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Abstract 

 
 

This work describes the integrated circuit design of a 16-bit, 10Msample/sec, 

combination ‘split’ interleaved analog to digital converter. Time interleaving of analog to 

digital converters has been used successfully for many years as a technique to achieve 

faster speeds using multiple identical converters [1]. However, efforts to achieve higher 

resolutions with this technique have been difficult due to the precise matching required of 

the converter channels. The most troublesome errors in these types of converters are gain, 

offset and timing differences between channels.  

 

The ‘split ADC’ is a new concept that allows the use of a deterministic, digital, self 

calibrating algorithm [2]. In this approach, an ADC is split into two paths, producing two 

output codes from the same input sample. The difference of these two codes is used as 

the calibration signal for an LMS error estimation algorithm that drives the difference 

error to zero. The ADC is calibrated when the codes are equal and the output is taken as 

the average of the two codes. 

 

The ‘split’ ADC concept and interleaved architecture are combined in this IC design to 

form the core of a high speed, high resolution, and self-calibrating ADC system. The dual 

outputs are used to drive a digital calibration engine to correct for the channel mismatch 

errors. This system has the speed benefits of interleaving while maintaining high 

resolution. The hardware for the algorithm as well as the ADC can be implemented in a 

standard 0.25um CMOS process, resulting in a relatively inexpensive solution. This work 

is supported by grants from Analog Devices Incorporated (ADI) and the National Science 

Foundation (NSF). See appendix D for the NSF project proposal. 
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1 Introduction 
 

 
 

The goal for this work was to develop an integrated circuit design for an interleaved ADC 

architecture that utilizes the ‘split’ ADC concept [2]. This IC will form the core ADC to 

be used with a calibration scheme to achieve 16 bits of resolution at 10Msamples/sec.  

High resolution as well as low latency is required in order to be amenable to applications 

such as medical imaging, instrumentation and closed loop control systems. Traditional 

SAR type converters are popular choices for these types of applications however, they are 

currently near or at their speed limit of 4Msamples/s [3, 4].  The ADC design presented 

in this thesis is an initial step in breaking through that speed barrier, paving the way for 

new advances in these applications. The interleaved architecture together with the ‘split 

ADC’ concept provides dual high speed outputs which can be used by an all digital 

calibration algorithm to correct for the channel imperfections resulting in a high-speed, 

high-resolution ADC system.  

 

Interleaving is a technique introduced over 25 years ago and used to increase the speed of 

A/D converters. This method increases ADC throughput without the need for expensive 

higher speed process technologies [1]. Existing ADC architectures can be reused with 

minimal modifications to build an interleaved system. In general, N converters operate at 

a conversion rate of 1/N of a master system clock, each taking turns sampling the input at 

equally spaced intervals. The output of each converter is multiplexed to a single system 

output producing one seamless code at N times the frequency of any single converter.  

 

Ideally, the resolution of an individual ADC would be preserved. This has proved to be 

impossible due to the physical limitations of fabricating perfectly matched converters. 

Offset, gain and timing mismatches plague these types of systems causing frequency 

domain spurs that reduce the spurious free dynamic range (SFDR), degrading the 
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effective resolution. 

 

A ‘split’ ADC, introduced in 2005, uses the technique of essentially having two ADC’s 

simultaneously converting the same sample; producing two output codes [2]. If the 

converters were perfectly matched, the two codes would be identical. The difference 

between the output codes represents the mismatch and is used as an error signal for the 

digital calibration algorithm, which uses an iterative LMS process to drive the errors to 

zero. The final output is the average of the two corrected outputs. Since the output is 

taken as the average, the ADCs can be physically split in half with minimal impact on 

analog area, bandwidth and noise.  This technique was used successfully to calibrate the 

gain parameter on a 1MSPS, 16-bit cyclic ADC [2]. Appendix D is the NSF proposal 

written by Dr. John McNeill which details the ‘split ADC’ concept and project idea. 

 

Combining both the interleaved and split ideas allows this chip flexibility to be used with 

a calibration algorithm that corrects for the channel to channel errors of the interleaving, 

using the same principles as in the previous work [2, 5]. Unlike the previous work, the 

algorithm is more complex because the correction is done for three parameters (offset, 

gain, and timing) instead of the single gain parameter. The split is also more complex, as 

each ADC in the interleaved array is split and an extra converter is needed in order to 

record the errors between all possible pair combinations. For an N:1 interleaved ADC, 

2N+1 ADCs are required.  

 

The ADCs were not physically split in this work in order to minimize risk to the main 

goal of high resolution at high speed. The core ADC used in this chip is a reused mature 

SAR ADC architecture [6] with minimal modifications. While the area benefit is not 

realized in this version, a 3dB SNR benefit is expected due to the averaging of the two 

corrected outputs [2, 7].  

 

This thesis is organized into six chapters. Chapter 2 provides more detailed background 

on the interleaved architecture, the combination split-interleaved ADC architecture and 

the digital calibration. Chapter 3 describes the detailed operation and design of the chip 

and chapter 4 contains simulation results. Chapter 5 is a description of the physical 
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design of the chip. Lastly chapter 6 outlines the conclusions and future work 

recommendations. There are also four appendices. Appendix A describes the linearity 

calibration. A schematic diagram for evaluation is shown in Appendix B. Appendix C 

contains the MATLAB code used for the time, offset and gain correction. Lastly, 

Appendix D is the NSF proposal written by Dr. John McNeill.  
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2  Background  

 

 

 

2.1 Interleaved ADC Architecture 

 

2.1.1 Theory of Operation 

Time interleaving ADCs is a fairly simple technique for achieving high conversion 

speeds. The idea is to use multiple, moderate speed, ADC’s in parallel and combine the 

digital outputs to produce a single high-speed output. Figure 1 [5] illustrates the operation 

for a simple 2:1 interleaving example. Each ADC samples the same input signal at a rate 

of fs/2. ADC1 samples the input at tS1, ADC2 then samples at tS2, 1/fs later while ADC1 is 

still working. ADC1 finishes its tS1 conversion sometime between tS2 and tS3 and is ready 

for the next sample at tS3. Similarly ADC2 will finish its tS2 conversion in time for tS4. 

The two ADC outputs are multiplexed to produce an output code at a rate of fs, twice that 

of a single ADC.  

 

 

 

ADC1

ADC2

fs/2

fs/2

tS1 tS2 tS3 tS4 tS5

ADC1

ADC2

fs/2

fs/2

tS1 tS2 tS3 tS4 tS5

Figure 1. 2:1 Interleaving Example 
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2.1.2 Error Sources for Interleaved Structures 

Error sources of interleaved structures have been studied extensively in an effort to 

understand how to alleviate their effect [8-13]. The major challenge with the interleaving 

structure is dealing with the differences between the ADC paths. It is nearly impossible to 

physically match each channel to the extent necessary to maintain the resolution of the 

individual ADCs [10]. The three major contributors are the offset, gain and timing or path 

delay. The differences in these parameters cause spurs in the output frequency spectrum 

degrading the SFDR and reducing the effect number of bits, ENOB [14].  The spurs are 

due to the cyclic nature of the interleaving. 

 

The diagrams in figure 2 are time domain analog representations of the ADC digital 

output which show the effects of gain (a), timing (b) and offset (c) errors on the voltage 

outputs. In general, the output will contain some combination of all of these errors but are 

shown separately for simplicity. The gray lines represent the expected output and the 

black is the actual.  Each of the non-idealities causes a voltage error in the expected 

output.  

 

 

 

 

The effect of the gain error is shown in 2a. The ∆VGAINERR due to the gain error depends 

on the magnitude of the input signal and any mismatch will cause amplitude modulation 

of the output. The effect of the path delay is shown in 2b. ∆terror is the deviation of the 

actual sampling time from the expected sampling time. The voltage error due to ∆terror 

 ∆VGAINERR 
 

CORRECT 
CODE 

vIN 

t 

ACTUAL ADC 

OUTPUT CODE 

 

Voltage 
error due to 
skew error 

vIN 

t 

Ideal 
Sampling 

time  

Actual 
Sampling 

∆terror 

 ∆VOFFSERR 
 

CORRECT 
CODE 

ACTUAL ADC 
OUTPUT CODE 

vIN 

t 
a. Gain b. Timing c. Offset 

 

Figure 2. Voltage Errors Due to Non-idealities 
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depends on the frequency of the input signal. These mismatches will cause phase 

modulation. Both gain and timing errors contribute to image spurs at multiples of the 

sampling frequency, fs.    The converter offset in figure 2c, is a constant voltage error that 

does not depend on the input signal. Mismatched offsets cause single tone spurs at 

multiples of fs.  For a 4:1 interleaved ADC, image spurs will occur at fs/2 - fin, and fs/4 +/- 

fin, where fin is the frequency of the input. The offset tones occur at fs/4 and fs/2. 

 

A simple method to relate the size of the errors to the magnitude of the spurs is presented 

in [10].  The design equations used for determining the image spurs are given in (1)-(4).  

 









=

2
log20 error

GAIN

G
SpurIMAGE            (1) 

 

                     
scalefull

GAINERR
error

V

V
G

∆
=             (2) 

 









=

2
log20 error

PHASESpurIMAGE
θ

           (3) 

 

errorinerror tf ∆= πθ 2                   (4) 

 

These equations can be used to estimate the spur levels given the expected matching. For 

example, if the gain accuracy is only expected to match within 0.2%, the spur level can 

be expected to be -60dB according to (1).  

 

The effect of the timing errors on the level of the spur depends on the frequency of the 

input signal. Equations (3) and (4) are used to calculate the magnitude of a spur due to a 

timing mismatch of ∆terror=30ps and is plotted as a function of the input frequency in 

figure 3. As the frequency increases, the error becomes more significant as it becomes a 

larger portion of the period. 
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If both gain and phase difference errors are present, the RMS value of both gives the total 

magnitude for the image spurs as given in equation (5). 

 


















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


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






=

22

22
log20 errorerror

total

G
SpurIMAGE

θ
     (5) 

 

System level and physical limitations will determine the matching tradeoffs between gain 

and timing. Figure 4 shows the combined effect of these mismatches for a 100 kHz and 1 

MHz input signal with an image spur of -60dB.  For example, if an SDFR of -60dB needs 

to be maintained for this frequency range of up to 1MHz and 0.1% gain matching is 

expected then, according to figure 4, the path delays need to match to better than 300ps. 

The plot illustrates the tradeoffs. Anything below the curve will meet spec, anything 

above it will fail. 

Figure 3.  Effect of Input Frequency on Image Spur 
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The equation for the offset spur is given in (6).  In this example, a spur level of -60dB 

means that the offsets need to match within 0.1% of the full scale voltage. 

 










 ∆
=

scalefull

OFFSERR

V

V
SpurOffset log20                                   (6) 

 

Gerror (or ∆VGAINERR), θerror (or ∆terror) and ∆VOFFSERR represent the error differences 

between each ADC in the system. If the gain error of each ADC is identical, the gain 

error difference is zero and will not cause a spur, likewise with the phase and offset 

errors.  

 

The block diagram in Figure 5 was used to simulate these effects. Voltage sources are 

added to simulate the gain and offset errors. The offsets are modeled by a voltage 

VOFFSERRx in the input path to each ADC.  The gain error is modeled by the voltage 

VGAINERRx in the path of the reference, which sets the full scale voltage. The phase errors 

are modeled by placing a time delay, tdelayx in the path of the conversion start pulses.  
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Figure 4. Gain-Timing Tradeoff for Image Spurs 
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The values for Gerror, θerror and VOFFSERR are the combined errors, due to each channel, 

which appears at DOUTA. Simulation examples of each error effect are described in the 

following sections. 

 

2.1.2.1 Gain Error 

The effect of mismatched gain was simulated using the model in figure 5. The input to 

the ADC is a 2V peak, 140.625 KHz sine wave. The reference voltage, VREFERENCE, is 

2.048V and sets the full scale voltage, Vfull scale. The sampling rate, fs, is 12MHz. The 

voltages VOFFSERRx, and the delays tdelayx, are set to zero and a gain error is introduced by 

intentionally mismatching the reference voltage to each ADC. Figure 6 is the output 

frequency spectrum of the analog voltage equivalent of DOUTA, referred to the input. 

The spurs that are generated degrade the SFDR to -61dB. This corresponds to a gain error 

of 0.18% according to equation (1). 

Figure 5. 4:1 Interleaved ADC with Error Sources Modeled 
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The actual values used for VGAINERRx are listed in figure 6. These are arbitrarily selected 

to have better than 0.2% matching relative to the mean gain error. This result is slightly 

better than predicted by (1) and (5). The simulation is intended only to demonstrate the 

effect; the exact values are not relevant. A more rigorous mathematical treatment relating 

the individual error contributions to the spur magnitude can be found in several of the 

references, [1, 13, 19, 21].   

 

2.1.2.2 Timing Errors 

Timing errors occur when the sampling intervals are non-uniform. This is shown in figure 

3b where the voltage error depends on the rate of change in voltage, dv/dt, and is more of 

a concern at higher frequencies [15]. This can be especially troublesome in interleaved 

structures with different delay paths to each ADC. The extent of these errors is generally 

due to the physical layout as well as device mismatch.  

 

For this simulation the voltages VOFFSERRx, and VGAINERRx are set to zero. The path delays 

are modeled using a delay element, tdelayx, in the path of the conversion start pulses. The 

input amplitude, sampling frequency and reference voltage are unchanged from the 

previous gain example but the input frequency is increased to 1406.25 KHz to better 

demonstrate the effect. The output spectrum for this case is shown in figure 7.The spurs 

Figure 6. Output Spectrum of 4:1 interleaved ADC simulation with Gain error 

Gain Error Spurs 

 
VGAINERR0 = -5mV     ∆GERROR0=-0.18% 
VGAINERR1 = -3m        ∆GERROR1=-0.09% 
VGAINERR2 = 0mV       ∆GERROR2= 0.06% 
VGAINERR3 = 3mV       ∆GERROR3= 0.2% 
 
Mean VGAINERR = -1.25mV 
∆ VGAINERR= VGAINSERRx- Mean VGAINERR 

∆ GERRORx= 100 X ∆VGAINSERRx/Vfull scale 
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are at -78dB which corresponds to a timing error of 28ps according to (3) and (4). The 

actual values used for tdelayx are listed in figure 7. These values would suggest that the 

prediction of (3) and (4) is conservative since the worse ∆terror value is slightly larger than 

predicted. Again, the exact values are not important; this simulation is only intended to 

demonstrate the effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2.3 Offset Errors 

In this simulation, the voltages VGAINERRx, and the delays tdelayx, are set to zero and offset 

errors are introduced by placing a voltage source in the input signal path. The input to the 

ADC is identical to the signal used for the gain simulation: 2V peak, 140.625 KHz sine 

wave, VREFERENCE = 2.048V and fs = 12MHz. The output spectrum for this case is shown 

in figure 8. The spurs that are generated degrade the SFDR to -61dB. This corresponds to 

an error of 0.09% according to (6) and a VOFFSERR=1.8mV at DOUTA.  The data for this 

simulation is shown in the box in figure 8.  

Figure 7. Output Spectrum of 4:1 Interleaved ADC Simulation with Timing 

Error 

Timing Error Spurs 

 
tERROR0 = 50ps      ∆tERROR0= 35ps 
tERROR1 = 0            ∆tERROR1= -15ps 
tERROR2 = 10ps      ∆tERROR2= - 5ps 
tERROR3 = 0            ∆tERROR3= -15ps 
 
Mean tERROR = 15ps 
∆ tERROR= tERROR x- Mean tERROR 
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2.1.3 Reducing Interleaving Errors 

With technologies shrinking to deep sub micron levels, channel matching on interleaved 

structures becomes even more difficult. Moving as much functionality as possible to the 

digital domain, and minimizing analog complexity, makes sense from both a cost and 

performance standpoint [16]. Much effort has gone into addressing this issue [5, 8-13, 16-

20].  

 

Spurs generated by offset and gain mismatches are a result of the repeating ADC 

selection pattern of the interleaving. This can be alleviated by randomizing the selection 

pattern [8, 11, 17]. At least one extra channel must be added to enable random selection. 

This technique decorrelates the samples and eliminates the spurs but at the expense of 

raising the noise floor. This simple solution may be acceptable for some applications, but 

is not precise.  

 

Some solutions for the correction of the timing skews are implemented by the addition of 

a calibration signal [12, 9]. A ramp with a known slope is used to measure the timing for 

each ADC. A digital interpolator uses the information to calculate the corrections 

 
VOFFSERR0 = 0            ∆VOFFSERR0=-0.125 
VOFFSERR1 = -2m        ∆VOFFSERR1=-1.875 
VOFFSERR2 = 1.5mV    ∆VOFFSERR2= 1.375 
VOFFSERR3 = 1mV       ∆VOFFSERR3= 0.875 
 
Mean VOFFSERR = 0.125mV 
∆ VOFFSERR= VOFFSERRx- Mean VOFFSERR 

Figure 8. Output Spectrum of 4:1 interleaved ADC simulation with offset 

errors 

Offset Error 
Spurs 
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necessary to eliminate the skew between channels. The approach in [9] limits the 

dynamic range which is circumvented in [12] by adding an extra calibration channel. 

 

A randomly controlled chopper front end approach is used in [18-21] to extract offset and 

gain information. The input is transformed to a noise signal by a chopper sample and hold 

front end, controlled by a PRBS, then digitized by the ADC. The offset and gain errors 

are estimated digitally by calculating the mean and variance every N samples of the 

output code. The original signal is then reconstructed using the same PRBS, including the 

corrections. The corrections are updated every N samples. A single front rank SHA is 

used in [19]. This eliminates the timing skew issues but limits the speed of the system. A 

separate chopper SHA for each channel is used in [13, 19-21] and the timing skew 

between samples is estimated and corrected with filtering. These approaches rely on the 

statistics of the input signal and can have limitations on the input frequency. They also 

require added complexity in the analog portion.  

 

A split ADC approach can be applied to an interleaved structure to provide dual outputs 

which can be used with a calibration algorithm to correct for offset and gain as well as 

timing errors [2, 5]. The all digital algorithm requires no additional analog complexity, 

needs no special calibration signal, and runs continuously in the background. Table 1 lists 

issues that are addressed by the split-interleaved, self-calibrating ADC system, and 

compares them with previous work. 

 

[8] [9] [10] [11] [12] [13] [17] [18] [19] [20]

Offset 1 1 3

Gain 1 1 3 2

Timing 1 2,3 1 1

All Digital Calibration 4 4 4 4

Deterministic

Background Calibration

Self-Calibration

1         Improvement by speading out the spurs - does not eliminate

2         Trouble at some input frequencies

3         Limited input range

4         Added analog complexity  

 

Table 1 Comparison of Previous Work 
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2.2 Split ADC and Digital Calibration  

 

  

The split ADC concept, introduced in 2005[2], uses two independent ADCs, each 

converting the same input sample. The work described in [2] was for a cyclic ADC in 

which only the gain parameter needs correction (Appendix D). The difference of the two 

outputs is used as a calibration signal for the correction algorithm.  The overall output is 

taken as the average of the two corrected outputs.  Convergence is fast compared with 

other probabilistic methods [22-26] since the unknown input signal is eliminated from the 

calibration signal path which drives the correction algorithm. Moving these complex 

calibrations entirely to the digital domain relieves some of the burden on the analog 

complexity as well as lowers the cost.  

 

The idea is to split an ADC into two channels (figure 9), both sampling the same input at 

the same time. If both channels were identical, then each would produce the same output 

code. An error signal is generated when the two output codes are different.  

 

 

 

 

 

 

 

 

 

 

The difference, ∆x, is the input to the error estimation algorithm which uses an iterative 

least mean squares, LMS, method to calculate the calibration coefficients. The 

corrections are applied to xa and xb and ∆x is recalculated. This feedback process quickly 

drives ∆x to zero and continuously corrects and updates in the background for 

uninterrupted operation.   

Figure 9. Split ADC 
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The ADC output code is taken as the average of the corrected xA and xB outputs. This 

digital averaging has the benefit of improving the SNR by a factor of 2 [2, 7]. 

However, the original concept of a ‘split ADC’ is to essentially halve the analog area for 

a given ADC design with certain power, speed and noise specifications. Since the area is 

split, the capacitors are halved and the kt/C noise is increased by 2  but because of the 

averaging of the output, that factor is removed and the noise is unchanged. The active 

circuits are also halved such that the bandwidth (gm/C) and the power are unchanged.  

 

This concept has been proven successfully on a 16bit 1Msample/second cyclic converter 

[2].  The calibration technique is independent of the type of converter used and combines 

the cost benefits of an all digital implementation and the speed benefits of the 

deterministic nature (tracking out errors continuously, quickly), completely performed in 

the background without interrupting the conversions. 

 

 

2.3 Split- Interleaved ADC  

 

 

2.3.1 ADC Operation 

 

The ‘split ADC’ idea can be extended to the more complicated interleaved architecture. 

In addition to the gain parameter targeted in the previous work, the offset and timing 

parameters can also be calibrated. Each ADC in the interleaved array must be split and an 

additional ADC needs to be added in order to calculate the ∆x between every possible 

ADC pair. For an M:1 interleave, 2M+1 ADCs are needed for this type of calibration. For 

example, a 2:1 split interleaved ADC (Figure 10) requires 5 ADCs.   

 

The basic difference from the traditional interleaved ADC described in section 2.1.1, and 

the split-interleaved structure in figure 10 is that, in this case, a pair of ADC’s are 

selected to convert the same sample instead of a single converter. The operation is very 

similar to the previous case. The sample rate for the system is fs and each individual ADC 
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samples at fs/2. Initially, ADC “A” and ADC “B” sample the input at tS1. At 1/fs later, 

ADC “C” and ADC “D” sample at tS2 while ADC “A” and ADC “B” are still working on 

tS1’s conversion. ADC “A” and ADC “B” become available again sometime between tS2 

and tS3. Notice that in the absence of ADC “E”, the only next possible combination for tS3 

is ADC “A” and ADC “B” again because ADC “C” and ADC “D” are still working on 

tS2’s conversion.  ADC “E” is required since the A-C, A-D, B-C, and B-D pairs are not 

possible without it and the errors for all the possible paths must be computed for the 

calibration to work. ADC “E” also enables randomization of the ADC selection which 

eliminates the spurs due to the mismatch errors [8, 11, 17]. The five ADC outputs are 

sorted by the digital block and assembled into the two channels, xDOUTA and xDOUTB, each 

producing output codes at the rate of fs. These outputs drive the calibration algorithm that 

will correct for the interleave array mismatch errors between channels. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. 2:1 Split-Interleaved Example 

 

2.3.2 Calibration Algorithm 

The calibration algorithm described here addresses the errors associated specifically with 

the interleaved structure due to the mismatches between ADCs. The linearity calibrations 

of each individual ADC is handled separately and described in Appendix A.  

 

 ADC “A” 

 ADC “B” 

 ADC “C” 

 ADC “D” 

 ADC “E” 
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 xD 

xE 

vIN 

xA 

xB 

xC 
xDOUTB 

xDOUTA 

xDOUTA, xDOUTB 
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The same iterative approach demonstrated in the previous work [2] is applied in this case. 

The calibration algorithm for the interleaved design is more complex since the number of 

parameters to correct for is increased to three. As described in section 2.1.2, these errors 

can cause spurs in the frequency spectrum degrading the SFDR. To further complicate 

the algorithm, the three parameters must be calculated for each pair combination. In a 2:1 

split interleaved ADC, there are a total of 5 ADCs with 10 possible pair combinations. 

 

The error model in figure 11 is used to define the ADC output [5] with the three error 

sources from figure 3 combined.  The output, xDOUT, is comprised of the ideal value, x, 

plus the error terms for offset, gain and timing delay and is modeled by equation (a) in 

the figure.   

 

 

 

 

 

 

 

 

 

 

 

Figure 11.   Error Model 

 

The correction algorithm uses the difference between each combination of interleaved 

pairs to calculate, xos, Ge and et  using an LMS process. In figure 10, the interleaved 

outputs are xDOUTA and xDOUTB and can be any pair combination of xA through xE. The two 

outputs can be expressed by (7) and (8) where x is the desired output. 
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444444 3444444 21
termserror

eDOUTAeDOUTAosDOUTADOUTA
dt

dx
tGxxxx +•++=                             (7) 

 

444444 3444444 21
termserror

eDOUTBeDOUTBosDOUTBDOUTB
dt

dx
tGxxxx +•++=                       (8) 

The error between the two outputs is given by (9). The x term is eliminated and all that is 

left are the error terms. 

eDOUTBeDOUTAe

eDOUTBeDOUTAe

osDOUTBosDOUTAos

eeosDOUTBDOUTA

ttt

GGG

xxx

dt

dx
txGxxxx

−=∆

−=∆

−=∆

∆+•∆+∆=−=∆

             (9) 

 

Data is collected in a matrix for all possible pair combinations of the ADCs. An LMS 

method is used in a negative feedback process to estimate the corrections necessary to 

drive (9) to zero [2, 5].  The corrected output is given by (10). The final ADC output is 

the average of DOUTAx
)

and DOUTBx
)

. 









+•+−==

dt

dx
txGxxxx DOUT
eDOUTeosDOUTDOUTBDOUTA

))
     (10) 

Since the timing error term includes a derivative, two points are needed for this 

calculation and are taken from two adjacent samples. A 1 sample latency penalty is 

necessary for this calculation [5]. 

 

The block diagram for the correction algorithm is shown in figure 12. The uncorrected 

codes, as well as the tag marking which ADC they are from, are collected from the ADC 

output. The derivative is approximated and stored in the estimation matrix. A digital 

correction is applied and xa and xb are recalculated. New values for x and ∆x are 

calculated and stored in the estimation matrix. The algorithm then iterates around the 

shaded loop, constantly updating the estimates driving the error between the codes less 
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than the tolerance set by the algorithm and maintaining that level during operation of the 

system. 

 

 

                             Figure 12.      Correction Algorithm. 

 

This correction method converges in less than 200K conversions. It is fast because it does 

not rely on statistics for the correction information.  The system is continuously updating 

the correction coefficients, tracking out errors that could develop over time due to factors 

such as temperature and power supply variations. The ‘corrected’ output code will 

converge with an overall offset and gain error, but this is easily compensated in post 

processing. A more rigorous explanation of the algorithm can be found in Appendix D 

and [5]. 
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3  SPLINTA Circuit Design 

 

 

 

3.1 Overview 

 

SPLINTA is a SAR based 4:1 split-interleaved ADC integrated circuit design. This chip 

targets 16 bits of resolution at 10MHz. It is specifically designed to be used with the 

digital calibration algorithm described in section 2.3.2, currently being developed at WPI. 

The technology for this project is a 0.25um CMOS process with 5 levels of metal. The 

size is approximately 7mm on a side and it will be packaged in a 100 pin LQFP package.  

 

3.1.1 Functional Block Diagram 

The functional block diagram for the complete self-calibrating ADC system is shown in 

figure 13. The FPGA contains the hardware for the correction algorithm as well as the 

clock signals for the ADC. SPLINTA is the IC design for the ADC portion of this system 

and is highlighted in the shaded area. The 4:1 interleaving requires 9 ADCs (section 

2.3.1) in order to perform both interleave and split. The timing logic generates the signals 

that control the SAR cycles.  The MUX is used to send the conversion start pulse, 

CNVST, to the appropriate ADC pair according to the selection lines, SELA and SELB, 

which is controlled by the FPGA.  The digital output blocks assemble the codes from the 

individual ADCs and provide the dual high speed outputs, DOUTA and DOUTB, along 

with their identifiers, TAGA and TAGB. These outputs are processed by the correction 

algorithm within the FPGA providing the calibrated output, DOUT.  
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Figure 13. Functional Block Diagram 

 

3.1.2 SPLINTA I/O Overview 

The CALIBRATION MODE SIGNALS and the BUSYA, BUSYB outputs are mainly 

used for the individual ADC linearity calibration (Appendix A). The BUSYx signals can 

also be used as a ‘data ready’ indicator (see section 3.1.3). 

 

The input, SIG IN, is differential and common to all ADCs. The external reference is also 

common to each ADC but pinned out separately on the package for maximum isolation 

(see section 4.3). The SAR TIMING is derived from an external MASTER CLOCK 

which is intended to run at a frequency of 100MHz, but can be slowed for debug and 

evaluation purposes. The timing logic provides the signals which control the timing of the 

sample and acquire phases of the SAR ADCs. It also provides the SAR bit cycling clock 

for each ADC. The external SYNC pulse is synchronized internally with the SAR bit 

cycling clock and used to generate the conversion start pulses, CNVST. This signal is 

intended to run at 10MHz and can be adjusted, independently of the master clock. 
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Adjusting the sampling rate can also be useful for debug and evaluation purposes. A 

multiplexer cell sends the CNVST pulse to two of the 9 ADC’s according to the 4 bit 

ADC selection busses, ‘SEL ADC A’ and ‘SEL ADC B’. The outputs are two 16 bit wide 

data busses for the A and B channels plus two 4 bit identifiers to mark which ADC the 

data came from. This information can be used by the FPGA and is also useful for 

evaluation and debug. The data from each ADC appears at the output 4 conversion pulses 

after its conversion start (Figure 15).  

 

At the heart of SPLINTA is the AD7621 16-bit, 3MSPS PulSAR ADC architecture. The 

goal of the correction algorithm is to remove all interleaving errors enabling the same 

performance as the AD7621 [6] at 4 times the speed. Table 2 summarizes some of the 

specifications, targets and conditions for SPLINTA adapted from the AD7621 specs. 

 

Table 2. SPLINTA Specifications 

Resolution 

Conversion Speed 

16 bits 

10 MSPS 

External Reference 

Analog Input (Differential) 

2.048V 

-Vreference  to +Vreference 

Power Supplies 2.5V 

Digital Output 0000h (-FS) to FFFFh (+FS) 

 

 

3.1.3 SPLINTA Operation 

Split-interleaved ADC operation for a 2:1 system is described in sec 2.3.1. SPLINTA is 

the implementation of a 4:1 split-interleave. The action is the same except the number of 

possible pairs is increased from 10 to 36 pairs and the speed is increased by 4X instead of 

2X.  

 

Input sampling is initiated on a ‘conversion start’ signal, CNVSTIN. Figure 14 shows a 

simplified schematic for the conversion start circuit. The conversion process begins when 

the SYNC pulse goes low. It is synchronized with the SAR CLOCK by the D flip-flop. 
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The synchronized output, CNVSTIN, is used to ensure sampling at the beginning of the 

bit decision cycle where digital noise is less likely to cause a bit decision error elsewhere 

in the array. The 4 bit addresses on the SELA and SELB lines determine which pair of 

ADCs is selected to sample. A new pair of ADCs is selected every 1/fsample seconds but 

each ADC must have a minimum of 4 conversion times (4/ fsample) to complete its 

conversion, before it can be selected again. The waveforms in figure 14 illustrate the 

timing. Initially, in this example, ADC0-1 pair is selected and the CNVSTIN pulse is 

routed to CNVSTB0, and CONSTB1. It then cycles through pairs ADC2-3, ADC4-5 and 

ADC6-7.  By the 5
th
 conversion pulse, ADC0 and ADC1 are finished their conversion 

and ready for the next sample.  Either ADC0 or ADC1 can be paired with the ‘spare’ 

ADC8 for the next sample. By the 6
th
 conversion ADC2, ADC3 and ADC4 are available 

and a new pair can be selected, and so forth. The pairs are randomly selected from the 

three available each conversion cycle. The selection process can be controlled manually 

for evaluation or by the digital processor that contains the calibration algorithm. 

 

Figure 14. Simplified Conversion Start Circuit 

 

Figure 15 is a simplified schematic diagram of the digital interleaving circuit. The nine 

16-bit digital output busses from each converter is sorted and assembled into two high 

speed digital outputs by a multiplexer array. READ A and READ B words selects which 

pair of ADC outputs is ready and are generated by shifting the SELA and SELB words 

over by 4 conversion times or 4/fsample.  The READ busses are also used as the ADC 

identifiers, TAGA and TAGB. The waveforms in figure 15 demonstrate this action. The 

sequence starts with the ADC pair 0-1 selected to start conversion on the first sample. 

This is followed by the pairs 2-3, 4-5, and 6-7, etc. Four conversion pulses after the 

ADC0-1 start, the READA-B busses signal the results of the conversions, DOUT0 and 
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DOUT1 (8000h) to be sent to the outputs, DOUTA and DOUTB. Note the individual 

ADC outputs, DOUT0-DOUT8 are converting at one quarter the rate of the two main 

outputs, DOUTA and DOUTB. This quadrupling of the ADC speed is the major benefit 

of the interleaving structure. 

 

 

 

 

Figure 17.  Simplified SPLINTA Digital Interleaving Circuit 

 

The CNVSTBIN pulse is generated from the external SYNC pulse and can be used to 

signal when data is ready. The output data is valid from the rising edge of the 

CNVSTBIN pulse to the falling edge of the next CNVSTBIN pulse.  

 

 

 

The waveforms in figure 16 show the timing for valid output data. In this example, the 

SAR clock is 96MHz and the sample clock is 12MHz. CNVSTBIN is the external SYNC 

pulse (not to be confused with CNVSTIN, the synchronized version). The pulsewidth is 

approximately the width of a SAR clock cycle, ~10ns. The falling edge of this pulse 

initiates a conversion cycle as well as controls when the ADC outputs appears at the 

interleaved output as described above. The data is valid until the next falling edge of 

CNVSTBIN when the next sample is routed to the output. The ideal sample point is 

midway between these edges. The rising edge of this pulse should be sufficient to signal 

valid data as long as the pulse at least as wide as shown in figure 16.  

 

The BUSYA and BUSYB signals are normally used for the linearity calibration 

(Appendix A). However, it is possible to use this output in normal mode to signal valid 

data as well. During normal operation, the busy signals from the nine ADCs are 

multiplexed to the outputs, BUSYA and BUSYB, according to the SELA and SELB 

lines.  Initially, when a new ADC pair is selected, the BUSY signals from the new pair 

Figure 15. Simplified SPLINTA Digital Interleaving Circuit 
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are low. They remain low until a CNVSTBIN pulse is received and routed to the ADCs. 

The data and tag at the DOUTA and DOUTB outputs are valid at this time as shown in 

figure 17.  The location of this edge depends on when the user sets the selection lines 

relative to the sample clock. In general, the selection lines should be set at least one SAR 

cycle before the CNVSTBIN pulse.  

 

 

 

3.1.4 SPLINTA SAR Timing 

SPLINTA uses an external clock to generate the timing pulse signals for the SAR cycles.  

The signals are needed to initiate the bit cycling (CLK), zero the test op-amp (OZ), and 

latch the comparator output when the decision is made (LATCH). A simplified block 

diagram is shown in figure 17. The signals are generated by a master timing pulse 

generator and routed to each ADC. The timing signals are intentionally common to each 

ADC to minimize timing skews discussed in Sec 2.1.2.2. Within each ADC there is 

timing logic that determines whether to ignore or activate the signals depending on 

whether a CNVST signal was received.   

 

Figure 16. Valid Data Timing 
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Figure 18 shows the timing signals of a conversion cycle for ADC0 and ADC2.  The 

MASTER CLOCK drives the timing pulse generator and produces the MASTER OZ and 

MASTER LATCH pulses which run continuously and are routed to each ADC.  The 

SELA bus routes the MAIN CNVST pulse to the appropriate ADCs and signals the 

timing block to pass the timing pulses. In figure 18, a CNVSTB0 pulse activates the 

timing for ADC0 and the CLK, OZ and LATCH pulses are routed to the CAP DAC. 

ADC2 timing remains inactive until a CNVSTB2 pulse is received at which time the 

signals are routed to both ADC0 and ADC2. The ADC0 signals remain active until the 

end of the bit cycling where it then goes into a wait mode for the next CNVSTB0 signal. 

MASTER 

CLOCK

100MHZ

ADC0

ADC2

ADC8

ADC 

TIMING

ADC 

TIMING

ADC 

TIMING

TIMING PULSE 

GENERATOR

MAIN CNVST

CNVSTB0

CNVSTB2

CAP

DAC

CAP

DAC

CAP

DAC

MASTER 

CLOCK

MASTER OZ

MASTER 

LATCH

CLK0

OZ0

LATCH0

CLK2

LATCH2

OZ2

Figure 17. Simplified SPLINTA Timing Block Diagram 



 35 

 

 

 

3.1.5 CORE ADC Operation 

The core ADC used in the array is a 16-bit 3MSPS SAR type ADC. This is, by far, the 

most critical circuit in SPLINTA. The architecture of the ADC core is reused from the 

Analog Devices AD7621 [6] with some slight modifications.  This SAR ADC was 

chosen because of its high resolution and decent speed. Using a proven design minimizes 

the risk to the overall architecture.  

 

3.1.5.1 SAR ADC Review 

A block diagram for a DAC-based successive approximation A/D converter is shown in 

Figure 19a [27]. This type of ADC is named for the algorithm used for the conversion, 

which is based on a binary search method. There are three phases to a typical SAR 

conversion cycle: sample, hold and bit cycling. 

 

The input to the ADC is generally a sample and hold circuit. The converter is in ‘acquire’ 

or ‘sample’ mode until a conversion is initiated. In sample mode, the input is simply 

monitored, waiting for a ‘start’ signal. Once a conversion start signal is received, the S/H 

circuit switches to hold mode so that the sample value doesn’t change during the 

conversion process.  

Figure 18.  SPLINTA Timing  
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In the bit cycling mode, the sample is compared to a series of binarily weighted reference 

voltages, referred to a main voltage, Vref. Initially, the DAC output is set to Vref/2 and 

compared to the sample. If the sample is larger, the comparator output goes high and the 

MSB, D1 in this case, is kept, otherwise it is discarded. Next Vref/4 is added to the DAC 

voltage and compared to the sample. Again, if the sample is greater than the DAC 

voltage, then the next bit, D2, is kept. If it is less, it is discarded. Next comparison is 

VD/A+Vref/8 and so forth. This process continues until the converter cycles through the N 

bits and DOUT represents the N bit digital word corresponding to the sample.  

 

The process is illustrated in the waveform of figure 19b. The conversion is started at t2. 

The MSB is tested first. It is kept since it is less than Vref/2 and D1 is set to 1. Next, bit 2 

is tested and discarded since Vref/2+Vref/4 (gray trace) is greater than Vsample: D2 is set to 

zero. The procedure continues to bit 3 and D3 is kept because Vref/2+Vref/8 is less than 

Vsample. Lastly D4 is discarded since Vref/2+Vref/8+Vref/16 is greater than Vsample. The 

result of this process is a digital output word, DOUT=1010. 

 

 

 

 

 

 

3.1.5.2 Charge Redistribution ADC  

 

A charge redistribution ADC is a variation of the DAC-based ADC described above. In 

this case, the DAC is a binarily weighted switched capacitor array which includes the 
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sample and hold function. These types of DACs are popular because they have better 

accuracy and linearity than their resistive DAC counterparts. Also, they can be calibrated 

by switching in small capacitances in parallel instead of the more costly laser trimming of 

thin film resistors [28]. This DAC architecture compares the input sample minus the 

DAC output with zero or ground, rather than compare the DAC output directly to the 

input voltage. 

 

Figure 20 is a simplified version of a 3-bit capacitor DAC with the switches in various 

phases of conversion. In sample mode (a), the top plates are grounded through switch SC 

and the bottom plates are connected to VIN through S1-S4 and SIN. The DAC remains in 

this mode, sampling VIN, until a conversion start is initiated. In hold mode (b), SC and SIN 

are opened and the bottom plate of the capacitors is switched to ground through S1-S4. 

This causes the voltage at the top plates, Vx, to jump to –VIN. The next phase is the bit 

cycling mode (c). First BIT 1 is tested by switching the largest capacitor to the reference 

voltage, VREF, and the rest remain connected to ground. This forms a capacitor voltage 

divider and VREF/2 is added to Vx. This voltage is compared to ground and the 

comparator decides whether switch remains and the bit is set high or if it will be switched 

back to ground and the bit stays low. Next BIT 2 is tested and VREF/4 is added to Vx and 

the decision is made for that bit, and so forth. By the end of the bit cycling process, the 

voltage at Vx should be within 1 LSB of the sampled input and the state of the switches 

represents the digital output code. The extra C/4 capacitor is necessary in order to get an 

exact division by 2. 

 

 

 

 

Figure 20. 3-bit Charge Redistribution DAC 

(a) Sample Mode (b) Hold Mode (c) Bit Cycling Mode 
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The waveform in figure 21 shows the bit cycling process. In this example, VREF = 2V and 

VIN = 1.3V. Vx remains at 0V during the sample mode. At t1, a conversion is initiated and 

VX jumps to –VIN=-1.3V.  The bit cycling starts at t2 (see box in figure). At the end of the 

process the digital output word is 101. The LSB for this example is 2V/2
3
=0.25V (LSB 

= N

REFV 2/ , N is the number of bits).  The residue left at the end of the process should be 

within +/- 1 LSB of zero. 

 

 

 

 

 

 

 

 

 

 

 

3.1.5.3 AD7621 Overview 

The AD7621 is a 16 bit charge redistribution type ADC [6]. The action is the same as 

described above but the input is differential, in this case.  A simplified schematic of this 

architecture is shown in figure 22.  IN+ and IN- is the differential ADC input and can be 

positive or negative. The reference voltage, REF, sets the full scale for the ADC. Two 

identical capacitor DAC arrays are connected to the comparator inputs. The SAR 

algorithm cycles through the 16-bits driving the comparator inputs towards balance. The 

control logic handles the bit cycling and stores the digital output word. The output codes 

are described in Table 3. The digital output 0000h corresponds to –REF and FFFFh 

corresponds to +REF. The LSB is given by 162/2 REFV× . The reference value used in the 

AD7621 as well as SPLINTA is 2.048V and the LSB = .5.622/048.22 16 uV=×   

 

Figure 21. 3-bit Charge Redistribution Example 

BIT CYCLING PROCESS; VIN=1.3, VREF=2 
Start at time=t2 

Set switch S1 to VREF 

Vx=-VIN+VREF/2 

     = -1.3 + 2/2 = -0.3V 

Is Vx < 0  ? Yes 

Set Bit 1=1; Leave S1 set to VREF 
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At time= t4 
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3.1.5.4 AD7621 Timing 

The AD7621 has three modes of operation with different throughput rates. SPLINTA 

uses the WARP mode because it has the fastest conversion rate of up to 3MSPS. 

Maintaining the high resolution at these speeds is possible in part because of the dual 

quantization speeds. The higher bits are cycled at the speed of the SAR clock. The lower 

bits use two SAR clock periods per bit to allow the DAC more time to settle to the 

required resolution.  

 

The offset of the comparator also directly affects the resolution and must be 

compensated. The main comparator is continuously zeroed during the acquisition mode, 

using an op amp feedback loop. The op amp used in the feedback loop also needs zero 

adjustment. This is less critical than the main comparator and is performed during the bit 

cycling for maximum speed efficiency [29].  

 

Figure 23 illustrates the timing of the SAR. The ‘AQUIRE’ mode requires a minimum of 

70ns during which time the main comparator is continuously zeroed. The SAR bit cycling 

process is initiated with a ‘start convert’ signal.  The ‘fast’ quantization or bit cycling 

takes 13 clock cycles where it processes the upper 11 bits along with a redundant bit at 

bit 7. The ‘slow’ quantization processes the lower bits, bits 12, 13, 14, 15, 16 and a 

redundant bit at 12. This is done at half the rate of the first 13 bits. During the 

quantization process, the zeroing op amp is taken offline and its offset is compensated.  

Figure 22. Simplified AD7621 Architecture Table 3. Output Codes 

DIGITAL 

OUTPUT

[hex code]

DIGITAL VALUE

[Volts]

ANALOG INPUT

[Volts]

FFFFhFull Scale  – 1LSB+REF

8001hMidscale + 1LSB2XREF/216

8000hMidscale0

7FFFhMidscale - 1LSB-2XREF/216

0001h-Full Scale + 1LSB-REF+ 2XREF/216

0000h-Full Scale-REF

DIGITAL 

OUTPUT

[hex code]

DIGITAL VALUE

[Volts]

ANALOG INPUT

[Volts]

FFFFhFull Scale  – 1LSB+REF

8001hMidscale + 1LSB2XREF/216

8000hMidscale0

7FFFhMidscale - 1LSB-2XREF/216

0001h-Full Scale + 1LSB-REF+ 2XREF/216

0000h-Full Scale-REF
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Once the SAR bit cycling process is finished, the ADC returns to the acquire mode and 

the main auto zeroing is resumed until the next conversion start signal.  

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

The conversion cycle needs 70ns minimum for the acquire mode plus 250ns for bit 

cycling at a SAR clock rate of 100MSPS for a total of 320ns. This leads to a fundamental 

limit of 3.125MSPS throughput or 320ns between conversions. In the case of the 4:1 

interleave ADC, as long as each channel waits 4 conversion periods to read (400ns for 

fs=10MHz ), the output data will be valid.  

 

 

 

3.2 SPLINTA Circuit Details 

 

3.2.1 Top Level Schematic Diagram 

The schematic diagram for the SPLINTA top level is shown in figure 24. The design 

consists of four main cells: the ADC core (AD7621TOP3) used in the interleaved array, 

master timing (CLK_SEL_EXT), digital block (DIG_OUT) and padring (PADRING).  

 

Figure 23.    SAR CYCLE 
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The strategy for the design of this system was to reuse existing cells wherever possible. 

Reusing existing circuits lessens the risks associated with the individual designs and 

shifts the focus to system level issues specific to SPLINTA. The ADC core, master 

timing cell, and ESD cells contained in the padring, are all reused from existing circuits. 

Please refer to [3, 6, 29, 31] for detailed coverage of these design specifics. The circuit 

details presented here describe the system level design of SPLINTA and the pertinent 

circuits to support it. 

 

 

 

 

 

Figure 26. SPLINTA Top Level Schematic Diagram  

 

Figure 24.    SPLINTA Top Level Schematic Diagram 
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3.2.1.1 System Noise Issues 

Digital noise is a serious concern in mixed signal circuits such as SPLINTA (see section 

4.3). Several precautions are taken to isolate the cells and minimize the noise while 

balancing practical considerations for the physical size and packaging. 

 

The external reference is brought in separately to each converter. Since eight of the nine 

capacitor DACs are operational at any given time, quite a bit of noise is generated on the 

reference line. If they are not separated, one converter can be subjected to large noise 

transients on the reference by direct coupling from another converter. This can lead to 

crosstalk between converters, compromising the ADC performance. This effect is 

described in more detail in Chapter 4. 

 

In addition to separating the reference lines, there are several power supply and ground 

pins on SPLINTA. Isolation is important between supplies also, but not as critical as with 

the ADC reference. Considerations such as substrate noise and ground bounce [30] are a 

concern for power supply lines in mixed-signal circuits and it is common practice to 

separate analog and digital supplies to minimize coupling of this noise from the digital 

into the analog circuits. SPLINTA further separates the analog and digital supplies, 

trading off package constraints with noise concerns. There are 16 pins available for the 

supplies in the present 100 pin package and are partitioned as 3 pair for analog, 3 pair for 

output digital driver and 2 pair for ‘internal’ digital supplies. The decision for this power 

supply scheme is based on the fact that the internal logic requires less current than the 

analog or output driver cells and can be managed with one less supply. 

 

The grouping of the cells for the supply pins is based on physical proximity of the cells to 

the package pins. The ADC array is separated into groups of three for the analog and 

digital output driver supplies.  The three digital output driver supplies also power the two 

16-bit digital output drivers, DOUTA and DOUTB, and the ‘ADC TAG’ and ‘BUSY’ 

lines. Ideally, 3 supplies for the internal digital circuits would be better to maintain the 

grouping; unfortunately there are only 4 pins available.  In an effort to balance the two 



 43 

available supplies, cells are split into two groups of 4 converters and 3 converters plus the 

digital block. The exact pinout and routing is explained in more detail in Chapter 5. 

 

 

3.2.2 ADC Array  

The ADC array uses a modified version of the Analog Devices AD7621 [6] architecture 

for the core. The performance of this circuit is well known and the goal of SPLINTA is to 

replicate this performance at 4 times the frequency. This was chosen because of its high 

resolution and relatively high speed. It is a charge redistribution SAR type ADC (sec 

3.1.5) which operates from a single 2.5V supply [6]. Figure 25 shows the AD7621 block 

diagram highlighting the main differences between it and the SPLINTA ADC. The 

SPLINTA core uses an external reference and does not need the internal reference. Also 

the ADC internal timing is modified to accommodate the master timing signals (sec 

3.1.4).  The new internal timing cell is reused from an ADI 4:1 interleaved project chip 

[31] which uses the same timing scheme as well as the AD7621 as the core ADC. That 

work uses a more traditional 4 ADC approach and is still under evaluation. 

 

Figure 25. AD7621 based ADC core 
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The ADC array is designed to have common connections where possible to save on the 

pin count without compromising good isolation.  The nine ADCs share the differential 

input lines. They also share the digital control and calibration lines which are used only 

during the initial linearity calibration (appendix A), otherwise they remain fixed. The 

selection of the conversion start pulses for each ADC is handled in the digital section, as 

are the chip select lines, CSB, used for the linearity calibration. The ADC individual 

digital outputs are routed separately to the digital section for processing. The reference 

and power supply connections are separated for maximum isolation, minimum noise and 

practical considerations (sec 3.2.1.1). 

 

3.2.3 SPINTA Master Timing Cell 

To minimize timing errors, a single external master clock drives the timing circuits for all 

ADC in the array.  The timing for SPLINTA is generated from an external clock and is 

common to all 9 ADCs to minimize timing mismatches (sec 3.1.4). This required 

modifications to the AD7621s internal timing logic (sec. 3.2.2) and the addition of a 

‘master’ timing cell at the top level (CLK_EXT_SEL in figure 24). The diagram for the 

master timing cell is shown in figure 26. The TIMING PULSE GENERATOR was 

reused from the ADI project chip, as mentioned above. 

 

The external SAR clock is processed by the TIMING PULSE GENERATOR, to provide 

the six timing signals that control the SAR cycles. The op-amp offset zeroing function 

(sec 3.1.5) uses four controls, OZ, OZQ, OZS, and OZQS. Each of the six timing signals 

is connected to the 9X BUFFER blocks and routed separately to each of the ADCs for a 

total of 54 timing signals. The D type flip-flop is used to synchronize the external SYNC 

pulse with the master clock (sec 3.1.3) to provide the conversion start signal, 

CNVSTBIN.   
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3.2.4 Digital Block 

The digital block, DIG_OUT, is the only ‘new’ circuit on SPLINTA. The schematic is 

shown in figure 27. It contains the logic for the interleaving multiplexer arrays which 

assemble the individual ADC outputs into the high speed A and B outputs. It also 

contains the de-multiplexer that handles the routing of the conversion start pulses. The 

routing for the CSB input and BUSY outputs, used for the linearity calibration, is also 

contained here. 

 

The DATA OUTPUT MUX routes each bit from each ADC into 16 8:1 multiplexer 

arrays, one for each bit.  The READA and READB busses are a shifted version of the 

SELA and SELB lines (sec 3.1.3) and select which of the ADC 16-bit words will be 

routed to which of the A or B outputs. The outputs are buffered then routed to the 

padring.  The READA and READB busses are also buffered and routed to the padring to 

be used as the ADC tags to identify which ADC the data came from.  
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Figure 26. Master Timing Block 
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The CSB de-multiplexer is used during the linearity calibration. The TEST[0:1] pins 

actives the de-multiplexer and the selection line for channel A determines which ADC is 

to be calibrated. The CSB control signal is routed to the ADC to be calibrated according 

to the SELA bus.  ‘BUSY’ lines from each ADC are multiplexed to the two BUSYA and 

BUSYB outputs within this block. They are used when evaluating a single ADC within 

the array or during the linearity calibration. They can also be used to signal when data is 

valid (sec 3.1.3). 

 

 

Figure 27. SPLINTA Digital Block 

 

3.2.5 Padring 

The schematic diagram for the padring is shown in figure 28. As mentioned before, the 

ESD cells are reused from the AD7621 and the AD interleaved project chip [31]. The 

strategy here was to use the existing interleaved structure as a guide for the best 

arrangement. 
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The ESD protection circuits, ESDSUPPLY_2P5, are used to protect the reference, analog 

supply and internal digital supply pins. ESDSUPPLY_3P3 are used for the output driver 

supplies because they use higher voltage devices.  ESD clamps are used to protect the 

many (13) VSS pins. The supplies for the digital outputs are organized depending on 

which driver supply it is associated with. Chapter 5 details the power supply strategy. 

  

Figure 28. PADRING 
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4  Simulation Results 

 

 

 

In large systems such as SPLINTA, convergence for a complete transistor level model 

simulation is difficult, if at all possible. Even when convergence is achieved, the transient 

analysis times are prohibitively long. For this reason, simulations for SPLINTA were 

done mostly at a high behavioral level.  The behavioral simulations results were ‘spot’ 

checked with transistor level models used on the analog portions of the ADCs as well as 

the ESD cells in the padring.  

 

Three types of simulations were performed to verify the SPLINTA design. Although the 

target sampling rate for SPLINTA is 10MSPS, these simulations were performed at 12 

MSPS. Functional simulations are done both at the behavioral level and transistor level to 

verify operation. The models used are for a 0.25u CMOS process. Some simulations were 

performed with package parasitic modeling on the reference pins. Simulations with the 

package parasitic were performed at the transistor level for the analog sections. Lastly, 

simulations are done specifically to be used with the MATLAB correction algorithm to 

demonstrate the calibration results.  

 

4.1 Simulation Test Circuit 

 

The basic test circuit used for these simulations is shown in figure 29. The power source 

is a single 2.5V supply. The external reference is 2.048V and the differential input can 

span the +/- 2.048 range. The sampling rate is 12MHz and the master timing or SAR 

clock is set at 96MHZ. 
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Ideal voltage sources are used to supply power and the reference voltage. The control 

lines are hard wire for normal operation (refer to Table 7 in Chapter 5 for pin 

functionality). The input voltage is applied differentially also using ideal voltage sources. 

Behavioral models for test DACs are used to convert ADC outputs back to analog voltage 

levels for analysis purposes. The ‘Data Logger’ is also a behavioral model that records 

the ADC outputs in a text file to be used with the MATLAB correction algorithm. 

 

 

  

Figure 29. Simulation Test Circuit 

 

4.2 Functional Simulations 

 

This simulation was the baseline used for functionality verification. The differential input 

is set to ramp up N number of bits around any value within +/- full scale range at a rate of 

1LSB/Conversion Rate: 62.5uV/83.33uS. The selection lines are configured to randomly 

cycle through ADC pairs as described in sec 2.3.1.  

 

Figure 30 shows waveforms for a section of approximately 10 bits at mid-scale for a 

typical SPLINTA simulation run. The differential input is set around zero and is ramped 

DATA LOGGER 
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at a rate of 1LSB/Conversion Rate. The ADC outputs da and db, are the interleaved 

outputs and appear at output four conversions pulses after it started its conversion. The 

atag and btag designate which ADC the data came from (sec 3.1.3) 

 

A behavioral model for a DAC is used to convert both 16 bit digital outputs to an analog 

signal. The output from the test DAC can be subtracted from the ideal analog input and 

the residual error is used for comparison. The DAC output is given by (11). 

 

REF

LSB

REF
DAC V

V
DOUTV −







 ×
×=

43421
162

2
                                   (11) 

Mid scale occurs with a differential input of zero (Table 2) and should produce a 

DOUT=3276810 (8000h). With VREF=2.048, equation (11) yields VDAC=0. The error 

signal is the difference between the test DAC output and the analog input and is shown is 

figure 30 to be within +/- ½ LSB. A wider sweep of 1000 bits is shown in figure 31. 
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Figure 30. Functional Simulation 
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This simulation provides a baseline for the functionality verification. This was the 

standard test repeated with transistor level models and at both + and – full scale to verify 

functionality each time a change was made to the circuit. 

 

4.3 Transistor Level Simulations with Bond Wire Parasitics 

 

Noise coupling through package parasitics is a major concern in mixed signal integrated 

circuits [32]. This is especially a concern for interleaved ADCs such as SPLINTA where 

quite a bit of digital noise is generated from multiple converters working simultaneously. 

Digital noise can be coupled to the analog circuits through substrate and common 

connections such as supplies and references compromising performance. These issues are 

addressed by careful layout and package pin arrangement. Ideally circuits should be 

simulated at the transistor level, with parasitics included, to uncover problems before 

fabrication. This is very difficult and time consuming, if possible at all, due to the 

complexity at this level. In general, a combination of simulation and careful layout is 

relied on for best results. 

Figure 31. Functional Simulation-1000 bits 
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Simulations to investigate package parasitic effects were performed on SPLINTA with 

limited success. Convergence for circuits including power supply parasitics proved nearly 

impossible. However, simulations with package parasitics on the ADC reference 

uncovered a potentially serious flaw in the original pinning strategy. Initially, one 

common pin was used to connect the external reference to all nine ADCs. The 

simulations showed that using common reference pins results in noise generated from one 

ADC affecting the conversion results of another, commonly known as crosstalk.   

 

4.3.1 Transistor Level Simulation 

Since an all transistor level simulation is nearly impossible, a compromise is made where 

the analog portions of the ADCs are modeled at the transistor level and the digital 

portions are modeled at the behavioral level. The partitioning for the ADC core is shown 

in Figure 34. The padring (not shown), which contains all the ESD protection is also 

modeled at the transistor level. Simulations showed that this level of modeling is 

sufficient to see parasitic effects. 

 

 
 

 
 

Transistor Level 

Modeling 

Behavioral 

Modeling 

Figure 32. Modeling Level for SPLINTA ADC 
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Even at this level of modeling, convergence can be a challenge. The flow graph in Figure 

33 shows a general procedure that was used to achieve DC convergence.  Initially, an all 

behavioral, no parasitic, simulation is run under the desired test conditions. The models 

for the analog blocks are then changed, one at a time, from behavioral to transistor. The 

node voltages are saved at each step and reused as a starting point as the level of 

complexity is increased. If convergence is not achieved then the SPICE tolerances are 

loosened until convergence is achieved. If successful, this same procedure of saving and 

reusing the node voltages is used while the tolerances are retightened towards acceptable 

values. This can be a long and tedious procedure but it is worth the effort if successful, 

especially if a problem is uncovered. Common sense and experience will dictate how 

much time and effort should be placed here. In many cases, only the actual silicon chip 

can provide useful insight to parasitic effects. 
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Figure 33. Flow for Transistor Level Simulation Convergence 
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Once DC convergence is successful, the next step is to attempt a transient simulation. 

Table 4 shows how long the transistor level simulations can be. It is a comparison of 

elapsed times for different reference pinning scenarios. A simulation time span of 8.33uS 

was used, enough for 100 conversions at 12Msps. The table shows that it takes several 

days to complete a simulation. The most complex and time consuming solution involves 

separate pins for each ADC reference with bond wire parasitics on each one taking twice 

as long as the ‘no parasitic’ case. Only the most important node voltages should be kept. 

These transient analyses require an enormous amount of memory and saving every node 

can bog down a simulation and quite possibly use up all that is available. 

 

Type of Simulation Time Span, uS* Total Simulation Time, hrs 

Ideal Case, no Parasitics 8.33 77 

One Common Reference 

Pin with parasitics 
8.33 97 

Separated References  

pins with Parasitics 
8.33 169 

 

 

 

 
 

4.3.2 Reference Pin Parasitic Simulations  

The procedure described in the previous section proved useful in uncovering an issue 

with the original pinning scheme. The simple model of an inductance in series with a 

resistance in figure 34 is used for the package lead parasitic model.  Typical ballpark 

values are 2nH and 0.1 ohms for a 2mm wire [33].   

 

CHIP 2nH 0.1ΩEXTERNAL PIN CHIP 2nH 0.1ΩEXTERNAL PIN

 
 

 
Figure 34. Bond Wire Model 

Table 4. Comparison of Simulation Times and Level of Circuit 

Complexity 
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This model was placed in series with the reference package pin. The original 80-pin 

design is shown in figure 37.  The ADCs shared one common reference pin connected to 

an external source. The simulation test circuit is the same as described in section 4.2. The 

input in ramped up at 1LSB/conversion time around mid scale. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A baseline was established by running a transistor level simulation without parasitics, this 

is shown in 36a.  The waveforms in figure 36b show the effects of the noisy reference. 

The addition of the parasitic model causes large noise transients on the reference line 

from the cap DACs. The worse transients are when the MSB is cycled (section 3.1.3) and 

occurs at a rate of fsample. These periodic perturbations from one ADC can cause bit errors 

on another ADC, particularly if it is at the end of its bit cycling making decisions on the 

LSBs.  

 

Figure 35. Original 80-pin SPLINTA Design 
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Ideally, the error in the ADC transfer function should be between +/- ½ LSB as in the 

baseline plot in 36a. The parasitic plot in 36b shows the converter regularly getting 

‘stuck’ for 4 conversions. The noise generated from this pinning strategy clearly 

compromises the ADC resolution with errors of +/- 2 LSBs. 

 

 

 

 

 

 

 

The package diagram in figure 35 shows that some of the package pins were not used. 

There were enough ‘spare’ pins to be able to separate the references into groups of 3 and 

still remain in the smaller package. A simulation was done for this case to determine if 

this level of isolation was sufficient. Figure 37 shows the results of this case. This 

arrangement improved the problem somewhat but still made the occasional mistake when 

one ADC was making an MSB decision while another ADC from the same group was 

making LSB decisions. This strategy not only had bit errors but channels A and B could 

be different from one another. It was evident from these results that any excessive noise 

generated from one ADC was likely to corrupt another ADC output when they are 

sharing a common reference.  

 

Figure 36. Simulations on Original 80-pin SPLINTA Design 

with and without Parasitics 

a. Baseline 

b. With Parasitics 

b. With Parasitics 
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To minimize risk for the success of the chip, each reference and reference ground needed 

to be pinned out separately necessitating a switch from an 80 pin package to a larger 100 

pin package. The parasitic models were added in series to each of the 18 reference and 

reference ground pins as shown in figure 38. 

 

 

 

 

 

 

 

 

 

Figure 37. Simulations on Original 80-pin SPLINTA Design 

Reference tied in Groups of Three 

 

b. Error = ANALOG IN – TEST DAC Out 

Figure 38 Separately Pinned Out References 

a. Reference  
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A new baseline simulation was run with this new pinout as well as another parasitic run 

with one common reference, for comparison purposes. The analog input for these 

simulations is ramped at a rate slightly faster than 1 bit/conversion as used previously 

which is the reason it looks slightly different than the previous simulations. Figure 39 

shows a snapshot of this ramp along with the digitized version from the test DAC. The 

top trace (1) has all the references tied to one common reference pin through parasitics. 

The test DAC output gets routinely ‘stuck’ for four LSBs reducing the resolution from 

16-bits to 14-bits. Trace (2) shows the output with the references tied separately through 

the parasitics. These results are identical to the baseline results in (3), without parasitics, 

verifying that this level of isolation is essential to maintain high resolution for this type of 

architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
4.3.3 Issues with Supply Pin Parasitic Simulations  

As the previous section demonstrated, there is no doubt that simulations of this type are 

invaluable to successful circuit design. Uncovering problems such as this before chip 

fabrication saves much time, money and aggravation. However, the closer the models are 

Comparison of 3 cases : 2:Common Reference with Parasitics
                        3:Separate Reference with parasitics

                        1:No Parasitics
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u
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-75

-50

-25

0

25

50

75

u

Error - no parasitics

-75

-50

-25

0

25

50

75

u
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Comparison of 3 cases : 2:Common Reference with Parasitics
                        3:Separate Reference with parasitics

                        1:No Parasitics

Test Dac Output - common reference with parasitic Analog Input

.2

.4

.6

.8

1

1.2

m

2:<>v(da) 7FFD 8000 8001 8004 8005 8009
2:<>v(db) 7FFD 8000 8001 8004 8005 8009

Test DAC Output - separate references with parasitics Analog Input

.2

.4

.6

.8

1

1.2

m

3:<>v(da) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B
3:<>v(db) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B

Test DAC output - no parasitics Analog Input

.2

.4

.6

.8

1

1.2

m

1:<>v(da) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B
1:<>v(db) 7FFD 7FFE 8000 8001 8002 8004 8005 8006 8007 8009 800A 800B

5.35 5.45 5.55 5.65 5.75 5.85 5.95 6.05 6.15 6.25 6.35

time, uSeconds

(1) Common 

Reference 

through 

Parasitics 

 

(2) References 

Tied Separately 

through   

Parasitics 

 

(3) No Parasitics 

A. Analog input and Test DAC output B. Error between Analog input and Test 

DAC output 

Figure 39.  100-pin Package Simulation Results 
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to reality, i.e. transistor level models with chip and package parasitics, the greater the 

difficulty achieving DC convergence. Even if successful, it doesn’t necessarily guarantee 

a successful transient analysis. In some cases the transient simulation can run for hours or 

days until a certain point and get ‘stuck’. This is most likely to occur when several things 

are switching at once.  

  

This was precisely the case with a transient analysis attempted with bond wire parasitics 

on the analog power supply pins. The simulation gets stuck at the beginning of first 

conversion cycle and can’t resolve the transitions. Several attempts where made to get 

past the ‘stuck’ point, such as, loosening the tolerances and reducing the level of 

complexity by modeling some analog portions at the behavioral level, and forcing 

SPLINTA to a known state past the ‘stuck’ point. None of these attempts were 

successful.  

 

It is not always practical or even possible, as in this case, to cover every scenario in 

simulation and careful layout and pin strategy is the best and sometimes only practical 

solution. Chapter 5 describes the physical layout and pin arrangement. The goal is to 

isolate as best as possible. The PSRR of the comparator should alleviate some of the 

supply coupling so it should not be as dramatic as the reference problem [29].  

 

 

4.4 Matlab Correction Algorithm  

 

The MATLAB correction algorithm was developed at Worcester Polytechnic Institute 

[5]. It is a mathematical model for the algorithm described in section 2.3.2 and is the 

basis for the hardware implementation being developed at WPI concurrently with this 

project. The block diagram in figure 40 is the model used to demonstrate the complete 

self-calibrating ADC system.  In the absence of hardware, the MATLAB code can be 

used to verify the correction algorithm on SPLINTA simulation data.  
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Figure 40. Model for MATLAB Calibration 
 

To verify the algorithm, simulation data for SPLINTA are collected for ideal cases as 

well as with intentionally mismatched offset, gain and timing errors. The input signal, 

VIN, is a sine wave input with an amplitude of 2V peak. The simulation is set up to collect 

1024 data points, performing a conversion at each of the points. The input frequency is 

calculated using (12).  

 

samplesim f
cyclesofNumber

f ×=
1024

                            (12) 

 

The frequency of the input, fsim, is set for 12 cycles at 140.625 kHz sampling at a rate of 

12MHZ.  

  

The mismatch errors are modeled using ideal voltage sources and delay blocks as in 

section 2.1.2. Figure 41 is a simplified diagram of the strategy. An offset was randomly 

introduced in some of the paths by placing an ideal voltage source in series with one of 

the differential inputs, VOFFSERRx in the diagram. Similarly, a gain error was induced by 

randomly placed voltage sources in series with some of the ADC reference pins 

VGAINERRx. The timing was mismatched by placing different valued behavioral delay 

elements in series with the conversion start pulses, tdelayx.  Table 5 shows the actual values 

used. A behavioral model for a data logger (figure 31) records the 1024 digital output 
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data points and tags for channels A and B into a text file that can be imported into 

MATLAB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The MATLAB algorithm is designed to compute the errors between each ADC pair 

combination and apply that estimate each time that pair is selected (sec 2.3.2). In general, 

the correction algorithm needs 200K+ points for initial convergence. It is not practical to 
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Figure 41. Block Diagram for Interleave Simulation  

with Mismatch Errors 
 

Table 5 Induced Error Values 
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directly collect this amount of data from simulation. The simulation time would be 

prohibitively long (sec 4.3). For this reason, only 1024 points are collected for the FFT 

and a compromise is made by replicating the data 500 times for a total of 512K data 

points.  

 

An FFT of the MATLAB results is shown Figure 42. The spectrum for the ‘ideal’ 

simulation data shows a noise floor of around -130db. The spectrum from the simulation 

corrupted with the mismatch errors shows the noise floor at around -80dB. The mismatch 

errors do not cause spurs in the spectrum because of the decorrelation of the errors by the 

randomization of the ADC selection (sec 2.1.3).  This data is processed by the MATLAB 

algorithm for correction. The calibration completely removes the effects of the error. The 

data output has a noise floor as good as the ‘error free’ data.  

 

 

 

 

 

Figure 43 shows a MATLAB plot of convergence of the algorithm. The error settles to 

within 1 LSB in 200K conversions. For an fsample of 10MHZ, the convergence time is 

20ms. 

Simulation Data no errors 

Simulation Data with 
induced errors 

Corrected  Data 

Figure 42. MATLAB Calibration Results 
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Figure 43. MATLAB Convergence 
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5 Physical Layout and Packaging 

 

 

 

The technology used in the SPLINTA design is a 0.25u CMOS process with 5 metal 

layers.  The physical design and package selection balances maximum isolation and 

matching with practical size limitations. 

 

5.1 Physical Layout 

 

The physical layout of SPLINTA is as critical as the simulation verification (section 4). 

Figure 44 is a plot of the physical layout. Even though the calibration algorithm (sec 

2.3.2) is designed to correct for any mismatches in the channel, care still needs to be 

taken to keep the blocks as well matched and as isolated as possible for optimal 

performance. Identical ADC layouts are surrounded by guard rings and arranged in a 3 X 

3 grid. Placement of the digital block is not critical but the timing block is placed close to 

ADC0 to minimize the routing to the timing calibration. ADC0 is the only cell used to 

calibrate the master timing block. 

 

The offset and timing errors can be affected by the input signal paths. To ensure the best 

possible matching, routing for the differential input lines are intentionally shaped so that 

the lengths and area are the same. All of the differential path lengths to the nine ADCs 

are matched to the longest path in the array. These lines are also shielded to provide some 

isolation. 
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The length of the reference lines is not as critical as far as timing is concern. However 

they are designed to be as wide as possible for a low impedance path to the pad. The pads 

are located around the chip such that the paths are short, further minimizing the 

impedance. They are also shielded to provide some added isolation. 

 

To prevent the digital noise from interfering with analog supplies, the supply pins are 

separated into three types: analog, internal digital and output driver supplies (sec. 

3.2.1.1). Because of the large amount of switching and digital activity, these types are 

further separated into subgroups to minimize crosstalk and supply bounce [30]. The 

analog and output driver supplies are separated into groups of three and the digital supply 

into groups of two (sec 5.2). In addition, each power and ground pin from each core ADC 

is Kelvin connected back to its supply pin.  

 

The size of this layout is approximately 7mm X 7mm and will fit in a 100 pin LQFP 

package. 

 

 

 

Figure 44. SPLINTA LAYOUT 
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5.2 Pad Layout 

Figure 45 shows the chip pad arrangement and the bonding. The total number of pads on 

the chip totals 108. Given the die size and number of pins a 100-pin LQFP package with 

a 9000um
2
 cavity size is chosen for packaging. Some of the supplies and grounds will 

share a pin to fit in the 100-pin package. To minimize the parasitic impedance, the analog 

and supply pads are arranged around the chip so that they are physically close to the cells 

they connect to.  

 
Ideally, for maximum isolation, each block in the system would have its own analog, 

digital and output driver supply pins. Due to the limited number of pins, compromises are 

made by double bonding and evenly distributing all of the available pins for power 

between the cells.  

 

There are six pairs of analog supply pads on the chip. Each ADC cell has the comparator 

supply separated from the timing supply and routed to its own pad. They will be double 

bonded to the same package pin. The analog pins are AVDDA/B/C and AVSSA/B/C.  

 

The digital output drivers can have very large switching transients, particularly with two 

sets of digital data outputs switching simultaneously. These supplies are also grouped in 

sets of three: OVDDA/B/C, OVSSA/B/C.  

 

Unfortunately, there is room only for two more pairs of supply pins, the internal digital: 

DVDDA/B, DVSSA/B. The substrate connections are split into two groups, SAGNDA 

and SAGNDB, routed to a separate chip pad, and then double bonded with the DVSSA 

and DVSSB pins. This arrangement is a compromise and was chosen because the digital 

supply pins for the internal logic do not have as high current level as the other groups.  

 

All supply pins are located on the chip to be as close to the blocks they power as possible. 

Table 6 lists the supply pads and the cell groupings that connect to them. 
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The nine pairs of reference pins: REFIN[0:8], REFGND[0:8]: are also located around the 

chip so they are physically close to their associated cells. They are arranged in groups of 

three pairs around the chip. Digital control lines are placed next to each group of 

reference pins to provide more shielding. The control lines are used only for calibration 

and are set to fixed ‘quiet’ logic values during normal operation. 

 

The physical location of the digital outputs to their connecting cells is not as critical as 

with the analog and supply pins. These were basically arranged at the left over locations 

once all the critical pins were placed. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45. Chip Pinout                 
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5.3 Power Supply Partitioning  
 

5.3.1 Analog Supplies 

The ADCs are separated into to groups of three to minimize crosstalk through the supply 

pins:  VDDA/B/C and VSSA/B/C (Table 6). Figure 45 shows the chip pad arrangement. 

The supplies for the timing block of each ADC are separated from the main analog 

supply.  VDD1A/B/C and VSS1A/B/C are grouped in the same fashion as the main 

analog supply and routed to their own pad on the chip. Since there is a shortage of pins 

on the package, these will be bonded to the same pin as their main analog supply 

counterpart. This strategy is modeled after an existing interleaved SAR based project chip 

[31]. 

 

The master timing block for this chip is at the top level, common to all ADC’s. The 

calibration and the test modes for this cell are controlled by ADC0; therefore it is 

powered by the same timing supply: VDD1C, VSS1C.  

 

5.3.2 Output Driver Supplies 

The output driver supplies power the internal ADC ROMs as well as the output digital 

drivers. These are also separated into groups of three to minimize ground bounce [30]: 

OVDDA/B/C, OVSSA/B/C.  The internal ROM power is grouped the same way as the 

SPLINTA SUPPLY PADS 2/22/2007

Name Function Notes

DVDDA, DVSSA Power and Gnd for Internal Digital  Connection for internal digital for ADC1, 2, 5, 4, 8

SAGNDA
Substrate connection for Internal 

Digital

Connection for internal digital for ADC1, 2, 5, 4, 8; 

double bonded to DVSSA pin

OVDDA,OVSSA
Power and Gnd for Output Digital 

and Internal ROM 

Connection for internal ROM of ADC2, 5, 8 and  

Channel A Digital Outputs

AVDDA, AVSSA Analog Power and Gnd Connection for analog blocks of ADC2, 5, 8

AVDD1A, 

AVSS1A
Analog Timng Power and Gnd

Connection for analog timing blocks of ADC2, 5, 8; 

Double Bonded to AVDDA and AVSSA

DVDDB, DVSSB Power and Ground for Internal Digital  
Connection for internal digital for ADC0, 3, 6, 7 and 

the DIG_OUT cell

SAGNDB
Substrate connection for Internal 

Digital

Connection for internal digital for ADC0, 3, 6, 7 and 

the DIG_OUT cell; double bonded to DVSSB pin

OVDDB, OVSSB
Power and Gnd for Output Digital 

and Internal ROM 

Connection for internal ROM of ADC1, 4, 7 and  

Channel B Digital Outputs 

AVDDB, AVSSB Analog Power and Gnd Connection for analog blocks of ADC1, 4, 7 

AVDD1B, ASS1B Analog Timing Power and Gnd
Connection for analog timing blocks of ADC1, 4, 7; 

Double Bonded to AVDDB and AVSSB

OVDDC,OVSSC
Power and Gnd for Output Digital 

and Internal ROM 

Connection for internal ROM of ADC0, 3, 6, Tag and 

Busy lines

AVDDC, AVSSC Analog Power and Gnd Connection for analog blocks of ADC0, 3, 6

AVDD1C, ASS1C Analog Timing Power and Gnd

Connection for analog timing blocks of ADC0, 3, 6 and 

the Master Timing Cell; Double Bonded to AVDDC 

and AVSSC

Table 6. Supply Pads and Connections                      
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analog supplies. A set of output supply pins is placed at the center of each channel of the 

data output bits and another in between the select and ‘tag’ lines to minimize supply and 

ground impedance. These lines are also Kelvin connected to their proper pads. 

 

5.3.3 Internal Digital Supply 

Due to the pin count constraints, there is only room for two pairs of internal digital 

supply lines. The substrate connections for the internal digital block: SAGNDA, 

SAGNDB: also need to share pins. As with the analog timing pads, these are routed to 

separate pads on the chip, then bonded to the same pin as DVSSA and DVSSB. The 

grouping for these lines is 5 ADCS on one supply: DVDDA, DVSSA: and 4 ADCs plus 

the digital block on the other: DVDDB, DVSSB. This asymmetrical grouping is 

unavoidable and attempts to balance the number of cells on each line. The two sets of 

supply pins are physically placed next to the output driver supply pins that sit in the 

center of the data pins, also to minimize the impedance. 

 

5.4 SPLINTA Package and Pin List 

 

Figure 46 shows the SPLINTA package. It is a 100-pin low profile quad flat pack or 

LQFP. Table 7 is the pin list including all the pins and their functions.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 46. SPLINTA Package (Top View) 
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SPLINTA PIN LIST 2/22/2007

Name Function Notes

1 DB8 Channel B CMOS digital output bit 8

2 DVDDB Power for Internal Digital  Power connection for internal digital for ADC0,3,6,7 and the DIG_OUT cell

3 DVSSB GND for Internal Digital  Gnd and substrate connection for internal digital of ADC0,3,6,7 and  DIG_OUT 

4 OVSSB Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC1,4,7 and  Channel B Digital Outputs 

5 OVDDB Power for Output Digital and Internal ROM Power connection for internal ROM of ADC1,4,7 and  Channel B Digital Outputs 

6:13 DB7:DB0 Channel B output bitsCMOS digital outputs bits 0-7

14 AVSSB Analog Gnd Gnd connection for analog and timing blocks of ADC1,4,7 

15 AVDDB Analog Power Power connection for analog and timing blocks of ADC1,4,7 

16 WARP Fastest Mode- All 9 tied together This is mode I would use

17 REFGND4 External Reference GND Connection for ADC4

18 REFIN4 External Reference Connection for ADC4

19 REFIN1 External Reference Connection for ADC1

20 REFGND1 External Reference GND Connection for ADC1

21 REFGND0 External Reference GND Connection for ADC0

22 REFIN0 External Reference Connection for ADC0

23 AVSSC Analog Gnd Gnd connection for analog and timing blocks of ADC0,3,6 and master timer cell

24 AVDDC Analog Power Power connection for analog and timing blocks of ADC0,3,6 and master timer cell

25 IMPULSE Slowest Mode Don't need it for operation but used in calibration 

26 SARCLK External SAR CLK ~100MHZ for 10 MS/s conversions

27 RESET Reset chip - Aborts current conversion

28:31 SELB0:SELB3 Selects which ADC pair to use for B channel

32:35 TAGB0:TAGB3 Identifier for Channel B

36 BUSYB Indicates when conversions are occuring in B channel

37 OVDDC Power for Output Digital and Internal ROM Power connection for internal ROM of ADC0,3,6,TAG and BUSY Digital Outputs 

38 OVSSC Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC0,3,6 ,TAG and BUSY Digital Outputs

39 BUSYA Indicates when conversions are occuring in A channel

40:43 TAGA3:TAGA0 Identifier for Channel A

44:47 SELA3:SELA0 Selects which ADC pair to use for A channel

48 SER_PARB Switches from Serial to parallel mode Always in Parallel mode unless in calibration

49 REFIN3 External Reference Connection for ADC3

50 REFGND3 External Reference GND Connection for ADC3

51 REFGND6 External Reference GND Connection for ADC6

52 REFIN6 External Reference Connection for ADC6

53 REFIN7 External Reference Connection for ADC7

54 REFGND7 External Reference GND Connection for ADC7

55 MODE0 Selects either 16 bit or 18 bit operation Only used in calibration mode

56:63 DA0:DA7 Channel A output bitsCMOS digital outputs bits 0-7

64 OVDDA Power for Output Digital and Internal ROM Power connection for internal ROM of ADC2, 5, 8 and  Channel A Digital Outputs 

65 OVSSA Gnd for Output Digital and Internal ROM Gnd connection for internal ROM of ADC2, 5, 8 and  Channel A Digital Outputs 

66 DVSSA GND for Internal Digital  Gnd and substrate connection for internal digital of ADC1, 2, 5, 4, 8

67 DVDDA Power for Internal Digital  Power connection for internal digital for ADC1, 2, 5, 4, 8

68:75 DA8:DA15 Channel A output bitsCMOS digital outputs bits 8-15

76 BYTE Swaps MSBs and LSBs Used in calibration mode

77 CSB Enables output  usually these are tied low All 9 CSB's are tied tog. Needed for cal mode

78 SYNC 10MHz signal Initiate a conversion in sync with SAR CLOCK edge. Conversion start pulse is sent to appropriate ADC pair according to SELA and SELB

79 RDB Control for read. Usually tied low. All 9 RDB's are tied tog. Needed for cal mode

80 PD Powers down ADC  Completes current conversion but inhibits subsequent- All 9 tied together

81 AVSSA Analog Gnd Gnd connection for analog and timing blocks of ADC2,5,8

82 AVDDA Analog Power Power connection for analog and timing blocks of ADC2,5,8

83 TEST1 Used selecting certain calibrations

84 INP Positive terminal for ADC input

85 INN Negative terminal for ADC input

86 TEST0 Used selecting certain calibrations

87 REFGND8 External Reference GND Connection for ADC8

88 REFIN8 External Reference Connection for ADC8

89 REFGND5 External Reference GND Connection for ADC5

90 REFIN5 External Reference Connection for ADC5

91 REFGND2 External Reference GND Connection for ADC2

92 REFIN2 External Reference Connection for ADC2

93 OB_2CB Switches from straight binary to 2's comp Used in calibration mode

94:100 DB15:DB9 Channel B output bitsCMOS digital outputs bits 9-15

 

Table 7 Pin List for SPLINTA 
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6 Conclusion 

 

 

 

This thesis described the design of a 4:1 interleaved ADC integrated circuit that 

incorporates the ‘split ADC’ concept.. This new architecture has dual digital outputs that 

can be used with a background calibration scheme to correct for offset, gain, and timing 

errors typically found in interleaved structures. The errors are caused by mismatches 

between channels due to physical design and process limitations which will become even 

more difficult as process technologies continue to shrink. This split-interleaved ADC 

approach together with the calibration algorithm can achieve 16-bit performance at 

10MSPS. The correction algorithm uses the difference between the two ADC outputs as 

the calibration error signal. An LMS technique is used in a feedback arrangement that 

quickly drives the errors to zero. Its deterministic nature allows for fast convergence and 

is continuously working in the background. The algorithm can be implemented as an all 

digital processor, in an external FPGA or, eventually, in an on-chip digital block.  

 

The purpose of this thesis was to demonstrate the split ADC approach on an interleaved 

ADC topology. Design time and risk were minimized by reusing existing designs for 

many of the core cells. The AD7621 SAR ADC architecture is used as the core ADC. 

The ESD cells and timing block are reused as well. Because most of the cells were 

established, proven architectures, the focus of the design could be placed on system level 

issues. Practical consideration is given to digital noise and crosstalk, typical in mixed 

signal circuits such as SPLINTA. These issues are addressed through a combination of 

simulation verification and careful physical layout. Simulations with a shared reference 
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between the ADCs uncovered problems leading to the decision to separate them. 

Simulations were not possible for verification of different power supply strategies due to 

the difficulty in the DC convergence. The decision was to separate the power supplies 

between the analog, internal digital and output driver supplies then further split the 

supplies amongst the 16 available pins on the 100-pin package. Limiting the number of 

cells sharing the supply lines should reduce crosstalk and ground bounce.  

 

The correction algorithm was demonstrated on the SPLINTA design using a combination 

of behavioral level circuit simulations and MATLAB. Mismatch errors were intentionally 

introduced in some of the channels and simulated with a sine wave input. The corrupted 

data from the dual outputs are imported into the MATLAB calibration program which 

completely removes the effect of the mismatches. An FFT of the MATLAB output shows 

the noise floor is reduced from -80dB to its ideal value of -120dB in less than 200K 

conversions.  

 

SPLINTA is designed to be fabricated on a TSMC 0.25u CMOS process making this chip 

suitable to be merged with the digital processor eventually.. The chip is about 7000 um
2
 

and will be packaged in a 100-pin LQFP package. This ADC architecture combined with 

the digital correction algorithm offers a solution for a high speed, high resolution self-

calibrating ADC. 

 

6.1 Future Work 

 

 SPLINTA is designed to prove the concept of a split-interleaved structure. The next step 

is to interface SPLINTA with the hardware for the calibration algorithm currently being 

developed in parallel with this work. In lieu of the hardware, the calibration can be 

demonstrated the same way as in simulation where data from the dual ADC outputs can 

be imported to the MATLAB algorithm for correction. Eventually both SPLINTA and 

the calibration hardware must be evaluated together to fully demonstrate the self 
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calibrating ADC system.  Ultimately both the digital correction hardware and SPLINTA 

could be fabricated on a single chip using standard CMOS technology.  

 

Once the self-calibrating system is successfully demonstrated, the design needs to be 

optimized for a more efficient solution. While reuse of the cells is appropriate to verify 

the concept, a long term solution should include streamlining the ADC cores. A physical 

split in the analog area should be investigated to take advantage of the averaging benefit 

of the dual outputs. Also, some of the functions, such as the biasing, may be shared. 

Some of the features, such as the lower speed modes, are redundant or not even used. A 

comprehensive study of the design and the specific implementation for SPLINTA is 

necessary to optimize it for this application. 

 

Another issue with SPLINTA is the excessive number of pins used for the supplies and 

references. The goal for SPLINTA is to demonstrate the calibration and it is necessary to 

isolate as best as possible to minimize crosstalk and supply noise. However, in order to 

make this a viable marketable solution, some effort should be placed on minimizing the 

number of pins used for supplies and references. A more sophisticated embedded power 

management technique could be investigated to deliver power to the cells such as on- 

chip regulators for the supplies and reference. This issue will become increasing 

important if both the ADC and digital processor are integrated on the same chip. 

 

Successful evaluation of SPLINTA is the initial step towards a fully integrated, high 

speed, high resolution self calibrating ADC. 
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Appendix A 

 

Linearity Calibration 

 

Each ADC in the interleaved system includes the capability to be calibrated for linearity. 

Non-idealities in the linearity are caused by bit errors which are the result of mismatches 

in the capacitor DAC arrays. One of the advantages of this type of architecture is that 

adjustments can be made relatively easily and inexpensively by digitally switching in 

small values of capacitances to compensate for those mismatches.  The SPLINTA ADCs 

can be configured to program these correction values through the DOUTA data lines. 

 

The algorithm is based on the assumption that the ADC digital output is always all zeros 

at negative full scale and always all ones at positive full scale and therefore the overall 

gain of the ADC is inherently perfect. This assumption is true because of the way in 

which the charge redistribution capacitor DAC is designed (sec 3.1.4.1). If any bit errors 

exist it will cause problems for the integral linearity (INL), not the gain, and they must be 

corrected in such a way that the overall gain is maintained. The gain can be preserved if, 

for each individual bit error, the correction is distributed so that there is no net change. In 

other words, for each bit error measured, -1/2*ERROR is assigned to the bit under test 

and +1/2*ERROR is binarily distributed to the lower bits [A1, A2].  

 

For example, if an INL test showed a +48 LSB error at the code 32768 (2
15
=MSB), then 

the bit error at the MSB=48LSBs. To correct for this, the error is distributed as follows: 

MSB Correction = -24LSB; BIT 2 = +12LSB; BIT 3 = +6; BIT 4 = +3; etc.  

 

Clearly, errors in the lower bits will affect the higher bit measurements and need to be 

accounted for when determining the correction factors. Also, since the corrections need to 

be distributed as described above, superposition is be used to determine the final 

corrections.  
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The basic flow for the calibration procedure is summarized below, followed by a ‘user’s 

guide’ detailing a step by step procedure to measure, calculate and program the 

corrections.  

 

Calibration Summary 

1. Select ADC to calibrate 

2. Measure bit errors  

3. Determine actual bit error corrections 

4. Determine codes for each location 

5. Program each location 

6. Retest INL 

 

1. Select ADC to Calibrate 

Each converter is calibrated individually and is done through the A channel.  

The ADC to be calibrated can be selected by setting the SELA bus appropriately. Initially 

the ADC should be in the normal mode, both TEST pins set low. 

 

2. Measure Bit Errors 

The bit errors can be determined by measuring the INL of the ADC and recording any 

errors seen at the appropriate codes. The ADC has two redundancy bits between bits 7 

and 8, (7x), and 12 and 13, (12x). Because of these extra bits, the actual bit locations for 

the top 7 bits are offset by 256+8. For example, the location for the MSB is 

2
15
+256+8=33032.  For bits 7x -12, the codes are offset by 8 and bits 12x to 16 are not 

offset at all. The correction for the bottom eight bits are distributed over three locations 

based on the two measurements at locations 520 and 32. The adjusted codes values for 

the bit locations are listed in Table A1.  
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N BIT Error Locations CODE Measured Bit Error

1 1(MSB) 33032 BEmeas1

2 2 16648 BEmeas2

3 3 8456 BEmeas3

4 4 4360 BEmeas4

5 5 2304 BEmeas5

6 6 1288 BEmeas6

7 7 776 BEmeas7

8 8-12 520 BEmeas8

9 13-16(LSB) 32 BEmeas9

 

 

 

3. Determine Actual Bit Errors 

The errors from the lower bits will affect the higher bits and can be either corrected for 

individually or subtracted out of the higher bits to determine the actual errors. The 

individual errors can be determined by successively subtracting out the lower bit errors 

from the higher bit errors. For example, starting with the lowest bits, the error at location 

32 is subtracted out from the error at location 520 to get the actual error of bits 8-12. 

Then the sum of the errors at 520 and 32 is subtracted from the measured value at 776 to 

get the actual value at bit 7. The sum of errors at 776, 520 and 32, is subtracted from the 

error at 1288, and so on.  The corrections for each bit can be calculated by equation A1. 

99

8

)1( 1:8

measact

n

nactmeasnactn

BEBE

nBEBEBE

=

=−= ∑ +

                                           (A1) 

 

4. Determine Codes for Each Location 

Once all the adjusted errors are known, the correction codes for each of the nine locations 

are calculated using Eq A2. 

 

128×= actnn BECorrection                                                                   (A2) 

TABLE A1. Bit Codes for Calibration 
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Superposition is necessary to calculate the final correction factors because half of each bit 

correction is spread over the lower bits. The calculations for the top 7 capacitor locations 

are as follows: 

 

( )

( )
2/77

2/6212/7

2/212/3

2/12/2

2/1

7

3

2

1

CAPxCAP

CAPCAPCAPCorrectionCAP

CAPCAPCorrectionCAP

CAPCorrectionCAP

CorrectionCAP

−=

++−−=
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•

•

+−−=

−−=

−=

L

               (A3) 

 

The residual error in CAP7x is distributed to the lower bits and since there are only three 

correction locations for the lower bits, they are calculated as follows: 

 

8/12/2

2/82/1

2/72/8

9

9

8

CcBECc

CAPCorrectionCc

xCAPCorrectionCAP

meas −−=

−−=

−−=

                                            (A4) 

The correction code is a 12 bit signed code. The 12
th
 bit is used for the sign; negative 

numbers need 4096 added to them to obtain the programmed correction code. For 

example, -320 is programmed as 4096 – 320 = 3776. 

 

5. Program Each Location 

Each ADC has its own programmable memory. The mapping is shown in table A2.   
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ROM ADDRESS  LOCATION NAME
3 CAP1 (MSB)

4 CAP2

5 CAP3

6 CAP4

7 CAP5

8 CAP6

9 CAP7

10 CAP7x

11 CAP8

12 Cc1

13 Cc2  

 

 

 

Some of the pins are reassigned in this mode and used as the address pins: A[3] = 

PWRDDN, A[2]=BYTE, A[1]=WARP, A[0]=IMPULSE.  Digital outputs are bi-

directional and used to program data to ROM.  The calibration mode signals are 

sequenced as shown below to program the corrections into memory: 

a. TEST[1:0]=11 

b. CSB=0 

c. RDB=1 

d. A[3:0]=ROM address to correct bit Table A2. 

e. DA[11:0] = Correction code 

f. CNVST 1>0 to Load 

g. RDB = 0 to read code back (optional) 

 

a. The test pins need to both be set high to disable the normal mode enabling the 

ROM mode. The selection lines for Channel A will determine which ADC will be 

programmed. 

b. The chip select line CSB is set low only on the ADC under test so that only it’s 

memory gets programmed. 

c. The read pin is set high to enable the ‘write’ mode through the data output pins. 

TABLE A2. ROM Address for CAP Adjustments 
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d. The correct location is selected through the reassigned address pins: A[3] = 

PWRDDN, A[2]=BYTE, A[1]=WARP, A[0]=IMPULSE.   

e. The correction code is a 12 bit signed code.  

f. The CSB line is brought low to apply the code. 

g. If desired, the RDB line can be brought back low to read back the programmed 

code from the A channel data output pins. 

 

6. Retest INL 

Once all the coefficients are applied, the INL should be rechecked. Some adjustments, 

particularly to the lower bits, may be necessary. 

 

  

 

[A1]  H-S Lee, D. A. Hodges, P. R. Gray, “A Self-Calibrating 15 Bit CMOS A/D 

Converter,” IEEE Journal of Solid-State Circuits, Volume SC-19, No. 6, Dec. 1984, pp. 

813-819. 

 

[A2] AD7621 Design Team, “AD7621 Digital Design Review”, Unpublished Design 

Review Presentation, Analog Devices Internal, Jan 2003.
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Appendix B 

 

Evaluation 

 

The schematic diagram for the SPLINTA evaluation is shown in figure B1. This diagram 

is based on the circuit shown in the AD7621 data sheet [6] which should be referenced 

for more details and suggestions for component types. 

 

 

 

It is likely that a linearity calibration on each ADC will be necessary before the 

evaluation (Appendix A). This needs only to be done once. The calibration coefficients 

can be stored in a test routine and applied each time the part is tested. It is also likely that 

the corrections will be the same or very close for each ADC. The capacitor values should 

not vary a great deal between ADCs in the array. 

 

Figure B1 
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The performance of SPLINTA as a stand alone ADC depends on the quality of the 

physical layout and the matching between the channels. The hardware for the calibration 

algorithm (sec.2.3.2) should be used to fully evaluate the performance of system which is 

expected to be equivalent to the performance reported in the AD7621 data sheet. 

 

In the absence of this hardware, data from the dual outputs of SPLINTA can be imported 

into the MATLAB program containing the correction algorithm. The output from the 

MATLAB program can be used to evaluate the performance. 
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APPENDIX C 

 

MATLAB Programs 

 

Sim_data_read.m 

% Program to read in A and B channel Simulation Data then sort  
%  
% R. Croughwell 3-20-07 
clear all 
close all 
 
 
% % % % % Read in Simulation Data - edit with file name % % % 
 
AChan = dlmread('adata_1024_all_rand4.dat');  
BChan = dlmread('bdata_1024_all_rand4.dat'); 
 
% % % % % Edit according to simulation data % % % % 
 
npts = 2^10;           % Number of valid data points used for FFT 
ncyc = 12;             % Number of cycles in npts 
 
fs=12E+6;                   % Sampling Frequency 
conclk=12e6;                % ADC sampling clock 
fsim=conclk*ncyc/npts;      % Input Frequency 
Vin_amp=2;                  % Vin Amplitude 
 
% % % % % % % % % % % % % % % % % % % % % % % % % %  
 
nrep = (2^9/npts)*1000; % % % % Data is repeated nrept times -- algorithm needs 
>300k point for converg  set for 512k % %  
 
% Set up variables for correction algorithm 
intlRatio=4;                % Ratio of ADC Interleaving (x:1) 
M=2*intlRatio+1;            % Number of ADCs required for interleaving 
nsamples=1*npts; 
%              
 
fd1=fsim;                       % Fundamental Frequency 1 
fd2=fd1;                        % Fundamental Frequency 2 
 
t=(0:nsamples-1)./fs;           % % % % sample time vector to calculate ideal 
sine wave % % % 
td=-358.5e-9;                   % % % % time delay adjustment for ideal sine 
wave      % % % 
gfact = 1.62e-4;                % % % % gain adjust for ideal sine wave                
% % % 
BigVin = 2*(1+gfact)*sin(2*pi*fsim*(t+td));  % % % % Generate array with ideal 
sine wave - comment out if using sim data %  
 
BChansize = size(BChan); 
AChansize = size(AChan); 
Ignor = AChansize(1)-(npts-1);  % Initial sim data points ignored for proper 
FFT calculation 
 



 87 

% BigVin = AChan(Ignor:AChansize,2);  % % Load first npts of Input samples 
collected by the datalog in simulation %  
                                      % % Comment out if using ideal data 
 
% % Load first npts of B channel ouput and tag % % 
BigBDout=BChan(Ignor:BChansize,4); 
BigBpick=BChan(Ignor:BChansize,1)+1; 
BigBVout = (2*BigBDout*2.048/2^16)-2.048; % % Calculate analog output % %     
 
% % Load first npts of A channel ouput and tag % % 
BigADout=AChan(Ignor:AChansize,4); 
BigApick=AChan(Ignor:AChansize,1)+1; 
BigAVout = (2*BigADout*2.048/2^16)-2.048; % % Calculate analog output % % 
 
 
lngVout=nrep*nsamples; % % % % number of data points  
 
for xi = 1:nrep 
    repindex = xi * nsamples; 
    BigVin(repindex+1:repindex+nsamples) = BigVin(1:nsamples); 
    BigBDout(repindex+1:repindex+nsamples) = BigBDout(1:nsamples); 
    BigBpick(repindex+1:repindex+nsamples) =BigBpick(1:nsamples); 
    BigBVout(repindex+1:repindex+nsamples) =BigBVout(1:nsamples); 
      
    BigADout(repindex+1:repindex+nsamples) = BigADout(1:nsamples); 
    BigApick(repindex+1:repindex+nsamples) =BigApick(1:nsamples); 
    BigAVout(repindex+1:repindex+nsamples) =BigAVout(1:nsamples); 
end 
 
Vin = BigVin; 
BDout=BigBDout; 
Bpick=BigBpick; 
Bpick=Bpick'; 
BVout = BigBVout; 
 
ADout=BigADout; 
Apick=BigApick; 
Apick=Apick'; 
AVout = BigAVout; 
nsamples=lngVout; 
Vout(:,1) = AVout; 
Vout(:,2) = BVout; 
 
Vout = Vout'; 
Voutadc = (BigBVout+BigBVout)/2; 
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Multi_ADC_cor06.m 

%************************************************************************** 
% Iterative Correction Algorithm for the Multi Interleaved ADC Vers. 06 
% 2006.11.06 
% 
% This program builds up the deltaX values for finding the gain, offset 
% and aperture delay, errors in the Multi Interleaved, Split ADC  
% architecture.  A coefficient matrix is also built for testing and 
% debugging purposes. 
%  
% This program also computes the RMS Error between the Ideal and Corrected 
% output. 
% 
% For use with the multi_ADC_setup06. 
% 
%************************************************************************** 
 
 
 
% Estimation Loop Parameters 
% mx is the step size in the Gain and Offset error estimation 
mxrecip=128; 
mx=1/mxrecip;   %Step size of approaching the Estimated Error 
 
myrecip=64; 
my=1/myrecip; 
 
Ncoef=128;       % Number of conversions used to build up matrices 
jacobLeng=floor(nsamples/Ncoef);    %Number of main loops 
 
 
%************************************************************************** 
%************************************************************************** 
%************************************************************************** 
% Note to Rosa: 
 
% Vout Setup 
% This code is for combining two separate Raw (uncorrected) Vout vectors 
% into one (1) Raw Vout vector.  Namely, this is for taking a VoutA and a 
% VoutB and combining them into a single variable that this program uses. 
% The setup program, multi_ADC_setup06, outputs one Vout variable with two 
% rows, A and B.   
% Uncomment this code to use it 
 
% Vout = [VoutA; VoutB]; 
 
% Initialize all Matrices to make room in Memory and save time 
VoutA=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutB=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutBad=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCorA=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCorB=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCor=zeros(1,(jacobLeng-1)*Ncoef+1); 
 
%EATPD=[t_apd1;t_apd2;t_apd3;t_apd4;t_apd5].*10E6;   % Real Aperture 
coefficients 
 
Eg_est=zeros(M,1);         % Initialize all Error Estimates to zero 
Eg_eps=zeros(M,1); 
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Eos_est=zeros(M,1); 
Eos_eps=zeros(M,1); 
Etpd_est=zeros(M,1);       % Initialize all Error Estimates to zero 
Etpd_eps=zeros(M,1);       % Initialize Error in the Estimate to zero 
 
jacobLeng=floor(nsamples/Ncoef); 
RMS_Convergence=zeros(1,jacobLeng-1); 
tempRMS_0=zeros(1,Ncoef-2); 
tempRMS=zeros(1,Ncoef); 
j=1; 
% Initialize the coefficients and bins matrices to zero 
Eos_coef=zeros(Ncoef,M);    % Initialize Offset Error Coefficients matrix 
Eg_coef=zeros(Ncoef,M);     % Initialize Gain Error Coefficients matrix 
Etpd_coef=zeros(Ncoef,M); 
Eos_bins=zeros(1,M); 
Eg_bins=zeros(1,M); 
Etpd_bins=zeros(1,M); 
deltaX=zeros(Ncoef+3,1); 
 
%Initialize the Plus or Minus Matrix with the data from the A & B Tags 
pmmat=zeros(M,lngVout); 
for (i=1:lngVout) 
    pmmat(Apick(i),i)=-1; 
    pmmat(Bpick(i),i)=1; 
end 
 
% Fill up the first two samples of the uncorrected vectors using Vout 
VoutA(1:3)=[Vout(1,1) Vout(1,2), Vout(1,3)]; 
VoutB(1:3)=[Vout(2,1) Vout(2,2), Vout(2,3)]; 
VoutBad(1:3)=(VoutA(1:3)+VoutB(1:3))/2; 
deltaX(1:2)=VoutB(1:2)-VoutA(1:2); 
 
for (i=3:Ncoef) 
    k=(Ncoef*(j-1)+i);      % Generate the proper index for the Apick and 
                            % Bpick matrices to keep track of ADC A and  
                            % ADC B 
    VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1));    % Correct for G and OS 
    VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1))); 
    VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1)); 
    VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1))); 
     
    VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2));    % Correct for G and OS 
    VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2))); 
    VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2)); 
    VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2))); 
    %VoutA(k+1)=Vout(Apick(k+1),k+1); 
    %VoutB(k+1)=Vout(Bpick(k+1),k+1); 
    VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2; 
    %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2;    % Get Average Delta Conversion 
    % deltaConv is not the same as deltaX  deltaConv is the derivative 
    % estimate.  deltaX is the difference between the A and B outputs 
    deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+... 
        (VoutBad(k-2)-VoutBad(k+2))*(1/12);      % Get Average Delta Conversion 
    VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv; 
    VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv; 
    VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2;     % Get Average Corrected Output 
    deltaX(i)=(VoutCorB(k)-VoutCorA(k));        % Get difference between 
                                                % corrected outputs 
     
    Eos_coef(i,:)=pmmat(:,k)'; 
    Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)'; 
    Etpd_coef(i,:)=deltaConv*pmmat(:,k)';       % Collect Coefficients 
    Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins; 
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    Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins; 
    Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins; 
    tempRMS_0(i)=VoutCorB(k)-VoutCorA(k); 
end 
     
E_coef=[Eos_coef Eg_coef Etpd_coef]; 
E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];... 
    [zeros(1,2*M),ones(1,M)]]; 
 
% Calculate and track the Error in the Estimate 
Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx; 
Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx; 
Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx; 
     
Eos_eps_track(:,j)=Eos_eps; 
Eg_eps_track(:,j)=Eg_eps; 
Etpd_eps_track(:,j)=Etpd_eps; 
 
% Calculate and track the Estimate 
Eos_est=my.*Eos_eps+Eos_est; 
Eg_est=my.*Eg_eps+Eg_est; 
Etpd_est=my.*Etpd_eps+Etpd_est; 
 
Eos_est_track(:,j)=Eos_est; 
Eg_est_track(:,j)=Eg_est; 
Etpd_est_track(:,j)=Etpd_est; 
 
RMS_Convergence(1)=sum(tempRMS_0.^2)/length(tempRMS_0); 
 
jacobLeng=floor(nsamples/Ncoef); 
 
for (j=2:jacobLeng-1) 
     
    % Initialize the coefficients and bins matrices to zero 
    Eos_coef=zeros(Ncoef,M);    % Initialize Offset Error Coefficients matrix 
    Eg_coef=zeros(Ncoef,M);     % Initialize Gain Error Coefficients matrix 
    Etpd_coef=zeros(Ncoef,M); 
    Eos_bins=zeros(1,M); 
    Eg_bins=zeros(1,M); 
    Etpd_bins=zeros(1,M); 
    deltaX=zeros(Ncoef+3,1); 
 
    for (i=1:Ncoef) 
        k=(Ncoef*(j-1)+i);      % Generate the proper index for the Apick and 
                                % Bpick matrices to keep track of ADC A and  
                                % ADC B 
        VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1));    % Correct for G and OS 
        VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1))); 
        VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1)); 
        VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1))); 
        VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2));    % Correct for G and OS 
        VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2))); 
        VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2)); 
        VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2))); 
        %VoutA(k+1)=Vout(Apick(k+1),k+1); 
        %VoutB(k+1)=Vout(Bpick(k+1),k+1); 
        VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2; 
        %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2;    % Get Average Delta 
Conversion 
        deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+... 
        (VoutBad(k-2)-VoutBad(k+2))*(1/12);      % Get Average Delta Conversion 
        VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv; 
        VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv; 
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        VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2;     % Get Average Corrected 
Output 
        deltaX(i)=(VoutCorB(k)-VoutCorA(k));        % Get difference between 
                                                    % corrected outputs 
     
        Eos_coef(i,:)=pmmat(:,k)'; 
        Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)'; 
        Etpd_coef(i,:)=deltaConv*pmmat(:,k)';       % Collect Coefficients 
        Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins; 
        Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins; 
        Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins; 
         
        tempRMS(i)=VoutCorB(k)-VoutCorA(k); %Get difference for RMS Convergence 
    end 
     
    E_coef=[Eos_coef Eg_coef Etpd_coef]; 
    E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; 
[zeros(1,M),ones(1,M),zeros(1,M)];... 
        [zeros(1,2*M),ones(1,M)]];    % Coefficient matrix with averaging 
 
    % Calculate and track the Error in the Estimate 
    Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx; 
    Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx; 
    Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx; 
     
    Eos_eps_track(:,j)=Eos_eps; 
    Eg_eps_track(:,j)=Eg_eps; 
    Etpd_eps_track(:,j)=Etpd_eps; 
 
    % Calculate and track the Estimate 
    Eos_est=my.*Eos_eps+Eos_est; 
    Eg_est=my.*Eg_eps+Eg_est; 
    Etpd_est=my.*Etpd_eps+Etpd_est; 
 
    Eos_est_track(:,j)=Eos_est; 
    Eg_est_track(:,j)=Eg_est; 
    Etpd_est_track(:,j)=Etpd_est; 
     
    % Compute RMS Error 
    RMS_Convergence(j)=sum(tempRMS.^2)/Ncoef; 
end 
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Sim_data_plot.m 

%************************************************************************** 
% Iterative Correction Algorithm for the Multi Interleaved ADC Vers. 06 
% 2006.11.06 
% 
% This program builds up the deltaX values for finding the gain, offset 
% and aperture delay, errors in the Multi Interleaved, Split ADC  
% architecture.  A coefficient matrix is also built for testing and 
% debugging purposes. 
%  
% This program also computes the RMS Error between the Ideal and Corrected 
% output. 
% 
% For use with the multi_ADC_setup06. 
% 
%************************************************************************** 
 
 
 
% Estimation Loop Parameters 
% mx is the step size in the Gain and Offset error estimation 
mxrecip=128; 
mx=1/mxrecip;   %Step size of approaching the Estimated Error 
 
myrecip=64; 
my=1/myrecip; 
 
Ncoef=128;       % Number of conversions used to build up matrices 
jacobLeng=floor(nsamples/Ncoef);    %Number of main loops 
 
 
%************************************************************************** 
%************************************************************************** 
%************************************************************************** 
% Note to Rosa: 
 
% Vout Setup 
% This code is for combining two separate Raw (uncorrected) Vout vectors 
% into one (1) Raw Vout vector.  Namely, this is for taking a VoutA and a 
% VoutB and combining them into a single variable that this program uses. 
% The setup program, multi_ADC_setup06, outputs one Vout variable with two 
% rows, A and B.   
% Uncomment this code to use it 
 
% Vout = [VoutA; VoutB]; 
 
% Initialize all Matrices to make room in Memory and save time 
VoutA=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutB=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutBad=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCorA=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCorB=zeros(1,(jacobLeng-1)*Ncoef+1); 
VoutCor=zeros(1,(jacobLeng-1)*Ncoef+1); 
 
%EATPD=[t_apd1;t_apd2;t_apd3;t_apd4;t_apd5].*10E6;   % Real Aperture 
coefficients 
 
Eg_est=zeros(M,1);         % Initialize all Error Estimates to zero 
Eg_eps=zeros(M,1); 
Eos_est=zeros(M,1); 
Eos_eps=zeros(M,1); 
Etpd_est=zeros(M,1);       % Initialize all Error Estimates to zero 
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Etpd_eps=zeros(M,1);       % Initialize Error in the Estimate to zero 
 
jacobLeng=floor(nsamples/Ncoef); 
RMS_Convergence=zeros(1,jacobLeng-1); 
tempRMS_0=zeros(1,Ncoef-2); 
tempRMS=zeros(1,Ncoef); 
j=1; 
% Initialize the coefficients and bins matrices to zero 
Eos_coef=zeros(Ncoef,M);    % Initialize Offset Error Coefficients matrix 
Eg_coef=zeros(Ncoef,M);     % Initialize Gain Error Coefficients matrix 
Etpd_coef=zeros(Ncoef,M); 
Eos_bins=zeros(1,M); 
Eg_bins=zeros(1,M); 
Etpd_bins=zeros(1,M); 
deltaX=zeros(Ncoef+3,1); 
 
%Initialize the Plus or Minus Matrix with the data from the A & B Tags 
pmmat=zeros(M,lngVout); 
for (i=1:lngVout) 
    pmmat(Apick(i),i)=-1; 
    pmmat(Bpick(i),i)=1; 
end 
 
% Fill up the first two samples of the uncorrected vectors using Vout 
VoutA(1:3)=[Vout(1,1) Vout(1,2), Vout(1,3)]; 
VoutB(1:3)=[Vout(2,1) Vout(2,2), Vout(2,3)]; 
VoutBad(1:3)=(VoutA(1:3)+VoutB(1:3))/2; 
deltaX(1:2)=VoutB(1:2)-VoutA(1:2); 
 
for (i=3:Ncoef) 
    k=(Ncoef*(j-1)+i);      % Generate the proper index for the Apick and 
                            % Bpick matrices to keep track of ADC A and  
                            % ADC B 
    VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1));    % Correct for G and OS 
    VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1))); 
    VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1)); 
    VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1))); 
     
    VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2));    % Correct for G and OS 
    VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2))); 
    VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2)); 
    VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2))); 
    %VoutA(k+1)=Vout(Apick(k+1),k+1); 
    %VoutB(k+1)=Vout(Bpick(k+1),k+1); 
    VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2; 
    %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2;    % Get Average Delta Conversion 
    % deltaConv is not the same as deltaX  deltaConv is the derivative 
    % estimate.  deltaX is the difference between the A and B outputs 
    deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+... 
        (VoutBad(k-2)-VoutBad(k+2))*(1/12);      % Get Average Delta Conversion 
    VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv; 
    VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv; 
    VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2;     % Get Average Corrected Output 
    deltaX(i)=(VoutCorB(k)-VoutCorA(k));        % Get difference between 
                                                % corrected outputs 
     
    Eos_coef(i,:)=pmmat(:,k)'; 
    Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)'; 
    Etpd_coef(i,:)=deltaConv*pmmat(:,k)';       % Collect Coefficients 
    Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins; 
    Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins; 
    Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins; 
    tempRMS_0(i)=VoutCorB(k)-VoutCorA(k); 
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end 
     
E_coef=[Eos_coef Eg_coef Etpd_coef]; 
E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; [zeros(1,M),ones(1,M),zeros(1,M)];... 
    [zeros(1,2*M),ones(1,M)]]; 
 
% Calculate and track the Error in the Estimate 
Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx; 
Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx; 
Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx; 
     
Eos_eps_track(:,j)=Eos_eps; 
Eg_eps_track(:,j)=Eg_eps; 
Etpd_eps_track(:,j)=Etpd_eps; 
 
% Calculate and track the Estimate 
Eos_est=my.*Eos_eps+Eos_est; 
Eg_est=my.*Eg_eps+Eg_est; 
Etpd_est=my.*Etpd_eps+Etpd_est; 
 
Eos_est_track(:,j)=Eos_est; 
Eg_est_track(:,j)=Eg_est; 
Etpd_est_track(:,j)=Etpd_est; 
 
RMS_Convergence(1)=sum(tempRMS_0.^2)/length(tempRMS_0); 
 
jacobLeng=floor(nsamples/Ncoef); 
 
for (j=2:jacobLeng-1) 
     
    % Initialize the coefficients and bins matrices to zero 
    Eos_coef=zeros(Ncoef,M);    % Initialize Offset Error Coefficients matrix 
    Eg_coef=zeros(Ncoef,M);     % Initialize Gain Error Coefficients matrix 
    Etpd_coef=zeros(Ncoef,M); 
    Eos_bins=zeros(1,M); 
    Eg_bins=zeros(1,M); 
    Etpd_bins=zeros(1,M); 
    deltaX=zeros(Ncoef+3,1); 
 
    for (i=1:Ncoef) 
        k=(Ncoef*(j-1)+i);      % Generate the proper index for the Apick and 
                                % Bpick matrices to keep track of ADC A and  
                                % ADC B 
        VoutA(k+1)=Vout(1,k+1)-Eos_est(Apick(k+1));    % Correct for G and OS 
        VoutA(k+1)=VoutA(k+1)/(1+Eg_est(Apick(k+1))); 
        VoutB(k+1)=Vout(2,k+1)-Eos_est(Bpick(k+1)); 
        VoutB(k+1)=VoutB(k+1)/(1+Eg_est(Bpick(k+1))); 
        VoutA(k+2)=Vout(1,k+2)-Eos_est(Apick(k+2));    % Correct for G and OS 
        VoutA(k+2)=VoutA(k+2)/(1+Eg_est(Apick(k+2))); 
        VoutB(k+2)=Vout(2,k+2)-Eos_est(Bpick(k+2)); 
        VoutB(k+2)=VoutB(k+2)/(1+Eg_est(Bpick(k+2))); 
        %VoutA(k+1)=Vout(Apick(k+1),k+1); 
        %VoutB(k+1)=Vout(Bpick(k+1),k+1); 
        VoutBad(k+1:k+2)=(VoutA(k+1:k+2)+VoutB(k+1:k+2))/2; 
        %deltaConv=(VoutBad(k+1)-VoutBad(k-1))/2;    % Get Average Delta 
Conversion 
        deltaConv=(VoutBad(k+1)-VoutBad(k-1))*(2/3)+... 
        (VoutBad(k-2)-VoutBad(k+2))*(1/12);      % Get Average Delta Conversion 
        VoutCorA(k)=VoutA(k)-Etpd_est(Apick(k))*deltaConv; 
        VoutCorB(k)=VoutB(k)-Etpd_est(Bpick(k))*deltaConv; 
        VoutCor(k)=(VoutCorA(k)+VoutCorB(k))/2;     % Get Average Corrected 
Output 
        deltaX(i)=(VoutCorB(k)-VoutCorA(k));        % Get difference between 
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                                                    % corrected outputs 
     
        Eos_coef(i,:)=pmmat(:,k)'; 
        Eg_coef(i,:)=VoutCor(k)*pmmat(:,k)'; 
        Etpd_coef(i,:)=deltaConv*pmmat(:,k)';       % Collect Coefficients 
        Eos_bins=(sign(Eos_coef(i,:))*deltaX(i))+Eos_bins; 
        Eg_bins=(sign(Eg_coef(i,:))*deltaX(i))+Eg_bins; 
        Etpd_bins=(sign(Etpd_coef(i,:))*deltaX(i))+Etpd_bins; 
         
        tempRMS(i)=VoutCorB(k)-VoutCorA(k); %Get difference for RMS Convergence 
    end 
     
    E_coef=[Eos_coef Eg_coef Etpd_coef]; 
    E_coef=[E_coef; [ones(1,M),zeros(1,2*M)]; 
[zeros(1,M),ones(1,M),zeros(1,M)];... 
        [zeros(1,2*M),ones(1,M)]];    % Coefficient matrix with averaging 
 
    % Calculate and track the Error in the Estimate 
    Eos_eps=(1-mx)*Eos_eps+Eos_bins'*mx; 
    Eg_eps=(1-mx)*Eg_eps+Eg_bins'*mx; 
    Etpd_eps=(1-mx)*Etpd_eps+Etpd_bins'*mx; 
     
    Eos_eps_track(:,j)=Eos_eps; 
    Eg_eps_track(:,j)=Eg_eps; 
    Etpd_eps_track(:,j)=Etpd_eps; 
 
    % Calculate and track the Estimate 
    Eos_est=my.*Eos_eps+Eos_est; 
    Eg_est=my.*Eg_eps+Eg_est; 
    Etpd_est=my.*Etpd_eps+Etpd_est; 
 
    Eos_est_track(:,j)=Eos_est; 
    Eg_est_track(:,j)=Eg_est; 
    Etpd_est_track(:,j)=Etpd_est; 
     
    % Compute RMS Error 
    RMS_Convergence(j)=sum(tempRMS.^2)/Ncoef; 
end 
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Sim_data_fftplot.m 

% Program to read in Simulation Data then plot in frequency Domain 
%  
% R. Croughwell 4-11-07 
%clear all 
%close all 
% % % *****Enter filename and data ******* % % % 
Achan = dlmread('adata_1024_none_rand4.dat'); 
BChan = dlmread('bdata_1024_none_rand4.dat'); 
Achansize = size(Achan); 
BChansize = size(BChan); 
npts = 2^10; 
ncyc = 12; 
conclk=12e6; 
% % *********************************** % % 
fsim=conclk*ncyc/npts; 
ignor = Achansize(1)-(npts-1); 
Vin = Achan(ignor:Achansize,2); 
ADout=Achan(ignor:Achansize,4); 
AVout = (2*ADout*2.048/2^16)-2.048; 
 
BDout=BChan(ignor:Achansize,4); 
BVout = (2*BDout*2.048/2^16)-2.048; 
 
% VoutAve=(AVout+BVout)/2; 
VoutAve=(AVout)/1; 
T = ncyc/fsim;                    % Sampling frequency 
Fs = 1/T;                     % Sample time 
L = 1024;                     % Length of signal 
t = 1e6*(0:L-1)*(T/L);                % Time vector 
 
 
Yout = fft(VoutAve,npts); 
magYout = abs(Yout)+ 1e-4;     % Sinusoids plus noise 
Youtdb = 20*log10(magYout); 
Youtdb = Youtdb - max(Youtdb); 
%subplot(2,1,2); 
f = 1e-3*conclk*linspace(0,1,npts); 
plot(f,Youtdb(1:(npts)),'-k'); grid on; 
 
 
%title('Single-Sided Amplitude Spectrum of A Channel Output') 
xlabel('Frequency (kHz)') 
ylabel('Magnitude (dB)') 
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Appendix D 

 

NSF Proposal 

Dr. John A. McNeill 

Worcester Polytechnic Institute 

 

Project Description 
 

Introduction 
 

This intent of the work described in this proposal is to continue development of a new 

class of self-calibrating analog-to-digital converters (ADCs). The new "Split ADC" 

architecture [D1] is specifically tailored to the constraints of advanced digital CMOS 

processing technology.  The capability of providing high resolution, self-calibrating 

ADCs at low cost fills a critical need in a wide range of emerging mixed-signal 

application areas.   

 

This proposal is organized as follows: Section 1 describes the motivation for developing 

the new ADC architecture, including application areas, performance requirements, and an 

overview of previous ADC architectures and self calibration techniques.   

 

Section 2 describes the P.I.'s previous work in developing the split ADC architecture, 

which has been proven by successful fabrication and test of a 16bit, 1MSample/s, cyclic 

ADC.  Although the cyclic is not a widely used type of ADC, it was chosen as a low-risk 

first step to investigate since only a single parameter need be estimated for self-

calibration.   

 

Section 3 describes the proposed work: extension of the architecture concept to more 

widely used types of ADCs: pipeline, successive approximation, and interleaved.  This is 

a higher-risk effort; in each case the self-calibration process is more complicated since 

many parameters must be estimated.  However, the higher risk is accompanied by a 

higher reward due to the large number of application areas that will benefit.  Section 4 

concludes the proposal by summarizing the benefits expected from completion of the 

proposed work.   

 

1  Motivation 
 

1.1   Applications 
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Scaling of CMOS integrated circuit (IC) technology into deep submicron (DSM) gate 

dimensions has enabled dramatic improvement in cost, performance, and levels of system 

integration.  Scaling is especially beneficial for digital processing; the cost per function in 

terms of die area and power has improved by approximately two orders of magnitude 

every decade since 1970 [D2].  For analog functions, scaling can be a mixed blessing: 

cost is improved due to reduced die area but analog performance is often degraded [D3].  

Despite the performance challenges, the cost advantages of integrating systems in DSM 

CMOS have motivated a wide variety of work in analog and mixed signal design.   

One example is the wide variety of new mixed signal integrated circuit applications that 

are enabled by the combination of DSM CMOS and integrated sensors.  A simplified 

version of an integrated sensor system is shown in Figure 1.  Although these functions 

may be realized on a "stand-alone" basis, it is increasingly likely that the entire functional 

block performs as a subsystem in a larger network.  In any case, the goal is to integrate 

the entire system on a single IC to exploit the cost and integration advantages of DSM 

CMOS.  At the input a sensor, specific to the physical system, translates the signal to 

analog form.   Although the sensor electronics may provide some simple signal 

conditioning (e.g. amplification), for many reasons it is advantageous to perform as much 

processing in the digital domain as possible.  Therefore, the function of the analog-to-

digital converter is to provide a digital representation of the analog signal for further 

processing (e.g. filtering, signal detection) and communication.   

 

Improvements in speed and accuracy of the ADC usually translate directly into improved 

system-level performance.  For example, in a CAT scan medical imaging application, 

improved ADC accuracy can provide the capability for maintaining image quality while 

reducing the X-ray dose received by the patient, or alternatively improving image quality 

at a given radiation dose. 

 

SENSOR 

ANALOG 
TO 

DIGITAL 
CONVERTER 

DIGITAL 
PROCESSING 

PHYSICAL 
SYSTEM 
 
BIOLOGICAL 
CHEMICAL 
MECHANICAL 
OPTICAL 
RADIOLOGICAL 
 

ANALOG DIGITAL 

INTEGRATED SYSTEM 

Figure D1.  Typical integrated sensor system. 

 

A brief survey of recent work on integrated sensor systems shows a wide variety of 

applications in areas such as: 

• Correlated sensor networks [D4] used to detect terrorism threats from chemical, 

biological, or nuclear weapons  
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• Pervasive sensing and actuation networks [D5] for use in monitoring and controlling 

mechanical and ecological systems 

• Monitoring for a wide range of environment toxins such as lead [D6], carbon 

monoxide  [D7], and industrial pollutants [D8] 

• Implantable sensors for monitoring biosignals [D9]  

• DNA detection [D10] for biological assay applications  

• Biosensing of electrochemical signals [D11] for molecular biology applications 

• Implanted sensing and actuating devices [D12] for assistive technology applications 

A common theme running through this diversity of applications is the requirement for a 

high resolution analog to digital conversion function.  The key contribution of the 

proposed work is that the ADC architecture that will be developed takes advantage of 

CMOS scaling to enable reduced size, power, and cost for integrated systems in all of 

these applications. 

 

The following sections provide an overview of present ADC technology and describe the 

difficulties with existing techniques that are overcome with the proposed architecture.1.2 

ADC overview 

 

As described in [D13, D14] ADCs can be broadly classified into Nyquist-rate and 

oversampling converters.  Since this proposal targets Nyquist-rate ADCs, the purpose of 

this section is to contrast the two types of converters, show the importance of Nyquist-

rate converters, and give an indication of the broad range of applications which will 

benefit from the performance improvement offered by the split ADC architecture. 

1.1.1 Oversampling ADCs 

Oversampling converters are well suited to submicron CMOS since oversampling allows 

complexity and performance demands to be moved into the digital domain.  The tradeoff 

relaxes requirements on precision in the analog domain circuitry, and recovers precision 

through extensive digital filtering.  The prevalent oversampling converter architecture is 

the Sigma-Delta [D13], which is widely used in high resolution applications such as 

audio.  However, oversampling ADCs show performance characteristics associated with 

the use of digital filtering that can be significant disadvantages in some applications: 

• There is significant latency (delay) in the output samples related to the length of the 
digital filter used, and 

• Depending on the response of the digital filter, there may not be a one-to-one 
correspondence between the output samples and a time-domain representation of the 

input signal. 

 

For signals which are continuous in time, or for which the information content exists 

entirely in the frequency domain, these characteristics are not disadvantageous.   
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1.1.2 Nyquist-Rate ADCs  

Although oversampling techniques are advantageous in some cases, there are also many 

applications for which oversampling techniques are unsuitable: 

• Applications involving signals which are discontinuous in time; for example, 
multiplexed sensor signals 

• Applications for which latency is critical; for example, signals inside closed loop 
control systems, in which delay leads to poor phase margin and instability 

• Applications in which signal information is contained in the time domain and a one-to-
one correspondence between input and output samples is required 

• Applications with high bandwidth signals for which large oversampling ratios are 
either impossible or impractical due to high power requirements for circuitry operating 

at the high oversampling speed. 

 

Each of these classes of applications is better served by Nyquist-rate converters, which 

provide the advantages of lower latency, one-to-one correspondence of input-output 

samples, and reduced requirement on sampling speed.  Within the class of Nyquist-rate 

ADCs, there are many different architectures available with the choice depending on the 

system-level tradeoffs of resolution, speed, and power.   

 

Three widely used types of Nyquist-rate ADCs which could benefit from application of 

the split ADC architecture are: 

 

• Interleaved (suitable for higher speed applications; targeted by this proposal) 

• Successive approximation (suitable for higher resolution applications) 

• Pipeline (compromise offering high speed and high resolution) 

 

A difficulty with design of Nyquist-rate converters is that until recently it has been 

difficult to take advantage of CMOS scaling by moving complexity into the digital 

domain; it has been necessary to maintain precise operation in the analog domain.  For 

the high resolution (>16 bit) applications targeted in this proposal, the inherent matching 

available in CMOS analog circuitry is insufficient and some form of calibration is 

necessary.  These issues are discussed further in the following section, which describes 

desired requirements for ADCs and calibration techniques in submicron CMOS. 

 

1.2   Desired Characteristics for ADCs in Submicron CMOS 
 

One-time factory calibration is common, but has the disadvantages of requiring expensive 

test time.  Additionally, since the calibration is fixed it cannot track variations due to 

environmental and aging factors.  For best utilization of the capabilities of submicron 

CMOS, the ADC should be self-calibrating.  Ideally the calibration procedure should 

meet the following three criteria: 
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• Deterministic: For short "time constant" of adaptation, the calibration algorithm 
should use deterministic (rather than statistical) techniques.  As will be shown in 

section 1.4.1, statistical techniques require excessively long adaptation times when 

applied to high resolution converters. 

• (All) Digital: No additional analog complexity should be required.  Analog 
techniques represent a nonoptimal use of submicron CMOS capabilities and should 

be used only when absolutely necessary.  If possible, all complexity should be moved 

to the digital domain to exploit the area, speed, and power advantages of submicron 

CMOS scaling. 

• Background: The calibration procedure should be transparent to normal operation.  
No special off-line calibration configuration should be required. 

 

1.3  Previous self-calibration techniques 
 

Table 1 summarizes the suitability of previous self-calibration techniques with regard to 

three criteria described in the previous section.  As can be seen from the table, no 

previous technique meets all three criteria.  The following three subsections provide a 

brief discussion of each criterion showing the difficulty of the problem addressed by the 

proposed work. 
 

[D15] 

Deterministic? 

(All) Digital? 

Background? 

[D16] [D17] [D18] [D19] [D20] [D21] [D22] [D23]

 
Table D1.  Summary of previous self-calibration techniques. 

1.3.1 Previous Digital Background Techniques 

Traditionally, the term "calibration" implies a process involving application of a standard 

input to the system being calibrated.  With this known input applied, system parameters 

are adjusted until the correct output is observed.  Since the desired correct output is 

known, adjustment of system parameters can proceed in deterministic fashion until the 

correct output is observed.  One of the main difficulties with background techniques is 

developing a calibration signal with an unknown input.  Previous all-digital background 

techniques [D15-D18] use statistical methods to develop a calibration signal in the 

presence of the unknown ADC input signal.  For example, in [D15] system parameters 

are varied in a pseudorandom (PR) fashion, essentially modulating the calibration 

information with a spread-spectrum pattern.  The desired calibration information can then 

be extracted by correlating the ADC output signal with the PR spreading pattern.  This 

decorrelates the unknown ADC input signal, leaving only the calibration information.   
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Figure D2.  Conversions required for calibration vs ADC resolution. 

 

A critical difficulty with statistical approaches for high resolution ADCs is that extracting 

calibration information to N-bit accuracy requires approximately 2
2N
 conversions. This 

can be seen in Figure 2. For ADCs of high speed and moderate resolution this is 

adequate; for example, the procedure in [D16] requires 2
24
 conversions and about 300ms 

for a 12b 75MS/s ADC.  However higher resolution converters have been reported as 

requiring excessively long calibration times of seconds or minutes [D17-D19].   

Since statistical techniques require of order 2
2N
 conversions, these methods do not fulfill 

the required characteristic of short calibration time.  In contrast, the "split ADC" 

architecture presented in [D1] enables a deterministic digital calibration procedure, 

operating continuously in the background, which as shown in Figure 2 requires only 

about 10,000 conversions to complete calibration.  Thus the split ADC allows self-

calibration of high resolution ADCs at time scales short enough to track out the effects of 

environmental variations such as temperature. 

1.3.2 Previous Deterministic Background Techniques 

Previous work to avoid the shortcomings of statistical techniques have involved added 

analog complexity.  One approach [D20] is queue-based, in which an additional sample-

and-hold  (S/H) stage, operated at a higher sampling rate, is used to insert a known signal 

for calibration.  When the inserted known input is converted, the ADC output is 

compared to the expected known value and a deterministic algorithm can be used to 

rapidly calibrate the ADC.  Another approach involves adding a slow-but-accurate ADC 

in parallel with the ADC being calibrated [D21].  The slow-but-accurate ADC provides 

an accurate value for a subset of the output values for the ADC being calibrated. 

Unfortunately, these techniques do not fulfill the required characteristic of minimizing 

analog complexity.  In each case the additional analog circuitry imposes die area and 

power penalties.   
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In contrast, the "split ADC" architecture requires no additional analog circuitry; the 

system complexity is pushed to the digital side.  This is the preferred tradeoff in 

submicron CMOS, and has a relatively slight impact on overall die area 

1.3.3 Previous Deterministic Digital Techniques  

Previous deterministic digital techniques [D22, D23] take the converter off-line to 

substitute a known signal for the input. This avoids the statistical problems associated 

with calibrating in the presence of an unknown input, and allows rapid determination of 

calibration parameters.   

 

Unfortunately, since the ADC is off-line during calibration, these methods do not fulfill 

the required characteristic of background operation.  As will be described in Section 2, 

the calibration process for the split ADC architecture operates entirely in the background. 

 

2 New "Split ADC" Architecture 
 

Subsection 2.1 describes the general idea of the split ADC architecture, independent of 

any specific type of ADC.  It is shown how the general idea fulfills the requirements of 

all-digital, deterministic, background self-calibration. 

 

2.1  General Split ADC Architecture 
 

The architecture is shown in Figure 3. The ADC is split into two channels, each 

converting the same input and producing individual output codes xA and xB.  The average 

of the two outputs is the ADC output code x.  The background calibration signal is 

developed from the difference ∆x between codes xA and xB and is completely transparent 

to converter operation in the output code signal path.  If both ADCs are correctly 

calibrated, the two outputs will agree and the difference ∆x will be zero.  In the presence 

of nonzero differences, the pattern of "disagreements" in ∆x can be examined in an error 

estimation process to adjust calibration parameters in each ADC, driving the difference 

and the ADC errors to zero.    
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Figure D3.  Split ADC Architecture. 

 

Comparison with statistical techniques shows the advantage of using the difference ∆x 

for the calibration signal.  For example, both [D15] and [D16] use pseudorandom (PR) 

sequences to decorrelate the calibration information from the unknown signal at the ADC 

input, thus requiring a large number of conversions.  In contrast, for the split ADC 

approach the difference operation removes the unknown ADC input signal from the 

calibration signal path.  Thus it is no decorrelation is necessary and the number of 

conversions required is greatly reduced, as was shown in Figure 2.  
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Figure D4.  Die Area, Speed, Power Consumption, Noise Considerations. 

 

Figure 4 shows that this technique has negligible impact on analog complexity and 

performance.  The die area of an ADC designed to meet a given specification is 

considered in simplified fashion as a gm block representing the area of active analog 

circuitry such as amplifiers; a C block representing the area of passive components such 
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as capacitors and switches, and a digital circuitry block.  It is assumed that bandwidth fT 

is proportional to gm/C; power P is proportional to gm; and noise σX is proportional 
to kT C  Proportionality constants b, p, and m are determined by the specific circuit 

design and are unchanged by the split, which merely scales the design by 1/2.  The 

equations in the figure show that power, bandwidth, and overall noise are unchanged.  

The only penalty is a slight increase in complexity of the digital block.  

 

2.2  Specific Implementation: Cyclic ADC 
 

As a first implementation of the split ADC concept, a cyclic (also called algorithmic) 

ADC was chosen for simplicity in both analog complexity and calibration [D1].  The 

analog circuitry required is simple, since the only critical analog block is a single gain 

stage.  The digital calibration is also relatively simple since the only parameter needed to 

calibrate ADC linearity is the gain of the analog stage [D1]. 

A simplified system block diagram is shown in Figure 5.  The analog portion of each 

cyclic ADC consists of a S/H, a 16-bit-linear gain block (nominal gains GA=GB=1.92), 

comparators, and a three-level DAC.  To achieve 16-bit linear operation, a two-stage op-

amp with gain-boosted cascoding of the first stage was used.  Fully differential 

techniques were used with a standard switched-capacitor implementation of the S/H, 

DAC, and gain stage.  The output of the analog subsystem is a three-level (–1/0/+1) 

decision for each cycle of the conversion process.  For each side of the split, digital 

outputs xA and xB are accumulated from the comparator decisions using a lookup table 

(L.U.T.) containing the cycle decision weights, which are calculated from the gain 

estimates ˆ G A  and 
ˆ G B .   
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Figure D5.  Cyclic ADC block diagram. 

 

The background calibration process, indicated by the thick gray line in Figure 5, operates 

continuously in the digital domain so that ˆ G A , 
ˆ G B  and their associated L.U.T.s are 

correct to within converter accuracy.  The process begins with ˆ ε A  and ˆ ε B , which are 
continuously updated zero-bias estimates of the error in the estimated gains ˆ G A  and 

ˆ G B . 

Estimates ˆ ε A  and ˆ ε B  are used in an LMS procedure to update ˆ G A  and ˆ G B ; as these are 
periodically updated, the decision weight L.U.T. is recalculated.  The LMS coefficient µ 

controls the time constant of the calibration adaptation and is subject to a tradeoff 

between accuracy and speed of adaptation.  The value of µ was chosen to give a time 

constant of approximately 2,000 conversions; convergence from typical initial error is 

completed within about 10,000 conversions. 

 

It should be noted that the split ADC concept alone is not sufficient for error estimation.  

Although accurate calibration does imply agreement in the output codes, it is not 

necessarily true that agreement implies accurate calibration.  Suppose that both A and B 

sides of the split have the same error and make the same comparator decisions.  Then 

their output codes would agree even though the ADC code would be incorrect, and the 

resulting ∆x=0 would provide no information to the error estimation process.  To ensure 

nonzero ∆x even if both ADCs have the same error, it is necessary to force the two sides 

to take different decision paths to the final result of their conversions.  Variation of the 
decision paths is achieved using the multiple residue mode cyclic amplifier [D1] which 
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combines aspects of the dual residue approach used in [D16] and the 1.5 bit/stage 

amplifier in [D22].   

 

As shown in Figure 5, estimation of ˆ ε A  and ˆ ε B  requires coefficients SDKA and SDKB, 
which are accumulated for each conversion using the decisions and an error coefficient 

L.U.T.  In principle, εA and εB could be estimated by solving a 2x2 matrix equation using 
SDKA and SDKB values from only two conversions.  In practice, to simplify digital 

hardware and average out the effects of random noise in ∆x, an iterative procedure is 

used to develop ˆ ε A  and ˆ ε B  over several conversions. An additional benefit of 
manipulating the different residue modes should also be noted: coefficients SDKA, 

SDKB, and the ∆x signal are modulated with sufficient activity that a "busy" ADC input 

signal is not required to extract calibration information.   

 

     

  

                       Figure D6.  INL Plots Figure 7.  Die Photo 

 

 

Figure 6 shows measured INL errors with and without calibration. Disabling calibration 

and operating with the default initial value L.U.T.s (calculated from the nominal gain of 

1.92) gives INL error of ≈ ±25LSB.  With calibration enabled, INL error improves to 

+2.1/-4.8 LSB.  Figure 7 shows the die photo.  The analog portion of the ADC was 

fabricated on a 1P4M 0.25µm digital CMOS process with deep N-well.  Area is 1.16mm 

x 1.38mm for the analog; the digital circuitry was implemented on an external FPGA 

which would have synthesized to 1.5mm
2 
in the 0.25µm CMOS process.  Power 

consumption for the analog is 105mW from a 2.5V supply. 
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Figure D8.  INL Plots vs. Temperature                  Figure D9.  Measured Calibration  

   

 

2.3  Measured Response to Environmental Variations 
 

Due to the reduced number of conversions required, the continuous background 

calibration means the ADC can track out changes in calibration parameters caused by 

environmental changes such as temperature.  This is shown in Figures 8 and 9.  The top 

plot in Figure 8 shows measured INL at +85°C.  For the middle plot, calibration was 

disabled, temperature was reduced to -40°C, and then INL was measured.  Without the 

background calibration operating, the 85°C parameters are incorrect at -40°C and the INL 

plot shows degraded linearity.  For the bottom plot, calibration was re-enabled; after a 

convergence transient the original INL performance is measured when the calibration 

coefficients have converged to the new values required for –40°C.  Figure 9 shows a plot 

of the gain estimate as a function of time, showing the acquisition transient of the 

calibration.  The response is a damped exponential; calibration is acquired to sufficient 

accuracy within about 10,000 conversions. 

 

2.4  Summary of Cyclic Converter Performance 
 

The cyclic ADC described in this section proved the practical operation of the split ADC 

concept as a way to achieve all of the desired calibration procedure characteristics.  By 

performing all calibration and correction in the digital domain, the technique successfully 

moves complexity into the digital domain as desired, with no additional analog 

complexity.  The technique operates in the background, with no interruption of input 

sampling. And unlike all previous digital background techniques, this technique is 

deterministic rather than statistical.  The calibration procedure converges in 
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approximately 10,000 conversions, which is a dramatic improvement over the 10
8
 to 10

9
 

conversions required for statistical techniques.  With the short time constant for 

calibration convergence, the ADC is able to maintain calibration over variations in 

environmental factors such as temperature. 

 

3. Extension of Split ADC to Other ADC Architectures 
 

This section describes extension of the architecture concept to three more widely used 

types of ADCs: pipeline, successive approximation, and interleaved.  As mentioned in 

section 2.2, the cyclic was chosen as the ADC architecture as a lowest-risk approach for 

the initial hardware test of the split ADC concept since only a two parameters need to be 

estimated to perform calibration.  Extending the split ADC concept to other ADC 

architectures is a higher-risk effort; in each case the self-calibration process is more 

complicated since many parameters must be estimated.  However, the higher risk is 

accompanied by a higher reward due to the large number of application areas that will 

benefit.   

 

 

SPEED 

POWER 

CYCLIC 

SUCCESSIVE 
APPROXIMATION 

PIPELINE 

INTERLEAVED 

 
Figure D10.  Qualitative Speed-Power Comparison of ADC Architectures. 

 

Figure 10 shows a qualitative graphical representation of the speed-power tradeoff for 

four different types of Nyquist ADCs of comparable resolution.  Better performance is 

indicated by the arrow in the figure toward the higher speed, lower power region of the 

plot.  Due to limitations imposed by the cyclic architecture [D1], the system is 

constrained in a fundamental way that limits the designer's flexibility in optimizing the 

speed-power tradeoff.  The other architectures shown are not limited in the same 

fundamental way, and offer the ability to optimize the speed-power tradeoff for the needs 

of a particular application area. 

The following section provides an overview of the interleaved ADC, as well as the 

challenges of applying the split ADC calibration concept to this architecture.  Although 

discussion of the pipeline and successive approximation ADCs is out of scope for this 

proposal, they will be the subject of future proposals and are included in the figure to 

show the wide applicability of the split ADC approach. 
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3.1 Interleaved ADC 
 

The interleaved ADC architecture pushes the speed-power tradeoff to maximize speed at 

the expense of power.  As shown in Figure 11, multiple ADCs are interleaved in time to 

increase the overall throughput rate.  For the example shown in Figure 11 with two 

interleaved converters, the convert start clocks CVTCLK are 180° out of phase.  In the 

general case of N interleaved converters, the converters are clocked in phase increments 

of 360°/N. 
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Figure D11.  General Interleaved ADC Block Diagram 

 

Figure 12 shows a more detailed diagram of the timing relationships among the input 

signal being sampled, the utilization of each ADC in time, and the output data flow.   The 

shaded circles indicate the samples of the analog input signal, which are spaced at 

intervals of 1/fS, where fS is the sample rate of the entire converter.  Since the convert 

clocks for the converters are spaced at 180° phase intervals, each converter operates at 

fS/2, half the overall sampling rate.  In the general case of N interleaved converters, each 

converter operates at a rate of fS/N. 
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Figure D12.  Interleaved ADC timing. 
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The usage of each ADC in time for the conversion process is indicated by the shaded 

boxes in the figure.  The rising arrow at the leading edge of the rectangle indicates the 

sampling of the input waveform and the start of the conversion process.  The falling 

arrow at the trailing edge of the rectangle indicates the completion of the conversion 

process, and availability of the digital output data.  The digital outputs of each converter 

are multiplexed together as they become available, giving an output data flow at the full 

rate fS.  The relationship between input samples S1, S2, ... and the corresponding digital 

outputs is also indicated in the figure.   

3.1.1 Need for calibration 

While each of the interleaved ADCs should be calibrated to minimize ADC linearity 

errors, there are additional difficulties associated with the interleaved approach.  Even if 

ADC linearity is perfect, any mismatch in gain, offset, or aperture delay between 

converters leads to errors in the output data.  These errors take the form of increased 

noise and spurs in a frequency-domain representation of the output [D24].  Gain 

mismatches lead to signal-dependent spurs, offset mismatches lead to signal-independent 

spurs, and aperture delay mismatch leads to signal-dV/dt-dependent spurs.  Without 

correcting these errors, the performance of the overall ADC can be severely degraded 

relative to the performance expected from any individual ADC.  For example, in [D25], 

interleaved 8-bit ADCs resulted in an effective number of bits (ENOB) of only 4.5 to 6.5 

bits.  To calibrate the system in [D25], the gain, offset, and aperture delay of each ADC 

must be measured by taking the analog circuitry off line and applying a ramp signal for 

calibration. 

Previous approaches for background calibration of interleaved converters [D26] involve 

extremely complicated digital signal processing, imposing severe die area penalties.  

Additionally, the method in [D26] fails for "unsuitable" input signals. 

 

3.2 Split ADC Approach for Interleaved ADC 
 

To apply the split ADC approach to an interleaved converter, each ADC is split as shown 

in Figure 13.  The idea is to have all possible combination of ADC split pairs convert the 

input signal.  As shown in the example in the figure, sample S1 is processed by a split 

ADC composed of ADCs "A" and "B"; sample S2 uses ADCs "C" and "D"; sample S3 

uses ADCs "E" and "A", and so on.  In this way each converter is paired with every other 

converter at some time.  In each case, the average of whichever two ADCs are used is 

reported as the output code and the difference is used for the calibration signal.  From the 

resulting differences it will be possible to estimate the gain, offset, and aperture delay 

mismatch errors of each ADC.  Note that one additional split channel is necessary to 

provide timing flexibility so that all possible pair permutations are used.  This does 

impose a small die area penalty (fractional increase of 1/2N for an interleaving factor of 

N ADCs), but imposes no power penalty since there is always one of the splits which is 

not used and need not be powered. 
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Figure D13.  Split ADC Approach applied to Interleaved ADCs 

3.2.1 Challenges for Split ADC Calibration of Interleaved ADCs 

The main difficulty for the split ADC approach in the case of interleaved converters is the 

increased number of parameters that need to be estimated.  For an interleaving factor of 

N, the split ADC approach requires estimation of gain, offset, and aperture delay for each 

of (2N+1) converters, for a total of 3(2N+1) parameters to be estimated.  In the case of 

the N=2 interleaving shown in Figure 13, a total of 15 parameters are necessary, which is 

a dramatic increase from the two parameter estimation demonstrated in the cyclic case.  If 

split ADC techniques are also used to correct for linearity errors in each individual ADC, 

the number of parameters to be estimated increases further. 

 

3.3. Proposed Work 
 

The centerpiece of the proposed work is the design, fabrication, and test of a prototype 

integrated circuit to verify the embodiment of the “Split ADC” concept in an interleaved 

ADC of the general form described in section 3.2.  The project would be performed by a 

full-time Ph.D. student under the direction of the P.I.  Figure 14 provides an overview of 

the major tasks in the proposed work, and their approximate scheduling over the project 

duration of three years.  Given the P.I.’s past experience advising graduate research at 

WPI (See Biographical Sketch), the amount of time budgeted – full time for the Ph.D. 

student and one summer month per year for the P.I. – are appropriate given the nature of 

the proposed work  
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Figure D14.  Schedule of proposed work. 
Task

Survey existing technology; 

determine target specification

System level design; 

behavioral modeling

Circuit level design of 

prototype IC

IC fabrication

Test system design

Test system fabrication

Integration of prototype IC, 

test system

Test and verification of 

prototype IC in test system

Dissemination of results

YEAR 1 YEAR 2 YEAR 3

 

 

4. Benefits 
 

It is the P.I.’s belief that the new "Split ADC" architecture represents a genuine creative 

design breakthrough in response to the specific constraints of advanced digital CMOS 

processing technology.  The capability of providing high resolution, self-calibrating 

ADCs at low cost fills a critical need in a wide range of emerging mixed-signal 

application areas.  Successful completion of the work described in this proposal will 

extend development of this new class of self-calibrating analog-to-digital converters 

(ADCs) to the important application area of interleaved ADCs. 

 

The P.I.'s previous work in developing the "split ADC" architecture has been proven by 

successful fabrication and test of a 16bit, 1MSample/s, cyclic ADC.  This is an indication 

of both the validity of the concept to be extended and the P.I.’s ability to successfully 

complete the proposed work. 
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