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Abstract

This work explores the relationship between prediction accuracy, the impact of

additional predictors, and sample size in the context of multiple linear regression

models. The objective is to facilitate sample size calculations for study designs that

directly target predictive power (i.e., prediction accuracy) in various applicational

studies. To achieve this goal, we analyze the functional relationship between pre-

diction mean square error (PMSE) and factors such as the number, effect sizes, and

correlations among predictors, as well as sample size.

Building on this analysis, we introduce a metric referred to as the percentage

of PMSE reduction (pPMSEr) to quantify the improvement in prediction accuracy

when sample size is increased and/or new important predictors are added to a model.

Given a set of predictors, we can compute an efficient sample size, defined as the

smallest sample size that achieves, for example, 90% of the prediction accuracy ever

achievable at an infinite sample size. Beyond this efficient sample size, increasing the

sample size does not significantly improve prediction accuracy unless more important

predictors are incorporated into the model.

We validate these calculations through computations and simulations based on a

pain study, demonstrating a practical application and interpretation of the proposed

measures in planning prediction-related studies.
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Chapter 1

Introduction

Predictive modeling is playing an increasingly important role in many fields, includ-

ing finance, healthcare, and marketing. However, achieving high predictive accuracy

is a complex task that depends on multiple factors, including the number of pre-

dictors and their effect size, as well as the sample size used to train and test the

model.

The focus of this thesis is to investigate the relationship between prediction

accuracy, the number of predictors, their effect sizes, and the sample size. Our goal

is to establish recommendations for designing studies that aim to enhance a model’s

predictive power by identifying new predictors. To accomplish this, we will measure

the impact of various factors that contribute to the PMSE.

The importance of sample size in predictive modeling has been recognized for

several decades. In 1974, Narula (1974)explored the relationship between predictive

mean square error and stochastic regressor variables. Since then, numerous studies

have been conducted to determine the optimal sample size for different types of

outcomes and model structures. For instance, Riley et al. (2019a), Riley et al.

(2019b)published the minimum sample size required for developing multivariable
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CHAPTER 1. INTRODUCTION

prediction models for continuous, binary, and time-to-event outcomes. van der Ploeg

et al. (2014) conducted a simulation study to determine the sample size requirements

for predicting dichotomous endpoints, and van Smeden et al. (2019) discussed the

limitations of the events per variable criteria for sample size determination in binary

logistic prediction models. These studies have contributed to our understanding of

the importance of sample size in predictive modeling and provided valuable insights

into determining the optimal sample size based on the outcome of interest and model

structure.

While a larger sample size can lead to more accurate predictions, there is a limit

to the effect of sample size on model performance. One reason for this limit is that

beyond a certain point, adding more samples may not provide much additional in-

formation. For example, if a dataset already contains representative samples of the

population, collecting more samples may not significantly improve the model’s pre-

dictive ability. Another reason is that the relationship between the input variables

and the target variable may not be linear or may have a limited range. In such cases,

adding more data may not improve model performance beyond a certain point. Ad-

ditionally, the complexity of the model and the quality of the features used in the

model can also impact its predictive ability. It is essential to acknowledge that the

true predictive model remains unknown and that achieving 100% prediction accu-

racy may not be possible, even with knowledge of the effect sizes of the predictors.

The uncertainty of the error term can still have an impact on the model’s accuracy,

which is why it’s essential to consider other factors in addition to sample size to

ensure high prediction accuracy.

Therefore, while the sample size is an important consideration in predictive mod-

eling, its effect on model performance is limited, and other factors such as model

complexity and feature quality also play a crucial role. On the other hand, new

2



CHAPTER 1. INTRODUCTION

predictors can provide additional information about the outcome variable, poten-

tially capturing previously unknown or unmeasured factors that are related to the

outcome. This can help to increase the model’s predictive power and provide a

more comprehensive understanding of the factors that contribute to the outcome.

In practical medical reports, the effect size of newly added predictors usually only

considers this new variable and controls the effect size of other existing variables.

This thesis aims to investigate the relationship between prediction accuracy and

newly developed predictors considering sample size. Through analyzing the impact

of various factors on PMSE, we will develop guidelines for study designs that can

improve the accuracy and reliability of research results. We will not only investigate

the relationship between sample size, number of predictors, and effect sizes on the

PMSE but also summarize the degree of influence of new predictors on the model’s

prediction accuracy. To quantify this influence, we will use the reduced prediction

mean square error percentage rPMSEp or Correlation between true value and pre-

diction, which corresponds to the efficient sample size required to achieve a certain

prediction accuracy. We will provide calculations based on the pain study to support

our findings.

3



Chapter 2

Literature Review

Multiple regression analysis is a commonly used method of predictive modeling,

which involves using several predictor variables to make predictions about a depen-

dent variable. However, when the predictor variables are stochastic or random, the

accuracy of the predictions can be compromised. This chapter reviews three seminal

studies that investigate the impact of stochastic predictor variables on the accuracy

of predictions made using multiple regression equations.

Kerridge (1967)focuses on examining the predictive errors of multiple regression

equations when the predictor variables are treated as random variables drawn from a

multivariate normal population. The conventional treatment of multiple regression

assumes independent variables as constants, but in many practical applications, it

is more reasonable to consider them as random variables. The paper suggests that

despite the limitations of using regression or stochastic predictor variables, it can

still be useful if the limitations are well-understood, particularly when dealing with

a large number of predictor variables. Kerridge investigates the prediction error

that can occur when using multiple regression with stochastic predictor variables.

Kerridge shows that the prediction error can be approximated distributionally by
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the product of a standard normal variable and the square root of an independent

Beta-variate. The mean square can be approximated by

PMSE = σ2

(
1 +

1

n

)(
n− 2

n− k − 2

)
, (2.1)

where σ2 is the variance of the error term in the regression, n is the sample size,

k is the number of predictors. The paper provided a widely used approximation of

PMSE.

Narula (1974) discusses the problem of variable selection in regression analysis.

Although this topic has been thoroughly researched in the literature, most previous

studies have focused on selecting subsets of predictor variables that are treated as

fixed. Narula proposes a decision rule for selecting a subset of predictor variables

that are stochastic, which leads to a smaller prediction mean squared error (PMSE)

compared to the conventional approach. Specifically, Narula shows that the PMSE

can be decomposed into the variance of the regression coefficients and the variance

of the random errors in the case of stochastic predictor variables. By quantifying

these two sources of variance, Narula provides a method for assessing the accuracy

of predictions made using stochastic predictor variables. The article presents a proof

for the derived subset PMSE formula:

PMSEsubset = σ2
p

(
1 +

1

n

)(
n− 2

n− k − 2

)
, (2.2)

where σ2
p represents the error term for the subset regression, p is the number of pre-

dictors in the subset. The proof is provided in the Appendix, as Narula (1974) only

presents the conclusion without the supporting details. Overall, Narula’s approach

is a valuable contribution to variable selection in regression analysis, especially when

working with stochastic predictor variables, as it leads to more accurate predictions.

5
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Sawyer (1982) focuses on cases where one is interested in specifying prediction

accuracy before collecting sample data, predictors are not subject to experimen-

tal control, and one is interested in specifying prediction accuracy averaged with

respect to the distribution of the predictors.Sawyer (1982) explores the accurate ap-

proximate distribution of mean absolute error (MAE) as a combination of normal

distribution and derivative of the normal distribution as

Prob(ŷ − y ≤ t) = Φ

(
t

σ′

)
+

p

4(n− 2)(n− p− 4)
Φ(4)

(
t

σ′

)
, (2.3)

where ŷ is the prediction of response, y is the corresponding true value of response,Φ

is the standard normal distribution function, Φ(4) is its fourth derivative, σ′ =
√
MSE, . The approximation has been significantly proven to be better than a

simple normal approximation. In the discussion section, Sawyer argues that as

the number of predictor variables increases, the sample size required to achieve

a given level of accuracy also increases. The approximate inflation in MAE due

to the regression coefficients is a simple function of the base sample size and the

number of predictors. The advantage of using MAE is that it has a simple definition,

making it easily understandable to people who use prediction equations but have

little statistical training.

The three seminal studies investigate the impact of stochastic predictor variables

on the accuracy of predictions made using multiple regression equations. These

studies propose different approaches for handling stochastic predictor variables in

regression analysis, including approximations for prediction, mean squared error,

and mean absolute error. These approaches are useful for improving the accuracy of

predictions in practical applications, particularly when dealing with a large number

of predictor variables. Additionally, the studies provide valuable insights into vari-
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able selection in regression analysis and predicting accuracy before collecting sample

data.
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Chapter 3

Analytical Result

3.1 Linear Model and Properties

We consider a sample size of n independent individuals for k predictors. For each

individual i = 1, ..., n, we have a vector of all predictors z′
i = (zi1, ..., zik). We define

the design matrix as Z = (z′
1, ...,z

′
n)

′.

Among the total k predictors, p of them are seen as basic predictors, corre-

sponding to z′
1i = (zi1, ..., zip). The remaining k − p predictors are called non-basic

predictors (i.e., factors to be discovered in a newly proposed study), corresponding

to z′
2i = (zi,(p+1), ..., zik). Therefore, the partition can be written as z′

i = (z′
1i, z

′
2i).

We assume that the response and predictor variables follow a multivariate normal

distribution, i.e.,

(yi, z
′
i)

′ ∼ MVN(µ∗,Σ∗),

where µ = (µ0,µ
′
)′ and Σ∗ is the covariance matrix is defined by

Σ∗ =

σ00 σ
′

σ Σ

 ,

8



CHAPTER 3. ANALYTICAL RESULT3.1. LINEAR MODEL AND PROPERTIES

where σ is the covariance vector, Σ is the covariance matrix among predictor vari-

ables, and σ00 is the variance of response variable y. We further partition the

covariance vector as σ = Cov(yi, zi) = (σ′
1,σ

′
2)

′, and the variance matrix as

Σ =

Σ11 Σ12

Σ21 Σ22

 .

Based on the distribution of the random variables (yi, z
′
i)

′, we introduce the full

regression model as follows:

yi = α + z′
iβ + ϵi.

The error term ϵi follows a normal distribution N(0, σ2
k),

σ2
k = σ00 − σ′Σ−1σ, (3.1)

which is independent of zi. Additionally, β denotes the full-model effects and is

given by:

β = Σ−1σ. (3.2)

where σ and Σ are the covariance vector and covariance matrix, respectively, of the

random variables (yi, z
′
i)

′. In particular, σ is the vector of covariances between yi

and each element of zi, while Σ contains the covariances between the elements of

zi.

Similarly, we can partition β as β = (β′
1,β

′
2)

′, where β1 and β2 denote the effects

of the predictors in the first and second subsets of zi, respectively. Using matrix

9



CHAPTER 3. ANALYTICAL RESULT3.1. LINEAR MODEL AND PROPERTIES

algebra, we obtain the following expressions for β1 and β2:

β1 = (Σ11 −Σ12Σ
−1
22Σ21)

−1[σ1 −Σ12Σ
−1
22σ2];

β2 = (Σ22 −Σ21Σ
−1
11Σ12)

−1[σ2 −Σ21Σ
−1
11σ1].

(3.3)

Furthermore, based on the distribution of the random variables (yi, z
′
1i)

′, we

consider the reduced regression model:

yi = α + z′
1iβ

♯
1 + ϵ♯i, (3.4)

where ϵ♯i follows a normal distribution N(0, σ2
p),

σ2
p = σ00 − σ′

1Σ
−1
11 σ1, (3.5)

which is independent of z1i. In this case, the effects of the predictors in the first

subset of zi are denoted by β♯
1, and are given by:

β♯
1 = Σ−1

11σ1, (3.6)

note that ϵ♯i is not independent of z2i and they are multivariate normal.

We can obtain the joint effects based on the marginal effects. Specifically, con-

sider the marginal model regarding the jth predictor, j = 1, ..., k,

yi = α + zijβ
∗
j + ϵ∗i . (3.7)

We have σj = Cov(yi, zij) = Σjjβ
∗
j . Denote the vector of the marginal coeffi-

10



CHAPTER 3. ANALYTICAL RESULT3.2. PERCENTAGE OF PMSE REDUCTION

cients/effects β∗ = (β∗
1 , ..., β

∗
k)

′. We have

σ = (Σ11β
∗
1 , ...,Σkkβ

∗
k)

′ = diag(Σ)β∗. (3.8)

Following Equation(3.8), the coefficients/effects in joint models Equation(3.2)

and Equation(3.6) can be obtained.

β = Σ−1diag(Σ)β∗; (3.9)

β♯
1 = Σ−1

11 diag(Σ11)β
∗
1. (3.10)

In practice, β∗
j and Σ may come from literature, prior studies or be estimated by

data.

3.2 Percentage of PMSE Reduction

The predictive mean squared error (PMSE) based on the least squares estimator

(LSE) of the full regression can be calculated using the formula presented by Ker-

ridge in Kerridge (1967). This formula is as follows:

PMSE = E(y0 − ŷ0)
2 = σ2

k

(n+ 1)(n− 2)

n(n− k − 2)
. (3.11)

Here, y0 is the true response value, ŷ0 is the estimated response value, σ2
k is the error

variance, and n and k are the sample size and the number of predictors, respectively.

Similarly, the PMSE based on the LSE of the reduced regression can be calculated

using the following formula:

PMSE1 = E(y0 − ỹ0)
2 = σ2

p

(n+ 1)(n− 2)

n(n− p− 2)
. (3.12)

11



CHAPTER 3. ANALYTICAL RESULT3.2. PERCENTAGE OF PMSE REDUCTION

Here, ỹ0 is the estimated response value based on the reduced regression, and σ2
k is

the error variance of the reduced regression. The present study includes an investi-

gation into the approximation distribution for PMSE, which, although not utilized

in the current analysis, is nevertheless explicated comprehensively with supporting

evidence, proof, and simulation results, all of which are provided in the Appendix.

To measure the improvement in the prediction that occurs by adding predictors,

we use the percentage of PMSE reduction measure, which is given by the following

equation:

pPMSEr =

(
PMSE1 − PMSE

PMSE1

)
× 100% =

(
1− σ2

k

σ2
p

· n− p− 2

n− k − 2

)
× 100%.

(3.13)

which calculates the percentage difference between the PMSE of the reduced regres-

sion and the PMSE of the full regression. The percentage of PMSE reduction can

also be expressed in terms of the error variance ratio (EVR), which is defined as the

ratio of the error variances of the full and reduced regressions:

EV R =
σ2
k

σ2
p

.

Additionally, an inflation factor called λ(n; p, p2) can be defined as follows:

λ(n; p, p2) =
n− p− 2

n− k − 2
=

1

1− k−p
n−p−2

=
1

1− p2
n−p−2

,

where p2 represents the number of non-basic predictors added to the reduced model

to form the full model. The inflation factor λ(n; p, p2) is related to estimation error

and uncertainty (analog to the inflation factor K = (n+1)(n−2)
n(n−k−2)

in Sawyer (1982)).

It should be noted that the percentage reduction measure can be negative, i.e.,

12



CHAPTER 3. ANALYTICAL RESULT 3.3. EFFICIENT SAMPLE SIZE

E(y0 − ŷ0)
2 > E(y0 − ỹ0)

2, in certain situations, such as when the new and basic

predictors are negatively correlated.

3.3 Efficient Sample Size

The reduction of prediction mean squared error (PMSE) in Equation(3.13) is de-

termined by several factors, including the sample size n, the number of known

predictors p, and the number of new predictors k − p. A larger sample size n tends

to make the inflation factor λ(n; p, p2) approach 1, particularly while k and p remain

fixed. This reflects the fact that the sample size has a limited impact on PMSE in

the absence of estimation error or uncertainty.

When considering the influence of the number of new predictors p2 on PMSE, it

is important to note that while increasing p2 tends to increase the inflation factor,

it may also decrease the full model variance σ2
k. It is therefore desirable to have the

reduction in variance outweigh the increase in inflation, assuming the effect sizes

of the new predictors are not too small. However, if the new predictors have no

effect (i.e., are false), the inflation increases while σ2
k remains constant, resulting

in an increase in PMSE. From a sample size perspective, a larger n is needed to

effectively control inflation when a small or moderate number of false predictors

are present. In other words, at any given p2, a sufficiently large sample size can

always ensure that the inflation factor is equal to 1. Assuming that the addition

of new predictors always results in a decrease in σ2
k relative to σ2

p, a large enough

sample size is needed to ensure that the addition of new predictors does not worsen

prediction accuracy.

In this study, we observe that the pPMSEr is increasing as the sample size

n increases. To define an efficient sample size, denoted as n∗, we seek the smallest

13
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sample size such that the ratio of pPMSEr at n∗ to pPMSEr at infinity is greater than

or equal to a specified efficiency level of 1−α, where α represents the complement of

the efficiency level (e.g., 90% of the largest pPMSEr at n = ∞). We can determine

the efficient sample size by using the equations:

pPMSEr(n∗)

pPMSEr(∞)
≥ 1− α,

By

1− EV R · λ∗

1− EV R
= 1− α and λ∗ =

1

1− p2
n∗−p−2

,

Solving for λ∗ and substituting into the first equation yields:

n∗ = p+ 2 + p2 ·
λ∗

λ∗ − 1
, where λ∗ = 1 + α(

1

EV R
− 1). (3.14)

Equation(3.14) gives us the efficient sample size n∗, which we can use to obtain

accurate predictions while minimizing sample size and associated costs.

3.4 Effect sizes

The reduction of PMSE in Equation(3.13) is determined by the variances σ2
k and

σ2
p, which are relavent to the effect sizes and covariances of the predictors. There

are various measures and interpretations regarding effect sizes. One representative

measure is Cohen’s f 2, which is based on the proportion of the variation explained

by the predictors. Let the proportion of the response’s variance accounted for by

all k predictors defined by

R2 =
σ00 − σ2

k

σ00

=
σ′Σ−1σ

σ00

,

14
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and the proportion of the response’s variance accounted for by p basic predictors

R2
1 =

σ00 − σ2
p

σ00

=
σ′

1Σ
−1
11 σ1

σ00
.

Cohen’s f 2 for the effects of all predictors is

f 2 =
R2

1−R2
,

while Cohen’s f 2 for the effects of new predictors conditional on the basic predictors

is given by

f 2
2 =

R2 −R2
1

1−R2
=

σ2
p − σ2

k

σ2
k

=
1− σ2

k/σ
2
p

σ2
k/σ

2
p

. (3.15)

which yields

σ2
k

σ2
p

=
1

f 2
2 + 1

. (3.16)

Another meaningful measure is regression coefficients, which provide a practical

interpretation based on the original data scale (unstandardized measures). Using

the joint or marginal regression coefficients, we can calculate f 2
2 from Equation(3.15)

and Equation(3.17) as follows:

σ2
k

σ2
p

=
σ00 − σ′Σ−1σ

σ00 − σ′
1Σ

−1
11 σ1

=
σ00 − β′Σβ

σ00 − β♯′
1Σ11β

♯
1

=
σ00 − β∗′diag(Σ)Σ−1diag(Σ)β∗

σ00 − β∗′
1 diag(Σ11)Σ

−1
11 diag(Σ11)β∗

1

.

(3.17)
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Chapter 4

Example

4.1 Data

The study utilizes the analytical result outlined in the previous section. The dataset

utilized in this study was based on the findings reported by pain study Baker TA

(2008). However, as the paper only provided a correlation matrix, a standard devi-

ation of SD = 1 was used to derive the covariance matrix.

In the calculation, the full regression model included k = 12 predictors, while

the reduced regression model included the first p = 3 predictors. The basic predic-

tors included in the full and reduced regression models were Age, Education, and

Income. The remaining p2 = k−p = 9 predictors were classified as non-basic and in-

cluded Comorbidities, Pain locations, Medications, Physical functioning, Depressive

symptoms, Life satisfaction, LOC-chance, LOC-powerful, and LOC-internal.

Given the correlation matrix provided by Baker TA (2008), and assuming the

covariates were standardized, the covariance matrix can be obtained using the for-

mula: Σ∗ = diag(SD)×Cor×diag(SD), whereCor is the correlation matrix given

and SD is standard deviation vector. The response variable, Pain intensity, and the

16



CHAPTER 4. EXAMPLE 4.2. CALCULATION

k = 12 predictors were assumed to follow a multivariate normal distribution with

mean µ∗ = 0 and covariance matrix Σ∗, which is presented below in Equation(4.1).

Σ∗ =



1 −0.24 0.00 −0.03 0.45 0.33 0.26 0.39 −0.21 −0.05 0.10 0.16 0.34

1 −0.21 −0.05 −0.27 −0.21 −0.09 0.00 0.27 0.09 0.34 0.00 −0.05

1 0.46 −0.19 0.00 −0.19 −0.14 0.12 −0.24 −0.29 −0.02 −0.13

1 −0.30 −0.04 −0.18 −0.16 0.16 −0.05 −0.02 0.07 −0.10

1 0.20 0.64 0.34 −0.14 0.20 0.00 0.03 0.14

1 0.33 0.34 −0.07 0.02 −0.1 −0.07 0.11

1 0.46 −0.25 0.15 −0.05 −0.07 0.18

1 −0.17 0.13 0.13 −0.03 0.26

1 −0.03 0.08 0.03 −0.57

1 0.68 0.19 0.10

1 0.20 0.09

1 0.05

1



.

(4.1)

4.2 Calculation

The relationship between pPMSEr, sample size, and Cohen’s f 2 was examined.

According to Baker TA (2008), the predictors were categorized into demographic,

health, and psychological factors. The reduced regression model only included de-

mographic factors, while the full regression model considered both health and psy-

chological factors while controlling for the reduced predictors.

The variances of the error terms in the full and reduced regression models were

calculated as follows:

σ2
k = σ00 − σ′Σ−1σ = 0.4687399, σ2

p = σ00 − σ′
1Σ

−1
11σ1 = 0.9393167.

Here, σ00 represents the variance of the response, which was standardized to 1.

17



CHAPTER 4. EXAMPLE 4.2. CALCULATION

4.2.1 Predictor Effects

The full model effects were obtained using Equation(3.2), and the calculated result

is as shown in Equation(4.2).

β = Σ−1σ

= (−0.13, 0.07, 0.10, 0.50, 0.23,−0.15, 0.18,−0.05,−0.47, 0.43, 0.14, 0.21).

(4.2)

Notably, the coefficients calculated in this study differ from Equation(4.3) pre-

sented in Table 2 of Baker TA (2008) as Equation(4.3),

β∗ = (−0.20,−0.03,−0.02,−0.04, 0.12, 0.18, 0.26, 0.25,−0.01, 0.08,−0.26, 0.21),

(4.3)

as the Equation(4.2) considers all predictors in the full model, whereas Equation(4.3)

was computed with added-up predictors controlling for prior sets of predictors.

On the other hand, the reduced-model effects, given in Equation(4.4), were calcu-

lated using only the three demographic basic predictors. The effects for demographic

factors in the reduced-model β♯
1 were found to be closer to Equation(4.3) in the co-

efficients presented in Baker TA (2008) than the calculated effects Equation(4.2) in

the full model effects, as adding all predictors in the model would change the effect

of previous predictors, especially when the predictors are not significant.

β♯
1 = Σ−1

11 σ1

= (−0.25,−0.04,−0.02).

(4.4)

4.2.2 pPMSEr

The prediction mean square error is used to measure the prediction accuracy and

the calculated PMSE is as shown in Table 4.1. The table provides the calculated
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PMSE by Equation(3.11) and Equation(3.12) by adding predictors sequentially for

each sample size from 30 to 600.

Sample
Size

Basic
Model

Comorbidities
Pain

Locations
Medications

Physical
Functioning

Depressive
Symptoms

Life
Satisfaction

LOC
chance

LOC
powerful

LOC
internal

30 1.0871 0.9322 0.9073 0.9366 0.8996 0.9121 0.9280 0.8318 0.8427 0.8476
60 1.0071 0.8444 0.8025 0.8075 0.7549 0.7436 0.7333 0.6357 0.6212 0.6009
90 0.9833 0.8191 0.7732 0.7727 0.7172 0.7013 0.6863 0.5903 0.5721 0.5488
120 0.9719 0.8071 0.7595 0.7565 0.6999 0.6820 0.6652 0.5701 0.5506 0.5262
150 0.9651 0.8001 0.7515 0.7472 0.6899 0.6710 0.6531 0.5587 0.5384 0.5135
180 0.9607 0.7954 0.7462 0.7411 0.6834 0.6638 0.6454 0.5514 0.5307 0.5054
210 0.9576 0.7922 0.7425 0.7368 0.6789 0.6588 0.6400 0.5462 0.5252 0.4998
240 0.9553 0.7898 0.7398 0.7336 0.6755 0.6552 0.6360 0.5425 0.5213 0.4957
270 0.9535 0.7879 0.7377 0.7311 0.6729 0.6523 0.6329 0.5396 0.5182 0.4925
300 0.9520 0.7864 0.7360 0.7292 0.6709 0.6501 0.6304 0.5373 0.5158 0.4900
330 0.9509 0.7852 0.7346 0.7276 0.6692 0.6482 0.6285 0.5354 0.5138 0.4880
360 0.9499 0.7842 0.7335 0.7263 0.6678 0.6467 0.6268 0.5339 0.5122 0.4863
390 0.9491 0.7833 0.7326 0.7252 0.6666 0.6454 0.6254 0.5326 0.5109 0.4849
420 0.9484 0.7826 0.7317 0.7242 0.6656 0.6443 0.6243 0.5315 0.5097 0.4837
450 0.9478 0.7820 0.7310 0.7234 0.6648 0.6434 0.6232 0.5305 0.5087 0.4827
480 0.9472 0.7814 0.7304 0.7227 0.6640 0.6426 0.6224 0.5297 0.5078 0.4818
510 0.9467 0.7809 0.7299 0.7221 0.6633 0.6419 0.6216 0.5289 0.5071 0.4810
540 0.9463 0.7805 0.7294 0.7215 0.6628 0.6412 0.6209 0.5283 0.5064 0.4803
570 0.9460 0.7801 0.7289 0.7210 0.6622 0.6406 0.6203 0.5277 0.5058 0.4797
600 0.9456 0.7798 0.7286 0.7205 0.6618 0.6401 0.6197 0.5272 0.5052 0.4791

Table 4.1: Prediction Mean Square Error from the calculation by sequentially added
predictors over the basic 3 predictors

The “improvement” of prediction by adding the new k − p = 9 health and

psychological predictors with sample size n = 181, as Baker TA (2008), can be

measured by the “percentage of PMSE reduction”:

ˆpPMSEr =

(
PMSE1 − PMSE

PMSE1

)
× 100%

=

(
1− σ2

k

σ2
p

· n− p− 2

n− k − 2

)
× 100% = 47.40%.

The prediction mean square error measures the expected squared distance between

the prediction for a specific value and what the true value is whereas pPMSEr is

used to demonstrate how much accuracy the added k−p = 9 predictors bring to the

model. In this example, the introduction of psychological predictors into the model

increased the model’s prediction accuracy by 47.40%.
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4.2.3 Efficient Sample Size

Generally speaking, PMSE will decrease as the sample size increases, so pPMSEr

will increase as the sample size increases, that is, the larger the sample size, the

better the prediction effect. However, the positive impact of sample size increase on

prediction accuracy is limited. It shows that the prediction accuracy is stable when

the sample size equals or exceeds a threshold. After the threshold, the increase in

sample size is not cost-efficient to increase prediction accuracy.

The threshold as efficient sample size with specific efficiency 1 − α = 0.9(e.g.,

90% of the largest pPMSEr at n = ∞).

n∗ = p+ 2 + (k − p)

(
EV R

α(1− EV R)
+ 1

)
= 103.6 ≈ 104,

where EV R =
σ2
k

σ2
p
= 0.499. The actual used sample size in the paper is 181, which

means the rPMSEp should be greater than 0.1. On the flip side, with 181 sample

size, the efficiency 1−α = 0.953. The pPMSEr we obtained with sample size of 181

could reach 95.3% of the largest pPMSEr at n = ∞.

4.2.4 Cohen’s f 2

The R2 for full and reduced regression models are

R2 =
σ00 − σ2

k

σ00

=
σ′Σ−1σ

σ00

= 0.53126, R2
1 =

σ00 − σ2
p

σ00

=
σ′

1Σ
−1
11 σ1

σ00

= 0.0606,

corresponding to R2 given in Baker TA (2008) written below:

R2 = 0.44, R2
1 = 0.06.
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It is noteworthy that the calculated R2 deviates from the R2 reported in the paper.

This inconsistency can be attributed to the fact that the paper’s full model was

obtained by controlling for previous predictors, which may have amplified the effects

of insignificant predictors. By the definition of the squared multiple correlations R2

and Equation(3.16), Cohen’s f 2 can be calculated f 2
2 = 0.3328571, that is, the

new k − p = 9 predictors have large effect size since f 2
2 ≥ 0.15 for Cohen’s f 2

2

interpretation.

4.3 Simulation

The simulation aims to investigate the impact of sample size and the inclusion of non-

basic predictors on prediction accuracy. Our hypothesis is that as more variables

are added, the efficient sample size will decrease, resulting in a stable prediction

accuracy that does not significantly improve with the addition of a larger sample

size. To generate our data, we used the covariate matrix Σ from Equation(4.1).

The simulation result using covariance generated response is also consistent with

the result using the linear model with generated predictors data and error term

with variance σ2
k. The comparison between the two ways to generate the response

variable is provided in the Appendix.

The basic model contained three demographic predictors, while the non-basic

predictors were sequentially added to the model. For each iteration, a new response

is generated to be considered as future value. We simulated the prediction mean

square error (PMSE) and the correlation between the future value and prediction

by taking the mean of 5000 iterations. The resulting PMSE and correlation values

are presented in Table 4.2 and Table 4.3, respectively.

Table 4.2 presents the PMSE values for each sample size by adding non-basic
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Sample
Size

Basic
Model

Comorbidities
Pain

Locations
Medications

Physical
Functioning

Depressive
Symptoms

Life
Satisfaction

LOC
chance

LOC
powerful

LOC
internal

30 1.0947 0.9452 0.9356 0.9639 0.9406 0.9549 0.9846 0.8684 0.8744 0.8674
60 1.0487 0.8859 0.8599 0.8771 0.8370 0.8407 0.8531 0.7485 0.7460 0.7313
90 1.0319 0.8712 0.8343 0.8469 0.8017 0.7988 0.8000 0.6956 0.6879 0.6700
120 1.0115 0.8483 0.8102 0.8193 0.7716 0.7662 0.7625 0.6604 0.6504 0.6323
150 1.0016 0.8376 0.7978 0.8036 0.7544 0.7478 0.7410 0.6415 0.6301 0.6099
180 0.9947 0.8291 0.7867 0.7907 0.7402 0.7322 0.7237 0.6252 0.6135 0.5926
210 0.9894 0.8265 0.7828 0.7854 0.7337 0.7238 0.7137 0.6160 0.6024 0.5805
240 0.9840 0.8228 0.7782 0.7792 0.7272 0.7157 0.7044 0.6071 0.5919 0.5701
270 0.9840 0.8206 0.7753 0.7757 0.7236 0.7105 0.6988 0.6007 0.5844 0.5617
300 0.9807 0.8162 0.7694 0.7690 0.7164 0.7025 0.6904 0.5945 0.5776 0.5544
330 0.9762 0.8119 0.7644 0.7634 0.7099 0.6951 0.6830 0.5877 0.5707 0.5475
360 0.9731 0.8087 0.7606 0.7592 0.7057 0.6905 0.6777 0.5835 0.5659 0.5423
390 0.9695 0.8061 0.7576 0.7553 0.7021 0.6867 0.6737 0.5792 0.5618 0.5380
420 0.9673 0.8045 0.7558 0.7532 0.7002 0.6842 0.6702 0.5756 0.5583 0.5346
450 0.9657 0.8027 0.7533 0.7504 0.6971 0.6810 0.6667 0.5720 0.5541 0.5302
480 0.9649 0.8019 0.7522 0.7492 0.6959 0.6797 0.6650 0.5694 0.5514 0.5276
510 0.9659 0.8019 0.7522 0.7490 0.6954 0.6787 0.6633 0.5670 0.5486 0.5245
540 0.9648 0.8003 0.7510 0.7476 0.6935 0.6766 0.6611 0.5657 0.5473 0.5229
570 0.9640 0.7997 0.7503 0.7469 0.6920 0.6749 0.6589 0.5635 0.5449 0.5204
600 0.9619 0.7968 0.7469 0.7433 0.6886 0.6713 0.6550 0.5602 0.5417 0.5171

Table 4.2: Prediction Mean Square Error from simulation by sequentially added
predictors over the basic 3 predictors

predictors sequentially. As the sample size increased, the PMSE decreased for all

regression models. However, as some of the non-basic predictors were added, such

as Medications, Depressive Symptoms, the PMSE increased, indicating that these

predictors may not be improving the prediction accuracy. We also observed that

adding more non-basic predictors led to a decreasing marginal gain in prediction

accuracy with an increasing sample size.

The results presented in Table 4.2 provide empirical validation for the theoret-

ical findings reported in Table 4.1. The simulation results demonstrate consistent

patterns across each added predictor. The absolute value of difference for each

parameter setting is observed to be less than 0.05, confirming that the estimation

formulas for PMSE for full and reduced models are adequate. Specifically, the cal-

culated pPMSEr for a sample size of n = 181 is 47.40%. However, the simulated

result yields an empirical ˆpPMSEr of 40.42% for the same sample size, indicating
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notably lower prediction accuracy than the calculation expected.

pPMSEr =

(
PMSE1 − PMSE

PMSE1

)
× 100%

=
0.9947− 0.5926

0.9947
= 40.42%,

This discrepancy may be attributed to the potential introduction of random error

due to the inclusion of insignificant predictors, which can diminish the amount

of variance explained and increase the effective sample size n∗ needed. Since we

considered the correlation in the definition of the error term in Equation(3.1), the

phenomenon may potentially trace back to a low correlation between response and

predictors. Thus, it may be necessary to increase the sample size to offset the

negative impact of adding insignificant predictors on prediction accuracy. Since 7

out of the 12 predictors we are using are insignificant, only an efficiently large sample

size, such as n = 600, can offset the impact with simulated pPMSEr = 46.24%,

which is closer to the theoretical result for n = 600, pPMSEr = 49.33%.

Sample
Size

Basic
Model

Comorbidities
Pain

Locations
Medications

Physical
Functioning

Depressive
Symptoms

Life
Satisfaction

LOC
chance

LOC
powerful

LOC
internal

30 0.1210 0.3252 0.3684 0.3584 0.4012 0.4009 0.4074 0.4729 0.4753 0.4752
60 0.1464 0.3657 0.4115 0.4052 0.4516 0.4561 0.4659 0.5370 0.5436 0.5498
90 0.1594 0.3868 0.4328 0.4288 0.4762 0.4841 0.4957 0.5673 0.5763 0.5858
120 0.1701 0.4007 0.4472 0.4450 0.4933 0.5026 0.5149 0.5876 0.5978 0.6096
150 0.1789 0.4108 0.4573 0.4563 0.5054 0.5161 0.5286 0.6019 0.6129 0.6257
180 0.1850 0.4180 0.4648 0.4646 0.5143 0.5259 0.5388 0.6124 0.6239 0.6377
210 0.1900 0.4233 0.4705 0.4712 0.5214 0.5337 0.5469 0.6204 0.6326 0.6469
240 0.1943 0.4279 0.4756 0.4769 0.5272 0.5400 0.5535 0.6268 0.6394 0.6542
270 0.1977 0.4316 0.4795 0.4814 0.5319 0.5452 0.5589 0.6322 0.6450 0.6600
300 0.2010 0.4348 0.4829 0.4853 0.5361 0.5497 0.5637 0.6368 0.6498 0.6652
330 0.2037 0.4376 0.4860 0.4887 0.5396 0.5536 0.5678 0.6406 0.6538 0.6695
360 0.2058 0.4398 0.4884 0.4915 0.5426 0.5568 0.5712 0.6438 0.6573 0.6731
390 0.2079 0.4418 0.4906 0.4940 0.5451 0.5597 0.5741 0.6467 0.6603 0.6763
420 0.2096 0.4436 0.4926 0.4961 0.5474 0.5622 0.5768 0.6492 0.6630 0.6791
450 0.2115 0.4452 0.4943 0.4981 0.5494 0.5644 0.5791 0.6515 0.6654 0.6817
480 0.2131 0.4468 0.4959 0.4999 0.5513 0.5665 0.5813 0.6536 0.6677 0.6840
510 0.2144 0.4481 0.4973 0.5015 0.5529 0.5683 0.5832 0.6554 0.6695 0.6860
540 0.2157 0.4491 0.4985 0.5029 0.5544 0.5698 0.5849 0.6570 0.6712 0.6878
570 0.2168 0.4502 0.4996 0.5042 0.5557 0.5713 0.5865 0.6585 0.6728 0.6895
600 0.2178 0.4511 0.5007 0.5054 0.5570 0.5727 0.5879 0.6599 0.6742 0.6910

Table 4.3: Correlation between the true value and prediction changes by sequentially
added predictors over the basic 3 predictors
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Basic
Predictors

Comorbidities
Pain

Locations
Medications

Physical
Functioning

Depressive
Symptoms

Life
Satisfaction

LOC
-Chance

LOC
-Powerful

103.6487 137.1353 143.9351 129.5519 141.2487 129.9053 113.9951 206.2313 191.7463

Table 4.4: Efficient sample size n∗ by sequentially added predictors over the basic 3
predictors

Table 4.3 presents the correlation values for each sample size by adding predic-

tors sequentially. The result is simulated using 5000 iterations using 5-fold cross-

validation. We observed a similar pattern as with PMSE: the correlation increased

with increasing sample size but decreased as some insignificant non-basic predic-

tors were added. Additionally, we observed a similar diminishing marginal gain in

prediction accuracy with the inclusion of more non-basic predictors.

The calculation of the efficient sample size for each model with a significance

level of α = 0.1 (i.e., the sample size that attains 90% of the largest pPMSEr as n

approaches infinity) is provided as a reference in Tables 4.2 and 4.3, as demonstrated

in Table 4.4.

Upon attaining the efficient sample size n∗, for each model, it is anticipated

that the rPMSEp, PMSE, and correlations will remain stable, as the sample size

continues to increase. This discovery lends support to the definition used to deter-

mine efficient sample size n∗. The low correlation between variables and response

variables may result in a reduced possibility of obtaining statistically significant re-

sults. Furthermore, the presence of non-significant predictors can have an impact on

the estimation of the efficient sample size n∗, leading to an underestimation of the

efficient sample size necessary to achieve a prediction accuracy level. The incorpo-

ration of insignificant predictors, such as Medications, Depressive Symptoms, Life

Satisfaction, and LOC-internal, into the model, is expected to result in an increase

in the efficient sample size n∗, as opposed to a decrease for significant predictors.

The inclusion of such predictors is unlikely to enhance the predictive performance,
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it is probable to weaken it instead. Moreover, it is unlikely to provide additional

information but rather introduce random errors. Consequently, a larger sample size

would be required to achieve the same level of prediction accuracy. Conversely,

the significant predictors can be readily identified by an increase in pPMSEr, a

decrease in PMSE, or a less efficient sample size n∗.

To summarize, our simulation study demonstrates that adding significant non-

basic predictors can decrease the effective sample size and improve prediction ac-

curacy when the sample size is enough. However, including additional insignificant

predictors may lead to extra randomness and reduced prediction accuracy instead of

contributing to variance explanation. Therefore, careful consideration of the choice

of predictors to include in the model is necessary, taking into account both the sam-

ple size and the objectives of the analysis. The calculated formulas are proven to

be adequate to provide estimations for PMSE when introducing predictors in the

linear model.
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Discussion

The present study utilized the analytical result to examine the relationship between

pPMSEr, sample size n, and Cohen′sf 2. Our findings indicate that there is a

significant relationship between these variables, with pPMSEr decreasing as sample

size and effect size increase. These results are consistent with previous research on

statistical power and highlight the importance of adequate sample sizes in hypothesis

testing. The analysis also revealed that the non-basic predictors have the ability to

significantly contribute to explaining the variability in response. The variance of

the response variable, pain intensity, was assumed to be 1 in the simulation as the

error variance for the full model is 0.9393, which implies that the model was able to

capture a substantial amount of the variance in pain intensity. The effects of each

predictor were also examined using the calculated coefficients. The results indicated

that Physical functioning, Depressive symptoms, and LOC-internal were the most

significant predictors of pain intensity. These findings are consistent with previous

research, which has also identified these factors as important contributors to pain

intensity.

It is worth noting that our results of predictor effects differ from those reported
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by Baker TA (2008), who utilized the same correlation matrix but different coeffi-

cients. While this discrepancy may be due to methodological differences or varia-

tions in sample characteristics, it underscores the importance of replication studies

in scientific research.

One limitation of our study is that it only considered a single quantitative out-

come variable (pain intensity) and a limited set of predictors, without considering

the interactions or random effects. Future research could extend our approach to

other kinds of models such as general linear models, additional outcome measures,

and a more comprehensive set of predictors, potentially utilizing machine learning

or other statistical techniques to identify complex relationships among predictors.

Other possible limitation includes the use of a correlation matrix rather than real-

world data and the assumption of normality in the distribution of the response

variable and covariates. These limitations may affect the accuracy of the results

and should be taken into consideration when interpreting the findings.

Future research may benefit from using individual-level data and exploring the

relationship between response and other factors obtained in newly published studies.

Moreover, additional studies may also investigate the effectiveness of interventions

aimed at reducing pain intensity by addressing the significant predictors identified

in this study.

27



Bibliography

Baker TA, C. N., Buchanan NT (2008). Factors influencing chronic pain inten-

sity in older black women: examining depression, locus of control, and physical

health. Womens Health (Larchmt).

Kerridge, D. (1967). Errors of prediction in multiple regression with stochastic

regressor variables. Technometrics, 9 309–311.

Narula, S. C. (1974). Predictive mean square error and stochastic regressor

variables. Journal of the Royal Statistical Society: Series C (Applied Statistics),

23 11–17.

Riley, R. D., Snell, K. I., Ensor, J., Burke, D. L., Harrell Jr, F. E.,

Moons, K. G. and Collins, G. S. (2019a). Minimum sample size for develop-

ing a multivariable prediction model: Part i–continuous outcomes. Statistics in

medicine, 38 1262–1275.

Riley, R. D., Snell, K. I., Ensor, J., Burke, D. L., Harrell Jr, F. E.,

Moons, K. G. and Collins, G. S. (2019b). Minimum sample size for develop-

ing a multivariable prediction model: Part ii-binary and time-to-event outcomes.

Statistics in medicine, 38 1276–1296.

Sawyer, R. (1982). Sample size and the accuracy of predictions made from multiple

regression equations. Journal of Educational Statistics, 7 91–104.

28



BIBLIOGRAPHY BIBLIOGRAPHY

van der Ploeg, T., Austin, P. C. and Steyerberg, E. W. (2014). Modern

modelling techniques are data hungry: a simulation study for predicting dichoto-

mous endpoints. BMC medical research methodology, 14 1–13.

van Smeden, M., Moons, K. G., de Groot, J. A., Collins, G. S., Altman,

D. G., Eijkemans, M. J. and Reitsma, J. B. (2019). Sample size for binary

logistic prediction models: beyond events per variable criteria. Statistical methods

in medical research, 28 2455–2474.

29



Chapter 6

Appendix

6.1 Proof for Subset PMSE

The purpose of section 6.1 is to provide comprehensive proof of the work of Narula

(1974). While Narula (1974) provides a valuable theoretical framework for PMSE,

the derivation of the formula is not fully elucidated. As such, this appendix aims

to fill in the gaps and provide a clear and rigorous proof of the PMSE formula

for stochastic regressor variables. Through this analysis, we hope to deepen our

understanding of the PMSE and its relevance in statistical modeling.

The response variable and the predictor variables follow a joint (k + 1)-variate

normal distribution with unknown mean vector µ∗ = [µ0,µ
′
]
′
, and covariance matrix

Σ∗ =

σ00 σ
′

σ Σ

 .

Let z1, z2, ..., zn be n independent (k-component vector) observations on the

predictor variables, xi = zi − z̄. Let S∗ =

s00 s
′

s S

 be sample covariance matrix,
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where

s00 =
∑ (yi − ȳ)2

n− 1
, s =

∑ (yi − ȳ)xi

n− 1
,S =

∑ xix
′

i

n− 1
.

We assume the correct model as follows,

y = α+ β1z1 + β2z2 + ...+ βkzk + ϵ,

Meanwhile, the LSE prediction equation

ŷ = ȳ + β̂1(z1 − z̄1) + β̂2(z2 − z̄2) + ...+ β̂k(zk − z̄k) = ȳ +X ′β̂,

ŷi = ȳ + x′
iβ̂.

For any given zi,

E(yi|zi) = α + βzi

= µ0 − σ
′
Σ−1µ+ σ′Σ−1zi

= µ0 + σ
′
Σ−1(zi − µ),

where α = µ0 − σ
′
Σ−1µ,β = σ

′
Σ−1. Thus α̂ = ȳ − s′S−1x̄, β̂ = S−1s.
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The conditional predictive mean square error by

E[(y0 − ŷ0)
2|z0] = E[(α + (z0 − µ)′β + ϵ0 − ȳ − x′

0β̂|z0)
2]

= E[(α + (z0 − µ)′β + ϵ0 − α− (z̄ − µ)′β − ϵ̄− x′
0β|z0)

2]

= E[(x′
0β − x̄′β + ϵ0 − ϵ̄− x′

0β̂|z0)
2]

= E[(x′
0β + (ϵ0 − ϵ̄)− x′

0β̂|z0)
2]

= E[(x′
0β + (ϵ0 − ϵ̄))2 + (x′

0β̂)
2 − 2(x′

0β + (ϵ0 − ϵ̄))x′
0β̂|z0]

= E[(x′
0β)

2 + (ϵ0 − ϵ̄)2 + (x′
0β̂)

2 − 2x′
0βx

′
0β̂|z0]

= β′E(x0x
′
0|z0)β + E[(ϵ0 − ϵ̄)2|z0] + E[(x′

0β̂)
2|z0]− 2β′E[x0x

′
0β̂|z0].

By following equations, corresponding Lemma A1, Lemma A3, Lemma A3.1,

Lemma A7, Lemma A9 proven by Narula (1974),

E(β̃1|X1) = β1 +Σ−1
11 Σ12β2 = Φ1, (6.1)

E(x01x
′
01|z0) = (z01 − µ1)(z01 − µ1)

′ +
Σ11

n
, (6.2)

E(x0x
′
0|z0) = (z0 − µ)(z0 − µ)′ +

Σ

n
, (6.3)

E[(x′
01β̃1)

2|z0] =σ2
p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)+

p

n

]
1

n− p− 2

+Φ′
1Σ11Φ1

1

n
+Φ′

1(z01 − µ1)(z01 − µ1)
′Φ1,

(6.4)

σ′Σ−1

Σ11

Σ21

 = σ′
1, (6.5)
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The conditional PMSE can be written as

E[(y0 − ŷ0)
2|z0] = β′E(x0x

′
0|z0)β + E[(ϵ0 − ϵ̄)2|z0] + E[(x′

0β̂)
2|z0]− 2β′E[x0x

′
0β̂|z0]

=β′
[
(z0 − µ)(z0 − µ)′ +

Σ

n

]
β + σ2

k

(
1 +

1

n

)
+ σ2

k

[
(z0 − µ)′Σ−1(z0 − µ)+

k

n

]
1

n− k − 2

+
1

n
Φ′ΣΦ+Φ′(z0 − µ)(z0 − µ)′Φ− 2β′

[
(z0 − µ)(z0 − µ)′ +

Σ

n

]
β

= σ2
k

(
1 +

1

n

)
+ σ2

k

[
(z0 − µ)′Σ−1(z0 − µ)+

k

n

]
1

n− k − 2
.

Since Φ is the notation of expectation of β̃1, when we are using all predictors, the

LSE is unbiased, which means Φ = β.

The unconditional PMSE

E[(y0 − ŷ0)
2] = E{E[(y0 − ŷ0)

2|z0]}

= E

[
σ2
k

(
1 +

1

n

)
+ σ2

k

[
(z0 − µ)′Σ−1(z0 − µ)+

k

n

]
1

n− k − 2

]

= σ2
k

(
1 +

1

n

)
+ σ2

kE

[
(z0 − µ)′Σ−1(z0 − µ)+

k

n

]
1

n− k − 2

= σ2
k

(
1 +

1

n

)
+ σ2

k

(
k +

k

n

)
1

n− k − 2

= σ2
k

(
1 +

1

n

)(
1 +

1

n− k − 2

)
= σ2

k

(
1 +

1

n

)(
n− 2

n− k − 2

)
.

For subset, we partition the k-component vector of predictor variables into two parts,

Z = [Z1, Z2],X = [X1,X2], x
′
1 = [x′

i1, x
′
i2], µ

′ = [µ′
1, µ

′
2], σ

′ = [σ′
1, σ

′
2], s

′ =

[s′1, s
′
2], Σ =

Σ11 Σ12

Σ21 Σ22

 ,S =

S11 S12

S21 S22

 ,
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so the subset prediction equation is given by

ỹi = ȳ + x′
i1β̃1,

where β̃1 = S−1
11 s1. By LemmaA1, LemmaA3, LemmaA7, Φ1 = β1 +Σ−1

11 Σ12β2,

the conditional PMSE at z0 is given by

E[(y0 − ỹ0)
2|z0] = E[(x′

0β + ϵ0 − ϵ̄− x′
01β̃1|z0)

2]

= E[(x′
0β)

2 + (x′
01β̃1)

2 − 2x′
0βx

′
01β̃1 + (ϵ0 − ϵ̄)2 + 2(x′

0β − x′
01β̃1)(ϵ0 − ϵ̄)|z0]

= E[(x′
0β)

2|z0] + E[x′
01β̃1)

2|z0]− 2E[x′
0βx

′
01β̃1|z0] + E[(ϵ0 − ϵ̄)2|z0]

+ 2E[(x′
0β − x′

01β̃1)(ϵ0 − ϵ̄)|z0],

where

E[(x′
0β)

2|z0] = β

[
(z0 − µ)(z0 − µ)′ +

Σ

n

]
β,

E[(x′
01β̃1)

2|z0] =σ2
p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)+

p

n

]
1

n− p− 2

+Φ′
1Σ11Φ1

1

n
+Φ′

1(z01 − µ1)(z01 − µ1)
′Φ1,

E[(ϵ0 − ϵ̄)2|z0] = σ2
k +

1

n
σ2
k,

E[(x′
0β − x′

01β̃1)(ϵ0 − ϵ̄)|z0] = E[(x′
0β − x′

01β̃1)ϵ0|z0]− E[(x′
0β − x′

01β̃1)ϵ̄|z0] = 0.

(but ϵ̄ = 0 is not necessary)
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Therefore, the conditional PMSE could be written as

= σ2
p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)+

p

n

]
1

n− p− 2
+Φ′

1Σ11Φ1
1

n
+Φ′

1(z01 − µ1)(z01 − µ1)
′Φ1

+ β(z0 − µ)(z0 − µ)′β + β′Σβ
1

n
− 2β′E(x0x

′
01|z0)Φ1 + σ2

k +
1

n
σ2
k

= σ2
k +

1

n
(σ2

p + σ′
1Σ

−1
11 σ1 − σ′Σ−1σ) + [(z0 − µ)′β]2 + [(z01 − µ1)

′Φ1]
2

+ σ2
p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)+

p

n

]
1

n− p− 2

+ β′Σβ
1

n
+Φ′

1Σ11Φ1
1

n
− 2β′E(x0x

′
01|z0)Φ1

= σ2
k +

1

n
σ2
p + σ2

p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)+

p

n

]
1

n− p− 2
+ [(z0 − µ)′β]2 + [(z01 − µ1)

′Φ1]
2

+
1

n
β′Σβ +

1

n
Φ′

1Σ11Φ1 +
1

n
σ′

1Σ
−1
11 σ1 −

1

n
σ′Σ−1σ − 2β′E(x0x

′
01|z0)Φ1,

where

E(x0x
′
01|z0) = E


x01x

′
01

x02x
′
01

 |z0

 =

(z01 − µ1)(z01 − µ1)
′ +Σ11/n

(z02 − µ2)(z01 − µ1)
′ +Σ21/n

 ,

σ′Σ−1σ = β′Σβ,σ′
1Σ

−1
11 σ1 = β′

1Σ11β1,

so that

β′E(x0x
′
01|z0)Φ1 =[β′

1(z01 − µ1)(z01 − µ1)
′ + β′

1Σ11/n

+ β′
2(z02 − µ2)(z01 − µ1)

′ + β′
2Σ21/n]Φ1

=β′
1(z01 − µ1)(z01 − µ1)

′Φ1 + β′
2(z02 − µ2)(z01 − µ1)

′Φ1 + σ′
1Φ1/n.
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The other terms in condition PMSE would be equal to

1

n
β′Σβ +

1

n
Φ′

1Σ11Φ1 +
1

n
σ′

1Σ
−1
11 σ1 −

1

n
σ′Σ−1σ − 2

n
σ′

1Φ1

=
1

n
Φ′

1Σ11Φ1 +
1

n
σ′

1Σ
−1
11 σ1 −

2

n
σ′

1Φ1

=
1

n
σ′

1Σ
−1
11 σ1 +

1

n
σ′

1Σ
−1
11 σ1 −

2

n
σ′

1Σ
−1
11 σ1 = 0,

in which Φ1 = Σ−1
11 σ1.

The conditional PMSE is equal to

E[(y0 − ỹ0)
2|z0] = σ2

k +
σ2
p

n
+ σ2

p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)

′ +
p

n

]
1

n− p− 2

+ [(z0 − µ)′β − (z01 − µ1)
′Φ1]

2

= σ2
k +

σ2
p

n
+ σ2

p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)

′ +
p

n

]
1

n− p− 2

+ [(z01 − µ1)
′β1 + (z02 − µ2)

′ − (z01 − µ1)
′(β1 +Σ−1

11 Σ12β2)]
2

= σ2
k +

σ2
p

n
+ σ2

p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)

′ +
p

n

]
1

n− p− 2

+ [(z02 − µ2)
′ − (z01 − µ1)

′Σ−1
11 Σ12β2]

2,

take expectation

E[(y0 − ỹ0)
2] = E[E(y0 − ỹ0)

2|z0]

= E{σ2
k +

σ2
p

n
+ σ2

p

[
(z01 − µ1)

′Σ−1
11 (z01 − µ1)

′ +
p

n

]
1

n− p− 2

+ [(z0 − µ)′β − (z01 − µ1)
′Φ1]

2}

= σ2
p +

σ2
p

n
+ σ′

1Σ
−1
11 σ1 − σ′Σ−1σ + σ2

p

(
p+

p

n

)
1

n− p− 2

+ E[β′(z0 − µ)(z0 − µ)′β +Φ′
1(z01 − µ1)(z01 − µ1)

′Φ1

− 2β′(z0 − µ)(z01 − µ1)
′Φ1]

.
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The expectation term E[β′(z0 − µ)(z0 − µ)′β is equal to

β′Σβ +Φ′
1Σ11Φ1 − 2β′

Σ11

Σ21

Φ1.

The unconditional PMSE

E[(y0 − ỹ0)
2] = σ2

p(1 +
1

n
)(n− 2)/(n− p− 2)

+ σ′
1Σ

−1
11 σ1 − σ′Σ−1σ + β′Σβ +Φ′

1Σ11Φ1 − 2β′

Σ11

Σ21

Φ1

= σ2
p(1 +

1

n
)(n− 2)/(n− p− 2)

+Φ′
1Σ11Φ1 − β′Σβ + β′Σβ +Φ′

1Σ11Φ1 − 2β′

Σ11

Σ21

Φ1

= σ2
p(1 +

1

n
)(n− 2)/(n− p− 2).

Thus, the unconditional PMSE = σ2
p(1 +

1
n
)(n− 2)/(n− p− 2)

6.2 Distribution Approximation of PMSE

6.2.1 Analytical Result

To investigate the unconditional prediction square error distribution of (ŷ − y∗)2,

we start with moments of (ŷ − y∗), proven by Sawyer (1982): Let M be a positive

integer. Then

E
[
(ŷ − y∗)2M

]
=

σ2M (2M)!
M !

(
n+1
2n

)M∏M
j=1(n− 2j)∏M

j=1(n− p− 2j)
,

when 2M ≤ n− p− 1.
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If we consider the distribution ŷ − y∗ follows an asymptotically normal distri-

bution, then (ŷ − y∗)2 is likely to be approximate Gamma distribution, by the

proposition above,

E
[
(ŷ − y∗)2

]
= σ2 (n+ 1)(n− 2)

n(n− p− 2)
, (6.6)

E
[
(ŷ − y∗)4

]
= 3σ4 (n+ 1)2(n− 2)(n− 4)

n2(n− p− 2)(n− p− 4)
, (6.7)

Var
[
(ŷ − y∗)2

]
= σ4 (n+ 1)2(n− 2)

n2(n− p− 2)

(
3n− 12

n− p− 4
− n− 2

n− p− 2

)
. (6.8)

Applying method of moments, for Gamma(α, β) with shape-scale parameters

E(Xn) =
βn(n+ α− 1)!

(α− 1)!
,

EX = αβ,EX2 = α(α + 1)β2,

let 
E
[
(ŷ − y∗)2

]
= αβ

E
[
(ŷ − y∗)2

]
= α(α + 1)β2

⇒


α = (n−2)(n−p−4)

3(n−4)(n−p−2)−(n−2)(n−p−4)

β = σ2 n+1
n

(
3(n−4)
n−p−4

− n−2
n−p−2

)
Based on the normal assumption, we approximate the prediction square error as

Gamma

(
(n− 2)(n− p− 4)

3(n− 4)(n− p− 2)− (n− 2)(n− p− 4)
, σ2n+ 1

n

(
3(n− 4)

n− p− 4
− n− 2

n− p− 2

))
(6.9)

For n− p ≥ 5, the approximation using Gram-Charlier is

P (ŷ − y∗ ≤ t)
.
= Φ

(
t

σ′

)
+

p

4(n− 2)(n− p− 4)
Φ(4)

(
t

σ′

)
, (6.10)
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where Φ is the standard normal distribution function, Φ(4) is its fourth derivative,

σ′ =
√
MSE = σ

√
(n+ 1)(n− 2)

n(n− p− 2)
.

Though adding the second term may not even improve the approximation by

Sawyer (1982) Appendix, we examine the approximation for P ((ŷ − y∗)2 ≤ t) dis-

tribution.

Denote X = ŷ − y∗, Y = X2 = (ŷ − y∗)2,

FY (t) = P (Y ≤ t) = P (|ŷ − y∗| ≤
√
t)

= P (ŷ − y∗ ≤
√
t)− P (ŷ − y∗ ≤ −

√
t)

= Φ(

√
t

σ′ )− Φ(−
√
t

σ′ ) = 2Φ(

√
t

σ′ )− 1 (first term),

or

= Φ(

√
t

σ′ ) +
p

4(n− 2)(n− p− 4)
Φ(4)(

√
t

σ′ )

− Φ(−
√
t

σ′ )−
p

4(n− 2)(n− p− 4)
Φ(4)(−

√
t

σ′ ) (first&second term),

where Φ(4)(t) = 1
σ4 (t

4 − 6t2 + 3)Φ(t) for standard normal distribution by Gram-

Charlier definition. Thus, the approximation using first two terms can be written

as

2Φ(

√
t

σ′ )− 1 +
p

4(n− 2)(n− p− 4)

 1

σ4

[
(

√
t

σ′ )
4 − 6(

√
t

σ′ )
2 + 3

](
2Φ(

√
t

σ′ )− 1

)
=

(
2Φ(

√
t

σ′ )− 1

)1 +
p

4σ4(n− 2)(n− p− 4)

[
t2

MSE2
− 6

t

MSE
+ 3

] .

(6.11)

Plug in that MSE = σ2 (n+1)(n−2)
n(n−p−2)
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The results of the MAE approximation suggest that the normal distribution is a

satisfactory approximation for the MSE distribution and that including the second

term of the Gram-Charlier series is not necessary. Therefore, it may be reasonable

to consider the use of the product of a constant and a Chi-square distribution with

one degree of freedom, represented as

σ2χ2
1, (6.12)

as a viable option for approximating the MSE distribution.

6.2.2 Approximation Simulation

In order to maintain consistency with the parameter settings employed in the MAE

approximation, we retained the same values of p (1, 2, 3, 5, 8, and 10) and sample

sizes n (25, 50, 75, and 100) for our simulation study. To satisfy the condition

n− p ≥ 5, we excluded the sample size of 10 for cases where p was equal to 8 or 10,

while also including a sample size of 100. For each parameter setting, we assumed

a constant value for the mean of the predictors, denoted as µ, as well as a constant

covariance between every pair of predictors, and also set the intercept of the linear

model, α, and the error variance, σ2, as constant.

To simulate the unconditional mean square error (ŷ− y∗)2, we generated 10,000

random samples for each combination of n and p. In each simulation, the response

variable was generated using a linear relationship with the predictors, and the new

data was drawn from a normal distribution with the same mean and variance as the

predictors. We then calculated the empirical cumulative distribution function and

compared it with the predicted values obtained from the Gram-Charlier approxima-
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tions, gamma approximation, and chi-square approximation.

The results of the simulation study are presented in Table 6.1. In this table, F̂

represents the empirical distribution function of (ŷ− y∗)2, which corresponds to the

true distribution F of the MSE. F̂ is calculated from the 10,000 random samples

in each category defined by the values of n and p. F1 and F2 denote the computed

approximations to F based on the first and second Gram-Charlier approximations,

as Equation(6.10) and Equation(6.11) respectively. F3 and F4 correspond to the

gamma distribution as equation Equation(6.9) and chi-square distribution as Equa-

tion(6.12), respectively, as discussed previously. MSEest and V ar(SE)est represent

the estimated mean and variance, respectively, for the square error using equations

Equation(6.6) and Equation(6.8). To account for randomness in the simulation,

several random seeds were employed.

Number of Predictors
p

Sample Size
n

max
∣∣∣F̂t − F1

∣∣∣ max
∣∣∣F̂t − F2

∣∣∣ max
∣∣∣F̂t − F3

∣∣∣ max
∣∣∣F̂t − F4

∣∣∣ ∣∣MSEtrue −MSEep

∣∣ ∣∣V arSEtrue − V arSEep

∣∣
1

10 0.0132 0.0078 0.0140 0.0123 0.0225 0.2350
25 0.0062 0.0059 0.0062 0.0069 0.0052 0.0163
50 0.0062 0.0063 0.0065 0.0062 0.0170 0.1008
75 0.0061 0.0061 0.0060 0.0063 0.0175 0.1722

2

10 0.0063 0.0206 0.0497 0.0057 0.0097 0.0204
25 0.0107 0.0115 0.0142 0.0102 0.0086 0.0739
50 0.0075 0.0078 0.0082 0.0064 0.0079 0.0200
75 0.0107 0.0106 0.0104 0.0084 0.0031 0.1118

3

10 0.0281 0.0132 0.0763 0.0284 0.0229 0.9169
25 0.0121 0.0101 0.0085 0.0104 0.0268 0.1493
50 0.0081 0.0085 0.0087 0.0074 0.0300 0.1267
75 0.0071 0.0070 0.0067 0.0100 0.0037 0.0419

5

10 0.0509 0.1252 0.2775 0.0507 0.0354 7.6245
25 0.0094 0.0063 0.0095 0.0094 0.0055 0.0873
50 0.0097 0.0094 0.0097 0.0126 0.0258 0.0533
75 0.0065 0.0067 0.0073 0.0092 0.0088 0.0014

8

25 0.0060 0.0076 0.0215 0.0069 0.0009 0.0075
50 0.0047 0.0056 0.0079 0.0058 0.0038 0.0537
75 0.0076 0.0078 0.0075 0.0076 0.0239 0.1107
100 0.0111 0.0114 0.0114 0.0105 0.0002 0.0385

10

25 0.0070 0.0120 0.0317 0.0067 0.0358 0.2587
50 0.0114 0.0129 0.0152 0.0093 0.0188 0.0632
75 0.0078 0.0084 0.0083 0.0083 0.0066 0.0119
100 0.0077 0.0078 0.0083 0.0074 0.0166 0.0365

Table 6.1: Absolute Value of Difference Between the Empirical Distribution Function
and Approximation Distribution Function

To evaluate the performance of each approximation, we calculated the absolute

value of the maximum difference between the estimated distribution function and the
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empirical distribution function for different random seeds. Although we identified

the best-performing approximation for each category, the differences between the

four estimates were not statistically significant and were generally below 0.015, with

the exception of the case where (p, n) = (5, 10). In this case, the variance of the

square error estimation deviated from the empirical square error variance, indicating

that a larger inflation factor K may lead to poor accuracy of the approximation.

Taking this into account, we determined that the chi-square approximation was the

best-performing approximation for the case where (p, n) = (5, 10).
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