
1

MUSIC AND WEARABLE
TECHNOLOGY

Major Qualifying Project

Advisor:

William R Michalson

Written By:

Matthew Barreiro

Erin Ferguson

Liam Perry

A Major Qualifying Project

WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Electrical and Computer Engineering

August 2016- March 2017

2

Table of Contents
1.Introduction ... 4

2.Background .. 5

2.1Music and Psychology .. 5

2.2 Physiological Relationships .. 5

2.3 Music and Physiology .. 11

2.4 Prior Art ... 12

2.5 Market Research ... 13

2.6 Technical Research .. 13

2.6.1 Musical API Research .. 14

2.6.2 Fitness API/SDK Research ... 14

2.6.3 Music App Research .. 15

2.6.4 Bluetooth Hardware Research .. 16

3 System Architecture .. 17

3.1 Hardware Requirements ... 18

3.1.1 Monitoring Device ... 18

3.1.2 Interface Device .. 18

3.2 Software Requirements .. 19

3.2.1 Fitness Tracking ... 19

3.2.2 Music Player .. 19

3.2.3 UI Requirements ... 19

3.3 Other Requirements ... 20

3.3.1 User Supplied Resources ... 21

3.3.2 Developer Supplied Resources ... 21

4 Hardware Design ... 22

5 Software Design .. 23

5.1 Music Player .. 23

5.2 Data Collection .. 23

5.3 Algorithm .. 24

6 Results ... 25

3

7 Conclusions ... 26

Appendix A: Respiration Rate Sensing Details .. 27

Appendix B: Readme File for Android Studio Project ... 33

Credits ... 33

Licenses ... 34

License (Sensor Dashboard) .. 34

Appendix C: Select Code Snippets .. 35

Appendix D: Query Arguments for Get Recommendations Based on Seeds Function in Spotify Web API 42

References .. 46

Figure 1: Pulsesensor .. 6

Figure 2: Local Variance of Heart Rate with and without Music .. 7

Figure 3: Lapel Microphone .. 8

Figure 4: SHARP Infrared Sensor ... 8

Figure 5: Respiration Sensor ... 9

Figure 6: Lap Time with Different Music Types .. 11

Figure 7:Android App (Left) and Watch App Mockup (Right) ... 20

4

1.Introduction
Iso-principle is the concept of shifting someone’s mood through music. This is done through

“entrainment,” which is the synchronization of the body’s rhythms to an outside stimulus. One such

source of rhythm is music. Music has been shown to alter a subject’s mood and physiology. Certain

types of music can induce a positive shift in the mood. These positive mood shifts can be used to

improve exercise performance in casual exercisers. Music has also been shown to take mood down. For

example, music’s interaction with the autonomous nervous system can cancel the physical effects of an

anxiety response.

The goal of our product is to select and play music on Spotify based on processed biosignals to bring

about a shift in mood or physiology. We plan to accomplish this by creating an Android app that

interfaces with a smartwatch, like an Moto360, and Spotify.

The market of wearable devices has expanded in recent years, leading to a wealth of information

about our physiology in real time. Given this development, there is plenty of opportunity to use that

information to do something new. Music has been shown to alter a listener’s physiology and, under

particular conditions, improve physical performance. By using a wearable to monitor physiological

values, music can be used to shift those values to a more desirable state.

A system that can achieve this functionality would consist of a wearable to measure and send the

physiological values, and a device that can play music and can use those values to choose the

appropriate music to play. The system that we will design consists of a smartwatch, an android

smartphone, and an Android app that connects the two, chooses the music, and plays the music.

5

2.Background
2.1Music and Psychology

Music influences physiology and psychology. “Iso-principle” is the concept of matching a patient’s

mood to music and then using the music to alter the mood in some way. [1] This is done through

entrainment, which is when the body’s rhythms, such as heart rate and respiration, get synchronized to

an external rhythm, such as music. [2] The two largest factors in psychological effects of music are

melody and rhythm. A melody is the most conscious way that a listener will be affected by music,

because a melody is something that the listener can focus on. A melody also stimulates the imagination

and can be easily remembered. Melodies that employ brass instruments and electronic sounds have

been found to cause a positive shift in mood, while melodies that mostly rely on harps, chimes, and

strings cause a downshift in mood. The music’s tempo has the largest effect on mood, even though the

effect is subconscious. Music with tempos greater than resting heart rate (60-100 beats per minute

(BPM)) [3] are stimulating and elevate mood. Those that are less than resting heart rate can soothe and

lessen mood.

Music has also been shown to distract from negative stimuli. This is why music can enhance

exercising in untrained athletes. Music can distract from anxiety attacks by influencing the autonomic

nervous system. When someone experiences anxiety, their heart rate, respiratory rate, and blood

pressure increase. When music is played, the vagus nerve, which is part of the autonomic nervous

system, tells the parasympathetic nervous system, which controls heart and respiration rate, to slow

down, ending the anxiety attack [4]. Music is also thought to release endorphins, which elevate mood

and stop anxiety. [5]

2.2 Physiological Relationships
In addition to influencing the psyche, music also has measurable effects on physical systems of the

body. The team developed a series of experiments to learn about music's effects on physiology and the

relationship between different biological parameters.

We designed experiments to determine the effect of music on heart rate. At first, we utilized an

Asiawill Pulsesensor for Arduino, seen in Figure 1, to take heart rate. With this set up, one team member

listened to 2 minutes of a song with either high or low BPM and high or low valence, defined in Table 1,

as well as 2 minutes of silence, while not moving. We found that there wasn’t that much of a difference

in average heart rate under these conditions. The team was skeptical about this finding because of the

variability in output. For example, a heart rate of 65 BPM, determined by the palpation method at the

wrist, was read by the fingertip sensor as some value between 60-75 BPM. Another issue with this

sensor is that the sensor must be perfectly aligned on the fingertip to read any data at all. This

presented issues, particularly after our running trial, as it required a physically excited team member to

come down from a run and perfectly align a small sensor on his fingertip in the short amount of time

before his heart rate began to drop. To overcome this obstacle, we decided to abandon this sensor and

instead get the data from a team member’s Apple Watch.

6

FIGURE 1: PULSESENSOR

The Apple Watch has a feature where a user can manually initiate a workout, labeled as “create new

workout.” During this workout, the Apple Watch constantly records heart rate measurements. Once the

workout has ended, the user has the ability to export full exercise history, and send this filet via email to

a computer for processing in Excel. We used this method for our second experiment. During this

experiment, one team member sat and did not listen to music in for thirty minutes. Then that same

member listened to music with low, but increasing, valence and a constant tempo of 140 BPM for 30

minutes. Heart rate was taken constantly during this trial. The results of this experiment showed that

variance in the heart rate decreased when the subject was listening to music. This data supports the

idea that music can help regulate cardiac function. A graph of the variance in heart rate can be seen in

Figure 2 below. The variance was taking using a windowing technique. Only the most recent 25 data

points are considered. Variance of heart rate without music is displayed to the left of the red divider and

variance of heart rate while listening to music is displayed to the right of the red divider. It is important

to note how much lower the variance is once the participant started listening to music.

7

FIGURE 2: LOCAL VARIANCE OF HEART RATE WITH AND WITHOUT MUSIC

The team then decided to see if it was possible to infer other biological relationships from data

collected by the smart watch. We decided to study respiration rate because this is something that

changes with exercise. The hope was to be able to correlate the respiration rate to heart rate and

display it in the app. The team decided to pursue three different types of sensors to capture respiration

rate. The types of sensors tested were a lapel microphone, an infrared sensor, and a conductive rubber

cord.

A lapel mic taped under the nostril was thought to be able to record breath sounds for analysis.

This method captured the actual breath sounds and analyzed them to find the respiration rate. The

breathing patterns were recorded using Audacity, an audio editing program, and imported into MATLAB

for analysis. The script took a Fourier Analysis of the data to determine the frequency of respiration.

Unfortunately, this method was extremely susceptible to motion artifacts because the microphone was

just taped to the face during exercise. Recording the breath sounds with such a low-quality microphone

also made the data very noisy. The data that was Fourier transformed was not clean, so the graph of the

transform did not have a peak at any discernable location. This made this an inappropriate way to

collect respiration rate data.

8

FIGURE 3: LAPEL MICROPHONE

A SHARP infrared proximity sensor was the next method tested. This method used the location

of the front of the chest to identify when the person breathed. This was set up by placing reflective tape

on the test subject and setting the infrared sensor on a flat surface facing the test subject. The infrared

sensor was tuned to sense the small changes in the position of the chest during breathing. The reflective

tape made it easier for the sensor to “see” the chest, since dark colored clothes absorb light. The

changes were recorded using an oscilloscope. When the person breathed in, the chest expands, so the

infrared sensor outputs high. When the person breathes out, the chest contracts, and the sensors

outputs low. Though it was possible to get readings from this sensor, this idea was abandoned because

it was not practical for use during exercise since an exerciser’s body moves unpredictably during a

workout. During the initial test, both the sensor and the subject remained stationary. This setup was not

practical for a real world situation. This led the team to develop a motion resilient method of measuring

breath rate.

FIGURE 4: SHARP INFRARED SENSOR

The method we ended up using is a conductive rubber cord. This measures the changes in the

size of the chest during respiration. The test apparatus was made up of an adjustable elastic band and

the conductive rubber cord. This cord acted like a potentiometer in a voltage divider because the change

in the stretch of the cord changed the resistance. The voltage was measured across the variable resistor,

so the voltage output correlated to the degree of stretch. The data was collected using an Arduino UNO.

The rate of change of the voltage was correlated to respiration rate using a MATLAB script.

9

This respiration sensor is attached to the person using safety pins and an elastic waistband. The

waistband size is adjusted to wrap around the test subject’s chest. The cord is electrically connected to

the rest of the circuit using alligator clips. This was the best solution explored because it is portable and

is not easily disrupted during exercise.

FIGURE 5: RESPIRATION SENSOR

Some problems with this method were the fragility of the cord. The cord could only be used for

a few experiments before it wore out and snapped. As the experiments went on, the cord became more

stretched out, so the output voltage was not consistent. The general proportions were still similar so it

was possible to use this method to get usable respiration rate data.

Once the team decided on using the conductive rubber cord method to get data, the team

designed a variety of experiments to determine is respiration rate was correlated to heart rate. It was

determined that while there is a relationship between the heart rate and respiration rate in some

participants, it is not strong enough to generalize for all cases. The team decided not to try to display

this information in the app. More information about these experiments can be found in Appendix A.

After the team decided to use heart rate as the parameter to track, the team pursued measuring

running pace while listening to different types of music. The runners’ paces were used as the metric for

better or worse performance. We hoped to find what qualities of music changed someone’s running

pace from their normal pace, without music. To complete this experiment, we compiled 3 different

playlists with different beats per minute (BPM) and different valence levels. These terms can be found in

Table 1 below. Participants listened to our playlists for 10 minutes while running around an indoor track.

The runners’ lap times were recorded. All participants were volunteers. Because there was no incentive

and because all participants were students, not all participants completed the full trial. The sample size

was also extremely small.

10

Table 1: Selected Musical Qualities

Echo Nest Song Attribute Definition

Beats per Minute (BPM) Tempo of the song

Energy The higher the value, the more energetic the song

Dancebility The higher the value, the easier it is to dance to

Valence The higher the value, the more positive the song’s

mood

 The first playlist, Playlist A, had high BPM (160-168) and low valence (3-7). Generally,

participants were slower than their control run with no music. We can accept this result because lower

valence means lower energy. This makes the participants less “pumped up.” A lot of the music in this

playlist had a lot of rests and no distinct melody. One participant described this music as “empty space.”

Another said it was “boring...and made [running] more annoying.” The average pace for the 2

participants for the control experiment was 1:09/lap. The average pace while listening to the first

playlist was 1:11.3/lap.

The second playlist, Playlist B, had high BPM (160-170) and high valence (71-97). We expected

this playlist to cause the runners to go fastest because it has a high BPM for the step rate to sync to and

the highest energy level for the runner to latch on to. The runners’ response to this music was positive.

One participant described it as “catchy.” The average pace for the 2 participants in the control

experiment was 01:09/lap. The average pace while listening to this playlist was 01:07.6.

 The next playlist, Playlist C, has low BPM (47-65) and high valence (83-90). We expected this

section to have an average lap time between the previous two. We were surprised to find that this

produced the fastest laptime of all of the trials. The average lap time for the two runners in this trial was

01:06.65. The participants described this music as “groovy.” Most of the music in this playlist is R&B

music, which research has shown to be an effective motivator during workout.

The final test used a compilation of all of the different types of music previously tested. While

the previous experiments hoped to give us a general sense of the performance with different music, this

test was the most powerful because it showed how the performance can change during one workout.

Only one participant was available for this test, so all results are suggestive, but not conclusive.

The graph below shows the lap times of the runner when listening to different types of music.

The green and blue segments have the quickest lap times are both have music with High Valence. This is

11

in line with the data from the previous set of tests, which shows that lap time decreases with high

valence music. The orange section, which has low valence and low BPM, has the longest lap time, which

suggests that this may be the best music to use for a future cool down feature in the app.

FIGURE 6: LAP TIME WITH DIFFERENT MUSIC TYPES

The data we collected has led us to draw some reasonable suggestions. We believe that valence has

a stronger effect on performance than BPM. This may be because valence is a measure of the mood of

the song. Music with a melody that someone can latch onto, which uses electronic instruments and

brass instruments, is shown to increase performance because it increases the mood of the situation.

Exercise performance is increased when the brain is distracted by “positive” music. The increased

valence increased the positivity of the situation, and distracted the runners to help them reach their

best times.

 Some limitation of the data include limited sample size. All of the participants were students.

Because of this, not all participants finished the trial. In addition, all participants have similar health

styles. We did not have a wide range of participants. If this project was continued, it would be advisable

to get this project IRB certified. This way, it would be simpler to recruit a wider panel of participants,

instead of just asking peers for a favor.

2.3 Music and Physiology
In a recent study by Tohoku University, participants performed exercises on a stationary bicycle.

Participants who listened to music during the exercise had a faster heart rate recovery than participants

who did not listen to music. Usually during exercise, the parasympathetic nervous system's activity

decreases and heart rate increases. This implies that music increases the activity of the parasympathetic

nervous system. The implications of this are that listening to music during exercise could be beneficial to

cardiac health because the parasympathetic nervous system can slow the heart down therefore

reducing cardiac stress. [6] In a 2012 study at Sheffield Hallam University, participants using music

12

required 7% less oxygen to complete a workout on a stationary bike than participants who did not listen

to music. This also supports the claim that music activates the parasympathetic nervous system. [7]

A study from 1991 indicated that high valence, happy, music induced lower skin temperature,

measured at the fingertip, than low valence, sad, music. This is the opposite of the results of previous

studies, however. The 1991 study makes a point to distinguish between valence and arousing music,

however, and implies that previous studies did not make this distinction. It then argues that it is possible

that increasing finger temperature observed in earlier studies was due to the arousing level of the

music, not the valence of the music. [8]

2.4 Prior Art
By looking at prior art we understand the scope of what’s happening inside wearable devices.

To understand what kind of mechanics go into mobile devices like our product, we watched and

evaluated a teardown of the Fitbit ForceTM [9]. All of the components were understandably small. The

battery, in particular, was listed as having a capacity of 50mAh. Its other components were also tiny,

including an accelerometer, a microcontroller, barometer, and battery charger; however, the Bluetooth

antenna is much larger compared to the rest of the components on the PCB.

In addition to fitness trackers like the Fitbit, smartwatches were also researched. The primary focus

was on watches compatible with Google’s Android phone operating system. There are two major watch

operating systems in the Android wearable market. The first is Google’s Android Wear, which was

initially released by Google in 2014. The main competitor to Android Wear, in terms of operating

systems used on full-featured smart watches, is Tizen. This Linux-based OS has existed for longer than

Android Wear, but has only been used in wearables since 2014 [10]. Unlike Android Wear which was

developed specifically for wearables, Tizen is a general purpose, Linux-based OS that runs on a wide

variety of devices [11].

Android Wear devices were selected for further evaluation due to the compatibility between these

devices and Google Fit, a service that syncs health data to other devices and software for easy access.

We narrowed our search down to three devices: the Asus Zenwatch [12], the second generation

Motorola Moto360 [13], and the Huawei Watch [14]. The significant common feature between all three

of these devices, excluding the Android Wear OS, was the optical heart rate sensor. Compared to the

previously mentioned device from Fitbit, the batteries on these devices have a much higher capacity

(ranging between 300 and 400 mAh). All three devices have accelerometers or similar multi-axis sensors,

and the Huawei watch has the added benefit of containing a barometer as well. It is fairly safe to

conclude, then, that these devices are about equivalent to the device from Fitbit, at least in regards to

available sensor information.

In 2015, Spotify debuted a new feature called Spotify Running. This service picks upbeat songs at

the same tempo as the runner’s step rate using sensors on the smartphone. It works with step rates

which range from 140 -190 steps per minute, which is a light jog to a sprint. By syncing with the runner’s

13

step rate, the service aims to help runners keep their pace. The running playlists are chosen based on

the user’s listening history and their stride rate. It does not use use biological parameters to select

playlists. [15] The service is available to both free and premium Spotify users. Many users found the

product interesting, but didn’t find it useful because it would turn off during slower periods of exercise,

such as warm up and cool down, and was not usable for any other form of exercise. [16]

Rockmyrun is an app that uses both heart rate and step rate, collected from a smartwatch, to

select playlist with music from a variety of different genres. This can be used for a variety of exercises

because it does not rely only on step rate, like the Spotify Running. This app uses pre selected playlists

and does not pull from songs in the users’ library. [17] Some users were disappointed at their lack of

control of the music and others were not satisfied with the subscription service. People found the

monthly fee unreasonably high and were disappointed with how the ads on the free service disrupted

the workout. [18]

2.5 Market Research
The wearables market is growing very quickly. It is predicted that there will be 500 million wearable

devices in the next two years. Approximately 300 million of these devices are Wearable Fitness Trackers

(WFT). [19] Those who are willing to buy a device expect to spend an average of $300. Those who were

not interested in purchasing a device said that their largest worry was short battery life. [20]

As of 2016, smartphones are the most used technology among adults. This has led to an increase in

smartphone compatible technologies, including wearable technology. Those who are interested in

buying a smartphone compatible WFT are interested in a bracelet with continuous monitoring. [21] The

largest reason that consumers are interested in one of these WFT devices, is the perceived health

benefits. These stem from the societal pressure the be fit and healthy. Consumers’ perceived outcomes

for using a WFT included “lose weight,..., and live a healthy lifestyle.” Based on a study conducted in mid

2016, WFT user were more likely to live more active lifestyles than before they started to use the

devices. [22] One of the reasons why these devices are so effective is because it allows each user to

learn about his or her own data and set individualized goals. This increases the user’s motivation for use

and participation in fitness activities. [23]

In the last 5 years, paying Spotify users have grown from 2 million to 40 million. This number has

increased largely because of the use of the Facebook app, which has 10.4 million daily users. Music is

streamed in a variety of applications including exercise. According to one study done in 2012, over 90%

of college students listen to music during exercise. Of these participants who used music, most listened

to fast music with heavy rhythms, like hip hop or rock, during exercise.

2.6 Technical Research
From a technical standpoint, there are several areas that require research. We needed to investigate

APIs, or Application Program Interfaces, which could be used to source information needed to

recommend music based on some physiological data. We also had to research how we would collect this

14

physiological data. In addition, we also looked into the Bluetooth wireless communication protocol.

Finally, we looked into how we would combine all of this data into a working application.

2.6.1 Musical API Research
It is necessary to access audible properties of different songs in order to best recommend them. One

provider of this information is The Echo Nest. This Massachusetts company, founded by two MIT Ph.D.s,

provides information to many companies and services that help users discover new music [24]. One such

company is Spotify, who actually acquired The Echo Nest in the first quarter of 2014 [25]. Historically,

the primary way The Echo Nest has provided this information is through their Application Program

Interface (API). In the time since Spotify’s acquisition of The Echo Nest, most (if not all) of the features

from The Echo Nest’s API have been integrated into Spotify’s Web API. In fact, as of May 31, 2016, The

Echo Nest API has been discontinued completely in favor of the Spotify Web API [26].

There are several major components to the Spotify Web API; however the most relevant section of

the Web API for this project is the section that allows us to “Get [Music] Recommendations Based on

Seeds”. This function allows for a “playlist-style listening experience” to be generated based on several

variables [27]. The query has a few required arguments, such as seed_genres and seed_artists. The most

relevant optional arguments all relate to the section listed as Tunable Track attributes. These attributes

allow for tuning of the recommended music based on specific attributes of a track. The full

documentation is listed in Appendix A.

 It is important to note that other services exist that provide similar information regarding music.

One such example, the Gracenote Web API, provides “a rich set of music metadata over HTTP to help

power interactive experiences for any connected application” [28]. The API provides information such as

genre and mood. Gracenote also provides a Rhythm API, which allows for “adaptive playlist,

recommendation using seed track/artist/genre/era” [29]. While this API would potentially free us from

the Spotify ecosystem, and potentially allow users to provide their own music files, it is also important

to note that these APIs actually have the potential to over-complicate the system by requiring the use of

several different APIs. This is because, in the case of allowing a user to provide music files, a content

recognition system would have to be implemented. This system would be used to determine the

content of the user provided file, and add it to some sort of database. This is necessary, as our system

cannot provide recommendations based on physiological input conditions if the system is not familiar

with the musical characteristics of the files the system is provided to play.

2.6.2 Fitness API/SDK Research
To track physiological values on a pre existing wearable device, we needed a fitness tracking

platform. The one we looked into was the Google Fit platform. The Google Fit SDK, or Software

Development Kit, consists of several APIs that are designed to “make building fitness apps and devices

easier” [30]. It is designed to aggregate fitness data from multiple sources, allowing for the creation of a

“fitness ecosystem”. The APIs are provided in two forms: the platform-independent REST API, and the

Android APIs. The focus of this project is the set of Android APIs.

On Android, the Google Fit APIs are built into Google Play Services, meaning they are natively

supported by a large percentage of Android devices by default. In the case of Google Fit, the minimum

15

required Android version to access the API is Android 2.3 (Gingerbread), however the Google Fit App

requires Android 4.0 (Ice Cream Sandwich) or higher. Note that the latest version of Android is Android

7.1.1 (Nougat).

There are several APIs provided within the Google Fit Android API. The first of these APIs is the

Sensors API, which provides access to raw sensor data collected by both the Android phone running

Google Fit, as well as any “companion devices,” such as wearables. The second API is the Recording API,

which uses “subscriptions” to automate storage of sensor data “in a battery- efficient manner”. The

History API allows applications to access and modify previously recorded fitness data in bulk operations.

The Sessions API enables storing data with metadata correlation to a specific session of exercise. There

is also a Bluetooth Low Energy API, which allows access to Bluetooth Low Energy (BLE) sensors within

Google Fit. Finally, there is a Config API, used to configure custom data types and modify settings within

Google Fit.

Google Fit would be the primary point of interface between any application we develop and any

wearable device in this project. While the use of a third-party API to implement this interface may seem

to be overcomplicating the issue, it actually theoretically simplifies the process. The reasoning behind

this claim is that, in theory, our app could be developed in such a way that most, if not all, Google Fit

compatible wearables that contain the proper hardware could be implemented to work with our app

with little to no extra work on our part. This is because any and all devices that have full Google Fit

support should be passing information in the same way. This means that our application should be able

to be built in a way that by supporting Google Fit, it in practice supports a wide variety of wearable

devices. It is very important to note, however, that some wearable devices may require a user install an

application on his or her phone in order for said device to communicate with Google Fit. Therefore, a

device with native Google Fit support, such as an Android Wear device, will generally be preferable to a

device that requires a separate app, such as several popular brands of dedicated fitness trackers.

2.6.3 Music App Research
In order to play the music for the end user, we needed to find an application that could fit our needs

of being able to play Spotify playlists, but being modifiable to our needs. In our search, we needed to

answer three questions: would the application be desktop or mobile based, would we write our own

app or use an existing one, and if we were to use an existing app, what would we use?

The first question of deciding between desktop or mobile was focused on whether we would

prioritize ease of development or the end product. The team had little to no mobile development

experience, so a desktop developing environment would be easier for the team. However, as the end

product would be on mobile, starting there would eliminate any transitioning hassle from desktop to

mobile. We concluded that ease of transition would be the deciding factor here, in order to minimize

our work to the final product, even if it may be harder to jump straight to mobile. If we found any

application that would make the transition easy, we would develop on desktop first, otherwise we

would start with mobile.

Next, we needed to compare making our own app to using an existing application. This required two

steps: looking into how we could use Spotify API to make our own app, and what pre-existing

16

applications already interface with Spotify. When we looked into writing our own app, we found that

despite Spotify’s API giving us the ability to use its playlists, there would still be an incredible amount of

work involved to just create a barebones streaming application, implying building off of an existing

application would be much simpler. Luckily, we found an application that interfaces well with Spotify

called Tomahawk. It is a music player that interfaces with most used music streaming and collection

services, including Spotify. As this program satisfied our requirements for the product, we didn’t need to

look any further.

Development for Tomahawk will be straightforward given that all of Tomahawk’s source code is on

GitHub. The mobile version is written in Java and Javascript, and the Tomahawk page on GitHub has

directions for compiling the program. With the code being easily editable, the Tomahawk codebase is a

great place to start for constructing our player application.

2.6.4 Bluetooth Hardware Research
 To communicate from the wearable device to the music player, we needed to choose a wireless

communication protocol. . Using a standardized protocol is reasonable in order to keep development

costs manageable, and Bluetooth is one of the most prolific standards for short-range, low-bandwidth

wireless communication. Bluetooth low energy, or BLE, was introduced with the Bluetooth 4.0 standard

in 2010, and is particularly suited for mobile devices. This is due to the protocol aiming to reduce power

consumption while conserving the same range as the full Bluetooth standard. With battery life being a

main concern of wearable devices, BLE is the best option.

17

3 System Architecture
Based on our research, we determined the best course of action would be to purchase an existing

fitness wearable, use it to transmit physiological data over Bluetooth, and use that data to play a

suggested song using a custom music player. We decided to purchase a device instead of building a

device, as it was determined that end users would be much more willing to purchase an app as opposed

to a brand-new wearable. This would be especially true if a user already owned a wearable that contains

the body sensors required to collect the data and the wireless interface required to be compatible with

our app. This also allows us to focus more on the user experience and the recommendation engine, as

opposed to having to devote time and energy to developing a new device. Fortunately, most wearable

devices on the market are within our budget. An overview of the proposed system is provided below in

Figure 6.

Figure 6: Proposed System Architecture

 In this project, we will be using an Android phone to develop and test. This decision was based

primarily upon the trend for Android Wear devices to cost much less than an Apple Watch for an iOS

device. Additionally, Android Wear does work with Apple’s iOS to some extent. Finally, the existence of

Google Fit and its deep integration with Android was another major part of our decision. The music

player that we will develop will decide on a song selection based on heart rate and step rate using an

algorithm based on our physiology research.

18

3.1 Hardware Requirements
 While interoperability with a large range of devices is desired, a minimum baseline must be set

for compatible hardware. The user must supply this hardware, with the two primary components

consisting of a monitoring device and an interface device. In our case, this means a smartwatch and a

smart phone.

3.1.1 Monitoring Device
The first requirement for this system to work as intended is a method to collect relevant data about

the physiological state of the user while they are exercising. A heart rate sensor and an accelerometer

are a minimum requirement for the sensors for the project, but the more sensors that come with the

device, the more data we have to work with to make suggestions. This decision was based on the results

of our testing, presented in Chapter 2, which that found these two sensors seem to give the most

meaningful data about a user’s exercise activity. Heart rate data should be collected regularly in order to

supply the song selection algorithm with up-to-date fitness data, so that recommendations can be more

accurate. A heart rate sensor that requires little to no user interaction is preferable, as it allows the user

to continue their exercise without having to stop to take their heart rate. While an electrocardiogram

(ECG) sensor will provide more precise and accurate data than an optical pulse oximeter, either is

acceptable. Step counts can either be collected from an onboard pedometer, or estimated from

accelerometer data.

Data from these sensors will be collected through the Google Fit APIs. This project will focus on

devices running Android Wear because Android Wear natively supports Google Fit. Therefore, any

Android Wear device that contains the required sensors and properly conforms to the Google Fit API

should work with little to no modifications to the developed software.

3.1.2 Interface Device
A device is required to interface with any sensors, and process the collected data. The chosen

platform for this project is the Android mobile operating system by Google. This decision was based

primarily on the trend for both Android mobile devices, as well as Android Wear devices, to be cheaper

than the competitive iOS-based devices from Apple, such as the iPhone and Apple Watch. Finally, the

native existence of Google Fit and its deep integration with Android was another major part of our

decision. While not directly relevant for our project, iOS has some support for Android Wear devices, as

well as the simpler Google Fit REST API.

A user must supply an Android device running a relatively recent update. The Android Developer

Dashboard shows over 98% of Android devices that accessed the Google Play Store between November

28 and December 5, 2016 were running Android 2.3 or higher [31]. The device does not have to

explicitly be a phone; however, the device must be able to maintain a constant connection to both the

internet and any Bluetooth-connected sensors. The device also must be running an up-to-date version

of Google Play Services. Generally speaking, this is the case with any Android device. The major

19

exception would be if the device was running a custom build of Android, such as cyanogenmod [32],

however it is often still possible for a user to install the required software dependencies on a custom

build of Android.

3.2 Software Requirements
The application section of the project needs to be able to grab the data from the wearable device,

calculate and play the right song depending on that data and other user input, and needs to be visually

laid out in an intuitive way to the user. These requirements lay a baseline for coding the application.

3.2.1 Fitness Tracking
The Google Fit SDK contains several APIs that are designed to facilitate the creation of a fitness

application. These APIs interact with both the mobile device the APIs are running on, as well as any

compatible devices connected to the mobile device. In the case of this project, the most relevant API is

the Sensors API. This API allows applications using Google Fit to directly access raw sensor data for

devices connected through Google Fit. This is, to our knowledge, the only way to access instantaneous

data, such as heart rate, through the Google Fit platform. Since this is a major component of our system,

the Sensors API should be a focus in development.

3.2.2 Music Player
Once the application has the data from the wearable, the correct song needs to be played. This

occurs in 3 parts: using an algorithm to evaluate the seed values, using those values to grab a song from

Spotify, and then playing that song.

 The algorithm will take the following inputs: heart rate and step rate, the current state of the

exercise of the user, the user’s previously determined resting and active heart rates, and any goals

predefined by the user. This information will allow the algorithm to choose seed values designed to

produce a list of songs optimized to achieve the fitness and health goals of the user. These seed values

are the same attributes described in section 2.5.1. Once these seed values are determined, the Spotify

API can be used to grab songs with those values, which can then be played by a Spotify-compatible

streaming application.

 Additionally, it is important to provide manual controls for the music player. There are many

reasons why a user may need to pause the music and workout, so a pause feature should be

implemented. Additionally, the algorithm may very easily grab music the user does not enjoy, so a

system should be implemented to allow the user to dislike and/or skip songs. Finally, a system to allow a

user to manually shift the tone of the workout should be implemented, particularly for users who may

be dramatically shifting their exercise patterns throughout a workout.

3.2.3 UI Requirements
The user interface (UI) for the application will consist of two distinct interfaces, both based on the

Material Design standards by Google [33]. There will be a basic interface on the Android Wear device

screen, as well as a full-featured UI on the mobile device screen. Mockup examples of the Full UI and

Wear UI are shown below in Figure 7 below

20

FIGURE 7:ANDROID APP (LEFT) AND WATCH APP MOCKUP (RIGHT)

Both screens will show heart rate data and time remaining in the workout. Additionally, both

screens will allow for manually skipping songs, and for pausing and resuming the work if necessary. The

Android Wear component must be much more compact, and will lack more advanced features such as

configuring workout lengths and album art display. The Wear component should contain a quick

workout start feature, which is preset by the user. For example, the user would be able to start a 30-

minute workout, with hip-hop as the primary genre, and with cardio as the activity, by simply opening

the app on the Wear device and selecting “quick start.”

3.3 Other Requirements
To make money from the app, the app should be a free on the Play Store but supported with ad

revenue. Only 33% of smartphone users said they would purchase an app, where as 93% of users would

21

download a new app in the next year. [34] Approximately $1 per 1000 users is generated from free apps

with ads per day. [35] In a study of 1600 smartphone users, 58% of smartphone users say they have

downloaded a health app or a fitness app. 41% of these users would never pay for a smartphone app,

while 84% would never pay over $6. Additionally, in the same study, 65% of health app users said that

they use it at least once per day. [36] Based on this information, we plan to make the app free with an in

app purchase to remove ads. This way, we can get ad revenue from people who would be more likely to

download a free app and capitalize on those who would want to spend money on a fitness app.

3.3.1 User Supplied Resources
In addition to the hardware requirements mentioned in Section 3.1, the user will also be expected

to own or purchase a few products in order for the application to function. It is expected that the user’s

device be configured with a Google account, as is typically the case for any Android device. This is

required for proper authentication with the Google Fit service, and to access the Google Play store.

Additionally, as Spotify requires a Premium account for API access, the user is expected to be a Premium

subscriber. As of December 20016, Spotify offers Premium for $10 per month. Family plans and student

discounts are also available, at $15 and $5 a month respectively. Finally, it is expected that the user has

personal goals regarding the usage of the application, and be able to set time goals for their workouts.

3.3.2 Developer Supplied Resources
Google Fit requires a user authorize different applications on an individual basis. In order to

implement this feature in a production environment, a release certificate is required. More precisely,

the developers must generate a release certificate, and use the SHA1 fingerprint of this certificate

register the application on the Google API console in order to request an OAuth 2.0 Client ID. This then

allows users to authenticate with the developed application through their Google account, and permit

access to body sensors.

Once a release build of the application has been created, it would be possible to list the application on

the Google Play Store. There is a one-time registration fee of $25 for access to the Google Play

Developer Console. Then it is possible to upload an Android Application Package (APK) and publish the

application.

22

4 Hardware Design

We evaluated several wearable devices, and initially narrowed our focus to three specific

wearables: the Asus Zenwatch (first generation), the Motorola Moto360 (second generation 2), and the

Huawei Watch (first generation). These devices were selected as they meet our minimum requirements

and are spread across a large price range (approximately $100 to $300 at the time of research), which

gives us a valid representation of devices in the market. Each device contains the minimum sensors

required, namely heart rate and step counter, and runs the Android Wear operating system, which

natively supports Google Fit. In addition to the required sensors, all three of these devices contain

numerous other sensors that could possibly aid in the accuracy of the song decision algorithm..

 Unfortunately, it was discovered that the cheapest option, the Zenwatch, was infeasible due to

the fact that the user is required to physically touch the watch frame with his or her fingers in order to

record heart rate data. This was determined to be impractical for continuous heart rate monitoring

during an exercise routine, and as such we cannot recommend this device for this purpose. The

Moto360 and Huawei watch both contain optical pulse oximeter sensors that use a

Photoplethysmogram to determine heart rate in near-real time. After evaluation these two devices, the

decision was made to purchase the Moto360 because, despite the higher price tag, the Huawei watch

did not satisfy any more of our requirements than the Moto360.

Software development required an Android phone running a relatively recent version of the

Android OS. We used the Android emulator that is included with Android Studio (Google’s official SDK

for Android), as well as the phones of our team members. The Android emulator works by running a full

instance of Android on your computer, and allows for loading different hardware profiles and Android

version. It is also possible to emulate Android Wear devices, however it is simpler to use a real device

when working with sensor data. As such, most of our testing was done performed on a Google Pixel with

the Moto360 connected. The Pixel was running Android 7.1.1 with the February 5, 2017 security patch.

The Moto360 was running Android Wear 1.5.0.3336103 on top of Android 6.0.1.

23

5 Software Design
The design of the application came in three parts: the android wear side that collects data, the

music player side, and the algorithm that ties the two together. To save on development time, the first

two of these parts were modified versions of existing code, using SensorDashboard [37] and a Tuts+

tutorial [38] for a music player. The two were then connected by the algorithm that chooses the

appropriate music by giving the algorithm the data, and then letting it pick through the music. Select

code snippets can be seen in Appendix C.

5.1 Music Player
 For this initial version of the software, we opted to not use Spotify in order to simplify the code

and testing. This simplification allowed us create a working version in a reasonable amount of time. This

alternative method was to use the music files on the mobile device with the varying attributes for

different input conditions. As a result, all that was necessary for this section was a player that pulled

files from storage and played them. The methods to write such an app were found on the Tuts+ website.

This was followed to create a basic music player that could be modified to work with the algorithm.

 The tutorial code contains the baseline necessities for the project. The player plays music and
allows a user to pick which music to play from a list if they wish. It also has controls that allow the user
to skip or pause songs. The player does not include a like system or any additional quality of life
features, but this bare bones player gave us the functionality to make a working iteration of the app.

 Some modifications were necessary to the given code for our purposes. In order to make the

music player refresh the screen for an updated list of songs, part of the setup code of the original

needed to be moved to its own function. This function was then called after the end of every song in

order to keep the updated list displayed. Similarly, other edits were necessary to make sure the music

player got the input data, and worked with the algorithm.

5.2 Data Collection
Similarly to the music player, existing, open source code was also found to help us in our

development of the data collection module. In this case, an app called SensorDashboard had the

functionality we needed. This app is designed to detect and plot all sensor data available on an Android

Wear-based wearable. Because the app provides more functionality than the project required, it was

stripped of many features, including the graphing functions. The original source code is available on

GitHub under the Apache License, Version 2.0.

In order to utilize this code, we had to uncover how the code functions. The project is split into

three components: mobile, wear, and shared. Mobile contains the majority of the code, and is the part

of the project that runs on the Android phone or tablet. This component then processes and graphs this

data collected by the wear portion. In our implementation, the data is used by the algorithm to update

the song list. The wear portion runs on the android wearable, and includes all the data collection

functions. After receiving a “wake-up” signal from the mobile component over Bluetooth, the wear

component begins collecting sensor data and passing this data back over Bluetooth to the mobile

component. The shared component contains a small amount of shared code that is used by the entire

project.

24

Determining exactly how the data is passed to the mobile component from the wear component

proved to be challenging. Eventually it was discovered that the developers of SensorDashboard used a

third party data bus called Otto Bus to pass the data. From the website of the source, “Otto is an event

bus designed to decouple different parts of your application while still allowing them to communicate

efficiently. Forked from Guava, Otto adds unique functionality to an already refined event bus as well as

specializing it to the Android platform.” [39] Utilizing the Otto, we wrote a function that grabbed the

sensor data off of the bus so that the music player could work with those values.

5.3 Algorithm
The algorithm that picks the appropriate music brings both of the other two parts together. The

function that grabs the sensor data was placed in the class in the music player. This class grabs the list of

songs from the device to display and play. Because we did not use Spotify in this version of the app, the

algorithm is not very developed. We were limited by data available in the files located in the local

storage of our device, so we chose to look at the first letter of the file name. As a proof of concept, we

made all songs starting with ASCII characters up to but not including the letter “O” sorted in one list, and

all other songs placed in the other list. These two lists correspond to heart rates below 80 BPM and

greater than or equal to 80 BPM, respectively. The code uses the algorithm to refresh the list after any

music file finishes playing or is skipped by the user in order to keep an updated list of appropriate music.

25

6 Results
Despite not utilizing Spotify or Google Fit, the application behaves as expected. Given different heart

rates and step rates, the application will display the respective appropriate music. However, because of

the length of this project, we were not able to sufficiently test the app on people to give an affirmative

answer on if it has the expected impact on the physiological values. But, given the testing we did

perform, it does appear that for some valence and BPM values, there was a noticeable change.

26

7 Conclusions
Based on our research and tests, we determined that we will design an Android app that interfaces

with a smartwatch that is Google Fit compatible and with Tomahawk for song selection. Further tests

will be done to determine the best way to actually select the songs based on the signals collected. In the

next term, the team will design and test our app to make sure that we can actually provide a positive

exercise experience for users.

If this project was to be continued, several modifications could be made. Ideally, the project should

be made to integrate with Google Fit. This was our original plan, however it turned out to be

overcomplicated for this initial testing. Fit is much more universal, and has the potential to simplify

issues related to hardware differences. It is also possible to integrate various other Bluetooth sensors,

such as a Polar H7 heart rate sensor strap, via Fit. These sensors may work directly with Google Fit, or

may require a separate integration through BLE standards. This has the potential to lead to a much more

diverse list of supported hardware, providing additional selling points.

Another possible point of work would be to properly integrate this project with Spotify. This allows

the user to setup and use the app in a reasonable manner. Spotify, and specifically the API that allows

for playing songs based on seeds (Appendix D), allows for users to have an enormous library of music at

the touch of a button. It also removes the requirement for a user to supply music files on his or her own.

To collect data, it would be very helpful to have the project IRB certified. This would allow the trial to

have proper incentives and would increase the pool of applicants. Increasing the pool of applicants

would prove if our assumptions are true for all or just moderately active college students.

27

Appendix A: Respiration Rate Sensing Details
To actually determine the relationship between the different parameters, the group designed

two types of tests.

The first was to determine how the heart rate is affected by respiration rate. This test was

performed by having the user sit and do different types of breathing while their heart rate was taken. As

with previous experiments, the heart rate was taken by a team member’s Apple Watch. The test subject

sat at rest, breathing normally for 5 minutes, breathed slowly for 2 minutes, breathed regularly for 2

minutes, hyperventilated for 2 minutes, and back to rest for the final 2 minutes. The results of the

experiment can be seen in the graph below. It was shown that heart rate does follow respiration rate. In

the end, the team determined that the more important relationship would be to see how respiration

rate followed heart rate because breathing is controllable and would not be what changes automatically

during exercise.

Figure 1: Heart Rate During Controlled Respiration

The second test was used to determine how well respiration rate followed the heart rate. This

test involved volunteers from the WPI community. Three participants, each with a different level of

personal fitness, took part in the testing. Participant 1 does not exercise at all, while participant 3

regularly exercises. Participant 2 does not exercise as frequently as participant 3, but they are a trained

musician, meaning they have more control over their own breathing. The testing took place on a

treadmill, and each participant was asked to run at varying speeds. Each participant’s trial consisted of 7

parts, each 2 minutes long. The first part has the participant standing still to get baseline breath and

heart rates. Then, for each successive part, the treadmill’s speed was increased by 2 mph up to 6 mph.

After 2 minutes at 6 mph, the speed was decreased every 2 minutes. The last part had the participant

standing still to get their cooldown. This procedure was designed to get the participants’ heart rates up

to be able to see its effect on breath rate.

The output of the Respiration Sensor gave a waveform of how the participants were breathing,

but to get a breaths per minute value to compare against the heart rate data, the data would need to be

28

further analyzed. To do this, a MATLAB script was coded to accurately count the number of peaks in the

waveform per minute, and can be found in Appendix B. The script would count the number of times the

waveform passed above the average value, and decrement each from the count after a minute had

passed. This average value is calculated while processing with a sliding window average. The resulting

breath rate values are then plotted against the heart rate values. The output graphs for the three

participants can be seen below.

Figure 2: Participant 1(Not Active)

Figure 8: Participant 3 (Mildly Active, Trained Musician)

29

Figure 4: Participant 3 (Extremely Active)

 The vertical bars on each of the graphs show the time when each of the parts of the trial start. It

is very noticeable on all three graphs that the heart rate rises and falls as expected as the speed of the

treadmill rises and falls. The breath rate data is less straight forward to discern. In all three graphs, there

does not seem to be much to get out of the resting breath rates. There doesn’t appear to be any

correlation between those values and either the heart rate values or the current speed of the treadmill.

Looking at the graphs for participants 1 and 3 for higher speeds, it does appear that breath rate follows

heart rate, as they increase and decrease at similar times. However, for participant 2, there is a dramatic

drop in breath rate in the fastest part of the trial. This could be due to participant 2’s musical training

that allowed them to control their breathing.

30

 The data from the three participants confirms that there is no information that can be easily

seen in breath rate data that can’t already be observed in the heart rate. For users exercising who don’t

control their breathing, their breathing will simply follow their heart rate, eliminating any need to track

breath rate. Additionally, if the user can control their breathing, the breath rate is pointless to track.

Thus, breath rate is not necessary to be sensed to gain the data needed. The code used to process this

data is seen in the MATLAB script below.

close all;

clc;

clear;

output = [

 %breath rate data goes here

];

Heart = [

%heart rate data goes here

];

TIMESTEP = .1; %time between breath rate output values

AVERAGE_V = 0;

len = length(output);

h_len = length(Heart);

t = 1:len;

t_h = 1:h_len;

t=t*TIMESTEP; %time of the breathrate output

t_h=t_h*TIMESTEP*53; %converts x axis to seconds based off of 5.3 sample

frequency

%plots the waveform

plot(t,output);

xlabel('seconds');

ylabel('voltage');

title('breath rate waveform');

n=1;

cur=0;

detected=0;

rate=0;

num_breaths=0;

peak_t_record=zeros(100)+len;

rates=zeros(fix(len/10));

last_b=1;

next_b=1;

AVG_LEN=100;

recent_voltage=zeros(AVG_LEN,1);

%loop to analize all of the breath rate waveform

while n<len

 cur=output(n);

 %calculate AVERAGE_V

 recent_voltage(mod(n-1,AVG_LEN)+1)=cur;

 if(n<AVG_LEN)

 AVERAGE_V = sum(recent_voltage)/n;

 else

 AVERAGE_V = sum(recent_voltage)/AVG_LEN;

31

%loop to analize all of the breath rate waveform

while n<len

 cur=output(n);

 %calculate AVERAGE_V

 recent_voltage(mod(n-1,AVG_LEN)+1)=cur;

 if(n<AVG_LEN)

 AVERAGE_V = sum(recent_voltage)/n;

 else

 AVERAGE_V = sum(recent_voltage)/AVG_LEN;

 end

 %if the last breath is over a minute ago

 if((n-(60/TIMESTEP))>peak_t_record(last_b))

 num_breaths=num_breaths-1; %subtract total

 last_b=last_b+1; %increment last_b index

 end

 %if the output is over the average and a peak hasn't been recently

 %detected

 if((cur>AVERAGE_V)&&(detected<1))

 detected=1;

 num_breaths=num_breaths+1;

 peak_t_record(next_b)=n;

 next_b=next_b+1;

 end

 %if the time is under a minute, approximate breath rate

 if(n>(60/TIMESTEP))

 rate=num_breaths;

 else

 rate=num_breaths/(n/(60/TIMESTEP));

 end

 %reset detected flag if under the average

 if((cur<AVERAGE_V)&&(detected>0))

 detected=0;

 end

 %only give rate every second

 if(mod(n,10)==0)

 rates(n/10)=rate;

 end

 n=n+1;

end

%modified time array to account for the change to every second

t_2= 1:(fix(len/10));

t_2=t_2*TIMESTEP*10;

%creates the verticle lines

l_1=zeros(100,1)+120;

l_2=zeros(100,1)+120*2;

l_3=zeros(100,1)+120*3;

l_4=zeros(100,1)+120*4;

l_5=zeros(100,1)+120*5;

l_6=zeros(100,1)+120*6;

l_7=zeros(100,1)+120*7;

figure();

%breath rate axis

ax1 = gca;

hold on;

32

%creates the verticle lines

l_1=zeros(100,1)+120;

l_2=zeros(100,1)+120*2;

l_3=zeros(100,1)+120*3;

l_4=zeros(100,1)+120*4;

l_5=zeros(100,1)+120*5;

l_6=zeros(100,1)+120*6;

l_7=zeros(100,1)+120*7;

figure();

%breath rate axis

ax1 = gca;

hold on;

%plot breath rate

plot(t_2,rates);

hold on;

%plot lines

plot(l_1,t_2(1:100));

hold on;

plot(l_2,t_2(1:100));

hold on;

plot(l_3,t_2(1:100));

hold on;

plot(l_4,t_2(1:100));

hold on;

plot(l_5,t_2(1:100));

hold on;

plot(l_6,t_2(1:100));

hold on;

plot(l_7,t_2(1:100));

title('average breath rate vs heart rate');

xlabel('seconds');

ylabel('breath rate (b/min) (blue)');

%heart rate axis

ax2 = axes('Position',get(ax1,'Position'),...

 'YAxisLocation','right',...

 'Color','none',...

 'XColor','k','YColor','k');

linkaxes([ax1 ax2],'x');

hold on;

%plot heart rate

plot(t_h,Heart,'Color','r');

ylabel(ax2,'Heart rate (red)');

33

Appendix B: Readme File for Android Studio Project

Music Wearable MQP 2017

This app is designed to select music based on fitness data collected on an Android Wear device. This

implementation primarily serves as a proof-of-concept, and performs as such.

Notes/Helpful Info:

● This App was written for Android Wear 1.5 (1.5.0.3336103 if you really care) on Android 6.0.1.

NO idea what will/will not work on the recently released Wear 2.0.

● Unpairing an Android Wear device from a phone causes the Wear device to factory reset. AKA

you can’t just share the device between phones.

● You will need to enable developer mode on both your phone and watch. This is generally

accomplished by rapidly tapping “Build Number” in “About Phone/Device/Etc” within device

settings, but YMMV.

● Make sure to authorize both the phone and watch for ADB

Using Android Studio and Wear with no Main Activity:

To fix the error in Android Studio that doesn’t allow directly launching the Wear component (“Main

Activity Not Found”), do the following (via StackOverflow):

Run -> Edit Configurations -> Android App -> wear -> General -> Launch Options -> Launch: Nothing

Alternatively, you can build the apks (Build -> Build APK from within Android Studio) and then install it

manually via ADB (see below for how to connect to wear device over Bluetooth).

Debugging Over Bluetooth:

After configuring and enabling ADB (see Source: Android Developers and ADB help files), run the

following to link the debugger to the watch:

adb forward tcp:4444 localabstract:/adb-hub //Any port you have full access to should work.

adb connect 127.0.0.1:4444

You can then run any ADB command as follows:

adb -s 127.0.0.1:4444 [some command]

Source: Android Developers

Credits

Sensor Dashboard was originally written at the Android Wear Hackathon 2014 in London by Juhani

Lehtimäki, Benjamin Stürmer and Sebastian Kaspari. It is avalible under the Apache 2.0 License (below).

http://stackoverflow.com/a/40113469
https://developer.android.com/training/wearables/apps/bt-debugging.html
https://developer.android.com/training/wearables/apps/bt-debugging.html
https://plus.google.com/+JuhaniLehtim%C3%A4ki/posts
https://plus.google.com/+JuhaniLehtim%C3%A4ki/posts
https://stuermer-benjamin.de/
https://plus.google.com/+SebastianKaspari/posts

34

Licenses
Parts of this code are licensed as follows:

License (Sensor Dashboard)

Copyright 2014 Juhani Lehtimäki, Benjamin Stürmer, Sebastian Kaspari

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

35

Appendix C: Select Code Snippets
1 public class DeviceClient {

2

3 /* Incomplete code snippets follow */

4

5 public void sendSensorData(final int sensorType, final int accuracy, final

long

timestamp, final float[] values) {

6 long t = System.currentTimeMillis();

7

8 long lastTimestamp = lastSensorData.get(sensorType);

9 long timeAgo = t - lastTimestamp;

10

11 if (lastTimestamp != 0) {

12 if (filterId == sensorType && timeAgo < 100) {

13 return;

14 }

15

16 if (filterId != sensorType && timeAgo < 3000) {

17 return;

18 }

19 }

20

21 lastSensorData.put(sensorType, t);

22

23 executorService.submit(new Runnable() {

24 @Override

25 public void run() {

26 sendSensorDataInBackground(sensorType, accuracy, timestamp, values);

27 }

28 });

29 }

30

31 private void sendSensorDataInBackground(int sensorType, int accuracy, long

timestamp, float[] values) {

32 if (sensorType == filterId) {

33 Log.i(TAG, "Sensor " + sensorType + " = " + Arrays.toString(values));

34 } else {

35 Log.d(TAG, "Sensor " + sensorType + " = " + Arrays.toString(values));

36 }

37

38 PutDataMapRequest dataMap = PutDataMapRequest.create("/sensors/" +

sensorType);

39

40 dataMap.getDataMap().putInt(DataMapKeys.ACCURACY, accuracy);

41 dataMap.getDataMap().putLong(DataMapKeys.TIMESTAMP, timestamp);

42 dataMap.getDataMap().putFloatArray(DataMapKeys.VALUES, values);

43

44 PutDataRequest putDataRequest = dataMap.asPutDataRequest();

45 send(putDataRequest);

46 }

47

48 private void send(PutDataRequest putDataRequest) {

36

49 if (validateConnection()) {

50 Wearable.DataApi.putDataItem(googleApiClient,

putDataRequest).setResultCallback(new

ResultCallback<DataApi.DataItemResult>() {

51 @Override

52 public void onResult(DataApi.DataItemResult dataItemResult) {

53 Log.v(TAG, "Sending sensor data: " +

dataItemResult.getStatus().isSuccess());

54 }

55 });

56 }

57 }

58 }

59

60

61

62

63 public class MessageReceiverService extends WearableListenerService {

64

65 /* Incomplete code snippets follow */

66

67 @Override

68 public void onDataChanged(DataEventBuffer dataEvents) {

69 super.onDataChanged(dataEvents);

70

71 for (DataEvent dataEvent : dataEvents) {

72 if (dataEvent.getType() == DataEvent.TYPE_CHANGED) {

73 DataItem dataItem = dataEvent.getDataItem();

74 Uri uri = dataItem.getUri();

75 String path = uri.getPath();

76

77 if (path.startsWith("/filter")) {

78 DataMap dataMap = DataMapItem.fromDataItem(dataItem).getDataMap();

79 int filterById = dataMap.getInt(DataMapKeys.FILTER);

80 deviceClient.setSensorFilter(filterById);

81 }

82 }

83 }

84 }

85

86 @Override

87 public void onMessageReceived(MessageEvent messageEvent) {

88 Log.d(TAG, "Received message: " + messageEvent.getPath());

89

90 if (messageEvent.getPath().equals(ClientPaths.START_MEASUREMENT)) {

91 startService(new Intent(this, SensorService.class));

92 }

93

94 if (messageEvent.getPath().equals(ClientPaths.STOP_MEASUREMENT)) {

95 stopService(new Intent(this, SensorService.class));

96 }

97 }

98 }

99

37

100

101

102 public class MusicService extends Service implements

103 MediaPlayer.OnPreparedListener, MediaPlayer.OnErrorListener,

104 MediaPlayer.OnCompletionListener

105 {

106

107 public void playSong()

108 {

109 //reset mediaplayer

110 player.reset();

111

112 //get song

113 if(debug==1)

114 Log.d(TAG,"Position = "+songPosn);

115

116 if(songPosn<0) {

117 songPosn = 0;

118 }

119

120 if(songPosn>=(5)) {

121 songPosn = 0;

122 }

123

124

125

126 Song playSong = filteredSongs.get(songPosn);

127

128 songTitle=playSong.getTitle();

129

130 //get id

131 long currSong = playSong.getID();

132 //set uri

133 Uri trackUri = ContentUris.withAppendedId(

134 android.provider.MediaStore.Audio.Media.EXTERNAL_CONTENT_URI,

135 currSong);

136

137 try

138 {

139 player.setDataSource(getApplicationContext(), trackUri);

140 }

141 catch(Exception e)

142 {

143 Log.e("MUSIC SERVICE", "Error setting data source", e);

144 }

145

146 player.prepareAsync();

147 }

148

149 public void onCreate()

150 {

151 //create the service

152 super.onCreate();

153 //initialize position

38

154 songPosn=0;

155 //create player

156 player = new MediaPlayer();

157 initMusicPlayer();

158 rand=new Random();

159 BusProvider.getInstance().register(this);

160 }

161

162 public void initMusicPlayer()

163 {

164 player.setWakeMode(getApplicationContext(),

165 PowerManager.PARTIAL_WAKE_LOCK);

166 player.setAudioStreamType(AudioManager.STREAM_MUSIC);

167 player.setOnPreparedListener(this);

168 player.setOnCompletionListener(this);

169 player.setOnErrorListener(this);

170 }

171

172

173 public void filterSongs()

174 {

175 if(debug==1)

176 Log.d(TAG,"Songs filtered with value: "+curHeartRate);

177 if(filteredSongs!=null)

178 filteredSongs.clear();

179 for(Song song:songs) {

180 if (curHeartRate >= 80)

181 {

182 if (song.getTitle().charAt(0) < 'O')

183 filteredSongs.add(song);

184 } else

185 {

186 if (song.getTitle().charAt(0) >= 'O')

187 filteredSongs.add(song);

188 }

189 }

190 }

191

192 @Override

193 public void onCompletion(MediaPlayer mediaPlayer)

194 {

195 filterSongs();

196 refreshView.refresh(filteredSongs);

197 if(player.getCurrentPosition()>0)

198 {

199 mediaPlayer.reset();

200 playNext();

201 }

202 }

203

204 @Subscribe

205 public void onSensorUpdatedEvent(final SensorUpdatedEvent event)

206 {

207 if(debug==1)

39

208 Log.d(TAG,"sensor event");

209 if(event.getSensor().getId()==13)

210 {

211 curStepRate=event.getDataPoint().getValues()[0];

212 }

213 else

214 {

215 curHeartRate=event.getDataPoint().getValues()[0];

216 if(debug==1)

217 Log.d(TAG,"heart rate set to "+curHeartRate);

218 }

219 //TextView textView = (TextView) findViewById(R.id.empty_state);

220 //textView.append(curHeartRate+", "+curStepRate+", "+"\n");

221 }

222

223 public void playNext()

224 {

225 if(shuffle)

226 {

227 int newSong = songPosn;

228 while(newSong==songPosn)

229 {

230 newSong=rand.nextInt(songs.size());

231 }

232 songPosn=newSong;

233 }

234 else

235 {

236 if(songPosn>=songs.size()) {

237 songPosn=0;

238 Log.d(TAG, "songPosn=0");

239 }

240 songPosn++;

241 Log.d(TAG, "songPosn++");

242

243 }

244 playSong();

245 }

246

247

248 }

249

250

251

252

253 public class SensorReceiverService extends WearableListenerService {

254

255

256 @Override

257 public void onDataChanged(DataEventBuffer dataEvents) {

258 Log.d(TAG, "onDataChanged()");

259

260 for (DataEvent dataEvent : dataEvents) {

261 if (dataEvent.getType() == DataEvent.TYPE_CHANGED) {

40

262 DataItem dataItem = dataEvent.getDataItem();

263 Uri uri = dataItem.getUri();

264 String path = uri.getPath();

265

266 if (path.startsWith("/sensors/")) {

267 unpackSensorData(

268 Integer.parseInt(uri.getLastPathSegment()),

269 DataMapItem.fromDataItem(dataItem).getDataMap()

270);

271 }

272 }

273 }

274 }

275

276 private void unpackSensorData(int sensorType, DataMap dataMap) {

277 int accuracy = dataMap.getInt(DataMapKeys.ACCURACY);

278 long timestamp = dataMap.getLong(DataMapKeys.TIMESTAMP);

279 float[] values = dataMap.getFloatArray(DataMapKeys.VALUES);

280

281

282 if((sensorType==13)||(sensorType==21)) //only add new data if it's step

or

heart rate

283 {

284 Log.d(TAG, "Received sensor data " + sensorType + " = " +

Arrays.toString(values));

285 sensorManager.addSensorData(sensorType, accuracy, timestamp, values);

286 }

287

288 }

289

290

291 }

292

293

294

295

296 public class RemoteSensorManager {

297

298 private Sensor createSensor(int id) {

299 Sensor sensor = new Sensor(id, sensorNames.getName(id));

300

301 sensors.add(sensor);

302 sensorMapping.append(id, sensor);

303

304 BusProvider.postOnMainThread(new NewSensorEvent(sensor));

305

306 return sensor;

307 }

308

309 private void filterBySensorIdInBackground(final int sensorId) {

310 Log.d(TAG, "filterBySensorId(" + sensorId + ")");

311

312 if (validateConnection()) {

41

313 PutDataMapRequest dataMap = PutDataMapRequest.create("/filter");

314

315 dataMap.getDataMap().putInt(DataMapKeys.FILTER, sensorId);

316 dataMap.getDataMap().putLong(DataMapKeys.TIMESTAMP,

System.currentTimeMillis());

317

318 PutDataRequest putDataRequest = dataMap.asPutDataRequest();

319 Wearable.DataApi.putDataItem(googleApiClient,

putDataRequest).setResultCallback(new

ResultCallback<DataApi.DataItemResult>() {

320 @Override

321 public void onResult(DataApi.DataItemResult dataItemResult) {

322 Log.d(TAG, "Filter by sensor " + sensorId + ": " +

dataItemResult.getStatus().isSuccess());

323 }

324 });

325 }

326 }

327 }

For the complete code, see the team GitHub at:

https://github.com/matthewbarreiro/MusicWearableMQP2017

https://github.com/matthewbarreiro/MusicWearableMQP2017

42

Appendix D: Query Arguments for Get Recommendations Based
on Seeds Function in Spotify Web API

Request Parameters

HEADER FIELD VALUE

Authorization Required. A valid access token from the Spotify Accounts service: see the
Web API Authorization Guide for details.

QUERY
ARGUMENT VALUE

limit Optional. The target size of the list of recommended tracks. For seeds with
unusually small pools or when highly restrictive filtering is applied, it may be
impossible to generate the requested number of recommended tracks.
Debugging information for such cases is available in the response. Default: 20.
Minimum: 1. Maximum: 100.

market Optional. An ISO 3166-1 alpha-2 country code. Provide this parameter if you want
to apply Track Relinking. Because min_*, max_* and target_* are applied to pools
before relinking, the generated results may not precisely match the filters
applied. Original, non-relinked tracks are available via the linked_from attribute
of the relinked track response.

max_* Optional. Multiple values. For each tunable track attribute, a hard ceiling on the
selected track attribute’s value can be provided. See tunable track attributes
below for the list of available options. For example, max_instrumentalness=0.35
would filter out most tracks that are likely to be instrumental.

min_* Optional. Multiple values. For each tunable track attribute, a hard floor on the
selected track attribute’s value can be provided. See tunable track attributes
below for the list of available options. For example, min_tempo=140 would
restrict results to only those tracks with a tempo of greater than 140 beats per
minute.

seed_artists A comma separated list of Spotify IDs for seed artists.
Up to 5 seed values may be provided in any combination of seed_artists,
seed_tracks andseed_genres.

https://developer.spotify.com/web-api/authorization-guide/
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://developer.spotify.com/web-api/track-relinking-guide/
https://developer.spotify.com/web-api/object-model/#track-object-full
https://developer.spotify.com/web-api/user-guide/#spotify-uris-and-ids

43

seed_genres A comma separated list of any genres in the set of available genre seeds.
Up to 5 seed values may be provided in any combination of seed_artists,
seed_tracks andseed_genres.

seed_tracks A comma separated list of Spotify IDs for a seed track.
Up to 5 seed values may be provided in any combination of seed_artists,
seed_tracks andseed_genres.

target_* Optional. Multiple values. For each of the tunable track attributes (below) a
target value may be provided. Tracks with the attribute values nearest to the
target values will be preferred. For example, you might request
target_energy=0.6 and target_danceability=0.8. All target values will be weighed
equally in ranking results.

https://developer.spotify.com/web-api/get-recommendations/#available-genre-seeds
https://developer.spotify.com/web-api/user-guide/#spotify-uris-and-ids

44

Tuneable Track attributes

ATTRIBUTE NAME
VALUE
TYPE VALUE DESCRIPTION

acousticness float A confidence measure from 0.0 to 1.0 of whether the track is
acoustic. 1.0 represents high confidence the track is acoustic.

danceability float Danceability describes how suitable a track is for dancing based on a
combination of musical elements including tempo, rhythm stability,
beat strength, and overall regularity. A value of 0.0 is least
danceable and 1.0 is most danceable.

duration_ms int The duration of the track in milliseconds.

energy float Energy is a measure from 0.0 to 1.0 and represents a perceptual
measure of intensity and activity. Typically, energetic tracks feel fast,
loud, and noisy. For example, death metal has high energy, while a
Bach prelude scores low on the scale. Perceptual features
contributing to this attribute include dynamic range, perceived
loudness, timbre, onset rate, and general entropy.

instrumentalness float Predicts whether a track contains no vocals. "Ooh" and "aah" sounds
are treated as instrumental in this context. Rap or spoken word
tracks are clearly "vocal". The closer the instrumentalness value is to
1.0, the greater likelihood the track contains no vocal content.
Values above 0.5 are intended to represent instrumental tracks, but
confidence is higher as the value approaches 1.0.

key int The key the track is in. Integers map to pitches using standard Pitch

Class notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on.

liveness float Detects the presence of an audience in the recording. Higher
liveness values represent an increased probability that the track was
performed live. A value above 0.8 provides strong likelihood that the
track is live.

loudness float The overall loudness of a track in decibels (dB). Loudness values are
averaged across the entire track and are useful for comparing
relative loudness of tracks. Loudness is the quality of a sound that is
the primary psychological correlate of physical strength (amplitude).
Values typical range between -60 and 0 db.

https://en.wikipedia.org/wiki/Pitch_class
https://en.wikipedia.org/wiki/Pitch_class

45

mode int Mode indicates the modality (major or minor) of a track, the type of
scale from which its melodic content is derived. Major is
represented by 1 and minor is 0.

popularity int The popularity of the track. The value will be between 0 and 100,
with 100 being the most popular. The popularity is calculated by
algorithm and is based, in the most part, on the total number of
plays the track has had and how recent those plays are.
Note: When applying track relinking via the market parameter, it is
expected to find relinked tracks with popularities that do not match
min_*, max_*and target_*popularities. These relinked tracks are
accurate replacements for unplayable tracks with the expected
popularity scores. Original, non-relinked tracks are available via
thelinked_from attribute of the relinked track response.

speechiness float Speechiness detects the presence of spoken words in a track. The
more exclusively speech-like the recording (e.g. talk show, audio
book, poetry), the closer to 1.0 the attribute value. Values above
0.66 describe tracks that are probably made entirely of spoken
words. Values between 0.33 and 0.66 describe tracks that may
contain both music and speech, either in sections or layered,
including such cases as rap music. Values below 0.33 most likely
represent music and other non-speech-like tracks.

tempo float The overall estimated tempo of a track in beats per minute (BPM). In
musical terminology, tempo is the speed or pace of a given piece
and derives directly from the average beat duration.

time_signature int An estimated overall time signature of a track. The time signature
(meter) is a notational convention to specify how many beats are in
each bar (or measure).

valence float A measure from 0.0 to 1.0 describing the musical positiveness
conveyed by a track. Tracks with high valence sound more positive
(e.g. happy, cheerful, euphoric), while tracks with low valence sound
more negative (e.g. sad, depressed, angry).

https://developer.spotify.com/web-api/object-model/#track-object-full

46

References

[1] C. J. Murrock, Psychology of Mood, 2005, pp. 141-155.

[2] M. Clayton, R. Sager and U. Will, "In Time with the Music: The Concept of Entrainment and its
Significance for Enthomusicology," ESEM Counterpoint, vol. 1, 2004.

[3] Mayo Clinic, "Heart Rate: What's Normal?," [Online]. Available:
http://www.mayoclinic.org/healthy-lifestyle/fitness/expert-answers/heart-rate/faq-
20057979. [Accessed September 2016].

[4] S. J. Cox, "Vagus Nerve," Rice University, 2012.

[5] C. H. Hawkes, "Endorphins: the basis or pleasure?," Journal of Neurology, Neurosurgery, and
Psychology, no. 55, pp. 245-250, 1992.

[6] T. Jia, Y. Ogawa, M. Miura, O. Ito, and M. Kohzuki, “Music Attenuated a Decrease in
Parasympathetic Nervous System Activity after Exercise,” PLoS One, vol. 11, Feb. 2016.

[7] C. J. Bacon, T. R. Myers, and C. I. Karageorghis, “Effect of music-movement synchrony on
exercise oxygen consumption.,” The Journal of Sports Medicine and Physical Fitness, vol. 52,
pp. 359–365, Aug. 2012.

[8] J. M. Standley, “The Effect of Vibrotactile and Auditory Stimuli on Perception of Comfort,
Heart Rate, and Peripheral Finger Temperature,” Journal of Music Therapy, vol. 28, no. 3, pp.
120–134, Jan. 1991.

[9] adafruit, “Fitbit Force Teardown,” YouTube, Nov-2013. [Online]. Available:
https://www.youtube.com/watch?v=_yuwuokee4i. [Accessed: 15-Sep-2016].

[10] R. Whitman, “Samsung Announces Gear 2 And Gear 2 Neo Smartwatches Running Tizen,
Available Worldwide In April,” Android Police Android News Apps Games Phones Tablets,
2014. [Online]. Available: http://www.androidpolice.com/2014/02/22/samsung-announces-
gear-2-and-gear-2-neo-smart-watches-running-tizen-available-worldwide-in-april/.
[Accessed: 13-Oct-2016].

[11] “Tizen,” About. [Online]. Available: https://www.tizen.org/about?langswitch=en. [Accessed:
13-Oct-2016].

[12] “ASUS ZenWatch (WI500Q) - Specifications,” ASUS ZenWatch (WI500Q). [Online]. Available:
https://www.asus.com/us/zenwatch/asus_zenwatch_wi500q/specifications/. [Accessed: 13-
Oct-2016].

[13] “Moto 360 by Motorola - Smartwatch Powered by Android Wear,” Motorola. [Online].
Available: https://www.motorola.com/us/products/moto-360. [Accessed: 13-Oct-2016].

47

[14] “Huawei Watch,” GetHuawei.com. [Online]. Available: http://www.gethuawei.com/buy-
huawei-watch#watchstainlessleather. [Accessed: 13-Oct-2016].

[15] “Wearable Computing Devices, Like Apple's iWatch, Will Exceed 485 Million Annual
Shipments by 2018,” ABI Research. [Online]. Available:
https://www.abiresearch.com/press/wearable-computing-devices-like-apples-iwatch-will/.
[Accessed: 13-Oct-2016].

[16] “Wearable Tech Device Awareness Surpasses 50 Percent Among US Consumers, According
to NPD,” NPD Group, Jul-2014. [Online]. Available:
https://www.npd.com/wps/portal/npd/us/news/press-releases/wearable-tech-device-
awareness-surpasses-50-percent-among-us-consumers-according-to-npd/. [Accessed: 13-
Oct-2016].

[17] “Daily Dose: Smartphones Have Become a Staple of the U.S. Media Diet,”Nielsen, 21-Apr-
2016. [Online]. Available: http://www.nielsen.com/us/en/insights/news/2016/daily-dose-
smartphones-have-become-a-staple-of-the-us-media-diet.html. [Accessed: 13-Oct-2016].

[18] A. Lunney, N. R. Cunningham, and M. S. Eastin, “Wearable fitness technology: A structural
investigation into acceptance and perceived fitness outcomes,” Computers in Human
Behavior, vol. 65, pp. 114–120, Dec. 2016.

[19] J. Cumming and C. Hall, “The Relationship Between Goal Orientation and Self-Efficacy for
Exercise,” Journal of Applied Social Psychology, vol. 34, no. 4, pp. 747–763, 2004.

[20] “Our Company,” The Echo Nest. [Online]. Available: http://the.echonest.com/company/.
[Accessed: 13-Oct-2016].

[21] S. Murphy, “Spotify Acquires Music Data Company The Echo Nest,” Mashable, Jun-2014.
[Online]. Available: http://mashable.com/2014/03/06/spotify-acquires-echo-
nest/#opsl08dbakq9. [Accessed: 13-Oct-2016].

[22] “Spotify Echo Nest API,” Spotify Developer. [Online]. Available:
https://developer.spotify.com/spotify-echo-nest-api/. [Accessed: 13-Oct-2016].

[23] “Get Recommendations Based on Seeds,” Spotify Developer. [Online]. Available:
https://developer.spotify.com/web-api/get-recommendations/. [Accessed: 13-Oct-2016].

[24] “Web API,” Gracenote. [Online]. Available: https://developer.gracenote.com/web-api.
[Accessed: 13-Oct-2016].

[25] “Rhythm API,” Gracenote. [Online]. Available: https://developer.gracenote.com/rhythm-api.
[Accessed: 13-Oct-2016].

[26] “Google Fit ” Google Developers. [Online]. Available: https://developers.google.com/fit/.
[Accessed: 13-Oct-2016].

48

[27] Gopal, Kaushik.”045: Bluetooth (LE) with Dave (devunwired) Smith.” Audio blog post.
Fragmented. Fragmentedpodcast.com, 13 June, 2016. 28 September, 2016

[28] "Dashboards,". [Online]. Available:
https://developer.android.com/about/dashboards/index.html. [Accessed: Dec. 14, 2016.]

[29] "About the project," CyanogenMod. [Online]. Available:
https://www.cyanogenmod.org/about. [Accessed: Dec. 15, 2016.]

[30] "Material design for Android,". [Online]. Available:
https://developer.android.com/design/material/index.html. [Accessed: Dec. 15, 2016.]

[31] em. Inc and A. R. Reserved, "Only 33% of US mobile users will pay for Apps this year," 2015.
[Online]. Available: https://www.emarketer.com/Article/Only-33-of-US-Mobile-Users-Will-
Pay-Apps-This-Year/1011965. [Accessed: Dec. 12, 2016.]

[32] S. Butner, "How much in advertising revenue can a mobile App generate?," Small Business
Chron, 2016. [Online]. Available: http://smallbusiness.chron.com/much-advertising-revenue-
can-mobile-app-generate-76855.html.[Accessed: Dec. 12, 2016.]

[33] "Survey: 58 percent of smartphone users have downloaded a fitness or health app,"
MobiHealthNews, 2015. [Online]. Available:
http://www.mobihealthnews.com/48273/survey-58-percent-of-smartphone-users-have-
downloaded-a-fitness-or-health-app. [Accessed: Dec. 12, 2016.]

[34] K. Gopal, “Otto,” Square. [Online]. Available: http://square.github.io/otto/. [Accessed: 04-
Mar-2017].

