(0.48)	NA (0.97)	NA NA	NA NA	0.02	NA NA
Fly Ash Medium-density Fiberboard		NA (2.41)	(0.87) NA	NA NA	NA (0.58)	(0.02	NA NA
Medium-density Fiberboard Structural Steel	(2.41)	(2.41)	(1.03)	NA NA	(0.58) NA	(0.85)	NA NA
Structural Steel Vinyl Flooring	(1.67)	(3.42)	(1.93) NE	NA NA	(0.31)	0.02	NA NA
Wood Flooring	(4.03)	(4.03)	NE NE	NA NA	(0.31)	(0.86)	NA NA
Tires Mixed Recyclables	(4.30) NA	(4.46) NA	(0.38)	NA NA	(0.42)	0.02	NA NA
Mixed Organics	NA NA	NA NA	(2.85) NA	(0.09)	(0.42)	0.03	NA NA
Mixed Organics Mixed MSW	NA NA	NA NA	NA NA	(0.09) NA	0.01	0.18	NA NA
INITED INITED	NA	INA	IVA	INA	0.01	0.51	IVA

Compostables in composting bay (1 kg)

Source: https://journals.sagepub.com/doi/10.1177/0734242X07088432

Year: 2008

Region of Study: Austria and Germany

Table 1: Experimental data of backyard composting trials BYC-1 and BYC-2.

	BYC-1	BYC-2
Period of weekly biowaste input	3.9.1999–25.11.1999 (12 weeks)	20.4.2000–12.4.2001 (51 weeks)
Period of emission measurements	12.9.1999-23. 3. 2000 (30 weeks)	22.4.2000-1.7.2001 (64 weeks)
Total biowaste input	1775.3 kg	2930.8 kg
Biowaste input week ⁻¹	161.4 (eight composters)	57.5 kg (two composters)
Biowaste input day ⁻¹	21.1 kg	8.2 kg
Biowaste input year ⁻¹	7714.1 kg	2996.4 kg
Biowaste input week ⁻¹ & composter	min 3.1 kg-max. 46.8 kg	min. 5.7 kg-max. 52.7 kg
Inhabitants served depending on specific biowaste production		
260 kg lnh ⁻¹ *a	30 Inh	12 Inh
170 kg lnh ⁻¹ *a	45 Inh	18 Inh
100 kg lnh ⁻¹ *a	77 Inh	30 Inh
85 kg lnh ⁻¹ *a	91 Inh	35 Inh
Loss of fresh matter		
Phase 1 (first turning)		34%
Phase 2 (extraction)	30%	41%
Total (after maturation)	57% (m/m)	59%
Leachate water / composter	3.4 l	29–56 l
Leachate water / week & composter	0.3	1.5 – 2.1 l

Since input materials were taken every week from source separated organic household waste from a nearby settlement, the raw material was not analysed. Rather, it was important in this experiment to simulate a composting system that is very close to a full-scale typical composting system.

Our own measurements showed that the highest emission rates (76 kg CO₂-equ Mg⁻¹) tended to be from home composting of treated kitchen and garden waste that was mechanically turned every 12 weeks (BYC-2). We consider the results from this experiment to be highly representative, since they represent a full year of regular measurements that covered typical continental seasonal variations. On the other

76 kg CO2e / Mg (1g / 1000 kg) (1000Mg / 1kg) = $\frac{76g}{kg}$ of compostables

Water

Potable Water (1 L)

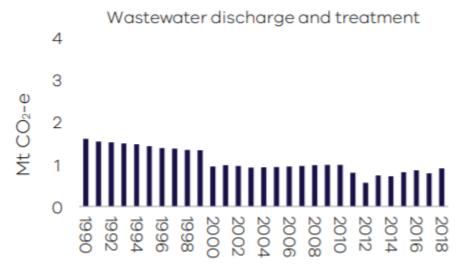
Source:

https://www.climatechange.vic.gov.au/__data/assets/pdf_file/0026/504188/Victorian-Greenhouse-Gas-Emissions-Report-2018a1.pdf

Year: 2018

Region of Study: Victoria

And


Source: https://www.water.vic.gov.au/media-releases/2020/victorian-water-accounts-201819-now

<u>-available</u> Year: 2020

Region of Study: Victoria

Calculations:

CO2e emission from wastewater treatment (pg 36)

(2018 value equals 0.9 MT CO2e)

GL of water used in 2018-2019 year

These accounts show the total volume of surface water, groundwater and recycled water available in 2018–19 was 12,073 GL, compared to 15,375 GL in the previous year. Of the water available, 3,976 GL was taken for consumptive purposes, compared to 4,087 GL taken in 2017–18.

0.9 MT CO2e (1000000 g / 1 MT) = 900000 g CO2e 4,087 GL water (1,000,000,000 L/ 1 GL) = 4,087,000,000,000 L water 900,000 g CO2e / 4,087,000,000,000 L water = $\frac{0.0000002}{0.0000002}$ g CO2e / L water

Carbon Capture

Saltmarsh, Mangroves, and Seagrass (1 m²)

Source: http://www.ppwcma.vic.gov.au/Resources/PublicationDocuments/117/PPW%20Blue%20 Carbon%20Report%20March%202014.pdf

Year: 2015

Region of Study: Port Phillip (While the values are not from Port Phillip, it was seen fit to apply them to Port Phillip in this report)

Estimates from some parts of the world indicate that carbon is sequestered at a rate of up to $151.0 \, \mathrm{g} \, \mathrm{C} \, \mathrm{m}^{-2} \, \mathrm{yr}^{-1}$ in saltmarsh, $139.0 \, \mathrm{g} \, \mathrm{C} \, \mathrm{m}^{-2} \, \mathrm{yr}^{-1}$ in mangroves, and $83.0 \, \mathrm{g} \, \mathrm{C} \, \mathrm{m}^{-2} \, \mathrm{yr}^{-1}$ in seagrass (Smith 1981; Duarte *et al.* 2005; McLeod *et al.* 2011). The relatively anaerobic soils