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Abstract

Over the past decade of accounting and finance research, the Ohlson (1995) model has

been widely adopted as a framework for stock price prediction.  While using the

accounting data of 391 companies from SP500 in this paper, Bayesian statistical

techniques are adopted to enhance both the estimative and predictive qualities of the

Ohlson model comparing to the classical approaches.  Specifically, the classical methods

are used for the exploratory data analysis and then the Bayesian strategies are applied

using Markov chain Monte Carlo method in three stages: individual analysis for each

company, grouping analysis for each group and adaptive analysis by pooling information

across companies.  The base data, which consist of 20 quarters’ observations starting

from the first quarter of 1998, are used to make inferences for the regression coefficients

(or parameters), evaluate the model adequacy and predict the stock price for the first

quarter of 2004, when the real observations are set as the test data to evaluate the

predictive ability of the Ohlson model.  The results are averaged within each specified

group categorized via the general industrial classification (GIC).  The empirical results

show that classical models result in larger stock price prediction errors, more positively-

biased predictions and have much smaller explanatory powers than Bayesian models.  A

few transformations of both classical and Bayesian models are also performed in this

paper, however, transformations of the classical models do not outweigh the usefulness of

applying Bayesian statistics.
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Chapter 1

The Ohlson (1995) Model and Data of S&P 500

1.1 The Ohlson (1995) Model

Over the past two decades in finance and accounting area, considerable attention has been

paid to the relationship between accounting numbers (book values, earnings, etc.) and the

firm value.  The Ohlson (1995) approach to the problem of stock valuation relates

securities prices to accounting data, and provides a structure for applicable modeling.

The Ohlson (1995) Valuation Model has been widely adopted by researchers and

practitioners on profitability analysis as a framework for the fundamental valuation of

equities.  It also has been developed into several versions, e.g., Feltham-Ohlson (1995)

Valuation Model, Bernard’s (1995) Ohlson Approximation Model, Liu-Ohlson (2000)

Valuation Model and Callen’s (2001) Ohlson AR(2) Valuation Model.  For a historical

development process of the Ohlson model, see Appendix A.  

This paper evaluates the Ohlson (1995) Forecasting Model (OFM), or briefly the Ohlson

(1995) model, and uses it to forecast stock prices.  OFM is a practicable case of Bernard’s

(1995) Ohlson Approximation Model (see Appendix C).  For a single firm, OFM states:

the stock price per share is a linear function of the company’s book value per share and

abnormal earnings per share for the following four periods with normally distributed

innovation terms, which represents “other information” whose source is uncorrelated with

abnormal earnings.  In mathematical form, it can be expressed as
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where ty  denotes the stock price per share at time t, tbv  is the book value per share at

time t, a
tx  represents the abnormal earning at time t, )',( 61
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intercept and slope coefficients of the predictors, )',,,,,1( 4321
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vector of intercept and predictors, and tv  is the innovation (error or residual) term.

To understand the “abnormal earning” term, we can view it as a contraction of “above

normal earning”.  Ohlson (1995) proposes the abnormal earning as

                                                   ,1−−= ttt
a
t bvrxx                                                        (1.1.2)

where tx  is the earning per share at time t for a company, tr  is the discount rate at time t.  

Since the values of the following four periods ( ),,, 4321
a
t

a
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a
t

a
t xxxx ++++  are used to forecast the

stock price, this paper uses the expected earnings to replace tx  in (1.1.2).  That is,

                                                   1][ −−= ttt
a
t bvrxEx   .                                                (1.1.3)

For the innovation term, Ohlson (1995) assumes it has a first order autoregressive

structure (AR(1)).   This assumption can be described as
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where ρ  is the correlation coefficient of time series tv , tε  is the white noise, 2σ  is the

variance of the white noise.  Note that if 1<ρ , the AR(1) process is stationary. 
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But when 1=t , 1
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where µ , ρ  and 2σ are three unknown parameters besides the intercept and regression

coefficients in 
~
β .

Expression (1.1.5) is the complete form of the Ohlson (1995) Forecasting Model,

hereinafter the Ohlson model, that is used in this paper. 

1.2 Retrieving Data of S&P 500 from Thomson ONE Analytics

Yearly or quarterly data from various sources have been applied to test the Ohlson model.

For instances, besides many tests that use US data, Bao & Chow (1999) test the

usefulness of the Ohlson model using data from listed companies in the People’s

Republic of China; McCrave & Nilsson (2001) compare the difference between Swedish

and US firms by using data from a Swedish business magazine, Bonnier-Findata database

and I/B/E/S database; Ota (2002) uses empirical evidence from Japan, etc.  This paper

applies quarterly data of S&P 500 from Thosmon ONE Analytics to the Ohlson model.  

S&P 500 is one of the most widely used measures of U.S. stock market performance and

is considered to be a bellwether for the U.S. economy.  S&P refers to Standard & Poor’s,

which is a division of the McGraw-Hill Companies, Inc.  500 companies are selected

among the leaders in the major industries driving U.S. economy by the S&P Index
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Committee for market size, liquidity and sector representation.  A small number of

international companies that are widely traded in the U.S are included.  

The needed data of S&P 500 can be retrieved from Thomson ONE Analytics by its Excel

Add-in software, provided by the Thomson Corporation, which is a global leader in

providing value-added information, software applications and tools in the fields of law,

tax, accounting, financial services and corporate training and assessment etc.  Thomson

ONE Analytics is a web based application that allows users to research information about

different companies and markets, including current stock prices, volume traded, EPS

(expected earning per share) and so on.  The “Thomson ONE Analytics Excel Add-in” is

one of the most valuable features that Thomson ONE Analytics offers its users.  Using

the Add-in, financial analysts can pull data directly into Excel from a wealth of financial

databases such as “Worldscope”, “Compustat”,  “U.S. Pricing”, “I/B/E/S and I/B/E/S

History” and “Extel” by using the powerful PFDL (Premier Financial Database

Language).  

Items in the retrieved data are: Total Assets, Total Liabilities, Preferred Stock, Common

Shares Outstanding from database “Worldscope”; “EPSmeanQTR1-4” and

“EPSConsensusForecastPeriodQTR1-4” from database “I/B/E/S History” (note that these

are monthly data); Dow Jones Industry Group (DJIC), General Industry Classification

(GIC), Dow Jones Market Sector (DJMS) and GICSSECTOR from “Thomson

Financial”; PriceClose and 3-month T-bill (treasury bill) rate from “Datastream”.  Book

value per common share (BPS) can be calculated by the first four items in following

formula:

BPS = (Total Assets − Total Liabilities − Preferred Stock)/(Common Shares

Outstanding).

Companies forecast their expected earnings every month for the following four fiscal

quarters.  This paper uses the latest forecast value for each quarter to represent the

corresponding quarter value.  The quarterly EPS are extracted from the monthly data of

“EPSmeanQTR1-4” and “EPSConsensusForecastPeriodQTR1-4”.  For easier use, values
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of Dow Jones Industry Group, Dow Jones Market Sector and the Company Identity Keys

are transformed into integers.  (For example, use 3104 instead of the original value

C000003104.)  To understand these financial / accounting terms, please see Appendix D.

Appendix E explains how to use Excel Add-in.  Appendix F explains how to extract

quarterly data out of monthly data.

After deleting all the missing and incomplete data points and the data points that cause

programming errors, 391 companies are selected.  This final quarterly data set have 21

points for each company, covering 25 quarters from the first quarter of 1998 and the first

quarter of 2004.  It is formatted into 16 items which are all numerical values and contain

4 sectors (DJIC, GIC, DJMS and GICSSECTOR), company identity key (ID), Time,

PriceClose, BPCS0-3, EPS1-4 and R (3-month T-bill rate). 

1.3 Exploratory Data Analysis by Classical Approaches

While considering the ideas in various versions of the Ohlson model, this paper sticks to

the main frame of the Ohlson model in (1.1.5), and sets up 11 different models which are

described in Table 1.3.1 for the exploratory analysis.  

These 11 models can be classified into three groups by distinguishing the assumption of

the innovation term: independent errors among time periods which belongs to the

ordinary linear regression structure (OLR), AR(1) structure for the error and AR(2)

structure for the error.  The main point of this classification is to check whether the AR(1)

assumption is proper for the innovation term of the Ohlson model.  Besides this, four

kinds of transformation to the term of stock price per share are applied to the model under

either AR(1) or AR(2) assumption for the innovation term: logarithmic transformation

(log trans), square root transformation (sqrt trans), cubic root transformation (curt trans)

and inverse transformation (inv trans).  Two relatively better transformations are to be

selected by the classical statistical analysis.  This paper assumes their priorities to be

adopted in further research by the innovative methods, for the reason of their being more

fit to the data.  The purpose of using transformations is to improve both the estimative 
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and predictive qualities of the Ohlson model.

Table 1.3.1 --- Various Models

Name Equation
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Two procedures, PROC REG and PROC AUTOREG in SAS, are the classical methods

that are used to the whole data set to test the estimative ability of the 11 models.  

Specifically, PROC REG is only used to model OFM---OLR and PROC AUTOREG is

used to the models with AR(p) structures for the innovation term.  Three kinds of criteria

are used to compare their estimative abilities: R-squares (total R-square and Regress R-

square), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

See Table 1.3.2 for the empirical results.  Note that R-square is the coefficient of

determination (regression sum of squares divided by total sum of squares).  Total R-

square is R-square and regress R-square is R-square adjusted for additional covariates.

They are nearly the same in PROC REG procedure, but can be very different in PROC

AUTOREG procedure, especially when the innovation terms are highly correlated among
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time periods.  BIC is a quantity proportional to the negative log likelihood after all

parameters are integrated out.  AIC is a deviance measure (i.e., difference between

observed and fitted models).  Models with small AIC and BIC values are preferred.  

Table 1.3.2 --- Overall Estimative Ability Comparison of Various Models

Model Total 
R-square

Regress 
R-square AIC BIC

OFM --- OLR 0.2184 0.2184
OFM --- AR(1) 0.7526 0.0856 59112 59161
OFM --- AR(2) 0.7526 0.0857 59114 59170

log trans of OFM AR(1) 0.7680 0.1033 2653 2702
 sqrt trans of OFM --- AR(1) 0.7716 0.1016 18013 18062
curt trans of OFM --- AR(1) 0.7733 0.1046 2026 2076
 inv trans of OFM --- AR(1) 0.6230 0.0413 -35734 -35685

log trans of OFM AR(2) 0.7680 0.1034 2656 2712
sqrt trans of OFM --- AR(2) 0.7716 0.1021 18016 18072
curt trans of OFM --- AR(2) 0.7733 0.1048 2030 2086
inv trans of OFM --- AR(2) 0.6242 0.0413 -35756 -35701

The following conclusions can be drawn by comparing the R-squares, AIC’s and BIC’s in

Table 1.3.2.

• Using PROC REG to model OFM---OLR, R-square turns out to be very small

(0.2184).  Using PROC AUTOREG to the other 10 models, the Total R-square

values are over 0.75 to all except in the cases of using inverse transformation.  For

the models with AR(p) structure to the innovation term, the results show big

difference between the Total R-square (>0.75) and the Regress R-square (<0.11).

All these results indicate that the assumption of independence of the innovation

terms among different time periods cannot stand.  In other words, setting an AR

(p) structure to the innovation term can be a sound assumption.  

• AR(2) structure is no better than AR(1), for they have extremely close R-square

values.  This is in line with the conclusion drawn by Callen (2001).

• The Total R-square value (0.6230) under the inverse transformation is much less

than without a transformation (0.7526), while the Total R-square values under the

other three transformations are slightly bigger than without a transformation.  This

concludes that the inverse transformation cannot enhance the estimative ability,

while the other three can slightly enhance the estimative ability.  

11



• Based on Total R-square value, cubic root transformation enhances the estimative

ability the most (0.7733), then the square root transformation (0.7716), and then

the log transformation (0.7680).  But the differences among them are very small.

Based on AIC and BIC, cubic transformation has the smallest value (2026 and

2076), then the log transformation (2653 and 2702).  The square root

transformation has much larger AIC and BIC (18013 and 18062).  Therefore,

cubic root transformation and log transformation are relative better than the

others.

After comparing the estimative abilities of the 11 models, this paper proceeds further

exploratory analysis by concentrating on 3 models: OFM --- AR(1), log trans of 

OFM AR(1) and curt trans of OFM --- AR(1).  

In order to test the predictive abilities of the models, the retrieved data of S&P 500 are

divided into two parts for each company.  The first part contains the first 20 periods of

data which will be used as base data to estimate regression coefficients; the second part

has the 21st period of data which will be used as test data to compare with the predictions

for this period from the base data. (The same base data and test data as in this division are

also used in the following chapters.)  

After using PROC AUTOREG to the data in each GIC group (see Table 1.3.3 for the

General Industrial Classification Distribution), the estimated regression coefficients for

three models are collected in Table 1.3.4.  The results show that the intercept, BPS and

abnormal earnings per share of the first two following quarters are generally significant in

the Ohlson Model. (The values in bold are significant, others are insignificant.)  

Table 1.3.3 --- General Industrial Classification (GIC) Distribution

GIC Value 0 1 2 3 4 5 6

Class Overall Industrial Utility Transportation Banks/Savings 
and Loan Insurance Other

Financial
No. of
 Firms 391 284 42 5 29 18 13

Note: when GIC equals 0, it means this group includes all 391 firms.  
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The PROC AUTOREG procedure also gives the predicted values of the 21st period using

the base data.  To compare the predictive abilities among the three selected models for

different GIC groups, the criterion is defined as

                                                   212121 /)ˆ( yyyR −=                                                   (1.3.1)

where R  is the relative difference of predicted stock price over real stock price for a

company, 21ŷ  is the predicted stock price of a company for the 21st period, 21y  is the real

stock price of a company for the 21st period.

Table 1.3.4 --- Estimated Parameters from Base Data
GIC = 0

Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
OFM --- AR(1) 25.7102 0.8006 4.4180 3.4307 -0.089 0.0456

LOG-trans of OFM AR(1) 3.075 0.0288 0.1492 0.1047 0.006134 -0.0111
CURT-trans of OFM --- AR(1) 2.8435 0.0279 0.1471 0.1076 0.003040 -0.007624

GIC = 1
Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6

OFM --- AR(1) 25.2903 0.8929 6.1202 5.5564 0.2602 0.1988
LOG-trans of OFM AR(1) 3.0464 0.0329 0.2143 0.1678 0.0279 -0.002011

CURT-trans of OFM --- AR(1) 2.8201 0.0317 0.2094 0.1742 0.0214 0.000176
GIC = 2

Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
OFM --- AR(1) 23.0625 0.6416 1.7959 -0.3845 0.4846 0.2983

LOG-trans of OFM AR(1) 2.9159 0.0290 0.0645 0.000787 0.000355 -0.0129

CURT-trans of OFM --- AR(1) 2.7138 0.0262 0.0608 -0.00561
7 0.006043 -0.008238

GIC = 3
Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6

OFM --- AR(1) 11.2044 0.9892 3.4738 1.4118 1.0681 -1.3959
LOG-trans of OFM AR(1) 2.6101 0.0342 0.1238 0.0204 0.0220 -0.0415

CURT-trans of OFM --- AR(1) 2.3632 0.0343 0.1218 0.0292 0.0265 -0.0442
GIC = 4

Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
OFM --- AR(1) 18.6728 1.3250 8.7575 -4.6200 -7.4562 0.7041

LOG-trans of OFM AR(1) 3.0660 0.0316 0.2109 -0.0500 -0.1922 -0.0129
CURT-trans of OFM --- AR(1) 2.7515 0.0361 0.2419 -0.0800 -0.2187 -0.002449

GIC = 5
Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6

OFM --- AR(1) 31.9752 0.6065 -3.0127 1.7879 -1.2500 0.0256
LOG-trans of OFM AR(1) 3.4200 0.0147 -0.0591 0.0356 -0.0168 -0.008506

CURT-trans of OFM --- AR(1) 3.1393 0.0166 -0.0739 0.0450 -0.0241 -0.006542
GIC = 6

Model Beta1 Beta2 Beta3 Beta4 Beta5 Beta6
OFM --- AR(1) 30.5121 0.6323 15.9995 5.2249 -6.2083 -1.3595

LOG-trans of OFM AR(1) 3.2711 0.0194 0.4457 0.1451 -0.1619 -0.0580
CURT-trans of OFM --- AR(1) 3.0281 0.0199 0.4742 0.1528 0.1816 -0.0536
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The following conclusions can be drawn from Table 1.3.5 where the quantiles of R , the

number of nonnegative R ’s (No.(+,0)) and the number of negative R ’s (No. (-)) are

collected.  The digital “1” and “2” after the names of transformations are to distinguish

different scales of measurement.   “1” denotes using the original scale, “2” denotes using

the transformed scale.

Table 1.3.5 --- Quantiles of R and Number of Nonnegative/Negative R’s

(1 --- Original Scale     2 --- Transformed Scale)

GIC No. of
Firms Model Min Q1 Q2 Q3 Max No.

(+,0)
No.
(-)

0 391

OFM --- AR(1) -0.490 0.073 0.400 0.936 15.703 315 76
log trans of OFM AR(1)-1 -0.564 -0.038 0.347 0.795 13.137 284 107
log trans of OFM AR(1)-2 -0.196 -0.010 0.088 0.191 6.875 284 107
curt trans of OFM AR(1)-1 -0.540 -0.004 0.360 0.804 13.992 292 99
curt trans of OFM AR(1)-2 -0.227 0.000 0.109 0.219 1.466 293 98

1 284

OFM --- AR(1) -0.458 0.058 0.440 1.059 15.277 225 59
log trans of OFM AR(1)-1 -0.531 -0.029 0.365 0.879 12.626 208 76
log trans of OFM AR(1)-2 -0.179 -0.008 0.098 0.214 6.780 208 76
curt trans of OFM AR(1)-1 -0.507 -0.013 0.416 0.899 13.496 210 74
curt trans of OFM AR(1)-2 -0.209 -0.003 0.124 0.240 1.439 210 74

2 42

OFM --- AR(1) -0.197 0.068 0.281 1.411 9.235 35 7
log trans of OFM AR(1)-1 -0.340 0.000 0.174 1.062 7.412 31 11
log trans of OFM AR(1)-2 0.120 0.000 0.049 0.284 2.220 31 11
curt trans of OFM AR(1)-1 -0.284 0.014 0.208 1.185 8.042 33 9
curt trans of OFM AR(1)-2 -0.104 0.006 0.066 0.299 1.084 34 8

3 5

OFM --- AR(1) 0.041 0.195 0.359 0.474 0.574 5 0
log trans of OFM AR(1)-1 0.162 0.180 0.181 0.357 0.368 5 0
log trans of OFM AR(1)-2 0.042 0.052 0.056 0.093 0.105 5 0
curt trans of OFM AR(1)-1 0.111 0.180 0.242 0.407 0.430 5 0
curt trans of OFM AR(1)-2 0.037 0.058 0.076 0.122 0.128 5 0

4 29

OFM --- AR(1) -0.251 0.171 0.306 0.480 1.394 25 4
log trans of OFM AR(1)-1 -0.323 0.054 0.185 0.402 1.194 24 5
log trans of OFM AR(1)-2 -0.100 0.015 0.051 0.113 0.299 24 5
curt trans of OFM AR(1)-1 -0.302 0.089 0.220 0.424  1.252 24 5
curt trans of OFM AR(1)-2 -0.112 0.030 0.070 0.126 0.312 24 5

5 18

OFM --- AR(1) -0.313 0.120 0.242 0.390 3.663 15 3
log trans of OFM AR(1)-1 -0.359 0.047 0.190 0.302 3.357 14 4
log trans of OFM AR(1)-2 -0.109 0.013 0.047 0.076 0.645 14 4
curt trans of OFM AR(1)-1 -0.347 0.066 0.197 0.324 3.435 14 4
curt trans of OFM AR(1)-2 0.131 0.023 0.063 0.099 0.644 14 4

6 13

OFM --- AR(1) -0.045 0.195 0.348 0.847 4.276 12 1
log trans of OFM AR(1)-1 -0.105 0.143 0.266 0.810 3.562 11 2
log trans of OFM AR(1)-2 -0.031 0.037 0.071 0.174 0.807 11 2
curt trans of OFM AR(1)-1 0.075 0.370 0.466 1.266 4.128 13 0
curt trans of OFM AR(1)-2 0.026 0.112 0.138 0.315 0.726 13 0
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The empirical results show that the distributions of R are asymmetrical with long tails,

which suggests the 50% quantile (Q2) of R as a major criterion.  From Table 1.3.5, the

following conclusions can be drawn. 

• Based on Q2 values in original scale, the ratio value ranges from 24.2% (GIC = 5)

to 44% (GIC = 1) and 40% overall (GIC = 0) under no transformation, from

17.4% (GIC = 2) to 36.5% (GIC = 1) and 34.7% overall (GIC = 0) under log

transformation, and from 19.7% (GIC = 5) to 46.6% (GIC = 6) and 36% overall

(GIC = 0) under cubic root transformation.  Based on Q2 values in transformed

scale, the ratio value ranges from 4.7% (GIC = 5) to 9.8% (GIC = 1) and 8.8%

overall (GIC = 0) under log transformation, and from 6.3% (GIC = 5) to 13.8%

(GIC = 6) and 10.9% overall (GIC = 0) under cubic root transformation.  These

conclude that the log transformation improves the predictive ability more than the

cubic root transformation does while using the classical method.

• In all cases, the number nonnegative R ’s is much larger than the number of

negative R ’s, which shows the high overestimation by the classical method.

The too large magnitude of R and the extremely high overestimation state that using the

classical method (the PROC AUTOREG procedure) to interpret the Ohlson model is not

efficient enough in forecasting stock prices.  A better approach is desired to improve both

the estimative and predictive abilities of the Ohlson model.  

Summarily, the exploratory data analysis by PROC REG/AUTOREG confirms the AR(1)

assumption of the innovation term in the Ohlson model, and the promising effect of

adopting logarithmic transformation as well as cubic root transformation.  It suggests that

the remaining work focus on 3 models: OFM --- AR(1), log trans of OFM AR(1) and curt

trans of OFM --- AR(1).  Since the Ohlson model is not able to predict the stock price

efficiently by the classical means, this paper applies an innovative statistical method,

Bayesian statistical analysis, to the 3 chosen models in the remaining work.  

1.4 An Outline of Bayesian Statistical Analysis 

In the following three chapters of this paper, Bayesian approaches are used for the

purpose of satisfying the requirement of improving both the estimative and predictive
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qualities of the Ohlson model, comparing to the classical methods.  In detail, Chapter 2

uses the most basic Bayesian techniques to each company, which is the case that different

companies have different regression coefficients; Chapter 3 applies the Bayesian method

by letting all the companies in each group share the same regression coefficients. While

Chapter 2 represents the individual analysis, Chapter 3 represents the grouping analysis.

And Chapter 4 ends up to be the adaptive analysis by pooling information across

companies.  That is, different companies have different regression coefficients in Chapter

4, and in the mean time they are pooled together. Basically, Chapter 4 compromises the

ideas in Chapter 2 and the ones in Chapter 3.

For each Bayesian approach in following three chapters, the main tasks are to make

inferences for the regression coefficients (or parameters), evaluate the model adequacy

and test the predictive ability of the Ohlson model.  Chapter 5 concludes all the work in

this paper, which includes the comparison among the three Bayesian approaches as well

as the comparison of the best Bayesian approach to the classical method.  
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Chapter 2

Bayesian Statistical Analysis for Individual Firm

2.1 Bayesian Version of the Ohlson Model for a Single Firm

As an extreme case, this chapter assumes all the companies are independent of each other

and have their own regression coefficients in the Ohlson model.  At the very beginning of

applying the Bayesian statistical analysis to each company, a Bayesian version of the

Ohlson model is set up in the following three steps.

First, for a specific company, describe the observation ),,,( 21
~

Tyyyy =  by the

parameters },,,{ 2

~
σρµβ .  Under the assumption that the observations are conditionally

independent among the time periods, we can get the likelihood function from expression

(1.1.5):

     ∏
= −

− 


 −+⋅+=
T

t tttt xyxyNxyNyp
2

2

~

'

1~1
~

'

~

2

~

'

1~1
2

~~
),|(),|(),,,|( σβρβσµβσρµβ . 

(2.1.1)

Second, assign a prior distribution to each unknown parameter.  The prior distribution

represents a population of possible parameter values, from which the parameter of current

interest has been drawn.  The guiding principle is to express the knowledge (and

uncertainty) about the parameter as if its value could be thought of as a random

realization from the prior distribution.  In order to get the practical advantage of being

interpretable as additional data and computational convenience, this paper assigns the

conjugate prior distributions as follows: 

                                                

).,|()(
),1,1|()(

),,|()(

),,|()(

22

2
00

0
0~~~

baI
U
N

NK

σσπ

ρρπ
σµµµπ

θββπ

Γ=

−=
=

∆=

                                                (2.1.2)
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The hyperparameters },,,{ 2
000

0~
σµθ ∆  in (2.1.2) are set as follows.

(P2.1) 
~

1

0~
')'( yXXXB −==θ .  

The idea of setting 
0~

θ  is to use the estimation of
~
β  in the ordinary linear 

regression model

, , ,1  ),,0(~ , 2

~

' TtNxy
iid

tttt =+= σεεβ                                                     (OLM-1)

by the method of least squares. Note that ( )'

~

'

2~

'

1~
,,,

T
xxxX =  is the matrix of all 

covariates together with an intercept, )',,,,,1( 4321
'

~

a
t

a
t

a
t

a
tt

t
xxxxbvx ++++=  ( Tt  , ,1 = ) 

is the regression coefficient vector consisting of the 1 and predictors, andT  is the 

number of time periods. 

(P2.2) 
PT

SS
XX E

−
=∆ −1

0 )'(100 , where yXByySSE ''' −=  is the sum of squares of the 

errors of (OLM-1), P is the number of regression coefficients (including the 

intercept),
PT

SSE

−
 is the estimation of the 2σ  in (OLM-1) by the method of least 

squares, and
PT

SSXX E

−
−1)'(  is the estimation of the covariance matrix of 

~
β  in 

(OLM-1).  Multiplying the estimation of the covariance matrix by 100 is to add

more variability.

(P2.3) )(
1

~

1
0 ∑

=

− −=
T

i ii BxyTµ .

From ),0(~, 2
11

~

'
11 σεεµβ Nxy ++=  in expression (1.1.5), we can get the 

estimation of µ  which is Bxy '
11ˆ −=µ .  Taking each observation can as starting

point, that is, 

TiNxy iiii ,,2,1),,0(~, 2

~

' =+−= σεεβµ .                                           (OLM-2)

The idea of setting 0µ is to use the averaged estimation of µ  in (OLM-2).

(P2.4) 
PT

SSE

−
=2

0σ  is the estimation of variance 2σ  in (OLM-2) by the method of least 
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squares.

(P2.5) 001.0== ba .

These two hyperparameters are chosen by convention or experience in Bayesian

statistical analysis.

Assume that all the parameters are independent of each other, the joint prior distribution

of the parameters can be expressed as

          ).,|(),1,1|(),|(),|(),,,( 22
000

0~~

2

~
baIUNNp K σρσµµθβσρµβ Γ⋅−⋅⋅∆=       (2.1.3)

Finally, from the likelihood function in (2.1.1) and joint prior distribution in (2.1.3), we

can get the posterior distribution of the parameters given the data using Bayes’ rule:
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(2.1.4)

2.2 Gibbs Sampling

The Gibbs sampler is an iterative Monte Carlo algorithm designed to extract the posterior

distribution from the tractable complete conditional distributions rather than directly from

the intractable joint posterior distribution, which is difficult to acquire in explicit form.

In this chapter, the target is to make inferences on the parameters },,,{ 2

~
σρµβ given the

data.  We consider the complete conditional distributions .)|(
~
βπ , .)|(µπ , .)|(ρπ , and

.)|( 2σπ respectively.  Here, the conditioning argument “⋅” denotes the observation and

the remaining parameters.  From the posterior distribution in (2.1.4) we can derive the

complete conditional distributions.
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First, 
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The Gibbs sampler is implemented using the following six steps.

Step 1, obtain starting values },,,{ 0,2000

~
σµρβ .

Step 2, draw 
t

~
β  from ),,,|(

~

1,211

~
yttt −−− σρµβπ .

Step 3, draw tµ  from ),,,|(
~

1,21

~
yttt −− σρβµπ .

Step 4, draw tρ  from ),,,|(
~

1,2

~
yttt −σµβρπ .

Step 5, draw t,2σ  from ),,,|(
~~

2 yttt ρµβσπ .

Step 6, repeat many many many times.
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This paper chooses the starting points },,,{ 0,2000

~
σµρβ  as follows.

First,
~
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~
')'( yXXX −=β .
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=0,2σ .

The ideas of setting 00 , µβ and 0,2σ  are the same as the ones of setting the hyper-

parameters },,,{ 2
000

0~
σµθ ∆  in (2.1.2), which is using the estimation of parameters from

the (OLM-1) and (OLM-2).  The idea of setting 0ρ  is taking it as the autocorrelation of

time series tt
t

tt vxyv ερβ +=−= −1
~

'

~  in an AR(1) structure.

This chapter develops two algorithms using Markov-chain Monte Carlo methods, a

restricted algorithm that enforces stationarity condition by letting 1|| <ρ  on the series and

an unrestricted algorithm that does not.

2.3 Forecast

After getting the posterior distribution of the parameters, we can use it to predict the

future stock prices.  In this paper we wish to forecast the stock price at time period T + 1
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denoted by 1+Ty , given the data ),,,( 21)( TT yyyy = .  Letting },,,{ 2

~
σρµβ=Ω , the

prediction can be sampled from the posterior predictive distribution

                                 .)|()|,()|( 1)(1 ∫ ΩΩΩ= ++ dyyyfyyf TTT π                               (2.3.1)

Letting )()2()1( ,,, MΩΩΩ   be a sequence of range M from the Gibbs sampler, an

estimator of )|( )(1 TT yyf +  is

                                    ∑
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+
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+ Ω=
M

h
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h
TTT yyfMyyf

1
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1

1
)(1 ),|()|(ˆ .                            (2.3.2)

To get samples of 1+Ty , we use data argumentation to fill in 1+Ty  to each )(hΩ ,

Mh  , ,2 ,1 =  , to get )(
1

h
Ty + , Mh  , ,2 ,1 = , from the normal distribution in (2.3.3).

                                    ).),((~,| 2
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+                        (2.3.3)

The 95% predictive credible interval for 1+Ty  can be computed from the 2.5% and 97.5%

empirical quantiles of the values )(
1

h
Ty + , Mh  , ,2 ,1 = .

2.4 Conditional Predictive Ordinate

We want to assess the goodness of fit of the Ohlson Model to the data.  One procedure is

to calculate the log conditional predictive ordinate ))|(log( )(1 tt yyp +  with

                                    ,),|()|(
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h
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ttt yypyyp ϖ                                 (2.4.1)

where 1+ty  denotes the random future observation at period t + 1,

),,,( 21)( tt yyyy = denotes the observations from period 1 to t, )(hΩ denotes the hth draw

of the parameters from the Gibbs sampler, and
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(See Appendix G for the derivation of (2.4.1)).
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2.5 Empirical Results of Individual Bayesian Analysis 

After getting the Bayesian version of the Ohlson model for each firm, we fit it to the data

corresponding to each company in the base data set.  11000 iterations are run in the Gibbs

sampler, the first 1000 draws are thrown away, and finally 1000 draws are collected by

picking one draw every 10 paces.  Since there are too many companies (391), the results

are averaged for each GIC group.  Besides making conclusions from the empirical results,

this chapter also tries to decide which models from {OFM --- AR(1), log trans of OFM

AR(1), curt trans of OFM AR(1)} will be used for further Bayesian analysis, whether the

stationary restriction is needed and which measurement scale to use, original one or the

transformed one.

Four criteria are used for the model valuation: the relative difference of the predicted

stock price over the real stock price ( R ), numbers of nonnegative ratios and negative

ratios (No.(+,0) and No.(-,0)), length of 95% credible intervals, and log conditional

predictive ordinate (CPO).  The ratio of residual is defined in the same way as (1.3.1) in

Chapter 1.  But in this chapter and the following two chapters, No.(+,0) and No.(-,0)

denote the rounded numbers of nonnegative and negative ratios divided by 1000

respectively.

The quantiles of R  as well as No.(+,0) and No.(-,0) are collected in Table 2.5.1(a) while

using the stationary restriction, and in Table 2.5.1 (b) for the case without the stationary

restriction.

The LB and UB in these two tables are calculated from No.(+,0) and No.(-,0) by

formulas:

,/)ˆ1(ˆˆ,/)ˆ1(ˆˆ NpppUBNpppLB −+=−−=  where ,/)0,.(ˆ NNop +=

)..()0,.( −++= NoNoN  They are the lower bound (LB) and upper bound (UB) of the

95% confidence interval of p̂  which are used to check the state of overestimation.  If 0.5

is between LB and UB, then the method does not overestimate the stock prices, and vice

versa.
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Table 2.5.1(a) --- With Stationary Restriction (1-Original Scale, 2-Transformed Scale)

GIC No. of
Firms Method Min Q1 Q2 Q3 Max No.

(+,0)
No.
(-) LB UB

0 391

no trans -25.141 -0.109 0.070 0.289 19.290 236 155 0.579 0.628
log trans-1 -0.963 -0.101 0.069 0.274 23.080 237 154 0.581 0.631
log trans-2 -7.275 -0.032 0.020 0.075 3.094 237 154 0.581 0.631
curt trans-1 -1.094 -0.105 0.065 0.269 14.541 235 156 0.576 0.626
curt trans-2 -1.455 -0.035 0.022 0.084 1.497 237 154 0.581 0.631

1 284

no trans -25.141 -0.114 0.077 0.308 19.290 172 112 0.577 0.635
log trans-1 -0.963 -0.105 0.075 0.289 23.080 173 111 0.580 0.638
log trans-2 -7.275 -0.034 0.022 0.079 3.094 173 111 0.580 0.638
curt trans-1 -1.094 -0.110 0.071 0.285 1.493 171 113 0.573 0.631
curt trans-2 -1.455 -0.037 0.024 0.088 1.497 173 111 0.580 0.638

2 42

no trans -12.948 -0.152 0.027 0.237 12.170 23 19 0.471 0.624
log trans-1 -0.938 -0.147 0.017 0.211 15.154 22 20 0.447 0.601
log trans-2 -2.891 -0.048 0.005 0.061 2.226 22 20 0.447 0.601
curt trans-1 -1.018 -0.150 0.017 0.211 11.854 22 20 0.447 0.601
curt trans-2 -1.264 -0.052 0.007 0.067 1.344 22 20 0.447 0.601

3 5

no trans -1.292 -0.025 0.089 0.215 1.239 4 1 0.621 0.979
log trans-1 -0.652 -0.042 0.072 0.207 2.099 3 2 0.381 0.819
log trans-2 -0.315 -0.013 0.021 0.058 0.425 3 2 0.381 0.819
curt trans-1 -0.752 -0.040 0.073 0.206 1.653 3 2 0.381 0.819
curt trans-2 -0.371 -0.013 0.025 0.067 0.386 3 2 0.381 0.819

4 29

no trans -2.004 -0.050 0.080 0.243 2.156 19 10 0.567 0.743
log trans-1 -0.950 -0.043 0.088 0.251 4.336 19 10 0.567 0.743
log trans-2 -0.754 -0.013 0.025 0.066 0.485 19 10 0.567 0.743
curt trans-1 -0.897 -0.049 0.081 0.241 3.118 19 10 0.567 0.743
curt trans-2 -0.531 -0.015 0.028 0.076 0.605 19 10 0.567 0.743

5 18

no trans -1.587 -0.061 0.090 0.278 4.695 12 6 0.556 0.778
log trans-1 -0.089 -0.048 0.089 0.272 5.143 12 6 0.556 0.778
log trans-2 -0.437 -0.014 0.024 0.067 0.795 12 6 0.556 0.778
curt trans-1 -0.759 -0.053 0.086 0.270 4.862 12 6 0.556 0.778
curt trans-2 -0.377 -0.017 0.029 0.084 0.804 12 6 0.556 0.778

6 13

no trans -8.584 -0.139 0.025 0.244 7.027 7 6 0.400 0.677
log trans-1 -0.810 -0.119 0.037 0.222 5.635 7 6 0.400 0.677
log trans-2 -0.882 -0.036 0.011 0.061 0.957 7 6 0.400 0.677
curt trans-1 -0.994 -0.126 0.032 0.219 4.961 7 6 0.400 0.677
curt trans-2 -0.818 -0.043 0.012 0.069 0.814 7 6 0.400 0.677
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Table 2.5.1(b) --- Without Stationary Restriction (1-Original Scale, 2-Transformed Scale)

GIC No. of
Firms Method Min Q1 Q2 Q3 Max No.

(+,0)
No.
(-) LB UB

0 391

no trans -26.845 -0.124 0.060 0.273 16.443 230 161 0.563 0.613
log trans-1 -0.987 -0.113 0.059 0.260 43.221 231 160 0.566 0.616
log trans-2 -5.938 -0.036 0.017 0.071 2.744 231 160 0.566 0.616
curt trans-1 -1.834 -0.119 0.054 0.255 16.583 228 163 0.558 0.608
curt trans-2 -1.942 -0.040 0.019 0.080 1.602 230 161 0.563 0.613

1 284

no trans -26.715 -0.120 0.060 0.263 17.286 168 116 0.562 0.621
log trans-1 -0.975 -0.107 0.063 0.259 33.557 170 114 0.570 0.628
log trans-2 -5.938 -0.038 0.019 0.075 2.744 169 115 0.566 0.624
curt trans-1 -1.834 -0.122 0.060 0.269 15.583 167 117 0.559 0.617
curt trans-2 -1.942 -0.042 0.021 0.084 1.602 168 116 0.562 0.621

2 42

no trans -4.539 -0.121 0.052 0.245 4.784 24 18 0.495 0.648
log trans-1 -0.862 -0.111 0.061 0.264 9.311 25 17 0.519 0.671
log trans-2 -3.640 -0.053 0.002 0.057 1.956 21 21 0.423 0.577
curt trans-1 -1.039 -0.165 0.005 0.198 9.244 21 21 0.423 0.577
curt trans-2 -1.339 -0.057 0.003 0.063 1.173 22 19 0.459 0.614

3 5

no trans -16.924 -0.374 0.038 0.390 64.950 3 2 0.381 0.819
log trans-1 -0.998 -0.199 0.035 0.280 58.857 3 2 0.381 0.819
log trans-2 -0.266 -0.167 0.019 0.054 0.507 3 2 0.381 0.819
curt trans-1 -0.638 -0.052 0.066 0.193 2.071 3 2 0.381 0.819
curt trans-2 -0.286 -0.016 0.023 0.062 0.455 3 2 0.381 0.819

4 29

no trans -4.497 -0.097 -0.085 0.313 4.389 18 11 0.531 0.711
log trans-1 -0.860 -0.098 0.080 0.303 9.166 18 11 0.531 0.711
log trans-2 -0.467 -0.016 0.024 0.067 0.795 19 10 0.567 0.743
curt trans-1 -0.907 -0.057 0.078 0.238 2.799 19 10 0.567 0.743
curt trans-2 -0.546 -0.018 0.026 0.075 0.562 19 10 0.567 0.743

5 18

no trans -4.912 -0.137 0.083 0.322 4.025 11 7 0.496 0.726
log trans-1 -0.994 -0.111 0.077 0.299 10.331 11 7 0.496 0.726
log trans-2 -0.387 -0.018 0.021 0.065 0.631 12 6 0.556 0.778
curt trans-1 -0.836 -0.069 0.074 0.258 3.297 11 7 0.496 0.726
curt trans-2 -0.452 -0.022 0.025 0.081 0.627 11 7 0.496 0.726

6 13

no trans -5.892 -0.199 0.044 0.286 4.361 7 6 0.400 0.677
log trans-1 -0.851 -0.152 0.044 0.260 9.485 7 6 0.400 0.677
log trans-2 -0.774 -0.047 0.003 0.056 0.773 7 6 0.400 0.677
curt trans-1 -0.938 -0.164 0.001 0.192 3.719 7 6 0.400 0.677
curt trans-2 -0.605 -0.057 0.002 0.062 0.678 7 6 0.400 0.677

Similar to Chapter 1, the empirical results show that the distributions of R are

asymmetrical with long tails.  This chapter also uses the 50% quantile (Q2) of R as a

major criterion.  The following conclusions can be drawn from Table 2.5.1(a).

• Based on Q2 values in original scale, the ratio value ranges from 2.5% (GIC = 6)

to 9% (GIC = 5) and 7% overall (GIC = 0) under no transformation, from 1.7%

(GIC = 2) to 8.9% (GIC = 5) and 6.9% overall (GIC = 0) under log

transformation, and from 1.7% (GIC = 2) to 8.6% (GIC = 5) and 6.5% overall

(GIC = 0) under cubic root transformation.  Based on Q2 values in transformed

25



scale, the ratio value ranges from 0.5% (GIC = 2) to 2.5% (GIC = 4) and 2%

overall (GIC = 0) under log transformation, and from 0.7% (GIC = 2) to 2.9%

(GIC = 5) and 2.2% overall (GIC = 0) under cubic root transformation.  These

conclude that with stationary restriction, both the log transformation and the cubic

root transformation improve the predictive ability comparing to the method

without using any transformation

• When GIC is 0, 1, or 4, 0.5 is not between LB and UB; when GIC is 3 or 6, 0.5 is

not between LB and UB; when GIC is 2, 0.5 is between LB and UB except in the

case of using log transformation under the original scale; when GIC is 5, 0.5 is

between LB and UB except in the case of using log transformation under the

transformed scale.  Since 0.5 is not between LB and UB for large groups, we

conclude that using Bayesian method to each company by restricting stationarity

overestimates the stock prices.

Table 2.5.1(b) gives the following conclusions.

• Based on Q2 values in original scale, the ratio value ranges from 3.8% (GIC = 3)

to -8.5% (GIC = 4) and 6% overall (GIC = 0) under no transformation, from 3.5%

(GIC = 3) to 8% (GIC = 4) and 5.9% overall (GIC = 0) under log transformation,

and from 0.1% (GIC = 6) to 7.8% (GIC = 4) and 5.4% overall (GIC = 0) under

cubic root transformation.  Based on Q2 values in transformed scale, the ratio

value ranges from 0.2% (GIC = 2) to 2.4% (GIC = 4) and 1.7% overall (GIC = 0)

under log transformation, and from 0.2% (GIC = 6) to 2.6% (GIC = 4) and 1.9%

overall (GIC = 0) under cubic root transformation.  These conclude that both the

log transformation and the cubic root transformation also improve the predictive

ability comparing to the method without using any transformation without

stationary restriction.

• When GIC is 0, 1, or 4, 0.5 is not between LB and UB; when GIC is 3 or 6, 0.5 is

not between LB and UB; when GIC is 2, 0.5 is between LB and UB except in the

case of using log transformation under the original scale; when GIC is 5, 0.5 is

between LB and UB except in the case of using log transformation under the

transformed scale.  Since 0.5 is not between LB and UB for large groups, we
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conclude that using Bayesian method to each company by restricting stationarity

overestimates the stock prices.

Comparing the conclusions from Table 2.5.1(a) to the ones from Table 2.5.1(b), there

exist some slight differences between them, but this paper considers that those differences

are minor.  There are two things in common.  First, using both transformations can

enhance the predictive ability.  Second, the Bayesian approach to each company

overestimates the stock prices for most companies.  

Table 2.5.2 --- Min, Max and Overall Values of R
Method Transformation min max overall

Classical no trans 24.20% 44% 40%
Statistical log trans 17.40% 36.50% 34.70%
Analysis curt trans 19.70% 46.60% 36%

Individual no trans 2.50% 9% 7%
Bayesian log trans 1.70% 8.90% 6.90%
Analysis curt trans 1.70% 8.60% 6.50%

This paper uses the minimum, maximum and overall values of R  to compare the

Bayesian approaches with the classical method.  Table 2.5.2 gives those values under the

original scale from both classical statistical analysis and individual Bayesian analysis.  It

shows the huge improvement of using individual Bayesian approach to the Ohlson model,

compared to the classical method.

The average lengths of credible interval (CI) are in Table 2.5.3, from which it is easy to

see that they are shorter under stationary restriction than without stationary restriction.  In

all case, GIC 3 has the longest length, GIC 0 and 1 have the shortest length.  GIC 2, 4, 5 6

have similar length.  It seems that the more companies a GIC group has, the shorter the CI

is.  This hints that pooling information across companies may improve the predictive

ability of the Ohlson model.  Generally, the average lengths of CI’s are quite wide under

the original scale, and extremely smaller under the transformed scale.  The standard

deviations are very big under the original scale and much smaller under the transformed

scale.  This implies that the results under the transformed scale make more sense, which

can also been indicated by Table 2.5.1(a) and (b).
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Table 2.5.3 --- Average Length of Credible Interval

GIC No. of
Firms Method

With S-Restriction No S-Restriction 
Ave. CI
Length

Std 
Dev

Ave. CI
Length

Std 
Dev

0 391

no trans 4.699 13.321 4.786 13.573
log trans-1 4.176 12.870 4.190 12.839
log trans-2 0.949 0.460 0.966 0.472
curt trans-1 26.528 13.521 26.690 13.702
curt trans-2 0.958 0.425 0.975 0.434

1 284

no trans 5.017 13.269 5.073 13.547
log trans-1 4.401 12.240 4.436 12.626
log trans-2 1.003 0.486 1.020 0.499
curt trans-1 27.455 14.295 27.577 14.496
curt trans-2 1.006 0.456 1.023 0.466

2 42

no trans 17.537 20.441 17.762 20.614
log trans-1 16.245 21.381 16.441 22.334
log trans-2 0.900 0.464 0.908 0.469
curt trans-1 20.679 8.734 20.737 9.150
curt trans-2 0.866 0.317 0.878 0.326

3 5

no trans 112.275 120.773 117.649 125.112
log trans-1 99.762 168.683 67.112 94.920
log trans-2 0.699 0.195 0.732 0.203
curt trans-1 19.146 6.832 19.944 7.135
curt trans-2 0.682 0.134 0.715 0.147

4 29

no trans 25.364 18.994 25.895 19.231
log trans-1 23.892 21.478 24.087 25.522
log trans-2 0.652 0.184 0.674 0.197
curt trans-1 22.107 9.685 22.554 9.876
curt trans-2 0.686 0.223 0.707 0.237

5 18

no trans 34.002 12.296 34.225 12.120
log trans-1 29.073 10.210 28.705 10.014
log trans-2 0.764 0.173 0.803 0.205
curt trans-1 31.286 10.909 32.207 11.431
curt trans-2 0.883 0.226 0.923 0.249

6 13

no trans 35.106 14.488 35.659 14.415
log trans-1 27.712 10.793 27.485 10.737
log trans-2 0.941 0.295 0.950 0.320
curt trans-1 31.271 13.805 30.732 12.817
curt trans-2 1.012 0.326 1.030 0.329

The log conditional predictive ordinate (CPO) is to evaluate the model fitting adequacy.

It always has negative values and is calculated under the original scale in this chapter.

The bigger CPO is, the better the model fits the data.  

Table 2.5.4 gives the quantiles and mean of CPO in each case and shows that the CPO

values are smaller under stationary restriction than without stationary restriction.  
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Table 2.5.4 --- CPO 
With Stationary Restriction 

GIC No. of
Firms Method Min Q1 Q2 Q3 Max Mean

0 391
no trans -5.161 -3.800 -3.462 -3.066 -2.289 -3.444

log trans -5.550 -3.779 -3.449 -3.087 -2.243 -3.432
curt trans -4.760 -2.550 -2.272 -1.982 -1.309 -2.267

1 284
no trans -5.578 -3.774 -3.442 -3.075 -2.260 -3.432

log trans -4.704 -3.769 -3.445 -3.079 -2.242 -3.417
curt trans -3.677 -2.583 -2.290 -1.995 -1.309 -2.285

2 42
no trans -4.174 -3.789 -3.541 -3.056 -2.338 -3.424

log trans -4.121 -3.791 -3.578 -3.094 -2.291 -3.440
curt trans -2.995 -2.468 -2.202 -1.969 -1.373 -2.204

3 5
no trans -8.450 -6.427 -6.077 -4.088 -3.907 -5.790

log trans -6.963 -6.625 -4.399 -3.976 -3.756 -5.144
curt trans -2.278 -2.208 -2.014 -1.715 -1.674 -1.978

4 29
no trans -4.160 -3.778 -3.567 -3.330 -2.353 -3.494

log trans -5.618 -3.844 -3.598 -3.167 -2.592 -3.632
curt trans -2.924 -2.199 -2.040 -1.757 -1.392 -2.024

5 18
no trans -5.832 -3.922 -3.730 -3.506 -2.977 -3.794

log trans -5.128 -4.304 -3.767 -3.412 -3.002 -3.874
curt trans -2.871 -2.527 -2.390 -2.125 -1.765 -2.339

6 13
no trans -5.133 -3.995 -3.853 -3.430 -2.972 -3.832

log trans -5.318 -3.987 -3.736 -3.335 -3.016 -3.833
curt trans -4.760 -2.715 -2.488 -2.249 -1.801 -2.639

Without Stationary Restriction 

GIC No. of
Firms Method Min Q1 Q2 Q3 Max Mean

0 391
no trans -5.272 -3.781 -3.489 -3.092 -2.244 -3.456

log trans -5.294 -3.800 -3.470 -3.096 -2.161 -3.435
curt trans -4.262 -2.606 -2.306 -2.027 -1.305 -2.311

1 284
no trans -5.214 -3.753 -3.481 -3.100 -2.244 -3.440

log trans -5.146 -3.759 -3.474 -3.092 -2.244 -3.424
curt trans -2.715 -2.456 -2.246 -1.978 -1.361 -2.185

2 42
no trans -4.286 -3.855 -3.517 -3.123 -2.247 -3.423

log trans -5.349 -3.909 -3.558 -3.108 -2.320 -3.521
curt trans -2.715 -2.456 -2.246 -1.978 -1.361 -2.185

3 5
no trans -9.191 -6.379 -4.343 -4.173 -4.078 -5.632

log trans -7.410 -5.523 -4.514 -3.863 -3.595 -4.981
curt trans -2.317 -2.164 -1.930 -1.828 -1.622 -1.972

4 29
no trans -4.268 -3.905 -3.625 -3.243 -2.382 -3.503

log trans -4.460 -3.964 -3.574 -3.253 -2.623 -3.546
curt trans -3.158 -2.253 -2.093 -1.869 -1.377 -2.077

5 18
no trans -4.284 -4.005 -3.686 -3.451 -3.015 -3.696

log trans -5.453 -4.019 -3.799 -3.419 -3.013 -3.815
curt trans -2.887 -2.545 -2.367 -2.196 -1.806 -2.341

6 13
no trans -4.815 -4.023 -3.903 -3.573 -3.108 -3.836

log trans -5.072 -4.046 -3.925 -3.275 -3.055 -3.765
curt trans -3.081 -2.669 -2.449 -2.278 -1.603 -2.446
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Since the distributions of CPO are quite symmetrical without long tails, this chapter uses

the mean value as a major criterion to analyze CPO.  The following conclusions are for

the case with stationary restriction.

• Under no transformation, the mean value of CPO ranges from -5.709 (GIC = 3) to

-3.424 (GIC = 2) and -3.444 overall (GIC = 0).  

• Under log transformation, the mean value of CPO ranges from -5.144 (GIC = 3)

to -3.417 (GIC = 1) and -3.432 overall (GIC = 0).  

• Under cubic root transformation, the mean value of CPO ranges from -2.639 (GIC

= 6) to -1.978 (GIC = 3) and -2.267 overall (GIC = 0).  

• For each GIC group, the mean values of CPO are much larger under cubic root

transformation than under log transformation. Also, they have smaller values

under no transformation than under either of the two transformations.  These facts

put a lot weight on using both log and cubic root transformations in the Bayesian

analysis of the Ohlson model.  

After analyzing the empirical results of the four criteria, this paper goes back to the

decisions that need to make.  Since all criteria show the improvement of using log

transformation and cubic root transformation, this paper decides to use two models for

further Bayesian analysis, which are log trans of OFM AR(1) and curt trans of 

OFM AR(1).  

Since using the transformed scale shows more sensible results, this paper decide to keep

it and stop using the original scale in the following two chapters.  

About the restriction stationarity,  Nandram & Petruccelli (1997) states that restricting

stationary series to be stationary provides no new information, but restricting

nonstationary series to be stationary leads to substantial differences from the unrestricted

case.  In this paper, the results of both average lengths of the credible intervals and CPO

show the benefits of restricting stationarity.  Besides, the time plots of the time series for

the companies show that most series look stationary and a few do not.  Therefore, this

paper decides to use the stationary restriction in further Bayesian analysis.
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In summary, the individual Bayesian analysis in this chapter strongly improves the

predictive ability of the Ohlson model comparing to the classical analysis in Chapter 1.

The grouping analysis in Chapter 3 and adaptive analysis by pooling information across

companies in Chapter 4 will be applied to the two transformed models with stationary

restriction.  Most further results will be collected under the transformed scale.
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Chapter 3

Bayesian Data Analysis within Each GIC Group

3.1 Bayesian Version of the Ohlson Model for a GIC Group

As another extreme case, this chapter assumes that all the companies in the same GIC

group share the same parameters },,,{ 2

~
σρµβ and the GIC groups are independent of each

other, having their own regression coefficients in the Ohlson model.  The same structure

as in Chapter 2 is used in this chapter.  First of all, a Bayesian version of the Ohlson

model for the grouping analysis is set up in the following three steps.

Step 1, describe the observation ),,,,,,,,,,,,( 1112222111211
~

NTNTT yyyyyyyyyy =

by the parameters },,,{ 2

~
σρµβ , where N is the number of companies in the GIC group,

and T is the number of time periods.  Under the assumption that the observations are

independent among the companies, we can get the following likelihood function:
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Step 2, assign a prior distribution to each parameter.  
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(P3.2) 
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''' yXByySSE −= , N is the number of

companies, T is the number of observations and P is the number of regression coefficients

(including the intercept).
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The ideas in choosing those hyperparameters },,,{ 2
000

0~
σµθ ∆  are the same as the ideas in

choosing the hyperparameters in Chapter 2.  That is, use the estimation of parameters

from two ordinary linear regression models: (OLM-3) and (OLM-4).
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Assume that all the parameters are independent of each other, the joint distribution of the

parameters can be expressed as
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Step 3, from the likelihood function in (3.1.1) and joint prior distribution in (3.1.3), we

can get the posterior distribution of the parameters given the data by Bayes’ rule:
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3.2 Gibbs Sampling

The process of applying Gibbs sampler in this chapter is the same as in Chapter 2.

Without repeating the steps, this section only specifies the complete conditional

distributions for the parameters and the starting points for each parameter.

The complete conditional distributions for the parameters are as follows.

First, 




 ΛΣΛ+Λ− β

β
µθβσρµβ ,)(|~,,,|
~~~

2

~~
INy P , where

( )

.)()()()(

,

,)(2)(          

11111111111

1 2

'

1,~~1,~~

'

1~1~

1 2

'
1,1,

'

1~
1

1

1 2

'

1,~~1,~~

'

1~1~~

−−−−−−−−−−−

= = −−

= =
−−

−

= = −−

∆+Σ∆=∆∆+∆Σ=ΣΣ+∆Σ=ΣΣ+∆=Λ












 −


 −+=Σ














 −−−−⋅




















 −


 −+=

∑ ∑

∑ ∑

∑ ∑

βββββββ

β

β

ρρ

ρρµ

ρρµ

N

i

T

t tiittiitii

N

i

T

t
tiittiit

i
i

N

i

T

t tkkttiitii

xxxxxx

yyyyxy

xxxxxx

Second, 





Φ


 −Φ+Φ− ∑

=

2

1 ~

'

1~
10

2

~~
,)1(~,,,| σβµµσρβµ

N

i i
i xyNy , where 22

0

2
0

σσ
σ
+

=Φ .

Third,






















 −


 −




 −


 −
−

∑∑∑∑

∑∑

= = −
−

= = −
−

= = −
−

N

i

T

t ti
ti

N

i

T

t ti
ti

N

i

T

t ti
ti

it
it

xyxy

xyxy
NUy

1 2

2

~

'

1,~1,

2

1 2

2

~

'

1,~1,

1 2 ~

'

1,~
1,

~

'

~2

~~
,)1,1|(~,,,|

β

σ

β

ββ
ρσµβρ

Fourth, 




 ++Γ

2
,

2
~,,,|

~~

2 SbTNaIy ρµβσ , where

∑∑∑
= = −

−
=











 −−−+


 −−=
N

i

T

t ti
ti

it
it

N

i i
i xyxyxyS

1 2

2

~

'

1,~
1,

~

'

~
1

2

~

'

1~
1 βρβµβ .

This chapter chooses the starting points ),,,( 0,2000 σµρβ  as follows.

First, 
~

10

~
')'( yXXX −=β .

34



Second,  )2)(1(,
1 1,~1,~

1

1
12

2211

120 ∑∑
= +

+

−

=

−−−−==
N

i titiit

T

t
it aveBxyaveBxySS

SSSS
SS

ρ  , where

.
)1(

)(
2 ,

)1(

)(
1

,)2(

,)1(

1 ~21 ~

1

1

1

2

~2
22

1

2

~

1

1
11

−

−
=

−

−
=

−−=

−−=

∑∑∑∑

∑∑

∑∑

= ==

−

=

− =

=

−

=

TN

Bxy
ave

TN

Bxy
ave

aveBxySS

aveBxySS

N

i t

T

t
t

N

i t

T

t
t

N

i it

T

t
it

N

i it

T

t
it

Fourth, ∑∑
= =

− −=
N

i

T

t itit BxyNT
1 1

~

10 )()(µ .

Fifth, 
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The ideas of setting 00 , µβ and 0,2σ  are the same as the ones of setting the hyper-

parameters },,,{ 2
000

0~
σµθ ∆  in (3.1.2), which is using the estimation of parameters from

the (OLM-3) and (OLM-4).  The idea of setting 0ρ  is taking it as the autocorrelation of

time series itti
it

itit vxyv ερβ +=−= −1,
~

'

~
 in an AR(1) structure.

3.3 Forecast

After getting the posterior distribution of the parameters, we can use it to predict the

future stock prices at period T + 1 for each firm in the group ,N, ,  , i y Ti 211, =+ , given

the data ,N, ,  ), i ,y,,y(yy iTii(iT)  2121 == . Letting },,,{ 2

~
σρµβ=Ω , the predictions

can be sampled from the posterior predictive distribution

                                      ∫ ΩΩΩ= ++ dyyyfyyf TiiTTi )|()|,()|( 1,)(1, π .                      (3.3.1)

Letting )()2()1( ,,, MΩΩΩ   be a sequence of range M from the Gibbs sampler, an 

estimator of )|( )(1, iTTi yyf +  is
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To get samples of 1, +Tiy , we use data argumentation to fill in 1, +Tiy  to each )(hΩ ,

Mh  , ,2 ,1 =  to get )(
1,

h
Tiy + , Mh  , ,2 ,1 = from the normal distribution described below.

                                  )),((~,| 2

~

'

~~

'

1,~)(1, σβρβ
iT

iT
Ti

iTTi xyxNyy −+Ω
+

+                       (3.3.3)

The 95% predictive credible interval for 1, +Tiy  can be computed from the 2.5% and

97.5% empirical quantiles of the values )(
1,

h
Tiy + , Mh  , ,2 ,1 = .

3.4 Conditional Predictive Ordinate

In this chapter, the conditional predictive ordinate is defined as
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 where 1, +tiy  denotes the random future observation of company i at period t + 1, 

),,,( 21)( itiiit yyyy = denotes the observations of company i from period 1 to t,

)(hΩ denotes the hth draw of the parameters from the Gibbs sampler,

and
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3.5 Empirical Results of Grouping Bayesian Analysis

The same criteria as in Chapter 2 are used for the model valuation in this chapter.  Table

3.5.1 shows the quantiles of R under the transformed scale as well as numbers of positive

ratios and negative ratios averaged in each GIC group with stationary restriction, from
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which we can draw the following conclusions.  In order to be consistent with Chapter 2,

Q2 is used as a major criterion in analyzing R .

• Based on Q2, the ratio value ranges from -0.7% (GIC = 1) to 2.3% (GIC = 5) and

0.4% over all (GIC = 0) under log transformation and from -0.7% (GIC = 1) to

3% (GIC = 5) and 0.8% over all (GIC = 0) under cubic root transformation.  

• Based on Q2, for the same GIC group, the ratio under log transformation is no

bigger than under cubic root transformation.  This implies that log transformation

is better for group analysis.

• Under both transformations, the numbers of positive ratios and negative ratios for

each group are very close and 0.5 is between LB and UB, which indicates that

both transformations do not overestimate the stock prices.  The only exception is

in the case with GIC equal to 0 under cubic root transformation.

Table 3.5.1 --- Quantiles of Ratio & Numbers of Nonnegative/Negative Ratios
With Stationary Restriction

GIC No.  of 
Firms Method Min Q1 Q2 Q3 Max No.

(+,0)
No.
(-) LB UB

0 391 log trans -2.728 -0.074 0.004 0.083 2.220 200 191 0.486 0.537
curt trans -1.082 -0.073 0.008 0.092 1.386 206 185 0.502 0.552

1 284 log trans -2.678 -0.072 0.000 0.076 2.090 142 142 0.470 0.530
curt trans -0.899 -0.073 0.004 0.085 1.179 146 138 0.484 0.544

2 42 log trans -0.520 -0.073 -0.007 0.061 0.689 20 22 0.399 0.553
curt trans -0.499 -0.078 -0.007 0.067 0.605 20 22 0.399 0.553

3 5 log trans -2.217 -0.198 0.008 0.218 2.064 3 2 0.381 0.819
curt trans -2.078 -0.193 0.014 0.223 1.820 3 2 0.381 0.819

4 29 log trans -0.831 -0.096 0.011 0.120 1.508 15 14 0.424 0.610
curt trans -0.882 -0.103 0.013 0.131 1.381 15 14 0.424 0.610

5 18 log trans -0.804 -0.075 0.023 0.124 1.112 10 8 0.438 0.673
curt trans -0.911 -0.076 0.030 0.141 1.174 10 8 0.438 0.673

6 13 log trans -1.617 -0.158 0.022 0.206 2.270 7 6 0.400 0.677
curt trans -1.678 -0.166 0.026 0.221 2.089 7 6 0.400 0.677

Table 3.5.2 gives minimum, maximum and overall values of R  under the transformed

scale from both classical statistical analysis and grouping Bayesian analysis.  It shows the

magnificent improvement of using grouping Bayesian approach to the Ohlson model

compared to the classical method.
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Table 3.5.2 --- Min, Max and Overall Values of R
Method Transformation min max overall

Classical log trans 4.70% 9.80% 8.80%
Analysis curt trans 6.30% 13.80% 10.90%
Grouping log trans -0.70% 2.30% 0.40%
Analysis curt trans -0.70% 3% 0.80%

Table 3.5.3 --- Average Length of Credible Interval

GIC
 

No. of
Firms Method

 

With S-Restriction
Ave

Length
Std 
Dev 

0 391
log trans 1.241 0.235
curt trans 1.215 0.228

1 284
log trans 1.168 0.226
curt trans 1.164 0.222

2 42
log trans 1.071 0.007
curt trans 1.059 0.007

3 5
log trans 4.040 0.207
curt trans 3.753 0.195

4 29
log trans 1.988 0.288
curt trans 1.994 0.292

5 18
log trans 1.880 0.189
curt trans 1.941 0.198

6 13
log trans 3.446 0.260
curt trans 3.413 0.264

Table 3.5.3 gives the average length of credible intervals and the corresponding standard

deviations for both log transformation and cubic root transformation under the

transformed scale and with the stationary restriction, from which we can draw the

following conclusions.

• Under log transformation, the average length of CI ranges from 1.071 (GIC = 2) to

4.040 (GIC = 3) and 1.241 overall (GIC = 0), the standard deviation ranges from

0.007 (GIC = 2) to 0.288 (GIC = 4) and 0.235 overall (GIC = 0).  

• Under cubic root transformation, the average length of CI ranges from 1.059 (GIC

= 2) to 3.753 (GIC = 3) and 1.215 overall (GIC = 0), the standard deviation ranges

from 0.007 (GIC = 2) to 0.292 (GIC = 4) and 0.228 overall (GIC = 0).
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• For each GIC group, the average length of CI is slightly smaller under cubic root

transformation than under log transformation.  

Table 3.5.4 --- Conditional Predictive Ordinate (each group has its own parameters)
With Stationary Restriction

GIC No. of
Firms Method Min Q1 Q2 Q3 Max Mean

0 391 log trans -16.440 -4.033 -3.641 -3.286 -2.326 -3.858
curt trans -15.338 -2.702 -2.387 -2.187 -1.794 -2.663

1 284 log trans -15.146 -3.990 -3.630 -3.303 -2.306 -3.818
curt trans -14.061 -2.673 -2.358 -2.157 -1.798 -2.622

2 42 log trans -6.135 -3.755 -3.498 -3.242 -2.372 -3.549
curt trans -4.889 -2.431 -2.267 -2.117 -1.713 -2.371

3 5 log trans -7.589 -5.185 -4.806 -4.670 -4.046 -5.259
curt trans -6.127 -3.721 -3.606 -3.531 -3.340 -4.065

4 29 log trans -8.444 -4.873 -4.485 -3.880 -3.444 -4.646
curt trans -7.153 -3.316 -3.044 -2.882 -2.783 -3.431

5 18 log trans -6.974 -4.438 -4.370 -4.099 -3.348 -4.531
curt trans -5.704 -3.145 -2.986 -2.851 -2.679 -3.284

6 13 log trans -9.195 -5.355 -4.866 -4.426 -3.952 -5.146
curt trans -7.768 -3.854 -3.587 -3.475 -3.299 -3.942

Table 3.5.4 gives the quantiles and mean of CPO for both log transformation and cubic

root transformation under the original scale with stationary restriction, from which we can

draw the following conclusions. As in Chapter 2, the mean value is used as a major

criterion to analyze CPO in this chapter.

• Under log transformation, the mean value of CPO ranges from -5.146 (GIC = 3)

to -3.284 (GIC = 2) and -3.858 overall (GIC = 0).

• Under cubic root transformation, the mean value of CPO ranges from -4.065 (GIC

= 3) to -2.371 (GIC = 2) and -2.663 overall (GIC = 0).

• For each GIC group, the mean of CPO is much larger under cubic root

transformation than under log transformation.  This indicates that cubic root

transformation does a better job for grouping analysis.

For a follow-up analysis, we gather the average CPO’s for each group in the case that all

companies share the same parameters. We call this “overall analysis”.  The results are in

Table 3.5.5, from which the following conclusions can be drawn.
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• Under log transformation, the mean value of CPO ranges from -4.429 (GIC = 2)

to -3.401 (GIC = 4). 

• Under cubic root transformation, the mean value of CPO ranges from -3.183 (GIC

= 2) to -2.176 (GIC = 4).

• For each GIC group, the mean of CPO is much larger under cubic root

transformation than under log transformation.  This indicates that cubic root

transformation does a better job than log transformation for the overall analysis.

Table 3.5.5 --- Conditional Predictive Ordinate (all companies have the same parameters)
With Stationary Restriction

GIC No. of
Firms Method Min Q1 Q2 Q3 Max Mean

1 284 log trans -16.442 -4.002 -3.625 -3.279 -2.326 -3.827
curt trans -15.338 -2.692 -2.383 -2.191 -1.794 -2.659

2 42 log trans -9.295 -4.990 -3.998 -3.560 -2.428 -4.429
curt trans -7.924 -3.598 -2.630 -2.338 -1.852 -3.183

3 5 log trans -4.657 -4.456 -3.812 -3.065 -2.579 -3.714
curt trans -3.323 -3.108 -2.568 -2.121 -1.875 -2.599

4 29 log trans -4.033 -3.783 -3.360 -3.061 -2.495 -3.401
curt trans -2.473 -2.327 -2.152 -2.013 -1.915 -2.176

5 18 log trans -4.437 -4.161 -3.739 -3.568 -3.139 -3.814
curt trans -2.943 -2.568 -2.412 -2.265 -2.053 -2.434

6 13 log trans -4.738 -4.180 -3.855 -3.453 -2.950 -3.822
curt trans -3.236 -2.716 -2.498 -2.249 -2.013 -2.508

Table 3.5.6 provides the comparison of the mean of CPO from Table 3.5.4 and Table

3.5.5.  This is the comparison between grouping analysis and overall analysis, from which

we can conclude that: under both transformations, grouping analysis and overall analysis

have almost the same predictive ability within GIC 1, which has the largest number of

companies.  Group analysis does a better job than overall analysis in GIC 2 and a worse

job for the left GIC groups.
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Table 3.5.6 --- Comparison of Table 3.5.3 to 3.5.4

log trans of OFM AR(1)-2
GIC Mean-3.5.3 Mean-3.5.4 dif dif/Mean-3.5.3

1 -3.818 -3.827 -0.009 0.002
2 -3.549 -4.429 -0.88 0.248
3 -5.259 -3.714 1.545 0.294
4 -4.646 -3.401 1.245 0.268
5 -4.531 -3.814 0.717 0.158
6 -5.146 -3.822 1.324 0.257

curt trans of OFM AR(1)-2
GIC Mean-3.5.3 Mean-3.5.4 dif dif/Mean-3.5.3

1 -2.622 -2.659 -0.037 0.014
2 -2.371 -3.183 -0.812 0.342
3 -4.065 -2.599 1.466 0.361
4 -3.431 -2.176 1.255 0.366
5 -3.284 -2.434 0.85 0.259
6 -3.942 -2.508 1.434 0.364

Summarily, the grouping Bayesian analysis in this chapter also greatly improves the

predictive ability of the Ohlson model comparing to the classical analysis in Chapter 1.  

It does not overestimate the stock prices under both transformations with stationary

restriction, and cubic root transformation is better than log transformation in this case.

The cubic root transformation is especially applicable for those GIC groups which have

large amount of companies.
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Chapter 4

Bayesian Data Analysis by Adaptive Pooling

Information Across Firms

4.1 Bayesian Hierarchical Model 

The Bayesian approaches in Chapter 2 and Chapter 3 represents two extreme cases.

Chapter 2 treats each company individually and does not borrow information across

companies at all.  Chapter 2 overestimates the stock prices.  Chapter 3 supposes all the

companies in the same GIC group follow the same rules of predicting stock prices, which

brings more information in the investigation. The improvement in Chapter 3 is correcting

the bias, but the model is too simple.  Furthermore, these two extreme cases are barely

seen in the real stock literature where on one side the companies have their own specific

characteristics and on the other side they are affected by the same economic factors and

therefore have some things in common.  As a combination of Chapter 2 and Chapter 3,

also in order to be closer to the reality, this chapter develops a hierarchical Bayesian

approach is to simultaneously estimate the unknown coefficients for each company by

adaptively pooling information across firms.  

Considering that all the firms will be included in the Ohlson model, it is required to add

the company index into expression (1.1.5) which turns out to be
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The Bayesian version of the Ohlson Model in (4.1.1) for a GIC group is set up in four

steps.
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First, describe the observation ),,,,,,,,,,,,( 1112222111211
~
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=σρµβ , where N is the number of companies,

and T is the number of time periods.  Under the assumption that the observations are

independent among the companies, we can get the following likelihood function:
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Second, assuming independence at all levels, assign a prior distribution to each

parameter,  
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where },,,{
~

γαθ ∆ are unknown hyperparameters, and },,2,1:,,,{ 2
00

2
00 Niiiii =τνφψ  are

known hyperparameters which are set as follows.
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This paper does not pool si 'ρ  because the time series of some companies are stationary

while some are not.  It does not pool si 'µ  because the start values can be very different

from the rest and it is difficult to pool them.  In order to use the information across
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companies, we pool si 'β  adaptively.  As for si '2σ , we incorporate heterogeneity but we

believe they come from the same population and allow pooling them.

Third, assign a hyper-prior distribution to each unknown hyperparameter in },,,{
~

γαθ ∆ . 
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Assume that all the parameters },,2,1:,,,{ 2

~
Niiii

i
=σρµβ are independent of each

other, the joint distribution of the parameters can be expressed as
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Since we have assumed that all the unknown hyperparameters },,,{
~

γαθ ∆ are independent

of each other, the joint distribution for the unknown hyperparameters can be expressed as
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Finally, from the likelihood function in (4.1.2) and joint prior distribution in (4.1.4) as

well as in (4.1.5), we can get the posterior distribution of all the parameters by Bayes’

rule:
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4.2 Gibbs Sampling 

The target here is to make inferences on the parameters },,2,1:,,,{ 2

~
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i
=σρµβ  and

the unknown hyperparameters },,,{
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γαθ ∆ given the data.  The complete conditional

distributions are as follows.
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The Gibbs sampling is to carry out the following steps (i) and (ii) iteratively.  These two

steps consist of sub-steps that are carried out sequentially for a single chain.  The Markov

chain can also be replicated by drawing independent initial values of the parameters and

hyperparameters.

Step (i): Update the parameters },,2,1:,,,{ 2

~
Niiii

i
=σρµβ given the hyperparameters

and data.  The following sub-steps (i-1) to (i-4) are executed independently for each

Ni ,,2,1 = .

(i-1) Draw 
i~

β directly from the multivariate normal distribution described in (4a);

(i-2) Draw iµ directly from the univariate normal distribution described in (4b);

(i-3) Use Devroye (1986) method to draw iρ  from the univariate normal distribution

described in (4c);

(i-4) Draw 2
iσ directly from the inverse gamma distribution described in (4d).

Step (ii): Generate the hyperparameters },,,{
~

γαθ ∆ given the values of the parameters in

step (i).

(ii-1) Draw ~
θ  from the multivariate normal distribution described in (4e);

(ii-2) Draw ∆  from the P-dimensional Wishart distribution described in (4f);

(ii-3) Use a grid to draw α  from the complete conditional distribution described in (4g);

(ii-4) Drawγ  from the inverse Gamma distribution described in (4h).

4.3 Forecasting

After getting the posterior distribution of the parameters, we can use it to predict the

future stock prices at period T + 1 for each firm in the group ,N, ,  , i y Ti 211, =+ , given

the data ,N, ,  ), i ,y,,y(yy iTii(iT)  2121 == . 
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Letting },,,,{ 2

~
iii

i
i σρµβ=Ω  ,,,2,1 Ni =  the predictions can be sampled from the

posterior predictive distribution

                                  .)|()|,()|( 1,)(1, ∫ ΩΩΩ= ++ iiiTiiTTi dyyyfyyf π                      (4.3.1)

Letting )()2()1( ,,, M
iii ΩΩΩ   be a sequence of range M from the Gibbs sampler, an 
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To get samples of 1, +Tiy , we use data argumentation to fill in 1, +Tiy  to each )(h
iΩ ,

Mh  , ,2 ,1 =  to get )(
1,

h
Tiy + , Mh  , ,2 ,1 = from the normal distribution described below:
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The 95% predictive credible interval for 1, +Tiy  can be computed from the 2.5% and

97.5% empirical quantiles of the values )(
1,

h
Tiy + , Mh  , ,2 ,1 = .

4.4 Conditional Predictive Ordinate

In this chapter, the conditional predictive ordinate is defined as
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 where 1, +tiy  denotes the random future observation of company i at period t + 1, 
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 4.5 Empirical Results of Adaptive Bayesian Analysis by Pooling Information Across

Firms

As in Chapter 2 or 3, the same criteria are used for the model valuation in this chapter.

Table 4.5.1 --- Quantiles of Ratio & Numbers of Nonnegative/Negative Ratios
With Stationary Restriction

GIC No.  of 
Firms Method Min Q1 Q2 Q3 Max

No.
(+,
0)

No.
(-) LB UB

0 391 log trans -8.3252 -0.1449 0.0609 0.2805 9.1655 226 165 0.553 0.603
curt trans -3.2252 -0.1460 0.0641 0.2868 3.5102 227 164 0.556 0.606

1 284 log trans -8.3252 -0.1489 0.0581 0.2791 9.1655 163 121 0.545 0.603
curt trans -3.2252 -0.1514 0.0600 0.2838 3.5102 163 121 0.545 0.603

2 42 log trans -5.2459 -0.1490 0.0812 0.3287 4.2113 25 17 0.519 0.671
curt trans -3.0397 -0.1431 0.0880 0.3372 3.1222 25 17 0.519 0.671

3 5 log trans -1.2484 -0.1413 0.0649 0.2749 2.8667 3 2 0.381 0.819
curt trans -1.2718 -0.1385 0.0741 0.2915 2.9801 3 2 0.381 0.819

4 29 log trans -1.6030 -0.1239 0.0606 0.2475 1.6233 17 12 0.495 0.678
curt trans -1.6576 -0.1227 0.0669 0.2612 1.6809 17 12 0.495 0.678

5 18 log trans -2.1939 -0.1253 0.0631 0.2636 2.1197 11 9 0.439 0.661
curt trans -2.2456 -0.1240 0.0707 0.2793 2.0704 11 9 0.439 0.661

6 13 log trans -1.8886 -0.1332 0.0617 0.2735 2.4346 8 5 0.480 0.750
curt trans -1.9548 -0.1358 0.0630 0.2786 2.2311 8 5 0.480 0.750

Table 4.5.1 shows the quantiles of ratio under the transformed scale as well as numbers of

positive ratios and negative ratios averaged in each GIC group with stationary restriction,

from which we can draw the following conclusions.

• Based on Q2, the ratio value ranges from 5.81% (GIC = 1) to 8.12% (GIC = 2)

and 6.09% overall (GIC = 0) under log transformation, and from 6% (GIC = 1) to

8.8% (GIC = 2) and 6.41% overall (GIC = 0)under cubic root transformation.

Under both transformations, GIC 1 has the smallest ratio and GIC 5 has the largest

ratio.

• Based on Q2, for the same GIC group, the ratio under log transformation is

smaller than under cubic root transformation.  

• When GIC is 0, 1 or 2, 0.5 is not between LB and UB; when GIC is 3, 4, 5, or 6,

0.5 is between LB and UB. This indicates that both transformations overestimate

the stock price for large GIC groups and do not overestimate the stock price for

small GIC groups.

49



Table 4.5.2 --- Min, Max and Overall Values of R
Method Transformation min max overall

Classical log trans 4.70% 9.80% 8.80%
Analysis curt trans 6.30% 13.80% 10.90%

Adaptive Pooling log trans 5.81% 8.12% 6.09%
Analysis curt trans 6% 8.80% 6.41%

Table 4.5.3 --- Average Length of Credible Interval

GIC No. of 
Firms Method

With S-Restriction
Ave. CI 
Length

Std 
Dev

0 391
log trans 4.085 0.453
curt trans 3.873 0.450

1 284
log trans 4.064 0.458
curt trans 3.854 0.455

2 42
log trans 4.292 0.452
curt trans 4.056 0.444

3 5
log trans 4.232 0.484
curt trans 3.990 0.573

4 29
log trans 3.868 0.369
curt trans 3.668 0.367

5 18
log trans 4.233 0.331
curt trans 4.052 0.358

6 13
log trans 4.040 0.357
curt trans 3.856 0.367

Table 4.5.2 gives minimum, maximum and overall values of R  under the transformed

scale from both classical statistical analysis and adaptive pooling Bayesian analysis.  It

shows the notable improvement of using adaptive pooling Bayesian approach to the

Ohlson model compared to the classical method.

Table 4.5.3 gives the average length of credible intervals and the corresponding standard

deviations for both log transformation and cubic root transformation under the

transformed scale with stationary restriction, from which we can draw the following

conclusions.
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• Under log transformation, the average length of CI ranges from 3.868 (GIC = 4) to

4.292 (GIC = 2) and 4.085 overall (GIC = 0), the standard deviation ranges from

0.331 (GIC = 5) to 0.573 (GIC = 3) and 0.453 overall (GIC = 0).  

• Under cubic root transformation, the average length of CI ranges from 3.668 (GIC

= 4) to 4.056 (GIC = 2) and 3.873 overall (GIC = 0), the standard deviation ranges

from 0.358 (GIC = 5) to 0.573 (GIC = 3).  

• For each GIC group, the average length of CI is significantly smaller under cubic

root transformation than under log transformation.  

Table 4.5.4 --- Conditional Predictive Ordinate 
With Stationary Restriction

GIC No. of
Firms Method Min Q1 Q2 Q3 Max Mean

0 391 log trans -2.558 -1.387 -1.274 -1.203 -1.054 -1.306
cube root trans -2.381 -1.337 -1.225 -1.142 -0.995 -1.250

1 284 log trans -2.558 -1.358 -1.268 -1.202 -1.063 -1.296
cube root trans -2.381 -1.310 -1.216 -1.135 0.995 -1.240

2 42 log trans -1.750 -1.497 -1.397 -1.242 -1.084 -1.384
cube root trans -1.687 -1.430 -1.341 -1.173 -1.016 -1.322

3 5 log trans -1.638 -1.586 -1.478 -1.250 -1.162 -1.423
cube root trans -1.586 -1.526 -1.423 -1.164 -1.100 -1.360

4 29 log trans -1.661 -1.275 -1.216 -1.144 -1.054 -1.228
cube root trans -1.610 -1.230 -1.164 -1.086 -0.995 -1.173

5 18 log trans -1.675 -1.483 -1.378 -1.270 -1.160 -1.389
cube root trans -1.628 -1.426 -1.327 -1.212 -1.093 -1.338

6 13 log trans -1.479 -1.353 -1.207 -1.212 -1.134 -1.282
cube root trans -1.440 -1.324 -1.197 -1.155 -1.059 -1.235

Table 4.5.4 gives the quantiles and mean of CPO for both log transformation and cubic

root transformation under the transformed scale with stationary restriction, from which

we can draw the following conclusions.

• Under log transformation, the mean value of CPO ranges from -1.423 (GIC = 3)

to -1.228 (GIC = 4) and -1.306 overall (GIC = 0).

• Under cubic root transformation, the mean value of CPO ranges from -1.360 (GIC

= 3) to -1.173 (GIC = 4) and -1.250 overall (GIC = 0).  

• Under both transformations, group 4 has the largest CPO and group 3 has the

smallest CPO.  
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• For each GIC group, the mean of CPO is quite larger under cubic root

transformation than under log transformation.  This indicates that cubic root

transformation does a better job than log transformation for the approach of

adaptive pooling information across companies.

In all, the adatpive Bayesian analysis by pooling information across companies in this

chapter still improves the predictive ability of the Ohlson model comparing to the

classical analysis in Chapter 1.  It overestimates the stock price under both

transformations with stationary restriction when the size of GIC group is large, and

doesn’t overestimate the stock price when the size is small.  Cubic root transformation is

better than log transformation in this case.  
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Chapter 5

Comparison of Three Bayesian Models and 

Overall Conclusions

In this last chapter, we present the conclusions of our research work on forecasting stock

prices via the Ohlson model after comparing the three Bayesian models. 

5.1 Comparison of Three Bayesian Models

This section first compares the three Bayesian models that are used the former three

chapters based on the minimum, maximum and overall values of R, average length of

credible interval and log conditional predictive ordinate (CPO), which are gathered in

Table 5.1.1.  All these values are on the transformed scale except that CPO’s are

calculated on the original scale.

The following conclusions can be drawn from Table 5.1.1.

• Based on R, grouping analysis has the smallest R values (less than 1%) and

adaptive pooling analysis has the largest R values (around 6.5%).  The individual

analysis results in very small R values too (around 2%).  

• Based on average length of credible interval, individual analysis has the shortest

lengths (around 1) and adaptive pooling analysis has the longest lengths (around

4).  The average length values got from grouping analysis are not large (around

1.2). 

• Based on CPO, individual analysis has the largest values (greater than -1.5), and

adaptive pooling analysis has comparable values with grouping analysis (mostly

less than -2).  
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Theoretically, adaptive pooling analysis is supposed to achieve the best predictive results.

But using the criteria above, adaptive pooling analysis does not show any advantages

comparing to the other two methods. 

Table 5.1.1

Method R 
Transformation min max overall

Individual log trans 0.50% 2.50% 2%
Analysis curt trans 0.70% 2.90% 2.20%
Grouping log trans -0.70% 2.30% 0.40%
Analysis curt trans -0.70% 3% 0.80%

Adaptive Pooling log trans 5.81% 8.12% 6.09%
Analysis curt trans 6% 8.80% 6.41%

Method Ave Length of CI 
Transformation min max overall

Individual log trans 0.652 1.003 0.949
Analysis curt trans 0.682 1.012 0.958
Grouping log trans 1.071 4.04 1.241
Analysis curt trans 1.059 3.753 1.215

Adaptive Pooling log trans 3.868 4.292 4.085
Analysis curt trans 3.668 4.056 3.873

Method CPO
Transformation min max overall

Individual log trans -5.144 -3.417 -3.432
Analysis curt trans -2.639 -1.978 -2.267
Grouping log trans -5.146 -3.284 -3.858
Analysis curt trans -4.065 -2.371 -2.663

Adaptive Pooling log trans -6.046 -3.245 -4.737
Analysis curt trans -4.233 -2.810 -3.429

For the adaptive Bayesian analysis, two transformations are also compared based on the

same criteria as above.  This paper concludes that log transformation and cubic

transformation are comparable even though the results show that the cubic root

transformation does a slightly better job.  

In the former three chapters, LB and UB that are calculated by the number of nonnegative

R’s and the number of negative R’s are used to check the state of overestimation.  The

conclusion is both individual analysis and adaptive pooling analysis overestimate the

stock prices, but the grouping analysis does not.  To have an overall look, see Table 5.1.2.

54



Table 5.1.2 --- Overestimation Check

Method Transformation LB UB
Individual log trans 0.581 0.631
Analysis curt trans 0.581 0.631
Grouping log trans 0.486 0.537
Analysis curt trans 0.502 0.552

Adaptive Pooling log trans 0.553 0.603
Analysis curt trans 0.556 0.606

The histogram and QQ- plots of the residuals in the adaptive pooling analysis (see Figure

5.1.1 – Figure 5.1.4) are also used to check the model fitting.  Using the log

transformation under the transformed scale, the residual is normally distributed with

mean -0.145 and standard deviation 0.385.  Using the cubic root transformation under the

transformed scale, the residual is normally distributed with mean -0.143 and standard

deviation 0.370.  Figure 5.1.5 shows the scatter plot of standardized residual versus

prediction for all companies under log transformation in the adaptive pooling analysis

Figure 5.1.6 shows the scatter plot for each GIC group.  It is difficult to access these plots

because the standard deviations are so large that the deleted standard residual plots are

lost.  

Figure 5.1.7 shows the lines plots of predicted stock prices versus real stock prices for all

the companies corresponding to the three Bayesian methods.  We still cannot see any

advantages of the adaptive pooling method. 
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Figure 5.1.1
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Figure 5.1.3
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Figure 5.1.5 

Figure 5.1.6
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Figure 5.1.7
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5.2 Estimated Regression Coefficients from Adaptive Bayesian Analysis

In Chapter 1, the classical approach gives the estimated regression coefficients for each

GIC group and concludes that the intercept, BPS and the first two following quarters’

abnormal earnings per share ( 41 ~ ββ  ) are generally significant in the Ohlson Model.

To compare with this conclusion, the posterior distribution of ~
θ  in the Bayesian model

for adaptive pooling analysis for each GIC group are collected in Table 5.2.1, which

shows that only the intercept, BPS and the first following quarters’ abnormal earnings per

share ( 31 ~ ββ  ) are significant.  A reduced model with only these three predictors is

analyzed by the adaptive pooling Bayesian approach.  Those three items turn out to be all

significant in the reduced model (see Table 5.2.2).

Table 5.2.1 --- Summaries of the Posterior Distribution of ~
θ  for the Full Model

log trans with stationary restriction
Parameters Mean STD NSE C025 C975

theta1 3.20899 0.07187 0.01513 3.0697 3.35517
theta2 0.02597 0.00682 0.00117 0.01221 0.03906
theta3 0.1982 0.09071 0.01886 0.02582 0.38316
theta4 0.1283 0.07958 0.01441 -0.01576 0.28409
theta5 0.02232 0.07982 0.0163 -0.14066 0.18115
theta6 -0.00458 0.07225 0.0149 -0.14558 0.14257

curt trans with stationary restriction
Parameters Mean STD NSE C025 C975

theta1 2.89697 0.06865 0.01438 2.76542 3.0369
theta2 0.02877 0.00641 0.00111 0.01611 0.04133
theta3 0.21271 0.08863 0.01808 0.03906 0.39566
theta4 0.13214 0.07454 0.01371 -0.00397 0.28132
theta5 0.01312 0.07821 0.01577 -0.14944 0.16467
theta6 -0.0048 0.0693 0.01426 -0.14041 0.14078

Note that STD denotes the posterior standard deviation,  NSE denotes the numerical

standard error, C025 and C975 denote the lower bound and upper bound of the 95%

credible interval separately.
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Table 5.2.2 --- Summaries of the Posterior Distribution of ~
θ  for the Full Model

log trans with stationary restriction
Parameters Mean STD NSE C025 C975

theta1 3.20442 0.06307 0.02058 3.07917 3.32686
theta2 0.02736 0.00539 0.00149 0.01648 0.03735
theta3 0.23281 0.05942 0.01453 0.11947 0.35121

curt trans with stationary restriction
Parameters Mean STD NSE C025 C975

theta1 2.88904 0.061 0.02002 2.76801 3.00891
theta2 0.03011 0.00513 0.00143 0.01991 0.03958
theta3 0.24232 0.05713 0.01409 0.13454 0.3568

5.3 Overall Conclusions

Overall, four approaches are applied to interpret the Ohlson model in this paper.  They are

classical statistical analysis in Chapter 1, individual Bayesian analysis in Chapter 2,

grouping Bayesian analysis in Chapter 3 and adaptive pooling Bayesian analysis in

Chapter 4.  The first two chapters prove that both the log transformation and cubic root

transformation can enhance the predictive ability of the Ohlson model.  The analysis in

Chapter 2 results to use stationary restriction and transformed measurement scale.  All

three Bayesian approaches are compared to the classical method based on the minimum,

maximum and overall values of R, and they are also compared with each other based on

the same criteria.  The conclusions are:

• Each Bayesian approach used in this paper does better job than the classical

method

• Log transformation and cubic transformation have comparable efficiency in

enhancing the predictive ability. 

• Book value per share and the abnormal earning per share for the first following

period affect the stock prices significantly, the last three abnormal earnings are not

important.

This paper expects to reach the conclusion that the adaptive pooling Bayesian method is

better than individual or grouping Bayesian approach. But all the four criteria, relative

difference (R), average length of credible interval, lower bound (LB) and upper bound
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(UB) of the 95% credible interval of the estimated probability of nonnegative R, and log

conditional predictive ordinate (CPO), all fail to give this sensible conclusion.  Further

investigations are necessary.
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A. Origination of the Ohlson (1995) Valuation Model

For more accurate understanding, this paper splits the commonly called Ohlson (1995)

model into two: the Ohlson (1995) Valution Model (OVM) and the Ohlson (1995)

Approximation Model (OAM).  The Ohlson (1995) Valution Model is a special case of

the Residual Income Valuation Model (RIM), which was developed from the traditional

Dividend Discount Model (DDM). 

In economics and finance, the traditional approach to the problem of stock valuation

based on a single firm has focused on the Dividend Discount Model (DDM) of

Rubinstein (1976).  It defines the value of a firm as the present value of the expected

future dividends.  That is, under the assumption of no arbitrage, there exists a pricing

kernel i
tit r −

+ += )1(π  such that the price of a stock tP  is related to its dividends td  by
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where tr  denotes the discount rate during time period t, [.]tE  denotes the expectations

operator conditioned on the date t information.  Note that the “arbitrage” is a situation in

which the company can make money by exploiting the efficiency of the market.

The idea of DDM implies that one should forecast dividends in order to estimate the

stock prices.  Since dividends are arbitrarily decided by management, it may be hard to

estimate a dividend process in small samples (Ang & Liu, 1998).  Moreover, market

participants tend to focus on accounting information, especially earnings.  The

fundamental relation between book value of equity tbv , earnings tx  and dividends td  is

described in the Clean Surplus Accounting Model by equation tttt dxbvbv −+= −1 , i.e.,

the change in book value between two dates equals earnings minus dividends.  This

relations is called the Clean Surplus Relation (CSR) which can also be written as

                                               ).( 1−−−= tttt bvbvxd                                                      (A2)
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Substituting equation (A2) to equation (A1), thereby eliminating dividends, yields the

Residual Income Valuation Model (RIM) described in Peasnell (1982). It is a function of

only accounting variables, namely:

                                           .)()1(
1

1∑
∞

=
−++

− −++=
i

ittit
i

ttt bvrxrbvP                                 (A3)

This principle shows that the theoretical value of the firm is equal to the opening book

value of equity plus the present value of its residual income (or excess earning),  and will

not be affected by accounting choices.

The attention to the relationship between theoretical firm value and the residual income

stream has attracted considerable practitioner interest and resulted in a number of

proprietary models being marketed (Gregory, Saleh & Tucker, 2004).  The Ohlson (1995)

Valuation Model (OVM), one special case of the general class of RIM, is evaluated as a

“major breakthrough” (Bernard, 1995) and “landmark works in financial accounting”

(Lundholm, 1995).  The particular innovation in the Ohlson model is the employment of

an “AR(1) linear information dynamic” (LID) which is comprised of abnormal earnings

and a variable tv  representing “other information” whose source is uncorrelated with

accounting information.  We can view the abnormal earnings as a contraction of “above

normal earnings”.  The terminology is motivated by the concept that “normal” earnings

should relate to the “normal” return on the capital invested at the beginning at the period,

that is, net book value at date t – 1 multiplied by the interest rate tr .  Thus one interprets

a
tx  as earnings ( tx ) minus a charge for the use of capital ( 1, −titbvr ) as in the following

equation:  

                                                  1−−= ttt
a
t bvrxx  .                                                           (A4)

The LID assumption can be written formally as
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where 11ϖ  is persistence parameter of abnormal earnings a
tx , 1,21,1 , ++ tt εε   is white noise

error terms with zero mean,  γ  is persistence parameter of other information tv . 

Substituting equations (A4) and (A5) to RIM, yields the Ohlson Valuation Model:

                                            ,11 t
a
ttt vxbvP βα ++=

(A6)

where
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(See Appendix B for the derivation process.)

                                                                                   

The Ohlson model states that the stock price is a linear function of book value of the

equity ( tbv ), current abnormal earnings and an intercept term, which takes the following

regression form:

                                     t
a
ttt xbvP εβββ +++= 210                                                       (A7)
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B. Derivation of the Ohlson Valuation Model

The following is the straightforward derivation process of equation (A7):

][)1(

)0][(][)1(][)1()1(

][)1(

][)1(

1
1

11

1
1

1
11

1

111
1

1

a
itt

i

i
t

t

t
t

ittit
i

t
i

t
a

itt
i

i
t

i

i
ttt

it
a

ittt
i

i
tt

a
itt

i

i
ttt

xEr
r
v

bv

EErxErrvbv

xvErbv

xErbvP

−+

∞

=

−

++

∞

=

−
−+

∞

=

−
∞

=

−

+−+

∞

=

−

+

∞

=

−

∑

∑∑∑

∑

∑

+++=

=++++++=

++++=

++=

ϖ

εεϖ

εϖ

][)1(
1 )1(

1

)1(11 a
itt

i

i
t

tt

t
t xEr

rr
v

bv −+

∞

=

−−∑ +
+

++=
ϖ

)(
11

][)1(
1

][
1

][)1(
1

1111

1

1111

0

11

tt
t

a
t

tt

t
t

a
itt

i

i
t

t

a
tt

tt

t
t

a
itt

i

i
t

tt

t
t

bvP
r

x
rr

vbv

xEr
r

xE
rr

v
bv

xEr
rr

v
bv

−
+

+
+

++=

+
+

+
+

++=

+
+

++=

+

∞

=

−

+

∞

=

−

∑

∑

ϖϖ

ϖϖ

ϖ

a
t

ttt

tt
tt

a
t

tt

t

tt

tt
tt

a
t

ft

t

t

t
tt

x
rrr

vrbvP

x
rr

r
rr

vr
bvP

x
Rr

v
r

rbvP

11

11

1

11

11

11

1111

1)1(
)1(

)1)(1(
)1(

)1(
)1(

1
1)(

ϖ
ϖ

ϖ

ϖ
ϖ

ϖ

ϖϖ

−+
+

−+
++=⇒

+−+
+

+
−+

+
=−⇒

+=





+
−+−⇒

67



C. The Ohlson Approximation (1995) Model

Ohlson (1995) presents us with the license to break with the traditional focus on

explaining price behavior and to shift that focus to predicting earnings.  The key lies in

the following approximation.  It states that the value of the firm can be well approximated

even over a finite horizon by a function of forecasted earnings, book value, and discount

rates.  The only assumption required is that these forecasts be consistent with clean

surplus relation.  We begin by defining a variable T
tV  as follows:
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Note that the amount T
tV  is a function of future earnings and book values measured over

a finite horizon.  However, despite the limited horizon, 
T

tV  approximates the value of the

firm, so long as the horizon is “long enough”, which can be described as the following

equation:

                                                                 .lim t
T

tT
PV =

∞→                                                   (C2)

Equations (C1) and (C2) imply that the ability to predict earnings and book value --- even

over a finite horizon --- is tantamount to the ability to approximate current value.  For a

special empirical application of the Ohlson (1995) approximating model, we use the

future earnings and book value forecasted over a horizon of 4 periods.  That is, we let T =

4.  Equation (C1) turns out to be
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If 4
tV  provides a good approximation of firm value, we should be able to explain a large

fraction of the variation in stock prices with the variables on the right-hand side of

equation (C3).  This suggests the following regression model:

                                  .][ 1,,
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1
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Model (C4) is the Ohlson Model used in this paper.
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D. Definitions of Data Items

(All the definitions are for industrials.)

DOW JONES INDUSTRY GROUP represents the industry classification assigned by

Dow Jones based on the company’s lines of business. 

GENERAL INSTUSTY CLASSIFICATION represents a company's general industry

classification. 01 Industrial; 02 Utility; 03 Transportation; 04 Banks/Savings and Loan;

05 Insurance; 06 Other Financial

DOW JOE MARKET SECTORS are a standardized series of digits that are used to

categorize market segments issued by Dow Jones.

The Global Industry Classification Standard (GICS) was developed by Morgan Stanley

Capital International (MSCI), a premier independent provider of global indices and

benchmark-related products and services, and Standard & Poor’s (S&P), an independent

international financial data and investment services company and a leading provider of

global equity indices.

The GICS classifications aim to enhance the investment research and asset management

process for financial professionals worldwide. It is the result of numerous discussions

with asset owners, portfolio managers and investment analysts around the world and is

designed to respond to the global financial community’s need for an accurate, complete

and standard industry definition.

GICSSECTOR means GICS Codes. The following websites are about the sector

definitions.

http://www.msci.com/equity/GICS_Sector_Definitions_2005.pdf

COMPANY IDENTITY KEY (ID) 
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PRICE CLOSE means the last price an issue traded at for that day.  For the quarterly data

set of PriceClose, all the values are the last price for the last day of corresponding quarter.

TOTAL ASSETS represent the sum of total current assets, long term receivables,

investment in unconsolidated subsidiaries, other investments, net property plant and

equipment and other assets.

TOTAL LIABILITIES represent all short and long term obligations expected to be

satisfied by the company. 

It includes: 

(1)    Current Liabilities 

(2)    Long Term Debt 

(3)    Provision for Risk and Charges (non-U.S. corporations) 

(4)    Deferred taxes 

(5)    Deferred income 

(6)    Other liabilities 

(7)    Deferred tax liability in untaxed reserves (non-U.S. corporations) 

(8)    Unrealized gain/loss on marketable securities (insurance companies) 

(9)    Pension/Post retirement benefits 

(10)    Securities purchased under resale agreements (banks) 

It excludes: 

(1)    Minority Interest 

(2)    Preferred stock equity 

(3)    Common stock equity 

(4)    Non-Equity reserves

PREFERRED STOCK represents a claim prior to the common shareholders on the

earnings of a company and on the assets in the event of liquidation. 

For U.S. corporations, its value is shown at the total involuntary liquidation value of the

number of preferred shares outstanding at year end. If preferred stock is redeemable at
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anytime by the shareholder it is shown at redemption value, or if the company carries it at

a higher value than the involuntary liquidation value, the stated value. 

Preferred stock of subsidiary and premium on preferred stock is included in preferred

stock. It excludes minority interest in preferred stock. 

For Non-U.S. Corporations, the stated value of preferred stock is shown and it includes

all preferred stock related accounts. 

For Non-U.S. Corporations preference stock which participates with the

common/ordinary shares in the profits of the company is included in common equity.

COMMON SHARES OUTSTANDING represent the number of shares outstanding at the

company's year end. It is the difference between issued shares and treasury shares. 

For companies with more than one type of common/ordinary share, common shares

outstanding represents the combined shares adjusted to reflect the par value of the share

type identified in field 6005 - Type of Share.

BOOK VALUE PER SHARE represents the book value (proportioned common equity

divided by outstanding shares) at the company's fiscal year end for non-U.S. corporations

and at the end of the last calendar quarter for U.S. corporations. 

Preference stock has been included in equity and the calculation of book value per share

where it participates with common/ordinary shares in the profits of the company. It is

excluded in all other cases, deducted at liquidation value for U.S. companies and at par

value for all others. 

EARNINGS PER SHARE  means the portion of a company's profit allocated to each

outstanding share of common stock.

EPSMeanQTR1 is the mean value in a set of EPS estimates of the first fiscal quarter for a

company; EPSMeanQTR2 is the mean value in a set of EPS estimates of the second fiscal

quarter for a company.  Same ideas can be adopted by EPSMeanQTR2 and

EPSMeanQTR3. (See Table 2 for more details.)
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EPSConsensusForecastPeriodQTR1 is the period (month) for which an EPS estimate is

being forecasted.  Same ideas can be adopted to EPSConsensusForecastPeriodQTR3-4.

(See Table 3 for more details.)

Table 2 EPSMeanQTR1 (partly)

Key: Feb-98 Mar-98 Apr-98 May-98 Jun-98 Jul-98
C000003104 0.5 0.5 0.5 0.53 0.46 0.46
C000000048 0.39 0.38 0.37 0.37 0.37 0.34
C000028595 0.54 0.54 0.54 0.56 0.56 0.56
C000000006 0.06 0.06 0.06 0.06 0.07 0.07
C000000085 0.12 0.12 0.11 0.11 0.1 0.14
C000001268 0.24 0.23 0.23 0.24 1.03 1.02
C000000104 -0.07 -0.09 -0.08 -0.08 -0.09 -0.08
C000000020 0.17 0.17 0.17 0.2 0.2 0.19
C000000110 0.93 0.92 0.84 0.94 0.94 0.92
C000029653 0.17 0.17 0.17 0.17 0.17 0.18
C000000015 0.19 0.19 0.19 0.19 0.19 0.18

Table 3 EPSConsensusForecastPeriodQTR1 (partly)

Key: Feb-98 Mar-98 Apr-98 May-98 Jun-98 Jul-98
C000003104 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998
C000000048 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998 Sep1998
C000028595 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998
C000000006 Apr1998 Apr1998 Apr1998 Apr1998 Jul1998 Jul1998
C000000085 Feb1998 Feb1998 May1998 May1998 May1998 Aug1998
C000001268 Mar1998 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998
C000000104 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998 Sep1998
C000000020 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998
C000000110 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998
C000029653 Mar1998 Mar1998 Mar1998 Mar1998 Mar1998 Jun1998
C000000015 Mar1998 Mar1998 Mar1998 Jun1998 Jun1998 Jun1998

Treasury bills are short-term debt instruments used by the U.S. Government to finance

their debt. Commonly called T-bills they come in denominations of 3 months, 6 months

and 1 year. Each treasury bill has a corresponding interest rate (i.e. 3-month T-bill rate, 1-

year T-bill rate).
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E.  How to retrieve data by Thomsom ONE Analytics Excel Add-in

For instance, we want to retrieve the data set of PriceClose.

1. Make sure you have Microsoft Excel installed in your computer.

2. Download and install the software “Thomson ONE Analytics Excel Add-in”.

1) Open the Thomson ONE Banker Analytics Web page.

2) Click on “Tools” at the top of the Thomson One page.

3) Click on the “Office Tools” tab on the Tools page.

4) See the section “Thomson ONE Analytics for Office Version 1.0”.

5) Click on the “Download” link in this section and follow the directions to save the

add-in installation file to your computer.

6) There are brief installation directions on this page, and step-by-step installation

instructions also can be downloaded from this section.  During the installation

process, your Thomson Analytics username and password must be entered. Once

installed, the Thomson Analytics Toolbar will be visible in Excel.

3. Upload S&P500 into Thomson Analytics, call 800-662-7878(-1-2) for help.

4. In a blank Excel sheet, choose the first cell (A1).

5. On the Thomson Analytics toolbar,

1) Click on Wizards.

2) Choose Report Wizards.

3) In “Step 2”, click “Add Entities”.

4) On the pop-up window, click “Download”.

5) Choose SP500 and click “OK”.

6) On the returned window, click “OK” again.

7) In “Step 1”, click “Add/Edit items”.

8) Under “Data Items For”, click on the pull-down button, choose “Datastream”.

9) Under “Search for Item”, input “priceclose”, double click “priceclose” in the

window below.  Then click “OK”.

10) In “Step 3”, under “Starting Period”, click on the button with an icon of calendar.

First choose “Quarterly”, then choose “Q1” of “1998”; under “Ending Period”,

use the same way to choose “Q1” of “2004”.
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11) Click “Next”.

12) Click “Finish”.

13) On the pop-up window, choose “No”. You can get the PriceClose data set of

SP500 in a spreadsheet.

14) Save the file.
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F. How to extract quarterly data out of monthly data

Companies forecast their expected earnings every month for the following four fiscal

quarters.  Note that the fiscal quarters may have different starting and ending months

from the calendar quarters.  Different companies may have different definitions of their

fiscal quarters.

This paper uses the latest forecast value for each quarter to represent the corresponding

quarter value.  Based on this idea, there are 4 steps to get quarterly data out of monthly

data.  For instance, we want to get the quarterly data of EPSMeanQTR1 in Table 2.

Table 4  Transformed EPSConsensusForecastPeriodQTR1 (partly)

ID Feb-98 Mar-98 Apr-98 May-98 Jun-98 Jul-98
3104 2 2 2 3 3 3
48 2 2 3 3 3 4
28595 2 2 2 3 3 3
6 2 2 2 2 3 3
85 1 1 2 2 2 3
1268 2 2 2 2 3 3
104 2 2 3 3 3 4
20 2 2 2 3 3 3
110 2 2 2 3 3 3
29653 2 2 2 2 2 3
15 2 2 2 3 3 3

1. Replacing the values in each row in Table 3 (EPSConsensusForecastPeriodQTR1)

with 1 to 4 by increasing 1 each time from the earliest date to the latest date, which

results in Table 4.

2. Find out the last forecast month for each fiscal quarter and represent it with 1. All

other forecast months are set to be 0.  This can be done by the command “diff” in

MatLab. The result can be shown in Matrix 1.

3. Construct a matrix (Matrix 2) containing the values of EPSMeanQTR1 in Table 3. 

4. Find out the expected earning corresponding to each quarter.  This can be done by dot

multiplying (“.*”) Matrix 1 to Matrix2, which results in Matrix 3.
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5. Extract the quarterly expected earning by deleting all the 0 from Matrix 3.  This can

be done by command “B=A(A>0)”, where A refers to the revised form Matrix 3, B is

the quarterly data matrix.  Note that this command only works when each row of A

has the same amount of positive values.  In application, A needs to be adjusted to

satisfy this requirement. Also note that some expected earnings are negative and some

are zeros. In order not to miss this values, we can add a relative large positive value,

say 10, to each item in order to make them positive.  After getting the quarterly data

matrix, 10 can be subtracted to get the real values.

Matrix 1

0 0 1 0 0 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 1 0 0 1 0
0 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 1 0 0 1
0 0 0 0 1 1
0 0 1 0 0 1

Matrix 2

0.5 0.5 0.5 0.53 0.46 0.46
0.39 0.38 0.37 0.37 0.37 0.34
0.54 0.54 0.54 0.56 0.56 0.56
0.06 0.06 0.06 0.06 0.07 0.07
0.12 0.12 0.11 0.11 0.1 0.14
0.24 0.23 0.23 0.24 1.03 1.02

-0.07 -0.09 -0.08 -0.08 -0.09 -0.08
0.17 0.17 0.17 0.2 0.2 0.19
0.93 0.92 0.84 0.94 0.94 0.92
0.17 0.17 0.17 0.17 0.17 0.18
0.19 0.19 0.19 0.19 0.19 0.18

76



Matrix 3

0 0 0.5 0 0 0.46
0 0.38 0 0 0.37 0
0 0 0.54 0 0 0.56
0 0 0 0.06 0 0
0 0.12 0 0 0.1 0
0 0 0 0.24 0 0
0 -0.09 0 0 -0.09 0
0 0 0.17 0 0 0
0 0 0.84 0 0 0.92
0 0 0 0 0.17 0.18
0 0 0.19 0 0 0.18
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G. Derivation of CPO
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