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Figure 1: GloveSense Dataglove

Abstract

The goal of this project is to provide a wearable device that enables the user

to control MIDI (Musical Instrument Digital Interface) devices with gestures.

Achieving this goal will allow performing artists to better control their mu-

sic. The dataglove and accompanying software will be able to detect gestures

through the use of piezoresistive flex sensors, accelerometers, gyroscopes, and

magnetometers. These gestures will then be interpreted into audio modulation,

which is used to create audio output.
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Chapter 1

Introduction

Human-Computer Interaction (HCI) is a growing field of study of the interface between

a human user and computers. There are many different methods of HCI seen in modern

devices, such as a cell phone touch screen, or a computer keyboard. In music, HCI devices

are are limited to a few, very similar devices such as knobs and sliders. The input devices

currently in use enable the user to interact with an object, rather than directly detecting

human movement. This is primarily because these objects are more consistent in their

movements, which contributes to a higher accuracy. Because of the fear of inaccuracy, there

are not many datagloves in use in any industry. The music industry is a potential application

of a dataglove where accuracy is not as paramount as user experience. Music may be the

application best suited to dataglove use.

The purpose of this project is to create a dataglove that detects various human movements

and interprets them into MIDI data. The dataglove creates a new, more interactive way for

musicians to perform at a concert. This sort of wearable device will help performers by

providing a more fluid connection with the music they make. The dataglove will assist the

artist’s individuality, since every artist has their own unique way of reacting to the music

they play and a wearable device allows the artist modify music with muscle movements.

Therefore, this technology will allow artists to be connected with their music on a more
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advanced level.

The team conducted a survey at Worcester Polytechnic Institute (WPI) among students

and a few faculty members, seen in appendix 6.4. The survey group consisted of 47 par-

ticipants with diverse backgrounds, yielding representative results. Additionally, the team

conducted personal interviews with two musicians and two music professors, which gave a

more focused response than the survey. Dr. Manzo, one of the interviewees, suggested that

the team create a use case that would enable an artist to do what may be possible with a

traditional instrument or device, but is made easier through the use of an alternate controller.

The team designed towards a specific use case, in the knowledge that the final design could

be used in many different applications with little to no modification of the basic hardware

and software design. To best exemplify the capabilities of GloveSense, the team chose a live

performance emulating a DJ a turntable mixing board as the use case. The typical turntable

mixing board is capable of playing two tracks at once, and controlling different aspects of

each track simultaneously.

To transition between the two songs, a performing DJ will use tempo controls to match

the tempos of the song currently playing and the next song to play. This is known as

“beatmatching.” Once the tracks are beatmatched, the DJ can then use the track-to-track

fade to simultaneously reduce the volume of the old song and increase the volume of the

new song. An especially astute DJ will constantly modify the equalizer values of each track

according to the response of the audience. The DJ can also add in audio effects, such as

flanging or echo, and play audio samples from the sample bank.

The team chose five effects to emulate for this use case, to demonstrate the potential of

the glove while still being easy for the user to learn. Five effects the user can map the glove

gestures to are listed below:

• Tempo Control

• Track-to-track Fade
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• Three-band Equalizer

• Audio Effect Modulator

• Sample Bank

The team believes GloveSense can emulate these effects of a DJ turntable mixing board

with enough accuracy to be usable in a live performance setting.

The results of an interest survey and accompanying derived specifications are seen in

Chapter 2, Customer Requirements. The information presented in Chapter 3, Literature

Review, provides the necessary background to understand the system design presented in

Chapter 2 and the specific Methodology seen in Chapter 4. The results the team gathered

from this project are seen in Chapter 5, Results. Finally, the team presents concluding

statements in Chapter 5.4.
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Chapter 2

Customer Requirements

The survey initially described in chapter 1 assessed the interest and the experience that

participants had with similar devices. Among all the people surveyed only a small portion,

nine percent, were experienced with using similar wearable devices. Out of all the people

surveyed, 91 percent of the participants were interested in an interactive controller glove,

and 96 percent of the participants stated they would like to see these devices being used by

famous musicians at large concerts. The survey data shows a generally positive response to

the idea of a glove, as well as a willingness to pay for the described product. This shows

that there is interest, and a niche in the market for the glove.

The team interviewed Dr. Manzo and Dr. Bianchi, who provided valuable insight into

the use of alternate controllers for musical applications. The interviewees both suggested the

team use the MIDI format, as it is the industry standard. Dr. Manzo suggested targeting

the glove for use with disabled persons, specifically music for the deaf. The team felt that

this could be a good alternate use for the glove, but decided to design for the average person,

as that would create the largest possible audience.

The team derived a number of requirements from the survey results, as well as other

feedback given by the survey takers. The team added to these requirements with ideas from

the interviews described above. The lists of implicit and explicit requirements are seen below:
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Implicit Requirements:

• The glove should be easy to use.

• The glove should be comfortable.

• The glove should be usable by a wide range of people.

• The glove should be safe to use in an appropriate environment.

Explicit Requirements:

• The glove should accurately recognize gestures.

• The glove should be system (Windows, Mac) independent.

• The glove should allow the user to create or modulate music.

These requirements are fairly broad, and will allow the team room for development. The

team condensed these requirements into a the product design specifications discussed in

section 2.1.

2.1 Derived Specifications

The team created a design to conform to the customer requirements discussed in Chapter

2. Each specification was designed for individually, but the team attempted to maximize

overlap between the requirements to minimize the potential design aspects. A simple design

is not only easier for the team to implement, it will likely be easier for the end user to enjoy

as well. The specifications are seen below:

• The glove will allow the user to create or modulate music.

• The glove will use the MIDI standard and software compatible with both Windows OS

and Max OSX.
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• The glove will be comfortable and safe to use.

• Gestures detected by the glove will be sensible and memorable.

• Gesture detection will be user independent.

• Gestures will only be detected when the user wants.

The first specification is the most broad of them all: “the glove will allow the user to

create or modulate music.” This specification must be adhered to throughout the project; it

is the primary goal of the team. The glove must therefore be interfaced with a synthesizer,

soundboard, or computer program. Since this goal is so broad, the team chose a specific use

case, described in Chapter 1, to design to. This allowed the team to design hardware and

software capable of completing this overall goal, while still having a demonstrable software

goal to achieve. The team will describe the choices made to adhere to this design specification

throughout Chapter 4.

The second specification is reliant on both hardware and software: “the glove will use the

MIDI standard and software compatible with both Windows and Mac OSX.” This specifica-

tion is derived from the system independence customer requirement. It necessitates the use

of communication hardware and processing software that are compatible with a majority of

most computers today. The team will describe the choices made to adhere to this design

specification throughout Chapter 4.

The third specification is primarily reliant on hardware: “the glove will be comfortable and

safe to use.” This specification is derived from the comfort and safety customer requirements.

It requires consideration of safety and comfort in all aspects of the hardware design. The team

will discuss the choices made to adhere to this design specification in Chapter 4, throughout

section 4.1.

The fourth specification is reliant on both hardware and software: “the gestures detected

by the glove should be sensible and memorable.” This specification is primarily derived from

the ease of use customer requirement. It will dictate the choice of motion detection hardware
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employed in the glove, as well as the gestures that the team selects for use from the pool of

gestures available due to the hardware selection. The team will discuss the choices made to

adhere to this design specification throughout section 4.1.

The fifth specification is primarily reliant on software: “the gesture detection should be

user independent.” This specification is derived from the ease of use and user independence

customer requirements. It requires the use of some form of user calibration, whether it

be a learning program or literal calibration, through software and hardware, respectively.

The team will discuss the choices made to adhere to this design specification in Chapter 4,

primarily in section 4.2.1.

The sixth and final requirement is reliant on software, and possibly reliant on hardware:

“gestures should only be recognized when the user wants.” This specification is derived from

the ease of use customer requirement. It necessitates that the glove have some sort of

activation feature, whether it is a hardware switch or something detected by software. The

team will discuss the choices made to adhere to this design specification in Chapter 4,

primarily in section 4.2.1.

The team then designed hardware and software block diagrams that would fulfill the

specifications listed above. These diagrams are seen in figures 2.1 and 2.2, respectively.
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Figure 2.1: Initial Hardware Block Diagram
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Figure 2.2: Initial Software Block Diagram
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Chapter 3

Literature Review

This Chapter presents the relevant background research to build a frame of reference for this

project. In section 3.1, we discuss other dataglove projects, and the intended audience of

those projects. In section 3.2, we discuss the Musical Instrument Digital Interface (MIDI)

communication standard. In section 3.3, we discuss the Max programming family, and many

musical uses of the language. In section 3.4, we discuss Attitude and Heading Reference

Systems (AHRS) and their use in orientation and position measurement.

3.1 Prior Art

There are many existing datagloves on the market at this time. Each dataglove is tailored

to a specific application, and is held a high price point, thus limiting the target market

of the glove. One such glove, the EnableTalk sign language interpretation glove, is highly

specialized in gesture recognition, and outputs text-to-speech interpretation of the user’s

sign language inputs. This glove fills a very specific niche in the dataglove market. However,

there are many traits that this glove has that are useful to other datagloves. With such

exceptional prior art to build off of, our team hopes to include as many of the positive

aspects as possible, and as few of the negative.

In the past, engineers have tried many different implementations of single-handed input
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devices in an attempt to increase ease of use of computers. These attempts range from the

T9 predictive phone keyboard to the Dvorak Simplified keyboard for one hand. These are

displayed in figures 3.1 and 3.2, respectively. Both of these options suffer from a lack of

input information that one hand is able to provide. Ty ping with one hand is simply slower

and less accurate than typing with two. For intensive, high-accuracy typing applications, a

full keyboard is still most applicable. A team from Cornell University created a dataglove,

dubbed “Mr. Gloves,” in another attempt to replace the keyboard and mouse as input

devices into a computer. Mr. Gloves accomplishes computer input by using a combination

of gestures and on-board buttons to create a tenkeyless keyboard with one hand, and a mouse

with the other. The intended use of this device is in “computer applications that are not

particularly keystroke-intensive, such as surfing the web and playing video games”[Chen and

Levine, 2010]. The pair of gloves have a single flex sensor on the right hand, as well as two

accelerometers and a number of buttons. The buttons–primarily mounted on the left hand

along the proximal and metacarpal joints–and accelerometers serve as the keyboard. Each

unique input has an associated hand position, measured by the accelerometers, and button.

This format of input is inefficient and necessitates a large number of movements to type a

simple string of characters. The right hand simulates mouse input using the accelerometers

for 2-D positioning, as well as the flex sensor and a button to simulate left and right clicks,

respectively. This data is transferred from the gloves, to the wireless base station, and then

through USB to the PC. The PC interprets this data using the USB standard, interpreting

the output as a Human Interface Device (HID). The team managed to make the gloves

compliant with Windows HID using no additional drivers. Mr. Gloves is an interesting

interpretation of an existing HID. It accomplishes its task, but arguably not as well as the

existing mouse and keyboard. Mr. Gloves may not be the best HID, but the team can learn

from the negative aspects of the design, and incorporate positive aspects, such as wireless

capability.
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Figure 3.1: T9 Predictive Text

Figure 3.2: Dvorak Simplified Keyboard for left hand
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The EnableTalk glove won the the 2012 Microsoft Imagine Cup in Sydney, Australia

[Ena]. Unfortunately, the glove is not publicly documented well, but there are pictures of

the prototype used in the competition. These pictures show a solar charging panel, as well

as flex sensors and contact sensors. The glove uses an unknown software on a mobile phone

to convert sign-language gestures into speech. The EnableTalk glove has many desirable

features, namely standalone capability and multiple gesture recognition. These features

are necessary in sign language interpretation, but also are quite applicable to a musical

application.

Figure 3.3: Enable Talk Dataglove [Ena]

A team at the Federal University of Rio Grande do Norte (UFRN), created a data-

glove using the Arduino platform for virtual reality applications. This glove, dubbed the

"NED glove," is seen in figure 3.4. The team discusses the programming languages they

used, namely C++, as well as the implementation of on-glove positive user feedback, in-

cluding physical proprioceptive and auditory feedback. The glove uses a tethered design,

communicating with and drawing power from a computer USB connection. This limits the

functionality of the glove in many practical applications. The data passed to the computer

had a high amount of noise, which the team eliminated by averaging the five most recent

sensor readings. This does incur a small delay, but the UFRN team believed that this did

not negatively impact the fluidity and usability of the glove. The processed data was used
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to create a simulation of the hand in the Unity game engine. The simulated hand mirrored

movement of the dataglove, but did not allow the user to interact with objects in the Unity

engine, as there was an issue with mesh collisions in the simulator. The methods the UFRN

team employed to reduce measurement noise and to provide feedback are very useful in

designing a state of the art dataglove.

Figure 3.4: NED Glove used by UFRN Team

[Dantas et al., 2013]

The datagloves discussed in this section provide a good idea of what is necessary to

create a successful glove. A comparison of the reviewed datagloves can be seen in table 3.1.

The different aspects of each glove will be considered when manufacturing the GloveSense

dataglove.
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EnableTalk Mister Gloves NED Glove

Wireless 3 3 ×

Bend Sensors ? 1 5

Position Sensors ? Accelerometer Accelerometer

Method of Connection Bluetooth FHSS Wireless USB

Power Supply Solar/battery AAA battery USB

Table 3.1: Dataglove Comparison

3.2 MIDI - Musical Instrument Digital Interface

Musical Instrument Digital Interface is the industry standard for digitization of musical data,

including pitch, velocity, and note modifiers [Swift, May 1997]. The simplest form of MIDI

assigns each note a pitch value and a velocity (or volume) value, each an unsigned 7-bit

integer ranging from 0-127. Furthermore, the MIDI protocol is separated into two types of

information, status bytes and data bytes. The status byte will carry commands from the

MIDI controller, such as note-on or note-off, while the data byte will carry parameters, such

as pitch and velocity. To make the two distinguishable, the first bit of a status byte is 1 and

the first bit of a data byte is a 0, similar to a signed integer [Huber, 1991]. This allows each

note to be coded in two bytes of data. These simple note bytes are often associated with a

more complex string of data that encodes the note’s timbre and sustain as well. Changing

these values allows for easy manipulation of the note sound.

Many instruments, analog or synthesized, have the ability to be patched through a MIDI

device to modify the sound prior to amplification. In addition to note control, many digital

audio workstations allow for MIDI controllers to be mapped to certain parameters, such as

filter cutoff frequency, or a signal modulator [Abl]. This allows performing artists to modify

their sound in real time.
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3.3 Max/MSP/Jitter

Max/MSP/Jitter is a visual programming suite, developed by Cycling ’74 [C74]. Max is the

primary module of the program, and contains the majority of the functions necessary for

its use. MSP, the acronym for Max Signal Processing, is an addition to the Max library

consisting mainly of signal processing objects. Finally, Jitter is the video processing add-

on to Max. The pseudonym ’Max’ may be used to refer to the entire programming suite

Max/MSP/Jitter.

The Max programming language is comprised of a library of "objects," which are in reality

standalone functions that can take input, give output, or both. These objects are connected

using "patch chords," which transfer six different types of messages between objects. These

message types are: int, float, list, symbol, bang, and signal. All these aspects make up the

basis of the Max syntax, which is quite simple for the user to program with. The visual

nature of the Max language is also used as the end-user Graphical User Interface (GUI),

where different objects are displayed, such as a signal plot or button. This allows the user

to build a visually appealing GUI while coding.

One of the objects in Max, ctlout, allows the user to create a MIDI device from data

in Max. This data can be of type int, float or list. Max supports creation of multiple

MIDI devices in this manner, which can be mapped to numerous MIDI ports. Similarly, the

serial object allows Max to take in serial data via USB or Bluetooth, and can interpret this

information using other built-in objects. Thus, Max can allow any system capable of serial

data transfer to be used as a MIDI controller.

Max allows the user to do any number of things, ranging from simple signal modulation,

to coordinating music and lights through a MIDI interface. Many different devices can be

interpreted by the software into a MIDI controller.

22



3.4 Attitude and Heading Reference System

An attitude and heading reference system consists of sensors on three axes and interpretation

software that can measure heading, roll, and pitch. On each axis, there is an accelerometer,

gyroscope, and magnetometer to measure acceleration, rotation, and direction, respectively.

The key difference between an AHRS and an inertial measurement unit, which consists of

the same sensors, is that an AHRS provides attitude and heading information rather than

just sensor data[Various].

When interpreting sensor data, AHRS often use quaternions, an extension of the com-

plex number system, to describe rotation in three-dimensional space. As seen in table 3.2,

multiplication of quaternions is non-commutative. According to Euler’s rotation theorem,

any rotation of a body about a fixed point is equivalent to a single rotation about a fixed

axis that runs through the fixed point. Therefore, any rotation can be represented by a

position vector and a angle scalar. Any rotation about three-dimensional vector u, as seen

in equation 3.1, can be represented by the quaternion q, as seen in equation 3.2. Quater-

nions allow orientation information to be stored in four quaternion numbers, Θ, ux, uy, and

uz[Hamilton].

Multiplicand

1 i j k

M
u
lt
ip
li
er 1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Table 3.2: Quaternion Multiplication

~u = (ux, uy, uz) = uxi + uyj + uzk (3.1)
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q = e
Θ
2
(uxi+uyj+uzk) = cos

Θ

2
+ (uxi + uyj + uzk)sin

Θ

2
(3.2)

The final output of the AHRS is three angles, with respect to a reference axis, and three

accelerations, one for each axis. The reference axis most commonly used is magnetic north,

which stays approximately constant for small movements. In some cases, gravity can also be

used as the reference axis, but acceleration in the spacial z-axis will detract from the accuracy

of this method. It is possible to use double integration of the acceleration values to calculate

an approximate position in three-dimensional space, however there is drift associated with

this method. An AHRS using quaternions is more stable and less complex than most other

methods of representing orientation and rotation, which is extremely useful when attempting

to implement an AHRS on a low-cost microprocessor.

3.5 Summary

This chapter has displayed some of the prior art and knowledge that have been used through-

out the project. These background topics provide valuable insight into the advantages and

disadvantages of numerous approaches to different aspects of this project.
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Chapter 4

Methodology

This Chapter presents the methods the team used when designing the glove and accom-

panying software. Using the information in Chapter 3, the team created a prototype that

conforms to the design specifications seen in Chapter 2. In section 4.1, we discuss different

modules of the Arduino hardware and software design. In section 4.2, we discuss different

modules of the Max software design. Finally, in section 4.3, we summarize all the modules

discussed in this Chapter.

4.1 Arudino Development

The team constructed a very simple prototype near the beginning of the project, consisting

of an Arduino Uno with two flex sensors connected to it. The Arduino sent the readings

from the flex sensor over USB as serial data to a Max patch using the same process as in

the final design, which will be described below. Once this basic functionality was set up, the

team began planning how to add the additional flex sensors, accelerometer, and Bluetooth.

Even in the simplest prototype possible many of the hardware design modules, seen in figure

2.1, are represented in some minimum form.

For the initial prototype, all modules used were already functioning, standard implemen-

tations. These include: Arduino microcontroller; power source and communication method,
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both USB; and the flex sensor circuitry. This allowed the team to rapidly prototype software,

alongside hardware development.

Once the team ensured software was able to retrieve the data, a new prototype could be

developed. This prototype included all of the modules outlined in 2.1. The team chose to

use an Arduino Mini as the microcontroller to receive and process the information coming

from the sensors. At first the team used the Arduino UNO for this purpose, however, the

Arduino UNO only has six analog pins, while the design required seven, five for the flex

sensor voltage readings and two for the accelerometer I2C bus. The Arduino Mini has eight

analog pins, thereby complying with the hardware design. In addition, the Arduino Mini

is physically small at only 30mm by 15mm, so it will easily be able to fit on the forearm.

The team decided not to create a custom printed circuit board with microcontroller for the

final prototype, since the Arduino is a well established platform that can be reprogrammed.

Additionally, the team wanted to allow the end user freedom to modify the glove software,

instead of limiting the user to our design. Programming is much easier with the Arduino

IDE, as opposed to programming the Atmega 328 directly. Due to these reasons the team

decided to use an Arduino Mini for the final prototype.

The team initially used USB as the Arduino power source. The Arduino can then dis-

tribute power to the hardware blocks. The USB power was only used in the initial prototyp-

ing phase of development. As the design specifications require the glove to be wireless, the

design must employ a battery power solution. Initially, the team used six AA batteries wired

in series to provide power to the Arduino. The team found this to be difficult to mount on

the forearm, and decided to use a 9V 600mAh battery to power the microcontroller instead.

The team found the Arduino Mini and connected hardware only draws about 50mA of DC

current, allowing a performer to use the glove for approximately 12 hours on one 9V battery.

This battery can theoretically power the glove for much longer than most performing artists

require, and if another solution is desired, the team left room in the hardware box for such

expansion.
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This design allowed for rapid prototyping of other hardware modules to be used in the

final prototype. A full schematic of the final design is seen in appendix 6.1. The modules

discussed below are employed in the final hardware design, unless otherwise specified.

4.1.1 Flex Sensors

The flex sensors used in the initial prototype included a voltage divider circuit that allowed

for a three pin format. This allowed for reliable, plug-and-play use on the Arduino board,

which can both supply voltage to and read voltage from this flex sensor circuit. However,

these pre-made flex sensors were expensive, and to reduce cost, the team opted to use a

simple sensor and employ self designed circuitry. The circuit designed to read the sensor is

seen in figure 4.1, and the general data flow block diagram is seen in 4.2. The team designed

a voltage divider circuit that allowed for maximum possible accuracy in measurement, as

well as a low power draw of approximately 165µW per sensor.

Figure 4.1: Flex Sensor Circuit Diagram
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Figure 4.2: Flex Sensor Block Diagram

The team connected the data wires of the flex sensors to analog pins as seen in table

4.1. At the beginning of the main loop, the analogRead function takes a voltage reading

at each analog pin. This reading is translated into an integer by the Arduino signed 12-bit

ADC, with a value of 5V equal to 1023, and 0V equal to 0. These integers are then sent over

Bluetooth as serial data according to section 4.1.3, where they can be interpreted in Max as

seen in section 4.2.

Finger Number Analog Pin

Little 4 A0

Ring 3 A1

Middle 2 A2

Index 1 A3

Thumb 0 A7

Table 4.1: Flex Sensor Pin Assignment
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4.1.2 Orientation Measurement

The team decided to use the MPU-9150, an inertial measurement unit, in the dataglove. It

is stated to be the world’s first integrated 9-axis MotionTrackingTM device that combines

a 3-axis gyroscope, a 3-axis accelerometer, a 3-axis magnetometer and a Digital Motion

ProcessorTM (DMPTM) hardware accelerator engine[Spa]. Three 16 bit Analog to Digital

Converters (ADCs) are used for digitizing the outputs of accelerometer and gyroscope and

three 13 bit ADCs are used for the magnetometer outputs. Accelerometer, gyroscope and

magnetometer are all user programmable for precision tracking of both fast and slow motions.

Therefore, this product will provide us with the high precision and low cost in the prototype

design.

The accelerometer is be directly mounted on the glove and connected to the Arduino. The

accelerometer pins V CC, GND, SDA, SCL, and INT are connected to the Arduino pins

5V , GND, A4, A5, and 2, respectively. The team setup the IMU in the Arduino code using

the mpu.setDLPFMode() command, using the default setting of 4. Then, communication

was started by using the mpu.setIntDataReadyEnabled(true) command.

The general data flow block diagram is seen in 4.3.

Figure 4.3: IMU Block Diagram

To interpret the IMU sensor output, the team implemented an AHRS on the Arduino.

The team used open-source beerware-licensed code provided by Sparkfun, the IMU manu-

facturer[Spa]. The code sets up a polling system such that the calculations were only carried
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out if mpu.getIntDataReadyStatus() was set to 1. The raw acceleration, rotation and mag-

nometer values are calculated according to equations 4.1 to 4.3. The values q[0] to q[3]

utilized in equation 4.4 are calculated using Madgwick quaternion mathematics, as seen in

appendix 6.2, in the function MadgwickQuaternionUpdate(). The interpreted sensor out-

put yields acceleration (mgn), rotation (deg/s) and magnetometer readings (mG) for each

axis, as well as quaternion values. The team only utilized the roll of the IMU, as rotation is

the easiest wrist movement. This integer is then sent over Bluetooth as serial data according

to section 4.1.3, where they can be interpreted in Max as seen in section 4.2.

A = ain ∗ 2.0f/32768.0f (4.1)

Accelerometer Scaling

G = gin ∗ 250.0f/32768.0f (4.2)

Gyroscope Scaling

M = min ∗ 10.0f ∗ 1229.0f/4096.0f + calibrationOffset (4.3)

Magnometer Scaling

roll = atan2(2.0f ∗(q[0]∗q[1]+q[2]∗q[3]), q[0]∗q[0]−q[1]∗q[1]−q[2]∗q[2]+q[3]∗q[3]) (4.4)

Roll Interpretation
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4.1.3 Bluetooth Serial Communication

The team used the BlueSMiRF module for the Arduino in the final prototype, because it was

easy to implement, widely used and well documented. The module allows for short distance

wireless communication with a computer or other device. The team found the range to be

nearly 20m, and could communicate through interior building walls. In future iterations, if a

higher range is desired, it would be simple to implement another module, since all Bluetooth

modules conform to a standard input/output (I/O) setup. Some modern computers have a

Bluetooth device built-in, otherwise a small USB dongle is required for communication. The

block diagram showing the connection of the Bluetooth module is seen in figure 4.4.

Figure 4.4: Bluetooth Block Diagram

The Bluetooth module has a number of I/O pins: 5V , GND, RX, and TX. The team

connected these to the Arduino VCC , GND, 3, and 4, respectively. The Bluetooth module

can then pass the data to a computer wirelessly. The computer Bluetooth module receives

the transmission and converts it back into serial data. The software discussed in section 4.2

can then interpret the data.

The team used the software serial library, which has the ability to create another serial

port. The team created the bluetooth.print() function by defining a new serial port using
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softwareserial to assign the digital pins of the Bluetooth module to the Tx and Rx func-

tions. The team sent three $ symbols at the default baud rate of 115200 to initialize the

Bluetooth module. Then, the team redefined the baud rate to 9600, allowing for standard

communication between the Arduino and Max.

At the end of the main loop, the team sent the sensor data gathered according to sections

4.1.1 and 4.1.2 in specific message formats. The flex sensor integers were sent in the format

finger X value, where X is the finger number as seen in table 4.1 and value is the integer

voltage reading. The roll data was formatted roll : value where value is the floating point

roll value from the AHRS output.

4.1.4 3D-Printed Case

The team created a case which attaches to the users forearm to enclose the electrical com-

ponents not housed on the glove, namely the Arduino mini, Bluetooth module, the battery

and the voltage regulator. The case attaches to the forearm with Velcro bands. The case

increases the durability of the prototype by protecting the electrical components and gives

the prototype a desirable compact look.

The team used Solidworks in order to design the box. The box lid was designed like a

friction fit slide in style because it was the most forgiving way in terms of dealing with the

±0.3mm error of the 3D printer. The case and components are seen in figure 4.5. The case

is comfortable and lightweight, and keeps the components from interfering with wrist and

finger movements, thereby complying with the design specifications.
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Figure 4.5: Forearm Component Case

4.2 Max Software

The data retrieved from the Arduino through Bluetooth is interpreted by Max as serial data.

The serial data from the flex sensors and accelerometer can be read by Max using the serial

object, as seen in figure 4.6. The serial object takes in a number of inputs, most importantly

the serial port information. The team set the serial baud rate to match the Bluetooth baud

rate of 9600. The port information changes depending on the Bluetooth connectivity, and

requires the user of the program to select the proper port on start up. Since the serial object

in Max outputs the information it receives as integers representing ASCII characters, these

integers needed to be converted to the actual numerical output using the itoa object. The

integer values are then interpreted into MIDI values in the datain patch, as seen in figure

6.3.
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Figure 4.6: Max Serial Object Implementation

4.2.1 Flex Sensor Interpretation and Gesture Recognition

The team routed the flex sensor readings, in the form finger X value to the appropriate

section of code using the route object, with the argument finger. This object passes all

messages that begin with finger to the left output, and all other messages to the right

output. This allows roll : messages to pass to the right output unhindered. Then the

message is then split into finger number and finger value using the unpack object. The

finger number is used to select an output of the gate object that will route the finger value

to the proper finger interpretation module. Each finger is interpreted in the same manner.

The team created a calibration system for the flex sensors by scaling the sensor values to

MIDI values (0-127) and using the peak and trough objects in conjunction with the scale

object. Upon start up, the patch sets arbitrary values for the minimum and maximum of the
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scale object, then continually changes these values based upon the smallest and largest input

values seen, using the peak and trough objects. This allows the software to continuously

calibrate finger ranges to the user movements.

To interpret these MIDI values into gestures, a second patch was created which recognizes

gestures based on each finger being in a specific range. A flex sensor value of 127 corresponds

to a finger fully bent, and 0 corresponds to a finger fully open. If all fingers were in a range

near 127, the patch would recognize that as a fist. If all fingers were in a range near 0, that

would be interpreted as an open hand. Once basic gestures like this were set up, adding new

gestures only required finding the range of flex sensor values for each finger when making

that gesture. The full gesture recognition code is seen in figure 6.4. This necessitates finding

reasonably orthogonal gestures, primarily treating the individual fingers as binary values.

Having two large ranges of detection spread over the whole range of motion of the sensor

allows for simple detection of the different gestures by creating a very small range where an

interpretation error could occur. Once a gesture is detected, any values associated with it

can be modified by motion data from the accelerometer.

The team created a state diagram, seen in figure 4.7, for the possible states that the glove

could be in, which correspond to the states of waiting for the gestures in figure 4.8. The

states are "in between" the levels of the gesture menu, which allows for a simplification of the

menu design. The initial state, S0, simply waits for the user to make the activation gesture.

The activation gesture allows the user to move freely in most situations, while not requiring

a hardware switch to control gesture recognition. Once that has been made, S1 waits for the

user to select a track, sending the glove to state S2 or S3, or modify all tracks, upon which

the glove cycles back to state S1. S2 and S3 correspond to track one and two, respectively.

These two states are waiting for the same set of gestures, but will modify only one track.

Once one of the modification gestures is made, the glove moves to the appropriate state S4

or S5. S4 waits for any of the final gestures, and will play the sample that is mapped to

that gesture through Ableton. Finally, S5 waits for orientation input to modify the value
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that the prior gesture corresponds to.

Figure 4.7: Gesture Recognition State Diagram

This design creates a menu system, allowing for a small pool of gestures to have many

effects. A system of this sort is easily memorable, and quickly navigated. The team believes

that it is an effective manner of modulating music through the use of a dataglove.

The gestures the team chose to recognize were mapped to the different outputs as seen

in figure 4.8.
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Figure 4.8: GUI with Gesture Map

4.2.2 AHRS Interpretation

The team routed the roll value from the AHRS, to the proper section of code in a similar

manner to the flex sensor readings. The team routed the roll data, in the format roll : value,

using the route object. The change in this reading was used to linearly modify a MIDI

value. For example, a clockwise rotation of 45 degrees would increase the MIDI value by 45.

However, any changes that were less than five degrees per sample were filtered out as they

could be unintentional, and changes greater than 100 degrees per sample were also filtered

out to prevent drastic instantaneous changes. The team decided to use the change in roll

values rather than gyroscope data as it produced smoother changes in MIDI value. The

MIDI value obtained this way could then be mapped directly to MIDI controls.
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4.2.3 Ableton Live Interface

Once the team created the patches described in section 4.2.1, the MIDI control outputs for

each gesture were chosen and mapped to various parameters in Ableton live. The ctlout

object was used to send MIDI data to Ableton. This object takes in a MIDI value, a

controller number, and a channel. The value of these messages ranges from 0 to 127, and

there are 128 controllers available on each MIDI channel. Each gesture was then mapped to

a specific parameter in Ableton.

A user can map a physical knob or button to controls within Ableton, and the process is

very similar for mapping control messages from Max. Upon entering the MIDI map mode

in Ableton, as seen in figure 4.9, the user selects the parameter they wish to map to and

sends a control message with the desired controller number and channel. The EQ, Effect,

and Volume/Fade gestures were mapped to knobs, which can be turned with rotation of

the wrist to adjust values. The Pause, Resume, and Play Sample gestures were mapped

to buttons, which are activated upon making the corresponding gesture. All mapped MIDI

controllers are seen in figure 4.10.

Figure 4.9: MIDI Map Mode in Ableton Live
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Figure 4.10: All MIDI Map in Ableton Live

4.3 Design Summary

The team used the different modules presented in this Chapter to create a dataglove capa-

ble of detecting motions and gestures. The hardware and software modules were designed

concurrently, through the use of a rapid prototype made using the Arduino Uno. The fi-

nal design fully satisfied the initial design specifications, but the team discusses potential

improvements to the design in Chapter 5.

39



Chapter 5

Results

This Chapter presents the results the team gathered during the project. Since GloveSense

was an experiment in product design, there are not many quantitative results. The team will

primarily discuss the limitations of the final design and potential design improvements in

section 5.1, Hardware Results, and section 5.2, Software Results. The primary quantitative

result of this project is the gesture recognition accuracy, discussed in section 5.3.

5.1 Hardware Limitations and Improvements

The final hardware design utilized in this project fully completed the initial goals of the

project. However, there were areas that could be improved.

5.1.1 Mi.Mu Glove

The Mi.Mu glove is a dataglove designed specifically for musical applications. This glove

was not discussed in section 3.1 because the Mi.Mu glove was produced concurrently with

this project, and was publicized towards the end of GloveSense development. The Mi.Mu

glove is seen in figure 5.1. The battery is housed opposite the PCB, below the wrist on the

inner forearm [Perner-Wilson].

40



Figure 5.1: Mi.Mu Dataglove [Perner-Wilson]
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The Mi.Mu glove utilizes similar gesture detection to GloveSense, using flex sensors and

an IMU. The Mi.Mu glove has a number of major advantages over GloveSense, namely haptic

feedback motors and open fingertips and palm. These allow the user to better interact with

other instruments while using the glove, as the haptic feedback allows for user feedback

without the need for a computer screen, and the open fingertips and palm allow for better

tactile feedback when interacting with other objects. Additionally, the Mi.Mu glove has all

the components directly on the glove, not requiring the use of a forearm case. All these

aspects should be considered when creating an improved version of GloveSense.

5.1.2 Accelerometer

The team only utilized one gyroscope on the 9-axis IMU. If the software design was to remain

unchanged, a higher accuracy single gyroscope could be employed to increase the accuracy

of MIDI value modification in the gesture menu. If changes to software were to be made, as

described in section 5.2.1, a higher accuracy 9-axis IMU could be employed to fully utilize

the software changes.

5.1.3 Printed Circuit Board

The team used a PCB prototyping board to implement the final design, as it was inexpen-

sive and simple to implement, with no additional software design necessary. An obvious

improvement to this is to create a custom PCB that could house all the aspects of the glove.

Currently, the IMU, Bluetooth and Arduino are each on their own PCBs. The design could

be improved by putting all these components on one PCB, alongside the voltage divider cir-

cuit and other necessary circuitry. This will drastically decrease the footprint of the circuitry,

eliminating the need for a forearm case.
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5.2 Software Limitations and Improvements

The software was fully able to carry out the intended application, but some limitations were

still present. The software limitations are harder to quantify that the hardware ones, as the

software was designed with a specific application in mind.

5.2.1 Accelerometer Interpretation

The team found that the greatest impediment to accurate performance was the coarse ad-

justment that the hand rotation gave. In the current design, as described in section 4.2.2, one

degree of rotation corresponds to one unit of MIDI value change. If a single high-accuracy

gyroscope was employed, as described in section 5.1.2, this could be fixed in software by

allowing the user to select the scaling factor for each parameter; from coarse, less than one

degree per unit MIDI, to fine, greater than one degree per unit MIDI. This would allow for

higher precision during performance.

Alternately, if a high-accuracy 9-axis IMU was employed, an improved AHRS and position

measurement system could be developed. This would allow software to use the position of

the glove in three-space to make different gestures available, enabling many more possibilities

for final application. One such application is a drum simulator, where glove location on an

X-Y plane would change the instrument timbre, and Z-axis movement would set the note

velocity. This would likely necessitate the use of one glove for each hand.

5.3 Gesture Recognition Accuracy

The team tested gesture accuracy by performing the same gesture 50 times, starting from

multiple different gestures. This allowed the team to test the many different gesture permu-

tations that would be used in a performance. The results for the individual gestures and the

overall accuracy is seen in table 5.1.
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Gesture Accuracy (%)

0 100

1 96

2 98

3 94

4 98

5 100

6 90

7 100

8 98

9 98

10 98

11 100

12 92

Total 97.1

Table 5.1: Gesture Accuracy

The accuracy of the GloveSense hardware is high enough that it is usable in a performance

situation, but there is still room for improvement. Some gestures are recognized as low as

90% of the time, which is nearing unacceptable. This could be improved by utilizing a faster

microprocessor, as some of the gesture inaccuracy occurred because of delays between flex

sensor measurement on the Arduino and communication with Max. Additionally, the flex

sensors tended to shift in the glove after long periods of use, which made certain fingers,

namely the little finger and thumb, more difficult to get an accurate reading from.
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5.4 Conclusion

The turntable mixing board use case proved the potential of a MIDI-capable dataglove. The

limitations discovered during testing could be remedied with a better design, or through

a different use case. The team believes that with further development, datagloves such

as GloveSense and the Mi.Mu glove will become commonplace in musical applications. The

team believes that another potential market for the dataglove will be virtual reality. Overall,

the GloveSense project was a success in proving the usefulness of a dataglove in musical

application.
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Chapter 6

Appendices

6.1 Hardware Schematic

Figure 6.1: Hardware Schematic
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6.2 Arduino Code

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

MPU9150_AHRS_directdata . ino

SFE_MPU9150 Library AHRS Data Fusion Example Code

Kris Winer f o r Sparkfun E l e c t r on i c s

Or i g ina l Creat ion Date : Apr i l 8 , 2014

https :// github . com/ sparkfun /MPU9150_Breakout

The MPU9150 i s a v e r s a t i l e 9DOF sensor . I t has a bu i l t−in

acce le rometer , gyroscope , and magnetometer that

f unc t i on s over I2C . I t i s very s im i l a r to the 6 DoF MPU6050 f o r which an ex t en s i v e

l i b r a r y has a l ready been bu i l t . Most o f the func t i on o f the MPU9150 can u t i l i z e the MPU6050 l i b r a r y .

This Arduino sketch u t i l i z e s J e f f Rowberg ’ s MPU6050 l i b r a r y to generate the bas i c s ensor data

f o r use in two sensor f u s i on a lgor i thms becoming i n c r e a s i n g l y popular with

DIY quadcopter and r obo t i c s eng ine e r s . I have added and s l i g h t l y modi f ied Je f f ’ s l i b r a r y here .

This s imple sketch w i l l demo the f o l l ow ing :

∗ How to c r ea t e a MPU6050 object , us ing a cons t ruc to r ( g l oba l v a r i a b l e s s e c t i on ) .

∗ How to use the i n i t i a l i z e ( ) func t i on o f the MPU6050 c l a s s .

∗ How to read the gyroscope , acce le rometer , and magnetometer

us ing the r eadAcce l e ra t i on ( ) , readRotat ion ( ) , and readMag ( ) f unc t i on s and the

gx , gy , gz , ax , ay , az , mx, my, and mz va r i a b l e s .

∗ How to c a l c u l a t e ac tua l a c c e l e r a t i on , r o t a t i on speed , magnetic

f i e l d s t r ength us ing the s p e c i f i e d ranges as de sc r ibed in the data sheet :

http :// dlnmh9ip6v2uc . c l oud f r on t . net / datashee t s / Sensors /IMU/PS−MPU−9150A. pdf

and

http :// dlnmh9ip6v2uc . c l oud f r on t . net / datashee t s / Sensors /IMU/RM−MPU−9150A−00. pdf .

In addit ion , the sketch w i l l demo :

∗ How to check f o r data updates us ing the data ready s ta tu s r e g i s t e r

∗ How to d i sp l ay output at a ra t e d i f f e r e n t from the sensor data update and fu s i on f i l t e r update r a t e s

∗ How to s p e c i f y the acce l e romete r and gyro sampling and bandwidth r a t e s

∗ How to use the data from the MPU9150 to fu s e the sensor data in to a quatern ion

r ep r e s en t a t i on o f the sensor frame o r i e n t a t i o n r e l a t i v e to a f i x ed Earth frame

prov id ing abso lu te o r i e n t a t i o n in format ion f o r subsequent use .

∗ An example o f how to use the quatern ion data to generate standard a i r c r a f t o r i e n t a t i o n

data in the form of Tait−Bryan ang l e s r ep r e s en t i ng the sensor yaw , pitch , and r o l l ang l e s

s u i t a b l e f o r any v eh i c l e s t a b i l i z a t i o n con t r o l app l i c a t i on .

Hardware setup : This l i b r a r y supports communicating with the

MPU9150 over I2C . These are the only connect ions that need to be made :

MPU9150 −−−−−−−−− Arduino

SCL −−−−−−−−−− SCL (A5 on o lde r ’ Duinos ’ )

SDA −−−−−−−−−− SDA (A4 on o lde r ’ Duinos ’ )

VDD −−−−−−−−−−−−− 3 .3V

GND −−−−−−−−−−−−− GND

The LSM9DS0 has a maximum vo l tage o f 3 .5V. Make sure you power i t

o f f the 3 .3V r a i l ! And e i t h e r use l e v e l s h i f t e r s between SCL

and SDA or j u s t use a 3 .3V Arduino Pro .

In addit ion , t h i s sketch uses a Nokia 5110 48 x 84 p i x e l d i sp l ay which r e qu i r e s

d i g i t a l p ins 5 − 9 desc r ibed below . I f us ing SPI you might need to pre s s one o f the A0 − A3 pins
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i n to s e r v i c e as a d i g i t a l input in s t ead .

Development environment s p e c i f i c s :

IDE : Arduino 1 . 0 . 5

Hardware Platform : Arduino Pro 3 .3V/8MHz

MPU9150 Breakout Vers ion : 1 .0

This code i s beerware . I f you see me ( or any other SparkFun

employee ) at the l o ca l , and you ’ ve found our code he lp fu l , p l e a s e

buy us a round !

D i s t r ibuted as−i s ; no warranty i s g iven .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

#inc lude <Wire . h>

#inc lude "I2Cdev . h"

#inc lude "MPU6050_9Axis_MotionApps41 . h"

#inc lude <So f twa r eSe r i a l . h>

// Declare dev i ce MPU6050 c l a s s

MPU6050 mpu;

// g l oba l constants f o r 9 DoF fu s i on and AHRS ( Att i tude and Heading Reference System )

#de f i n e GyroMeasError PI ∗ ( 40 . 0 f / 180 .0 f )

// gyroscope measurement e r r o r in rads / s ( shown as 3 deg/ s )

#de f i n e GyroMeasDrift PI ∗ ( 0 . 0 f / 180 .0 f )

// gyroscope measurement d r i f t in rad/ s / s ( shown as 0 .0 deg/ s / s )

// There i s a t r a d e o f f in the beta parameter between accuracy and response speed .

// In the o r i g i n a l Madgwick study , beta o f 0 .041

// ( corresponding to GyroMeasError o f 2 .7 degree s / s ) was found to g ive optimal accuracy .

// However , with t h i s value , the LSM9SD0 response time i s about 10 seconds to a s t ab l e i n i t i a l quatern ion .

// Subsequent changes a l s o r e qu i r e a l ong i sh lag time to a s t ab l e output , not f a s t

// enough f o r a quadcopter or robot car !

// By i n c r e a s i n g beta ( GyroMeasError ) by about a f a c t o r o f f i f t e e n , the response time

// constant i s reduced to ~2 sec

// I haven ’ t not i ced any reduct ion in s o l u t i on accuracy . This i s e s s e n t i a l l y the

// I c o e f f i c i e n t in a PID con t r o l s ense ;

// the b igge r the feedback c o e f f i c i e n t , the f a s t e r the s o l u t i on converges ,

// u sua l l y at the expense o f accuracy .

// In any case , t h i s i s the f r e e parameter in the Madgwick f i l t e r i n g and fu s i on scheme .

#de f i n e beta sq r t ( 3 . 0 f / 4 .0 f ) ∗ GyroMeasError // compute beta

#de f i n e zeta sq r t ( 3 . 0 f / 4 .0 f ) ∗ GyroMeasDrift // compute zeta , the other f r e e parameter

// in the Madgwick scheme usua l l y s e t to a smal l or zero value

#de f i n e Kp 2 .0 f ∗ 5 .0 f // these are the f r e e parameters in the Mahony f i l t e r and fu s i on scheme ,

// Kp f o r p ropo r t i ona l feedback , Ki f o r i n t e g r a l

#de f i n e Ki 0 .0 f

int16_t a1 , a2 , a3 , g1 , g2 , g3 , m1, m2, m3; // raw data ar rays read ing

uint16_t count = 0 ; // used to con t r o l d i sp l ay output ra t e

uint16_t delt_t = 0 ; // used to con t r o l d i sp l ay output ra t e

uint16_t mcount = 0 ; // used to con t r o l d i sp l ay output ra t e

uint8_t MagRate ; // read ra t e f o r magnetometer data

f l o a t pitch , yaw , r o l l ;
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f l o a t d e l t a t = 0 .0 f ; // i n t e g r a t i o n i n t e r v a l f o r both f i l t e r schemes

uint16_t lastUpdate = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l

uint16_t now = 0 ; // used to c a l c u l a t e i n t e g r a t i o n i n t e r v a l

f l o a t ax , ay , az , gx , gy , gz , mx, my, mz ; // va r i a b l e s to hold l a t e s t s enso r data va lues

f l o a t q [ 4 ] = {1 .0 f , 0 . 0 f , 0 .0 f , 0 .0 f } ; // vector to hold quatern ion

f l o a t e Int [ 3 ] = {0 .0 f , 0 . 0 f , 0 .0 f } ; // vector to hold i n t e g r a l e r r o r f o r Mahony method

in t f l exSenso rP in0 = A7 ; // analog pin 7

i n t f l exSenso rP in1 = A3 ; // analog pin 3

i n t f l exSenso rP in2 = A2 ; // analog pin 2

i n t f l exSenso rP in3 = A1 ; // analog pin 1

i n t f l exSenso rP in4 = A0 ; // analog pin 0

i n t bluetoothTx = 4 ; // TX−O pin o f b luetooth mate , Arduino D3

in t bluetoothRx = 3 ; // RX−I pin o f b luetooth mate , Arduino D4

So f twa r eSe r i a l b luetooth ( bluetoothTx , bluetoothRx ) ;

void setup ( )

{

// S e r i a l . begin ( 9600 ) ;

b luetooth . begin (115200) ; // The Bluetooth Mate d e f au l t s to 115200 bps

b luetooth . p r in t (" $ " ) ; // Pr int three t imes i n d i v i d u a l l y

b luetooth . p r in t (" $ " ) ;

b luetooth . p r in t (" $ " ) ; // Enter command mode

delay ( 1 00 ) ; // Short delay , wait f o r the Mate to send back CMD

bluetooth . p r i n t l n ("U,9600 ,N" ) ; // Temporari ly Change the baudrate to 9600 , no par i ty

// 115200 can be too f a s t at t imes f o r NewSoftSer ia l to r e l ay the data r e l i a b l y

// j o i n I2C bus ( I2Cdev l i b r a r y doesn ’ t do t h i s automat i ca l ly )

Wire . begin ( ) ;

// b luetooth . begin (38400 ) ; // Star t s e r i a l at 38400 bps

// i n i t i a l i z e MPU6050 dev i ce

b luetooth . p r i n t l n (F(" I n i t i a l i z i n g I2C dev i c e s . . . " ) ) ;

mpu. i n i t i a l i z e ( ) ;

// v e r i f y connect ion

b luetooth . p r i n t l n (F(" Test ing dev i ce connect ions . . . " ) ) ;

b luetooth . p r i n t l n (mpu. testConnect ion ( ) ? F("MPU9150 connect ion s u c c e s s f u l ") : F("MPU9150 connect ion f a i l e d " ) ) ;

b luetooth . begin ( 9600 ) ; // doesn ’ t seem to a f f e c t baud ra t e f o r bt , only 38400 works

// Set up the acce le rometer , gyro , and magnetometer f o r data output

mpu. setRate ( 7 ) ; // s e t gyro ra t e to 8 kHz/(1 ∗ ra t e ) shows 1 kHz , acce l e romete r ODR i s f i x ed at 1 KHz

MagRate = 10 ; // s e t magnetometer read ra t e in Hz ; 10 to 100 (max) Hz are reasonab l e va lues

// D i g i t a l low pass f i l t e r c on f i gu r a t i on .

// I t a l s o determines the i n t e r n a l sampling ra t e used by the dev i ce as shown in the tab l e below .

// The acce l e romete r output ra t e i s f i x ed at 1kHz . This means that f o r a Sample

// Rate g r ea t e r than 1kHz , the same acce l e romete r sample may be output to the

// FIFO , DMP, and sensor r e g i s t e r s more than once .
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/∗

∗ | ACCELEROMETER | GYROSCOPE

∗ DLPF_CFG | Bandwidth | Delay | Bandwidth | Delay | Sample Rate

∗ −−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−+−−−−−−−−+−−−−−−−−−−−−−

∗ 0 | 260Hz | 0ms | 256Hz | 0 .98ms | 8kHz

∗ 1 | 184Hz | 2 .0ms | 188Hz | 1 .9ms | 1kHz

∗ 2 | 94Hz | 3 .0ms | 98Hz | 2 .8ms | 1kHz

∗ 3 | 44Hz | 4 .9ms | 42Hz | 4 .8ms | 1kHz

∗ 4 | 21Hz | 8 .5ms | 20Hz | 8 .3ms | 1kHz

∗ 5 | 10Hz | 13 .8ms | 10Hz | 13 .4ms | 1kHz

∗ 6 | 5Hz | 19 .0ms | 5Hz | 18 .6ms | 1kHz

∗/

mpu. setDLPFMode ( 4 ) ; // s e t bandwidth o f both gyro and acce l e romete r to ~20 Hz

// Full−s c a l e range o f the gyro s en so r s :

// 0 = +/− 250 degree s / sec , 1 = +/− 500 degree s / sec , 2 = +/− 1000 degree s / sec , 3 = +/− 2000 degree s / sec

mpu. setFul lScaleGyroRange ( 0 ) ; // s e t gyro range to 250 degree s / sec

// Full−s c a l e acce l e romete r range .

// The f u l l −s c a l e range o f the acce l e romete r : 0 = +/− 2g , 1 = +/− 4g , 2 = +/− 8g , 3 = +/− 16g

mpu. se tFu l lSca l eAcce lRange ( 0 ) ; // s e t acce l e romete r to 2 g range

mpu. setIntDataReadyEnabled ( t rue ) ; // enable data ready in t e r rup t

}

void loop ( )

{

i n t t imerBegin ;

i n t timerEnd ;

i n t f l exSensorReading0 = analogRead ( f l exSenso rP in0 ) ;

i n t f l exSensorReading1 = analogRead ( f l exSenso rP in1 ) ;

i n t f l exSensorReading2 = analogRead ( f l exSenso rP in2 ) ;

i n t f l exSensorReading3 = analogRead ( f l exSenso rP in3 ) ;

i n t f l exSensorReading4 = analogRead ( f l exSenso rP in4 ) ;

i f (mpu. getIntDataReadyStatus ( ) == 1) { // wait f o r data ready s ta tu s r e g i s t e r to

// update a l l data r e g i s t e r s

mcount++;

// read the raw sensor data

mpu. g e tAcc e l e r a t i on ( &a1 , &a2 , &a3 ) ;

ax = a1 ∗2.0 f /32768.0 f ; // 2 g f u l l range f o r acce l e romete r

ay = a2 ∗2.0 f /32768.0 f ;

az = a3 ∗2.0 f /32768.0 f ;

mpu. getRotat ion ( &g1 , &g2 , &g3 ) ;

gx = g1 ∗250.0 f /32768.0 f ; // 250 deg/ s f u l l range f o r gyroscope

gy = g2 ∗250.0 f /32768.0 f ;

gz = g3 ∗250.0 f /32768.0 f ;

// The gyros and acce l e romete r s can in p r i n c i p l e be c a l i b r a t e d in add i t i on to any

// f a c t o ry c a l i b r a t i o n but they are g en e r a l l y

// pre t ty accurate . You can check the acce l e romete r by making sure the read ing

// i s +1 g in the p o s i t i v e d i r e c t i o n f o r each ax i s .

// The gyro should read zero f o r each ax i s when the sensor i s at r e s t . Small or

// zero adjustment should be needed f o r these s en so r s .

// The magnetometer i s a d i f f e r e n t th ing . Most magnetometers w i l l be s e n s i t i v e to c i r c u i t currents , computers , and

// other both man−made and natura l source s o f magnetic f i e l d . The rough way to
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// c a l i b r a t e the magnetometer i s to record

// the maximum and minimum read ings ( g en e r a l l y achieved at the North magnetic d i r e c t i o n ) .

// The average o f the sum div ided by two

// should provide a pre t ty good c a l i b r a t i o n o f f s e t . Don ’ t f o r g e t that f o r the MPU9150 ,

// the magnetometer x− and y−axes are switched

// compared to the gyro and acce l e romete r !

i f (mcount > 1000/MagRate ) \{ // t h i s i s a poor man ’ s way o f s e t t i n g the magnetometer read ra t e ( see below )

mpu. getMag ( &m1, &m2, &m3 ) ;

mx = m1∗10.0 f ∗1229.0 f /4096.0 f + 18 .0 f ;

// mi l l iGauss (1229 microTesla per 2^12 b i t s , 10 mG per microTesla )

my = m2∗10.0 f ∗1229.0 f /4096.0 f + 70 .0 f ;

// apply c a l i b r a t i o n o f f s e t s in mG that correspond to your environment and magnetometer

mz = m3∗10.0 f ∗1229.0 f /4096.0 f + 270.0 f ;

mcount = 0 ;

}

}

now = micros ( ) ;

d e l t a t = ( (now − lastUpdate )/1000000 .0 f ) ; // s e t i n t e g r a t i o n time by time e lapsed s i n c e l a s t f i l t e r update

lastUpdate = now ;

// Sensors x (y)−ax i s o f the acce l e romete r i s a l i gned with the y (x)−ax i s o f the magnetometer ;

// the magnetometer z−ax i s (+ down) i s oppos i t e to z−ax i s (+ up) o f acce l e romete r and gyro !

// We have to make some al lowance f o r t h i s or ientat ionmismatch in f e ed ing the output to the quatern ion f i l t e r .

// For the MPU−9150 , we have chosen a magnetic r o t a t i on that keeps the sensor forward along the x−ax i s j u s t l i k e

// in the LSM9DS0 sensor . This r o t a t i on can be modi f ied to a l low any convenient o r i e n t a t i o n convent ion .

// This i s ok by a i r c r a f t o r i e n t a t i o n standards !

// Pass gyro ra t e as rad/ s

MadgwickQuaternionUpdate ( ax , ay , az , gx∗PI /180.0 f , gy∗PI /180.0 f , gz∗PI /180.0 f , my, mx, mz ) ;

// MahonyQuaternionUpdate ( ax , ay , az , gx∗PI /180.0 f , gy∗PI /180.0 f , gz∗PI /180.0 f , my, mx, mz ) ;

// S e r i a l p r i n t and/or d i sp l ay at 0 .5 s ra t e independent o f data r a t e s

delt_t = m i l l i s ( ) − count ;

i f ( delt_t > 500) { // update LCD once per ha l f−second independent o f read ra t e

// Def ine output v a r i a b l e s from updated quaternion−−−these are Tait−Bryan angles ,

// commonly used in a i r c r a f t o r i e n t a t i o n .

// In t h i s coord inate system , the p o s i t i v e z−ax i s i s down toward Earth .

// Yaw i s the angle between Sensor x−ax i s and Earth magnetic North

// ( or t rue North i f c o r r e c t ed f o r l o c a l d e c l i na t i on , l ook ing down on the sensor

// p o s i t i v e yaw i s counte r c l o ckwi s e .

// Pitch i s ang le between sensor x−ax i s and Earth ground plane , toward the Earth i s

// po s i t i v e , up toward the sky i s negat ive .

// Rol l i s ang le between sensor y−ax i s and Earth ground plane , y−ax i s up i s p o s i t i v e r o l l .

// These a r i s e from the d e f i n i t i o n o f the homogeneous r o t a t i on matrix const ructed from quatern ions .

// Tait−Bryan ang l e s as we l l as Euler ang l e s are non−commutative ;

// that i s , the get the c o r r e c t o r i e n t a t i o n the r o t a t i o n s must be

// app l i ed in the c o r r e c t order which f o r t h i s c on f i gu r a t i on i s yaw , pitch , and then r o l l .

// For more see http :// en . wik iped ia . org /wik i /Conversion_between_quaternions_and_Euler_angles

// which has add i t i ona l l i n k s .

yaw = atan2 ( 2 . 0 f ∗ ( q [ 1 ] ∗ q [ 2 ] + q [ 0 ] ∗ q [ 3 ] ) , q [ 0 ] ∗ q [ 0 ] + q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] − q [ 3 ] ∗ q [ 3 ] ) ;

p i t ch = −as in ( 2 . 0 f ∗ ( q [ 1 ] ∗ q [ 3 ] − q [ 0 ] ∗ q [ 2 ] ) ) ;

r o l l = atan2 ( 2 . 0 f ∗ ( q [ 0 ] ∗ q [ 1 ] + q [ 2 ] ∗ q [ 3 ] ) , q [ 0 ] ∗ q [ 0 ] − q [ 1 ] ∗ q [ 1 ] − q [ 2 ] ∗ q [ 2 ] + q [ 3 ] ∗ q [ 3 ] ) ;

p i t ch ∗= 180.0 f / PI ;

yaw ∗= 180.0 f / PI − 1 3 . 8 ; // Dec l ina t i on at Danvi l l e , Ca l i f o r n i a i s 13 degree s

52



// 48 minutes and 47 seconds on 2014−04−04

r o l l ∗= 180.0 f / PI ;

b luetooth . p r in t (" r o l l : " ) ; b luetooth . p r i n t l n ( r o l l , 2 ) ; // the 2 means two decimal p l a c e s

b luetooth . p r in t (" f i n g e r 0 " ) ;

b luetooth . p r i n t l n ( f l exSensorReading0 ) ;

b luetooth . p r in t (" f i n g e r 1 " ) ;

b luetooth . p r i n t l n ( f l exSensorReading1 ) ;

b luetooth . p r in t (" f i n g e r 2 " ) ;

b luetooth . p r i n t l n ( f l exSensorReading2 ) ;

b luetooth . p r in t (" f i n g e r 3 " ) ;

b luetooth . p r i n t l n ( f l exSensorReading3 ) ;

b luetooth . p r in t (" f i n g e r 4 " ) ;

b luetooth . p r i n t l n ( f l exSensorReading4 ) ;

// timerEnd = m i l l i s ( ) ;

// b luetooth . p r in t (" time : " ) ; b luetooth . p r i n t l n ( timerEnd − t imerBegin ) ;

// timerBegin = m i l l i s ( ) ;

// With these s e t t i n g s the f i l t e r i s updating at a ~145 Hz ra t e us ing the Madgwick scheme and

// >200 Hz us ing the Mahony scheme even though the d i sp l ay r e f r e s h e s at only 2 Hz .

// The f i l t e r update ra t e i s determined mostly by the mathematical s t ep s in the r e s p e c t i v e algor i thms ,

// the p roc e s so r speed (8 MHz f o r the 3 .3V Pro Mini ) , and the magnetometer ODR:

// an ODR of 10 Hz f o r the magnetometer produce the above rates , maximum magnetometer ODR of 100 Hz produces

// f i l t e r update r a t e s o f 36 − 145 and ~38 Hz f o r the Madgwick and Mahony schemes , r e s p e c t i v e l y .

// This i s presumably because the magnetometer read takes l onge r than the gyro or acce l e romete r reads .

// This f i l t e r update ra t e should be f a s t enough to maintain accurate plat form o r i e n t a t i o n f o r

// s t a b i l i z a t i o n con t r o l o f a f a s t−moving robot or quadcopter . Compare to the update ra t e o f 200 Hz

// produced by the on−board D i g i t a l Motion Proces sor o f Invensense ’ s MPU6050 6 DoF and MPU9150 9DoF sen so r s .

// The 3 .3 V 8 MHz Pro Mini i s doing pret ty we l l !

count = m i l l i s ( ) ;

}

}

// Implementation o f Sebast ian Madgwick ’ s " . . . e f f i c i e n t o r i e n t a t i o n f i l t e r f o r . . . i n e r t i a l /magnetic s ensor ar rays "

// ( see http ://www. x−i o . co . uk/ category /open−source / f o r examples and more d e t a i l s )

// which f u s e s a c c e l e r a t i on , r o t a t i on rate , and magnetic moments to produce a quaternion−based est imate o f abso lu te

// dev i ce o r i e n t a t i o n −− which can be converted to yaw , pitch , and r o l l . Use fu l f o r s t a b i l i z i n g quadcopters , e t c .

// The performance o f the o r i e n t a t i o n f i l t e r i s at l e a s t as good as convent iona l Kalman−based f i l t e r i n g a lgor i thms

// but i s much l e s s computat iona l ly in t en s i v e−−−i t can be performed on a 3 .3 V Pro Mini operat ing at 8 MHz!

void MadgwickQuaternionUpdate ( f l o a t ax , f l o a t ay , f l o a t az , f l o a t gx , f l o a t gy ,

f l o a t gz , f l o a t mx, f l o a t my, f l o a t mz)

{

f l o a t q1 = q [ 0 ] , q2 = q [ 1 ] , q3 = q [ 2 ] , q4 = q [ 3 ] ; // shor t name l o c a l v a r i ab l e f o r r e a d ab i l i t y

f l o a t norm ;

f l o a t hx , hy , _2bx , _2bz ;

f l o a t s1 , s2 , s3 , s4 ;

f l o a t qDot1 , qDot2 , qDot3 , qDot4 ;

// Aux i l i a ry v a r i a b l e s to avoid repeated a r i thmet i c

f l o a t _2q1mx ;

f l o a t _2q1my ;

f l o a t _2q1mz ;

f l o a t _2q2mx ;

f l o a t _4bx ;
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f l o a t _4bz ;

f l o a t _2q1 = 2.0 f ∗ q1 ;

f l o a t _2q2 = 2.0 f ∗ q2 ;

f l o a t _2q3 = 2.0 f ∗ q3 ;

f l o a t _2q4 = 2.0 f ∗ q4 ;

f l o a t _2q1q3 = 2.0 f ∗ q1 ∗ q3 ;

f l o a t _2q3q4 = 2.0 f ∗ q3 ∗ q4 ;

f l o a t q1q1 = q1 ∗ q1 ;

f l o a t q1q2 = q1 ∗ q2 ;

f l o a t q1q3 = q1 ∗ q3 ;

f l o a t q1q4 = q1 ∗ q4 ;

f l o a t q2q2 = q2 ∗ q2 ;

f l o a t q2q3 = q2 ∗ q3 ;

f l o a t q2q4 = q2 ∗ q4 ;

f l o a t q3q3 = q3 ∗ q3 ;

f l o a t q3q4 = q3 ∗ q4 ;

f l o a t q4q4 = q4 ∗ q4 ;

// Normalise acce l e romete r measurement

norm = sqr t ( ax ∗ ax + ay ∗ ay + az ∗ az ) ;

i f (norm == 0.0 f ) re turn ; // handle NaN

norm = 1.0 f /norm ;

ax ∗= norm ;

ay ∗= norm ;

az ∗= norm ;

// Normalise magnetometer measurement

norm = sqr t (mx ∗ mx + my ∗ my + mz ∗ mz) ;

i f (norm == 0.0 f ) re turn ; // handle NaN

norm = 1.0 f /norm ;

mx ∗= norm ;

my ∗= norm ;

mz ∗= norm ;

// Reference d i r e c t i o n o f Earth ’ s magnetic f i e l d

_2q1mx = 2.0 f ∗ q1 ∗ mx;

_2q1my = 2.0 f ∗ q1 ∗ my;

_2q1mz = 2.0 f ∗ q1 ∗ mz;

_2q2mx = 2.0 f ∗ q2 ∗ mx;

hx = mx ∗ q1q1 − _2q1my ∗ q4 + _2q1mz ∗ q3 + mx ∗ q2q2 + _2q2 ∗ my ∗

q3 + _2q2 ∗ mz ∗ q4 − mx ∗ q3q3 − mx ∗ q4q4 ;

hy = _2q1mx ∗ q4 + my ∗ q1q1 − _2q1mz ∗ q2 + _2q2mx ∗ q3 − my ∗ q2q2

+ my ∗ q3q3 + _2q3 ∗ mz ∗ q4 − my ∗ q4q4 ;

_2bx = sqr t (hx ∗ hx + hy ∗ hy ) ;

_2bz = −_2q1mx ∗ q3 + _2q1my ∗ q2 + mz ∗ q1q1 + _2q2mx ∗ q4 − mz ∗

q2q2 + _2q3 ∗ my ∗ q4 − mz ∗ q3q3 + mz ∗ q4q4 ;

_4bx = 2.0 f ∗ _2bx ;

_4bz = 2.0 f ∗ _2bz ;

// Gradient decent a lgor i thm co r r e c t i v e step

s1 = −_2q3 ∗ ( 2 . 0 f ∗ q2q4 − _2q1q3 − ax ) + _2q2 ∗ ( 2 . 0 f ∗ q1q2 + _2q3q4 − ay )

− _2bz ∗ q3 ∗ (_2bx ∗ ( 0 . 5 f − q3q3 − q4q4 ) + _2bz ∗ ( q2q4 − q1q3 ) − mx) +

(−_2bx ∗ q4 + _2bz ∗ q2 ) ∗ (_2bx ∗ ( q2q3 − q1q4 ) + _2bz ∗ ( q1q2 + q3q4 ) − my)

+ _2bx ∗ q3 ∗ (_2bx ∗ ( q1q3 + q2q4 ) + _2bz ∗ ( 0 . 5 f − q2q2 − q3q3 ) − mz) ;

s2 = _2q4 ∗ ( 2 . 0 f ∗ q2q4 − _2q1q3 − ax ) + _2q1 ∗ ( 2 . 0 f ∗ q1q2 + _2q3q4 − ay ) −
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4 .0 f ∗ q2 ∗ ( 1 . 0 f − 2 .0 f ∗ q2q2 − 2 .0 f ∗ q3q3 − az ) + _2bz ∗ q4 ∗ (_2bx ∗

( 0 . 5 f − q3q3 − q4q4 ) + _2bz ∗ ( q2q4 − q1q3 ) − mx) + (_2bx ∗ q3 + _2bz ∗ q1 )

∗ (_2bx ∗ ( q2q3 − q1q4 ) + _2bz ∗ ( q1q2 + q3q4 ) − my) + (_2bx ∗ q4 − _4bz ∗ q2 )

∗ (_2bx ∗ ( q1q3 + q2q4 ) + _2bz ∗ ( 0 . 5 f − q2q2 − q3q3 ) − mz) ;

s3 = −_2q1 ∗ ( 2 . 0 f ∗ q2q4 − _2q1q3 − ax ) + _2q4 ∗ ( 2 . 0 f ∗ q1q2 + _2q3q4 − ay ) −

4 .0 f ∗ q3 ∗ ( 1 . 0 f − 2 .0 f ∗ q2q2 − 2 .0 f ∗ q3q3 − az ) + (−_4bx ∗ q3 − _2bz ∗ q1 )

∗ (_2bx ∗ ( 0 . 5 f − q3q3 − q4q4 ) + _2bz ∗ ( q2q4 − q1q3 ) − mx) + (_2bx ∗ q2 +

_2bz ∗ q4 ) ∗ (_2bx ∗ ( q2q3 − q1q4 ) + _2bz ∗ ( q1q2 + q3q4 ) − my) + (_2bx ∗ q1

− _4bz ∗ q3 ) ∗ (_2bx ∗ ( q1q3 + q2q4 ) + _2bz ∗ ( 0 . 5 f − q2q2 − q3q3 ) − mz) ;

s4 = _2q2 ∗ ( 2 . 0 f ∗ q2q4 − _2q1q3 − ax ) + _2q3 ∗ ( 2 . 0 f ∗ q1q2 + _2q3q4 − ay )

+ (−_4bx ∗ q4 + _2bz ∗ q2 ) ∗ (_2bx ∗ ( 0 . 5 f − q3q3 − q4q4 ) + _2bz ∗ ( q2q4

− q1q3 ) − mx) + (−_2bx ∗ q1 + _2bz ∗ q3 ) ∗ (_2bx ∗ ( q2q3 − q1q4 ) + _2bz ∗

( q1q2 + q3q4 ) − my) + _2bx ∗ q2 ∗ (_2bx ∗ ( q1q3 + q2q4 ) + _2bz ∗

( 0 . 5 f − q2q2 − q3q3 ) − mz) ;

norm = sqr t ( s1 ∗ s1 + s2 ∗ s2 + s3 ∗ s3 + s4 ∗ s4 ) ; // normal i se s tep magnitude

norm = 1.0 f /norm ;

s1 ∗= norm ;

s2 ∗= norm ;

s3 ∗= norm ;

s4 ∗= norm ;

// Compute ra t e o f change o f quatern ion

qDot1 = 0 .5 f ∗ (−q2 ∗ gx − q3 ∗ gy − q4 ∗ gz ) − beta ∗ s1 ;

qDot2 = 0 .5 f ∗ ( q1 ∗ gx + q3 ∗ gz − q4 ∗ gy ) − beta ∗ s2 ;

qDot3 = 0 .5 f ∗ ( q1 ∗ gy − q2 ∗ gz + q4 ∗ gx ) − beta ∗ s3 ;

qDot4 = 0 .5 f ∗ ( q1 ∗ gz + q2 ∗ gy − q3 ∗ gx ) − beta ∗ s4 ;

// In t eg r a t e to y i e l d quatern ion

q1 += qDot1 ∗ de l t a t ;

q2 += qDot2 ∗ de l t a t ;

q3 += qDot3 ∗ de l t a t ;

q4 += qDot4 ∗ de l t a t ;

norm = sqr t ( q1 ∗ q1 + q2 ∗ q2 + q3 ∗ q3 + q4 ∗ q4 ) ; // normal i se quatern ion

norm = 1.0 f /norm ;

q [ 0 ] = q1 ∗ norm ;

q [ 1 ] = q2 ∗ norm ;

q [ 2 ] = q3 ∗ norm ;

q [ 3 ] = q4 ∗ norm ;

}
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6.3 Max Code

Figure 6.2: Main Max Code Modules
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Figure 6.3: Datain Max Code Module
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Figure 6.4: Gesture Recognition Max Code Module

58



6.4 Survey Results

Figure 6.5: Survey Results, Glove Interest

Figure 6.6: Survey Results, Prior Use

Figure 6.7: Survey Results, Music Application
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Figure 6.8: Survey Response, Concert Application

Figure 6.9: Survey Response, Gathering Application

Figure 6.10: Survey Results, Feedback Device
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Figure 6.11: Survey Results, Cost
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