
A 16-b 10Msample/s Split-Interleaved Analog to Digital

Converter

by

Rosamaria Croughwell

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the

Degree of Master of Science

in

Electrical Engineering

August 2007

Approved:

Professor John A. McNeill

Thesis Advisor

 Professor Andrew Klein Professor Richard Vaz

Committee Member Committee Member

 2

Abstract

This work describes the integrated circuit design of a 16-bit, 10Msample/sec,

combination ‘split’ interleaved analog to digital converter. Time interleaving of analog to

digital converters has been used successfully for many years as a technique to achieve

faster speeds using multiple identical converters [1]. However, efforts to achieve higher

resolutions with this technique have been difficult due to the precise matching required of

the converter channels. The most troublesome errors in these types of converters are gain,

offset and timing differences between channels.

The ‘split ADC’ is a new concept that allows the use of a deterministic, digital, self

calibrating algorithm [2]. In this approach, an ADC is split into two paths, producing two

output codes from the same input sample. The difference of these two codes is used as

the calibration signal for an LMS error estimation algorithm that drives the difference

error to zero. The ADC is calibrated when the codes are equal and the output is taken as

the average of the two codes.

The ‘split’ ADC concept and interleaved architecture are combined in this IC design to

form the core of a high speed, high resolution, and self-calibrating ADC system. The dual

outputs are used to drive a digital calibration engine to correct for the channel mismatch

errors. This system has the speed benefits of interleaving while maintaining high

resolution. The hardware for the algorithm as well as the ADC can be implemented in a

standard 0.25um CMOS process, resulting in a relatively inexpensive solution. This work

is supported by grants from Analog Devices Incorporated (ADI) and the National Science

Foundation (NSF). See appendix D for the NSF project proposal.

 3

Acknowledgements

This accomplishment could not have been achieved without the help and support of my

colleagues, family and friends.

First and foremost I would like to thank Professor John McNeill for providing me with

this incredible opportunity. His guidance, support and generosity have made this

academic experience more fun and exciting than I could have imagined. His sense of

humor is an inspiration demonstrating that it is possible to succeed without taking

yourself too seriously.

I would also like to thank Chris David for helping me to understand and use his

calibration algorithm.

Thanks also to the folks in the Precision Nyquist Group at ADI. In particular, I would like

to thank Michael Coln for his advice and mentoring, Gary Carreau for invaluable help

with circuit and layout details and Bruce Amazeen for help with package parasitic

modeling. Most of all, I am grateful to the layout folks: Suhe Gong for getting it started,

Lynn Violette for managing and overseeing it, Dominic Mai for pitching in with the pad

ring, and special thanks to Andrew Shaw who picked this project up as a trainee and

proved himself a natural at this.

Last, but by all means, not least, I want to thank my family and friends. Thanks to my

husband Mike for support, encouragement and patience every step of the way, to my

children Sarah and Jack just for being the great kids that they are and helping out with my

other responsibilities, and to my friends for being there for me.

 4

TABLE OF CONTENTS

Abstract ………………………………………………………… 2

Acknowledgements ..…………………………………………… 3

Table of Contents ..…………………………………………..… 4

List of Figures and Tables …………………………………….. 7

1 Introduction ………………………………………………….. 9

2 Background …………………………………………………. 12

 2.1 Interleaved ADC Architecture …………………………… 12

 2.1.1 Theory of Operation ………………………….… 12

 2.1.2 Error Sources for Interleaved Structures ……….…. 13

 2.1.2.1 Gain Errors …………………………… 17

 2.1.2.2 Timing Errors ………………………… 18

 2.1.2.3 Offset Errors ………………………….. 19

2.1.3 Reducing Interleaving Errors ……………………. 20

 2.2 Split ADC and Digital Calibration ………………………... 22

 2.3 Split-Interleaved ADC Architecture ……………………..... 23

 2.3.1 ADC Operation ………………………………... 23

 2.3.2 Calibration algorithm …………………………… 24

3 SPLINTA Circuit Design ……………………….……….….. 28

 3.1 Overview ……………………….…………………..….. 28

 3.1.1 Functional Block Diagram ….……….……….….. 28

 3.1.2 SPLINTA I/O Overview ….……….………...….. 29

 3.1.3 SPLINTA Operation ….……….…..……......….. 30

 5

 3.1.4 SPLINTA Timing …..……....……………..… 33

3.1.5 Core ADC Operation ….……….…..……...…. 35

 3.1.5.1 SAR ADC Review …….…..……...… 35

 3.1.5.2 Charge Redistribution ADC ..……....… 36

 3.1.5.3 AD7621 Overview ..……....………… 38

 3.1.5.4 AD7621 Timing …..……....………… 39

3.2 SPLINTA Circuit Details …..……....…………….....… 40

 3.2.1 Top Level Schematic Diagram ……………...… 40

 3.2.1.1 System Noise Issues.……....………… 42

 3.2.2 ADC Array …..……....………..……….....… 43

 3.2.3 SPLINTA Master Timing Cell …..………......... 44

 3.2.4 Digital Block …..………................................ 45

 3.2.5 Padring …..……….. 46

4 Simulation Results …..……….. 48

 4.1 Simulation Test Circuit …..………............................... 48

 4.2 Functional Simulations …..………............................... 49

4.3 Transistor Level Simulations with Bond Wire Parasitics …. 51

 4.3.1 Transistor Level Simulations 52

 4.3.2 Reference Pin Parasitic Simulations 54

 4.3.3 Supply Pin Parasitic Simulations 58

4.4 MATLAB Correction Algorithm 59

5 Physical Layout and Packaging 64

 5.1 Physical Layout .. 64

 5.2 Pad Layout .. 66

 5.3 Power Supply Partitioning ... 68

 5.3.1 Analog Supplies .. 68

 5.3.2 Output Driver Supplies 68

 6

 5.3.3 Internal Digital Supply 69

 5.4 SPLINTA Package and Pin List 69

6 Conclusions ... 71

 6.1 Future Work .. 72

References .. 74

Appendix A Linearity Calibration 78

Appendix B Evaluation ... 84

Appendix C MATLAB Programs 86

Appendix D NSF Proposal 97

 7

List of Figures and Tables

Figure 1: 2:1 Interleaving Example ……………………………………………….…… 12

Figure 2: Voltage Errors due to Non-idealities …………….………………….....…… 13

Figure 3: Effect of Input Frequency on Image Spur ...….... 15

Figure 4: Gain-Timing Tradeoff for Image Spur ...….... 16

Figure 5: 4:1 Interleaved ADC with Error Sources Modeled ………………….....…… 17

Figure 6: Output Spectrum of 4:1 Interleaved ADC with Gain Error….... 18

Figure 7: Output Spectrum of 4:1 Interleaved ADC with Timing Error….... 19

Figure 8: Output Spectrum of 4:1 Interleaved ADC Simulation with Offset Errors …... 20

Table 1: Comparison of Previous Work ..….... 21

Figure 9: Split ADC…………………..……………………...... 22

Figure 10: 2:1 Split-Interleaved Example ...….... 24

Figure: 11: Error Model ..….... 25

Figure 12: Correction Algorithm ..….... 27

Figure 13: Functional Block Diagram…………………………….... 29

Table 2: SPLINTA Specifications ..….... 30

Figure 14: Simplified Conversion Start Circuit ..….... 31

Figure 15: Simplified SPLINTA Digital Interleaving Circuit….... 32

Figure 16: Valid Data Timing ...….... 33

Figure 17: Simplified SPLINTA Timing Block Diagram….... 34

Figure 18: SPLINTA Timing…………………………….…... 35

Figure 19: SAR ADC Block Diagram ..….... 36

Figure 20: 3-bit Charge Redistribution DAC ...….... 37

Figure 21: 3-bit Charge Redistribution Example ..….... 38

Figure 22: Simplified AD7621 Architecture ..….... 39

Table 3: Output Codes ..….... 39

Figure 23: SAR Cycle ...….... 40

Figure 24: SPLINTA Top Level Schematic Diagram ..….... 41

Figure 25: AD7621 Based ADC Core ..….... 43

Figure 26: Master Timing Block ..….... 45

 8

Figure 27: SPLINTA Digital Block ..….... 46

Figure 28: PADRING ...….... 47

Figure 29: Simulation Test Circuit ...….... 49

Figure 30: Functional Simulation ...….... 50

Figure 31: Functional Simulation – 1000 bits ...….... 51

Figure 32: Modeling Level for SPLINTA ADC ..….... 52

Figure 33: Flow for Transistor Level Simulation Convergence .………………….... 53

Table 4: Comparison of Simulation Times and Level of Circuit Complexity .……... 54

Figure 34: Bond Wire Model .……………………………………………………..... 54

Figure 35: Original 80-pin SPLINTA Design .…………………………………….... 55

Figure 36: Simulations on Original 80-pin SPLINTA Design with

 and without Parasitics .………………………………………………...... 56

Figure 37: Simulation on Original 80-pin SPLINTA Design Reference

 tied in Groups of Three .…………………………………………........ .. 57

Figure 38: Separately Pinned Out References ………………………….……........ .. 57

Figure 39: 100-pin Package Simulation Results …………………………..…........ .. 58

Figure 40: Model for MATLAB Calibration ………………………………........... .. 60

Figure 41: Block Diagram for Interleave Simulation with Mismatch Errors 61

Table 5: Induced Error Values .. 61

Figure 42: MATLAB Calibration Results .. 62

Figure 43: MATLAB Convergence .. 63

Figure 44: SPLINTA LAYOUT ... 65

Figure 45: Chip Pinout .. 67

Table 6: Supply Pads and Connections ... 68

Figure 46: SPLINTA Package ... 69

Table 7: Pin List for SPLINTA ... 70

 9

1 Introduction

The goal for this work was to develop an integrated circuit design for an interleaved ADC

architecture that utilizes the ‘split’ ADC concept [2]. This IC will form the core ADC to

be used with a calibration scheme to achieve 16 bits of resolution at 10Msamples/sec.

High resolution as well as low latency is required in order to be amenable to applications

such as medical imaging, instrumentation and closed loop control systems. Traditional

SAR type converters are popular choices for these types of applications however, they are

currently near or at their speed limit of 4Msamples/s [3, 4]. The ADC design presented

in this thesis is an initial step in breaking through that speed barrier, paving the way for

new advances in these applications. The interleaved architecture together with the ‘split

ADC’ concept provides dual high speed outputs which can be used by an all digital

calibration algorithm to correct for the channel imperfections resulting in a high-speed,

high-resolution ADC system.

Interleaving is a technique introduced over 25 years ago and used to increase the speed of

A/D converters. This method increases ADC throughput without the need for expensive

higher speed process technologies [1]. Existing ADC architectures can be reused with

minimal modifications to build an interleaved system. In general, N converters operate at

a conversion rate of 1/N of a master system clock, each taking turns sampling the input at

equally spaced intervals. The output of each converter is multiplexed to a single system

output producing one seamless code at N times the frequency of any single converter.

Ideally, the resolution of an individual ADC would be preserved. This has proved to be

impossible due to the physical limitations of fabricating perfectly matched converters.

Offset, gain and timing mismatches plague these types of systems causing frequency

domain spurs that reduce the spurious free dynamic range (SFDR), degrading the

 10

effective resolution.

A ‘split’ ADC, introduced in 2005, uses the technique of essentially having two ADC’s

simultaneously converting the same sample; producing two output codes [2]. If the

converters were perfectly matched, the two codes would be identical. The difference

between the output codes represents the mismatch and is used as an error signal for the

digital calibration algorithm, which uses an iterative LMS process to drive the errors to

zero. The final output is the average of the two corrected outputs. Since the output is

taken as the average, the ADCs can be physically split in half with minimal impact on

analog area, bandwidth and noise. This technique was used successfully to calibrate the

gain parameter on a 1MSPS, 16-bit cyclic ADC [2]. Appendix D is the NSF proposal

written by Dr. John McNeill which details the ‘split ADC’ concept and project idea.

Combining both the interleaved and split ideas allows this chip flexibility to be used with

a calibration algorithm that corrects for the channel to channel errors of the interleaving,

using the same principles as in the previous work [2, 5]. Unlike the previous work, the

algorithm is more complex because the correction is done for three parameters (offset,

gain, and timing) instead of the single gain parameter. The split is also more complex, as

each ADC in the interleaved array is split and an extra converter is needed in order to

record the errors between all possible pair combinations. For an N:1 interleaved ADC,

2N+1 ADCs are required.

The ADCs were not physically split in this work in order to minimize risk to the main

goal of high resolution at high speed. The core ADC used in this chip is a reused mature

SAR ADC architecture [6] with minimal modifications. While the area benefit is not

realized in this version, a 3dB SNR benefit is expected due to the averaging of the two

corrected outputs [2, 7].

This thesis is organized into six chapters. Chapter 2 provides more detailed background

on the interleaved architecture, the combination split-interleaved ADC architecture and

the digital calibration. Chapter 3 describes the detailed operation and design of the chip

and chapter 4 contains simulation results. Chapter 5 is a description of the physical

 11

design of the chip. Lastly chapter 6 outlines the conclusions and future work

recommendations. There are also four appendices. Appendix A describes the linearity

calibration. A schematic diagram for evaluation is shown in Appendix B. Appendix C

contains the MATLAB code used for the time, offset and gain correction. Lastly,

Appendix D is the NSF proposal written by Dr. John McNeill.

 12

2 Background

2.1 Interleaved ADC Architecture

2.1.1 Theory of Operation

Time interleaving ADCs is a fairly simple technique for achieving high conversion

speeds. The idea is to use multiple, moderate speed, ADC’s in parallel and combine the

digital outputs to produce a single high-speed output. Figure 1 [5] illustrates the operation

for a simple 2:1 interleaving example. Each ADC samples the same input signal at a rate

of fs/2. ADC1 samples the input at tS1, ADC2 then samples at tS2, 1/fs later while ADC1 is

still working. ADC1 finishes its tS1 conversion sometime between tS2 and tS3 and is ready

for the next sample at tS3. Similarly ADC2 will finish its tS2 conversion in time for tS4.

The two ADC outputs are multiplexed to produce an output code at a rate of fs, twice that

of a single ADC.

ADC1

ADC2

fs/2

fs/2

tS1 tS2 tS3 tS4 tS5

ADC1

ADC2

fs/2

fs/2

tS1 tS2 tS3 tS4 tS5

Figure 1. 2:1 Interleaving Example

 13

2.1.2 Error Sources for Interleaved Structures

Error sources of interleaved structures have been studied extensively in an effort to

understand how to alleviate their effect [8-13]. The major challenge with the interleaving

structure is dealing with the differences between the ADC paths. It is nearly impossible to

physically match each channel to the extent necessary to maintain the resolution of the

individual ADCs [10]. The three major contributors are the offset, gain and timing or path

delay. The differences in these parameters cause spurs in the output frequency spectrum

degrading the SFDR and reducing the effect number of bits, ENOB [14]. The spurs are

due to the cyclic nature of the interleaving.

The diagrams in figure 2 are time domain analog representations of the ADC digital

output which show the effects of gain (a), timing (b) and offset (c) errors on the voltage

outputs. In general, the output will contain some combination of all of these errors but are

shown separately for simplicity. The gray lines represent the expected output and the

black is the actual. Each of the non-idealities causes a voltage error in the expected

output.

The effect of the gain error is shown in 2a. The ∆VGAINERR due to the gain error depends

on the magnitude of the input signal and any mismatch will cause amplitude modulation

of the output. The effect of the path delay is shown in 2b. ∆terror is the deviation of the

actual sampling time from the expected sampling time. The voltage error due to ∆terror

 ∆VGAINERR

CORRECT
CODE

vIN

t

ACTUAL ADC

OUTPUT CODE

Voltage
error due to
skew error

vIN

t

Ideal
Sampling

time

Actual
Sampling

∆terror

 ∆VOFFSERR

CORRECT
CODE

ACTUAL ADC
OUTPUT CODE

vIN

t
a. Gain b. Timing c. Offset

Figure 2. Voltage Errors Due to Non-idealities

 14

depends on the frequency of the input signal. These mismatches will cause phase

modulation. Both gain and timing errors contribute to image spurs at multiples of the

sampling frequency, fs. The converter offset in figure 2c, is a constant voltage error that

does not depend on the input signal. Mismatched offsets cause single tone spurs at

multiples of fs. For a 4:1 interleaved ADC, image spurs will occur at fs/2 - fin, and fs/4 +/-

fin, where fin is the frequency of the input. The offset tones occur at fs/4 and fs/2.

A simple method to relate the size of the errors to the magnitude of the spurs is presented

in [10]. The design equations used for determining the image spurs are given in (1)-(4).









=

2
log20 error

GAIN

G
SpurIMAGE (1)

scalefull

GAINERR
error

V

V
G

∆
= (2)









=

2
log20 error

PHASESpurIMAGE
θ

 (3)

errorinerror tf ∆= πθ 2 (4)

These equations can be used to estimate the spur levels given the expected matching. For

example, if the gain accuracy is only expected to match within 0.2%, the spur level can

be expected to be -60dB according to (1).

The effect of the timing errors on the level of the spur depends on the frequency of the

input signal. Equations (3) and (4) are used to calculate the magnitude of a spur due to a

timing mismatch of ∆terror=30ps and is plotted as a function of the input frequency in

figure 3. As the frequency increases, the error becomes more significant as it becomes a

larger portion of the period.

 15

Image Spur Magnitude with terror = 30ps

-130.00

-120.00

-110.00

-100.00

-90.00

-80.00

-70.00

-60.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Fin [MHz]

S
p
u
r
[d
B
]

If both gain and phase difference errors are present, the RMS value of both gives the total

magnitude for the image spurs as given in equation (5).






















+








=

22

22
log20 errorerror

total

G
SpurIMAGE

θ
 (5)

System level and physical limitations will determine the matching tradeoffs between gain

and timing. Figure 4 shows the combined effect of these mismatches for a 100 kHz and 1

MHz input signal with an image spur of -60dB. For example, if an SDFR of -60dB needs

to be maintained for this frequency range of up to 1MHz and 0.1% gain matching is

expected then, according to figure 4, the path delays need to match to better than 300ps.

The plot illustrates the tradeoffs. Anything below the curve will meet spec, anything

above it will fail.

Figure 3. Effect of Input Frequency on Image Spur

 16

The equation for the offset spur is given in (6). In this example, a spur level of -60dB

means that the offsets need to match within 0.1% of the full scale voltage.










 ∆
=

scalefull

OFFSERR

V

V
SpurOffset log20 (6)

Gerror (or ∆VGAINERR), θerror (or ∆terror) and ∆VOFFSERR represent the error differences

between each ADC in the system. If the gain error of each ADC is identical, the gain

error difference is zero and will not cause a spur, likewise with the phase and offset

errors.

The block diagram in Figure 5 was used to simulate these effects. Voltage sources are

added to simulate the gain and offset errors. The offsets are modeled by a voltage

VOFFSERRx in the input path to each ADC. The gain error is modeled by the voltage

VGAINERRx in the path of the reference, which sets the full scale voltage. The phase errors

are modeled by placing a time delay, tdelayx in the path of the conversion start pulses.

Gain - Timing Tradeoff for fSFDR=-60dB

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0 100 200 300 400 500 600 700 800 900 1000

terror [ps]

G
e
rr
o
r
[%

]
f
in
=100kHz

f
in
=1MHz

Figure 4. Gain-Timing Tradeoff for Image Spurs

 17

The values for Gerror, θerror and VOFFSERR are the combined errors, due to each channel,

which appears at DOUTA. Simulation examples of each error effect are described in the

following sections.

2.1.2.1 Gain Error

The effect of mismatched gain was simulated using the model in figure 5. The input to

the ADC is a 2V peak, 140.625 KHz sine wave. The reference voltage, VREFERENCE, is

2.048V and sets the full scale voltage, Vfull scale. The sampling rate, fs, is 12MHz. The

voltages VOFFSERRx, and the delays tdelayx, are set to zero and a gain error is introduced by

intentionally mismatching the reference voltage to each ADC. Figure 6 is the output

frequency spectrum of the analog voltage equivalent of DOUTA, referred to the input.

The spurs that are generated degrade the SFDR to -61dB. This corresponds to a gain error

of 0.18% according to equation (1).

Figure 5. 4:1 Interleaved ADC with Error Sources Modeled

 18

The actual values used for VGAINERRx are listed in figure 6. These are arbitrarily selected

to have better than 0.2% matching relative to the mean gain error. This result is slightly

better than predicted by (1) and (5). The simulation is intended only to demonstrate the

effect; the exact values are not relevant. A more rigorous mathematical treatment relating

the individual error contributions to the spur magnitude can be found in several of the

references, [1, 13, 19, 21].

2.1.2.2 Timing Errors

Timing errors occur when the sampling intervals are non-uniform. This is shown in figure

3b where the voltage error depends on the rate of change in voltage, dv/dt, and is more of

a concern at higher frequencies [15]. This can be especially troublesome in interleaved

structures with different delay paths to each ADC. The extent of these errors is generally

due to the physical layout as well as device mismatch.

For this simulation the voltages VOFFSERRx, and VGAINERRx are set to zero. The path delays

are modeled using a delay element, tdelayx, in the path of the conversion start pulses. The

input amplitude, sampling frequency and reference voltage are unchanged from the

previous gain example but the input frequency is increased to 1406.25 KHz to better

demonstrate the effect. The output spectrum for this case is shown in figure 7.The spurs

Figure 6. Output Spectrum of 4:1 interleaved ADC simulation with Gain error

Gain Error Spurs

VGAINERR0 = -5mV ∆GERROR0=-0.18%
VGAINERR1 = -3m ∆GERROR1=-0.09%
VGAINERR2 = 0mV ∆GERROR2= 0.06%
VGAINERR3 = 3mV ∆GERROR3= 0.2%

Mean VGAINERR = -1.25mV
∆ VGAINERR= VGAINSERRx- Mean VGAINERR

∆ GERRORx= 100 X ∆VGAINSERRx/Vfull scale

 19

are at -78dB which corresponds to a timing error of 28ps according to (3) and (4). The

actual values used for tdelayx are listed in figure 7. These values would suggest that the

prediction of (3) and (4) is conservative since the worse ∆terror value is slightly larger than

predicted. Again, the exact values are not important; this simulation is only intended to

demonstrate the effect.

2.1.2.3 Offset Errors

In this simulation, the voltages VGAINERRx, and the delays tdelayx, are set to zero and offset

errors are introduced by placing a voltage source in the input signal path. The input to the

ADC is identical to the signal used for the gain simulation: 2V peak, 140.625 KHz sine

wave, VREFERENCE = 2.048V and fs = 12MHz. The output spectrum for this case is shown

in figure 8. The spurs that are generated degrade the SFDR to -61dB. This corresponds to

an error of 0.09% according to (6) and a VOFFSERR=1.8mV at DOUTA. The data for this

simulation is shown in the box in figure 8.

Figure 7. Output Spectrum of 4:1 Interleaved ADC Simulation with Timing

Error

Timing Error Spurs

tERROR0 = 50ps ∆tERROR0= 35ps
tERROR1 = 0 ∆tERROR1= -15ps
tERROR2 = 10ps ∆tERROR2= - 5ps
tERROR3 = 0 ∆tERROR3= -15ps

Mean tERROR = 15ps
∆ tERROR= tERROR x- Mean tERROR

 20

2.1.3 Reducing Interleaving Errors

With technologies shrinking to deep sub micron levels, channel matching on interleaved

structures becomes even more difficult. Moving as much functionality as possible to the

digital domain, and minimizing analog complexity, makes sense from both a cost and

performance standpoint [16]. Much effort has gone into addressing this issue [5, 8-13, 16-

20].

Spurs generated by offset and gain mismatches are a result of the repeating ADC

selection pattern of the interleaving. This can be alleviated by randomizing the selection

pattern [8, 11, 17]. At least one extra channel must be added to enable random selection.

This technique decorrelates the samples and eliminates the spurs but at the expense of

raising the noise floor. This simple solution may be acceptable for some applications, but

is not precise.

Some solutions for the correction of the timing skews are implemented by the addition of

a calibration signal [12, 9]. A ramp with a known slope is used to measure the timing for

each ADC. A digital interpolator uses the information to calculate the corrections

VOFFSERR0 = 0 ∆VOFFSERR0=-0.125
VOFFSERR1 = -2m ∆VOFFSERR1=-1.875
VOFFSERR2 = 1.5mV ∆VOFFSERR2= 1.375
VOFFSERR3 = 1mV ∆VOFFSERR3= 0.875

Mean VOFFSERR = 0.125mV
∆ VOFFSERR= VOFFSERRx- Mean VOFFSERR

Figure 8. Output Spectrum of 4:1 interleaved ADC simulation with offset

errors

Offset Error
Spurs

 21

necessary to eliminate the skew between channels. The approach in [9] limits the

dynamic range which is circumvented in [12] by adding an extra calibration channel.

A randomly controlled chopper front end approach is used in [18-21] to extract offset and

gain information. The input is transformed to a noise signal by a chopper sample and hold

front end, controlled by a PRBS, then digitized by the ADC. The offset and gain errors

are estimated digitally by calculating the mean and variance every N samples of the

output code. The original signal is then reconstructed using the same PRBS, including the

corrections. The corrections are updated every N samples. A single front rank SHA is

used in [19]. This eliminates the timing skew issues but limits the speed of the system. A

separate chopper SHA for each channel is used in [13, 19-21] and the timing skew

between samples is estimated and corrected with filtering. These approaches rely on the

statistics of the input signal and can have limitations on the input frequency. They also

require added complexity in the analog portion.

A split ADC approach can be applied to an interleaved structure to provide dual outputs

which can be used with a calibration algorithm to correct for offset and gain as well as

timing errors [2, 5]. The all digital algorithm requires no additional analog complexity,

needs no special calibration signal, and runs continuously in the background. Table 1 lists

issues that are addressed by the split-interleaved, self-calibrating ADC system, and

compares them with previous work.

[8] [9] [10] [11] [12] [13] [17] [18] [19] [20]

Offset 1 1 3

Gain 1 1 3 2

Timing 1 2,3 1 1

All Digital Calibration 4 4 4 4

Deterministic

Background Calibration

Self-Calibration

1 Improvement by speading out the spurs - does not eliminate

2 Trouble at some input frequencies

3 Limited input range

4 Added analog complexity

Table 1 Comparison of Previous Work

 22

2.2 Split ADC and Digital Calibration

The split ADC concept, introduced in 2005[2], uses two independent ADCs, each

converting the same input sample. The work described in [2] was for a cyclic ADC in

which only the gain parameter needs correction (Appendix D). The difference of the two

outputs is used as a calibration signal for the correction algorithm. The overall output is

taken as the average of the two corrected outputs. Convergence is fast compared with

other probabilistic methods [22-26] since the unknown input signal is eliminated from the

calibration signal path which drives the correction algorithm. Moving these complex

calibrations entirely to the digital domain relieves some of the burden on the analog

complexity as well as lowers the cost.

The idea is to split an ADC into two channels (figure 9), both sampling the same input at

the same time. If both channels were identical, then each would produce the same output

code. An error signal is generated when the two output codes are different.

The difference, ∆x, is the input to the error estimation algorithm which uses an iterative

least mean squares, LMS, method to calculate the calibration coefficients. The

corrections are applied to xa and xb and ∆x is recalculated. This feedback process quickly

drives ∆x to zero and continuously corrects and updates in the background for

uninterrupted operation.

Figure 9. Split ADC

 23

The ADC output code is taken as the average of the corrected xA and xB outputs. This

digital averaging has the benefit of improving the SNR by a factor of 2 [2, 7].

However, the original concept of a ‘split ADC’ is to essentially halve the analog area for

a given ADC design with certain power, speed and noise specifications. Since the area is

split, the capacitors are halved and the kt/C noise is increased by 2 but because of the

averaging of the output, that factor is removed and the noise is unchanged. The active

circuits are also halved such that the bandwidth (gm/C) and the power are unchanged.

This concept has been proven successfully on a 16bit 1Msample/second cyclic converter

[2]. The calibration technique is independent of the type of converter used and combines

the cost benefits of an all digital implementation and the speed benefits of the

deterministic nature (tracking out errors continuously, quickly), completely performed in

the background without interrupting the conversions.

2.3 Split- Interleaved ADC

2.3.1 ADC Operation

The ‘split ADC’ idea can be extended to the more complicated interleaved architecture.

In addition to the gain parameter targeted in the previous work, the offset and timing

parameters can also be calibrated. Each ADC in the interleaved array must be split and an

additional ADC needs to be added in order to calculate the ∆x between every possible

ADC pair. For an M:1 interleave, 2M+1 ADCs are needed for this type of calibration. For

example, a 2:1 split interleaved ADC (Figure 10) requires 5 ADCs.

The basic difference from the traditional interleaved ADC described in section 2.1.1, and

the split-interleaved structure in figure 10 is that, in this case, a pair of ADC’s are

selected to convert the same sample instead of a single converter. The operation is very

similar to the previous case. The sample rate for the system is fs and each individual ADC

 24

samples at fs/2. Initially, ADC “A” and ADC “B” sample the input at tS1. At 1/fs later,

ADC “C” and ADC “D” sample at tS2 while ADC “A” and ADC “B” are still working on

tS1’s conversion. ADC “A” and ADC “B” become available again sometime between tS2

and tS3. Notice that in the absence of ADC “E”, the only next possible combination for tS3

is ADC “A” and ADC “B” again because ADC “C” and ADC “D” are still working on

tS2’s conversion. ADC “E” is required since the A-C, A-D, B-C, and B-D pairs are not

possible without it and the errors for all the possible paths must be computed for the

calibration to work. ADC “E” also enables randomization of the ADC selection which

eliminates the spurs due to the mismatch errors [8, 11, 17]. The five ADC outputs are

sorted by the digital block and assembled into the two channels, xDOUTA and xDOUTB, each

producing output codes at the rate of fs. These outputs drive the calibration algorithm that

will correct for the interleave array mismatch errors between channels.

Figure 10. 2:1 Split-Interleaved Example

2.3.2 Calibration Algorithm

The calibration algorithm described here addresses the errors associated specifically with

the interleaved structure due to the mismatches between ADCs. The linearity calibrations

of each individual ADC is handled separately and described in Appendix A.

 ADC “A”

 ADC “B”

 ADC “C”

 ADC “D”

 ADC “E”

DIGITAL

 xD

xE

vIN

xA

xB

xC
xDOUTB

xDOUTA

xDOUTA, xDOUTB

tS1 tS2 tS3 tS4 tS5

 25

The same iterative approach demonstrated in the previous work [2] is applied in this case.

The calibration algorithm for the interleaved design is more complex since the number of

parameters to correct for is increased to three. As described in section 2.1.2, these errors

can cause spurs in the frequency spectrum degrading the SFDR. To further complicate

the algorithm, the three parameters must be calculated for each pair combination. In a 2:1

split interleaved ADC, there are a total of 5 ADCs with 10 possible pair combinations.

The error model in figure 11 is used to define the ADC output [5] with the three error

sources from figure 3 combined. The output, xDOUT, is comprised of the ideal value, x,

plus the error terms for offset, gain and timing delay and is modeled by equation (a) in

the figure.

Figure 11. Error Model

The correction algorithm uses the difference between each combination of interleaved

pairs to calculate, xos, Ge and et using an LMS process. In figure 10, the interleaved

outputs are xDOUTA and xDOUTB and can be any pair combination of xA through xE. The two

outputs can be expressed by (7) and (8) where x is the desired output.

vout

videal

te APERTURE

DELAY ERROR

xOS, x
.Ge

OFFSET,

GAIN ERRORS

CORRECT

CODE

xADCACTUAL ADC

OUTPUT CODE

x

vIN

t

{
444 3444 21

ERRORS

dt

dx
tGxx

CODE
CORRECT

xx eeOSADC 






+⋅++=

x

{
444 3444 21

ERRORS

OS

CODECORRECT

DOUT
dt

dx
teGexxxx 







+•++= (a)

DOUT

te APERTURE

DELAY ERROR

xOS, x
.Ge

OFFSET,

GAIN ERRORS

CORRECT

CODE

xADCACTUAL ADC

OUTPUT CODE

x

vIN

t

{
444 3444 21

ERRORS

dt

dx
tGxx

CODE
CORRECT

xx eeOSADC 






+⋅++=

x

{
444 3444 21

ERRORS

OS

CODECORRECT

DOUT
dt

dx
teGexxxx 







+•++= (a)

DOUT

 26

444444 3444444 21
termserror

eDOUTAeDOUTAosDOUTADOUTA
dt

dx
tGxxxx +•++= (7)

444444 3444444 21
termserror

eDOUTBeDOUTBosDOUTBDOUTB
dt

dx
tGxxxx +•++= (8)

The error between the two outputs is given by (9). The x term is eliminated and all that is

left are the error terms.

eDOUTBeDOUTAe

eDOUTBeDOUTAe

osDOUTBosDOUTAos

eeosDOUTBDOUTA

ttt

GGG

xxx

dt

dx
txGxxxx

−=∆

−=∆

−=∆

∆+•∆+∆=−=∆

 (9)

Data is collected in a matrix for all possible pair combinations of the ADCs. An LMS

method is used in a negative feedback process to estimate the corrections necessary to

drive (9) to zero [2, 5]. The corrected output is given by (10). The final ADC output is

the average of DOUTAx
)

and DOUTBx
)

.









+•+−==

dt

dx
txGxxxx DOUT
eDOUTeosDOUTDOUTBDOUTA

))
 (10)

Since the timing error term includes a derivative, two points are needed for this

calculation and are taken from two adjacent samples. A 1 sample latency penalty is

necessary for this calculation [5].

The block diagram for the correction algorithm is shown in figure 12. The uncorrected

codes, as well as the tag marking which ADC they are from, are collected from the ADC

output. The derivative is approximated and stored in the estimation matrix. A digital

correction is applied and xa and xb are recalculated. New values for x and ∆x are

calculated and stored in the estimation matrix. The algorithm then iterates around the

shaded loop, constantly updating the estimates driving the error between the codes less

 27

than the tolerance set by the algorithm and maintaining that level during operation of the

system.

 Figure 12. Correction Algorithm.

This correction method converges in less than 200K conversions. It is fast because it does

not rely on statistics for the correction information. The system is continuously updating

the correction coefficients, tracking out errors that could develop over time due to factors

such as temperature and power supply variations. The ‘corrected’ output code will

converge with an overall offset and gain error, but this is easily compensated in post

processing. A more rigorous explanation of the algorithm can be found in Appendix D

and [5].

 28

3 SPLINTA Circuit Design

3.1 Overview

SPLINTA is a SAR based 4:1 split-interleaved ADC integrated circuit design. This chip

targets 16 bits of resolution at 10MHz. It is specifically designed to be used with the

digital calibration algorithm described in section 2.3.2, currently being developed at WPI.

The technology for this project is a 0.25um CMOS process with 5 levels of metal. The

size is approximately 7mm on a side and it will be packaged in a 100 pin LQFP package.

3.1.1 Functional Block Diagram

The functional block diagram for the complete self-calibrating ADC system is shown in

figure 13. The FPGA contains the hardware for the correction algorithm as well as the

clock signals for the ADC. SPLINTA is the IC design for the ADC portion of this system

and is highlighted in the shaded area. The 4:1 interleaving requires 9 ADCs (section

2.3.1) in order to perform both interleave and split. The timing logic generates the signals

that control the SAR cycles. The MUX is used to send the conversion start pulse,

CNVST, to the appropriate ADC pair according to the selection lines, SELA and SELB,

which is controlled by the FPGA. The digital output blocks assemble the codes from the

individual ADCs and provide the dual high speed outputs, DOUTA and DOUTB, along

with their identifiers, TAGA and TAGB. These outputs are processed by the correction

algorithm within the FPGA providing the calibrated output, DOUT.

 29

ADC0

ADC1

ADC8SIG IN

SEL ADC A

MASTER CLOCK

SYNC

100MHz
Timing
Logic

SAR TIMING

10MHz

MUX

READ B

DIGITAL

OUTPUT

BLOCKS

CNVST

DOUT

DOUT
CNVST

DOUTB

DOUTA

TAGB

BUSYB

SEL ADC B

TAGA

REFERENCE

READ A

CNVST

BUSYA/B

CNVST
DOUT

BUSYA/B

BUSYA/B

CALIBRATION MODE
SIGNALS

BUSYA

DOUT
FPGA

CORRECTION ALGORITHM

CLOCK SIGNALS

ADC OUTPUTS

AND IDENTIFIERS

ADC SELECTION

AND CLOCKS

ADC CORRECTED

OUTPUT

SPLINTA

ADC0

ADC1

ADC8SIG IN

SEL ADC A

MASTER CLOCK

SYNC

100MHz
Timing
Logic

SAR TIMING

10MHz

MUX

READ B

DIGITAL

OUTPUT

BLOCKS

CNVST

DOUT

DOUT
CNVST

DOUTB

DOUTA

TAGB

BUSYB

SEL ADC B

TAGA

REFERENCE

READ A

CNVST

BUSYA/B

CNVST
DOUT

BUSYA/B

BUSYA/B

CALIBRATION MODE
SIGNALS

BUSYA

DOUT
FPGA

CORRECTION ALGORITHM

CLOCK SIGNALS

ADC OUTPUTS

AND IDENTIFIERS

ADC SELECTION

AND CLOCKS

ADC CORRECTED

OUTPUT

SPLINTA

Figure 13. Functional Block Diagram

3.1.2 SPLINTA I/O Overview

The CALIBRATION MODE SIGNALS and the BUSYA, BUSYB outputs are mainly

used for the individual ADC linearity calibration (Appendix A). The BUSYx signals can

also be used as a ‘data ready’ indicator (see section 3.1.3).

The input, SIG IN, is differential and common to all ADCs. The external reference is also

common to each ADC but pinned out separately on the package for maximum isolation

(see section 4.3). The SAR TIMING is derived from an external MASTER CLOCK

which is intended to run at a frequency of 100MHz, but can be slowed for debug and

evaluation purposes. The timing logic provides the signals which control the timing of the

sample and acquire phases of the SAR ADCs. It also provides the SAR bit cycling clock

for each ADC. The external SYNC pulse is synchronized internally with the SAR bit

cycling clock and used to generate the conversion start pulses, CNVST. This signal is

intended to run at 10MHz and can be adjusted, independently of the master clock.

 30

Adjusting the sampling rate can also be useful for debug and evaluation purposes. A

multiplexer cell sends the CNVST pulse to two of the 9 ADC’s according to the 4 bit

ADC selection busses, ‘SEL ADC A’ and ‘SEL ADC B’. The outputs are two 16 bit wide

data busses for the A and B channels plus two 4 bit identifiers to mark which ADC the

data came from. This information can be used by the FPGA and is also useful for

evaluation and debug. The data from each ADC appears at the output 4 conversion pulses

after its conversion start (Figure 15).

At the heart of SPLINTA is the AD7621 16-bit, 3MSPS PulSAR ADC architecture. The

goal of the correction algorithm is to remove all interleaving errors enabling the same

performance as the AD7621 [6] at 4 times the speed. Table 2 summarizes some of the

specifications, targets and conditions for SPLINTA adapted from the AD7621 specs.

Table 2. SPLINTA Specifications

Resolution

Conversion Speed

16 bits

10 MSPS

External Reference

Analog Input (Differential)

2.048V

-Vreference to +Vreference

Power Supplies 2.5V

Digital Output 0000h (-FS) to FFFFh (+FS)

3.1.3 SPLINTA Operation

Split-interleaved ADC operation for a 2:1 system is described in sec 2.3.1. SPLINTA is

the implementation of a 4:1 split-interleave. The action is the same except the number of

possible pairs is increased from 10 to 36 pairs and the speed is increased by 4X instead of

2X.

Input sampling is initiated on a ‘conversion start’ signal, CNVSTIN. Figure 14 shows a

simplified schematic for the conversion start circuit. The conversion process begins when

the SYNC pulse goes low. It is synchronized with the SAR CLOCK by the D flip-flop.

 31

The synchronized output, CNVSTIN, is used to ensure sampling at the beginning of the

bit decision cycle where digital noise is less likely to cause a bit decision error elsewhere

in the array. The 4 bit addresses on the SELA and SELB lines determine which pair of

ADCs is selected to sample. A new pair of ADCs is selected every 1/fsample seconds but

each ADC must have a minimum of 4 conversion times (4/ fsample) to complete its

conversion, before it can be selected again. The waveforms in figure 14 illustrate the

timing. Initially, in this example, ADC0-1 pair is selected and the CNVSTIN pulse is

routed to CNVSTB0, and CONSTB1. It then cycles through pairs ADC2-3, ADC4-5 and

ADC6-7. By the 5
th
 conversion pulse, ADC0 and ADC1 are finished their conversion

and ready for the next sample. Either ADC0 or ADC1 can be paired with the ‘spare’

ADC8 for the next sample. By the 6
th
 conversion ADC2, ADC3 and ADC4 are available

and a new pair can be selected, and so forth. The pairs are randomly selected from the

three available each conversion cycle. The selection process can be controlled manually

for evaluation or by the digital processor that contains the calibration algorithm.

Figure 14. Simplified Conversion Start Circuit

Figure 15 is a simplified schematic diagram of the digital interleaving circuit. The nine

16-bit digital output busses from each converter is sorted and assembled into two high

speed digital outputs by a multiplexer array. READ A and READ B words selects which

pair of ADC outputs is ready and are generated by shifting the SELA and SELB words

over by 4 conversion times or 4/fsample. The READ busses are also used as the ADC

identifiers, TAGA and TAGB. The waveforms in figure 15 demonstrate this action. The

sequence starts with the ADC pair 0-1 selected to start conversion on the first sample.

This is followed by the pairs 2-3, 4-5, and 6-7, etc. Four conversion pulses after the

ADC0-1 start, the READA-B busses signal the results of the conversions, DOUT0 and

D

CK

Q

SYNC

SAR

TIMING

CNVSTIN

MASTER

CLOCK

SAR

CLOCK

TO ADCs

SAR CLK

CNVSTIN

SELA 0 2 4 6 8 1 3 5 7

SELB 0 1 3 5 7 0 2 4 6 8

CNVSTB0

CNVSTB1

CNVSTB2

CNVSTB3

CNVSTB4

CNVSTB5

CNVSTB6

CNVSTB7

CNVSTB8

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75
time, uSeconds

 32

DOUT1 (8000h) to be sent to the outputs, DOUTA and DOUTB. Note the individual

ADC outputs, DOUT0-DOUT8 are converting at one quarter the rate of the two main

outputs, DOUTA and DOUTB. This quadrupling of the ADC speed is the major benefit

of the interleaving structure.

Figure 17. Simplified SPLINTA Digital Interleaving Circuit

The CNVSTBIN pulse is generated from the external SYNC pulse and can be used to

signal when data is ready. The output data is valid from the rising edge of the

CNVSTBIN pulse to the falling edge of the next CNVSTBIN pulse.

The waveforms in figure 16 show the timing for valid output data. In this example, the

SAR clock is 96MHz and the sample clock is 12MHz. CNVSTBIN is the external SYNC

pulse (not to be confused with CNVSTIN, the synchronized version). The pulsewidth is

approximately the width of a SAR clock cycle, ~10ns. The falling edge of this pulse

initiates a conversion cycle as well as controls when the ADC outputs appears at the

interleaved output as described above. The data is valid until the next falling edge of

CNVSTBIN when the next sample is routed to the output. The ideal sample point is

midway between these edges. The rising edge of this pulse should be sufficient to signal

valid data as long as the pulse at least as wide as shown in figure 16.

The BUSYA and BUSYB signals are normally used for the linearity calibration

(Appendix A). However, it is possible to use this output in normal mode to signal valid

data as well. During normal operation, the busy signals from the nine ADCs are

multiplexed to the outputs, BUSYA and BUSYB, according to the SELA and SELB

lines. Initially, when a new ADC pair is selected, the BUSY signals from the new pair

Figure 15. Simplified SPLINTA Digital Interleaving Circuit

 33

are low. They remain low until a CNVSTBIN pulse is received and routed to the ADCs.

The data and tag at the DOUTA and DOUTB outputs are valid at this time as shown in

figure 17. The location of this edge depends on when the user sets the selection lines

relative to the sample clock. In general, the selection lines should be set at least one SAR

cycle before the CNVSTBIN pulse.

3.1.4 SPLINTA SAR Timing

SPLINTA uses an external clock to generate the timing pulse signals for the SAR cycles.

The signals are needed to initiate the bit cycling (CLK), zero the test op-amp (OZ), and

latch the comparator output when the decision is made (LATCH). A simplified block

diagram is shown in figure 17. The signals are generated by a master timing pulse

generator and routed to each ADC. The timing signals are intentionally common to each

ADC to minimize timing skews discussed in Sec 2.1.2.2. Within each ADC there is

timing logic that determines whether to ignore or activate the signals depending on

whether a CNVST signal was received.

Figure 16. Valid Data Timing

VALID DATA RANGE for DOUTA,

DOUTB of ADC8,ADC0

SARCLK

CNVSTBIN

ATAG 6 8 1

BTAG 7 0 2

DOUTA 8003 8004 8005

DOUTB 8003 8004 8005

BUSYA

BUSYB

SELA 5 7 1

SELB 6 8 0

2.64 2.66 2.68 2.7 2.72 2.74 2.76 2.78 2.8 2.82
time, uSeconds

ADC6, ADC7

Data Valid

ADC8, ADC0

Data Valid

VALID DATA RANGE for DOUTA,

DOUTB of ADC8,ADC0

SARCLK

CNVSTBIN

ATAG 6 8 1

BTAG 7 0 2

DOUTA 8003 8004 8005

DOUTB 8003 8004 8005

BUSYA

BUSYB

SELA 5 7 1

SELB 6 8 0

2.64 2.66 2.68 2.7 2.72 2.74 2.76 2.78 2.8 2.82
time, uSeconds

ADC6, ADC7

Data Valid

ADC8, ADC0

Data Valid

(SYNC)

 34

Figure 18 shows the timing signals of a conversion cycle for ADC0 and ADC2. The

MASTER CLOCK drives the timing pulse generator and produces the MASTER OZ and

MASTER LATCH pulses which run continuously and are routed to each ADC. The

SELA bus routes the MAIN CNVST pulse to the appropriate ADCs and signals the

timing block to pass the timing pulses. In figure 18, a CNVSTB0 pulse activates the

timing for ADC0 and the CLK, OZ and LATCH pulses are routed to the CAP DAC.

ADC2 timing remains inactive until a CNVSTB2 pulse is received at which time the

signals are routed to both ADC0 and ADC2. The ADC0 signals remain active until the

end of the bit cycling where it then goes into a wait mode for the next CNVSTB0 signal.

MASTER

CLOCK

100MHZ

ADC0

ADC2

ADC8

ADC

TIMING

ADC

TIMING

ADC

TIMING

TIMING PULSE

GENERATOR

MAIN CNVST

CNVSTB0

CNVSTB2

CAP

DAC

CAP

DAC

CAP

DAC

MASTER

CLOCK

MASTER OZ

MASTER

LATCH

CLK0

OZ0

LATCH0

CLK2

LATCH2

OZ2

Figure 17. Simplified SPLINTA Timing Block Diagram

 35

3.1.5 CORE ADC Operation

The core ADC used in the array is a 16-bit 3MSPS SAR type ADC. This is, by far, the

most critical circuit in SPLINTA. The architecture of the ADC core is reused from the

Analog Devices AD7621 [6] with some slight modifications. This SAR ADC was

chosen because of its high resolution and decent speed. Using a proven design minimizes

the risk to the overall architecture.

3.1.5.1 SAR ADC Review

A block diagram for a DAC-based successive approximation A/D converter is shown in

Figure 19a [27]. This type of ADC is named for the algorithm used for the conversion,

which is based on a binary search method. There are three phases to a typical SAR

conversion cycle: sample, hold and bit cycling.

The input to the ADC is generally a sample and hold circuit. The converter is in ‘acquire’

or ‘sample’ mode until a conversion is initiated. In sample mode, the input is simply

monitored, waiting for a ‘start’ signal. Once a conversion start signal is received, the S/H

circuit switches to hold mode so that the sample value doesn’t change during the

conversion process.

Figure 18. SPLINTA Timing

MAIN CNVST

SELA 0 2 4 6 8

MASTER CLOCK

MASTER OZ

MASTER LATCH

CNVSTB0

CLK0

OZ0

LATCH0

CNVSTB2

CLK2

OZ2

LATCH2

2 2.04 2.08 2.12 2.16 2.2 2.24 2.28 2.32
time, uSeconds

 36

In the bit cycling mode, the sample is compared to a series of binarily weighted reference

voltages, referred to a main voltage, Vref. Initially, the DAC output is set to Vref/2 and

compared to the sample. If the sample is larger, the comparator output goes high and the

MSB, D1 in this case, is kept, otherwise it is discarded. Next Vref/4 is added to the DAC

voltage and compared to the sample. Again, if the sample is greater than the DAC

voltage, then the next bit, D2, is kept. If it is less, it is discarded. Next comparison is

VD/A+Vref/8 and so forth. This process continues until the converter cycles through the N

bits and DOUT represents the N bit digital word corresponding to the sample.

The process is illustrated in the waveform of figure 19b. The conversion is started at t2.

The MSB is tested first. It is kept since it is less than Vref/2 and D1 is set to 1. Next, bit 2

is tested and discarded since Vref/2+Vref/4 (gray trace) is greater than Vsample: D2 is set to

zero. The procedure continues to bit 3 and D3 is kept because Vref/2+Vref/8 is less than

Vsample. Lastly D4 is discarded since Vref/2+Vref/8+Vref/16 is greater than Vsample. The

result of this process is a digital output word, DOUT=1010.

3.1.5.2 Charge Redistribution ADC

A charge redistribution ADC is a variation of the DAC-based ADC described above. In

this case, the DAC is a binarily weighted switched capacitor array which includes the

S/H +

-
COMP

Vin

SAR Control Logic

DAC

DOUTD1 D2 DN

Vreference

S/H +

-
COMP

Vin

SAR Control Logic

DAC

DOUTD1 D2 DN

Vreference

Figure 19. SAR ADC Block Diagram

(a)
(b)

Vref

Vref/8

time

Vin

TEST

Bit 4

TEST

MSB

TEST

Bit 2

TEST

Bit 3

Conversion Start

Initiated VD/Atest<Vsample

D1 =1
VD/Atest >Vsample

D2 =0

t1 t2
t3 t4 t5 t6

VD/A = 0
VD/A=Vref/2

Vref/2

Vref/4

Vref/16

Vsample

VD/A=Vref/2

VD/Atest<Vsample

D3 =1

VD/A=Vref/2

+Vref/8

VD/Atest >Vsample

D4 =0

VD/A=Vref/2

+Vref/8

DOUT=1010

Vref

Vref/8

time

Vin

TEST

Bit 4

TEST

MSB

TEST

Bit 2

TEST

Bit 3

Conversion Start

Initiated VD/Atest<Vsample

D1 =1
VD/Atest >Vsample

D2 =0

t1 t2
t3 t4 t5 t6

VD/A = 0
VD/A=Vref/2

Vref/2

Vref/4

Vref/16

Vsample

VD/A=Vref/2

VD/Atest<Vsample

D3 =1

VD/A=Vref/2

+Vref/8

VD/Atest >Vsample

D4 =0

VD/A=Vref/2

+Vref/8

DOUT=1010

 37

sample and hold function. These types of DACs are popular because they have better

accuracy and linearity than their resistive DAC counterparts. Also, they can be calibrated

by switching in small capacitances in parallel instead of the more costly laser trimming of

thin film resistors [28]. This DAC architecture compares the input sample minus the

DAC output with zero or ground, rather than compare the DAC output directly to the

input voltage.

Figure 20 is a simplified version of a 3-bit capacitor DAC with the switches in various

phases of conversion. In sample mode (a), the top plates are grounded through switch SC

and the bottom plates are connected to VIN through S1-S4 and SIN. The DAC remains in

this mode, sampling VIN, until a conversion start is initiated. In hold mode (b), SC and SIN

are opened and the bottom plate of the capacitors is switched to ground through S1-S4.

This causes the voltage at the top plates, Vx, to jump to –VIN. The next phase is the bit

cycling mode (c). First BIT 1 is tested by switching the largest capacitor to the reference

voltage, VREF, and the rest remain connected to ground. This forms a capacitor voltage

divider and VREF/2 is added to Vx. This voltage is compared to ground and the

comparator decides whether switch remains and the bit is set high or if it will be switched

back to ground and the bit stays low. Next BIT 2 is tested and VREF/4 is added to Vx and

the decision is made for that bit, and so forth. By the end of the bit cycling process, the

voltage at Vx should be within 1 LSB of the sampled input and the state of the switches

represents the digital output code. The extra C/4 capacitor is necessary in order to get an

exact division by 2.

Figure 20. 3-bit Charge Redistribution DAC

(a) Sample Mode (b) Hold Mode (c) Bit Cycling Mode

 38

The waveform in figure 21 shows the bit cycling process. In this example, VREF = 2V and

VIN = 1.3V. Vx remains at 0V during the sample mode. At t1, a conversion is initiated and

VX jumps to –VIN=-1.3V. The bit cycling starts at t2 (see box in figure). At the end of the

process the digital output word is 101. The LSB for this example is 2V/2
3
=0.25V (LSB

= N

REFV 2/ , N is the number of bits). The residue left at the end of the process should be

within +/- 1 LSB of zero.

3.1.5.3 AD7621 Overview

The AD7621 is a 16 bit charge redistribution type ADC [6]. The action is the same as

described above but the input is differential, in this case. A simplified schematic of this

architecture is shown in figure 22. IN+ and IN- is the differential ADC input and can be

positive or negative. The reference voltage, REF, sets the full scale for the ADC. Two

identical capacitor DAC arrays are connected to the comparator inputs. The SAR

algorithm cycles through the 16-bits driving the comparator inputs towards balance. The

control logic handles the bit cycling and stores the digital output word. The output codes

are described in Table 3. The digital output 0000h corresponds to –REF and FFFFh

corresponds to +REF. The LSB is given by 162/2 REFV× . The reference value used in the

AD7621 as well as SPLINTA is 2.048V and the LSB = .5.622/048.22 16 uV=×

Figure 21. 3-bit Charge Redistribution Example

BIT CYCLING PROCESS; VIN=1.3, VREF=2
Start at time=t2

Set switch S1 to VREF

Vx=-VIN+VREF/2

 = -1.3 + 2/2 = -0.3V

Is Vx < 0 ? Yes

Set Bit 1=1; Leave S1 set to VREF

At time= t3

Set switch S2 to VREF

Vx=-VIN+VREF/2+ VREF/4

 = -1.2 + 2/2 +2/4= +0.2V

Is Vx < 0 ? No (Gray Level)

Set Bit 2=0; Switch S2 back to ground

At time= t4

Set switch S3 to VREF

Vx=-VIN+VREF/2+ VREF/8

 = -1.2 + 2/2 +2/8= -0.05V

Is Vx < 0 ? Yes

Set Bit 3=1; Leave S3 set to VREF

0

1

2

-1

-2

time

Vx

SAMPLESAMPLE HOLD Bit 1 Bit 3 Bit 3

Conversion Start

Initiated Vx <0

Bit 1 =1

Vx >0

Bit 2 =0

Vx<0

Bit 3 =1

t1 t2 t3 t4 t5

Vx = 0

Vx = -1.3V

Vx = -0.3V

Vx = 0.2V

Vx = -.05

(residue)

0

1

2

-1

-2

time

Vx

SAMPLESAMPLE HOLD Bit 1 Bit 3 Bit 3

Conversion Start

Initiated Vx <0

Bit 1 =1

Vx >0

Bit 2 =0

Vx<0

Bit 3 =1

t1 t2 t3 t4 t5

Vx = 0

Vx = -1.3V

Vx = -0.3V

Vx = 0.2V

Vx = -.05

(residue)

 39

3.1.5.4 AD7621 Timing

The AD7621 has three modes of operation with different throughput rates. SPLINTA

uses the WARP mode because it has the fastest conversion rate of up to 3MSPS.

Maintaining the high resolution at these speeds is possible in part because of the dual

quantization speeds. The higher bits are cycled at the speed of the SAR clock. The lower

bits use two SAR clock periods per bit to allow the DAC more time to settle to the

required resolution.

The offset of the comparator also directly affects the resolution and must be

compensated. The main comparator is continuously zeroed during the acquisition mode,

using an op amp feedback loop. The op amp used in the feedback loop also needs zero

adjustment. This is less critical than the main comparator and is performed during the bit

cycling for maximum speed efficiency [29].

Figure 23 illustrates the timing of the SAR. The ‘AQUIRE’ mode requires a minimum of

70ns during which time the main comparator is continuously zeroed. The SAR bit cycling

process is initiated with a ‘start convert’ signal. The ‘fast’ quantization or bit cycling

takes 13 clock cycles where it processes the upper 11 bits along with a redundant bit at

bit 7. The ‘slow’ quantization processes the lower bits, bits 12, 13, 14, 15, 16 and a

redundant bit at 12. This is done at half the rate of the first 13 bits. During the

quantization process, the zeroing op amp is taken offline and its offset is compensated.

Figure 22. Simplified AD7621 Architecture Table 3. Output Codes

DIGITAL

OUTPUT

[hex code]

DIGITAL VALUE

[Volts]

ANALOG INPUT

[Volts]

FFFFhFull Scale – 1LSB+REF

8001hMidscale + 1LSB2XREF/216

8000hMidscale0

7FFFhMidscale - 1LSB-2XREF/216

0001h-Full Scale + 1LSB-REF+ 2XREF/216

0000h-Full Scale-REF

DIGITAL

OUTPUT

[hex code]

DIGITAL VALUE

[Volts]

ANALOG INPUT

[Volts]

FFFFhFull Scale – 1LSB+REF

8001hMidscale + 1LSB2XREF/216

8000hMidscale0

7FFFhMidscale - 1LSB-2XREF/216

0001h-Full Scale + 1LSB-REF+ 2XREF/216

0000h-Full Scale-REF

 40

Once the SAR bit cycling process is finished, the ADC returns to the acquire mode and

the main auto zeroing is resumed until the next conversion start signal.

The conversion cycle needs 70ns minimum for the acquire mode plus 250ns for bit

cycling at a SAR clock rate of 100MSPS for a total of 320ns. This leads to a fundamental

limit of 3.125MSPS throughput or 320ns between conversions. In the case of the 4:1

interleave ADC, as long as each channel waits 4 conversion periods to read (400ns for

fs=10MHz), the output data will be valid.

3.2 SPLINTA Circuit Details

3.2.1 Top Level Schematic Diagram

The schematic diagram for the SPLINTA top level is shown in figure 24. The design

consists of four main cells: the ADC core (AD7621TOP3) used in the interleaved array,

master timing (CLK_SEL_EXT), digital block (DIG_OUT) and padring (PADRING).

Figure 23. SAR CYCLE

 41

The strategy for the design of this system was to reuse existing cells wherever possible.

Reusing existing circuits lessens the risks associated with the individual designs and

shifts the focus to system level issues specific to SPLINTA. The ADC core, master

timing cell, and ESD cells contained in the padring, are all reused from existing circuits.

Please refer to [3, 6, 29, 31] for detailed coverage of these design specifics. The circuit

details presented here describe the system level design of SPLINTA and the pertinent

circuits to support it.

Figure 26. SPLINTA Top Level Schematic Diagram

Figure 24. SPLINTA Top Level Schematic Diagram

 42

3.2.1.1 System Noise Issues

Digital noise is a serious concern in mixed signal circuits such as SPLINTA (see section

4.3). Several precautions are taken to isolate the cells and minimize the noise while

balancing practical considerations for the physical size and packaging.

The external reference is brought in separately to each converter. Since eight of the nine

capacitor DACs are operational at any given time, quite a bit of noise is generated on the

reference line. If they are not separated, one converter can be subjected to large noise

transients on the reference by direct coupling from another converter. This can lead to

crosstalk between converters, compromising the ADC performance. This effect is

described in more detail in Chapter 4.

In addition to separating the reference lines, there are several power supply and ground

pins on SPLINTA. Isolation is important between supplies also, but not as critical as with

the ADC reference. Considerations such as substrate noise and ground bounce [30] are a

concern for power supply lines in mixed-signal circuits and it is common practice to

separate analog and digital supplies to minimize coupling of this noise from the digital

into the analog circuits. SPLINTA further separates the analog and digital supplies,

trading off package constraints with noise concerns. There are 16 pins available for the

supplies in the present 100 pin package and are partitioned as 3 pair for analog, 3 pair for

output digital driver and 2 pair for ‘internal’ digital supplies. The decision for this power

supply scheme is based on the fact that the internal logic requires less current than the

analog or output driver cells and can be managed with one less supply.

The grouping of the cells for the supply pins is based on physical proximity of the cells to

the package pins. The ADC array is separated into groups of three for the analog and

digital output driver supplies. The three digital output driver supplies also power the two

16-bit digital output drivers, DOUTA and DOUTB, and the ‘ADC TAG’ and ‘BUSY’

lines. Ideally, 3 supplies for the internal digital circuits would be better to maintain the

grouping; unfortunately there are only 4 pins available. In an effort to balance the two

 43

available supplies, cells are split into two groups of 4 converters and 3 converters plus the

digital block. The exact pinout and routing is explained in more detail in Chapter 5.

3.2.2 ADC Array

The ADC array uses a modified version of the Analog Devices AD7621 [6] architecture

for the core. The performance of this circuit is well known and the goal of SPLINTA is to

replicate this performance at 4 times the frequency. This was chosen because of its high

resolution and relatively high speed. It is a charge redistribution SAR type ADC (sec

3.1.5) which operates from a single 2.5V supply [6]. Figure 25 shows the AD7621 block

diagram highlighting the main differences between it and the SPLINTA ADC. The

SPLINTA core uses an external reference and does not need the internal reference. Also

the ADC internal timing is modified to accommodate the master timing signals (sec

3.1.4). The new internal timing cell is reused from an ADI 4:1 interleaved project chip

[31] which uses the same timing scheme as well as the AD7621 as the core ADC. That

work uses a more traditional 4 ADC approach and is still under evaluation.

Figure 25. AD7621 based ADC core

 44

The ADC array is designed to have common connections where possible to save on the

pin count without compromising good isolation. The nine ADCs share the differential

input lines. They also share the digital control and calibration lines which are used only

during the initial linearity calibration (appendix A), otherwise they remain fixed. The

selection of the conversion start pulses for each ADC is handled in the digital section, as

are the chip select lines, CSB, used for the linearity calibration. The ADC individual

digital outputs are routed separately to the digital section for processing. The reference

and power supply connections are separated for maximum isolation, minimum noise and

practical considerations (sec 3.2.1.1).

3.2.3 SPINTA Master Timing Cell

To minimize timing errors, a single external master clock drives the timing circuits for all

ADC in the array. The timing for SPLINTA is generated from an external clock and is

common to all 9 ADCs to minimize timing mismatches (sec 3.1.4). This required

modifications to the AD7621s internal timing logic (sec. 3.2.2) and the addition of a

‘master’ timing cell at the top level (CLK_EXT_SEL in figure 24). The diagram for the

master timing cell is shown in figure 26. The TIMING PULSE GENERATOR was

reused from the ADI project chip, as mentioned above.

The external SAR clock is processed by the TIMING PULSE GENERATOR, to provide

the six timing signals that control the SAR cycles. The op-amp offset zeroing function

(sec 3.1.5) uses four controls, OZ, OZQ, OZS, and OZQS. Each of the six timing signals

is connected to the 9X BUFFER blocks and routed separately to each of the ADCs for a

total of 54 timing signals. The D type flip-flop is used to synchronize the external SYNC

pulse with the master clock (sec 3.1.3) to provide the conversion start signal,

CNVSTBIN.

 45

3.2.4 Digital Block

The digital block, DIG_OUT, is the only ‘new’ circuit on SPLINTA. The schematic is

shown in figure 27. It contains the logic for the interleaving multiplexer arrays which

assemble the individual ADC outputs into the high speed A and B outputs. It also

contains the de-multiplexer that handles the routing of the conversion start pulses. The

routing for the CSB input and BUSY outputs, used for the linearity calibration, is also

contained here.

The DATA OUTPUT MUX routes each bit from each ADC into 16 8:1 multiplexer

arrays, one for each bit. The READA and READB busses are a shifted version of the

SELA and SELB lines (sec 3.1.3) and select which of the ADC 16-bit words will be

routed to which of the A or B outputs. The outputs are buffered then routed to the

padring. The READA and READB busses are also buffered and routed to the padring to

be used as the ADC tags to identify which ADC the data came from.

MASTER

CLOCK

TIMING PULSE

GENERATOR

(reused)

MASTER

CLOCK

MASTER OZ

MASTER

LATCH

D

CK

Q

SYNC

9X

BUFFER

4 9X

BUFFER

9X

BUFFER

9X

BUFFER

9X

BUFFER

TO ADC

ARRAY

CNVSTBIN

9X

BUFFER

MASTER

CLOCK

TIMING PULSE

GENERATOR

(reused)

MASTER

CLOCK

MASTER OZ

MASTER

LATCH

D

CK

Q

SYNC

9X

BUFFER

4 9X

BUFFER

9X

BUFFER

9X

BUFFER

9X

BUFFER

TO ADC

ARRAY

CNVSTBIN

9X

BUFFER

Figure 26. Master Timing Block

 46

The CSB de-multiplexer is used during the linearity calibration. The TEST[0:1] pins

actives the de-multiplexer and the selection line for channel A determines which ADC is

to be calibrated. The CSB control signal is routed to the ADC to be calibrated according

to the SELA bus. ‘BUSY’ lines from each ADC are multiplexed to the two BUSYA and

BUSYB outputs within this block. They are used when evaluating a single ADC within

the array or during the linearity calibration. They can also be used to signal when data is

valid (sec 3.1.3).

Figure 27. SPLINTA Digital Block

3.2.5 Padring

The schematic diagram for the padring is shown in figure 28. As mentioned before, the

ESD cells are reused from the AD7621 and the AD interleaved project chip [31]. The

strategy here was to use the existing interleaved structure as a guide for the best

arrangement.

 47

The ESD protection circuits, ESDSUPPLY_2P5, are used to protect the reference, analog

supply and internal digital supply pins. ESDSUPPLY_3P3 are used for the output driver

supplies because they use higher voltage devices. ESD clamps are used to protect the

many (13) VSS pins. The supplies for the digital outputs are organized depending on

which driver supply it is associated with. Chapter 5 details the power supply strategy.

Figure 28. PADRING

 48

4 Simulation Results

In large systems such as SPLINTA, convergence for a complete transistor level model

simulation is difficult, if at all possible. Even when convergence is achieved, the transient

analysis times are prohibitively long. For this reason, simulations for SPLINTA were

done mostly at a high behavioral level. The behavioral simulations results were ‘spot’

checked with transistor level models used on the analog portions of the ADCs as well as

the ESD cells in the padring.

Three types of simulations were performed to verify the SPLINTA design. Although the

target sampling rate for SPLINTA is 10MSPS, these simulations were performed at 12

MSPS. Functional simulations are done both at the behavioral level and transistor level to

verify operation. The models used are for a 0.25u CMOS process. Some simulations were

performed with package parasitic modeling on the reference pins. Simulations with the

package parasitic were performed at the transistor level for the analog sections. Lastly,

simulations are done specifically to be used with the MATLAB correction algorithm to

demonstrate the calibration results.

4.1 Simulation Test Circuit

The basic test circuit used for these simulations is shown in figure 29. The power source

is a single 2.5V supply. The external reference is 2.048V and the differential input can

span the +/- 2.048 range. The sampling rate is 12MHz and the master timing or SAR

clock is set at 96MHZ.

 49

Ideal voltage sources are used to supply power and the reference voltage. The control

lines are hard wire for normal operation (refer to Table 7 in Chapter 5 for pin

functionality). The input voltage is applied differentially also using ideal voltage sources.

Behavioral models for test DACs are used to convert ADC outputs back to analog voltage

levels for analysis purposes. The ‘Data Logger’ is also a behavioral model that records

the ADC outputs in a text file to be used with the MATLAB correction algorithm.

Figure 29. Simulation Test Circuit

4.2 Functional Simulations

This simulation was the baseline used for functionality verification. The differential input

is set to ramp up N number of bits around any value within +/- full scale range at a rate of

1LSB/Conversion Rate: 62.5uV/83.33uS. The selection lines are configured to randomly

cycle through ADC pairs as described in sec 2.3.1.

Figure 30 shows waveforms for a section of approximately 10 bits at mid-scale for a

typical SPLINTA simulation run. The differential input is set around zero and is ramped

DATA LOGGER

 50

at a rate of 1LSB/Conversion Rate. The ADC outputs da and db, are the interleaved

outputs and appear at output four conversions pulses after it started its conversion. The

atag and btag designate which ADC the data came from (sec 3.1.3)

A behavioral model for a DAC is used to convert both 16 bit digital outputs to an analog

signal. The output from the test DAC can be subtracted from the ideal analog input and

the residual error is used for comparison. The DAC output is given by (11).

REF

LSB

REF
DAC V

V
DOUTV −







 ×
×=

43421
162

2
 (11)

Mid scale occurs with a differential input of zero (Table 2) and should produce a

DOUT=3276810 (8000h). With VREF=2.048, equation (11) yields VDAC=0. The error

signal is the difference between the test DAC output and the analog input and is shown is

figure 30 to be within +/- ½ LSB. A wider sweep of 1000 bits is shown in figure 31.

ANALOG INPUT DIGITAL OUTPUT A DIGITAL OUTPUT B

0

200

400

600

800

u

ERROR CHANNEL A ERROR CHANNEL B

-40

-30

-20

-10

0

10

20

30

40

u

atag 0 2 4 6 8 1 3 5 7 1 3

da 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 800A

btag 1 3 5 7 0 2 4 6 8 0 2

db 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 800A

2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25
time, uSeconds

Figure 30. Functional Simulation

 51

This simulation provides a baseline for the functionality verification. This was the

standard test repeated with transistor level models and at both + and – full scale to verify

functionality each time a change was made to the circuit.

4.3 Transistor Level Simulations with Bond Wire Parasitics

Noise coupling through package parasitics is a major concern in mixed signal integrated

circuits [32]. This is especially a concern for interleaved ADCs such as SPLINTA where

quite a bit of digital noise is generated from multiple converters working simultaneously.

Digital noise can be coupled to the analog circuits through substrate and common

connections such as supplies and references compromising performance. These issues are

addressed by careful layout and package pin arrangement. Ideally circuits should be

simulated at the transistor level, with parasitics included, to uncover problems before

fabrication. This is very difficult and time consuming, if possible at all, due to the

complexity at this level. In general, a combination of simulation and careful layout is

relied on for best results.

Figure 31. Functional Simulation-1000 bits

 52

Simulations to investigate package parasitic effects were performed on SPLINTA with

limited success. Convergence for circuits including power supply parasitics proved nearly

impossible. However, simulations with package parasitics on the ADC reference

uncovered a potentially serious flaw in the original pinning strategy. Initially, one

common pin was used to connect the external reference to all nine ADCs. The

simulations showed that using common reference pins results in noise generated from one

ADC affecting the conversion results of another, commonly known as crosstalk.

4.3.1 Transistor Level Simulation

Since an all transistor level simulation is nearly impossible, a compromise is made where

the analog portions of the ADCs are modeled at the transistor level and the digital

portions are modeled at the behavioral level. The partitioning for the ADC core is shown

in Figure 34. The padring (not shown), which contains all the ESD protection is also

modeled at the transistor level. Simulations showed that this level of modeling is

sufficient to see parasitic effects.

Transistor Level

Modeling

Behavioral

Modeling

Figure 32. Modeling Level for SPLINTA ADC

 53

Even at this level of modeling, convergence can be a challenge. The flow graph in Figure

33 shows a general procedure that was used to achieve DC convergence. Initially, an all

behavioral, no parasitic, simulation is run under the desired test conditions. The models

for the analog blocks are then changed, one at a time, from behavioral to transistor. The

node voltages are saved at each step and reused as a starting point as the level of

complexity is increased. If convergence is not achieved then the SPICE tolerances are

loosened until convergence is achieved. If successful, this same procedure of saving and

reusing the node voltages is used while the tolerances are retightened towards acceptable

values. This can be a long and tedious procedure but it is worth the effort if successful,

especially if a problem is uncovered. Common sense and experience will dictate how

much time and effort should be placed here. In many cases, only the actual silicon chip

can provide useful insight to parasitic effects.

Start with ideal

behavioral Model

Simulate and Save

node Values

Change one Analog

Block to Transistor

level Models

Convergence

Problems

?

Loosen

Tolerances

Simulate and Save

node Values

Convergence

Problems

?

Tighten

Tolerances

Yes

Yes

No

No

Simulate and Save

node Values

Any More

Analog Blocks

?

No

Yes

Add Parasitics

Run Transient

Figure 33. Flow for Transistor Level Simulation Convergence

 54

Once DC convergence is successful, the next step is to attempt a transient simulation.

Table 4 shows how long the transistor level simulations can be. It is a comparison of

elapsed times for different reference pinning scenarios. A simulation time span of 8.33uS

was used, enough for 100 conversions at 12Msps. The table shows that it takes several

days to complete a simulation. The most complex and time consuming solution involves

separate pins for each ADC reference with bond wire parasitics on each one taking twice

as long as the ‘no parasitic’ case. Only the most important node voltages should be kept.

These transient analyses require an enormous amount of memory and saving every node

can bog down a simulation and quite possibly use up all that is available.

Type of Simulation Time Span, uS* Total Simulation Time, hrs

Ideal Case, no Parasitics 8.33 77

One Common Reference

Pin with parasitics
8.33 97

Separated References

pins with Parasitics
8.33 169

4.3.2 Reference Pin Parasitic Simulations

The procedure described in the previous section proved useful in uncovering an issue

with the original pinning scheme. The simple model of an inductance in series with a

resistance in figure 34 is used for the package lead parasitic model. Typical ballpark

values are 2nH and 0.1 ohms for a 2mm wire [33].

CHIP 2nH 0.1ΩEXTERNAL PIN CHIP 2nH 0.1ΩEXTERNAL PIN

Figure 34. Bond Wire Model

Table 4. Comparison of Simulation Times and Level of Circuit

Complexity

 55

This model was placed in series with the reference package pin. The original 80-pin

design is shown in figure 37. The ADCs shared one common reference pin connected to

an external source. The simulation test circuit is the same as described in section 4.2. The

input in ramped up at 1LSB/conversion time around mid scale.

A baseline was established by running a transistor level simulation without parasitics, this

is shown in 36a. The waveforms in figure 36b show the effects of the noisy reference.

The addition of the parasitic model causes large noise transients on the reference line

from the cap DACs. The worse transients are when the MSB is cycled (section 3.1.3) and

occurs at a rate of fsample. These periodic perturbations from one ADC can cause bit errors

on another ADC, particularly if it is at the end of its bit cycling making decisions on the

LSBs.

Figure 35. Original 80-pin SPLINTA Design

 56

Ideally, the error in the ADC transfer function should be between +/- ½ LSB as in the

baseline plot in 36a. The parasitic plot in 36b shows the converter regularly getting

‘stuck’ for 4 conversions. The noise generated from this pinning strategy clearly

compromises the ADC resolution with errors of +/- 2 LSBs.

The package diagram in figure 35 shows that some of the package pins were not used.

There were enough ‘spare’ pins to be able to separate the references into groups of 3 and

still remain in the smaller package. A simulation was done for this case to determine if

this level of isolation was sufficient. Figure 37 shows the results of this case. This

arrangement improved the problem somewhat but still made the occasional mistake when

one ADC was making an MSB decision while another ADC from the same group was

making LSB decisions. This strategy not only had bit errors but channels A and B could

be different from one another. It was evident from these results that any excessive noise

generated from one ADC was likely to corrupt another ADC output when they are

sharing a common reference.

Figure 36. Simulations on Original 80-pin SPLINTA Design

with and without Parasitics

a. Baseline

b. With Parasitics

b. With Parasitics

 57

To minimize risk for the success of the chip, each reference and reference ground needed

to be pinned out separately necessitating a switch from an 80 pin package to a larger 100

pin package. The parasitic models were added in series to each of the 18 reference and

reference ground pins as shown in figure 38.

Figure 37. Simulations on Original 80-pin SPLINTA Design

Reference tied in Groups of Three

b. Error = ANALOG IN – TEST DAC Out

Figure 38 Separately Pinned Out References

a. Reference

 58

A new baseline simulation was run with this new pinout as well as another parasitic run

with one common reference, for comparison purposes. The analog input for these

simulations is ramped at a rate slightly faster than 1 bit/conversion as used previously

which is the reason it looks slightly different than the previous simulations. Figure 39

shows a snapshot of this ramp along with the digitized version from the test DAC. The

top trace (1) has all the references tied to one common reference pin through parasitics.

The test DAC output gets routinely ‘stuck’ for four LSBs reducing the resolution from

16-bits to 14-bits. Trace (2) shows the output with the references tied separately through

the parasitics. These results are identical to the baseline results in (3), without parasitics,

verifying that this level of isolation is essential to maintain high resolution for this type of

architecture.

4.3.3 Issues with Supply Pin Parasitic Simulations

As the previous section demonstrated, there is no doubt that simulations of this type are

invaluable to successful circuit design. Uncovering problems such as this before chip

fabrication saves much time, money and aggravation. However, the closer the models are

Comparison of 3 cases : 2:Common Reference with Parasitics
 3:Separate Reference with parasitics

 1:No Parasitics

Error - common reference with parasitic

-150

-100

-50

0

50

100

150

200

u

Error - separate references with parasitics

-75

-50

-25

0

25

50

75

u

Error - no parasitics

-75

-50

-25

0

25

50

75

u

2.6 3 3.4 3.8 4.2 4.6 5 5.4 5.8 6.2 6.6 7 7.4 7.8 8.2

time, uSeconds

Comparison of 3 cases : 2:Common Reference with Parasitics
 3:Separate Reference with parasitics

 1:No Parasitics

Test Dac Output - common reference with parasitic Analog Input

.2

.4

.6

.8

1

1.2

m

2:<>v(da) 7FFD 8000 8001 8004 8005 8009
2:<>v(db) 7FFD 8000 8001 8004 8005 8009

Test DAC Output - separate references with parasitics Analog Input

.2

.4

.6

.8

1

1.2

m

3:<>v(da) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B
3:<>v(db) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B

Test DAC output - no parasitics Analog Input

.2

.4

.6

.8

1

1.2

m

1:<>v(da) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B
1:<>v(db) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B

5.35 5.45 5.55 5.65 5.75 5.85 5.95 6.05 6.15 6.25 6.35

time, uSeconds

(1) Common

Reference

through

Parasitics

(2) References

Tied Separately

through

Parasitics

(3) No Parasitics

A. Analog input and Test DAC output B. Error between Analog input and Test

DAC output

Figure 39. 100-pin Package Simulation Results

 59

to reality, i.e. transistor level models with chip and package parasitics, the greater the

difficulty achieving DC convergence. Even if successful, it doesn’t necessarily guarantee

a successful transient analysis. In some cases the transient simulation can run for hours or

days until a certain point and get ‘stuck’. This is most likely to occur when several things

are switching at once.

This was precisely the case with a transient analysis attempted with bond wire parasitics

on the analog power supply pins. The simulation gets stuck at the beginning of first

conversion cycle and can’t resolve the transitions. Several attempts where made to get

past the ‘stuck’ point, such as, loosening the tolerances and reducing the level of

complexity by modeling some analog portions at the behavioral level, and forcing

SPLINTA to a known state past the ‘stuck’ point. None of these attempts were

successful.

It is not always practical or even possible, as in this case, to cover every scenario in

simulation and careful layout and pin strategy is the best and sometimes only practical

solution. Chapter 5 describes the physical layout and pin arrangement. The goal is to

isolate as best as possible. The PSRR of the comparator should alleviate some of the

supply coupling so it should not be as dramatic as the reference problem [29].

4.4 Matlab Correction Algorithm

The MATLAB correction algorithm was developed at Worcester Polytechnic Institute

[5]. It is a mathematical model for the algorithm described in section 2.3.2 and is the

basis for the hardware implementation being developed at WPI concurrently with this

project. The block diagram in figure 40 is the model used to demonstrate the complete

self-calibrating ADC system. In the absence of hardware, the MATLAB code can be

used to verify the correction algorithm on SPLINTA simulation data.

 60

SPLINTA

IC

MATLAB

Interleaved

ADC

Correction

ALGORITHM

Vin

Select Chan A

Select Chan B

SAR Clock

Sampling Clock

Reference

Tag Chan A

Dout Chan A

Dout Chan B

Tag Chan B

Corrected

OutputSPLINTA

IC

MATLAB

Interleaved

ADC

Correction

ALGORITHM

Vin

Select Chan A

Select Chan B

SAR Clock

Sampling Clock

Reference

Tag Chan A

Dout Chan A

Dout Chan B

Tag Chan B

Corrected

Output

Figure 40. Model for MATLAB Calibration

To verify the algorithm, simulation data for SPLINTA are collected for ideal cases as

well as with intentionally mismatched offset, gain and timing errors. The input signal,

VIN, is a sine wave input with an amplitude of 2V peak. The simulation is set up to collect

1024 data points, performing a conversion at each of the points. The input frequency is

calculated using (12).

samplesim f
cyclesofNumber

f ×=
1024

 (12)

The frequency of the input, fsim, is set for 12 cycles at 140.625 kHz sampling at a rate of

12MHZ.

The mismatch errors are modeled using ideal voltage sources and delay blocks as in

section 2.1.2. Figure 41 is a simplified diagram of the strategy. An offset was randomly

introduced in some of the paths by placing an ideal voltage source in series with one of

the differential inputs, VOFFSERRx in the diagram. Similarly, a gain error was induced by

randomly placed voltage sources in series with some of the ADC reference pins

VGAINERRx. The timing was mismatched by placing different valued behavioral delay

elements in series with the conversion start pulses, tdelayx. Table 5 shows the actual values

used. A behavioral model for a data logger (figure 31) records the 1024 digital output

 61

data points and tags for channels A and B into a text file that can be imported into

MATLAB.

The MATLAB algorithm is designed to compute the errors between each ADC pair

combination and apply that estimate each time that pair is selected (sec 2.3.2). In general,

the correction algorithm needs 200K+ points for initial convergence. It is not practical to

ADC0

ADC1

ADC8
SIG IN

SEL ADC A

MASTER

CLOCK

SYNC

100MHz

Timing

Logic

SAR TIMING

10MHz

MUX

READ B

DIGITAL

OUTPUT

BLOCKS

CNVST

DOUT

DOUT
CNVST DOUTB

DOUTA

TAGB

BUSYB

SEL ADC B

TAGA

REFERENCE

READ A

CNVST

BUSYA/B

CNVST
DOUT

BUSYA/B

BUSYA/B

BUSYA

VGAINERR0

VGAINERR1

VGAINERR8

VOFFSERR0

VOFFSERR1

VOFFSERR8

tdelay0

tdelay1

tdelay8

ADC0

ADC1

ADC8
SIG IN

SEL ADC A

MASTER

CLOCK

SYNC

100MHz

Timing

Logic

SAR TIMING

10MHz

MUX

READ B

DIGITAL

OUTPUT

BLOCKS

CNVST

DOUT

DOUT
CNVST DOUTB

DOUTA

TAGB

BUSYB

SEL ADC B

TAGA

REFERENCE

READ A

CNVST

BUSYA/B

CNVST
DOUT

BUSYA/B

BUSYA/B

BUSYA

VGAINERR0

VGAINERR1

VGAINERR8

VOFFSERR0

VOFFSERR1

VOFFSERR8

tdelay0

tdelay1

tdelay8

tdelay

ps

VGAINERR

mV

VOFFSERR

mV
ADC

0008

40007

0006

15055

25-504

10063

65-102

01041

50-3100

Error Values for Interleave Errors

tdelay

ps

VGAINERR

mV

VOFFSERR

mV
ADC

0008

40007

0006

15055

25-504

10063

65-102

01041

50-3100

Error Values for Interleave Errors

Figure 41. Block Diagram for Interleave Simulation

with Mismatch Errors

Table 5 Induced Error Values

 62

directly collect this amount of data from simulation. The simulation time would be

prohibitively long (sec 4.3). For this reason, only 1024 points are collected for the FFT

and a compromise is made by replicating the data 500 times for a total of 512K data

points.

An FFT of the MATLAB results is shown Figure 42. The spectrum for the ‘ideal’

simulation data shows a noise floor of around -130db. The spectrum from the simulation

corrupted with the mismatch errors shows the noise floor at around -80dB. The mismatch

errors do not cause spurs in the spectrum because of the decorrelation of the errors by the

randomization of the ADC selection (sec 2.1.3). This data is processed by the MATLAB

algorithm for correction. The calibration completely removes the effects of the error. The

data output has a noise floor as good as the ‘error free’ data.

Figure 43 shows a MATLAB plot of convergence of the algorithm. The error settles to

within 1 LSB in 200K conversions. For an fsample of 10MHZ, the convergence time is

20ms.

Simulation Data no errors

Simulation Data with
induced errors

Corrected Data

Figure 42. MATLAB Calibration Results

 63

Figure 43. MATLAB Convergence

 64

5 Physical Layout and Packaging

The technology used in the SPLINTA design is a 0.25u CMOS process with 5 metal

layers. The physical design and package selection balances maximum isolation and

matching with practical size limitations.

5.1 Physical Layout

The physical layout of SPLINTA is as critical as the simulation verification (section 4).

Figure 44 is a plot of the physical layout. Even though the calibration algorithm (sec

2.3.2) is designed to correct for any mismatches in the channel, care still needs to be

taken to keep the blocks as well matched and as isolated as possible for optimal

performance. Identical ADC layouts are surrounded by guard rings and arranged in a 3 X

3 grid. Placement of the digital block is not critical but the timing block is placed close to

ADC0 to minimize the routing to the timing calibration. ADC0 is the only cell used to

calibrate the master timing block.

The offset and timing errors can be affected by the input signal paths. To ensure the best

possible matching, routing for the differential input lines are intentionally shaped so that

the lengths and area are the same. All of the differential path lengths to the nine ADCs

are matched to the longest path in the array. These lines are also shielded to provide some

isolation.

 65

The length of the reference lines is not as critical as far as timing is concern. However

they are designed to be as wide as possible for a low impedance path to the pad. The pads

are located around the chip such that the paths are short, further minimizing the

impedance. They are also shielded to provide some added isolation.

To prevent the digital noise from interfering with analog supplies, the supply pins are

separated into three types: analog, internal digital and output driver supplies (sec.

3.2.1.1). Because of the large amount of switching and digital activity, these types are

further separated into subgroups to minimize crosstalk and supply bounce [30]. The

analog and output driver supplies are separated into groups of three and the digital supply

into groups of two (sec 5.2). In addition, each power and ground pin from each core ADC

is Kelvin connected back to its supply pin.

The size of this layout is approximately 7mm X 7mm and will fit in a 100 pin LQFP

package.

Figure 44. SPLINTA LAYOUT

 66

5.2 Pad Layout

Figure 45 shows the chip pad arrangement and the bonding. The total number of pads on

the chip totals 108. Given the die size and number of pins a 100-pin LQFP package with

a 9000um
2
 cavity size is chosen for packaging. Some of the supplies and grounds will

share a pin to fit in the 100-pin package. To minimize the parasitic impedance, the analog

and supply pads are arranged around the chip so that they are physically close to the cells

they connect to.

Ideally, for maximum isolation, each block in the system would have its own analog,

digital and output driver supply pins. Due to the limited number of pins, compromises are

made by double bonding and evenly distributing all of the available pins for power

between the cells.

There are six pairs of analog supply pads on the chip. Each ADC cell has the comparator

supply separated from the timing supply and routed to its own pad. They will be double

bonded to the same package pin. The analog pins are AVDDA/B/C and AVSSA/B/C.

The digital output drivers can have very large switching transients, particularly with two

sets of digital data outputs switching simultaneously. These supplies are also grouped in

sets of three: OVDDA/B/C, OVSSA/B/C.

Unfortunately, there is room only for two more pairs of supply pins, the internal digital:

DVDDA/B, DVSSA/B. The substrate connections are split into two groups, SAGNDA

and SAGNDB, routed to a separate chip pad, and then double bonded with the DVSSA

and DVSSB pins. This arrangement is a compromise and was chosen because the digital

supply pins for the internal logic do not have as high current level as the other groups.

All supply pins are located on the chip to be as close to the blocks they power as possible.

Table 6 lists the supply pads and the cell groupings that connect to them.

 67

The nine pairs of reference pins: REFIN[0:8], REFGND[0:8]: are also located around the

chip so they are physically close to their associated cells. They are arranged in groups of

three pairs around the chip. Digital control lines are placed next to each group of

reference pins to provide more shielding. The control lines are used only for calibration

and are set to fixed ‘quiet’ logic values during normal operation.

The physical location of the digital outputs to their connecting cells is not as critical as

with the analog and supply pins. These were basically arranged at the left over locations

once all the critical pins were placed.

Figure 45. Chip Pinout

D

I

G

I

T

A

L

T

I

M

I
N

G

 68

5.3 Power Supply Partitioning

5.3.1 Analog Supplies

The ADCs are separated into to groups of three to minimize crosstalk through the supply

pins: VDDA/B/C and VSSA/B/C (Table 6). Figure 45 shows the chip pad arrangement.

The supplies for the timing block of each ADC are separated from the main analog

supply. VDD1A/B/C and VSS1A/B/C are grouped in the same fashion as the main

analog supply and routed to their own pad on the chip. Since there is a shortage of pins

on the package, these will be bonded to the same pin as their main analog supply

counterpart. This strategy is modeled after an existing interleaved SAR based project chip

[31].

The master timing block for this chip is at the top level, common to all ADC’s. The

calibration and the test modes for this cell are controlled by ADC0; therefore it is

powered by the same timing supply: VDD1C, VSS1C.

5.3.2 Output Driver Supplies

The output driver supplies power the internal ADC ROMs as well as the output digital

drivers. These are also separated into groups of three to minimize ground bounce [30]:

OVDDA/B/C, OVSSA/B/C. The internal ROM power is grouped the same way as the

SPLINTA SUPPLY PADS 2/22/2007

Name Function Notes

DVDDA, DVSSA Power and Gnd for Internal Digital Connection for internal digital for ADC1, 2, 5, 4, 8

SAGNDA
Substrate connection for Internal

Digital

Connection for internal digital for ADC1, 2, 5, 4, 8;

double bonded to DVSSA pin

OVDDA,OVSSA
Power and Gnd for Output Digital

and Internal ROM

Connection for internal ROM of ADC2, 5, 8 and

Channel A Digital Outputs

AVDDA, AVSSA Analog Power and Gnd Connection for analog blocks of ADC2, 5, 8

AVDD1A,

AVSS1A
Analog Timng Power and Gnd

Connection for analog timing blocks of ADC2, 5, 8;

Double Bonded to AVDDA and AVSSA

DVDDB, DVSSB Power and Ground for Internal Digital
Connection for internal digital for ADC0, 3, 6, 7 and

the DIG_OUT cell

SAGNDB
Substrate connection for Internal

Digital

Connection for internal digital for ADC0, 3, 6, 7 and

the DIG_OUT cell; double bonded to DVSSB pin

OVDDB, OVSSB
Power and Gnd for Output Digital

and Internal ROM

Connection for internal ROM of ADC1, 4, 7 and

Channel B Digital Outputs

AVDDB, AVSSB Analog Power and Gnd Connection for analog blocks of ADC1, 4, 7

AVDD1B, ASS1B Analog Timing Power and Gnd
Connection for analog timing blocks of ADC1, 4, 7;

Double Bonded to AVDDB and AVSSB

OVDDC,OVSSC
Power and Gnd for Output Digital

and Internal ROM

Connection for internal ROM of ADC0, 3, 6, Tag and

Busy lines

AVDDC, AVSSC Analog Power and Gnd Connection for analog blocks of ADC0, 3, 6

AVDD1C, ASS1C Analog Timing Power and Gnd

Connection for analog timing blocks of ADC0, 3, 6 and

the Master Timing Cell; Double Bonded to AVDDC

and AVSSC

Table 6. Supply Pads and Connections

 69

analog supplies. A set of output supply pins is placed at the center of each channel of the

data output bits and another in between the select and ‘tag’ lines to minimize supply and

ground impedance. These lines are also Kelvin connected to their proper pads.

5.3.3 Internal Digital Supply

Due to the pin count constraints, there is only room for two pairs of internal digital

supply lines. The substrate connections for the internal digital block: SAGNDA,

SAGNDB: also need to share pins. As with the analog timing pads, these are routed to

separate pads on the chip, then bonded to the same pin as DVSSA and DVSSB. The

grouping for these lines is 5 ADCS on one supply: DVDDA, DVSSA: and 4 ADCs plus

the digital block on the other: DVDDB, DVSSB. This asymmetrical grouping is

unavoidable and attempts to balance the number of cells on each line. The two sets of

supply pins are physically placed next to the output driver supply pins that sit in the

center of the data pins, also to minimize the impedance.

5.4 SPLINTA Package and Pin List

Figure 46 shows the SPLINTA package. It is a 100-pin low profile quad flat pack or

LQFP. Table 7 is the pin list including all the pins and their functions.

Figure 46. SPLINTA Package (Top View)

 70

SPLINTA PIN LIST 2/22/2007

Name Function Notes

1 DB8 Channel B CMOS digital output bit 8

2 DVDDB Power for Internal Digital Power connection for internal digital for ADC0,3,6,7 and the DIG_OUT cell

3 DVSSB GND for Internal Digital Gnd and substrate connection for internal digital of ADC0,3,6,7 and DIG_OUT

4 OVSSB Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC1,4,7 and Channel B Digital Outputs

5 OVDDB Power for Output Digital and Internal ROM Power connection for internal ROM of ADC1,4,7 and Channel B Digital Outputs

6:13 DB7:DB0 Channel B output bitsCMOS digital outputs bits 0-7

14 AVSSB Analog Gnd Gnd connection for analog and timing blocks of ADC1,4,7

15 AVDDB Analog Power Power connection for analog and timing blocks of ADC1,4,7

16 WARP Fastest Mode- All 9 tied together This is mode I would use

17 REFGND4 External Reference GND Connection for ADC4

18 REFIN4 External Reference Connection for ADC4

19 REFIN1 External Reference Connection for ADC1

20 REFGND1 External Reference GND Connection for ADC1

21 REFGND0 External Reference GND Connection for ADC0

22 REFIN0 External Reference Connection for ADC0

23 AVSSC Analog Gnd Gnd connection for analog and timing blocks of ADC0,3,6 and master timer cell

24 AVDDC Analog Power Power connection for analog and timing blocks of ADC0,3,6 and master timer cell

25 IMPULSE Slowest Mode Don't need it for operation but used in calibration

26 SARCLK External SAR CLK ~100MHZ for 10 MS/s conversions

27 RESET Reset chip - Aborts current conversion

28:31 SELB0:SELB3 Selects which ADC pair to use for B channel

32:35 TAGB0:TAGB3 Identifier for Channel B

36 BUSYB Indicates when conversions are occuring in B channel

37 OVDDC Power for Output Digital and Internal ROM Power connection for internal ROM of ADC0,3,6,TAG and BUSY Digital Outputs

38 OVSSC Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC0,3,6 ,TAG and BUSY Digital Outputs

39 BUSYA Indicates when conversions are occuring in A channel

40:43 TAGA3:TAGA0 Identifier for Channel A

44:47 SELA3:SELA0 Selects which ADC pair to use for A channel

48 SER_PARB Switches from Serial to parallel mode Always in Parallel mode unless in calibration

49 REFIN3 External Reference Connection for ADC3

50 REFGND3 External Reference GND Connection for ADC3

51 REFGND6 External Reference GND Connection for ADC6

52 REFIN6 External Reference Connection for ADC6

53 REFIN7 External Reference Connection for ADC7

54 REFGND7 External Reference GND Connection for ADC7

55 MODE0 Selects either 16 bit or 18 bit operation Only used in calibration mode

56:63 DA0:DA7 Channel A output bitsCMOS digital outputs bits 0-7

64 OVDDA Power for Output Digital and Internal ROM Power connection for internal ROM of ADC2, 5, 8 and Channel A Digital Outputs

65 OVSSA Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC2, 5, 8 and Channel A Digital Outputs

66 DVSSA GND for Internal Digital Gnd and substrate connection for internal digital of ADC1, 2, 5, 4, 8

67 DVDDA Power for Internal Digital Power connection for internal digital for ADC1, 2, 5, 4, 8

68:75 DA8:DA15 Channel A output bitsCMOS digital outputs bits 8-15

76 BYTE Swaps MSBs and LSBs Used in calibration mode

77 CSB Enables output usually these are tied low All 9 CSB's are tied tog. Needed for cal mode

78 SYNC 10MHz signal Initiate a conversion in sync with SAR CLOCK edge. Conversion start pulse is sent to appropriate ADC pair according to SELA and SELB

79 RDB Control for read. Usually tied low. All 9 RDB's are tied tog. Needed for cal mode

80 PD Powers down ADC Completes current conversion but inhibits subsequent- All 9 tied together

81 AVSSA Analog Gnd Gnd connection for analog and timing blocks of ADC2,5,8

82 AVDDA Analog Power Power connection for analog and timing blocks of ADC2,5,8

83 TEST1 Used selecting certain calibrations

84 INP Positive terminal for ADC input

85 INN Negative terminal for ADC input

86 TEST0 Used selecting certain calibrations

87 REFGND8 External Reference GND Connection for ADC8

88 REFIN8 External Reference Connection for ADC8

89 REFGND5 External Reference GND Connection for ADC5

90 REFIN5 External Reference Connection for ADC5

91 REFGND2 External Reference GND Connection for ADC2

92 REFIN2 External Reference Connection for ADC2

93 OB_2CB Switches from straight binary to 2's comp Used in calibration mode

94:100 DB15:DB9 Channel B output bitsCMOS digital outputs bits 9-15

Table 7 Pin List for SPLINTA

 71

6 Conclusion

This thesis described the design of a 4:1 interleaved ADC integrated circuit that

incorporates the ‘split ADC’ concept.. This new architecture has dual digital outputs that

can be used with a background calibration scheme to correct for offset, gain, and timing

errors typically found in interleaved structures. The errors are caused by mismatches

between channels due to physical design and process limitations which will become even

more difficult as process technologies continue to shrink. This split-interleaved ADC

approach together with the calibration algorithm can achieve 16-bit performance at

10MSPS. The correction algorithm uses the difference between the two ADC outputs as

the calibration error signal. An LMS technique is used in a feedback arrangement that

quickly drives the errors to zero. Its deterministic nature allows for fast convergence and

is continuously working in the background. The algorithm can be implemented as an all

digital processor, in an external FPGA or, eventually, in an on-chip digital block.

The purpose of this thesis was to demonstrate the split ADC approach on an interleaved

ADC topology. Design time and risk were minimized by reusing existing designs for

many of the core cells. The AD7621 SAR ADC architecture is used as the core ADC.

The ESD cells and timing block are reused as well. Because most of the cells were

established, proven architectures, the focus of the design could be placed on system level

issues. Practical consideration is given to digital noise and crosstalk, typical in mixed

signal circuits such as SPLINTA. These issues are addressed through a combination of

simulation verification and careful physical layout. Simulations with a shared reference

 72

between the ADCs uncovered problems leading to the decision to separate them.

Simulations were not possible for verification of different power supply strategies due to

the difficulty in the DC convergence. The decision was to separate the power supplies

between the analog, internal digital and output driver supplies then further split the

supplies amongst the 16 available pins on the 100-pin package. Limiting the number of

cells sharing the supply lines should reduce crosstalk and ground bounce.

The correction algorithm was demonstrated on the SPLINTA design using a combination

of behavioral level circuit simulations and MATLAB. Mismatch errors were intentionally

introduced in some of the channels and simulated with a sine wave input. The corrupted

data from the dual outputs are imported into the MATLAB calibration program which

completely removes the effect of the mismatches. An FFT of the MATLAB output shows

the noise floor is reduced from -80dB to its ideal value of -120dB in less than 200K

conversions.

SPLINTA is designed to be fabricated on a TSMC 0.25u CMOS process making this chip

suitable to be merged with the digital processor eventually.. The chip is about 7000 um
2

and will be packaged in a 100-pin LQFP package. This ADC architecture combined with

the digital correction algorithm offers a solution for a high speed, high resolution self-

calibrating ADC.

6.1 Future Work

 SPLINTA is designed to prove the concept of a split-interleaved structure. The next step

is to interface SPLINTA with the hardware for the calibration algorithm currently being

developed in parallel with this work. In lieu of the hardware, the calibration can be

demonstrated the same way as in simulation where data from the dual ADC outputs can

be imported to the MATLAB algorithm for correction. Eventually both SPLINTA and

the calibration hardware must be evaluated together to fully demonstrate the self

 73

calibrating ADC system. Ultimately both the digital correction hardware and SPLINTA

could be fabricated on a single chip using standard CMOS technology.

Once the self-calibrating system is successfully demonstrated, the design needs to be

optimized for a more efficient solution. While reuse of the cells is appropriate to verify

the concept, a long term solution should include streamlining the ADC cores. A physical

split in the analog area should be investigated to take advantage of the averaging benefit

of the dual outputs. Also, some of the functions, such as the biasing, may be shared.

Some of the features, such as the lower speed modes, are redundant or not even used. A

comprehensive study of the design and the specific implementation for SPLINTA is

necessary to optimize it for this application.

Another issue with SPLINTA is the excessive number of pins used for the supplies and

references. The goal for SPLINTA is to demonstrate the calibration and it is necessary to

isolate as best as possible to minimize crosstalk and supply noise. However, in order to

make this a viable marketable solution, some effort should be placed on minimizing the

number of pins used for supplies and references. A more sophisticated embedded power

management technique could be investigated to deliver power to the cells such as on-

chip regulators for the supplies and reference. This issue will become increasing

important if both the ADC and digital processor are integrated on the same chip.

Successful evaluation of SPLINTA is the initial step towards a fully integrated, high

speed, high resolution self calibrating ADC.

 74

References

[1] W. C. Black Jr. and D. A. Hodges, “Time Interleaved Converter Arrays,” IEEE

Journal of Solid State Circuits, Dec 1980, Volume 15, pp. 1022-1029.

[2] J. McNeill, M. Coln, and B. Larivee, “A Split-ADC Architecture for Deterministic

Digital Background Calibration of a 16b 1MS/s ADC,” IEEE Journal of Solid State

Circuits, Dec 2005, Volume 40, pp. 2437-2445.

[3] R. Allen, “3-Msample/s 16-Bit SAR ADC Sports 1-LSB Accuracy,” ED Online, Feb

2, 2004, ID#7184, http://www.elecdesign.com/Articles/ArticleID/7184/7184.html.

[4] D. Tuite, “SAR ADC Conversion Rates Jump to 4 Msamples/s,” ED Online, July 6,

2006, ID#12935,

http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=12935.

[5] J. McNeill, C. David, R. Croughwell, M. Coln, and B. Larivee, “Self-Calibration of a

High Resolution Interleaved ADC using the “Split ADC” Architecture,” Analog Devices

Limerick Engineering Conference, November 16, 2006.

[6] Data Sheet, “16-Bit, 2LSB INL, 3 MSPS PulSAR ADC, AD7621,” Analog Devices,

http://www.analog.com/UploadedFiles/Data_Sheets/AD7621.pdf.

[7] W. Kester, “ADC Input Noise: The Good, The Bad, and The Ugly. Is No Noise Good

Noise,” Analog Dialog, Volume 40-02, February 2006.

http://www.analog.com/library/analogdialogue/archives/40-02/adc_noise.html.

[8] H. Jin, E. Lee, and M. Hassoun, “Time-Interleaved A/D Converter with Channel

Randomization,” IEEE Symposium on Circuits and Systems, June 1997, pp. 425-428.

[9] H. Jin and E. Lee, “A Digital-Background Calibration Technique for Minimizing

Timing-Error Effects in Time-Interleaved ADC’s,” IEEE Transactions on Circuits and

 75

Systems II: Analog and Digital Signal Processing, Volume 47, No. 7, July 2000,pp. 603-

613.

[10] M. Looney, “Advanced Digital Post-Processing Techniques Enhance Performance in

Time-Interleaved ADC Systems,” Analog Dialog, Volume 37-08, August 2003.

http://www.analog.com/library/analogDialogue/archives/37-08/post_processing.html.

[11] J. Elbornsson and F. Gustafsson, “Analysis of Mismatch Noise in Randomly

Interleaved ADC System,” IEEE International Conference on Acoustics, Speech and

Signal Processing, April 2003, pp. VI-277 -VI-280.

[12] E. Iroaga and B. Murmann, “A Background Correction Technique for Timing Errors

in Time-Interleaved Analog-to-Digital Converters,” IEEE Symposium on Circuits and

Systems, May 2005, Volume 6, pp. 5557-5560.

[13] J. Elbornsson, F. Gustafsson, and J. Eklund, “Blind Equalization of Time Errors in a

Time-Interleaved ADC System,” IEEE Transactions on Signal Processing, April 2005,

Volume 53, No. 4, April 2005.

[14] M. Holdaway, “Understanding an ADC’s FOM,” Electronics Products, April 2006,

http://www.electronicproducts.com/Showpage.asp?Filename=xignal.apr2006.html.

[15] B. Brannon and A. Barlow, “Aperture Uncertainty and ADC System Performance,”

Analog Devices Application Note, AN-501, 2006.

[16] C. Vogel and H. Johansson, “Time-Interleaved Analog-To-Digital Converters:

Status and Future Directions,” IEEE Symposium on Circuits and Systems, May 2006, pp.

3386-3389.

 76

[17] M. Tamba, A. Shimizu, H. Munakata and T. Komuro, “A Method to Improve SFDR

with Random Interleaved Sampling Method,” IEEE International Test Conference, Nov.

2001, pp 512-519.

[18] D. Fu, K. Dyer, S. Lewis and P. Hurst, “A Digital-Background Calibration

Technique for Time-Interleaved Analog-to-Digital Converters,” IEEE Journal of Solid-

State Circuits, Volume 33, No. 12, Dec. 1998, pp. 1904-1910.

[19] J. Eklund and F. Gustafsson, “Digital Offset Compensation of Time-Interleaved

ADC Using Random Chopper Sampling,” IEEE Symposium on Circuits and Systems,

May 2000, pp. 447-450.

[20] S. Jamal, D. Fu, N. Chang, P. Hurst and Stephen Lewis, “A 10-b 120-Msample/s

Time-Interleaved Analog-to-Digital Converter With Digital Background Calibration,”

IEEE Journal of Solid-State Circuits, Volume 37, No. 12, Dec. 2002, pp. 1618-1626.

[21] J. Elbornsson, F. Gustafsson, and J. Ekland, “Blind Adaptive Equalization of

Mismatch Errors in a Time-Interleaved A/D Converter System,” IEEE Transactions on

Circuits and Systems I: Regular Papers, Volume 51, No. 1, January 2004, pp. 151-158.

[22] I. Galton, “Digital Cancellation of D/A Converter Noise in Pipelined A/D

Converters,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing, Volume 47, Issue 3, March 2000, pp. 185-196.

[23] B. Murmann and B. Boser, “A 12 Bit 75 MS/s Pipelined ADC Using Open-Loop

Residue Amplification,” IEEE International Solid-State Circuits Conference Digest of

Technical Papers, Feb. 2003, pp.328-329.

[24] H. Liu, Z. Lee, and J. Wu, “A 15 b 20 MS/s CMOS Pipelined ADC with Digital

Background Calibration,” IEEE International Solid-State Circuits Conference Digest of

Technical Papers, Feb. 2004, pp. 454-455.

 77

[25] K. Nair and R. Harjani, “A 96dB SFDR 50MS/s Digitally Enhanced CMOS

Pipelined A/D Converter,” IEEE International Solid-State Circuits Conference Digest of

Technical Papers, Feb. 2004, pp. 456-457.

[26] S. Ryu, S. Ray, B. Song, G. Cho, and K. Bacrania, “A 14 b-linear capacitor self-

trimming pipelined ADC”, IEEE International Solid-State Circuits Conference Digest of

Technical Papers, Feb. 2004, pp. 464-465.

[27] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley

& Sons, 1997

[28] W. Kester, “Tutorial MT-021: ADC Architectures II: Successive Approximation

ADCs,” http://www.analog.com/en/content/0,2886,760%255F788%255F92112,00.html.

[29] AD7621 Design Team, “AD7621 Design Review: Timing Generator and I/O Pad

Cells”, Unpublished Design Review Presentation, Analog Devices Internal, Jan 2003.

[30] Application Note, “AN-640 Understanding and Minimizing Ground Bounce,”

Fairchild Semiconductor, Feb 2003.

[31] G. Carreau, “AD7625: A 10MHz 16-bit Time Interleaved ADC: Test Chip

Architecture/Design Review”, Unpublished Design Review Presentation, Analog Devices

Internal, Aug 2005.

[32] W. Sansen, Analog Design Essentials, Dordrecht, The Netherlands: Springer, 2006

[33] N. Karim, A. Agrawal, “Plastic Packages’ Electrical Performance: Reduced Bond

Wire Diameter” Amkor White Paper,

http://www.amkor.com/services/electrical/newabstr.pdf

 78

Appendix A

Linearity Calibration

Each ADC in the interleaved system includes the capability to be calibrated for linearity.

Non-idealities in the linearity are caused by bit errors which are the result of mismatches

in the capacitor DAC arrays. One of the advantages of this type of architecture is that

adjustments can be made relatively easily and inexpensively by digitally switching in

small values of capacitances to compensate for those mismatches. The SPLINTA ADCs

can be configured to program these correction values through the DOUTA data lines.

The algorithm is based on the assumption that the ADC digital output is always all zeros

at negative full scale and always all ones at positive full scale and therefore the overall

gain of the ADC is inherently perfect. This assumption is true because of the way in

which the charge redistribution capacitor DAC is designed (sec 3.1.4.1). If any bit errors

exist it will cause problems for the integral linearity (INL), not the gain, and they must be

corrected in such a way that the overall gain is maintained. The gain can be preserved if,

for each individual bit error, the correction is distributed so that there is no net change. In

other words, for each bit error measured, -1/2*ERROR is assigned to the bit under test

and +1/2*ERROR is binarily distributed to the lower bits [A1, A2].

For example, if an INL test showed a +48 LSB error at the code 32768 (2
15
=MSB), then

the bit error at the MSB=48LSBs. To correct for this, the error is distributed as follows:

MSB Correction = -24LSB; BIT 2 = +12LSB; BIT 3 = +6; BIT 4 = +3; etc.

Clearly, errors in the lower bits will affect the higher bit measurements and need to be

accounted for when determining the correction factors. Also, since the corrections need to

be distributed as described above, superposition is be used to determine the final

corrections.

 79

The basic flow for the calibration procedure is summarized below, followed by a ‘user’s

guide’ detailing a step by step procedure to measure, calculate and program the

corrections.

Calibration Summary

1. Select ADC to calibrate

2. Measure bit errors

3. Determine actual bit error corrections

4. Determine codes for each location

5. Program each location

6. Retest INL

1. Select ADC to Calibrate

Each converter is calibrated individually and is done through the A channel.

The ADC to be calibrated can be selected by setting the SELA bus appropriately. Initially

the ADC should be in the normal mode, both TEST pins set low.

2. Measure Bit Errors

The bit errors can be determined by measuring the INL of the ADC and recording any

errors seen at the appropriate codes. The ADC has two redundancy bits between bits 7

and 8, (7x), and 12 and 13, (12x). Because of these extra bits, the actual bit locations for

the top 7 bits are offset by 256+8. For example, the location for the MSB is

2
15
+256+8=33032. For bits 7x -12, the codes are offset by 8 and bits 12x to 16 are not

offset at all. The correction for the bottom eight bits are distributed over three locations

based on the two measurements at locations 520 and 32. The adjusted codes values for

the bit locations are listed in Table A1.

 80

N BIT Error Locations CODE Measured Bit Error

1 1(MSB) 33032 BEmeas1

2 2 16648 BEmeas2

3 3 8456 BEmeas3

4 4 4360 BEmeas4

5 5 2304 BEmeas5

6 6 1288 BEmeas6

7 7 776 BEmeas7

8 8-12 520 BEmeas8

9 13-16(LSB) 32 BEmeas9

3. Determine Actual Bit Errors

The errors from the lower bits will affect the higher bits and can be either corrected for

individually or subtracted out of the higher bits to determine the actual errors. The

individual errors can be determined by successively subtracting out the lower bit errors

from the higher bit errors. For example, starting with the lowest bits, the error at location

32 is subtracted out from the error at location 520 to get the actual error of bits 8-12.

Then the sum of the errors at 520 and 32 is subtracted from the measured value at 776 to

get the actual value at bit 7. The sum of errors at 776, 520 and 32, is subtracted from the

error at 1288, and so on. The corrections for each bit can be calculated by equation A1.

99

8

)1(1:8

measact

n

nactmeasnactn

BEBE

nBEBEBE

=

=−= ∑ +

 (A1)

4. Determine Codes for Each Location

Once all the adjusted errors are known, the correction codes for each of the nine locations

are calculated using Eq A2.

128×= actnn BECorrection (A2)

TABLE A1. Bit Codes for Calibration

 81

Superposition is necessary to calculate the final correction factors because half of each bit

correction is spread over the lower bits. The calculations for the top 7 capacitor locations

are as follows:

()

()
2/77

2/6212/7

2/212/3

2/12/2

2/1

7

3

2

1

CAPxCAP

CAPCAPCAPCorrectionCAP

CAPCAPCorrectionCAP

CAPCorrectionCAP

CorrectionCAP

−=

++−−=

•

•

•

+−−=

−−=

−=

L

 (A3)

The residual error in CAP7x is distributed to the lower bits and since there are only three

correction locations for the lower bits, they are calculated as follows:

8/12/2

2/82/1

2/72/8

9

9

8

CcBECc

CAPCorrectionCc

xCAPCorrectionCAP

meas −−=

−−=

−−=

 (A4)

The correction code is a 12 bit signed code. The 12
th
 bit is used for the sign; negative

numbers need 4096 added to them to obtain the programmed correction code. For

example, -320 is programmed as 4096 – 320 = 3776.

5. Program Each Location

Each ADC has its own programmable memory. The mapping is shown in table A2.

 82

ROM ADDRESS LOCATION NAME
3 CAP1 (MSB)

4 CAP2

5 CAP3

6 CAP4

7 CAP5

8 CAP6

9 CAP7

10 CAP7x

11 CAP8

12 Cc1

13 Cc2

Some of the pins are reassigned in this mode and used as the address pins: A[3] =

PWRDDN, A[2]=BYTE, A[1]=WARP, A[0]=IMPULSE. Digital outputs are bi-

directional and used to program data to ROM. The calibration mode signals are

sequenced as shown below to program the corrections into memory:

a. TEST[1:0]=11

b. CSB=0

c. RDB=1

d. A[3:0]=ROM address to correct bit Table A2.

e. DA[11:0] = Correction code

f. CNVST 1>0 to Load

g. RDB = 0 to read code back (optional)

a. The test pins need to both be set high to disable the normal mode enabling the

ROM mode. The selection lines for Channel A will determine which ADC will be

programmed.

b. The chip select line CSB is set low only on the ADC under test so that only it’s

memory gets programmed.

c. The read pin is set high to enable the ‘write’ mode through the data output pins.

TABLE A2. ROM Address for CAP Adjustments

 83

d. The correct location is selected through the reassigned address pins: A[3] =

PWRDDN, A[2]=BYTE, A[1]=WARP, A[0]=IMPULSE.

e. The correction code is a 12 bit signed code.

f. The CSB line is brought low to apply the code.

g. If desired, the RDB line can be brought back low to read back the programmed

code from the A channel data output pins.

6. Retest INL

Once all the coefficients are applied, the INL should be rechecked. Some adjustments,

particularly to the lower bits, may be necessary.

[A1] H-S Lee, D. A. Hodges, P. R. Gray, “A Self-Calibrating 15 Bit CMOS A/D

Converter,” IEEE Journal of Solid-State Circuits, Volume SC-19, No. 6, Dec. 1984, pp.

813-819.

[A2] AD7621 Design Team, “AD7621 Digital Design Review”, Unpublished Design

Review Presentation, Analog Devices Internal, Jan 2003.

 84

Appendix B

Evaluation

The schematic diagram for the SPLINTA evaluation is shown in figure B1. This diagram

is based on the circuit shown in the AD7621 data sheet [6] which should be referenced

for more details and suggestions for component types.

It is likely that a linearity calibration on each ADC will be necessary before the

evaluation (Appendix A). This needs only to be done once. The calibration coefficients

can be stored in a test routine and applied each time the part is tested. It is also likely that

the corrections will be the same or very close for each ADC. The capacitor values should

not vary a great deal between ADCs in the array.

Figure B1

 85

The performance of SPLINTA as a stand alone ADC depends on the quality of the

physical layout and the matching between the channels. The hardware for the calibration

algorithm (sec.2.3.2) should be used to fully evaluate the performance of system which is

expected to be equivalent to the performance reported in the AD7621 data sheet.

In the absence of this hardware, data from the dual outputs of SPLINTA can be imported

into the MATLAB program containing the correction algorithm. The output from the

MATLAB program can be used to evaluate the performance.

 86

APPENDIX C

MATLAB Programs

Sim_data_read.m

% Program to read in A and B channel Simulation Data then sort
%
% R. Croughwell 3-20-07
clear all
close all

% % % % % Read in Simulation Data - edit with file name % % %

AChan = dlmread('adata_1024_all_rand4.dat');
BChan = dlmread('bdata_1024_all_rand4.dat');

% % % % % Edit according to simulation data % % % %

npts = 2^10; % Number of valid data points used for FFT
ncyc = 12; % Number of cycles in npts

fs=12E+6; % Sampling Frequency
conclk=12e6; % ADC sampling clock
fsim=conclk*ncyc/npts; % Input Frequency
Vin_amp=2; % Vin Amplitude

%

nrep = (2^9/npts)*1000; % % % % Data is repeated nrept times -- algorithm needs
>300k point for converg set for 512k % %

% Set up variables for correction algorithm
intlRatio=4; % Ratio of ADC Interleaving (x:1)
M=2*intlRatio+1; % Number of ADCs required for interleaving
nsamples=1*npts;
%

fd1=fsim; % Fundamental Frequency 1
fd2=fd1; % Fundamental Frequency 2

t=(0:nsamples-1)./fs; % % % % sample time vector to calculate ideal
sine wave % % %
td=-358.5e-9; % % % % time delay adjustment for ideal sine
wave % % %
gfact = 1.62e-4; % % % % gain adjust for ideal sine wave
% % %
BigVin = 2*(1+gfact)*sin(2*pi*fsim*(t+td)); % % % % Generate array with ideal
sine wave - comment out if using sim data %

BChansize = size(BChan);
AChansize = size(AChan);
Ignor = AChansize(1)-(npts-1); % Initial sim data points ignored for proper
FFT calculation

 87

% BigVin = AChan(Ignor:AChansize,2); % % Load first npts of Input samples
collected by the datalog in simulation %
 % % Comment out if using ideal data

% % Load first npts of B channel ouput and tag % %
BigBDout=BChan(Ignor:BChansize,4);
BigBpick=BChan(Ignor:BChansize,1)+1;
BigBVout = (2*BigBDout*2.048/2^16)-2.048; % % Calculate analog output % %

% % Load first npts of A channel ouput and tag % %
BigADout=AChan(Ignor:AChansize,4);
BigApick=AChan(Ignor:AChansize,1)+1;
BigAVout = (2*BigADout*2.048/2^16)-2.048; % % Calculate analog output % %

lngVout=nrep*nsamples; % % % % number of data points

for xi = 1:nrep
 repindex = xi * nsamples;
 BigVin(repindex+1:repindex+nsamples) = BigVin(1:nsamples);
 BigBDout(repindex+1:repindex+nsamples) = BigBDout(1:nsamples);
 BigBpick(repindex+1:repindex+nsamples) =BigBpick(1:nsamples);
 BigBVout(repindex+1:repindex+nsamples) =BigBVout(1:nsamples);

 BigADout(repindex+1:repindex+nsamples) = BigADout(1:nsamples);
 BigApick(repindex+1:repindex+nsamples) =BigApick(1:nsamples);
 BigAVout(repindex+1:repindex+nsamples) =BigAVout(1:nsamples);
end

Vin = BigVin;
BDout=BigBDout;
Bpick=BigBpick;
Bpick=Bpick';
BVout = BigBVout;

ADout=BigADout;
Apick=BigApick;
Apick=Apick';
AVout = BigAVout;
nsamples=lngVout;
Vout(:,1) = AVout;
Vout(:,2) = BVout;

Vout = Vout';
Voutadc = (BigBVout+BigBVout)/2;

 88

Multi_ADC_cor06.m

%**
% Iterative Correction Algorithm for the Multi Interleaved ADC Vers. 06
% 2006.11.06
%
% This program builds up the deltaX values for finding the gain, offset
% and aperture delay, errors in the Multi Interleaved, Split ADC
% architecture. A coefficient matrix is also built for testing and
% debugging purposes.
%
% This program also computes the RMS Error between the Ideal and Corrected
% output.
%
% For use with the multi_ADC_setup06.
%
%**

% Estimation Loop Parameters
% mx is the step size in the Gain and Offset error estimation
mxrecip=128;
mx=1/mxrecip; %Step size of approaching the Estimated Error

myrecip=64;
my=1/myrecip;

Ncoef=128; % Number of conversions used to build up matrices
jacobLeng=floor(nsamples/Ncoef); %Number of main loops

%**
%**
%**
% Note to Rosa:

% Vout Setup
% This code is for combining two separate Raw (uncorrected) Vout vectors
% into one (1) Raw Vout vector. Namely, this is for taking a VoutA and a
% VoutB and combining them into a single variable that this program uses.
% The setup program, multi_ADC_setup06, outputs one Vout variable with two
% rows, A and B.
% Uncomment this code to use it

% Vout = [VoutA; VoutB];

% Initialize all Matrices to make room in Memory and save time
VoutA=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutB=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutBad=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCorA=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCorB=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCor=zeros(1,(jacobLeng-1)*Ncoef+1);

%EATPD=[t_apd1;t_apd2;t_apd3;t_apd4;t_apd5].*10E6; % Real Aperture
coefficients

Eg_est=zeros(M,1); % Initialize all Error Estimates to zero
Eg_eps=zeros(M,1);

 89

Eos_est=zeros(M,1);
Eos_eps=zeros(M,1);
Etpd_est=zeros(M,1); % Initialize all Error Estimates to zero
Etpd_eps=zeros(M,1); % Initialize Error in the Estimate to zero

jacobLeng=floor(nsamples/Ncoef);
RMS_Convergence=zeros(1,jacobLeng-1);
tempRMS_0=zeros(1,Ncoef-2);
tempRMS=zeros(1,Ncoef);
j=1;
% Initialize the coefficients and bins matrices to zero
Eos_coef=zeros(Ncoef,M); % Initialize Offset Error Coefficients matrix
Eg_coef=zeros(Ncoef,M); % Initialize Gain Error Coefficients matrix
Etpd_coef=zeros(Ncoef,M);
Eos_bins=zeros(1,M);
Eg_bins=zeros(1,M);
Etpd_bins=zeros(1,M);
deltaX=zeros(Ncoef+3,1);

%Initialize the Plus or Minus Matrix with the data from the A & B Tags
pmmat=zeros(M,lngVout);
for (i=1:lngVout)
 pmmat(Apick(i),i)=-1;
 pmmat(Bpick(i),i)=1;
end

% Fill up the first two samples of the uncorrected vectors using Vout
VoutA(1:3)=[Vout(1,1) Vout(1,2), Vout(1,3)];
VoutB(1:3)=[Vout(2,1) Vout(2,2), Vout(2,3)];
VoutBad(1:3)=(VoutA(1:3)+VoutB(1:3))/2;
deltaX(1:2)=VoutB(1:2)-VoutA(1:2);

for (i=3:Ncoef)
 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and
 % Bpick matrices to keep track of ADC A and
 % ADC B
 VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1)); % Correct for G and OS
 VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1)));
 VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1));
 VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1)));

 VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2)); % Correct for G and OS
 VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2)));
 VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2));
 VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2)));
 %VoutA(k+1)=Vout(Apick(k+1),k+1);
 %VoutB(k+1)=Vout(Bpick(k+1),k+1);
 VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2;
 %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2; % Get Average Delta Conversion
 % deltaConv is not the same as deltaX deltaConv is the derivative
 % estimate. deltaX is the difference between the A and B outputs
 deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+...
 (VoutBad(k-2)-VoutBad(k+2))*(1/12); % Get Average Delta Conversion
 VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv;
 VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv;
 VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2; % Get Average Corrected Output
 deltaX(i)=(VoutCorB(k)-VoutCorA(k)); % Get difference between
 % corrected outputs

 Eos_coef(i,:)=pmmat(:,k)';
 Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)';
 Etpd_coef(i,:)=deltaConv*pmmat(:,k)'; % Collect Coefficients
 Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins;

 90

 Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins;
 Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins;
 tempRMS_0(i)=VoutCorB(k)-VoutCorA(k);
end

E_coef=[Eos_coef Eg_coef Etpd_coef];
E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];...
 [zeros(1,2*M),ones(1,M)]];

% Calculate and track the Error in the Estimate
Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx;
Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx;
Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx;

Eos_eps_track(:,j)=Eos_eps;
Eg_eps_track(:,j)=Eg_eps;
Etpd_eps_track(:,j)=Etpd_eps;

% Calculate and track the Estimate
Eos_est=my.*Eos_eps+Eos_est;
Eg_est=my.*Eg_eps+Eg_est;
Etpd_est=my.*Etpd_eps+Etpd_est;

Eos_est_track(:,j)=Eos_est;
Eg_est_track(:,j)=Eg_est;
Etpd_est_track(:,j)=Etpd_est;

RMS_Convergence(1)=sum(tempRMS_0.^2)/length(tempRMS_0);

jacobLeng=floor(nsamples/Ncoef);

for (j=2:jacobLeng-1)

 % Initialize the coefficients and bins matrices to zero
 Eos_coef=zeros(Ncoef,M); % Initialize Offset Error Coefficients matrix
 Eg_coef=zeros(Ncoef,M); % Initialize Gain Error Coefficients matrix
 Etpd_coef=zeros(Ncoef,M);
 Eos_bins=zeros(1,M);
 Eg_bins=zeros(1,M);
 Etpd_bins=zeros(1,M);
 deltaX=zeros(Ncoef+3,1);

 for (i=1:Ncoef)
 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and
 % Bpick matrices to keep track of ADC A and
 % ADC B
 VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1)); % Correct for G and OS
 VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1)));
 VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1));
 VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1)));
 VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2)); % Correct for G and OS
 VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2)));
 VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2));
 VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2)));
 %VoutA(k+1)=Vout(Apick(k+1),k+1);
 %VoutB(k+1)=Vout(Bpick(k+1),k+1);
 VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2;
 %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2; % Get Average Delta
Conversion
 deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+...
 (VoutBad(k-2)-VoutBad(k+2))*(1/12); % Get Average Delta Conversion
 VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv;
 VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv;

 91

 VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2; % Get Average Corrected
Output
 deltaX(i)=(VoutCorB(k)-VoutCorA(k)); % Get difference between
 % corrected outputs

 Eos_coef(i,:)=pmmat(:,k)';
 Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)';
 Etpd_coef(i,:)=deltaConv*pmmat(:,k)'; % Collect Coefficients
 Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins;
 Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins;
 Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins;

 tempRMS(i)=VoutCorB(k)-VoutCorA(k); %Get difference for RMS Convergence
 end

 E_coef=[Eos_coef Eg_coef Etpd_coef];
 E_coef=[E_coef; [ones(1,M),zeros(1,2*M)];
[zeros(1,M),ones(1,M),zeros(1,M)];...
 [zeros(1,2*M),ones(1,M)]]; % Coefficient matrix with averaging

 % Calculate and track the Error in the Estimate
 Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx;
 Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx;
 Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx;

 Eos_eps_track(:,j)=Eos_eps;
 Eg_eps_track(:,j)=Eg_eps;
 Etpd_eps_track(:,j)=Etpd_eps;

 % Calculate and track the Estimate
 Eos_est=my.*Eos_eps+Eos_est;
 Eg_est=my.*Eg_eps+Eg_est;
 Etpd_est=my.*Etpd_eps+Etpd_est;

 Eos_est_track(:,j)=Eos_est;
 Eg_est_track(:,j)=Eg_est;
 Etpd_est_track(:,j)=Etpd_est;

 % Compute RMS Error
 RMS_Convergence(j)=sum(tempRMS.^2)/Ncoef;
end

 92

Sim_data_plot.m

%**
% Iterative Correction Algorithm for the Multi Interleaved ADC Vers. 06
% 2006.11.06
%
% This program builds up the deltaX values for finding the gain, offset
% and aperture delay, errors in the Multi Interleaved, Split ADC
% architecture. A coefficient matrix is also built for testing and
% debugging purposes.
%
% This program also computes the RMS Error between the Ideal and Corrected
% output.
%
% For use with the multi_ADC_setup06.
%
%**

% Estimation Loop Parameters
% mx is the step size in the Gain and Offset error estimation
mxrecip=128;
mx=1/mxrecip; %Step size of approaching the Estimated Error

myrecip=64;
my=1/myrecip;

Ncoef=128; % Number of conversions used to build up matrices
jacobLeng=floor(nsamples/Ncoef); %Number of main loops

%**
%**
%**
% Note to Rosa:

% Vout Setup
% This code is for combining two separate Raw (uncorrected) Vout vectors
% into one (1) Raw Vout vector. Namely, this is for taking a VoutA and a
% VoutB and combining them into a single variable that this program uses.
% The setup program, multi_ADC_setup06, outputs one Vout variable with two
% rows, A and B.
% Uncomment this code to use it

% Vout = [VoutA; VoutB];

% Initialize all Matrices to make room in Memory and save time
VoutA=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutB=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutBad=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCorA=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCorB=zeros(1,(jacobLeng-1)*Ncoef+1);
VoutCor=zeros(1,(jacobLeng-1)*Ncoef+1);

%EATPD=[t_apd1;t_apd2;t_apd3;t_apd4;t_apd5].*10E6; % Real Aperture
coefficients

Eg_est=zeros(M,1); % Initialize all Error Estimates to zero
Eg_eps=zeros(M,1);
Eos_est=zeros(M,1);
Eos_eps=zeros(M,1);
Etpd_est=zeros(M,1); % Initialize all Error Estimates to zero

 93

Etpd_eps=zeros(M,1); % Initialize Error in the Estimate to zero

jacobLeng=floor(nsamples/Ncoef);
RMS_Convergence=zeros(1,jacobLeng-1);
tempRMS_0=zeros(1,Ncoef-2);
tempRMS=zeros(1,Ncoef);
j=1;
% Initialize the coefficients and bins matrices to zero
Eos_coef=zeros(Ncoef,M); % Initialize Offset Error Coefficients matrix
Eg_coef=zeros(Ncoef,M); % Initialize Gain Error Coefficients matrix
Etpd_coef=zeros(Ncoef,M);
Eos_bins=zeros(1,M);
Eg_bins=zeros(1,M);
Etpd_bins=zeros(1,M);
deltaX=zeros(Ncoef+3,1);

%Initialize the Plus or Minus Matrix with the data from the A & B Tags
pmmat=zeros(M,lngVout);
for (i=1:lngVout)
 pmmat(Apick(i),i)=-1;
 pmmat(Bpick(i),i)=1;
end

% Fill up the first two samples of the uncorrected vectors using Vout
VoutA(1:3)=[Vout(1,1) Vout(1,2), Vout(1,3)];
VoutB(1:3)=[Vout(2,1) Vout(2,2), Vout(2,3)];
VoutBad(1:3)=(VoutA(1:3)+VoutB(1:3))/2;
deltaX(1:2)=VoutB(1:2)-VoutA(1:2);

for (i=3:Ncoef)
 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and
 % Bpick matrices to keep track of ADC A and
 % ADC B
 VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1)); % Correct for G and OS
 VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1)));
 VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1));
 VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1)));

 VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2)); % Correct for G and OS
 VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2)));
 VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2));
 VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2)));
 %VoutA(k+1)=Vout(Apick(k+1),k+1);
 %VoutB(k+1)=Vout(Bpick(k+1),k+1);
 VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2;
 %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2; % Get Average Delta Conversion
 % deltaConv is not the same as deltaX deltaConv is the derivative
 % estimate. deltaX is the difference between the A and B outputs
 deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+...
 (VoutBad(k-2)-VoutBad(k+2))*(1/12); % Get Average Delta Conversion
 VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv;
 VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv;
 VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2; % Get Average Corrected Output
 deltaX(i)=(VoutCorB(k)-VoutCorA(k)); % Get difference between
 % corrected outputs

 Eos_coef(i,:)=pmmat(:,k)';
 Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)';
 Etpd_coef(i,:)=deltaConv*pmmat(:,k)'; % Collect Coefficients
 Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins;
 Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins;
 Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins;
 tempRMS_0(i)=VoutCorB(k)-VoutCorA(k);

 94

end

E_coef=[Eos_coef Eg_coef Etpd_coef];
E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];...
 [zeros(1,2*M),ones(1,M)]];

% Calculate and track the Error in the Estimate
Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx;
Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx;
Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx;

Eos_eps_track(:,j)=Eos_eps;
Eg_eps_track(:,j)=Eg_eps;
Etpd_eps_track(:,j)=Etpd_eps;

% Calculate and track the Estimate
Eos_est=my.*Eos_eps+Eos_est;
Eg_est=my.*Eg_eps+Eg_est;
Etpd_est=my.*Etpd_eps+Etpd_est;

Eos_est_track(:,j)=Eos_est;
Eg_est_track(:,j)=Eg_est;
Etpd_est_track(:,j)=Etpd_est;

RMS_Convergence(1)=sum(tempRMS_0.^2)/length(tempRMS_0);

jacobLeng=floor(nsamples/Ncoef);

for (j=2:jacobLeng-1)

 % Initialize the coefficients and bins matrices to zero
 Eos_coef=zeros(Ncoef,M); % Initialize Offset Error Coefficients matrix
 Eg_coef=zeros(Ncoef,M); % Initialize Gain Error Coefficients matrix
 Etpd_coef=zeros(Ncoef,M);
 Eos_bins=zeros(1,M);
 Eg_bins=zeros(1,M);
 Etpd_bins=zeros(1,M);
 deltaX=zeros(Ncoef+3,1);

 for (i=1:Ncoef)
 k=(Ncoef*(j-1)+i); % Generate the proper index for the Apick and
 % Bpick matrices to keep track of ADC A and
 % ADC B
 VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1)); % Correct for G and OS
 VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1)));
 VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1));
 VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1)));
 VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2)); % Correct for G and OS
 VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2)));
 VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2));
 VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2)));
 %VoutA(k+1)=Vout(Apick(k+1),k+1);
 %VoutB(k+1)=Vout(Bpick(k+1),k+1);
 VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2;
 %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2; % Get Average Delta
Conversion
 deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+...
 (VoutBad(k-2)-VoutBad(k+2))*(1/12); % Get Average Delta Conversion
 VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv;
 VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv;
 VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2; % Get Average Corrected
Output
 deltaX(i)=(VoutCorB(k)-VoutCorA(k)); % Get difference between

 95

 % corrected outputs

 Eos_coef(i,:)=pmmat(:,k)';
 Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)';
 Etpd_coef(i,:)=deltaConv*pmmat(:,k)'; % Collect Coefficients
 Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins;
 Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins;
 Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins;

 tempRMS(i)=VoutCorB(k)-VoutCorA(k); %Get difference for RMS Convergence
 end

 E_coef=[Eos_coef Eg_coef Etpd_coef];
 E_coef=[E_coef; [ones(1,M),zeros(1,2*M)];
[zeros(1,M),ones(1,M),zeros(1,M)];...
 [zeros(1,2*M),ones(1,M)]]; % Coefficient matrix with averaging

 % Calculate and track the Error in the Estimate
 Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx;
 Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx;
 Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx;

 Eos_eps_track(:,j)=Eos_eps;
 Eg_eps_track(:,j)=Eg_eps;
 Etpd_eps_track(:,j)=Etpd_eps;

 % Calculate and track the Estimate
 Eos_est=my.*Eos_eps+Eos_est;
 Eg_est=my.*Eg_eps+Eg_est;
 Etpd_est=my.*Etpd_eps+Etpd_est;

 Eos_est_track(:,j)=Eos_est;
 Eg_est_track(:,j)=Eg_est;
 Etpd_est_track(:,j)=Etpd_est;

 % Compute RMS Error
 RMS_Convergence(j)=sum(tempRMS.^2)/Ncoef;
end

 96

Sim_data_fftplot.m

% Program to read in Simulation Data then plot in frequency Domain
%
% R. Croughwell 4-11-07
%clear all
%close all
% % % *****Enter filename and data ******* % % %
Achan = dlmread('adata_1024_none_rand4.dat');
BChan = dlmread('bdata_1024_none_rand4.dat');
Achansize = size(Achan);
BChansize = size(BChan);
npts = 2^10;
ncyc = 12;
conclk=12e6;
% % *********************************** % %
fsim=conclk*ncyc/npts;
ignor = Achansize(1)-(npts-1);
Vin = Achan(ignor:Achansize,2);
ADout=Achan(ignor:Achansize,4);
AVout = (2*ADout*2.048/2^16)-2.048;

BDout=BChan(ignor:Achansize,4);
BVout = (2*BDout*2.048/2^16)-2.048;

% VoutAve=(AVout+BVout)/2;
VoutAve=(AVout)/1;
T = ncyc/fsim; % Sampling frequency
Fs = 1/T; % Sample time
L = 1024; % Length of signal
t = 1e6*(0:L-1)*(T/L); % Time vector

Yout = fft(VoutAve,npts);
magYout = abs(Yout)+ 1e-4; % Sinusoids plus noise
Youtdb = 20*log10(magYout);
Youtdb = Youtdb - max(Youtdb);
%subplot(2,1,2);
f = 1e-3*conclk*linspace(0,1,npts);
plot(f,Youtdb(1:(npts)),'-k'); grid on;

%title('Single-Sided Amplitude Spectrum of A Channel Output')
xlabel('Frequency (kHz)')
ylabel('Magnitude (dB)')

 97

Appendix D

NSF Proposal

Dr. John A. McNeill

Worcester Polytechnic Institute

Project Description

Introduction

This intent of the work described in this proposal is to continue development of a new

class of self-calibrating analog-to-digital converters (ADCs). The new "Split ADC"

architecture [D1] is specifically tailored to the constraints of advanced digital CMOS

processing technology. The capability of providing high resolution, self-calibrating

ADCs at low cost fills a critical need in a wide range of emerging mixed-signal

application areas.

This proposal is organized as follows: Section 1 describes the motivation for developing

the new ADC architecture, including application areas, performance requirements, and an

overview of previous ADC architectures and self calibration techniques.

Section 2 describes the P.I.'s previous work in developing the split ADC architecture,

which has been proven by successful fabrication and test of a 16bit, 1MSample/s, cyclic

ADC. Although the cyclic is not a widely used type of ADC, it was chosen as a low-risk

first step to investigate since only a single parameter need be estimated for self-

calibration.

Section 3 describes the proposed work: extension of the architecture concept to more

widely used types of ADCs: pipeline, successive approximation, and interleaved. This is

a higher-risk effort; in each case the self-calibration process is more complicated since

many parameters must be estimated. However, the higher risk is accompanied by a

higher reward due to the large number of application areas that will benefit. Section 4

concludes the proposal by summarizing the benefits expected from completion of the

proposed work.

1 Motivation

1.1 Applications

 98

Scaling of CMOS integrated circuit (IC) technology into deep submicron (DSM) gate

dimensions has enabled dramatic improvement in cost, performance, and levels of system

integration. Scaling is especially beneficial for digital processing; the cost per function in

terms of die area and power has improved by approximately two orders of magnitude

every decade since 1970 [D2]. For analog functions, scaling can be a mixed blessing:

cost is improved due to reduced die area but analog performance is often degraded [D3].

Despite the performance challenges, the cost advantages of integrating systems in DSM

CMOS have motivated a wide variety of work in analog and mixed signal design.

One example is the wide variety of new mixed signal integrated circuit applications that

are enabled by the combination of DSM CMOS and integrated sensors. A simplified

version of an integrated sensor system is shown in Figure 1. Although these functions

may be realized on a "stand-alone" basis, it is increasingly likely that the entire functional

block performs as a subsystem in a larger network. In any case, the goal is to integrate

the entire system on a single IC to exploit the cost and integration advantages of DSM

CMOS. At the input a sensor, specific to the physical system, translates the signal to

analog form. Although the sensor electronics may provide some simple signal

conditioning (e.g. amplification), for many reasons it is advantageous to perform as much

processing in the digital domain as possible. Therefore, the function of the analog-to-

digital converter is to provide a digital representation of the analog signal for further

processing (e.g. filtering, signal detection) and communication.

Improvements in speed and accuracy of the ADC usually translate directly into improved

system-level performance. For example, in a CAT scan medical imaging application,

improved ADC accuracy can provide the capability for maintaining image quality while

reducing the X-ray dose received by the patient, or alternatively improving image quality

at a given radiation dose.

SENSOR

ANALOG
TO

DIGITAL
CONVERTER

DIGITAL
PROCESSING

PHYSICAL
SYSTEM

BIOLOGICAL
CHEMICAL
MECHANICAL
OPTICAL
RADIOLOGICAL

ANALOG DIGITAL

INTEGRATED SYSTEM

Figure D1. Typical integrated sensor system.

A brief survey of recent work on integrated sensor systems shows a wide variety of

applications in areas such as:

• Correlated sensor networks [D4] used to detect terrorism threats from chemical,

biological, or nuclear weapons

 99

• Pervasive sensing and actuation networks [D5] for use in monitoring and controlling

mechanical and ecological systems

• Monitoring for a wide range of environment toxins such as lead [D6], carbon

monoxide [D7], and industrial pollutants [D8]

• Implantable sensors for monitoring biosignals [D9]

• DNA detection [D10] for biological assay applications

• Biosensing of electrochemical signals [D11] for molecular biology applications

• Implanted sensing and actuating devices [D12] for assistive technology applications

A common theme running through this diversity of applications is the requirement for a

high resolution analog to digital conversion function. The key contribution of the

proposed work is that the ADC architecture that will be developed takes advantage of

CMOS scaling to enable reduced size, power, and cost for integrated systems in all of

these applications.

The following sections provide an overview of present ADC technology and describe the

difficulties with existing techniques that are overcome with the proposed architecture.1.2

ADC overview

As described in [D13, D14] ADCs can be broadly classified into Nyquist-rate and

oversampling converters. Since this proposal targets Nyquist-rate ADCs, the purpose of

this section is to contrast the two types of converters, show the importance of Nyquist-

rate converters, and give an indication of the broad range of applications which will

benefit from the performance improvement offered by the split ADC architecture.

1.1.1 Oversampling ADCs

Oversampling converters are well suited to submicron CMOS since oversampling allows

complexity and performance demands to be moved into the digital domain. The tradeoff

relaxes requirements on precision in the analog domain circuitry, and recovers precision

through extensive digital filtering. The prevalent oversampling converter architecture is

the Sigma-Delta [D13], which is widely used in high resolution applications such as

audio. However, oversampling ADCs show performance characteristics associated with

the use of digital filtering that can be significant disadvantages in some applications:

• There is significant latency (delay) in the output samples related to the length of the
digital filter used, and

• Depending on the response of the digital filter, there may not be a one-to-one
correspondence between the output samples and a time-domain representation of the

input signal.

For signals which are continuous in time, or for which the information content exists

entirely in the frequency domain, these characteristics are not disadvantageous.

 100

1.1.2 Nyquist-Rate ADCs

Although oversampling techniques are advantageous in some cases, there are also many

applications for which oversampling techniques are unsuitable:

• Applications involving signals which are discontinuous in time; for example,
multiplexed sensor signals

• Applications for which latency is critical; for example, signals inside closed loop
control systems, in which delay leads to poor phase margin and instability

• Applications in which signal information is contained in the time domain and a one-to-
one correspondence between input and output samples is required

• Applications with high bandwidth signals for which large oversampling ratios are
either impossible or impractical due to high power requirements for circuitry operating

at the high oversampling speed.

Each of these classes of applications is better served by Nyquist-rate converters, which

provide the advantages of lower latency, one-to-one correspondence of input-output

samples, and reduced requirement on sampling speed. Within the class of Nyquist-rate

ADCs, there are many different architectures available with the choice depending on the

system-level tradeoffs of resolution, speed, and power.

Three widely used types of Nyquist-rate ADCs which could benefit from application of

the split ADC architecture are:

• Interleaved (suitable for higher speed applications; targeted by this proposal)

• Successive approximation (suitable for higher resolution applications)

• Pipeline (compromise offering high speed and high resolution)

A difficulty with design of Nyquist-rate converters is that until recently it has been

difficult to take advantage of CMOS scaling by moving complexity into the digital

domain; it has been necessary to maintain precise operation in the analog domain. For

the high resolution (>16 bit) applications targeted in this proposal, the inherent matching

available in CMOS analog circuitry is insufficient and some form of calibration is

necessary. These issues are discussed further in the following section, which describes

desired requirements for ADCs and calibration techniques in submicron CMOS.

1.2 Desired Characteristics for ADCs in Submicron CMOS

One-time factory calibration is common, but has the disadvantages of requiring expensive

test time. Additionally, since the calibration is fixed it cannot track variations due to

environmental and aging factors. For best utilization of the capabilities of submicron

CMOS, the ADC should be self-calibrating. Ideally the calibration procedure should

meet the following three criteria:

 101

• Deterministic: For short "time constant" of adaptation, the calibration algorithm
should use deterministic (rather than statistical) techniques. As will be shown in

section 1.4.1, statistical techniques require excessively long adaptation times when

applied to high resolution converters.

• (All) Digital: No additional analog complexity should be required. Analog
techniques represent a nonoptimal use of submicron CMOS capabilities and should

be used only when absolutely necessary. If possible, all complexity should be moved

to the digital domain to exploit the area, speed, and power advantages of submicron

CMOS scaling.

• Background: The calibration procedure should be transparent to normal operation.
No special off-line calibration configuration should be required.

1.3 Previous self-calibration techniques

Table 1 summarizes the suitability of previous self-calibration techniques with regard to

three criteria described in the previous section. As can be seen from the table, no

previous technique meets all three criteria. The following three subsections provide a

brief discussion of each criterion showing the difficulty of the problem addressed by the

proposed work.

[D15]

Deterministic?

(All) Digital?

Background?

[D16] [D17] [D18] [D19] [D20] [D21] [D22] [D23]

Table D1. Summary of previous self-calibration techniques.

1.3.1 Previous Digital Background Techniques

Traditionally, the term "calibration" implies a process involving application of a standard

input to the system being calibrated. With this known input applied, system parameters

are adjusted until the correct output is observed. Since the desired correct output is

known, adjustment of system parameters can proceed in deterministic fashion until the

correct output is observed. One of the main difficulties with background techniques is

developing a calibration signal with an unknown input. Previous all-digital background

techniques [D15-D18] use statistical methods to develop a calibration signal in the

presence of the unknown ADC input signal. For example, in [D15] system parameters

are varied in a pseudorandom (PR) fashion, essentially modulating the calibration

information with a spread-spectrum pattern. The desired calibration information can then

be extracted by correlating the ADC output signal with the PR spreading pattern. This

decorrelates the unknown ADC input signal, leaving only the calibration information.

 102

N

CONVERSIONS
REQUIRED FOR
CALIBRATION

12 14 16

BITS
RESOLUTION

10
4

10
5

10
6

10
7

10
8

10
9

2
2N

CYCLIC
SPLIT ADC [1]

[D15] Galton2000
[D16] Murmann2003
[D17] Liu2004
[D18] Nair2004

[D19] Ryu2004

D16
D15

D18 D17

D19

Figure D2. Conversions required for calibration vs ADC resolution.

A critical difficulty with statistical approaches for high resolution ADCs is that extracting

calibration information to N-bit accuracy requires approximately 2
2N
 conversions. This

can be seen in Figure 2. For ADCs of high speed and moderate resolution this is

adequate; for example, the procedure in [D16] requires 2
24
 conversions and about 300ms

for a 12b 75MS/s ADC. However higher resolution converters have been reported as

requiring excessively long calibration times of seconds or minutes [D17-D19].

Since statistical techniques require of order 2
2N
 conversions, these methods do not fulfill

the required characteristic of short calibration time. In contrast, the "split ADC"

architecture presented in [D1] enables a deterministic digital calibration procedure,

operating continuously in the background, which as shown in Figure 2 requires only

about 10,000 conversions to complete calibration. Thus the split ADC allows self-

calibration of high resolution ADCs at time scales short enough to track out the effects of

environmental variations such as temperature.

1.3.2 Previous Deterministic Background Techniques

Previous work to avoid the shortcomings of statistical techniques have involved added

analog complexity. One approach [D20] is queue-based, in which an additional sample-

and-hold (S/H) stage, operated at a higher sampling rate, is used to insert a known signal

for calibration. When the inserted known input is converted, the ADC output is

compared to the expected known value and a deterministic algorithm can be used to

rapidly calibrate the ADC. Another approach involves adding a slow-but-accurate ADC

in parallel with the ADC being calibrated [D21]. The slow-but-accurate ADC provides

an accurate value for a subset of the output values for the ADC being calibrated.

Unfortunately, these techniques do not fulfill the required characteristic of minimizing

analog complexity. In each case the additional analog circuitry imposes die area and

power penalties.

 103

In contrast, the "split ADC" architecture requires no additional analog circuitry; the

system complexity is pushed to the digital side. This is the preferred tradeoff in

submicron CMOS, and has a relatively slight impact on overall die area

1.3.3 Previous Deterministic Digital Techniques

Previous deterministic digital techniques [D22, D23] take the converter off-line to

substitute a known signal for the input. This avoids the statistical problems associated

with calibrating in the presence of an unknown input, and allows rapid determination of

calibration parameters.

Unfortunately, since the ADC is off-line during calibration, these methods do not fulfill

the required characteristic of background operation. As will be described in Section 2,

the calibration process for the split ADC architecture operates entirely in the background.

2 New "Split ADC" Architecture

Subsection 2.1 describes the general idea of the split ADC architecture, independent of

any specific type of ADC. It is shown how the general idea fulfills the requirements of

all-digital, deterministic, background self-calibration.

2.1 General Split ADC Architecture

The architecture is shown in Figure 3. The ADC is split into two channels, each

converting the same input and producing individual output codes xA and xB. The average

of the two outputs is the ADC output code x. The background calibration signal is

developed from the difference ∆x between codes xA and xB and is completely transparent

to converter operation in the output code signal path. If both ADCs are correctly

calibrated, the two outputs will agree and the difference ∆x will be zero. In the presence

of nonzero differences, the pattern of "disagreements" in ∆x can be examined in an error

estimation process to adjust calibration parameters in each ADC, driving the difference

and the ADC errors to zero.

 104

ADC "A"
xA

vIN

xB

ERROR

ESTIMATION

+

+

+

-

x ====
xA ++++ xB
2

∆∆∆∆x ==== xB −−−− xA

ADC OUTPUT CODE

DIFFERENCE

ADC "B"

Figure D3. Split ADC Architecture.

Comparison with statistical techniques shows the advantage of using the difference ∆x

for the calibration signal. For example, both [D15] and [D16] use pseudorandom (PR)

sequences to decorrelate the calibration information from the unknown signal at the ADC

input, thus requiring a large number of conversions. In contrast, for the split ADC

approach the difference operation removes the unknown ADC input signal from the

calibration signal path. Thus it is no decorrelation is necessary and the number of

conversions required is greatly reduced, as was shown in Figure 2.

C gm

σσσσ x ==== n
kT

C

fT ==== b
gm

C

   

   
   

   

   
   

P ==== p ⋅⋅⋅⋅ gm

A

ANALOG DIGITAL

C

2

gm
2

B
C

2

gm
2

xA

xB

vINx

ANALOG DIGITAL

vIN

SPLIT

Speed

Power

Noise
σσσσ x ====

1

2
n

kT

C 2

   

   
   

   

   
   

2

++++
1

2
n

kT

C 2

   

   
   

   

   
   

2

==== n
kT

C

fT ==== b
gm 2

C 2

   

   
   

   

   
    ==== b

gm

C

   

   
   

   

   
   

P ==== p ⋅⋅⋅⋅
gm

2
++++ p ⋅⋅⋅⋅

gm

2
==== p ⋅⋅⋅⋅ gm

xA ++++ xB
2

x

Figure D4. Die Area, Speed, Power Consumption, Noise Considerations.

Figure 4 shows that this technique has negligible impact on analog complexity and

performance. The die area of an ADC designed to meet a given specification is

considered in simplified fashion as a gm block representing the area of active analog

circuitry such as amplifiers; a C block representing the area of passive components such

 105

as capacitors and switches, and a digital circuitry block. It is assumed that bandwidth fT

is proportional to gm/C; power P is proportional to gm; and noise σX is proportional
to kT C Proportionality constants b, p, and m are determined by the specific circuit

design and are unchanged by the split, which merely scales the design by 1/2. The

equations in the figure show that power, bandwidth, and overall noise are unchanged.

The only penalty is a slight increase in complexity of the digital block.

2.2 Specific Implementation: Cyclic ADC

As a first implementation of the split ADC concept, a cyclic (also called algorithmic)

ADC was chosen for simplicity in both analog complexity and calibration [D1]. The

analog circuitry required is simple, since the only critical analog block is a single gain

stage. The digital calibration is also relatively simple since the only parameter needed to

calibrate ADC linearity is the gain of the analog stage [D1].

A simplified system block diagram is shown in Figure 5. The analog portion of each

cyclic ADC consists of a S/H, a 16-bit-linear gain block (nominal gains GA=GB=1.92),

comparators, and a three-level DAC. To achieve 16-bit linear operation, a two-stage op-

amp with gain-boosted cascoding of the first stage was used. Fully differential

techniques were used with a standard switched-capacitor implementation of the S/H,

DAC, and gain stage. The output of the analog subsystem is a three-level (–1/0/+1)

decision for each cycle of the conversion process. For each side of the split, digital

outputs xA and xB are accumulated from the comparator decisions using a lookup table

(L.U.T.) containing the cycle decision weights, which are calculated from the gain

estimates ˆ G A and
ˆ G B .

 106

Figure D5. Cyclic ADC block diagram.

The background calibration process, indicated by the thick gray line in Figure 5, operates

continuously in the digital domain so that ˆ G A ,
ˆ G B and their associated L.U.T.s are

correct to within converter accuracy. The process begins with ˆ ε A and ˆ ε B , which are
continuously updated zero-bias estimates of the error in the estimated gains ˆ G A and

ˆ G B .

Estimates ˆ ε A and ˆ ε B are used in an LMS procedure to update ˆ G A and ˆ G B ; as these are
periodically updated, the decision weight L.U.T. is recalculated. The LMS coefficient µ

controls the time constant of the calibration adaptation and is subject to a tradeoff

between accuracy and speed of adaptation. The value of µ was chosen to give a time

constant of approximately 2,000 conversions; convergence from typical initial error is

completed within about 10,000 conversions.

It should be noted that the split ADC concept alone is not sufficient for error estimation.

Although accurate calibration does imply agreement in the output codes, it is not

necessarily true that agreement implies accurate calibration. Suppose that both A and B

sides of the split have the same error and make the same comparator decisions. Then

their output codes would agree even though the ADC code would be incorrect, and the

resulting ∆x=0 would provide no information to the error estimation process. To ensure

nonzero ∆x even if both ADCs have the same error, it is necessary to force the two sides

to take different decision paths to the final result of their conversions. Variation of the
decision paths is achieved using the multiple residue mode cyclic amplifier [D1] which

 107

combines aspects of the dual residue approach used in [D16] and the 1.5 bit/stage

amplifier in [D22].

As shown in Figure 5, estimation of ˆ ε A and ˆ ε B requires coefficients SDKA and SDKB,
which are accumulated for each conversion using the decisions and an error coefficient

L.U.T. In principle, εA and εB could be estimated by solving a 2x2 matrix equation using
SDKA and SDKB values from only two conversions. In practice, to simplify digital

hardware and average out the effects of random noise in ∆x, an iterative procedure is

used to develop ˆ ε A and ˆ ε B over several conversions. An additional benefit of
manipulating the different residue modes should also be noted: coefficients SDKA,

SDKB, and the ∆x signal are modulated with sufficient activity that a "busy" ADC input

signal is not required to extract calibration information.

 Figure D6. INL Plots Figure 7. Die Photo

Figure 6 shows measured INL errors with and without calibration. Disabling calibration

and operating with the default initial value L.U.T.s (calculated from the nominal gain of

1.92) gives INL error of ≈ ±25LSB. With calibration enabled, INL error improves to

+2.1/-4.8 LSB. Figure 7 shows the die photo. The analog portion of the ADC was

fabricated on a 1P4M 0.25µm digital CMOS process with deep N-well. Area is 1.16mm

x 1.38mm for the analog; the digital circuitry was implemented on an external FPGA

which would have synthesized to 1.5mm
2
in the 0.25µm CMOS process. Power

consumption for the analog is 105mW from a 2.5V supply.

 108

Figure D8. INL Plots vs. Temperature Figure D9. Measured Calibration

2.3 Measured Response to Environmental Variations

Due to the reduced number of conversions required, the continuous background

calibration means the ADC can track out changes in calibration parameters caused by

environmental changes such as temperature. This is shown in Figures 8 and 9. The top

plot in Figure 8 shows measured INL at +85°C. For the middle plot, calibration was

disabled, temperature was reduced to -40°C, and then INL was measured. Without the

background calibration operating, the 85°C parameters are incorrect at -40°C and the INL

plot shows degraded linearity. For the bottom plot, calibration was re-enabled; after a

convergence transient the original INL performance is measured when the calibration

coefficients have converged to the new values required for –40°C. Figure 9 shows a plot

of the gain estimate as a function of time, showing the acquisition transient of the

calibration. The response is a damped exponential; calibration is acquired to sufficient

accuracy within about 10,000 conversions.

2.4 Summary of Cyclic Converter Performance

The cyclic ADC described in this section proved the practical operation of the split ADC

concept as a way to achieve all of the desired calibration procedure characteristics. By

performing all calibration and correction in the digital domain, the technique successfully

moves complexity into the digital domain as desired, with no additional analog

complexity. The technique operates in the background, with no interruption of input

sampling. And unlike all previous digital background techniques, this technique is

deterministic rather than statistical. The calibration procedure converges in

 109

approximately 10,000 conversions, which is a dramatic improvement over the 10
8
 to 10

9

conversions required for statistical techniques. With the short time constant for

calibration convergence, the ADC is able to maintain calibration over variations in

environmental factors such as temperature.

3. Extension of Split ADC to Other ADC Architectures

This section describes extension of the architecture concept to three more widely used

types of ADCs: pipeline, successive approximation, and interleaved. As mentioned in

section 2.2, the cyclic was chosen as the ADC architecture as a lowest-risk approach for

the initial hardware test of the split ADC concept since only a two parameters need to be

estimated to perform calibration. Extending the split ADC concept to other ADC

architectures is a higher-risk effort; in each case the self-calibration process is more

complicated since many parameters must be estimated. However, the higher risk is

accompanied by a higher reward due to the large number of application areas that will

benefit.

SPEED

POWER

CYCLIC

SUCCESSIVE
APPROXIMATION

PIPELINE

INTERLEAVED

Figure D10. Qualitative Speed-Power Comparison of ADC Architectures.

Figure 10 shows a qualitative graphical representation of the speed-power tradeoff for

four different types of Nyquist ADCs of comparable resolution. Better performance is

indicated by the arrow in the figure toward the higher speed, lower power region of the

plot. Due to limitations imposed by the cyclic architecture [D1], the system is

constrained in a fundamental way that limits the designer's flexibility in optimizing the

speed-power tradeoff. The other architectures shown are not limited in the same

fundamental way, and offer the ability to optimize the speed-power tradeoff for the needs

of a particular application area.

The following section provides an overview of the interleaved ADC, as well as the

challenges of applying the split ADC calibration concept to this architecture. Although

discussion of the pipeline and successive approximation ADCs is out of scope for this

proposal, they will be the subject of future proposals and are included in the figure to

show the wide applicability of the split ADC approach.

 110

3.1 Interleaved ADC

The interleaved ADC architecture pushes the speed-power tradeoff to maximize speed at

the expense of power. As shown in Figure 11, multiple ADCs are interleaved in time to

increase the overall throughput rate. For the example shown in Figure 11 with two

interleaved converters, the convert start clocks CVTCLK are 180° out of phase. In the

general case of N interleaved converters, the converters are clocked in phase increments

of 360°/N.

ANALOG
INPUT
SIGNAL
(VIN)

DIGITAL
OUTPUT
DATA
(CODES)

VIN

CVTCLK

VIN

CVTCLK
DIGITAL

MULTIPLEXER

Figure D11. General Interleaved ADC Block Diagram

Figure 12 shows a more detailed diagram of the timing relationships among the input

signal being sampled, the utilization of each ADC in time, and the output data flow. The

shaded circles indicate the samples of the analog input signal, which are spaced at

intervals of 1/fS, where fS is the sample rate of the entire converter. Since the convert

clocks for the converters are spaced at 180° phase intervals, each converter operates at

fS/2, half the overall sampling rate. In the general case of N interleaved converters, each

converter operates at a rate of fS/N.

TIME
ANALOG
INPUT
SIGNAL

VIN

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

DIGI TAL
OUTPUT
DATA
(CODES)

ADC
USAGE

ADC 1

ADC 2

1/fS

Figure D12. Interleaved ADC timing.

 111

The usage of each ADC in time for the conversion process is indicated by the shaded

boxes in the figure. The rising arrow at the leading edge of the rectangle indicates the

sampling of the input waveform and the start of the conversion process. The falling

arrow at the trailing edge of the rectangle indicates the completion of the conversion

process, and availability of the digital output data. The digital outputs of each converter

are multiplexed together as they become available, giving an output data flow at the full

rate fS. The relationship between input samples S1, S2, ... and the corresponding digital

outputs is also indicated in the figure.

3.1.1 Need for calibration

While each of the interleaved ADCs should be calibrated to minimize ADC linearity

errors, there are additional difficulties associated with the interleaved approach. Even if

ADC linearity is perfect, any mismatch in gain, offset, or aperture delay between

converters leads to errors in the output data. These errors take the form of increased

noise and spurs in a frequency-domain representation of the output [D24]. Gain

mismatches lead to signal-dependent spurs, offset mismatches lead to signal-independent

spurs, and aperture delay mismatch leads to signal-dV/dt-dependent spurs. Without

correcting these errors, the performance of the overall ADC can be severely degraded

relative to the performance expected from any individual ADC. For example, in [D25],

interleaved 8-bit ADCs resulted in an effective number of bits (ENOB) of only 4.5 to 6.5

bits. To calibrate the system in [D25], the gain, offset, and aperture delay of each ADC

must be measured by taking the analog circuitry off line and applying a ramp signal for

calibration.

Previous approaches for background calibration of interleaved converters [D26] involve

extremely complicated digital signal processing, imposing severe die area penalties.

Additionally, the method in [D26] fails for "unsuitable" input signals.

3.2 Split ADC Approach for Interleaved ADC

To apply the split ADC approach to an interleaved converter, each ADC is split as shown

in Figure 13. The idea is to have all possible combination of ADC split pairs convert the

input signal. As shown in the example in the figure, sample S1 is processed by a split

ADC composed of ADCs "A" and "B"; sample S2 uses ADCs "C" and "D"; sample S3

uses ADCs "E" and "A", and so on. In this way each converter is paired with every other

converter at some time. In each case, the average of whichever two ADCs are used is

reported as the output code and the difference is used for the calibration signal. From the

resulting differences it will be possible to estimate the gain, offset, and aperture delay

mismatch errors of each ADC. Note that one additional split channel is necessary to

provide timing flexibility so that all possible pair permutations are used. This does

impose a small die area penalty (fractional increase of 1/2N for an interleaving factor of

N ADCs), but imposes no power penalty since there is always one of the splits which is

not used and need not be powered.

 112

TIME
ANALOG
INPUT
SIGNAL

VIN

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5

DIGITAL
OUTPUT
DATA
(CODES)

ADC
USAGE

ADC "A"

1/fS

ADC "B"

ADC "C"

ADC "D"

ADC "E"

Figure D13. Split ADC Approach applied to Interleaved ADCs

3.2.1 Challenges for Split ADC Calibration of Interleaved ADCs

The main difficulty for the split ADC approach in the case of interleaved converters is the

increased number of parameters that need to be estimated. For an interleaving factor of

N, the split ADC approach requires estimation of gain, offset, and aperture delay for each

of (2N+1) converters, for a total of 3(2N+1) parameters to be estimated. In the case of

the N=2 interleaving shown in Figure 13, a total of 15 parameters are necessary, which is

a dramatic increase from the two parameter estimation demonstrated in the cyclic case. If

split ADC techniques are also used to correct for linearity errors in each individual ADC,

the number of parameters to be estimated increases further.

3.3. Proposed Work

The centerpiece of the proposed work is the design, fabrication, and test of a prototype

integrated circuit to verify the embodiment of the “Split ADC” concept in an interleaved

ADC of the general form described in section 3.2. The project would be performed by a

full-time Ph.D. student under the direction of the P.I. Figure 14 provides an overview of

the major tasks in the proposed work, and their approximate scheduling over the project

duration of three years. Given the P.I.’s past experience advising graduate research at

WPI (See Biographical Sketch), the amount of time budgeted – full time for the Ph.D.

student and one summer month per year for the P.I. – are appropriate given the nature of

the proposed work

 113

Figure D14. Schedule of proposed work.
Task

Survey existing technology;

determine target specification

System level design;

behavioral modeling

Circuit level design of

prototype IC

IC fabrication

Test system design

Test system fabrication

Integration of prototype IC,

test system

Test and verification of

prototype IC in test system

Dissemination of results

YEAR 1 YEAR 2 YEAR 3

4. Benefits

It is the P.I.’s belief that the new "Split ADC" architecture represents a genuine creative

design breakthrough in response to the specific constraints of advanced digital CMOS

processing technology. The capability of providing high resolution, self-calibrating

ADCs at low cost fills a critical need in a wide range of emerging mixed-signal

application areas. Successful completion of the work described in this proposal will

extend development of this new class of self-calibrating analog-to-digital converters

(ADCs) to the important application area of interleaved ADCs.

The P.I.'s previous work in developing the "split ADC" architecture has been proven by

successful fabrication and test of a 16bit, 1MSample/s, cyclic ADC. This is an indication

of both the validity of the concept to be extended and the P.I.’s ability to successfully

complete the proposed work.

 114

References for NSF Proposal

[D1] J. McNeill, M. Coln, and B. Larivee, "A Split-ADC Architecture for Deterministic

Digital Background Calibration of a 16b 1MS/s ADC," International Solid-State

Circuits Conference (ISSCC) Digest of Technical Papers, February, 2005, pp. 276-

7.

[D2] G. Moore, "No exponential is forever, but forever can be delayed," International

Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, February,

2003, pp. 20-23.

[D3] B. Razavi, "CMOS technology characterization for analog and RF design," IEEE

Journal of Solid-State Circuits, vol. 34 , no. 3 , March 1999, pp. 268 - 276

[D4] R. Hills, "Sensing for Danger," Science and Technology Review, July/August, 2001,

pp. 11-17.

[D5] D. Estrin et al., "Instrumenting the world with wireless sensor networks,"

Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP '01), May, 2001, pp. 2033 - 2036.

[D6] S. Martin, F. Gebara, B. Larivee, and R. Brown, "A Microsystem for Trace

Environmental Monitoring," International Solid-State Circuits Conference (ISSCC)

Digest of Technical Papers, February, 2005, pp. 244-5.

[D7] A. Burresi et al., "Temperature profile investigation of SnO2 sensors for CO

detection enhancement," IEEE Transactions on Instrumentation and

Measurement, vol. 54, no. 1, February, 2005, pp. 79-86.

[D8] P. Arpaia et al., "A chloroform transducer based on sPS-d-coated quartz-crystal

microbalance for gaseous environment," IEEE Transactions on Instrumentation and

Measurement, vol. 54, no. 1, February, 2005, pp. 31-37.

[D9] R. Beach et al., "Towards a miniature implantable in vivo telemetry monitoring

system dynamically configurable as a potentiostat or galvanostat for two- and three-

electrode biosensors," IEEE Transactions on Instrumentation and Measurement,

vol. 54, no. 1, February, 2005, pp. 61-72.

[D10] Y. Yazawa et al., "A Wireless Biosensing Chip for DNA Detection,"

International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers,

February, 2005, pp. 562-3.

[D11] A. Hassibi and T. Lee, "A Programmable Electrochemical Biosensor Array in

0.18µm Standard CMOS," International Solid-State Circuits Conference (ISSCC)

Digest of Technical Papers, February, 2005, pp. 564-5.

[D12] P. R. Kennedy et al., "Computer Control Using Human Intracortical Local Field

Potentials," IEEE Transactions on Neural Systems and Rehabilitation Engineering,

vol. 12, no. 3, September, 2004, pp. 339-344.

 115

[D13] D. Johns and K. Martin, "Analog Integrated Circuit Design." John Wiley & Sons,

New York, 1997.

[D14] Analog Devices Technical Staff, "Analog-Digital Conversion Handbook."

Prentice-Hall, New Jersey, 1997.

[D15] I. Galton, "Digital cancellation of D/A converter noise in pipelined ADCs," IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

March 2000, pp. 185-196.

[D16] B. Murmann et al., "A 12b 75MS/s Pipelined ADC using open-loop residue

amplification," International Solid-State Circuits Conference (ISSCC) Digest of

Technical Papers, February, 2003, pp. 328-9.

[D17] Liu et al, "A 15b 20MS/s CMOS Pipelined ADC with Digital Background

Calibration," International Solid-State Circuits Conference (ISSCC) Digest of

Technical Papers, February, 2004, pp. 454-5.

[D18] Nair et al., "A 96dB SFDR 50MS/s Digitally Enhanced CMOS Pipelined A/D

Converter," International Solid-State Circuits Conference (ISSCC) Digest of

Technical Papers, February, 2004, pp. 456-7.

[D19] Ryu et al., "A 14b-Linear Capacitor Self-Trimming Pipelined ADC,"

International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers,

February, 2004, pp. 464-5.

[D20] Erdogan et al., "A 12-b Digital-Background-Calibrated Algorithmic ADC with -

90-dB THD," International Solid-State Circuits Conference (ISSCC) Digest of

Technical Papers, February, 1999, pp. 316-7.

[D21] Chiu et al., "Least mean square adaptive digital background calibration of

pipelined ADCs," IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, Jan. 2004.

[D22] H.-S. Lee, "A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC,"

IEEE Journal of Solid-State Circuits, Apr. 1994, pp. 509 -515

[D23] A. Karanicolas et al. , "A 15-b 1-MS/s digitally self-calibrated pipeline ADC,"

IEEE Journal of Solid-State Circuits, Dec. 1993, pp. 1207 -1215

[D24] M. Looney, "Advanced Digital Post-Processing Techniques Enhance Performance

in Time-Interleaved ADC Systems," Analog Dialogue, vol. 37, no. 8, August, 2003.

[D25] K. Poulton et al., "A 20GS/s 8b ADC with a 1MB memory in 0.18µm CMOS,"

International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers,

February, 2003, pp. 318-319.

[D26] S. Jamal et al., "Calibration of sample-time error in a two-channel time-

interleaved analog-to-digital converter," IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, vol. 51, no. 1 , January, 2004, pp.

130 - 139.

