
A Framework for Exploring Finite Models

by

Salman Saghafi

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

May 2015

APPROVED:

Professor Daniel J. Dougherty, Thesis Advisor, WPI Computer Science

Professor Craig Wills, Head of Department, WPI Computer Science

Professor Joshua Guttman, WPI Computer Science

Professor George Heineman, WPI Computer Science

Doctor John D. Ramsdell, The MITRE Corporation

Abstract

This thesis presents a framework for understanding first-order theories by investi-
gating their models. A common application is to help users, who are not necessarily
experts in formal methods, analyze software artifacts, such as access-control policies,
system configurations, protocol specifications, and software designs. The framework
suggests a strategy for exploring the space of finite models of a theory via augmen-
tation. Also, it introduces a notion of provenance information for understanding the
elements and facts in models with respect to the statements of the theory.

The primary mathematical tool is an information-preserving preorder, induced
by the homomorphism on models, defining paths along which models are explored.
The central algorithmic ideas consists of a controlled construction of the Herbrand
base of the input theory followed by utilizing SMT-solving for generating models
that are minimal under the homomorphism preorder. Our framework for model-
exploration is realized in Razor, a model-finding assistant that provides the user
with a read-eval-print loop for investigating models.

Acknowledgements

I would like to extend several acknowledgements to my learning community,
family, and friends. This dissertation would not have been possible with the support
and assistance of people with whom I am connected professionally and those with
whom I have shared my personal life.

First, I would like to thank my family in Iran and England. Since childhood
each of you have cultivated my love for learning and, by extension, computers. Mom
and Dad, you provided me with ample opportunities to learn, grow, and prosper
academically and personally. My siblings, too, have been instrumental in providing
me with a compassionate listening ear and a cheering squad as I pursued my dreams
in England and America. Lastly, I would like to extend my thanks and love to
Cammy, my partner from day one in the doctoral program. We began our programs
together and, rightfully so, we are ending our programs together. I love you.

Secondly, I would like to thank my major advisor, Dan Dougherty. Dan en-
couraged my interest in integrating my appreciation for logic with my background
in software engineering. Also, this dissertation work would not have been possible
without the continuous commitment and dedication of my associate advisors, Joshua
Guttman, John Ramsdell and George Heineman. I am grateful to Kathi Fisler and
Shriram Krishnamurthi for inviting me to WPI from Iran to pursue further study in
computer science research. Additionally, Tim Nelson and Ryan Danas are two col-
leagues who fueled this dissertation project both theoretically and practically. Both
Tim and Ryan’s input were instrumental in shaping this project. I would be remiss
if I didn’t extend heartfelt gratitude to the collaborators of Razor, including Hai
Hoang Nguyen, Visit Pataranutaporn, Taymon Beal,, Erica Ford, Nicholas Murray,
and Henning Günther. I also thank Daniel Jackson for his feedback on Razor.

Next, I am grateful to my mentors at WPI, Stanley Selkow, Gabor Sarkozy,
Carolina Ruiz, Bob Kinicki, Jerry Breecher, Gary Pollice, and Glynis Hammel.
Additionally, I thank my fellow ALAS lab-mates and friends at WPI including
but not limited to: Hang Cai, Michael Ficarra, Theo Giannakopoulos, Marc Green,
Sarah Jaffer, Krishna Venkatasubramanian, Douglas MacFarland, Bahador Nooraei,
Mohammad Shayganfar, Craig Shue, Doran Smestad, Curtis Taylor, Shubhendu
Trivedi, Francis Usher, Jian Xu, and Dan Yoo. Lastly, I owe thanks to Newport
Coffee, the primary supplier of coffee to the computer science department!

i

This work is dedicated to my mother and my father.

Contents

1 Introduction 1

2 Foundations 5
2.1 First-Order Logic . 5

2.1.1 Syntax . 5
2.1.2 Semantics . 7
2.1.3 Convenient Forms of Formulas 9
2.1.4 Basic Algebra of Models . 9

2.2 Term-Rewrite Systems . 11
2.3 Satisfiability Modulo Theories . 11

2.3.1 Syntax . 12
2.3.2 Semantics . 13

3 Model-Exploration Framework 15
3.1 Model-Exploration . 16
3.2 Provenance Construction . 17
3.3 Razor, a Model-Finding Assistant . 18

3.3.1 The Theory Mode . 18
3.3.2 The Explore Mode . 21
3.3.3 The Explain Mode . 22

4 Geometric Logic 23
4.1 Syntax . 23

4.1.1 Standard Forms . 24
4.2 Semantic Properties . 24
4.3 The Chase . 26

4.3.1 Universal Models . 26
4.3.2 The Witnessing Signature . 27
4.3.3 The Chase Algorithm . 27
4.3.4 Termination and Decidability 31
4.3.5 The Bounded Chase . 32
4.3.6 Chase Examples . 33

4.4 Augmentation in Geometric Logic . 37

iii

5 Algorithm and Implementation 39
5.1 Transformations . 40

5.1.1 Relationalization . 41
5.1.2 Linearization and Range Restriction 42
5.1.3 Term-Hashing . 43

5.2 Grounding . 43
5.2.1 Grounding Algorithm . 43

5.3 Model-Finding and Minimization . 47
5.3.1 Minimization . 48
5.3.2 Termination . 51
5.3.3 Iterating over Minimal Models 52

5.4 Model Construction in Razor . 55
5.5 Implementation . 57

5.5.1 Relational Grounding . 58
5.5.2 Interaction with the SMT-Solver 59
5.5.3 Incremental Augmentation . 60
5.5.4 Exploration State . 61
5.5.5 Bounded Search for Models 61

6 Case-Studies and Evaluation 63
6.1 Case-Studies . 63

6.1.1 Case-Study 1: Access Control 63
6.1.2 Case-Study 2: Flowlog Program 67

6.2 Performance Evaluation . 71
6.2.1 Alloy and Aluminum Examples 72

7 Aluminum 74
7.1 Minimal Model Construction . 74
7.2 Consistent Facts . 75
7.3 Augmentation . 76
7.4 Empirical Results . 76

7.4.1 Model Comparison . 77
7.4.2 Scenario Generation . 79

7.5 Summary . 82

8 Preliminary Implementations 84
8.1 BranchExtend Chase . 84

8.1.1 Models as Term-Rewrite Systems 85
8.2 Atlas . 87

8.2.1 Relational Algebra for the Chase 87
8.2.2 Scheduling . 89

iv

9 Related Work 91
9.1 Finite Model-Finding . 91

9.1.1 MACE-Style Model-Finding 92
9.1.2 SEM-Style Model-Finding . 93
9.1.3 Other Methods . 94

9.2 Lightweight Model-Finding . 95
9.2.1 Lightweight Model-Finding Research 96

9.3 Geometric Logic . 99

10 Conclusion and Future Work 101

v

List of Figures

3.1 State transition in Razor’s REPL . 19
3.2 Razor’s input grammar . 20
3.3 Conceptual space of models in Razor 21

4.1 Dependency graph of the weakly acyclic example 34
4.2 Dependency graph of the non-terminating example 35
4.3 Runs of the Chase on the conference management example 37

5.1 Model-construction procedure in Razor 56

6.1 Rules governing access to B17 . 64
6.2 The Thief enters B17 with a key . 65
6.3 An employee enters B17 with a key 65
6.4 The Thief is a member of a third research group 66
6.5 The learning switch program in Flowlog 67
6.6 The learning switch program in Razor 69

7.1 A simple gradebook specification . 78

vi

List of Tables

6.1 Razor’s performance on examples from Alloy and Aluminum 72

7.1 Alloy and Aluminum’s coverage of minimal models and their cones . . 77
7.2 Relative times (ms) to render an unsatisfiable result 80
7.3 Relative times (ms) per scenario (minimal, in Aluminum) 80
7.4 Times (ms) to compute consistent tuples and to augment scenarios . 82

vii

Chapter 1

Introduction

It is well-known that model-finding for first-order theories is undecidable. However,
finite models of a first-order theory can be found by exhaustive search. Gödel’s
completeness theorem [1] establishes a connection between semantic truth and syn-
tactic provability of first-order logic: a formula ϕ is provable in a theory T if and
only if every model M of T is also a model of ϕ. The completeness theorem posits a
duality between theorem-proving and model-finding; that is, a formula ϕ is provable
if and only if its negation, ¬ϕ, is unsatisfiable. As a consequence, model-finding is
often regarded as a technique for demonstrating syntactic provability in automated
theorem-proving [2–11]: theorem-provers construct proofs, whereas model-finders
construct models.

In a more applied setting, model-finding is employed as a “lightweight formal
method” [12] to help users—who are not necessarily expert in formal methods—
study declarative specifications of hardware and software systems [12–14]. Tools
such as Alloy [15] accept a first-order specification T , such as a software design
artifact, a description of a cryptographic protocol, or an access control policy, and
present first-order models of T as examples that illustrate the behavior of the speci-
fied system. This process enables the user to validate the logical consequences of the
specification against her expectations about the system’s behavior. A distinguishing
feature of this approach from the mainstream theorem-proving is that the user may
use the model-finder to explore models of T without having to articulate logical con-
sequences. The resulting models might suggest “surprising” scenarios, which could
lead to flaws in T .

The goal of lightweight model-finding is not only to construct a model that proves
a theorem about the user’s theory, but also to help the user investigate the spectrum
of the (possibly a plethora of) models that satisfy the theory. Ideally, a model-
finding tool should facilitate a systematic way of exploring models, which helps the
user understand the space of models as a whole, rather than as a series of arbitrary
examples. It should provide the user with quality models, enabling the user to
accurately pinpoint the implications of her theory. And, the tool should allow the
user to incorporate her intuition to direct the model-finding process toward models

1

that are “interesting” to her. In the context of lightweight model-finding, it is
natural to ask questions such as: “which models should the user see?”, “in what
orders should the models be presented to the user?”, “how can the user understand
why a model satisfies a given specification?”, and “how can the user understand the
connections between the models of the specification?”.

Despite the attempts that address some of these questions for specific appli-
cations, a framework for model-exploration to facilitate the understanding of the
space of models is lacking. The existing model-finding tools (with some exceptions)
compute models that are effectively random. A conventional model-finders provides
the user with a sequential iterator over the models of the input theory; it returns
the models in no particular order; and, it does not present any justification for the
models that it returns.

Thesis. This work presents a framework for exploring finite models, which com-
prises two core features:

1. Support for systematic exploration of the space of models.

2. Support for provenance information for individual models.

Exploration is concerned with (i) identifying and presenting models in a particular
order, and (ii) facilitating an environment for controlled navigation between models.
Provenance construction, on the other hand, is about providing dialectic information
for individual models, justifying every piece of information in models with respect
to the axioms in the user’s theory. We argue that the preorder 4 induced by the
homomorphism on models is a viable guideline for exploring the space of models.
The homomorphism preorder reflects the “information content” of models: if M 4
N, then N contains the information in M (and perhaps more). If M and N are
models of the same theory, we prefer M as it contains less distracting information
than N.

We implemented our theoretical framework for model-exploration and provenance-
construction into Razor, a model-finding assistant that helps the user build and ex-
amine models of an input specification. For a given input theory T , Razor’s returns
a set M of models of T that are minimal under the homomorphism ordering; that
is, every model inM contains a minimum amount of information which is necessary
for satisfying T . As a consequence of homomorphism minimality, Razor is able to
compute provenance information for the models in M: because every element as
well as every fact in a homomorphically minimal model M is necessary for M to be
a model of T , Razor can point the user to axioms in the specification that entail
any given element or fact in M.

Model Construction. Razor’s algorithm is a variation of the Chase [16–19], an
algorithm developed in the database community, which constructs models of first-
order theories written in geometric form. In presence of Skolemization, any first-

2

order theory can be written in geometric form; thus, working with theories in geo-
metric form does not pose a theoretical restriction. The building blocks of theories
in geometric form are positive-existential formulas (PEFs), whereby negation and
universal quantification is prohibited. It is a classical result that PEFs are precisely
the formulas that are preserved by the homomorphism on models. Moreover, if α
is a PEF true of a tuple ~e in a model M, then the truth of this fact is witnessed
by a finite fragment of M. Razor leverages the former property of PEFs to explore
models via homomorphism, and the latter to construct provenance information.

Our preliminary implementations of the Chase revealed that a näıve version of
this algorithm in presence of disjunction and equality is inefficient. We found it more
efficient to implement a variation of the Chase using Satisfiability Modulo Theory
(SMT) to process disjunctions and equations. Given a theory G in geometric form,
Razor generates models of G in two major phases: (i) Razor executes a variation of
the Chase to construct a set of possible facts for G, Pos(G), which is in essence, a
refinement of the Herbrand base that is inductively defined by G. The construction
of Pos(G) in such a controlled manner, by an operational reading of the formulas in G,
allows Razor to compute provenance information for models. (ii) Razor leverages an
SMT-solver to compute homomorphically minimal models of a ground instance G∗
of G over Pos(G). The minimization algorithm, implemented into Razor, recursively
reduces an arbitrary model of G∗, returned by the SMT-solver, to a model that is
homomorphically minimal.

Indeed, utilizing a satisfiability (SAT) solver is the essence of MACE-style [2]
model-finding. But the main distinction between the algorithm implemented into
Razor and the conventional MACE-style ones lies in the inductive nature of the set of
possible facts. The construction of the Herbrand base for a theory T in MACE-style
algorithms is not “controlled”. MACE-style algorithms construct ground instances
of T over an arbitrary domain of elements, which is fixed a priori . In contrast,
Razor computes ground instances of T over a domain of elements that are named
by unique Skolem-terms as witnesses. The witnessing terms justify the elements in
the models of T by relating them to the existential quantifiers in T .

Bounded Model-Finding. Although our model-finding algorithm is guaranteed
to terminate on theories with a syntactic property known as weak acyclicity, it is
often necessary to bound the size of models for arbitrary theories. Unlike the con-
ventional MACE-style and SEM-style [20] model-finding, however, our algorithm is
not inherently bounded. In fact, our approach is refutationally complete. A tradi-
tional model-finder uses a user-supplied upper bound on the models they construct.
Alternatively, Razor uses a rather more systematic notion of bounds, determined
by the depth of witnessing Skolem-terms. Even when the search is bounded, an
iterative-deepening of the search restores Razor’s refutational completeness.

Roadmap. For a reader who is interested in a quick overview of this work, Chap-
ter 3 summarizes our primary contributions, consisting of our framework for model-

3

exploration and a quick introduction to Razor; and Chapter 6.1 provides case-studies
and evaluation results. We review the theoretical foundations of this work in Chap-
ter 2 and Chapter 4, and we present our algorithms and theoretical results in Chap-
ter 5. Chapter 7 and Chapter 8 report on the preliminary work, leading to the
current implementation of Razor. Finally, we discuss the related work in Chapter 9.

4

Chapter 2

Foundations

The theoretical foundation of this work is conventional first-order logic. We review
our set-up of first-order logic, used in the rest of this thesis, in Section 2.1; we
present key definitions of term-rewrite systems in Section 2.2; and, we look into
basic definitions that are commonly used in the SMT community in Section 2.3.

2.1 First-Order Logic

This section presents basic definitions of the first-order syntax and semantics. We
then review some convenient forms of first-order formulas and present a basic algebra
of first-order models.

2.1.1 Syntax

Definition A signature Σ ≡ (ΣR,ΣF) consists of a (finite) set of relation (or predi-
cate) symbols ΣR, a (finite) set of function symbols ΣF , and an arity function from
the relation and function symbols of the signature to natural numbers.

A signature Ω is said to be an expansion of a signature Σ if and only if ΣR ⊆ ΩR

and ΣF ⊆ ΩF . Alternatively, Σ is said to be a sub-signature of Ω.

Notation. Throughout this thesis, capital letters P,Q,R, . . . are used for relation
symbols and lowercase letters f, g, h, . . . for function symbols.

Definition Let V be a set of variables and Σ ≡ (ΣR,ΣF) be a signature. A Σ-
term over V—or simply a term if V is irrelevant and Σ is clear from the context—is
inductively defined by the following:

• A variable x ∈ V is a term.

• A function symbol f ∈ ΣF of arity k applied to a list of terms ~t ≡ 〈t1, . . . , tk〉,
written as f(~t), is also a term.

5

Every term ti (1 ≤ i ≤ k) is said to be at position i of a functional term f(t1, . . . , tk).
Nullary functions (of arity zero) will be treated as constants. We use the notation
Terms(Σ,V) to denote the set of all Σ-terms over V , also, write Terms(Σ) if V is
not relevant.

The set Subterms(t) of a term t is defined by the following:

• t ∈ Subterms(t)

• if t = f(t1, . . . , tk), then ti ∈ Subterms(t) (1 ≤ t ≤ k)

• if u ∈ Subterms(s) and s ∈ Subterms(t), then u ∈ Subterms(t)

We write t[s] for a term t that contains s as a subterm. Also, the notation Vars(t)
will be used for the set of variable subterms in t. A term t is said to be ground (or
closed) if Vars(t) = ∅. A flat term is a term that is either a constant (nullary
function), a variable or a function applied to only constants and/or variables.

Definition The depth of a term t, written depth(t), is defined as follows:

• For a variable term v, depth(v) = 0.

• For a functional term t ≡ f(t1, . . . , tk) (possibly a constant), depth(t) = 1 +d,
where d is the maximum of depth(ti) (1 ≤ i ≤ k).

Definition Let Σ be a signature and V be a set of variables. A substitution σ :
V −→ Terms(Σ,V) is a function from variables to terms such that σ(x) 6= x for only
finitely many variables in V . The set of variables that are not mapped to themselves
by σ is called the domain of σ.

Notation. The notation {v1 7→ t1, . . . vn 7→ tk} denotes a substitution that sends
variables vi to terms ti (1 ≤ i ≤ k).

Notation. We use the following notation for an extension of a substitution σ:

σ[v 7→ t](x) =

{
t x = v

σ(x) x 6= v

Definition A first-order formula (or simply a formula) over a signature Σ ≡
(ΣR,ΣF) is inductively defined by the following:

• > (truth) and ⊥ (falsehood) are formulas.

• A relation R ∈ ΣR of arity k applied to a list of Σ-terms ~t ≡ 〈t1, . . . , tk〉,
written as R(~t), is an atomic formula.

• For two Σ-terms t and s, an equation t = s is also an atomic formula.

• For a formula ϕ, ¬ϕ is also a formula.

6

• For two formulas ϕ and ψ, ϕ ∧ ψ is also a formula.

• For two formulas ϕ and ψ, ϕ ∨ ψ is also a formula.

• For two formulas ϕ and ψ, ϕ→ ψ is also a formula.

• For two formulas ϕ and ψ, ϕ↔ ψ is also a formula.

• For a variable x and a formula ϕ, ∃x.ϕ is also a formula.

• For a variable x and a formula ϕ, ∀x.ϕ is also a formula.

Similar to functional terms, every term ti (1 ≤ i ≤ k) is said to be at position i of
an atomic formula R(t1, . . . , tk).

Terminology. A literal is either an atomic formula or the negation of an atomic
formula. A clauses is a disjunction of literals.

Definition A variable x is said to be bound in ∃x.ϕ or ∀x.ϕ. A variable x is free
in a formula ϕ if and only if it is not bound in ϕ.

We write Vars(ϕ) to denote the set of all variables (whether free or bound) and
FV(ϕ) to denote the set of free variables in ϕ. Accordingly, ϕ[~x] denotes a formula ϕ
such that FV(ϕ) = ~x. A formula ϕ is said to be a sentence (or closed) if FV(ϕ) = ∅.

Definition A first-order theory T over a signature Σ is a (finite) set of first-order
formulas over Σ.

2.1.2 Semantics

Definition A Σ-model (or simply a model) M over a signature Σ ≡ (ΣR,ΣF) is a
structure, comprising the following:

• a set of elements |M| called the domain (or the universe) of the M.

• a mapping from every k-ary function symbol f ∈ ΣF to a function fM :
|M|k −→ |M|.

• a mapping from every k-ary relation symbol R ∈ ΣR to a function RM :
|M|k −→ {true, false}.

The function RM may be thought of as a subset of all k-tuples over the elements
of |M|. Then, we write ~e ∈ RM and ~e 6∈ RM for RM(~e) = true and RM(~e) = false
respectively. We say RM(~e) is a fact in M if RM(~e) = true in M.

Notation. Throughout this dissertation, roman boldface letters, such as d and e,
are used to denote elements of a model and roman italic letters, such as a and b, to
represent constants of a signature.

7

Notation. We ambiguously write |M| to denote the cardinality of |M|.

Remark It turns out to be convenient and flexible for our model-finding algorithms
to interpret functions as partial functions. Thus, we assume functions to be partially
interpreted in models unless we explicitly state otherwise.

Definition Fix a model M over a signature Σ ≡ (ΣR,ΣF) and a set of variables V .
An environment η : V −→ |M| is a function from V to the elements in |M|.

Definition Fix a set signature Σ ≡ (ΣR,ΣF) and a set V of variables. Given an
environment η : V −→ |M|, a Σ-term t over V denotes an element e ∈ |M| under η,
written JvKMη = e, as follows:

• for a variable v ∈ V , JvKMη = η(v).

• for t = f(t1, . . . , tk), where f ∈ ΣF and tis are Σ-terms (1 ≤ i ≤ k) over V ,
JtKMη = fM(Jt1KMη , . . . , JtkKMη)

Semantics of Formulas. Fix a signature Σ ≡ (ΣR,ΣF) and a model M over Σ.
Let ϕ be a formula over Σ and η : FV(ϕ) −→ |M| be an environment. We say M
satisfies ϕ in η—or simply M is a model of ϕ—written M |=η ϕ, if and only if the
following induction holds:

• M |=η R(t1, . . . , tk) if and only if 〈e1, . . . , ek〉 ∈ RM,
where ei = JtiKMη (1 ≤ i ≤ k).

• M |=η t = s if and only if JtKMη = JsKMη .

• M |=η ϕ ∧ ψ if and only if M |=η ϕ and M |=η ψ.

• M |=η ϕ ∨ ψ if and only if M |=η ϕ or M |=η ψ.

• M |=η ϕ→ ψ if and only if M 6|=η ϕ or M |=η ψ.

• M |=η ϕ↔ ψ if and only if M |=η ϕ→ ψ and M |=η ψ → ϕ.

• M |=η ∀x.ϕ if and only if for all e ∈ |M|, M |=η[x 7→e] ϕ

• M |=η ∃x.ϕ if and only if for some e ∈ |M|, M |=η[x 7→e] ϕ.

A formula ϕ is said to be satisfiable if and only if a model M and an environment
η : FV(ϕ) −→ |M| exist, such that M |=η ϕ. ϕ is said to be unsatisfiable (or
inconsistent) if it is not satisfiable. Two formulas ϕ and ψ are equisatisfiable if ϕ is
satisfiable whenever ψ is satisfiable and vice versa.

8

Semantics of Theories. For a theory T of formulas, an environment η, and a
model M, we write M |=η T if and only if M |=η ϕ, for every formula ϕ ∈ T .
A theory T is satisfiable if and only if M and η exists such that M |=η T . T is
unsatisfiable if it is not satisfiable. Two theories T and U are equisatisfiable if T is
satisfiable whenever U is satisfiable and vice versa.

2.1.3 Convenient Forms of Formulas

Certain syntactic forms of first-order formulas are often preferable in a variety of
applications, including theorem-proving and model-finding. Here, we review some
of these convenient forms, also, we state some well-known results about them. In
Chapter 4, we present the geometric form as another convenient form of first-order
formulas, which supports our mode-finding algorithm.

Definition A first-order formula ϕ ≡ Q1x1 . . . Qnxn.α is in prenex normal form
(PNF), where every Qi is either ∃ or ∀, and α is quantifier-free.

Theorem 2.1.1. Every first-order formula ϕ is logically equivalent to a formula
ψ such that ψ is in PNF.

Definition A formula in conjunctive normal form (CNF) is a conjunction of clauses.

Definition A formula ϕ ≡ ∀~x . α is said to be in Skolem normal form (SNF) if α
is a quantifier-free CNF.

Theorem 2.1.2. Every formula ϕ is equisatisfiable to a formula ψ such that ψ is
in SNF. The process of converting a formula to an equisatisfiable SNF is known as
Skolemization.

Proofs of Theorem 2.1.1 and Theorem 2.1.2 can be found in [21].

2.1.4 Basic Algebra of Models

Common relations on mathematical structures may be extended to first-order mod-
els. In this section, we review some basic algebra on models, which will be heavily
used in the rest of this document. Specifically, the ordering relation that is deter-
mined by the homomorphism on models is the key mathematical tool that supports
our framework for exploring models (see Chapter 3).

Definition Let M and N be models over a signature Σ ≡ (ΣR,ΣF). M is a submodel
of N if and only if

• |M| ⊆ |N|.

9

• RM(~e)→ RN(~e), for every k-ary relation R ∈ ΣR and every tuple ~e ∈ |M|k.

• fM(~e) = fN(~e), for every k-ary function f ∈ ΣF and every tuple ~e ∈ |M|k.

The model N is said to be a supermodel of M.

Definition Given a signature Σ ≡ (ΣR,ΣF) and an expansion Ω of Σ, a Σ-model
M is said to be the reduct of an Ω-model N to Σ if and only if

• |M| = |N|.

• RM(~e)↔ RN(~e), for every k-ary relation R ∈ ΣR and every tuple ~e ∈ |M|k.

• fM(~e) = fN(~e), for every k-ary function f ∈ ΣF and every tuple ~e ∈ |M|k.

The model N is then said to be an expansion of M to Ω.

Definition Given two models M and N over a signature Σ ≡ (ΣR,ΣF), a homo-
morphism h : |M| −→ |N| is a map from the elements of M to the elements of N
such that

• h(fM(~e)) = fN(h(~e)), for every k-ary function f ∈ ΣF and every k-tuple
~e ∈ |M|k.

• RM(~e) → RN(h(~e)), for every k-ary relation R ∈ ΣR and every k-tuple ~e ∈
|M|k.

Definition Given two models M and N over a signature Σ, an isomorphism between
M and N is a homomorphism i : |M| −→ |N| such that

• i is one to one and onto.

• The inverse i−1 : |N| −→ |M| of i is also a homomorphism.

Homomorphism Ordering. The homomorphism over models induces a preorder
4 as follows:

• M 4h N if and only if a homomorphism h from M to N exists.

• M ≈h N if and only if M 4h N and N 4h M.

• M ≺h N if and only if M 4h N but N 6≈h M.

For brevity, we may drop the subscript h when the homomorphism map is irrelevant
in the context.

Informally, we say a model N is in the homomorphism cone of a model M if
M 4 N.

10

2.2 Term-Rewrite Systems

In this section, we review basic definitions of term-rewrite systems, specifically, def-
initions that are commonly used in the context of equality reasoning over terms.

Definition Let l and r be terms. A rewrite rule is an equation l→ r where l is not
a variable and Vars(l) ⊇ Vars(r). A term-rewrite system (TRS) is a set of rewrite
rules. The notation →R denotes the rewrite relation induced by a TRS R.

A TRS G is ground if it is defined over ground terms only; i.e., for every l →G r,
Vars(l) = Vars(r) = ∅.

For a rewrite relation →, we respectively write ←, ↔, →+ and →∗ for the
inverse, symmetric closure, transitive closure and reflexive transitive closure of →.

Terminology. We use the following terminology for term-rewrite systems:

• A term t is irreducible or in normal form with respect to a TRS R if and only
if there is no u such that t→R u. A term t is said to be a normal form of u
if and only if u →∗R t and t is in normal form. We write t ↓R to denote the
unique normal form of t in R if it exists.

• A TRS R is confluent whenever for every term s, if s→∗R t and s→∗R t′, then
a term u exists such that t→∗R u and t′ →∗R u, and vice versa.

• A TRS R is terminating if there is no infinite chain of reductions in the form
of t0 →R t1 →R t2

• A TRS R is said to be convergent if and only if it is terminating and confluent.

• A TRS R is left-reduced if and only if for every t→R u, t is irreducible by the
other rules in R. Similarly, R is right-reduced if and only if for every t→R u,
u is irreducible in R. Finally, R is said to be fully-reduced (or simply reduced)
if and only if it is both left and right-reduced.

Definition An equational theory for a set of equations E is the reflexive, symmetric
and transitive closure of the rewrite relation →E, denoted by ↔∗E. We may refer
to the equations in E as rewrite rules. Then, we may refer to E as a term-rewrite
system when we are talking about the rewrite relation ↔∗E.

2.3 Satisfiability Modulo Theories

Satisfiability Modulo Theory (SMT) is the problem of checking the satisfiability
of a logical formula with respect to background theories [22–25] that fix the inter-
pretations of certain relation or function symbols. By fixing a background theory,
SMT-solvers exploit methods that are specific to reasoning about that theory to im-
prove the performance of satisfiability checking. In particular, SMT-solving utilizes

11

efficient decision procedures to check the satisfiability of quantifier-free first-order
formulas in background theories, such as equality with uninterpreted functions, in-
teger arithmetic, arrays, bit vectors etc.

SMT-LIB. SMT-LIB is an international initiative to encourage and facilitate re-
search and development of SMT [25, 26]. The primary mission of SMT-LIB is to
standardize the following aspects of SMT:

• Background Logic: includes various fragments of first-order logic, temporal
logic, second-order logic etc.

• Background Theory : is the theory in which the satisfiability of the formula in
question is evaluated (e.g., equality with uninterpreted functions or the theory
of integer arithmetic).

• Input Formula: is the formula whose satisfiability is in question.

• Interface: consists of features and standards of interacting with SMT-solvers.

Almost all major SMT-solvers including Boolector [27], UCLID [28], Yices [29]
and Z3 [30] recognize the current version of SMT-LIB standard (SMT-LIB 2) and
provide a mode of interaction, compatible with this standard.

2.3.1 Syntax

We adopt the syntax and the semantics of SMT-LIB formulas. The underlying logic
of SMT-LIB (version 2) is many-sorted first-order logic with equality. However,
unlike the conventional formulation of first-order logic, SMT-LIB does not define
a syntactic category of formulas distinct from terms. SMT-LIB defines formulas
as terms of the built-in Bool type [25] 1 . As a consequence, the conversion of
standard first-order formulas to SMT-LIB formulas is to coerce relations into Bool-
valued functions.

Definition An SMT-LIB signature Σ ≡ (ΣS,ΣF , µ, R) consists of the following:

• A set ΣS of sort symbols including the built-in type Bool.

• A set ΣF of function symbols including =, and boolean operators ∧ and ¬.

• A partial mapping µ from a set of variables V to ΣS.

1The logic of SMT-LIB is essentially a variation of many-sorted first-order logic with equality;
however, SMT-LIB incorporates ideas from higher-order logic. For example, SMT-LIB recognizes
formulas as terms of type Bool, or allows sort symbols of arity greater than zero. While these
features improve syntactic flexibility, they preserve the underlying many-sorted first-order logic of
SMT-LIB. Here, we restrict our definitions to the standard many-sorted first-order logic.

12

• A left total relation R from ΣF to ΣS+ which includes the following tuples by
default:

◦ 〈¬,Bool→ Bool〉 ∈ R and 〈∧,Bool→ Bool→ Bool〉 ∈ R

◦ 〈=, σ → σ → Bool〉 ∈ R for all σ ∈ ΣS

Definition Fix a signature Σ ≡ (ΣS,ΣF , µ, R). A term t over Σ is a well-sorted
term (or simply a term) of type σ ∈ ΣS, written as t : σ, is defined by the following
syntax:

• A variable x ∈ V such that µ(x) = σ is a term of type σ.

• Given a function symbol f with 〈f, σ1 → · · · → σk → σ〉 ∈ R and a list of well-
sorted terms t1 : σ1, . . . , tk : σk where σ1, . . . , σk ∈ ΣS, the term f(t1, . . . , tk)
is well-sorted of type σ.

• For a well-sorted term (t : Bool) and a variable (x : σ) where σ ∈ ΣS, then
∃(x : σ) . t is also a term of type Bool.

• For a well-sorted term (t : Bool) and a variable (x : σ) where σ ∈ ΣS, then
∀(x : σ) . t is also a term of type Bool.

Nullary SMT-LIB functions are treated as (SMT-LIB) constants.

Definition An SMT-LIB formula is a term of type Bool.

Notation. For convenience, we overload the operator : and write f : σ1 → · · · →
σk → σ for 〈f, σ1 → · · · → σk → σ〉 ∈ R.

Notice that SMT formulas are often regarded as ground and quantifier-free first-
order formulas [24]; however, SMT-LIB provides the syntax for existential and uni-
versal quantifiers in the general form. Nevertheless, the background fragments of
logic defined by SMT-LIB are primarily defined over quantifier-free formulas.

2.3.2 Semantics

The semantics of SMT-LIB formulas are essentially the same as those of many-sorted
first-order formulas [25].

Definition Let Σ be an SMT-LIB signature. An SMT-LIB model M consists of
the following:

• a set |M| of elements as domain, containing B = {true, false}

• for each sort σ ∈ ΣS, a set σM is a subset of |M|, such that BoolM = B

• for each constant (c : σ), cM is an element in σM.

13

• the interpretation of every (non-nullary) function (f : σ1 → · · · → σk → σ) in
M is a total function (f : σ1 → · · · → σk → σ)M from σM

1 × · · · × σM
k to σM.

The function (= : σ → σ → Bool) is interpreted as the identity predicate
over σM.

Definition Given a list of (typed) SMT-LIB variables ~v and an SMT-LIB model
M, an environment η : ~v −→ |M| in SMT-LIB is defined as a function that sends a
variable (v : σ) to an element e ∈ σM.

Fix a signature Σ ≡ (ΣS,ΣF , µ, R) and a model M over Σ. Let t be an SMT-LIB
term (possibly a formula) and η an environment from the variables ~v in t to |M|. A
term t denotes an element e in M, written JtKMη = e, as follows:

• for t ≡ x, where x is a variable, JtKMη = ηx.

• for a well-sorted term t ≡ f(t1, . . . , tk), then JtKMη = fM
k (Jt1KMη , . . . , JtkKMη).

• for a well-sorted term t ≡ ∃(x : σ).s = true, then JtKMη[x 7→e] = true for some

e ∈ σM.

• for a well-sorted term t ≡ ∀(x : σ).s = true, then JtKMη[x 7→e] = true for all

e ∈ σM.

A model M satisfies an SMT-LIB formula α in an environment η : Vars(α) −→
|M|, written as M |=η α, if and only if JαKMη = true. Accordingly, M satisfies a
theory T of SMT-LIB formulas under environment η, denoted by M |=η T , if and
only if for all β ∈ T , M |=η β.

The input script of SMT-LIB does not allow free variables in the input formulas
but this is theoretically insignificant: in the context of SMT, a formula ϕ(~x) is equiv-
alent to ∃x1, . . . , xn . ϕ(~x), whereby the free variables are existentially quantified.
Again, without loss of generality, the second formula is equisatisfiable to a formula
obtained by replacing the existentially quantified variables with fresh constants.

Retrieving Models. Unfortunately, SMT-LIB’s interface for interacting with
SMT-solvers does not provide a command for retrieving models. Various imple-
mentations of SMT-solvers offer different commands to access models of satisfiable
formulas. For instance, the commands get-model and show-model offered by Z3
and Yices return models of the input formulas after satisfiability checking. Moreover,
the structure and the content of the resulting models varies from one implementa-
tion to another. Specifically, various implementations do not agree on whether and
how uninterpreted elements (i.e., elements that are not denoted by the constants of
the input theory) should be included in the resulting models.

SMT-LIB, however, specifies a command get-value for querying a model M of
the formula in question. This command accepts a closed term t over the signature
of the input signature and returns JtKMη .

14

Chapter 3

Model-Exploration Framework

A standard approach to validate a first-order specification T of a system is by
theorem-proving: the user (i) captures a property about the system by a sentence
α, and (ii) utilizes a theorem-prover to see if α is provable from T . Alternatively, the
user can study models of T using a model-finder. By Gödel’s completeness theorem,
α follows from T if and only if T ∪{¬α} is unsatisfiable; that is, the approach based
on model-finding is logically equivalent to the one based on theorem-proving.

If α fails in T , a model-finder generates models that can serve as counterexam-
ples ; the models demonstrate situations where the system specified by T fails to
satisfy α. Also, the user might use a model-finding tool to explore models, as exam-
ples of the system’s execution, without specifying α. These models may correspond
to examples that confirm the user’s expectation, but there also may be models of
unanticipated situations, which reflect flaws in the specification.

In this section, we present a theoretical framework for exploring finite models
that facilitates an environment where the user studies his specification in interac-
tion with a model-finder. Our framework advocates for a systematic exploration of
models in order to understand the space of models of a theory as a whole, rather
than a series of individual incidents. The framework also supports the construction
of provenance information, which can explain a given model according to the user’s
theory.

The foundation of our model-exploration framework is twofold:

1. strategies for traversing the models of an input theory by augmentation.

2. a notion of provenance as a way to explain why elements are in the model and
why properties are true of them.

Our approach is realized in a model-finding assistant, Razor [31], described in
Section 3.3. We call Razor a model-finding assistant because users interact with it
to build and examine models.

15

3.1 Model-Exploration

Our solution to explore the space of all models of a theory T relies on a preorder
≤ on the models of T . Accordingly, we define a partial augmentation operation,
which takes a model M to a model N of T such that M ≤ N. A realization of this
exploration strategy is a model-finding tool that

1. constructs models of T that are minimal under the preorder ≤ on models.

2. computes a set of models, consisting of all ≤-minimal extensions of M by an
augmenting fact F .

The model-finder starts with a stream of models that are minimal under ≤.
Starting from an initial minimal model, the user can construct non-minimal models
of T by augmentation. When the user augments a given model M of T by some
fact F , other consequences, perhaps “disjunctive” ones, may be entailed by T .
The result of augmentation is a new stream of models of T containing the facts
in M and the augmenting facts F . The augmentation operation is partial as the
augmenting fact F might be inconsistent with M in T . An important feature of
this framework is that the navigation between the models is in the control of the
user. The augmentation operator enables the user to use his intuition to direct the
model-finder toward solutions that are potentially interesting to him.

Choosing a practically useful preorder ≤ is the primary challenge for implement-
ing a model-finder that supports model-exploration. Specifically,

1. different minimal models under ≤ should represent “various” solutions to the
user’s problem, specified as T .

2. every (finite) model N of T should be “represented” by some minimal model
M of T , given M ≤ N.

The first property above is necessary for presenting distinctive solutions to the
user’s problem and filtering the repetitive one. The second property makes every
(finite) model of the theory available to the user via augmentation.

Aluminum. Aluminum [32] is our first attempt to develop a tool for model-
exploration (see Chapter 7). The ordering relation on the models that Aluminum
constructs is the containment relation on models that are defined over the same
domain: for two models M and N, given |M| = |N|, M ≤ N if and only if M is a
submodel of N. Accordingly, Aluminum computes a set of models that are minimal
with respect to this containment ordering. And, the augmentation operation sends
a model M to a model N such that M is a submodel of N.

It is noteworthy that Aluminum requires the user to specify a bound on the
models it generates; that is, the domain of models is fixed a priori . For that reason,

16

defining the preorder on models over the same domain is not a restriction for the
ordering relation.

Restricting the preorder to models of the same domain, however, limits the
augmentation operation. Specifically , Aluminum does not support augmenting
models with new elements. Furthermore, Aluminum does not treat signatures with
equality; that is, the augmentation cannot equate distinct elements of the model.

Razor. Razor adopts the preorder 4, induced by the homomorphism on the mod-
els of the input theory T , for the ordering relation; that is, M ≤ N if M 4 N.
Consequently, Razor returns models that are homomorphically minimal.

This homomorphism preorder has a natural “information content” interpreta-
tion: when M 4 N, the model N has all the information in M (and perhaps more).
Suppose a user is wondering whether a certain state of affairs {S} is consistent with
a theory T , that is, she is looking for examples of T in which S holds. If M and N
are models of T ∪ {S}, with M 4 N, then exhibiting M conveys a clearer picture to
the user: the extra information in N as compared with M is not required for S to
hold. This extra information is a distraction to the user.

The augmentation operation implemented into Razor allows for adding new facts
to the current model, as well as equating distinct elements of the model. Further-
more, unlike Aluminum’s augmentation, augmentation may extend the domain of
the current model by new elements. For many theories T we can be sure that every
finite model of T is constructible in this incremental way.

3.2 Provenance Construction

Provenance information for a model allows the user to ask: “why is this element in
the model?”, “why is this fact true?” or “why are these two elements equal?”. The
model-finding tool then points the user to an axiom in the specification that can be
“blamed”. We introduce the two following classes of provenance information:

• Origin information: Every element in the model is there for a reason. Origin
information justifies the existence of any particular element of a model by
pointing to an existential quantifier or a function symbol in the theory.

• Justification information: Every fact in the model can be traced back to a
specific instance of a particular axiom in the specification.

Provenance information is a direct consequence of computing models that are
minimal with respect to information content. Every fact in a minimal model is
necessary for satisfying the input theory; thus, it must be justified by an axiom in
the theory. An accidental fact, which is optionally true in a non-minimal model,
cannot be justified.

17

Razor. Razor computes origin and justification information for the models that it
returns to the user. Any element in a homomorphically minimal model, computed
by Razor, is there in response to a sentence in the user’s input, indeed as a witness
for a particular existential quantifier or a function in the input theory. Razor names
the element by a term over a witnessing signature, which inductively explains the
element’s origin in terms of other elements’ origins. If two names denote the same
element in a model, there is a particular equation in the theory which is instantiated
with the said two names (see Section 4.3.3). Similarly, any atomic fact of a minimal
model is there because of the requirement that a particular input sentence hold.
Razor keeps track of these justifications—we call them “naming” and “blaming,”
respectively—and can answer provenance queries from the user.

The (relative) minimality of the models produced by an augmentation ensures
that provenance information can be computed over them as well.

3.3 Razor, a Model-Finding Assistant

We review Razor’s key features that enables the user to explore the (finite) models
of a theory. Razor supplies a Read-Eval-Print Loop (REPL) to the user, which
operates in three “modes”, illustrated by Figure 3.1:

1. Theory: allows the user to load a theory and edit the model-finding options.

2. Explore: presents models of the input theory and allows the user to explore
(non-minimal) models via augmentation.

3. Explain: provides the user with provenance information about an existing
model.

The current user interface of Razor is rather primitive. Input theories are pre-
sented as text files and models are displayed as text as well. An important area of
future work is to improve the visual display of models, to facilitate users’ apprehen-
sion of them.

In this section, we introduce the primary features of Razor in interaction with
the REPL. In Section 6.1, we present concrete examples of such interaction with the
tool.

3.3.1 The Theory Mode

The REPL initially starts in the Theory Mode. The user can re-enter this mode by
entering the following command:

> @theory

Figure 3.2 specifies the grammar of Razor’s input theory files. The user loads a
theory in Razor’s input language by the following command:

18

Theory

Explore

Explain

load
tptp
depth
pure

@theory

@explain

@explore

next
aug
undo

@explain
@theory

@explore

origin/origins/origin*/origins*
blame

@explore

@theory

@explain

Figure 3.1: State transition in Razor’s REPL

> load <FILE>

If Razor detects a syntax-error in the user’s input file, the error will be reported
to the user; otherwise, Razor loads the theory and will be ready for constructing
models.

Bounding Configuration. The user may edit search options before constructing
models. The next command bounds the depth of search (see Section 4.3.5):

> depth <DEPTH>

The parameter passed to this function is an integer value as the upper-bound for
the depth the terms that witness the elements of models. The bound restricts the
domain of models generated by Razor to elements that are witnessed by terms of
a depth less than or equal to the given depth. The default value of this parameter
is −1, indicating an unbounded search, which is suitable for weakly acyclic (see
Section 4.3.4) theories.

If the user runs a bounded search, she can choose between either of the two
bounding strategies, pure or reuse, implemented into Razor. When the maximum
bound is reached, the pure mode returns a partial model over the elements that are
witnessed by terms of depth within the specified bound. The reuse mode, on the
other hand, tries to reuse the existing elements, instead of creating new ones, to
create complete models of the input theory. Both strategies are explained in detail
in section Section 4.3.5.

19

input ::= theory depths?

theory ::= [sequent ";"]*

sequent ::= body "=>" head | head | "~" body

body ::= conjunctive

head ::= [existential "|"]* existential

existential ::= ["exists" [skolemfun? variable]+ "."]* conjunctive

conjunctive ::= [atom "&"]* atom

atom ::= identifier terms? | term "=" term

| "Truth"

| "Falsehood"

terms ::= "(" [[term ","]* term]? ")"

term ::= identifier terms | variable | constant

skolemfun ::= "<" identifier ">"

constant ::= "’" identifier

variable ::= identifier

identifier ::= [_a-zA-Z][_a-zA-Z0-9]*

depths ::= [depth ","]* depth

depth ::= "@DEPTH" skolemfun "=" number

Precedence of operators (from high to low):

=

&

|

=>

Figure 3.2: Razor’s input grammar

The default bounding strategy is the reuse mode. By running the following
command, the user can activate or deactivate the pure strategy:

> pure <FILE>

TPTP Syntax. The current version of Razor also supports input theories in the
syntax of TPTP [33]:

> tptp <FILE>

Since TPTP inputs in CNF are essentially in the geometric form, they can be
processed by the current version Razor. For free-form FOF inputs, Razor currently
utilizes a “best-effort” algorithm to convert the input to the geometric form. A more
sophisticated conversion may apply Skolemiziation (when needed) to transform any
first-order theory to the geometric form.

20

3.3.2 The Explore Mode

After loading the input theory, the user can explore models of the theory in the
Explore Mode:

> @explore

After entering the Explore Mode, the REPL automatically runs the underlying
model-finding engine to build models of the input theory, and it presents a first
minimal model (if it exists) to the user. The user can enter the next command to
see another (minimal) model of the theory if such a model exists:

> next

Augmentation. The Explore Mode also allows the user to augment the current
model with additional facts in order to construct non-minimal models of the theory:

> aug <FACT>

If the augmenting fact is consistent with the current model in the input theory,
Razor presents the resulting model, consisting of (i) the facts in the model that
was augmented, (ii) the augmenting fact, and (iii) additional facts that are entailed
by the augmentation. Otherwise, if the augmenting fact is not consistent with the
current model, Razor reports that the augmentation is inconsistent.

Notice that after an augmentation, the command next will be available for ex-
ploring the possibly multiple resulting models. Moreover, any of the resulting models
may be further augmented to construct richer models of the theory. At any mo-
ment, the user can undo an augmentation and revisit the previous model (before
augmentation) by entering the following command:

> undo

Conceptually, next and aug organize the models of the input theory into a two-
dimensional space illustrated by Figure 3.3. By contrast, a traditional model-finder
delivers an iterator over the models; the iterator visits the models in no particular
order; and, the user has no control over the model that will be presented to her
next.

MF1
00 MF1

01 · · · MF2
00 · · · MF1

20 · · ·

M0 M1 M2 · · ·

augment

next

Figure 3.3: Conceptual space of models in Razor

21

3.3.3 The Explain Mode

The Explain Mode provides the user with explanatory provenance information about
the models constructed by Razor. The REPL enters the Explain Mode by the
following command:

> @explain

Element Origins. The user can then asks for provenance information about the
current model (constructed in the Explore Mode). For obtaining provenance in-
formation about an element of the current model, the user can enter the following
command:

> origin <ELEMENT>

where the input parameter to this command is the name of the element.
In response, Razor presents an instance of a sentence in the user’s theory, induced

by a variable assignment from the free variables of this sentence to the other elements
of the current model, which justifies the existence of the element in question (see
Section 6.1 for an examples).

An equation in the user’s theory may identify distinct elements of the model,
resulting in an element that can be explained by multiple origins. The following
command displays all possible origins of a given element:

> origins <ELEMENT>

If the user is interested in a “deep inspection” for the origin of an element, and
every element in the model that originates the element in question, she can enter
the command below:

> origin* <ELEMENT>

This command recursively displays the origin of the input element, and the origins
of the elements that are mentioned in the origin information about the element in
question. Finally, the next command

> origins* <ELEMENT>

performs a deep inspection recursively while presenting all origins of all elements.

Blaming Facts. The Explain Mode also allows the user to “blame” a given fact
in the current model by the following command:

> blame <FACT>

The input to this command is a fact that is true in the current model. In
response, Razor displays an instance of a sentence in the user’s theory, which requires
the given fact to be true in the current model.

22

Chapter 4

Geometric Logic

Geometric logic is the logic of observable properties. Every statement in a geometric
theory is an implication between two positive-existential formulas (PEF), in which
the use of negation and universal quantification is prohibited. It is a well-known
result that PEFs are preserved under the homomorphism on models; that is, once a
PEF is “observed” in a model, it will remain true as the the model is extended by
further information under homomorphism. Consequently, geometric logic is often
understood as the logic of information preserved by the homomorphism on models.

The observable properties of geometric logic comprises the following:

• Only finitely many observations are needed to show that an observable prop-
erty holds in a model.

• Observable properties of a model are preserved as the model is extended by
homomorphism.

Because of the positivity of geometric logic, it is always possible to demonstrate
the presence of an observable property however, it is not always possible to show
its absence [34]. The positivity of geometric logic has profound consequences on the
semantics of first-order formulas in geometric form, suggesting them as viable choice
for specification languages [34,35].

In this chapter, we introduce the syntax of formulas in geometric form in Sec-
tion 4.1 and state well-known results about the semantics of geometric logic in
Section 4.2. Next, in Section 4.3, we present the Chase, a well-known algorithm
from the database community that can be used to construct models of geometric
theories. Finally, in Section 4.4, we discuss how the positivity of geometric logic
enables us to augment models of geometric theories with additional information.

4.1 Syntax

Definition A positive-existential formula (PEF) over a signature Σ is a formula over
Σ with ∧, ∨, ∃ and = as connectives. Infinitary disjunction

∨
i is also permitted.

23

Remark The use of infinitary disjunction is prohibited in Coherent logic, a re-
stricted form of geometric logic.

Definition A geometric sequent over a signature Σ is a construct ϕ `~x ψ where ϕ
and ψ are PEFs over Σ and ~x = FV(ϕ) ∪ FV(ψ).

A geometric sequent ϕ `~x ψ may be regarded as a shorthand for ∀~x . (ϕ → ψ).
We refer to ϕ and ψ as the body and the head of ϕ `~x ψ respectively.

Definition A geometric theory G over a signature Σ is a set of geometric sequents
over Σ.

4.1.1 Standard Forms

The following are well-known results about geometric formulas. Proofs of Lemma 4.1.1
and Lemma 4.1.2 (in a more general setting) may be found in [36].

Lemma 4.1.1. Every PEF ϕ(~x) is logically equivalent to a standard PEF of the
form ∨

i

(∃~yi .
ni∧
j=1

Pij(~x, ~yi))

Lemma 4.1.2. Every geometric sequent σ ≡ ϕ `~x ψ is equivalent to a set of
standard geometric sequent of the form ϕ `~x ψ where ϕ and ψ are standard PEFs,
and ϕ contain no ∃ or ∨.

Corollary 4.1.3. Every geometric theory is logically equivalent to a geometric
theory of standard sequents.

In the rest of this dissertation, we assume geometric sequents in the standard
form.

4.2 Semantic Properties

If ϕ(~x) is a PEF true of a tuple ~e in a model M then the truth of this fact is witnessed
by a finite fragment of M. Thus, if M satisfies α with ~e and M is expanded by new
elements or facts, α(~x) still holds of ~e in the resulting model. For this reason, proper-
ties defined by PEFs are sometimes called observable properties [37]. It is a classical
result that PEFs are precisely the formulas preserved under homomorphisms; Ross-
man [38] has shown that this holds even if we restrict attention to finite models
only. Thus the homomorphism preorder captures the observable properties of mod-
els: this is the sense in which we view this preorder as an “information-preserving”
one (see Chapter 3). We formally show that

24

1. PEFs are preserved under homomorphism.

2. every first-order theory is equisatisfiable to a geometric one.

The second claim above suggests geometric logic not as a restricted fragment of
first-order logic but a syntactic variation of first-order logic with the same expressive
power as first-order formulas.

Theorem 4.2.1 is a well-known result about PEFs. Notice that this theorem is
not true for an arbitrary first-order formula as it may contain ¬ and ∀:

Theorem 4.2.1. Let M and N be models such that M 4h N. For a PEF ϕ, if
M |=η ϕ then N |=h◦η ϕ, where h ◦ η is the functional composition of h and η.

Proof. Observe that this is true for atomic PEFs by the definition of homomorphism
on models. We prove the theorem for complex PEFs by induction:

• Assume that for PEFs α and β, M |=η α implies N |=h◦η α, and M |=η β
implies N |=h◦η β. For ϕ ≡ α ∧ β, it is easy to show that M |=η ϕ implies
N |=h◦η ϕ. Likewise, for ϕ ≡ α ∨ β, M |=η ϕ implies N |=h◦η ϕ.

• For ϕ ≡ ∃x . α, assume that for some environment η, there exists some
e ∈ |M| such that M |=η[x 7→e] α. By the induction hypothesis, M |=η[x 7→e] α
implies N |=h◦η[x 7→e] α; therefore, N |=h◦η ϕ.

Preservation of PEFs under homomorphism has been carefully studied in cat-
egory theory and theory of topos [36, 39–41]. The models of a geometric formula
form a category under homomorphism:

M0
h0−→M1

h1−→M2
h2−→ . . .

As we progress along the homomorphism arrows, a model Mi is augmented with
more information. The homomorphism hi is guaranteed to preserve the information
in Mi while it may introduce new elements to the domain of Mi, add new facts to
Mi, or send distinct elements of Mi to the same element in Mi+1.

Expressive Power. By Theorem 4.2.2, any first-order formula is equisatisfiable
to a geometric theory. And, because first-order satisfiability is undecidable, satisfi-
ability of theories in geometric form is undecidable as well.

Theorem 4.2.2. A first-order formula is equisatisfiable to a geometric theory.

25

Proof. Assume α ≡ (Q1x1 . . . Qmxm . β) in PNF, where Qis are either ∀ or ∃. After
Skolemization, α is equisatisfiable to a formula (∀~y . γ). Finally, after putting γ in
CNF, α is equisatisfiable to (∀~y .

∧k
i=1(ϕi → ψi)) where ϕis are conjunctions and

ψis are disjunctions of atomic formulas. Every implication ϕi → ψi corresponds to
a geometric sequent, thus, α is equisatisfiable to a geometric theory.

Notice that in the previous proof, conversions to PNF and CNF maintains logical
equivalency but Skolemization only preserves equisatisfiability.

4.3 The Chase

The Chase is a classical model-finding algorithm that constructs a set-of-support
for a given satisfiable geometric theory. The Chase was developed by the database
community, applied on a variety of problems including query equivalence, query
optimization and data-dependency [16–19].

In this section, we first introduce the notion of a set-of-support for a theory; we
describe the classical Chase algorithm; and, we show that the Chase constructs a
set-of-support for a given satisfiable geometric theory.

4.3.1 Universal Models

Definition A model U is said to be a universal model of a theory T if and only if:

• U |= T

• For every model M, if M |= T , then U 4M.

Observe that an arbitrary theory T does not necessarily have a universal model.
Consider ϕ ≡ (∃x, y . P (x) ∨ Q(y)) for example: ϕ has two “minimal” models,
M ≡ {PM(e)} and N ≡ {QN(e)}, which could be candidates for being the universal
model of ϕ. However, neither M 64 N nor N 64M.

The following extends the definition of universal model to a set-of-support for a
given theory:

Definition A set S of models is said to be a set-of-support for a theory T if and
only if:

• For every U ∈ S then U |= T .

• For every model M |= T , there exists a model U ∈ S such that U 4M.

Intuitively speaking, every model of T is reachable from some model in S by
homomorphism. It follows from the definition that any superset of a set-of-support
is itself a set-of-support.

26

4.3.2 The Witnessing Signature

A crucial aspect of our approach to constructing and reasoning about models is a
notation for witnessing an existential quantifier:

Notation. Given a geometric sequent α `
∨
i(∃yi1 . . . ∃yip . βi(~x, yi1, . . . , yip)), we

assign a unique, fresh, witnessing (partial) function symbol fik to every existential
quantifier ∃yik, written as α `

∨
i(∃fi1yi1 . . . ∃fipyip . βi(~x, yi1, . . . , yip)). This deter-

mines an associated sentence α `
∨
i βi(~x, fi1(~x), . . . , fip(~x)) in an expanded signa-

ture, the witnessing signature.

This is closely related to Skolemization of course, but with the important dif-
ference that our witnessing functions are partial functions, and this witnessing is
not a source-transformation of the input theory. This device enables us to reason
more conveniently about the models constructed by the Chase. The terms over the
witnessing signature allow Razor to report provenance for elements of the models it
constructs.

Definition Fix a geometric theory G over a signature Σ ≡ (ΣR,ΣF), and a set of
witness functions F for the existential quantifiers in G. Let M be a model over the
signature Σw ≡ (ΣR,ΣF ∪ F). The witness-reduct of M is the reduct M− of M to
Σ.

4.3.3 The Chase Algorithm

A run of the classical (or standard) Chase on a geometric theory G starts with a
given model M and proceeds by consecutive invocations of a sub-procedure, the
chase-step. The initial model M and the subsequent models constructed by the
chase-step are models of the witnessing signature of G. The domain of the models
that the Chase creates is a partial equivalence relation on the elements witnessed by
the witnessing terms. When processing a sequent in G with disjunctions in its head,
the Chase branches to do an exhaustive search for models. It is easiest to present
the algorithm as a non-deterministic procedure, where different runs of the Chase
induced by the non-deterministic choices lead to various models of the theory.

Definition Fix a signature Σ ≡ (ΣR,ΣF) and a set of witness functions F . Let σ ≡
ϕ `~x ψ be a geometric sequent over Σ whose existential quantifiers are witnessed by
functions in F . Let M be a model over the witnessing signature Σw ≡ (ΣR,ΣF ∪F),
M− be the reduct of M to Σ, and η : ~x → |M| be an environment. The classical

chase-step, denoted by M (σ,η)−−→ N, accepts σ, M, and η as input and returns a model
N over Σw according to Algorithm 1.

Algorithm 2 demonstrates a non-deterministic version of the Chase. Starting with
an empty model M over the witnessing signature Σw, for witness-reduct M− of M, if
M− |= G, then M will be returned. Otherwise, the algorithm non-deterministically

27

Algorithm 1 Chase-Step

Require: M− |=η ϕ, M− 6|=η ψ
Ensure: N |=η ϕ, N |=η ψ

1: function ChaseStep(M, σ ≡ ϕ `~x ψ, η)
2: if ψ = ⊥ then fail

3: N ← M
4: choose disjunct (∃f1y1, . . . ,∃fmym .

∧n
j=1 Pj(~x, ~y)) in ψ

5: µ ← η[y1 7→ Jf1(~x)KMη , . . . , ym 7→ Jfm(~x)KMη]
6: |N| ← |N| ∪ {Jfi(~x)KMη | 1 ≤ i ≤ m} . each Jfi(~x)KMη denotes a fresh element
7: N ← N ∪ {PN

1 [µ~x, µ~y], . . . , PN
n [µ~x, µ~y]}

8: return N

chooses a sequent σ ≡ ϕ `~x ψ in G together with an environment η : ~x −→ |M|
such that M− 6|=η σ. Then, the Chase attempts to “repair” M− in σ by making a
chase-step.

The process of repairing the sequents of M− in G continues until the Chase
terminates with success, resulting in a model M where the chase-step cannot be
further applied. A run of the Chase fails if a chase-step fails on a model N where
the body of a sequent with an empty head is true in the witness-reduct of N. Notice
that different runs of the Chase induced by the non-deterministic choices of the
algorithm lead to various models of G in the extended signature Σw.

Algorithm 2 Chase

1: function Chase(G)
2: M ← ∅ . start with an empty model over an empty domain
3: while M− 6|= G do
4: choose σ ∈ G, η : ~x −→ |M| s.th. M− 6|=η σ
5: M ← ChaseStep(M, σ, η)

6: return M

Terminology. A model M of a geometric theory G that is constructed by some run
of the classical Chase is said to be a chase-model of G.

Fairness

A deterministic implementation of the Chase that utilizes a scheduler for selecting
the sequent σ and the environment η to repair in the current model is said to be
fair if the scheduler guarantees to eventually evaluate every pair of possible choices
for σ and η. The next definition formally captures this idea:

28

Definition Let G be a geometric theory and ρ be an infinite run of the Chase
starting from an empty model M0:

ρ = M0
(σ0,η0)−−−−→M1

(σ1,η1)−−−−→ . . .Mi
(σi,ηi)−−−→Mi+1

(σi+1,ηi+1)−−−−−−→ . . .

Let D ≡
⋃j
i |Mi| be a set of elements, consisting of the domain of the first j

models in ρ. Assume that for some environment η : FV(σ) −→ D, and some σ ∈ G,
Mj 6|=η σ. We say ρ is a fair run of the Chase if and only if for all such η, there
exists a chase-step k in ρ such that j ≤ k and (σk, ηk) = (σ, η).

Chase Properties

The following records basic properties of the Chase; each result is either well-known
or a routine generalization of known facts. We first provide a proof for Lemma 4.3.1,
which we refer to as the Oracle. The Oracle will then be used to prove a fundamental
result about the Chase, stated by Theorem 4.3.2. According to this theorem, the
reducts of all models returned by various runs of the Chase form a set-of-support
for the given geometric theory.

Lemma 4.3.1. Fix a geometric theory G over a signature Σ, and a witnessing
signature Σw, obtained by extending Σ with witness functions assigned to the exis-
tential quantifiers of G. Let M be a model over Σw and M− be the witness-reduct
of M to Σ such that M− |= G. Let N be a structure over Σw given N 4 M and N−
be the witness-reduct of N to Σ. Then for any sequent σ ≡ ϕ `~x ψ in G and any

environment η : ~x −→ |N|, if N− 6|=η σ, then a chase-step N (σ,η)−−→ N′ exists such that
N′ 4M.

Proof. Because N− 6|=η σ, then N− |=η ϕ but N− 6|=η ψ. Letting h be the homomor-
phism from N to M, it is given that M− |=h◦η ϕ. Since M is a model of G, some
disjunct (∃f1y1 . . . ∃fpyp . β(~x, y1, . . . , yp)) of ψ must be true in M− in environment
h ◦ η. That is, there exist elements Jf1(~x)KMη , . . . , Jfp(~x)KMη in M such that M |=h◦µ β,
where µ = η[yi 7→ Jfi(~x)KMη] (1 ≤ i ≤ p).

There exists a chase-step N (σ,η)−−→ N′ that chooses the aforementioned disjunct in ψ:
it extends N with fresh elements Jf1(~x)KN′

η , . . . , Jfp(~x)KN′
η in a way that N′ |=λ β where

λ = η[yi 7→ Jfi(~x)KN′
η] (1 ≤ i ≤ p).

One checks that h[Jfi(~x)KN′
η 7→ Jfi(~x)KMη] (1 ≤ i ≤ p) is a homomorphism from N′ to

M.

The following is a well-known result about the Chase: the set of all models
generated by the Chase for a given geometric theory G is a set-of-support for G.
Note that the Chase might not halt, in which case, if the Chase is executed in a fair
manner, the resulting infinite structure will be a model of G.

29

Theorem 4.3.2. Let Σ be a signature, G be a geometric theory over Σ, and Σw be
a witnessing signature obtained by extending Σ with the witness functions assigned
to the existential quantifiers in G. Theory G is satisfiable if and only if there exists a
fair run of the Chase on G that does not fail. Let S be the set of all models obtained
by some run of the Chase on G (here we include the possibility of infinite runs). For
every model M of G, a model U ∈ S exists such that U− 4 M, where U− is the
witness-reduct of U to Σ.

Proof. We show that for every model N of G, there exists a run ρ of the Chase that
computes a model M with a homomorphism from the witness-reduct M− of M to
N: Let M0 be the empty model. The empty function h : |M0

−| → |N| is a trivial
homomorphism from the witness-reduct M0

− to N.
Create a fair run ρ by iterating the Oracle (Lemma 4.3.1) on the structures generated
by successive chase-steps starting from M0:

ρ = M0
(σ0,η0)−−−−→M1

(σ1,η1)−−−−→ . . .Mi
(σi,ηi)−−−→Mi+1

(σi+1,ηi+1)−−−−−−→ . . .

If the Chase terminates with Mn after n steps, then the witness-reduct Mn
− is

a model of G, and Mn
− 4 N by Lemma 4.3.1. Alternatively, if the Chase does not

terminate, the resulting structure M∞ will be infinite. Let M∞− be the witness-
reduct of M∞. Since the Oracle guarantees that M∞− 4 N, it suffices to show M∞−
is a model of G; that is, for every sequent σ ≡ ϕ `~x ψ in G and every environment
η : ~x −→ |M∞−|, then M∞− |=η σ: observe that if M∞− |= ϕ, Mi

− |= ϕ for some i.

Because ρ is a fair run of the Chase, then for some j ≥ i, Mj
(σ,η)−−→ Mj+1. Finally,

because Mj+1 is a submodel of M∞ and ψ is positive, M∞− |=η ψ.

Provenance

We define the provenance of elements and facts for chase-models. Razor does not
directly construct models using the Chase; nevertheless, the Chase-based grounding
algorithm presented in Section 5.2 computes provenance information for the elements
and facts of the set of possible facts, which contains the ingredients of the models
that Razor computes.

Observe that every element added to a chase-model (line 6 of Algorithm 1) is
“named” by a closed term in the witnessing signature. This term is a provenance for
that element. When the chase-step identifies two (distinct) elements as it processes
an equation in the head of a sequent, the provenance of the resulting element is the
set union of the two elements being equated.

Moreover, notice that every fact F added by a chase-step M (σ,η)−−→ N (line 7
of Algorithm 1) can be “blamed” in N on a pair (σ, η, i), written as blameN(F) =
(σ, η, i), where i is the ordinal of the disjunct chosen by the chase-step (line 4 of
Algorithm 1).

30

4.3.4 Termination and Decidability

In general, termination of the Chase on an arbitrary geometric theory is undecidable.
[42]. However, Fagin et al. [43] suggest a syntactic condition on geometric theories,
known as weak acyclicity, under which the Chase is guaranteed to terminate. Briefly,
one constructs a directed graph, namely a dependency graph whose vertices are
positions in relations and whose edges capture the possible “information flow” among
positions. A theory is weakly acyclic if there are no cycles of a certain form in
this graph. The notion of weakly acyclicity in [43] is defined for theories without
disjunction, equality, and function symbols. However, the obvious extension of the
definition to the general case supports the argument for termination in the general
case.

Definition Let G be a geometric theory over a relational signature Σ = (ΣR, ∅). A
dependency graph DG = (V , E , E∗) for G—consisting of a set of vertices V , a set of
regular edges E , and a set of special edges E∗—is defined by the following:

• For each relation R of arity k in ΣR, the pair (R, i) (1 ≤ i ≤ k) is a vertex in
V .

• For every sequent (ϕ `~x
∨
i ∃~y . ψi) in G

– for every occurrence of a variable x ∈ ~x at a position p of a relation R
in ϕ, for every occurrence of x at a position q of a relation S in some ψi,
(R, p)→ (S, q) is an edge in E .

– for every occurrence of a variable y ∈ ~y at position q of a relation S
in some ψi, for every occurrence of a variable x ∈ ~x at position p of a
relation R in ϕ, (R, p)

∗−→ (S, q) is a special edge in E∗.

Weak Acyclicity

The theory G is said to be weakly acyclic if and only if DG contains no cycle involving
a special edge. It is a well-known result that if DG is weakly acyclic, then every
run of the Chase on G is terminating. Observe that if G is such that all runs of the
Chase terminate, then—by König’s Lemma—there is a finite set of models returned
by the Chase. Thus we can compute a finite set that provides a set-of-support for
all models of G relative to the homomorphism order 4.

Since weak acyclicity implies termination of the Chase we may conclude that
weakly acyclic theories have the finite model property; that is, a weakly acyclic
theory is satisfiable if and only if it has a finite model. Furthermore, entailment of
positive-existential sentences from a weakly acyclic theory is decidable, as follows.
Suppose G is weakly acyclic and α is a positive-existential sentence. Let M1, . . . ,Mn

be the models of G. To check that α holds in all models of G it suffices to test α in
each of the (finite) models Mi, since if N were a counter-model for α, and Mi the
chase-model such that Mi 4 N, then Mi would be a counter-model for α, recalling

31

that positive-existential sentences are preserved by homomorphisms. This proof
technique was used recently in [44] to show decidability for the theory of a class of
Diffie-Hellman key-establishment protocols.

4.3.5 The Bounded Chase

For theories that do not guarantee termination of the Chase, we must resort to
bounding the search. We describe three variations of a bounding strategy based
on the notion of Skolem depth or simply the depth of search, which is inspired by
the inductive nature of the Chase. The depth of search is a natural number d
that bounds the depth of the witness terms constructed by the Chase in line 6 of
Algorithm 1. We demonstrate the behavior of the three bounding strategies by an
example in Section 4.3.6.

Partial Model Building

A straight-forward strategy is to simply refuse introducing fresh elements for wit-
nessing terms at a depth greater than the bound d. That is, we return a submodel
of a (possibly infinite) chase-model defined over the witnessing terms of depth less
than or equal to d. Notice that the resulting partial model is not always a model
of the input theory; however, every fact or element in this model is supported by
a provenance. This is an optional strategy, namely the pure mode, which can be
selected by the user to bound the search in Razor.

Uncontrolled Reuse

If we insist on constructing a (complete) model of the input theory within the given
depth d—provided such a model exists—we can reuse an existing element witnessed
by s (depth(s) ≤ d) instead of creating a fresh element for a witnessing term t where
depth(t) > d. Given n existing elements within the depth d, the “uncontrolled reuse”
strategy induces n disjunctive choices for all possible reuses; thus, this method is
inefficient for a näıve implementation of the Chase (see Section 8) that branches on
disjunctions. Also, observe that the equations between witnessing terms, induced
by reusing existing terms, cannot be justified with respect to the user’s input theory.

A more radical “loop check” strategy is suggested by Baumgartner [45], which
freely reuses elements without considering a depth d. Unlike the reuse strategy
described above, loop check guarantees to return all existing models within depth
d. However, we are interested in models that are as close to the homomorphically
minimal ones as possible; thus, we avoid introducing “accidental” equations in order
to preserve the “purity” of the models inside the given bound. It is noteworthy that
by Theorem 4.3.2, for every model N that could be constructed by introducing
arbitrary equations, the Chase guarantees to deliver at least a model M such that
M 4 N if the bound d is sufficiently large.

32

Controlled Reuse

A more subtle reusing strategy equates elements witnessed by terms that are equiva-
lent up to depth d. Say that two ground terms s ≡ f(s1, . . . , sm) and t ≡ g(t1, . . . , tn)
are d-equivalent, written s ≈d t, if they agree, as trees, up to depth d. There is a
natural way to view the set of closed terms as a metric space, defining the distance
between distinct terms s and t is 2−d where d is the least depth such that s 6≈d t.
If we fix a constant symbol c then every closed term has a canonical representative
for its ≈d-equivalence class: we simply truncate the term at depth d if necessary by
replacing the level-d subterm by c.

When we apply the above ideas to the closed terms that serve as names for
elements of a model built by the Chase, terms that are “close” in the metric above
are those that share much of their name, and intuitively behave similarly in the
model. The user can specify the maximum depth d, and when the Chase is about to
create a new element with name t whose name-depth is greater than d, we instead
reuse the element named by the depth-d term that is ≈d-equivalent to t. Note that
the two terms thus equated are at distance less than 2−d.

The net result is that we construct a model in which terms have been identified
that may not have been equal in a pure chase-model. But in a precise sense, we
only identify elements that are close in the sense of the metric above. This is the
default bounding strategy, namely the reuse mode, implemented into Razor.

4.3.6 Chase Examples

In this section, we provide examples of runs of the Chase on various geometric
theories.

Weak Acyclicity

` ∃a,bx y . R(x, y)

R(x,w) ` ∃fy . Q(x, y)

Q(u, v) ` ∃gz . R(u, z)

Figure 4.1 displays the dependency graph of the theory above. Since the depen-
dency graph does not contain a cycle with a special edge (labelled with asterisks),
the theory is clearly weakly acyclic. The Chase proceeds on this theory as follows:
starting with an empty model, the Chase treats the first sequent. The Chase cre-
ates new element e1 and e2, respectively witnessed by a and b, and adds the fact
R(e1, e2). Then the second sequent fails, so the Chase adds an element e3 to in-
stantiate ∃y, witnessed by f(a, b), and adds the fact Q(e1, e3). The third sequent is
satisfied in the resulting model

{R(e1, e2), Q(e1, e3), a = e1, b = e2, f(a, b) = e3}

thus, the procedure terminates with this model.

33

R1 R2

Q1 Q2

**

Figure 4.1: Dependency graph of the weakly acyclic example

Non-Terminating Chase This example is a very slight syntactic modification of
the previous one (in the head of the third sequent). The dependency graph of this
theory, illustrate by Figure 4.2, contains a cycle with special edges; thus, the theory
is not weakly-acyclic.

` ∃a,bx y . R(x, y)

R(x,w) ` ∃fy . Q(x, y)

Q(u, v) ` ∃gz . R(z, v)

In this example, the first two steps of the Chase are the same as before, yielding
the model below:

{R(e1, e2), Q(e1, e3), a = e1, b = e2, f(a, b) = e3}

But now the third sequent requires creation of a new element e4, witnessed by
g(a, f(a, b)), and the fact R(e4, e3). Then the second sequent fails in the model

{R(e1, e2), Q(e1, e3), R(e4, e3), a = e1, b = e2, f(a, b) = e3, g(a, f(a, b)) = e4}

and so we add another element . . . and it is easy to see that the Chase will never
terminate on this theory.

Note, however, that the infinite run of the Chase that is induced does create
an (infinite) model of the theory. As noted above, this is a general fact about fair
Chase runs. The fact that the process creates models “in the limit” is a necessary
component of the completeness proof: unsatisfiable theories will necessarily lead to
finitely-failing computations.

Fairness This example demonstrates the importance of fairness for correctness of
Theorem 4.3.2:

` ∃a,bx y . R(x, y)

R(x, y) ` ∃fz . R(y, z)

R(x, y) ` ⊥

34

R1 R2

Q1 Q2

*

*

Figure 4.2: Dependency graph of the non-terminating example

Consider an “unfair” run of the Chase, which starts with the first sequent, then,
continuously favors the second sequent over the last one: it repeatedly creates new
facts R(e1, e2), R(e2, e3), R(e3, e4), . . . , thus, never terminates. However, a fair
run of the Chase will eventually treat the last sequent and terminate with failure.

The Bounded Chase Consider the theory from the previous example in the ab-
sence of the its last sequent:

` ∃a,bx y . R(x, y)

R(x, y) ` ∃fz . R(y, z)

An unbounded run of the Chase on this theory is non-terminating. Let us explore
the behavior the bounding strategies presented in Section 4.3.5 up to depth 2:
The following is a partial model over witnessing terms of less than or equal to 2:

M0 = {R(e1, e2), R(e2, e3), R(e3, e4), a = e1, b = e2, f(a, b) = e3, f(b, f(a, b)) = e4}

The elements e1, e2, e3, and e4 are named by terms of depth 0, 0, 1, and 2
respectively. Clearly, M0 does not satisfy the given theory as the second sequent is
not satisfied by the environment {x 7→ e3, y 7→ e4}. The uncontrolled reuse strategy
results in four distinct models of this theory, induced by the four reusing options.
Each model is an extension of the previous partial model, M0:

M1 ≡M0 ∪ {R(e4, e1), f(f(a, b), f(b, f(a, b))) = e1}

M2 ≡M0 ∪ {R(e4, e2), f(f(a, b), f(b, f(a, b))) = e2}
M3 ≡M0 ∪ {R(e4, e3), f(f(a, b), f(b, f(a, b))) = e3}
M4 ≡M0 ∪ {R(e4, e4), f(f(a, b), f(b, f(a, b))) = e4}

Observe that the reused element in each model is denoted by two distinct wit-
nessing terms, evidencing an (accidental) equation among models. The result-
ing models are models of the input theory; however, they are not homomorphi-
cally minimal due to the reuse. The controlled reuse strategy only results in the

35

model M4 above: instead of introducing a new element for the witnessing term
t ≡ f(f(a, b), f(b, f(a, b))), the element e4, which is named by s ≡ f(b, f(a, b)) is
reused because f(f(a, b), f(b, f(a, b))) ≈2 f(b, f(a, b)).

A Failure of Minimality To gain some intuition about minimality and disjunc-
tion, consider the (propositional) theory

` (A ∨B)

A ` B

The Chase can generate two models here, one of which fails to be minimal. What
has gone wrong is that the disjunction is spurious, in the sense that one disjunct is
subsumed by the other in the context of the rest of the theory. This little example
makes it clear that any implementation of the Chase that explores disjuncts without
doing global checks for the relationships among the models being constructed can
end up creating models that are not minimal, essentially because the theory the
user presented is not as “tight” as it might be.

This is an interesting phenomenon, since it is still the case that, even in a non-
minimal model, no element or fact is created except when it is required: every
element constructed by the Chase will be witnessed by a term in the witnessing
signature.

Nevertheless, Razor’s model-finding algorithm presented in Chapter 5 never re-
turns non-minimal models as it generates models by a minimization algorithm that
checks for minimal models globally.

Conference Management To see how disjunctions induce various branches of the
Chase, consider the following theory from a conference management system:

> ` ∃ax . ∃py . Author(x) ∧ Paper(y) ∧ Assigned(x, y) (4.1)

Author(x) ∧ Paper(y) ` ReadScore(x, y) ∨ Conflicted(x, y) (4.2)

Assigned(x, y) ∧ Author(x) ∧ Paper(y) ` ReadScore(x, y) (4.3)

Assigned(x, y) ∧ Conflicted(x, y) ` ⊥ (4.4)

The Chase initially starts with an empty model M0 (see Figure 4.3). Equa-
tion (4.1) introduces two elements a1 and p1 and adds Author(a1), Paper(p1), and
Assigned(a1,p1) to M0, resulting in a (partial) model M1. The witness constant a,
assigned to the first existential quantifier of Equation (4.1), denotes a1 in M1. Also,
the witness constant p, assigned to the second existential quantifier of Equation (4.1),
denotes p1 in M1. Equation (4.2) states that for any pair of an author and a paper,
either the author can read the paper’s score, or there the author and the paper are
conflicting. Therefore, two models M2,1 and M2,2 extend M1 in two separate chase-
branches; ReadScore(a1,p1) is true in M2,1 and Conflicted(a1,p1) is true in M2,2.
According to Equation (4.3), authors can read the scores of the papers to which
they are assigned. This sequent does not impact M2,1 (since ReadScore(a1,p1) is

36

M0

M1

M2,2

M3,2

⊥

M2,1

Author(a1), Paper(p1), Assigned(a1,p1),
a = a1, p = p1

ReadScore(a1,p1) Conflicted(a1,p1)

ReadScore(a1,p1)

Figure 4.3: Runs of the Chase on the conference management example

already true) but it adds the fact ReadScore(a1,p1) to M2,2, resulting in a model
M3,2. Finally, Equation (4.4) states that authors cannot be assigned to conflicting
papers; thus, the second branch of the Chase (which contains M3,2) fails. That is,
M2,1 is the only model of this theory that the Chase returns.

4.4 Augmentation in Geometric Logic

Let G be a geometric theory and M be a model of G. The positivity of geometric
logic allows us to conveniently augment M with an additional PEF α resulting in
an extension N of M such that N |= G and α ∈ N. A key point is that if α entails
other observations given G and the facts already in M, those observations will be
added to the resulting model. The observation α can in principle be an arbitrary
PEF referring to the elements of M.

The model N can be computed by a run of the Chase starting with a model
M′ ≡M∪{α}. The augmentation may fail if M is inconsistent with α according to
T .

Theorem 4.4.1. Let N be a finite model of the theory G. Suppose that M is a
finite model returned by the Chase with M 4 N. Then there is a finite sequence of
augmentations on M resulting in a model isomorphic to N.

In particular, if G is weakly acyclic, then for every N there is a Chase model M
and a finite sequence of augments of M yielding N.

Proof. The homomorphism h : M → N can be factored into a surjection h0 : M →
N0 followed by a injection: h1 : N0 → N. Without loss of generality we may
assume that N0 is a quotient of M and h1 is simple inclusion. The effect of h0
can be captured by a sequence of equality augmentations between the elements of
M, yielding N0. A further sequence of primitive relation-augmentations will yield a
model N1 isomorphic to the image of N0 in N. A final sequence of augmentations

37

adding new elements and facts corresponding to N \ N0 yields N.
The second claim follows from the fact that when G is weakly acyclic there is a

(finite) set-of-support for G consisting of finite models.

38

Chapter 5

Algorithm and Implementation

Our preliminary implementations of Razor (see Chapter 8) revealed to us that the
major cost of a model-finding algorithm that is purely based on the standard Chase
corresponds to branching on disjunctions in the head of sequents. In a näıve imple-
mentation of the Chase, the disjunctions in the head of sequents give rise to distinct
branches of the Chase sharing the partial models that are constructed up to the
branching points. In the worst case, the total number of branches induced by the
disjunctions grows exponentially with the number of ground instances of sequents
in the resulting model. In practice, however, a large portion of these branches fail,
terminating with no models. Therefore, from a model-finding perspective, the major
time of computation will be wasted on these inconsistent branches.

The Magic of SMT-Solving. We present an algorithm that takes advantage of
SAT-solving technology to navigate the disjunctions. Using SAT-solving is of course
the essence of MACE-style model-finding, but the difference here is that we do not
simply work with the ground instances of G over a fixed set of constants. Rather we
compute a ground theory G∗ consisting of a sufficiently large set of instantiations of
G by closed terms of the witness signature for G.

Since we handle theories with equality, we want to construct models of G∗ modulo
equality reasoning and the uninterpreted theory of functions, so we actually pass to
using an SMT-solver.

In Section 5.2, we present a grounding algorithm that constructs a set of possible
facts, Pos(G), and a set G∗ of ground instances of G over Pos(G). This algorithm is
essentially a variation of the Chase, where disjunctions in the head of sequents are
treated as conjunctions. In this way we represent all branches that could be taken
in a chase-step over the original G. Intuitively, the grounding algorithm creates a
refined Skolem-Herbrand base, containing a set of possible facts Pos(G), which could
be true in any Chase model of G. Consequently, we construct models of G which
are built only from the facts in Pos(G).

39

Minimization. But we need to do more than simply use a refined set of domain
elements. A naive use of SMT-solving would result in losing control over the model-
building: even though the elements of a model returned would have appropriate
provenance, the solver may make unnecessary relations hold between elements, and
may collapse elements unnecessarily. So we follow the SMT-solving with a mini-
mization phase, in which we eliminate relational facts that are not necessary for the
model to satisfy G∗, and even “un-collapse” elements when possible.

The minimization algorithm utilizes an SMT-solver in a way that is comparable
to that of Aluminum (see Chapter 7). Unlike Aluminum’s minimization procedure,
Razor’s algorithm works in the presence of equality; that is, it eliminates the unnec-
essary identification of elements. As a consequence, Razor constructs models that
are minimal under the homomorphism ordering.

The chapter is organized as follows: in Section 5.1, we present a number of
transformations to convert an arbitrary theory in geometric form into one that
can be processed by the grounding algorithm. Next, in Section 5.2, we present the
grounding algorithm, and we state a soundness and a completeness theorem about it.
Section 5.3 explains our model-finding and minimization algorithms based on SMT-
solving. Finally, in Section 5.4, we connect the grounding and the minimization
algorithms to show how Razor generates models, and in Section 5.5, we discuss
various aspects of our implementation of Razor in Haskell.

5.1 Transformations

The grounding algorithms described in Section 5.2 works with relational (function-
free) signatures. Nevertheless, we allow function symbols in the concrete signature
as syntactic sugar for users. In a preprocessing phase, the user’s input theory over
a standard first-order theory is transformed to an equisatisfiable theory over a rela-
tional signature by standard relationalization.

Moreover, the grounding algorithm requires the geometric sequents over the re-
lational signature to be

1. range-restricted: every free variable in the head of a sequent must appear in
the body of the sequent as well.

2. body-linear: the body of a sequent is linear (see Section 5.1.2) with respect to
the free variables in the sequent.

Furthermore, the minimization algorithm presented in Section 5.3 operates on
theories that are ground and flat; the input to the minimization algorithm may
contain function symbols but the use of complex terms is prohibited.

In this section, we present transformations for converting formulas to the forms
that can be processed by the grounding and the minimization algorithms. The
relationalization (Section 5.1.1), linearization, and range-restriction (Section 5.1.2)

40

transformations put the user’s theory into a form that can be fed to the grounding
algorithm. The term-hashing conversion (Section 5.1.3) prepares the ground theory,
computed by the grounding algorithm, for minimization.

5.1.1 Relationalization

By relationalization, an input first-order formula T over a signature Σ ≡ (ΣR,ΣF)
is transformed to an equisatisfiable formula TRel over a signature ΣRel ≡ (ΣR

Rel, ∅).
Relationalization is done in two steps:

• T over Σ is transformed to a flat theory TFlat over Σ, which is logically equiv-
alent to T .

• TFlat over Σ is transformed to a relational theory TRel over ΣRel, equisatisfiable
to TFlat.

Flattening Transformations. Flattening consists of repeated applications of the
following transformations on a first-order formula over a signature Σ until no more
transformations is applicable:

• R(. . . , f(~t), . . .) ∃x . R(. . . , x, . . .) ∧ f(~t) = x
where R is a Σ-relation other than = and ~t is a list of Σ-terms.

• f(~t) = t ∃x . x = t ∧ f(~t) = x
where t is a closed Σ-term and ~t is a list of Σ-terms.

• u = f(~t) ∃x . u = x ∧ f(~t) = x
where u is a closed Σ-term and ~t is a list of Σ-terms.

• x = f(~t) f(~t) = x
where ~t is a list of Σ-terms and x is a variable.

The last transformation orients equations so that function symbols (including
constants) only appear on the left of equations. Also, notice that every relation
(except equality) and every function symbol is only applied on variable terms in the
resulting theory.

The flattening transformation is a standard procedure, widely employed by
theorem-provers and model-finders to convert formulas into a form that is more
convenient for equality reasoning [21, 46–49]. It is a well-known result that the
resulting flattened formula is logically equivalent to the input formula.

Relationalization Transformation. The Relationalization transformation be-
low converts a flattened formula (obtained by the previous transformations) over a
signature Σ ≡ (ΣR,ΣF) to a relational formula over a signature ΣRel ≡ (ΣR ∪F , ∅):

f(~x) = y F (~x, y)

41

Here, F ∈ F is a fresh relation symbol of arity k + 1 assigned to the k-ary
function symbol f ∈ ΣR. Observe that this converts a constant c ∈ ΣF to a unary
relation symbol C ∈ F .

It can be shown that the previous transformation converts a first-order theory T
over Σ to an equisatisfiable theory TRel over ΣRel in presence of additional congruence
axioms.

5.1.2 Linearization and Range Restriction

The linearization and range-restriction transformations convert the sequents of a
relational theory into a form that can be processed by the grounding algorithm.

Linearization

A first-order formula ϕ is said to be linear if every variable in Vars(ϕ) appears in
exactly one non-equational position in ϕ.

The following transformations converts a first-order formula to a logically equiv-
alent linear formula:

• P (. . . , x, . . . , x, . . .) P (. . . , x, . . . , y, . . .) ∧ (x = y)

• . . . P (. . . , x, . . .) . . . Q(. . . , x, . . .) . . .
. . . P (. . . , x, . . .) . . . Q(. . . , y, . . .) ∧ (x = y) . . .

where P and Q are relation symbols other than = and y is a fresh variable such that
y 6∈ Vars(ϕ).

Range-Restriction Transformations

A sequent ϕ `~x ψ as an implication between ϕ and ψ is said to be range-restricted
if every variable in ~x appears in FV(ϕ). It is often convenient to work with range-
restricted transformations. In a variety of applications, where implications are read
as rules for forward reasoning, range-restriction transformations are used to convert
implications to range-restricted ones over an expanded signature [50,51].

Here, we introduce a set of range-restriction transformations on geometric se-
quents, suitable for the grounding algorithm in Section 5.2: let Σ ≡ (ΣR, ∅) be a
relational signature and Dom be a fresh unary relation symbol not in ΣR. The
result of applying the following transformations on a sequent σ ≡ ϕ `~x ψ over Σ
(~x ≡ 〈x1, . . . , xn〉), is a range-restricted sequent τ over Ω ≡ (ΣR ∪ {Dom}, ∅):

1. ϕ ` ψ ϕ ∧Dom(x1) · · · ∧Dom(xn) ` ψ

2. ϕ ` (∃x . α) ∨ ψ ϕ ` (∃x . Dom(x) ∧ α) ∨ ψ

42

The first transformation turns the input into a range-restricted sequent. The second
transformation makes the predicate Dom true for every element of a model of the
resulting sequent. These transformations are sound and complete: the sequent σ is
satisfiable if and only if τ is. Moreover, the reduct of every model of τ to Σ will be
a model of σ [50, 52].

5.1.3 Term-Hashing

Term-hashing is a process by which complex terms in an input formula are replaced
by (simple) constant terms.

Definition Fix a set of function symbols F and a set of constants K. A term-hash
function h : Terms(F) −→ K is an injective function that maps every term over F
to a unique constant from K.

We may lift a term-hash function to act on first-order formulas in the standard
way. We also lift a term-hash function h : ΣF −→ K to send a model M# over a
signature Σ ≡ (ΣR,ΣF) and domain |M| to a model M# over Σ# ≡ (ΣR,K) and
domain |M| such that

• M |=η P (~t) if and only if M# |=η P (h(~t)).

• M |=η t = s if and only if M# |=η h(t) = h(s).

Theorem 5.1.1. Fix a signature Σ ≡ (ΣR,ΣF), a set of constants K disjoint from
ΣF , and a hash-term function h : Terms(ΣR) −→ K. Given a first-order formula ϕ
and a model M over Σ, M |=η ϕ if and only if h(M) |=η h(ϕ)

The proof of Theorem 5.1.1 is straight forward by induction on first-order for-
mulas.

5.2 Grounding

In this section, we present a grounding algorithm for converting a geometric theory
G to a ground geometric theory G∗. We assume that the sequents in G are relational
and range-restricted. We also assume the bodies of the sequents in G to be linear.

5.2.1 Grounding Algorithm

Fix a relational signature Σ ≡ (ΣR, ∅). Let G be a theory over Σ with witness func-
tions from a set F associated to its existential quantifiers. Algorithm 3 constructs
a set of possible facts Pos(G) together with a corresponding “ground” instance G∗
of G over the witnessing signature Σw ≡ (ΣR,F).

43

Algorithm 3 Grounding

1: function Ground(G)
2: Pos(G) ← ∅ . Pos(G) is initially the empty model
3: G∗ ← ∅ . G∗ is initially an empty theory
4: do
5: choose σ ≡ ϕ `~x ψ ∈ G
6: for each λ where ϕ[λ~x] ∈ Pos(G) do . λ sends ~x to terms in Pos(G)
7: Pos(G) ← Extend(Pos(G), σ, λ)
8: G∗ ← G∗ ∪ {Instantiate(σ, λ)}
9: while G∗ and Pos(G) are changing

10: return (G∗, Pos(G))

11: function Extend(F , ϕ `~x ψ, η) . F is a set of facts
12: if ψ = ⊥ then F
13: H ← F
14: for each disjunct ∃f1y1, . . . ,∃fmym .

∧n
j=1 Pj(~x, ~y) in ψ do

15: µ ← η[y1 7→ f1(η~x), . . . , ym 7→ fm(η~x)]
16: H ← H∪ {P1[µ~x, µ~y], . . . , Pn[µ~x, µ~y]}
17: return H

18: function Instantiate((ϕ `~x
∨
i ∃fi1yi1 . . . ∃fimyim.ψi), η)

19: µ ← η[yij 7→ fij(η~x)] (1 ≤ j ≤ m)
20: return µσ

Example Consider the conference management example from Section 4.3.6. The
grounding algorithm computes the set of possible facts (Pos(G) in Algorithm 3)
below (notice that a and p are witness constants, assigned to the set of existential
quantifiers of the theory:

{Author(a), Paper(p), Assigned(a, p), ReadScore(a, p), Conflicted(a, p)}

This set consists of all facts that could be true in a chase-model of this theory.
Notice that this set even contains the facts that were computed in the failing branch
of the Chase during its execution. Accordingly, the following set of ground sequents
(G∗ in Algorithm 3) is computed over the aforementioned set of possible facts:

` Author(a) ∧ Paper(p) ∧ Assigned(a, p)

Author(a) ∧ Paper(p) ` ReadScore(a, p) ∨ Conflicted(a, p)

Assigned(a, p) ∧ Author(a) ∧ Paper(p) ` ReadScore(a, p)

Assigned(a, p) ∧ Conflicted(a, p) ` ⊥

We present a soundness and a completeness theorem by which it is possible to
compute models of a theory G by computing models for the ground theory G∗,

44

computed by the grounding algorithm. By the soundness theorem (Theorem 5.2.2),
the witness-reducts of models of G∗ to the original signature of G are models of G.
The completeness theorem (Theorem 5.2.3) states that every chase-model of G is a
model of G∗ in the expanded witnessing signature.

These theorems may be thought of as a “controlled” variation of Herbrand’s
theorem for constructing models of a geometric theory G. The Herbrand base of
a theory is computed over a set of constants that is fixed a priori . In contrast,
the grounding algorithm presented here constructs a Skolem-Herbrand base (i.e.,
the set of possible facts), which is inductively defined by an operational reading of
the sequents in G. In other words, the construction of the set of possible facts is
controlled, allowing only for facts that are necessary for some model of G. In fact,
the controlled construction of the set of possible facts is what enables us to compute
provenance information.

Before stating the soundness and the completeness theorems, we define the notion
of image, a map from a set of facts to a model, used to restrict the information in
the model to the set of facts.

Definition Fix a signature Σ ≡ (ΣR,ΣF). Let F be a set of facts closed under the
equality axioms, and M be a model over Σ. We say M is an image of F under a
map i : Terms(ΣF) −→ |M| if the following conditions hold:

• For every element e ∈ |M|, a term t ∈ Terms(ΣF) exists such that e = i(t).

• If RM(~e) is true in M then ~t ∈ Terms(ΣF) exist, such that ~e = i(~t) and
R[~t] ∈ F .

• If i(t) = i(s) in M, then t = s ∈ F .

One might think of F as a set of facts that may possibly be true. The image
M of F is restricted to the information in F ; it at most contains the information in
F . Notice that every identification among the elements of M also must respect the
equational facts in F .

Lemma 5.2.1. Fix a signature Σ ≡ (ΣR,ΣF). Let F be a set of facts over Σ and
M be an image of F under a map i. Let ϕ(~x) be a linear relational PEF over Σ
such that M |=η ϕ. A map λ : ~x −→ Terms(ΣF) exists such that ϕ[λ~x] ∈ F and
η = i ◦ λ.

Proof. Proof by induction on ϕ:

• Assume ϕ(~x) to be a non-equational atomic formula R(~x). Let ~e = η~x. Be-
cause M is an image of F under i, for a list ~t of terms such that ~e = i(~t),
R[~t] ∈ F . Let λ send ~x to ~t. Such λ is well-defined: because ϕ is linear,
cardinality of ~t is at most equal to cardinality of ~x. Notice that η = i ◦ λ.

45

• Assume ϕ(~x) be an equation x = y. Let e1 = ηx, e2 = ηy, e1 = i(t) and
e2 = i(s). By the definition of image t = s ∈ F . Construct λ such that it
sends x to t and y to s. Clearly η = i ◦ λ.

The lemma is preserved by the connectives in ϕ:

• Let ϕ(~x) be α(~x)∧β(~x). Assume that for a map λ where η = i ◦λ, α[λ~x] ∈ F
and β[λ~x] ∈ F . It follows that ϕ[λ~x] ∈ F .

• Let ϕ(~x) be α(~x)∨β(~x). Assume that for a map λ where η = i ◦λ, α[λ~x] ∈ F
and β[λ~x] ∈ F . It follows that ϕ[λ~x] ∈ F .

• Let ϕ(~x) be ∃y . α(~x). Assume that a map λ and a term t ∈ Terms(ΣF) exist
such that η = i ◦ λ and α[λ[y 7→ t]] ∈ F . It is easy to see that ϕ(λ~x) ∈ F .

Theorem 5.2.2 (Soundness). Fix a relational signature Σ and its corresponding
witnessing signature Σw. Let G be a relational theory Σ. Let Pos(G) be the set of
possible facts and G∗ be the ground theory, constructed by Algorithm 3, for G. Let
M be a model of G∗ over Σw, and M− be the witness-reduct of M. If M is an image
of Pos(G) then M− is a model of G.

Proof. Let σ ≡ ϕ `~x
∨
i ∃fi1yi1 . . . ∃fimyim.ψi be a sequent in G. We show that if

M− |=η ϕ, then M− |=η (
∨
i ∃fi1yi1 . . . ∃fimyim.ψi): letting g be the image map from

Pos(G) to M, because ϕ is a linear PEF, by Lemma 5.2.1 a map λ exists such that
η = g ◦ λ and ϕ[λ~x] ∈ Pos(G).
Because ϕ[λ~x] ∈ Pos(G), a ground sequent ϕ[~t] `

∨
i ψi[~t, ~ui] exists in G∗ (line 8 of

Algorithm 3) where ~t = λ~x, and for each uij in ~ui, uij = fij(~t) (1 ≤ j ≤ m). Let ~e ≡
η~x be a tuple in M−. Because η = g ◦ λ, it checks that ~e = g~t; therefore, M |= ϕ[~t].
Finally, since M is a model of G∗, for some disjunct j, M |= ψj[~t, ~uj]. It follows that
M− |=η (∃yj1, . . . ,∃yjm.ψj), therefore, M− |=η (

∨
i ∃yi1, . . . ,∃yim.ψi).

Theorem 5.2.3 (Completeness). Fix a relational theory G and a ground theory
G∗ for G, computed by Algorithm 3. If M is a chase-model of G (over the witnessing
signature for G) then it is a model of G∗.

Proof. Let σ∗ ≡ ϕ[~t] `
∨
i ψi[~t, ~ui] be a sequent in G∗. By definition, σ∗ is an instance

of a sequent σ ≡
∨
i ϕ `~x ∃fi1yi1 . . . ∃fimyim . ψi by a substitution that sends ~x to ~t

and ~yi to ~ui (~yi ≡ 〈yi1, . . . , yim〉). Notice that according to Algorithm 3, for each uij
in ~ui (1 ≤ i ≤ m), uij = fij(~t).
Assume M |= ϕ[~t]. Then, for the reduct M− of M to the signature of G, M− |=η ϕ(~x);
the elements ~e are denoted by ~t in M (i.e., J~tKMη = ~e). Because M is a chase-model for
G, then for some i, M− |=λ (∃yi1 . . . ∃yim . ψi) where λ = η[yij 7→ dj] (1 ≤ j ≤ m).
Let uji denote every element dj in M (JuijKMη = dj). Therefore, M |= ψi[~t, ~ui].

46

5.3 Model-Finding and Minimization

This section presents an algorithm for computing models of a first-order theory
that are minimal with respect to the homomorphism ordering. The minimization
algorithm described here has been inspired by that of Aluminum, extending Alu-
minum’s algorithm by allowing equality in the input theory. As a result of this
extension, the minimization algorithm constructs models that are minimal under
the homomorphism ordering.

We assume the input to the minimization algorithm to be ground and flat. A
ground theory G∗ that is computed by by Algorithm 3 for an input theory G, after
term-hashing (see Section 5.1.3) satisfies these conditions.

Definition Let M be a model over a signature Σ ≡ (ΣR,K), where K is a set of
constants. The negation preserving axiom Neg(M) for M is a conjunction of literals
as follows (Algorithm 4):

• For all k-ary relation symbols R ∈ ΣR and all constants ci ∈ K (1 ≤ i ≤ k),
¬R(c1, . . . , ck) is a conjunct in Neg(M) if and only if RM(cM1 , . . . , c

M
k) is not

true in M.

• For all constants c, d ∈ K, c 6= d is a conjunct in Neg(M) if and only if cM 6= dM

in M.

• For all k-ary function symbols f ∈ ΣF , all constants ci ∈ K(1 ≤ i ≤ k), and
all constants d ∈ K, f(c1, . . . , ck) 6= d is a conjunct in Neg(M) if and only if
fM(cM1 , . . . , c

M
k) 6= dM in M.

The negation preserving axiom about a model M is a way of recording the
negative information in M syntactically.

Algorithm 4 Negation Preserving Axioms

1: function NegPreserve(M)
2: α ←

∧
{¬R(c1, . . . , ck) | RM(cM1 , . . . , c

M
k) 6∈M}

3: β ←
∧
{c 6= d | cM 6= dM}

4: γ ←
∧
{f(c1, . . . , ck) 6= d | fM(cM1 , . . . , c

M
k) 6= dM}

5: return α ∧ β ∧ γ

Definition Let M be a model over signature Σ = (ΣR,K), where K is a set of
constants. A chip axiom Chip(M) about M is a disjunction of literals as follows
(Algorithm 5):

• For all k-ary relation symbols R ∈ ΣR and all constants ci ∈ K(1 ≤ i ≤ k),
¬R(c1, . . . , ck) is a disjunct in Chip(M) if and only if RM(cM1 , . . . , c

M
k) is true

in M.

47

• For all constants c, d ∈ ΣF , c 6= d is a disjunct in Chip(M) if and only if
cM = dM in M.

• For all k-ary function symbols f ∈, all constants ci ∈ K(1 ≤ i ≤ k), and
all constants d ∈ K, f(c1, . . . , ck) 6= d is a disjunct in Chip(M) if and only if
fM(cM1 , . . . , c

M
k) = dM in M,

The chip axiom about M characterizes a model in which some positive fact in
M is not true. A model that resides below M under the homomorphism ordering
on models must satisfy both the negation preserving and the chip axioms about
M. This constitutes the core idea for the minimization algorithm, described in
Section 5.3.1.

Algorithm 5 Chip Axioms

1: function Chip(M)
2: α ←

∨
{¬R(c1, . . . , ck) | RM(cM1 , . . . , c

M
k) ∈M}

3: β ←
∨
{c 6= d | cM = dM}

4: γ ←
∨
{f(c1, . . . , ck) 6= d | fM(cM1 , . . . , c

M
k) = dM}

5: return α ∨ β ∨ γ

5.3.1 Minimization

Algorithm 6 illustrates a reduction step on a model M of a theory T . The essence
of the reduction step is to extend the theory T with the negation preserving and
chip axioms of M, followed by SMT-solving, to construct a model N of T in a way
that N ≺ M under the homomorphism ordering. If such a model exists, it will be
returned; otherwise, the reduction step fails with unsat, informing that M is in fact
homomorphically minimal.

The minimization algorithm (Algorithm 7) on a model M consists of repeated
applications of the reduction step until the resulting model N cannot be further
reduced.

Before we present Theorem 5.3.2 about the reduction step, we give a definition
for the Skolem-hulls of a first-order models, and we state Lemma 5.3.1 that will be
used in the proof of Theorem 5.3.2.

Definition Let M be a first-order model over a signature Σ ≡ (ΣR,ΣF). The
Skolem-hull of M is the sub-model M̂ of M where every element is named by a term
in Terms(Σ). More precisely, M̂ is the least structure such that for every constant
c ∈ ΣF , cM ∈ |M̂|. Also, M̂ is closed under the interpretation of the functions in ΣF

and the relations in ΣR.

Intuitively, M̂ is the sub-model of M defined over those elements in |M| that
are named by the constants in the signature. From a model-finding perspective, M̂

48

Algorithm 6 Reduce

Require: M |= T
Ensure: N ≺M

1: function Reduce(T , M)
2: ν ← NegPreserve(M)
3: ϕ ← Chip(M)
4: if exists N such that N |= T ∪ {ν, ϕ} then . Ask the solver for N
5: return N
6: else
7: return unsat . M is minimal.

Algorithm 7 Minimize

Require: M |= T
Ensure: N 4M, N is homomorphically minimal

1: function Minimize(T , M)
2: repeat
3: N ← M
4: M ← Reduce(M)
5: until M = unsat . Cannot reduce
6: return N . N is a minimal model for T

49

captures the information in M that is “relevant” as an answer to the user’s question,
specified as a first-order theory. Put differently, M̂ restricts M to the elements that
are denoted by the constants mentioned in the user’s specification.

Lemma 5.3.1. Fix a ground and flat first-order theory T over a signature Σ ≡
(ΣR,ΣF). A structure M is a model of T if and only if its Skolem-hull M̂ is a model
of T .

Proof. We give a proof for Lemma 5.3.1 by showing that for every atomic formula
α in T , M |= α if and only if M̂ |= α. The proof can be easily extended to any
formula in T by induction on the structure of first-order formulas:

• Let α be R(c1, . . . , ck) where R ∈ ΣR is a relation symbol of arity k and

ci ∈ ΣF (1 ≤ i ≤ k) are constants. A tuple 〈cM̂i , . . . , cM̂k 〉 ∈ RM̂ if and only if
〈cMi , . . . , cMk 〉 ∈ RM.

• Let α be c = d where c, d ∈ ΣF are constants. For elements cM and dM,
cM = dM if and only if cM̂ = dM̂.

• Let α be f(c1, . . . , ck) = d where f ∈ σF is a function symbol of arity k and
ci ∈ ΣF (1 ≤ i ≤ k) and d ∈ ΣF are constants. Because every ci(1 ≤ i ≤ k)

and d denote elements in |M̂|, the domain of fM is defined on 〈cM̂i , . . . , cM̂k 〉 and

its range is defined on dM̂. Therefore, by definition of M̂, f M̂(cM̂1 , . . . , c
M̂
k) = dM̂

if and only if fM(cM1 , . . . , c
M
k) = dM.

Below is the main result about the reduction steps of our minimization algorithm:

Theorem 5.3.2. Fix a ground and flat first-order T over signature Σ and a model
M of T . Let N be the model returned by Reduce(T ,M). Take the Skolem-hull N̂
of N with respect to Σ. Then,

1. N̂ |= T

2. N̂ 4h M

Proof. It is easy to show that N̂ |= T : line 4 of Algorithm 6 requires the returning
model of Reduce to satisfy the input theory, that is, N |= T . And, by Lemma 5.3.1,
N̂ |= T .

For the second part of the proof, construct h such that for every constant c, cN̂

is sent to cM by h. Observe that h is well-defined: given two constants c and d
where cM 6= dM, a conjunct c 6= d is in Neg(M), which must be satisfied by N̂
(line 4 of Algorithm 6). Therefore, c and d name distinct elements in N̂, i.e., cN̂ 6=

50

dN̂. Furthermore, h is a homomorphism: suppose that RN̂(cN̂1 , . . . , c
N̂
k) is true in N̂.

Because N̂ satisfies Neg(M), generated in the reduction step on line 2 of Algorithm 6,
a conjunct ¬R(c1, . . . , ck) cannot be in Neg(M). Therefore, by definition of negation
axiom about M, RM(cM1 , . . . , c

M
k) is true in M.

Next, consider two constants c and d where cN̂ = dN̂: because N̂ |= Neg(M), a
conjunct c 6= d cannot be in Neg(M). By definition of negation axiom, cM = dM.

Finally, consider a function application f N̂(cN̂1 , . . . , c
N̂
k) in N̂: because N̂ is defined over

elements that are named by constants, f N̂(cN̂1 , . . . , c
N̂
k) = dN̂ for some element dN̂ in N̂,

denoted by a constant d. Since N |= Neg(M), a conjunct f(c1, . . . , ck) 6= d is not in

Neg(M); that is, fM(cM1 , . . . , c
M
k) = dM. Because h sends every cN̂i to cMi (1 ≤ i ≤ k),

and sends dN̂ to dM, it follows that h(f N̂(cN̂1 , . . . , c
N̂
k)) = f N̂(h(cN̂1), . . . , h(cN̂k)).

5.3.2 Termination

Theorem 5.3.2 confirms that the presented reduction algorithm reduces an arbitrary
model of a ground and flat theory in the homomorphism ordering. Yet, it remains
to show that the minimization algorithm, consisting of repeated applications of
the reduction step, (i) is terminating, (ii) and, returns a minimal model under the
homomorphism ordering.

It is easy to show that the minimization algorithm is terminating: let the size of
a negation preserving axiom be the number of conjuncts in the axiom. Suppose the
following

M0 →M1 → . . .Mn → . . .

to be a chain of models reduced by Algorithm 7. Every arrow denote the reduction
steps according to Algorithm 6. As we progress along the direction of the arrows,
the size of the negation preserving axioms of models increases monotonically: in
a step from a model Mi to Mi+1, every conjunct in Neg(Mi) is also a conjunct in
Neg(Mi+1). Moreover, some disjunct in Chip(Mi) must be satisfied by Mi+1 by the
definition of the reduction step. The corresponding chip disjunct will be present in
Neg(Mi+1).
Considering that the set of constants in the signature is finite, the set of ground
literals in a negation preserving axiom is finite. Therefore, the size of negation
preserving axioms increases monotonically toward a finite maximum size during
minimization; thus, the minimization chain is finite.

Before we show that the minimization algorithm terminates with a minimal
model under the homomorphism ordering, we state a lemma that will be used in
the proof of Theorem 5.3.4.

Lemma 5.3.3. Let T be a ground and flat theory over signature Σ and M̂ be
a Skolem-hull of a model M of T . Suppose that N 4 M̂. Then, N satisfies the
negation preserving axiom Neg(M̂) about M̂.

51

Proof. We show that the theorem holds for the different categories of the conjuncts
in Neg(M̂):

• A conjunct ¬R(c1, . . . , ck) is in Neg(M̂) if and only if RM̂(cM̂1 , . . . , c
M̂
k) is not

true in M̂. Because of the homomorphism from N to M̂, the fact RN(cN1 , . . . , c
N
k)

is not true in N; therefore, N |= ¬R(c1, . . . , ck).

• A conjunct c 6= d is in Neg(M̂) if and only if cM̂ 6= dM̂ in M̂. Also, by the
homomorphism from N to M̂, cN 6= dN in N and N |= c 6= d follows.

• A conjunct f(c1, . . . , ck) 6= d is in Neg(M̂) if and only if f M̂(cM̂1 , . . . , c
M̂
k) 6= dM̂

in M̂. Again, by the homomorphism from N to M̂, fN(cN1 , . . . , c
N
k) 6= dN in N,

thus N |= (f(c1, . . . , ck) 6= d) follows.

Finally, the next theorem confirms that when Algorithm 7 terminates, the re-
sulting model is a minimal model under the homomorphism ordering.

Theorem 5.3.4. Fix a ground and flat first-order theory T . Let M ≡ Minimize(T ,A)
be a model of T , returned by a run of Algorithm 7, where A is an arbitrary model
of T . Let M̂ be the Skolem-hull of M. For a model N of T , if N 4 M̂, then M̂ 4 N.

Proof. Let Neg(M̂) and Chip(M̂) respectively be the negation preserving and chip
axioms about M̂. Notice that because Reduce(T ,A) = unsat (line 5 of Algorithm 7),
then T ∪ {Neg(M̂)} ` ¬Chip(M̂). Therefore, because N |= T and N |= Neg(M̂) by
Lemma 5.3.3, then N 6|= Chip(M̂).

Construct a map h : |M̂| −→ |N| that sends the interpretation cM̂ ∈ |M̂| of every
constant c to its corresponding element cN ∈ |N|. Observe that h is well-defined:

assume that for two distinct constants c and d, cM̂ = dM̂ in M̂. Consequently, c 6= d
is a disjunct in Chip(M). Because N 6|= Chip(M), then cN = dN in N.
By a similar argument, it is possible to show that h is a homomorphism, thus M̂ 4 N:

• Suppose a fact RM̂(cM̂1 , . . . , c
M̂
k) is true in M̂. A disjunct ¬R(c1, . . . , ck) is then

in Chip(M̂). But because N 6|= Chip(M̂), RN(cN1 , . . . , c
N
k) is true in N.

• Suppose that f M̂(cM̂1 , . . . , c
M̂
k) = dM̂ is true in M̂; a disjunct f(c1, . . . , ck) 6= d

is in Chip(M̂). And since N 6|= Chip(M̂), fN(cN1 , . . . , c
N
k) = dN is true in N.

5.3.3 Iterating over Minimal Models

In Section 5.3.1 and Section 5.3.2, we presented an algorithm for minimizing arbi-
trary models of ground and flat first-order theories. In this section, we utilize the

52

minimization algorithm to iterate over the minimal models of T in order to construct
a set-of-support S for T ; every model of T is accessible from some model in S via
homomorphism. We also show that the set S, constructed by Algorithm 9 of this
section, is a “minimal” set-of-support for T ; there does not exist a homomorphism
between any two models in S.

Algorithm 8 illustrates a procedure Next for iterating over models of T . Next
accepts T and a set S of models for T , as input, and returns a new model (if
exists) that is (i) homomorphically minimal (Theorem 5.3.6), and (ii) not in the
homomorphism cone of any models of S (Lemma 5.3.5).

Algorithm 9 constructs a set-of-support for the input theory T (Theorem 5.3.6):
starting with an empty set of models, repeated invocations of Next produce models
that are homomorphically minimal but disjoint from the ones that were previously
generated.

Algorithm 8 Next Model

Require: for all U ∈ S, U |= T

1: function Next(T , S)
2: Φ ←

⋃
i{Chip(Ui)} for all Ui ∈ S . Chip axioms about existing models

3: if exists M such that M |= (T ∪ Φ) then . Ask the SMT-solver for M
4: N ← Minimize(T ,M)
5: return SkolemHull(N)
6: else
7: return unsat . No more models

Algorithm 9 Set-of-Support

1: function SupportSet(T)
2: S ← ∅
3: M ← Next(T , S)
4: while M 6= unsat do
5: S ← S ∪ {M}
6: M ← Next(T , S)

7: return S . S is a set-of-support

Lemma 5.3.5. Let T be a ground and flat theory over signature Σ and M̂ be the
Skolem-hull of a model M of T . Let Chip(M̂) be the chip axiom about M̂. Given a
model N over Σ, N 6|= Chip(M̂) if and only if M̂ 4 N.

Proof. We first show if N 6|= Chip(M̂) then M̂ 4 N:

Construct a map h such that for every constant c in Σ, it maps cM̂ to cN. Observe

53

that h is well-defined: suppose that for two constants c and d, cM̂ = dM̂ in M̂.
Consequently, a disjunct c 6= d is in Chip(M̂), but because N 6|= Chip(M̂), the
corresponding disjunct is not true in N; that is, cN = dN.

By a similar argument, it is possible to show that h is a homomorphism: consider
the various categories of disjuncts in Chip(M̂):

• Suppose a factRM̂(cM̂1 , . . . , c
M̂
k) is true in M̂. Therefore, a disjunct ¬R(c1, . . . , ck)

is in Chip(M̂), but because N 6|= Chip(M̂), the corresponding disjunct is not
true in N. Consequently, RN(cN1 , . . . , c

N
k) is in N.

• Suppose that f M̂(cM̂1 , . . . , c
M̂
k) = dM̂ is true in M̂. The corresponding dis-

junct in Chip(M̂), f(c1, . . . , ck) 6= d cannot be satisfied by N. Therefore,
fN(cN1 , . . . , c

N
k) = dN is true in N.

It remains to show if M̂ 4 N then N 6|= Chip(M̂):
We show that N 6|= α for every disjunct α in Chip(M̂):

• If α is a formula ¬R(c1, . . . , ck) for a k-ary relation symbol R, then by defini-

tion, RM̂(cM̂1 , . . . , c
M̂
k) is true in M̂. Because M̂ 4 N, RN(cN1 , . . . , c

N
k) is true in

N. Therefore, N 6|= α.

• If α is in form of c 6= d for a two constants c and d, then cM̂ = dM̂ in M̂. Since
M̂ 4 N, cN = dN in N, thus, N 6|= α.

• If α is in form of f(c1, . . . , ck) 6= d for a k-ary function symbol f , then

f M̂(cM̂1 , . . . , c
M̂
k) = dM̂ in M̂ Because M̂ 4 N, fN(cN1 , . . . , c

N
k) = dN in N, thus,

N 6|= α.

Theorem 5.3.6. Fix a ground and flat first-order theory T . Let S be a set of
models where for every model U ∈ S

• U |= T

• for a model N of T , N 4 U if and only if U 4 N

For a call of Next(T ,S),

(i) if a model M is returned, then for every model U ∈ S, M 64 U and U 64M.

(ii) if the result is unsat, then S is a set-of-support for T .

Proof. For a proof of i: because M 4 U if and only if U 4 N, it suffices to show
that U 64 M. Let Chip(U) be the chip axiom about U. According to Algorithm 8
for Next, M |= Chip(U). Therefore, by Lemma 5.3.5, U 64M.
For a proof of ii: let Φ be a theory, containing chip axioms for the models in S. By
Gödel’s completeness theorem, when the result of Algorithm 8 is unsat, T ` ¬Φ :

54

• If T is unsatisfiable, S is the empty set, a vacuous jointly universal set for the
models of T .

• If T is satisfiable, every model N of T must not satisfy some chip axiom ϕ ∈ Φ.
Assuming that ϕ is a chip axiom for some model U ∈ S, then by Lemma 5.3.5,
there exists a homomorphism from U to N.

As a result of Theorem 5.3.6, Algorithm 9 computes a set-of-support for the
input ground and flat first-order theory T by repeated invocations of Algorithm 8.
Observe that the set of models S that is computed during Algorithm 9 satisfies the
criteria of Theorem 5.3.6: every model in this set (i) is a model of T , and (ii) is
homomorphically minimal (by Theorem 5.3.4).

5.4 Model Construction in Razor

Model-construction in Razor is performed in three phases:

1. Preprocessing : the user’s theory in geometric form G is transformed to a rela-
tional theory GRel by the transformations in Section 5.1.1; every sequent in GRel
is range-restricted with a linear body by the transformations in Section 5.1.2.

2. Grounding : a run of the grounding algorithm (Algorithm 3) computes a
ground theory G∗ for GRel over a set of possible facts Pos(G).

3. Minimal Model-Finding : a run of Algorithm 9 constructs a set-of-support for
the ground and flat theory G#, obtained by hashing the terms of G∗ according
to Section 5.1.3.

Figure 5.1 illustrates the model-construction process implemented into Razor. This
process is sound and complete: observe that the theory GRel is equisatisfiable to the
user’s input G. Moreover, every model MRel can be converted to a model M of G
by undoing relationalization, whereby the relations in GRel that had substituted the
functions in G are converted back to function symbols by the obvious transformation.
It remains to show that the set-of-support that is computed for G# is in fact a set-
of-support for GRel.

Soundness. Assume GRel to be over a signature Σ. Let M be a model in the set of
models S, computed by a run of Algorithm 9 on G#. According to Theorem 5.1.1,
M corresponds to a model M∗ of G∗ (observe that the reduct of M to Σ is equivalent
to the witness-reduct of M∗).
Because M is homomorphically minimal, the model M∗ is an image of the set of
possible facts Pos(G) over which G∗ is defined:

55

User Input

Preprocessing

Grounding
Blaming Data

(Fact Provenance)

Term-Hashing
Naming Data

(Element Provenance)

SMT-Solving /
Minimization

S (Set-of-Support)

G

GRel

G∗

G#

Figure 5.1: Model-construction procedure in Razor

56

• every element in M∗ is denoted by a term that is mentioned in the set of
possible facts.

• every fact in M∗ is because of an axiom in G∗; thus, it is a fact in Pos(G).

• every equation in M∗ is because of an axiom in G∗; thus, it is a fact in Pos(G).

Thus, by Theorem 5.2.2, the reduct M− of M to Σ is a model of GRel.

Completeness. Let A be a model of GRel over a signature Σ. By Theorem 4.3.2
about the Chase, a chase-model C (over the witnessing signature) with a witness-
reduct C− exists such that C− 4 A; and, by Theorem 5.2.3, C |= G∗. By Theo-
rem 5.1.1, a model C# obtained by hashing the terms in C is a model of G# (observe
that the reduct of C# to Σ is the same model as C−). Finally, because Algorithm 9
computes a set-of-support S for G# (as a consequence of Theorem 5.3.6), a model
M exists in S such that M 4 C#. Given the witness-reduct M− of M, one checks
that M− 4 C−; therefore, M− 4 A.

5.5 Implementation

We implemented the current version of Razor in Haskell [53], a strongly-typed and
purely functional programming language. A declarative programming language,
such as Haskell, is close to our mathematical description of the underlying algo-
rithms. This enabled us to implement and evaluate a variety of algorithmic ideas,
including the ones mentioned in this chapter and Chapter 8, over a rather short
period of time. Haskell’s strong type-system helped us achieve a better quality of
code; also, it often helped us uncover algorithmic and programming flaws at compile
time. Functions with no side-effects (due to purity of Haskell) helped us compose
various code fragments confidently; it also helped us reproduce bugs effortlessly.

However, the lack of mutation made it impossible to efficiently implement cer-
tain algorithms, such as congruence closure (see Section 8.1.1) and incremental view
maintenance. As a result of this kind of inefficiencies, we could hardly develop
a clear intuition about the performance of our algorithms written in a more flex-
ible programming language. However, we could exploit the profiling facilities of
GHC [54] to identify those parts of the code that require performance improvement.
Nevertheless, we found it difficult to track down the bugs in the code due to the
lazy evaluation in Haskell and the lack of strong tracing facilities.

Architecture and Design. Razor’s overall design consists of the following com-
ponents, implemented as separate hierarchical modules in Haskell:

1. API: provides an API to Razor’s model-finding engine. An external program,
such as Razor’s REPL, interacts with this module to access Razor’s features.

57

2. Chase: provides an interface for an implementation of a grounding algorithm
described by Section 5.2. The current implementation of this algorithm is
based on a variation of the Chase from a relational algebra perspective (see
Section 8.2.1).

3. Common: defines and implements data-structures that are used globally. In
particular, this module defines the structure of models, observational facts,
and provenance information.

4. REPL: is a command-line read-eval-print-loop that is currently the primary
GUI of Razor. The REPL implements the various modes of interacting with
the tool explained in Section 3.3.

5. SAT: defines an interface for implementations of the SMT-solving and min-
imization algorithms presented in Section 5.3. The current implementation
uses SMTLib2 [55] as the interface to interact with Z3.

6. Syntax: defines the syntax and types of first-order formulas; geometric PEFs,
sequents, and theories; and, TPTP formulas. This layer provides parsers for
the aforementioned types as well as utility functions for syntactic manipulation
including the preprocessing transformations (see Section 5.1).

7. Tools: implements utility structures and functions that are used freely in the
implementation of the other modules.

5.5.1 Relational Grounding

The current instance of the grounding algorithm implemented into Razor utilizes
relational algebra to evaluate sequents, as views, in models, as databases. This is a
modification of Atlas (see Section 8.2), our earlier implementation of the Chase. The
relational algebraic implementation is consistent with the general theme of our algo-
rithms, which operate on relational theories obtained by transforming the functions
in the user’s input. Relationalization simplifies the computation of environments in
which sequents fail in models because it does not have to deal with complex terms.

Moreover, the implementation based on relational algebra makes various effi-
ciency techniques from the database literature available to our program. As we
explain in Section 8.2.1, Razor’s grounding procedure benefits from a mechanism
that incrementally evaluates sequents in a growing model (or a set of facts), as it is
augmented with facts. Aside from that, however, the current grounding procedure
is rather elementary. Future improvements may employ techniques, such as view
materialization and update detection [56], to improve the efficiency of the procedure.

A fundamentally different approach to this algorithm may utilize term-rewriting
techniques that leverage sophisticated data-structures, such as directed acyclic graphs
and tries, to construct the set of possible facts. We discuss a näıve implementation
of the Chase based on term-rewriting in Section 8.1.

58

5.5.2 Interaction with the SMT-Solver

We utilize Z3 in QF UFBV as the backend SMT-solver and use SMTLib2, a Haskell
package available at [55], as the interface to interact with Z3. SMTLib2 provides
an abstraction layer over the SMT-solver as a convenient monadic environment in
Haskell, and it can interact with any SMT-solver that supports the SMT-LIB v.2
standard. This allows a programmer to write a Haskell program that is automat-
ically translated to an input of the underlying SMT-solver (in our case Z3). The
program then receives the solver’s output as a Haskell data-structure.

Incremental SMT-Solving. The primary advantage of SMTLib2 over similar
packages (e.g., SMT Based Verification [57]) is that SMTLib2 supports the incre-
mental mode offered by SMT-solvers such as Z3. An SMT-solver that supports the
incremental model provides the user with a (push) command, using which the user
can stack up multiple queries to the solver, and a (pop) command, which undoes
the last “pushed” query, returning the solver to its previous state. Conceptually,
an incremental SMT-solver is a stateful solver, meaning it can retrieve its previ-
ous state efficiently without recomputation. Incremental SMT-solving is crucial for
the efficiency of the minimization and augmentation algorithms implemented into
Razor, as explained later in this section.

Iterating over Models

Razor’s SAT module delivers an abstract iterator for generating models. Incremental
SMT-solving allows us to acquire a handle to the internal state of the solver through
the iterator. The following are the main operations on the iterator:

• satInitialize: establishes a connection with the SMT-solver in the incre-
mental mode.

• satStore: sends a ground formula to the solver, changing the internal state
of the solver.

• satSolve: asks the solver for a model; returns the model; and, sends the chip
axiom about the current model to the solver to advance the iterator.

• satAugment: stores a set of additional ground formulas corresponding to the
augmenting facts. The augmenting facts are preceded by (push) for future
backtracking. The augment operation results in a new iterator over the aug-
mented models.

• satBacktrack: undoes an augmentation by sending a (pop) to the solver.

• satClose: closes the connection to the solver.

59

Incremental Minimization

Razor’s minimization procedure exploits incremental SMT-solving when reducing
the models returned by the SMT-solver: let G∗ be a set of ground sequents, generated
by the grounding algorithm and I be the initial SMT iterator corresponding to
the state of SMT-solver after loading G∗. In every reduction iteration, additional
constraints about the negation and chip axioms of the previously generated model
are sent to the solver via satStore.

In the absence of this feature, the minimization procedure would have to pro-
vide the solver with the entire set of constraints, starting from the first reduction
iteration, for each reduction step.

5.5.3 Incremental Augmentation

Let G be a theory in geometric form. Let Pos(G) and G∗ respectively be the set of
possible facts and the ground theory that are constructed for G by Razor’s grounding
algorithm. Assume that M is a model of G, computed as a model of G∗ by Razor’s
minimization algorithm. Given a PEF α, augmentations of M could be computed
as a model of G ∪ {` α} by the model-finding process illustrated by Figure 5.1.
This approach, however, is inefficient because Pos(G) and G∗ must be recomputed.
Fortunately, positivity of geometric logic enables us to reuse Pos(G) and G∗ when
computing the augmented models.

As we explain in Section 5.5.4, the state of exploration in Razor is a triple
〈Pos(G), I,P〉 for a set of possible facts Pos(G) and provenance information P about
the facts and terms of Pos(G). The iterator I maintains the internal state of an
incremental SMT-solver, loaded with the ground instances G∗ of G over Pos(G)
and additional chip axioms for generating next models of the stream. That is, the
iterator I effectively points to a specific model of G in the current stream of models.

Razor exploits the incremental mode of the backend solver for augmentation:

1. An extension of A ≡ G ∪ {` α} is constructed.

2. Starting with Pos(G), the grounding algorithm computes a new set of possible
facts Pos(A) (i.e., Pos(G) ⊆ Pos(A)).

3. The set of ground instances A∗, generated during the computation of Pos(A)
is passed to the solver, resulting in a new iterator J .

4. Minimal models of J are generated by the minimization algorithm.

The current implementation of Razor allows for augmenting with ground atomic
facts only. An augmenting fact may be defined over the elements of the current
model as well as fresh elements introduced by the user.

60

5.5.4 Exploration State

Given a theory G, the current state of exploration in Razor is kept by a triple
〈Pos(G), I,P〉, where Pos(G) is a set of possible facts for G, I is an iterator from
the SAT module (see Section 5.5.2), and P is the provenance information about the
facts and terms in Pos(G). The history of previous augmentations is maintained by
synchronizing the internal stack of a backend incremental SMT-solver and a stack
S of possible facts and provenance information pairs:

• Every time the user asks for a next model, the iterator I in the current state
is replaced by a new iterator produced by satNext.

• When the user augments an existing model, a new set of possible facts Pos(A)
and new provenance information P ′ about Pos(A) is generated by the ground-
ing procedure. Also, a call to satAugment stores the ground sequents generated
during this run of the grounding procedure, resulting in a new iterator J (see
Section 5.5.2). Consequently, the current state is set to 〈Pos(A), J,P ′〉, and
the pair of Pos(G) and P is pushed into the stack S.

• Let Pos(Q) and Q be at the top of the stack S, and J be the result of apply-
ing satBacktrack on the current iterator I. When the user undoes the last
augmentation, the current state of exploration is set to 〈Pos(Q), J,Q〉; also,
the pair of Pos(Q) and Q is popped out of S.

5.5.5 Bounded Search for Models

We earlier showed that theories in geometric form are as expressive as first-order
theories (see Theorem 4.2.2); hence, satisfiability of theories in geometric form is
undecidable. In Section 4.3.4, we presented a syntactic condition for theories in
geometric form, known as weak acyclicity, under which the Chase is guaranteed to
terminate. In practice, though, geometric theories are rarely weakly acyclic. That
is, a workable model-finding strategy must impose a bound on the search.

A traditional way to do so, used by tools such as Alloy, Margrave, and Aluminum,
is to use user-supplied upper bounds on the domain of the model. Razor, however,
implements a more systematic strategy for bounding the search, based on the depth
of the witnessing terms that are created as the provenance of elements. Specifically,
Razor implements the partial model building and the controlled reuse methods from
Section 4.3.5 to bound its chase-based grounding algorithm.

By default, Razor uses the controlled reuse method, which corresponds to the
reuse mode described in Section 3.3.1 This strategy results in (complete) models
of the input theory within the given bound d, in which all unjustified equations
between elements occur at depth d. The partial model building approach, known as
the pure mode in Section 3.3.1, might not create models of the input theory. When
running in the pure mode, Razor will report the existential quantifiers that failed
to be instantiated (due to the bound on the search).

61

In some applications where real models of the theory are expected, the resulting
partial models are not desirable; however, partial models are consistent with our
model-exploration paradigm implemented into Razor: starting with a partial model,
the user can learn about the process by which models are generated. Moreover, the
user can use augmentation to develop models of her interest, possibly by equating
elements of the partial model.

62

Chapter 6

Case-Studies and Evaluation

We present case-studies to demonstrate a user’s interaction with our model-finding
assistant, Razor, in the context of our framework for model-exploration. We also
evaluate Razor’s performance on examples from the Alloy distribution and TPTP.
The current implementation of Razor is primarily a proof of concept for the frame-
work presented in Chapter 3. At present the speed of Razor is not competitive,
on large theories, with traditional model-finders with narrower goals. A long-term
research question is exploring the tradeoffs between efficiency and the kind of en-
hanced expressivity we offer.

6.1 Case-Studies

We introduce a case-study of access control policy analysis using Razor in Sec-
tion 6.1.1. This example shows how the user may utilize Razor to discover flaws in
her policy, precisely by identifying rules that do not meet her expectations. In Sec-
tion 6.1.2, we analyze a standard Flowlog program for Software Defined Networking
using Razor; specifically, we demonstrate how the construction of minimal models
and provenance information distinguishes Razor from a conventional model-finding
tool.

6.1.1 Case-Study 1: Access Control

ALAS (Applied Logic and Security) and PEDS (Performance Evaluation and Dis-
tributed Systems) are research groups in the Department of Computer Science,
which are located in the lab B17.

Figure 6.1 demonstrates the rules that are governing the access to B17: a member
of a research group must be able to enter the labs that are assigned to the research
group (rule 1). A person who has a matching key/ID card, which opens the door
of a lab, can enter the lab (rules 2 and 3). If a person can enter a lab, he must
have either a matching ID card or a matching key (rule 4). The central system that

63

(1) MemberOf(p,r) & LabOf(r,l) => Enters(p,l);

(2) HasKey(p,k) & KeyOpens(k,l) => Enters(p,l);

(3) CardOpens(cardOf(p),l) => Enters(p,l);

(4) Enters(p,l) => CardOpens(cardOf(p),l)

| exists k. HasKey(p,k) & KeyOpens(k,l);

(5) CardOpens(cardOf(p), l) => exists r. MemberOf(p,r) & LabOf(r,l);

(6) HasKey(p,k) => exists e. Grants(e,p,k) & Employee(e);

(7) Grants(e,p,k) => HasKey(p,k)

(8) LabOf(’ALAS,’B17);

(9) LabOf(’PEDS, ’B17);

(10) MemberOf(p,’PEDS) & HasKey(p,k) & KeyOpens(k,’B17) => Falsehood;

Figure 6.1: Rules governing access to B17

manages the electronic locks guarantees that a person’s ID card opens the door of
a lab only if he is a member of a research group assigned to that lab (rule 5). The
keys to the labs, however, must be granted by an employee of the department (rule
6); once an employee grants a key to a person, the grantee is assumed to be in the
possession of the key (rule 7). Finally, ALAS and PEDS are located in B17 (rules
8 and 9), but PEDS members can enter B17 only if they have matching ID cards
(rule 10).

The specification in Figure 6.1 may be extended by additional sequents to ask
queries about the policy.

Unauthorized Access

Consider a situation where the user is wondering if an unauthorized user, namely a
“Thief”, can enter B17. Our “cynical” user describes the Thief as a person who is
neither a member of ALAS nor PEDS:

MemberOf(’Thief, ’ALAS) => Falsehood;

MemberOf(’Thief, ’PEDS) => Falsehood;

Enter(’Thief, ’B17);

First Scenario—A Matching Key. The first model that Razor returns demon-
strates a situation where the Thief is in the possession of a key, which can open

64

Enters = {(p1, l1)} ’B17 = l1

Employee = {(e1)} ’PEDS = r2

Grants = {(e1,p1,k1)} ’ALAS = r1

HasKey = {(p1,k1)} ’Thief = p1

KeyOpens = {(k1,l1)}

LabOf = {(r1,l1), (r2,l1)}

Figure 6.2: The Thief enters B17 with a key

Enters = {(e1, l1)} ’B17 = l1

Employee = {(e1)} ’PEDS = r2

Grants = {(e1,e1,k1)} ’ALAS = r1

HasKey = {(e1,k1)} ’Thief = e1

KeyOpens = {(k1,l1)}

LabOf = {(r1,l1), (r2,l1)}

Figure 6.3: An employee enters B17 with a key

B17 (Figure 6.2). Clearly, we need additional rules to restrict the people who can
acquire the keys. But before fixing the policy, the user can further investigate this
scenario. The user may wonder if an employee can grant a key to B17 to herself.
This question may be checked by augmenting the model in Figure 6.2 with a fact
that requires p1 and e1 to be the same person:

> aug p1 = e1

The augmentation results in a model (Figure 6.3), suggesting that the employee
can indeed grant a key to herself. An easy (but not global) fix is to add a new rule
that restricts the people who can receive keys to B17 to ALAS and PEDS members.

Grants(e, m, k) & KeyOpens(k, ’B17) => MemberOf(m, ’ALAS)

| MemberOf(m, ’PEDS);

Still, rule 10 from Figure 6.1 does not allow PEDS members to enter B17 using
keys.

Second Scneario—A Third research group. The second model for the previ-
ous query, returned by Razor, demonstrates a situation where the Thief is a member
of a third research group (other than ALAS and PEDS), which is also located in B17
(Figure 6.4). The user may ask “where did this third research group come from?”,
then she can look at the provenance information about r3:

> origin r3

65

Enter = {(p1, l1)} ’B17 = l1

CardOpens = {(c1, l1)} ’PEDS = r2

MemberOf = {(e1, r3)} ’ALAS = r1

cardOf = {(p1, c1)} ’Thief = p1

LabOf = {(r1, l1), (r2, l1)

,(r3, l1)}

Figure 6.4: The Thief is a member of a third research group

Razor pinpoints an instance of the causal sequence from the user’s theory (rule
5 from Figure 6.1):

rule :

CardOpens(cardOf(p), l) => exists r. MemberOf(p,r) & LabOf(r,l)

instance:

CardOpens(c1, l1) => MemberOf(e1, r3) & LabOf(r3, l1)

The research group r3 exists because the Thief has a matching ID card. The
existing policy does not restrict the research groups that may be assigned to B17.
Such a restriction would force the research group r3 to be either ALAS or PEDS.
The user can test this policy fix by the following augmentation:

> aug r3 = r2

The augmentation produces no counter examples; the fix is valid.
But the user may ask “how did the Thief acquire a matching card in the first

place?”. The user can find an answer to this question by blaming this fact:

> blame CardOpens(c1, l1)

The resulting blaming information gives the answer:

rule :

Enters(p,l) => CardOpens(cardOf(p),l)

| exists k. HasKey(p,k) & KeyOpens(k,l)

instance:

Enters(p1, l1) => CardOpens(c1, l1)

| HasKey(p1, k1) & KeyOpens(k1, l1)

The Thief has a card because the user’s query assumed that he could enter the
lab (rule 4 of Figure 6.1). He could also have a key, which is evident in the first
model, discussed earlier.

Why does the Thief belong to a research group in this scenario, but not in the
previous? Being a research group member is a consequence of having a card; not

66

TABLE learned(switchid, port, macaddr);

ON packet_in(pkt):

-- Learn port:mac pairs that are not already known

INSERT (pkt.locSw, pkt.locPt, pkt.dlSrc) INTO learned WHERE

NOT learned(pkt.locSw, pkt.locPt, pkt.dlSrc);

-- Remove any outdated port:mac pairs

DELETE (pkt.locSw, pt, pkt.dlSrc) FROM learned WHERE

NOT pt = pkt.locPt;

-- Unicast the packet when the destination is known

DO forward(new) WHERE

learned(pkt.locSw, new.locPt, pkt.dlDst);

-- If the destination is not known, broadcast the packet

DO forward(new) WHERE

NOT learned(pkt.locSw, ANY, pkt.dlDst)

AND NOT pkt.locPt = new.locPt;

Figure 6.5: The learning switch program in Flowlog

for having a key. Belonging to a research group when having a key is extraneous
information. Razor does not include this scenario in the minimal model returned.

The user may find it harmless to allow other research groups (such as r3 of
the previous model) to be located in B17. However, if the user finds this example
contradictory to the security goals that she has in mind, she can fix the policy by
adding another rule as follows:

LabOf(x, ’B17) => x = ’ALAS | x = ’PEDS;

After extending the policy with this rule and the fix from the previous scenario,
Razor will not return any models for the user’s query; the policy will prevent the
Thief from entering B17.

6.1.2 Case-Study 2: Flowlog Program

Flowlog [58] is a language for tierless programming in Software Defined Networking
(SDN) environments, specifically for programming the SDN controller. Flowlog
abstracts out the complexities of the various network layers, making it possible to
utilize formal methods to verify programs. In this section, we utilize Razor to reason
about a standard Flowlog example that specifies a learning switch 1 (Figure 6.5).

1The Flowlog case-study presented in this section is developed by graduate student Ryan
Danas.

67

Translation to Geometric Form

Translation of a Flowlog program to a first-order theory in geometric form requires
some treatment, common to all Flowlog programs:

Timestamps. The notion of “time” is implicit in Flowlog; every event is assumed
to be processed at a particular time. Our translation extends the relations that
define the state of the Flowlog program with a timestamp. In principle, we could
assume an infinite sequence of time, by adding an axiom that defined the successor
succ(t) for every time t. For the sake of efficiency, however, we define succ(t)
only when t corresponds to an incoming event E (intuitively, an incoming event is
processed at the next time):

E(t, pkt) ` ∃t′ . succ(t) = t′

State Transition. Next, we introduce a set of sequents for each relation S that
maintains the state of the program (these are merely translations of the axioms
defined in [58]): Axiom 6.1 states that a tuple in S will propagate in time unless
it is deleted. Axiom 6.2 forces an inserted tuple to be available at the next time.
Axiom 6.3 gives a higher priority to deletion than insertion; i.e., delete overrides
insert.

S(t, ~x) ∧ succ(t) = st ` S(st, ~x) ∨ S−(t, ~x) (6.1)

S+(t, ~x) ∧ succ(t) = st ` S(st, ~x) (6.2)

S−(t, ~x) ∧ S(t, ~x) ∧ ¬S+(t, ~x) ∧ succ(t) = st ` ¬S(st, ~x) (6.3)

Figure 6.6 is a translation of the Flowlog program in Figure 6.5. Notice that in
this translation, the relation learned_P and learned_M are respectively the insert
and delete tables associated to the relation learned (i.e., learned+ and learned−).

Exploration by Augmentation

The augmentation feature of Razor allows the user to perform a step-by-step analysis
of the Flowlog program. Assume that the user is interested in exploring models of
the following query in the learning switch program, when a packet arrives (at some
particular time):

exists pkt, t . packet (t, pkt);

Razor returns two models: a model shows a situation where the packet in question
has already been learned; the other one captures a situation where the packet has
not been previously learned. The user can choose either of these models and explore
it forward in time. He can use augmentation to simulate the arrival of a new packet:

> aug packet(time1, pkt1)

68

packet(t, pkt) <=> learned_P(t, locSw(pkt), locPt(pkt), dlSrc(pkt))

| learned(t, locSw(pkt), locPt(pkt), dlSrc(pkt));

packet(t, pkt) & learned(t, locSw(pkt), pt, dlSrc(pkt))

<=> learned_M(t, locSw(pkt), pt, dlSrc(pkt))

| locPt(pkt)=pt;

packet(t, pkt) & learned(t, locSw(pkt), locPt(new), dlDst(pkt))

<=> forward(t, pkt, locPt(new));

packet(t, pkt) <=> forward(t, pkt, np)

| exists ANY .

learned(t, locSw(pkt), ANY, dlDst(pkt))

| locPt(pkt) = np;

Figure 6.6: The learning switch program in Razor

Here time1 is the last time in the current model (the time after arrival of the first
packet) and pkt1 is a fresh name, chosen by the user to represent a new packet. The
user can explore this scenario further in time by performing other augmentations.
This kind of analysis is analogous to using a debugger to trace a program step-by-
step.

Models for one packet event

As mentioned, Razor returns two models for the first query of the previous section.
Both models contain a single packet event learned(time0, pkt0), whereby the
incoming port and mac address is learned in the next time. In the first model, the
packet was previously learned, whereas in the other model, the packet is going to
be learned in the next time.

The user confirms that in both models, the packet is learned by the first rule.
This can be done by running

> blame learned(time0, pkt0)

on the first model and

> blame learned_P(time0, pkt0)

on the second model. For both questions, Razor blames the same instance of the
first sequent:

rule :

packet(t, pkt) <=> learned_P(t, locSw(pkt), locPt(pkt), dlSrc(pkt))

| learned(t, locSw(pkt), locPt(pkt), dlSrc(pkt));

instance:

packet(time0, pkt0) <=> learned_P(time0, sw0, pkt0, dest0)

| learned(time0, sw0, pkt0, dest0)

69

Observe that neither of the (minimal) models, returned for one packet, had the
other three rules fired: the deletion rule requires another packet with the same mac
address to overwrite the port in the learned table. Similarly, the two forwarding
rules require at least another learned packet as the destination of the packets their
forward.

Provenance of Forwarding Event

Augmenting either of the initial models results in plenty of models. The combination
of insertion, deletion, previously learned information, and disjunctions produce a
large number of permuted states. Here, we pay attention to the models that trigger
the forwarding rules; specifically, the models in which packets are forwarded to
different destinations. Consider the following model:

packet = {(time0, pkt0), (time1, pkt1)}

dlDst = {(pkt0) = dest0, (pkt1) = dest1}

forward = {(time0, pkt0, port1), (time1, pkt1, port0)}

dlSrc = {(pkt0) = src0, (pkt1) = src1}

learned_M = {(time1, sw0, pkt1, dest0)}

locPt = {(pkt0) = port0}, (pkt1) = port1}

learned =

{(time0, sw0, port0, src0) , (time0, sw0, port1, dest0),

(time1, sw0, port0, src0}), (time1, sw0, port1, dest0),

(time1, sw1, port0, dest1), (time1, sw1, port1, src1) ,

(time2, sw0, port0, src0) , (time2, sw1, port0, dest1),

(time2, sw1, port1, src1) }

locSw = {(pkt0) = sw0, (pkt1) = sw1}

succ = {(time0) = time1, (time1) = time2}

While both arriving packets have been forwarded, it is not clear why each was
forwarded. The provenance information generated by Razor can help the user un-
derstand the reason:

> blame forward(time0, pkt0, port1)

The previous command blames the third sequent for forwarding the first packet:

rule :

packet(t, pkt) & learned(t, locSw(pkt), locPt(new), dlDst(pkt))

<=> forward(t, pkt, locPt(new));

instance:

packet(time0, pkt0) & learned(t0, sw0, port1, dest0)

<=> forward(time0, pkt0, port1)

Similarly,

> blame forward(time1, pkt1, port0)

blames the fourth sequent for forwarding the second packet:

70

rule :

packet(t, pkt) <=> forward(t, pkt, np)

| exists ANY .

learned(t, locSw(pkt), ANY, dlDst(pkt))

| locPt(pkt) = np;

instance :

packet(time1, pkt1)

<=> forward(time1, pkt1, port0)

| exists ANY.learned(time1, locSw(pkt1), ANY, dlDst(pkt1))

| locPt(pkt1) = port0

In any Flowlog program with multiple rules firing the same outgoing events,
provenance information can elucidate the rule that caused the event to happen.

6.2 Performance Evaluation2

The current implementation of Razor is essentially a proof of concept to evaluate the
usability and computability aspects of our model-exploration framework. We have
not been primarily concerned with efficiency of our tool in this stage of the project:
we have been content to establish that Razor is usable for many (human-crafted)
theories.

We developed a set of examples, including the ones presented in Section 6.1,
to demonstrate various features of our model-finding framework, implemented into
Razor 3. In addition to these examples, we translated specifications from the Alloy
repository to Razor’s input syntax and evaluated Razor on them (see Section 6.2.1).
These experiments have given us a clear insight into Razor’s usability as a tool for
understanding the of models of theories.

TPTP Examples. We performed several experiments running Razor on the sat-
isfiable TPTP problems [33]. For these experiments, Razor was bounded at depth
2 in the reuse mode. Razor’s overall performance on these problems is currently
not satisfactory; it frequently fails to terminate within a five-minute bound. Razor
shows a relatively better performance on CAT (60%), MGT (73%), GRP (58%),
PUZ (50%), and NLP (33%). Razor tends to perform better on problems that
are developed by hand, have a limited number of predicates, and do not include
high-arity relations.

Since the TPTP library includes solutions for its problems, used this library as a
comprehensive set of test-cases for testing the correctness of Razor’s implementation.
This library helped us with uncovering bugs as well as discovering the sources of
inefficiency in our program.

2The experiments and their corresponding results reported in this section are designed and
computed by graduate student Ryan Danas

3All examples are available at https://github.com/salmans/Razor/

71

Theory depth # models time

Bday(1) unbounded 0 86 ms

Bday(2) unbounded 1 122 ms

Bday(3) unbounded 1 226 ms

Gene 2* 18 27.7 sec

Grade(1) unbounded 2 681 ms

Grade(2) unbounded 1 835 ms

Gpa 3 2 375 ms

File(1) 1 0 17.2 sec

File(2) 1* 24 2.13 sec

Java 0* 1 425 ms

Table 6.1: Razor’s performance on examples from Alloy and Aluminum

6.2.1 Alloy and Aluminum Examples

We evaluated Razor on the sample specifications we had previously used to evaluate
Aluminum (Section 7.4). These examples tend to have qualities that make them
suitable for the kind of analysis that Razor offers: (i) they are written by users who
are investigating the logical consequences of axioms that describe a system; (ii) they
are human-tractable; and, (iii) they often have “surprising” models, which provoke
the user’s curiosity.

We manually translated these specifications from Alloy’s language to Razor’s
input syntax in geometric form. Although the translation preserved the essence of
each examples, we felt free to alter the specifications in a way that is more consistent
with the inherent positivity of geometric theories. We also used Skolemization when
necessary.

Figure 6.1 shows the number of models and the execution time of Razor for these
examples. The first column represents the specifications birthday (Bday), geneal-
ogy (Gene), gradebook (Grade) grandpa (Gpa), filesystem (File), and java (Java).
All examples except Grade are taken from the Alloy distribution. The numbers in
parentheses distinguish variations of a root specification. The second column is the
depth by which the search for models was bounded. The third column displays the
number of models that Razor generated at the given bound. And, the last column
shows the time to compute the first model—if there are any models—or to report
no models.

Because we were interested in evaluating Razor’s performance as a model-finder,
we ran a bounded search in the reuse mode. Imposing a deeper bound (preferably
unbounded) for the search is always desirable: a deeper search not only increases the
chance of finding models—assuming the theory is satisfiable,— but also it results in
models that are relatively closer to the homomorphically minimal ones. However,
the time to compute the set of possible facts, thus, the size of the ground sequents
that are passed to the SMT-solver, increases exponentially with the depth of search.

72

In Figure 6.1, the numbers in the second column that are labelled with * indicate
the maximum depth at which Razor tractably computed models.

Reporting Unsatisfiability. Reporting unsatisfiability—at any given bound—
by Razor is reassuring. File(1) tries to construct an example to show moving files
in the specified filesystem is “unsafe”. A conventional model-finder such as Alloy
or Aluminum can guarantee that the specification has no models only up to a given
bound. However, because Razor is refutationally complete, it can guarantee that
moving files in the filesystem is always safe.

Computing a Set-of-Support. Razor can perform unbounded search for models
of weakly acyclic theories (e.g., Bday, Grade). The resulting set-of-support for a
weakly acyclic theory assures the user that any other model of the theory is reducible
to some model returned by Razor.

Observe that as a direct result of refutation completeness of Razor, it is not
always necessary to run an unbounded search to compute a set-of-support. Specif-
ically, if Razor returns a set of models, without having to introduce accidental col-
lapses at a given depth, the resulting set of models will be a set-of-support for the
input theory. In this situation, increasing the depth of search will not have any
impact on Razor’s output.

For instance, all three model-finders, Alloy, Aluminum and Razor, return exactly
two models for the specification of the well-known “I’m my own Grandpa” example
(Gpa). Since Alloy and Aluminum perform a bounded search—for models with up
to 4 persons,— it is not clear if the given bound is sufficient to contain all scenarios
in which a person is his own grandpa. However, because Razor generates exactly
two models that are homomorphically minimal at depth 3 (this can be verified by
running Razor with partial model bounding), the user can conclude that in every
model of this theory, a person is his own grandpa because of only two specific
combinations of relations between exactly 4 individuals.

73

Chapter 7

Aluminum1

Aluminum is a tool for systematic model exploration [32], developed as a modifi-
cation of Alloy [15] and its backend model-finding engine, Kodkod [59]. Aluminum
accepts inputs in Alloy’s specification language and utilizes Alloy’s visualizer to
present models in the form of Alloy instances. As a preliminary implementation of
our ideas for model exploration, Aluminum offers the following features:

1. Minimal Model Construction. Aluminum returns a set of models that are
minimal under the containment ordering on models up to the input bounds
(i.e., Alloy scopes).

2. Augmentation. Aluminum allows the user to explore the consequences of aug-
menting an existing model with additional facts (i.e., Alloy tuples).

3. Consistent Facts. Aluminum computes a set of facts (within the given bounds)
that can be used to consistently augment a given model of the specification.

For a model returned by Aluminum, the user can be confident that every fact in
the model is necessary for the model to satisfy his specification. By browsing the
initial set of models, the user can quickly obtain an overall sense of the range of
models engendered by the specification [32].

7.1 Minimal Model Construction

After translating the input specification to a propositional constraint (i.e., a Kodkod
problem) up to the given bounds, Aluminum invokes a SAT-solver (i.e., SAT4J [60])
to find an initial model (i.e., Kodkod instance). The initial model is then passed to
the Minimize procedure, illustrated by Algorithm 10, to obtain a “minimal” model.
The function Minimize repeatedly applies the Reduce procedure of Algorithm 11
until a fixed-point is reached. In every invocation of Reduce for a model M, the

1The written material and the evaluation results in this chapter are primarily from [32].

74

SAT-solver is asked for a model that is strictly contained in M by adding two sets
of propositional clauses to the initial propositional CNF:

• The conjunction of the negation of the propositions corresponding to the facts
that are not true in M.

• The disjunction of the negation of the propositions corresponding to the facts
that are true in M.

Intuitively, the first clause set asks the SAT-solver for a model in which every
fact that is false in M remains false. The second clause requires a model in which
at least a true fact in M is not true. Clearly, the resulting model (if exists) will be
a submodel of M.

Notice that because M may contain multiple submodels that satisfy the resulting
propositional constraint, the SAT-solver chooses one of the possible submodels non-
deterministically. The model returned by Minimize, a model that cannot be reduced
any further, is a minimal submodel of M.

Algorithm 10 Minimize

Require: M |= ϕ

1: function Minimize(ϕ, M) . ϕ is the input formula
2: repeat
3: N ← M
4: M ← Reduce(M)
5: until M = N . Cannot minimize any more
6: return N . N is a minimal model for ϕ

Algorithm 11 Reduce

Require: M |= ϕ

1: function Reduce(ϕ, M)
2: C ←

∧
{¬p | p is false in M}

3: D ←
∨
{¬p | p is true in M}

4: if there is a model N such that N |= ϕ ∧ C ∧D then
5: return N
6: else
7: return M . M is minimal.

7.2 Consistent Facts

A consistent fact F for a model M of a theory T is a fact that can be added to M
(possibly in presence of additional facts) resulting in a model N of T . Aluminum

75

implements Algorithm 12 to compute a list all facts that are consistent with a model
M of a formula ϕ.

Algorithm 12 ConsistentFacts

Require: M |= ϕ

1: function ConsistentFacts(ϕ, M)
2: C ←

∧
{p | p ∈M}

3: D ←
∨
{p | p 6∈M}

4: R ← ∅
5: repeat
6: if there is a model N such that N |= ϕ ∧ C ∧D then
7: F ← {p | p ∈ N and p 6∈M}
8: R ← R ∪ F
9: D ← D − F

10: until no change in R return R

7.3 Augmentation

The minimal models that are initially returned by Aluminum are starting points for
exploring the space of models. The initial models only contain facts that are neces-
sary for satisfying the user’s specification; yet, they do not deliver any information
about optional facts in each model.

Augmentation allows the user to construct non-minimal models by enriching
minimal models with user’s optional facts. The augmentation feature of Aluminum
automatically computes the set of facts that are implied by the augmenting fact in
the context of the current model. If an augmentation fails with no models, the user
learns about the inconsistency between the augmenting fact and the facts contained
in the current model.

A key observation is that augmenting a model of a specification by a fact is
merely an instance of the core problem of minimal-model generation: the result of
augmentation is precisely an iterator over the minimal models of the specification
given by the original specification, along with the facts of the given model plus the
new augmenting facts [32]. Therefore, Algorithm 10, which is primarily used for
computing minimal models, may also be used for augmentation.

7.4 Empirical Results

We compared Aluminum to Alloy numerically [32]:

76

Spec. Models Models Cone Min. Model Ordinal Ordinal
(Alloy) (Alum.) Coverage Coverage (Alloy) (Alum.)

Addr 2,647 2 1 5 8 3
Bday (2) 27 1 1 3 3 1
Bday (3) 11 1 1 1 1 1
Gene 64 64 64 64 2,080 2,080
Gpa 2 2 2 2 3 3
Grade (1) 10,837 3 289 10,801 11,304 6
Grade (2) 49 3 2 12 33 6
Grade (3) 3,964 1 1 105 105 1
Hanoi (1) 1 1 1 1 1 1
Hanoi (2) 1 1 1 1 1 1
Java 1,566 3 374 1,558 4,573 6

Table 7.1: Alloy and Aluminum’s coverage of minimal models and their cones

• We studied how the resulting models mathematically compare to those pro-
duced by Alloy.

• We ran experiments to evaluate how long it takes to compute minimal models
using our recursive algorithm.

We conducted our experiments over the following specifications. In the tables,
where a file contains more than one command, we list in parentheses the ordinal
of the command used in our experiments. The following specifications are taken
from the Alloy distribution: Addressbook 3a (Addr), Birthday (Bday), Filesystem
(File), Genealogy (Gene), Grandpa (Gpa), Hanoi (Hanoi), Iolus (Iolus), Javatypes
(Java), and Stable Mutex Ring (Mutex). In addition, we use three independent
specifications: (1) Gradebook (Grade), which is defined in Figure 7.1, and enhanced
with two more commands:

run WhoCanGradeAssignments for 3 but

1 Assignment , 1 Class , 1 Professor , 3 Student

and

run {some Class} for 3

(2) Continue (Cont), the specification of a conference paper manager, from our prior
work. (3) The authentication protocol of Akhawe, et al.’s work [61] (Auth), a large
effort that tries to faithfully model a significant portion of the Web stack.

7.4.1 Model Comparison

We considered a set of satisfiable specifications for which we could tractably enu-
merate all models. This lets us perform an exhaustive comparison of the models
generated by Alloy and Aluminum. The results are shown in Figure 7.1.

77

abstract sig Subject {}

sig Student extends Subject {}

sig Professor extends Subject {}

sig Class {

TAs: set Student ,

instructor: one Professor

}

sig Assignment {

forClass: one Class ,

submittedBy: some Student

}

pred PolicyAllowsGrading(s: Subject ,

a: Assignment) {

s in a.forClass.TAs or

s in a.forClass.instructor

}

pred WhoCanGradeAssignments () {

some s : Subject | some a: Assignment |

PolicyAllowsGrading[s, a]

}

run WhoCanGradeAssignments for 3

Figure 7.1: A simple gradebook specification

78

The first (data) column shows how many models Alloy generates in all. The
second column shows the corresponding number of minimal models presented by
Aluminum. The third column shows how many models it takes before Alloy has
presented at least one model that is reachable from every minimal model from
Aluminum via augmentation. Because a given model can be reachable from more
than one minimal model, the number of models needed for coverage may in fact
be fewer than the number of minimal models. The fourth column shifts focus to
minimal models. If a user is interested in only minimal models, how many scenarios
must they examine before they have encountered all the minimal ones? This column
lists the earliest scenario (as an ordinal in Alloy’s output, starting at 1) when Alloy
achieves this. This number does not, however, give a sense of the distribution of
the minimal models. Perhaps almost all are bunched near the beginning, with only
one extreme outlier. To address this, we sum the ordinals of the scenarios that
are minimal. That is, suppose Aluminum produces two minimal models. If the
second and fifth of Alloy’s models are their equivalents, then we would report a
result of 2 + 5 = 7. The fifth and sixth columns present this information for Alloy
and Aluminum, respectively. The sixth column is technically redundant, because its
value must necessarily be 1 + · · · + n where n is the number of Aluminum models;
we present it only to ease comparison. By comparing the distribution of models
returned by Aluminum to those of Alloy we can see Aluminum’s impact on covering
the space of scenarios.

Even on small examples such as Grade (2), there is a noticeable benefit from
Aluminum’s more refined strategy. This impact grows enormously on larger models
such as Java and Grade (1). We repeatedly see a pattern where Alloy gets “stuck”
exploring a strict subset of cones, producing numerous models that fail to push
the user to a truly distinct space of models. Even on not very large specifications
(recall that Grade is presented in this paper in its entirety), the user must go over
hundreds of models before Alloy presents a model from a class of models that has not
shown earlier. The real danger here is that the user will have stopped exploring long
before then, and will therefore fail to observe an important and potentially dangerous
configuration. In contrast, Aluminum presents these at the very beginning, helping
the user quickly get to the essence of the model space.

The Gene specification presents an interesting outlier. The specification is so
tightly constrained that Alloy can produce nothing but minimal models ! Indeed
(and equivalently), it is impossible to augment any of these models with additional
facts, as illustrated by Figure 7.4.

7.4.2 Scenario Generation

We conducted another set of experiments to evaluate Aluminum’s running time [32].
All experiments were run on an OS X 10.7.4 / 2.26GHz Core 2 Duo / 4Gb RAM
machine, using sat4j version 2.3.2.v20120709. We handled outliers using one-
sided Winsorization [62] at the 90% level. The times we reported are obtained from

79

Spec. Aluminum Alloy d
Avg σ Avg σ

Bday (1) 9 8 5 3 1.57

Cont (6) 1 <1 1 <1 -0.37

Cont (8) 5 6 3 <1 5.88

File (2) 5 5 6 4 -0.28

Iolus 5,795 239 5,000 177 4.49

Mutex (3) 18,767 52 8,781 60 165.91

Table 7.2: Relative times (ms) to render an unsatisfiable result

Spec. Aluminum Alloy d
Avg σ N Avg σ N

Addr 13 12 2 8 6 0.89

Auth 800 32 110 36 19.35

Bday (2) 9 9 1 5 6 0.59

Bday (3) 8 6 1 7 6 0.17

Cont (3) 4 2 3 1 <1 9 4.86

File (1) 16 13 7 4 2.39

Gene 10 5 6 5 0.85

Gpa 9 4 2 6 5 2 0.62

Grade (1) 6 6 3 3 3 1.10

Grade (2) 3 4 3 3 4 0.01

Grade (3) 8 6 1 4 4 0.96

Java 5 4 3 2 2 1.11

Hanoi (1) 2,509 11 1 1,274 1,239 1 1.00

Hanoi (2) 14 3 1 10 2 1 2.14

Table 7.3: Relative times (ms) per scenario (minimal, in Aluminum)

Kodkod, which provides wall-clock times in milliseconds (ms).
All experiments were run with symmetry-breaking feature of Kodkod turned

on. Numbers are presented with rounding, but statistical computations use actual
data, so that values in those columns do not follow precisely from the other data
shown. Every process described below was run thirty (30) times to obtain stable
measurements.

To measure effect strength, we use Cohen’s d [62]. Concretely, we subtract
Alloy’s mean from that of Aluminum, and divide by the standard deviation for
Alloy. We use Alloy’s in the denominator because that system is our baseline.

Because Aluminum slightly modifies Kodkod to better support symmetry-breaking,
we begin by measuring the time to translate specifications into SAT problems.
Across all these specifications, Aluminum’s translation time falls between 81% and

80

113% that of Alloy, i.e., our modification has no effective impact. The absolute
translation times range from 5ms (for Gradebook) to 55,945ms (for Auth). (We use
commas as separators and our decimal mark is a point. Thus 55,945ms = 55.945s
= almost 56 seconds.)

Though our focus is on the overhead of minimization, in the interests of thor-
oughness we also examine unsatisfiable queries. Figure 7.2 shows how long each
tool spends in SAT-solving (ignoring translation into SAT, and then presentation)
to report that there are no models. The d values show that in some cases, the
time to determine unsatisfiability is much worse in Aluminum. The effect is because
of the way Aluminum and Alloy handle symmetry-breaking: Aluminum splits the
formula produced by Kodkod into two parts, one representing the specification and
query and the other capturing symmetry-breaking, whereas Alloy keeps the formu-
las conjoined. The conjoined formula offers greater opportunities for optimization,
which the SAT-solver exploits. Nevertheless, we note that even in some of the large
effects, the absolute time difference is relatively small.

For satisfiable queries, we calculate the time to compute the first ten models.
When the tool could not find ten models, the N column shows how many were found
(and the average is computed against this N instead).

When queries are satisfiable, Aluminum’s performs well compared to Alloy. First,
the overall running time is small for both tools, so even large effect sizes have small
wall-clock impact. Indeed, in the most extreme case, Aluminum takes only about
1.2 seconds longer, for a total time of 2.5 seconds—surely no user can read and
understand a model in less time than that, so Aluminum could easily pre-compute
the next model. Second, in many cases Aluminum offers many fewer models than
Alloy, helping users much more quickly understand the space of models. Finally,
the time taken by Kodkod to create the SAT problem can be vastly greater than
that to actually solve it, which suggests that a more expensive SAT-solving step will
have virtually no perceptible negative impact on the user experience.

We observe two outliers in the data. First, the time for minimization for Auth is
very significant. For this specification, we found that the number of extraneous tu-
ples eliminated during minimization is 78 on average. This shows a direct trade-off:
0.7 seconds in computing time for a possibly great impact on user comprehension.
Second, the standard deviation for Alloy on Hanoi (1) looks enormous relative to
the mean. This is because Kodkod is producing a second duplicate model (which in
fact is discarded by the Alloy user interface) very quickly. This results in datapoints
that take a long time for the first solution but close to zero for the second. We also
examined the time taken by Aluminum’s exploration features: how long it takes to
compute the consistent facts, and how long it takes to augment a model. Since the
complete space of models is enormous, we restrict attention to the first set of models
produced by Aluminum.

Figure 7.4 shows the times for computing consistent facts. We computed up
to ten models (five, in the case of Auth) and for each of these we determined the
number of consistent facts. The first column indicates the number of consistent

81

Spec. # Cons. Cons. Tup. Time Aug.
Tupls Avg σ Time

Addr 57 45 25 4

Auth 1,335 106,456 17,268 194

Bday (2) 20 19 24 6

Bday (3) 8 9 10 2

Cont (3) 2 5 <1 3

File (1) 24 29 16 3

Gene 0 2 <1 N/A

Gpa 0 1 <1 N/A

Grade (1) 25 13 10 1

Grade (2) 6 2 1 1

Grade (3) 36 14 7 1

Java 25 17 11 2

Hanoi (1) 0 4 <1 N/A

Hanoi (2) 0 1 1 N/A

Table 7.4: Times (ms) to compute consistent tuples and to augment scenarios

facts found, averaged over the number of minimal models (i.e., consistent facts per
model). The zero-values are not errors: they arise because the specifications are
sufficiently constrained that there is no room for augmentation beyond the initial
models. The next two columns show how long it took to compute the number of
consistent facts. These numbers are clearly very modest. Auth is the exception: it
produces models with, on average, over 1,300 consistent tuples, more than can be
explored by hand.

The last column shows how long, on average, it takes to augment a model with a
consistent fact (backtracking between each augmentation). The “N/A”s correspond
to specifications that have no more consistent facts, and hence cannot be augmented.

7.5 Summary

Aluminum helped us develop a practical insight into the idea of systematic model
exploration. Specifically, we learned that

1. Construction of minimal models significantly reduces the number of models
returned by the model-finder. This helps the user quickly get a sense of the
scope of all models of the theory.

2. Aluminum’s minimization algorithm based on repeated invocations of a SAT-
solver efficiently computes minimal models.

82

3. Augmentation is an intuitive strategy for exploring the set space of all models
starting from a set of minimal models.

We also realized that the feature that computes a set of consistent facts for a
given model is not practically useful. The number of consistent facts dramatically
increases with the size of bounds on models, which is often not human-tractable.
Notice that the user could simply try augmenting the model with some fact of
interest to test its consistency.

Razor vs. Aluminum

As we discuss in Chapter 5, Razor’s minimization algorithm has been inspired by
that of Aluminum, but the two algorithms behave differently. The domain of ele-
ments for the models that Aluminum generates is fixed by a user-specified bound,
resulting in a cruder notion of containment on the models of the theory. Conse-
quently, Aluminum does not support introducing “fresh” elements (outside of the
specified domain) when augmenting a model. This considerably restricts the models
that are accessible by augmentation.

Furthermore, Aluminum does not treat signatures with equality. As a result, the
initial minimal models returned by Aluminum may contain “accidental” identifica-
tion among elements, which cannot be justified in the user’s specification. Also, the
lack of treatment for equality restricts augmentation to non-equational facts.

Nevertheless, the main distinguishing feature of Razor, compared to the existing
model-finding tools including Aluminum, is the construction of provenance infor-
mation. As we explain in Chapter 5, Razor can compute provenance information
as a direct result of a “refined” construction of the Skolem-Herbrand base of the
input theory, which is computed by operational reading of sequents. In contrast,
a mainstream model-finding tool computes models over a set of arbitrary elements
that is fixed in advance. The lack of construction of provenance information by Alu-
minum was the primary motivation for the development of Razor with a completely
different algorithmic approach.

83

Chapter 8

Preliminary Implementations

Before implementing the model-finding algorithm based on SMT-solving, presented
in Chapter 5, we experimented with preliminary Chase-based model-finding algo-
rithms. The first model-finder was a näıve implementation of the Chase of Sec-
tion 8.1. This experiment helped us realize that an efficient implementation of the
Chase required a sophisticated mechanism to evaluate sequents in the temporary
partial models, computed during a run of the Chase. This observation inspired our
next implementation, Atlas, presented in Section 8.2, which incorporated ideas from
relational algebra to evaluate sequents in models.

We also realized that a näıve treatment of disjunctions by creating independent
search branches was inefficient. Therefore, we developed our current model-finding
algorithm that utilized SMT-solving to process disjunctions efficiently.

8.1 BranchExtend Chase

We implemented a straight-forward model-finding algorithm based on the Chase.
The core idea of this implementation is to extend the input theory in geometric
form, G, with additional sequents inferred from G until a fixed point is reached.

This implementation maintains a branch of the Chase as a pair (G,M), consisting
of a geometric theory G and a structure M. The Chase consists of consecutive
applications of the operations below:

Branch. Branching maps a branch of the Chase to possibly several branches,
induced by disjunctions in the head of a sequent σ ∈ G whose body is true in M:

(G ∪ {σ},M)
⋃
i

{(G ∪ {σ},Mi)}

Each Mi is induced by a classical chase-step M (σ,η)−−→Mi when M 6|=η σ.

84

Extend. Let σ ≡ ϕ(~x) `~x ψ(~x) be a sequent in G and ~y be a subset of the free
variables in σ (i.e., ~y ⊆ ~x). Let η : ~y −→ |M| be a (partial) environment that
maps the variables of ~y to elements of |M|. We extend G by instances of σ that are
induced by all possible choices of ~y and η:

(G ∪ {σ},M) (G ∪ {σ, ϕ[η~y] `(~x−~y) ψ[η~y]},M)

In a run of the BranchExtend algorithm, the CPU time is primarily spent on the
computation of the environment η during the Extend transformations. This is es-
sentially an instance of the well-known term-matching problem, which can be done
quickly [21]. However, the cost of this computation exponentially grows with the
size of M and the number of sequents in G, which is practically inefficient. In Sec-
tion 8.2.1, we discuss an alternative solution for evaluating sequents in the current
model constructed by the Chase, based on relational algebra.

Nevertheless, the primary source of inefficiency to maintain every branch of the
Chase as a separate theory and model pair. This often leads to an exponential
blow-up in the size of the memory consumed by the program. Furthermore, the
BranchExtend is unable to share computation across the multiple branches. Con-
sider the following example (a is a constant):

Example

` (P (a) ∧R(a)) ∨ (Q(a) ∧R(a)) (8.1)

R(x) ` S(x); (8.2)

A run of the Chase that starts by processing the sequent 8.1 constructs two
(partial) models, {P (e1), R(e1), a = e1} and {Q(e1), R(e1), a = e1}. Any näıve
implementation of the Chase, including the BranchExtend algorithm, would repro-
cess the sequent 8.2 in both branches. A more sophisticated algorithm, such as the
current implementation of Razor (Section 5), would avoid such re-computations.

8.1.1 Models as Term-Rewrite Systems

First-order models are often implemented as a domain of elements together with
a set of relational facts over closed terms over the elements. Challenges arise in
presence of equality: in the presence of the equality relations, standard equality and
congruence axioms must be maintained as additional invariants over models:

` x = x (8.3)

x = y ` y = x (8.4)

x = y ∧ y = z ` x = z (8.5)

R(. . . , x, . . .) ∧ x = y ` R(. . . , y, . . .) (8.6)

f(. . . , x, . . .) = z ∧ x = y ` f(. . . , y, . . .) = z (8.7)

f(~x) = y ∧ f(~x) = z ` y = z (8.8)

85

A straight-forward approach is to maintain equational facts as tuples of an or-
dinary relation in models, also to process the equality and congruence axioms as
ordinary sequents. This solution, however, is inefficient in practice.

For a more efficient implementation, the BranchExtend implementation stored
models as ground term-rewrite systems (TRS) [63]. Consequently, we implemented
a congruence closure algorithm for efficient equational reasoning.

Congruence Closure. We adopt the definition of congruence closure in [47]:

Definition Fix a signature Σ and a set of constants K.

• A C-rule is a rewrite rule c→ d, where c, d ∈ K.

• A D-rule is a rewrite rule f(c1, c2, . . . , ck)→ c, where f ∈ Σ is a k-ary function
and c1, c2, . . . , ck, c ∈ K.

The abstract congruence closure is a term-rewrite system (TRS) that captures the
equality relation over a set of constants by a set of C-rules and D-rules:

Definition Fix a signature Σ and a set of constants K disjoint from Σ. Let E be
a set of ground equations over Terms(Σ ∪ K). A ground TRS R, containing only
C-rules and D-rules over Σ and K, is a congruence closure for E if and only if:

(i) every constant c ∈ K represents some t ∈ Terms(Σ) in R.

(ii) R is ground convergent.

(iii) for all terms t and u in Terms(Σ), t↔∗E u if and only if t ↓= u ↓ in R.

The problem of constructing a congruence closure TRS for a set of equations E
is a well-studied problem with several efficient algorithms [47, 63–66]. An efficient
implementation of any of the existing algorithms requires sharing and mutation,
which are not available to pure functional programming languages such as Haskell.
For an experiment, we implemented a näıve algorithm based on the transformations
suggested in [47].

Data-Structure for Models. Fix a geometric theory G over signature Σ, and
let E be a set of equations generated by G in a run of the Chase. A TRS model
M ≡ (K,R) consists of a set of constants, K, and a congruence closure TRS, R,
where:

• K = |M| ∪ {True}, where True is a special constant.

• For any t, t′ ∈ Terms(Σ ∪ K), s↔∗E t if and only if s ↓= t ↓ in R.

• Let R(t1, t2, . . . , tk) be a an atomic formula where R ∈ Σ, and t1, t2, . . . , tk ∈
Terms(Σ). R(t1, t2, . . . , tk) is true in M if and only if R(t1, t2, . . . , tk) rewrites
to True in R; i.e., (R(t1, t2, . . . , tk)) ↓R= True.

86

8.2 Atlas

As mentioned earlier, the main cost of applying a chase-step on a sequent σ = ϕ `~x ψ
and a model M is due to computation of an environment η in which M does not
satisfy σ. Because it requires testing σ in M for every map from ~x to |M|, the cost of
computation grows exponentially with the size of |M|. To address this problem, we
implemented Atlas, a variation of the Chase from a relational algebraic perspective,
whereby sequents in an input theory were evaluated, as queries, in first-order models,
as databases. This idea significantly improved the efficiency of constructing the
environment η during a chase-step.

Due to inefficient treatment of disjunctions, we did not stay with Atlas as our
final implementation; however, we founded the grounding algorithm (Section 5.2) of
Razor based on an implementation of the Chase from a relational algebra perspec-
tive.

8.2.1 Relational Algebra for the Chase

As a result of Codd’s theorem [67], a PEF ϕ can be regarded as a database view
with a relational expression Vϕ. Consequently, a geometric sequent ϕ `~x ψ is a pair
of union-compatible views, Vϕ and Vψ, with ~x as attributes.

Let Vϕ(M) denote the set of tuples returned by evaluating Vϕ in a model M as
database. Then, M satisfies the sequent ϕ `~x ψ if and only if Vϕ(M) ⊆ Vψ(M).
That is, a chase-step on the sequent ϕ `~x ψ in model M is as a procedure that
inserts the tuples of Vϕ(M)− Vψ(M) into Vψ(M), an instance of a view update prob-
lem. By adopting the relational algebra perspective, an environment η is implicitly
constructed as a mapping from ~x to the tuples of Vϕ(M)− Vψ(M).

Conversion to Relational Algebra

After relationalization, the heads and bodies of the resulting sequents are converted
to pairs of relational expressions by the standard transformations of first-order logic
to relational algebra [67]. A relational expression Vϕ corresponding to a geometric
formula ϕ is inductively defined by the following:

Vϕ =


R ϕ = R(~x)

Vα ./ Vβ ϕ = α ∧ β
Vα + Vβ ϕ = α ∨ β
Πx(Vα) ϕ = ∃x.α

A geometric sequent ϕ ` ψ maps to a pair of relational expressions, Vϕ and Vψ. For
a standard geometric sequent, ϕ `

∨
i ψi, we found it more convenient to keep every

disjunct ψi by a separate relational expression; thus, we maintain a standard sequent
by a single relational expression Vϕ in its body and a set of relational expressions⋃
i{Vψi

}—which in theory can be infinite due to infinitary disjunctions— in its head.

87

Notation. We overload the connective ` to denote a geometric sequent Vϕ ` Vψ as
a pair of relational expressions. We also write Vϕ `

⋃
i{ψi} for a standard sequent.

Models as Databases. After relationalizing the input theory G (by the transfor-
mations in Section 5.1.1), we can store a model M of G as a database, consisting of
a set of relational tables. Every row 〈e1, . . . , ek〉 of a table TR assigned to a k-ary
relation R represents a relational fact Rk(e1, . . . , ek) in M.

Consider a relational expression Vϕ for a geometric formula ϕ. Let Vϕ(M) be
the result of evaluating Vϕ (as query) in a model M (as database). Observe that
for ~v ≡ 〈v1, . . . , vk〉 = FV(ϕ) and every k-tuple ~e ≡ 〈e1, . . . , ek〉 ∈ Vϕ(M), an
environment η : ~v −→ ~e makes ϕ true in M; i.e., M |=η ϕ. It thus follows that
a geometric sequent σ ≡ Vϕ ` Vψ is true in a database model M if and only if
Vϕ(M) ⊆ Vψ(M). This leads us to a variation of the Chase based on relational
algebra.

Database Chase

Algorithm 13 is a variant of the classical Chase from a relational algebra perspective.
Similar to the standard Chase illustrated by Section 2, a non-deterministic run of
Algorithm 13 constructs a model as a relational database.

Algorithm 13 Database Chase

1: function DBChase(G)
2: M ← ∅ . start with an empty model
3: while M 6|= G do
4: choose (Vϕ `~x

⋃n
i=1{Vψi

}) ∈ G such that Vϕ(M) 6⊆ Vψi
(M) (for all i)

5: if n = 0 then
6: fail . The sequent has ⊥ in head

7: choose a view Vψj
(1 ≤ j ≤ n)

8: for each t ∈ (Vϕ(M)− Vψj
(M)) do

9: M ← Update(Vψj
, t,M) . update Vψj

with tuple t in M
10: return M

Algorithm 13 reduces to the two following well-studied problems in the database
literature:

1. View Update: the update to the view Vψj
on line 9 is a straigh-forward view

update problem, limited to inserting tuples.

2. View Maintenance: as a result of inserting t into Vψj
in line 9, every view in

the heads and bodies of all sequent in G must be updated according to this
last update to M. This is an instance of a view maintenance problem.

88

Incremental View Maintenance

Implementing the Chase based on relational algebra makes a range of techniques,
developed in the database community, available to improve the efficiency of the
Chase. Inspired by the idea of incremental view maintenance, our relational im-
plementation of the Chase incrementally evaluates the body of sequents in models,
based on algebraic differencing of relational expressions. For every sequent with a
relational expression Vϕ in its body, we compute a differential expression ∆Vϕ by the
device described below. The set ∆Vϕ can then be used to compute the changes in
the body of the sequent after each update to the model. Consequently, Algorithm 13
can efficiently compute the set of tuples that must be inserted into the head of the
sequent by a chase-step.

Differential Expression. Assume that V ≡ V exp(T1, . . . , Tn) is a relational ex-
pression over tables T1, . . . , Tn. Also, let ∆T1, . . . ,∆Tn denote positive changes,
induced by inserting tuples, to T1, . . . , Tn. A relational expression ∆V , defined by
the following induction, captures the changes to V :

• ∆(σC(Y)(T)) = σC(Y)(∆T)

• ∆(ΠX(T)) = ΠX(∆T)

• ∆(S ./C(Y) T) = (∆S ./C(Y) T) ∪ (∆S ./C(Y) T) ∪ (∆S ./C(Y) ∆T)

Here, σC(Y)(T) selects those tuples in T for which C(Y) holds; ΠX(T) projects
T onto a set of attributes X; and, S ./C(Y) T is equivalent to σC(Y)(S × T). A
procedural approach to the previous computation is discussed in [56].

8.2.2 Scheduling

Atlas maintains the state of every run of the Chase on an input (relational) theory
G by a problem, a structure consisting of a model M and a queue Q of sequents. The
model M is the database that has been constructed during the current run of the
Chase, according to Algorithm 13. The queue Q is used to schedule the sequents of
G in a fair manner.

In every execution of Atlas, the global state of computation is a pool of problems,
initialized with a single problem with an empty model. In every cycle, the program
chooses a problem (Q,M) from the pool; selects a sequent σ from the head of Q;

computes a model M′ by a chase-step M (σ,η)−−→M′ (for some environment η such that
M 6|=η σ); reschedules σ at the end of the queue yielding Q′; and, restores (Q′,M′)
into the pool. Once a model M of G is obtained, a problem (Q,M) is removed from
the pool and M is presented to the user. Also, the problem is removed from the
pool if the Chase fails on M.

Performing a chase-step for a problem (Q,M) with σ ≡ ϕ `
∨n
i=1 ψi at the head

of Q yields a set of problems Pi = (Q′,Mi) for 1 ≤ i ≤ n. Each model Mi is the

89

result of making a disjunct ψi true in M, enabling us to follow the consequences of
every choice of disjunct as a separate problem in the pool. This simple idea helps
the performance of the program drastically.

In practice, we use a priority queue to schedule the sequents of G in a problem:
this allows the scheduler to prioritize sequents with ⊥ in the head over the the other
sequents that may extend the current model with new facts and elements. This
helps Atlas terminate a failing branch before wasting unnecessary chase-steps on
the other sequents of the theory.

Strategies for Scheduling the Problems. The performance of Atlas is greatly
influenced by the scheduling strategy that selects a problem from the pool. We
implemented three scheduling strategies as described below:

1. Depth First Search (DFS): the pool of problems is a stack; a problem is re-
stored at the top of the stack once processed. In practice, DFS shows a better
average performance to return the first model. However, it may suffer non-
termination in a given Chase branch.

2. Breadth First Search (BFS): the pool of problems is a queue; a problem is
restored at the end of the queue once processed. As predicted, BFS needs a
long time to return the first model. However, it guarantees to return a finite
model of the theory if it exists.

3. Round Robin (RR): a problem is processed for k times, then it is scheduled
at the end of the pool. In theory, RR is expected to combine the quickness
of DFS and the stability of BFS; however, finding the right k to adjust RR is
not a trivial problem. A decent strategy is to grow k exponentially with the
number of problems in the pool.

90

Chapter 9

Related Work

The development of algorithms for the generation of finite models is an active area
of research. Two well-known methods are “MACE-style” tools, which reduce the
problem to be solved into propositional logic and employ a SAT-solver, and “SEM-
style”tools, which work directly in first-order logic (see Section 9.1). A common ap-
plication is the computation of counterexamples to conjectures that arise in modeling
or software verification. Particularly, model-finding supports a form of “lightweight”
analysis of software whereby a user understands the implications of a software ar-
tifact by studying examples of its execution (see Section 9.2). Our framework for
model-exploration has been inspired by this line of research.

The theoretical foundation of Razor, our model-finding assistant for exploring
models, is geometric logic. Geometric logic was previously applied in a number of
theorem-proving and formal verification applications (see Section 9.3). The crucial
difference with the current work is of course the fact that we focus on model-finding
and exploration.

9.1 Finite Model-Finding

It is well-known that model-finding for first-order logic is undecidable. Finite models
of a first-order theory, however, can be found by exhaustive search. Given a first-
order theory T and a natural number b as a bound on the size of models, finite
model-finding is conventionally the problem of finding a model M with a domain of
size less than or equal to b.

The two prominent approaches to finite model-finding are MACE-style [2] and
SEM-style [20] algorithms. MACE-style model-finders are characterized by the use
of propositional SAT-solving, whereas the SEM-style ones, which search for models
directly at the first-order level.

91

9.1.1 MACE-Style Model-Finding

Given an input first-order theory T over a signature Σ and a bound b on the size
of models, a MACE-style model-finder translates T to a set of propositional clauses
equisatisfiable to T up to b. The bound b corresponds to a domain of elements D of
size b. The propositional variables in the propositional clause set represent values for
the entries of operation tables for the predicates and functions of Σ. Solutions of the
propositional clauses, as a satisfiability problem, correspond to values of functions
and predicates in a first-order model of T .

The Algorithm. MACE-style model-finding proceeds by converting the input
first-order theory T to a CNF, possibly in presence of Skolemization. The next
step eliminates the function symbols in T by flattening and relationalization, using
transformations similar to the ones described in Section 5.1.1. The resulting rela-
tional theory TRel is equisatisfiable T [48, 68, 69]. Next, TRel (in CNF) is translated
to an equisatisfiable “propositional” clause set over the input domain of elements D,
provided as the bound on the search. The resulting propositional problem is then
fed to a SAT-solver.

Saturation. Saturation is the process that generates all posssible instances of the
relational first-order CNF, TRel, over the input domain D [5,48,69]: for every clause
C(~x) and environment η : ~x → D, a propositional clause C(η~x) is generated. The
resulting propositional CNF, will then be added to a set of integrity clauses to form
the input to the SAT-solver.

Integrity Clause Generation. The saturated propositional CNF is equisatis-
fiable to the input first-order formula only in presence of additional clauses that
enforce integrity constraints for the functions of the input signature Σ, over the
given finite domain D. The integrity constraints fall into the two following cate-
gories: [69]:

1. Unity Clauses: for every function f of artiy k in Σ, and any pair of elements
c,d ∈ D (c 6= d), a set of clauses in the form of f(~e) 6= c ∨ f(~~e) 6= d is
generated, where ~e is a k-tuple over D.

The set of unity clauses ensure that for every argument vector over the domain
of elements, every function f gets at most one value.

2. Totality Clauses: for every function f of arity k in Σ, a set of clauses in the
form of f(~e) = d are generated, where d ∈ D and ~e is a k-tuple over D.

The totality clauses, interpret f as a total function.

92

Paradox. Paradox is a quintessential MACE-style model-finding tool [69]. Para-
dox is an influential model-finder that introduced new ideas to the MACE-style
technology, including: (i) a reduction technique, known as term definitions, (ii) a
method for incremental extension of the search bound, known as incremental model-
finding, (iii) static isomorphism elimination, and (iv) sort inference in the context
of model-finding.

Kodkod. Kodkod accepts a multi-sorted first-order formula, possibly with tran-
sitive closure, and a set of upper and lower bounds on the input sorts as input, and
it constructs models for the input formula between the given bounds [68]. The pri-
mary features of Kodkod include (i) support for partial models, (ii) a mechanism for
detecting and eliminating isomorphic models (known as, symmetry breaking), and
(iii) a sophisticated sharing detection algorithm for efficient propositionalization.

Kodkod is a popular model-finding engine, designed to serve as a component that
can be easily incorporated into other tools. A variety of model-finding analyzers
including Alloy [15,70], Margrave [13,71], and Nitpick [11,72] use Kodkod for their
backend solver.

9.1.2 SEM-Style Model-Finding

Unlike the MACE-style algorithm, the SEM-style approach finds models of the input
theory T , over a signature Σ, directly at the first-order level (without proposition-
alization). SEM-style model-finders implement a backtracking search algorithm to
build interpretation tables, for the functions and relations of Σ, which correspond
to finite models of T up to a given bound b. Every cell of such operation tables
stores a value for a ground term or a ground atomic formula [20,48].

The Algorithm. Given a first-order formula T (often in CNF) over a signature Σ
and a finite domain D, a SEM-style search with backtracking interprets the functions
and the predicates of Σ in models of T . Every cell of an interpretation table for a
k-ary relation R in Σ holds a Boolean value for R(~e), where ~e is a k-tuple over D.
Every cell of a table that interprets a k-ary function f in Σ holds a value over D,
which represents the value of f(~e), for a k-tuple ~e in f .

Value Assignment. The state of computation is maintained as a tuple: S ≡
(A,B, C): A is the set of cells to which values have been assigned, B is the set
of unassigned cells, and C is a set of constraints over the values of different cells.
Initially, all cells are in B, A is empty, and C is the input theory T . In this setting,
model-finding is the process of moving cells from B to A, using a recursive depth-
first search algorithm, by assigning values to the cells in B in a way that is consistent
with C. After every value assignment, C is extended with an additional constraint
that records the value assignments. The constraints in C, therefore, force further
restrictions on values that the remaining unassigned cells can receive.

93

The search procedure succeeds if all cells can successfully be moved from B to A.
In the case of a contradiction within a branch, the search backtracks and chooses
different value-assignments. The search for models (up to the given bound) fails if
successful value-assignments for all cells cannot be found [20].

Constraint Propagation. A näıve SEM-style search in the space of all possi-
ble interpretations is computationally expensive. The cost of such a näıve search
grows exponentially with the number of elements in the input domain D. In or-
der to compensate for the theoretical inefficiency, SEM-style model-finders are often
equipped with powerful constraint propagation engines, comparable to those devel-
oped by propositional SAT-solvers. The constraint propagation engines make use
of the logical consequences of value-assignments to diminish the search space for
future assignments. This is done by either forcing or restricting the values that can
be assigned to the unassigned cells [20,48].

Common heuristic algorithms that have been utilized by SEM-style model-finders
include the first-fail principle, forward checking, and isomorphism elimination [20].

9.1.3 Other Methods

A somewhat different approach to model-finding arises out of “instance based” meth-
ods for proof search, which can be adapted to compute finite models [49, 73]. The
core idea of this approach is to reduce the model-finding problem to a first-order
clause set, and to employ theorem-proving techniques to decide whether a model
exists. For efficient equational reasoning, instance based solvers may utilize SMT-
solvers [74].

The techniques based on bottom-up model generation [51] read implications as
rules that are repeatedly applied to construct models for the input theory. Similar
to our algorithm for Razor, bottom-up model generation is not parameterized by
the domain size of models, thus, it is refutationally complete. This approach also
constructs “small” models, and it makes minimal identification among the elements
of models.

Baumgartner and Suchanek [45] present a set of transformations to convert a
first-order theory to a disjunctive logic program, which can be fed to a bottom-up
model-finder. The transformations treat existential quantifiers by standard Skolem-
ization as the basic option. The “recycling option” avoids creation of fresh Skolem
terms if an existing Skolem term satisfies the existentailly quantified formula. The
“loop check” option tries to reuse existing Skolem terms when possible. These strate-
gies are comparable to the ones presented in Section 4.3.5, used to bound the search
by Razor. The authors also provide a set of transformations to efficiently eliminate
equality when the underlying model-finder does not offer equational reasoning.

94

9.2 Lightweight Model-Finding

Inspired by the automated analysis provided by model-checkers [75–80], model-
finding has been applied as a “lightweight formal method” [12], where it helps users
understand formal specifications. In this setting, models of a theory are examples
that illustrate the behavior of a software or a hardware specification, written in a
declarative formal language. We refer to the approach whereby a user develops her
intuition about her specification in interaction with a model-finder as lightweight
model-finding.

Lightweight model-finders such as Alloy [15, 70] and Margrave [13, 15, 81] are
closer in spirit to Razor in the sense that they facilitate an environment in which
the user can verify the design of a system through examples of the system’s execu-
tion. However, the existing work in the lightweight model-finding community is not
primarily driven by the idea of exploring all models of the input theory.

Alloy. Alloy [15, 70] is a general-purpose specification language and an analyzing
tool that has been applied to a broad range of problems, including: design and
analysis of software systems [82–89], automated software testing [90–92], business
process modelling [93–95], network configuration [96–98], security analysis [99–101],
and other applications [102–106]. Alloy allows its users to describe structures in a
specification language based on first-order relational algebra and explore examples
of the specified structures in a graphical visualizer [70]. Alloy utilizes Kodkod [59],
an efficient first-order relational model-finder, to generate examples for the input
specification.

The user’s interaction with the Alloy analyzer comprises three major activi-
ties [107]:

• Simulation. the analyzer simulates a specified system by constructing finite
models of its specification.

• Checking. the analyzer checks if the specified system satisfies a given property
by constructing counterexamples that refute the property.

• Debugging. the analyzer helps the user to debug an over-constrained specifi-
cation by highlighting contradictory constraints in the specification [108].

Margrave. Margrave [13, 71, 81] is a tool for analyzing access-control policies.
Given a set of policy rules and a query about the given policy, Margrave computes
a set of “scenarios” that witness the queried behavior [13]. Margrave allows the
user to learn about the consequences of configuration edits, overlaps, and conflicts.
Margrave also helps the user identify rules that must be “blamed” for a particular
behavior of the policy. The user can utilize the aforementioned features of Margrave
to verify the compliance of a given policy with initial security goals. Similar to Alloy,
Margrave too relies on Kodkod for model-finding.

95

CPSA. The Cryptographic Protocol Shapes Analyzer (CPSA) [14, 109, 110] is a
tool for analyzing cryptographic protocols. Given some initial behavior correspond-
ing to various parties that are involved in a session of a cryptographic protocol,
CPSA enumerates all possible executions, namely shapes, of the protocol that are
compatible with the given behavior. By investigating all possible shapes, generated
by CPSA, the user can discover complete runs of the protocol that correspond to
anomalies or attacks.

A distinguishing feature of CPSA, among the mainstream model-finders, is that
it generates minimal models, i.e., minimal shapes. However, its application and
underlying algorithms are different from those of conventional model-finders.

9.2.1 Lightweight Model-Finding Research

While the primary focus of the automated theorem-proving is to improve the per-
formance of model-finders researchers in the Alloy community have been building
a body of research to improve the “quality” of models that are presented to the
user. Although development of new ideas for visualizing and presenting the models
to the user may be included in this line of research [111–113], we are primarily in-
terested in the underlying model-finding technology that facilitates construction of
more effective models for lightweight model-finding.

Automatic Bound Computation

Due to undecidability of first-order logic, model-finders, such as Alloy, hold the user
accountable for making a trade-off between the efficiency and completeness of the
model-finding procedure. The user is responsible to provide precise bounds that are
loose enough to contain interesting models and tight enough to ensure the efficiency
of the search. Finding the sweet-spot between completeness and efficiency is a
domain-specific matter, demanding an experienced user. Furthermore, achieving
this balance varies from one problem to another even within the same domain.

An ongoing line of research in the Alloy community focuses on automatically
computing lower-bounds and upper-bounds on the sizes of models when possible.
While attempts have been made to leverage automatic bound computation to im-
prove the efficiency of the model construction [114–116], the primary goal of this
branch of research is to mitigate the burden of bound computation for the user.
Momtahan [117] computes an upper-bound on the size of a single sort, as a func-
tion of bounds specified by the user on the other sorts, for a restricted fragment
of Alloy’s core language. Abadi et al. [118] identify a decidable fragment of sorted
logic whereby the theories written in this fragment are guaranteed to have a finite
Herbrand universe. Finally, Nelson et al. [119] establish a syntactic condition that
generalizes Bernays-Schnöfinkel-Ramsey fragment of first-order logic to ensure the
Finite Model Property in a many-sorted framework. The authors provide a linear-
time algorithm for deciding the given condition and a polynomial-time algorithm

96

for computing the bound sizes. They implement their algorithms into Margrave.
Razor, on the other hand, computes the domain of elements by enumerating the

terms in the witnessing signature of the input theory. This strategy does not require
the user to fix a domain of elements in advanced. Notice that although we need to
bound the search for termination, by providing a limit on the depth of the witness
terms, our algorithm is not inherently bounded.

As another consequence of inductive enumeration of witnessing terms, Razor
is refutationally complete. Conventional model-finders do not distinguish inconsis-
tency in the user’s theory form the absence of models up to the given bound. Specif-
ically, it is always probable to see models of the theory by increasing the bound size.
In contrast, if Razor terminates with no models (regardless of the depth of search),
the user can be confident that his theory is inconsistent and has no models at all.

Debugging Specifications

Another challenging problem of lightweight model-finding is to provide debugging
facilities by which a user can correct his specification once he encounters models that
do not demonstrate a desired behavior. Core extraction and its variations [120–
122] are the central facility for debugging Alloy specifications [108]. When a given
specification is unsatisfiable, Alloy utilizes the “unsatisfiable cores”, provided by the
underlying SAT-solver, to identify contradictory constraints. This feature helps the
user detect accidental overconstraints and correct the specification accordingly.

In an attempt comparable to the construction of unsatisfiable cores, Wittocx
et al. [123] construct debugging traces for unsatisfiable theories in situations when
model expansion is the underlying technique for constructing models. The authors
argue that their approach results in more tractable proofs for unsatisfiability when
the sizes of the unsatisfiable cores are relatively large.

Finally, Bendersky et al. present a debugging visualizer, inspired by program-
ming language debuggers, which generates debugging traces for DynAlloy [106],
an extension of Alloy with procedural actions [124]. These traces are constructed
based on DynAlloy’s atomic actions, which are defined in terms of preconditions
and postconditions using standard Alloy predicates.

Razor presents provenance information, which can trace any piece of information
in a model to a line of the user’s specification. The user may effectively use this
mechanism to detect bugs in his specification that are responsible for unexpected
pieces of information in a given model. An extension of this idea is to construct
provenance information for unsatisfiable theories, which is a subject of future work.

Partial Models

Inspired by the work in the model-checking community [125, 126], researchers are
investigating the use of partial models in lightweight model-finding when part of
a solution is already known [127, 128]. These partial models capture known in-

97

formation about solutions to the user’s problem, which are to be completed by
the model-finding tool. Partial models are proven to help the efficiency of model
generation [68]. Partial models are also useful to serve as regression test-cases for
incremental development of specifications [129]. In the context of target-oriented
model-finding, a partial model is extended to support the specification of a target
solution when model-finding is employed to construct solutions that are as close as
possible to the target [130].

Kodkod, Alloy’s model-finding backend, is able to exploit the information in
initial partial models to efficiently construct full models [68]. Montaghami and
Rayside [129, 131] made the Kodkod partial models explicitly available to Alloy
users.

In principle, an inductive model-finding algorithm based on the (classical) Chase
naturally computes partial models of the theory during its execution. The incom-
plete models that are computed during a run of the Chase can be sent to (complete)
models of the theory by homomorphism (Lemma 4.3.1). In fact, the augmentation
feature of Razor exploits this facility: the model being augmented maybe seen as a
partial model with regard to the resulting model.

Having said that, exploiting the property mentioned above is more complicated in
the two-phase algorithm implemented into Razor, where the Chase-like computation
is done before the models are computed by the SMT-solver.

Model Selection

Most interesting first-order theories have many models; in fact, the majority of first-
order logic specifications have an infinite number of models. Even when models are
constrained to be finite —for example, by imposing a size-bound— effective model-
finders should identify the best models to present to the user, determine the order
by which the models are presented to the user, and facilitate a framework for the
user to explore the space of all models.

Alloy attempts to exclude isomorphic models [68] on the grounds that isomorphic
models do not provide additional information. Regardless of isomorphism elimina-
tion (i.e., symmetry breaking), Alloy allows the underlying SAT-solver to dictate a
random order of model presentation. The random nature of the presentation allows
users to navigate among models with no semantics associated with the order of nav-
igation. A trend in Alloy’s random model presentation is to present smaller models
first. As Jackson [70, page 7] explains:

The tool’s selection of instances is arbitrary, and depending on the pref-
erences you’ve set, may even change from run to run. In practice, though,
the first instance generated does tend to be a small one. This is useful,
because the small instances are often pathological, and thus more likely
to expose subtle problems.

Given the benefits associated with presenting the smaller models first, it is natural
to explore the possibility of forcing a systematic order of presentation.

98

Aluminum [32] is our first attempt to explore the models of a theory with the
intention of forcing a systematic order on models. Aluminum is a variation of Alloy
and its model-finding engine, Kodkod, which utilizes the underlying SAT-solver
to recursively reduce an initial model returned by the SAT-solver to a “minimal”
model. Aluminum considers a model to be minimal if it is minimal with respect to
the containment relation on models. Consequently, Aluminum allows the user to
“augment” the minimal models with additional facts in order to “explore” the space
of all models of the theory.

In contrast to the containment relation on models used by Aluminum, Razor
utilizes the ordering relation determined by homomorphism [132]. Like Aluminum,
Razor relies on augmentation for exploring the space of all models. In target-oriented
model-finding [130], partial models are extended to contain information about tar-
get models to be approximated by the model-finder. In the context of scenario
exploration target-oriented model-finding can be employed to investigate the conse-
quences of modifications to a specification.

9.3 Geometric Logic

Geometric logic as a logic of observable properties was developed by Abramsky [37]
and has been explored as a notion of specification by several authors [34, 133]. Ge-
ometric logic for theorem-proving was introduced in [134]. In [73] deNivelle gen-
eralized the setting of [134] to incorporate equality, and introduced a technique to
augment the underlying theory as the system “learns” lemmas.

The Chase. The Chase is a well-known algorithm in the database community [16–
19]. In the context of a data-exchange problem, where tuple-generating and equality-
generating dependencies are essentially restricted forms of geometric sequents, the
Chase has been applied to extend an instance over a given source schema to an
instance over a target schema [17,43].

The earlier versions of the Chase worked with disjunction-free dependencies,
yielding exactly one (universal) model by a successful run. Deutch and his col-
leagues developed a version of the Chase that allowed disjunctions [42], resulting
in a set-of-support for the input theory by a successful run. However, challenges
arise in managing the complexity that arises due to disjunctions and equations.
The algorithm implemented into Razor has been primarily aimed to address these
challenges.

Theorem Proving. Fisher and Bezem [135] develop Geolog, a language for theorem-
proving in geometric logic. A Geolog program consists of a set of axioms, goal con-
ditions, and failure conditions, expressed as geometric sequents. The authors also
define an abstract Skolem machine that utilizes a Chase-like algorithm to decide
whether any of the goal or failure conditions follow from the given set of axioms.

99

Bezem and Coquand [134] implement a proof theory in coherent logic —a frag-
ment of geometric logic that prohibits infinitary disjunctions— using Prolog [136].
The suggested proof theory exploits the observational properties of coherent logic
for two primary advantages:

• Positivity of coherent logic makes it possible to constructively build a proof
for an axiom, whereas resolution-based theorem-proving, which transforms the
axiom into equisatisfiable ones.

• Theorem-proving in coherent logic is efficient because one never needs to in-
troduce extra witnesses for an existential quantifier, if a witness already exists.

Formal Validation and Verification. The observational properties of geomet-
ric logic suggests geometric logic as a viable specification language [34]. In fact,
logical axioms in a variety of applications including policy analysis [137], protocol
analysis [44, 133,138], and description logic [45] tend to be in geometric form.

Geometric logic has been utilized to study the connections between the properties
of components and the properties of systems that are made of those components [139,
140]. The observational properties of geometric logic play a central role in preserving
properties as they propagate to the system level.

100

Chapter 10

Conclusion and Future Work

This thesis presents a framework for exploring finite models of first-order theories.
The framework suggests a novel approach for systematic exploration of the space of
models as well as construction of provenance information for individual models. We
suggest navigating between models along the paths induced by the homomorphisms
on models. The homomorphism preorder on models measures their information
content; that is, a model that is minimal under this preorder contains a minimum
amount of information that is essential for satisfying the theory. Such minimal
models are desirable as they do not contain distracting information. Moreover,
every piece of information in a homomorphically minimal model can be justified by
the axioms in the user’s theory.

We implemented our framework in Razor, a model-finding assistant that pro-
vides the user with an interactive REPL for exploring the models of a theory G in
geometric form. Razor initially returns a set-of-support for G, a stream of all (finite)
minimal models in the homomorphism ordering. Starting with the initial minimal
models, the user can explore the space of all (finite) models of G via augmentation.
Razor’s model-finding algorithm is inspired by the Chase, an algorithm developed
in the database community, which computes a set-of-support for theories in geo-
metric form. Razor utilizes a variation of the Chase to compute a set of possible
facts for G, which can be thought of a refined version of the Herbrand base for G.
Consequently, Razor utilizes an SMT-solver to construct models of G that are ho-
momorphically minimal. Razor employs a minimization algorithm, inspired by that
of Aluminum [32], to reduce an arbitrary model of G to a homomorphically minimal
one.

Unlike a conventional model-finder, Razor computes provenance information for
the elements and facts of the models it returns. The provenance computation is
done by constructing terms that witness the elements of models in an extended
witnessing language. Razor can also compute provenance information for the ele-
ments and the facts of augmented models with regards to the user’s original theory
and the (optional) augmenting facts. Our model-finding algorithm is refutationally
complete, thus, is not inherently bounded. However, Razor uses a subtle notion of

101

bound on the depth of witnessing terms to make the search tractable.
We exercised Razor on sample specifications of access control policies, Flowlog

programs, and software design artifacts. Developing a comprehensive set of case-
studies and sample specifications to exercise Razor in other application areas is an
ongoing research.

Performance Enhancement. An obvious area of future work is to improve Ra-
zor’s performance on large theories. Razor’s performance is currently not competi-
tive with the state of the art model-finders on large theories from TPTP [141] and
the Alloy distribution [15]. Our main focus, however, even in the long term, is on
theories developed by hand, which are human readable, have a limited number of
predicates, and rarely include high arity relations. A natural source of such theories
is the Alloy repository. A long-term research question is exploring the tradeoffs
between efficiency and the kind of enhanced expressivity we offer.

The current algorithm based on SMT-solving has significantly improved the effi-
ciency of the tool, compared to our preliminary implementations of the Chase. Still,
major engineering improvements in the following areas will remain as a future work:

1. Exploiting the work in the SMT community, specifically the support for uni-
versal quantifiers [142].

2. Utilizing an in-memory database (e.g., Berkeley DB [143]) to efficiently eval-
uate sequents in the set of possible facts, during a run of the grounding pro-
cedure. The use of a traditional database system makes a wide range of tech-
niques from the database literature available to us. Specifically, materializing
the views induced by the formulas in the head of sequents, leveraging efficient
view update algorithms, and utilizing the existing techniques for identifying
relevant updates [56] will improve the performance of Razor’s grounding algo-
rithm.

3. Leveraging the techniques developed in the model-finding community—e.g.,
the ones mentioned in [69, 144]—to reduce the size of the ground instances
that are passed to the SMT-solver.

Support for Other Languages. An ongoing project focuses on the support for
specifications written in other languages, which are not necessarily in geometric
form. This includes development of parsers to allow input in native formats such as
Description Logic, firewall specifications, XACML, languages for software-defined
networking, and cryptographic protocols. As discussed earlier, converting free-form
first-order theories to geometric form is a straight-forward process in presence of
Skolemization. However, it is often preferable to avoid Skolemization in order to
maintain the language of the user’s specification. Nonetheless, the primary challenge
of translating specifications from other languages to Razor’s core syntax will be the

102

presentation of provenance information, computed in the extended signature with
Skolem functions.

Feature Enhancement. The current interface to interact with Razor is rather
primitive. Future work includes the development of a more sophisticated GUI for
presenting the space of all models as well as individual models, with regards to the
goals of our exploration framework. Another extension is to enhance Razor’s aug-
mentation feature. The current implementation of Razor only allows for augment-
ing models with atomic facts, but in theory, augmentation can work with arbitrary
positive-existential formulas.

103

Bibliography

[1] S. Feferman, J. W. Dawson, Jr., S. C. Kleene, G. H. Moore, R. M. Solovay,
and J. van Heijenoort, Eds., Kurt Godel: Collected Works. Vol. 1: Publications
1929-1936. Oxford University Press, Inc., 1986.

[2] W. Mccune, “A Davis-Putnam Program and its Application to Finite First-
Order Model Search: Quasigroup Existence Problems,” Argonne National
Laboratory, Tech. Rep., 1994.

[3] L. Kovács and A. Voronkov, “First-Order Theorem Proving and Vampire,” in
International Conference on Computer Aided Verification, 2013.

[4] P. Baumgartner, A. Fuchs, and C. Tinelli, “Darwin: A Theorem Prover for
the Model Evolution Calculus,” in IJCAR Workshop on Empirically Successful
First Order Reasoning, 2004.

[5] T. Tammet, “Gandalf,” Journal of Automated Reasoning, 1997.

[6] D. W. Loveland, “Mechanical Theorem-Proving by Model Elimination,” Jour-
nal of the ACM, 1968.

[7] B. Selman, H. J. Levesque, and D. G. Mitchell, “A New Method for Solving
Hard Satisfiability Problems,” in National Conference on Artificial Intelli-
gence, 1992.

[8] J. D. Phillips and D. Stanovský, “Automated Theorem Proving in Quasigroup
and Loop Theory,” AI Communications, 2010.

[9] E. Zawadzki, G. J. Gordon, and A. Platzer, “An Instantiation-Based Theorem
Prover for First-Order Programming,” in AI Statistics, 2011.

[10] H. Chu and D. A. Plaisted, “Model Finding In Semantically Guided Instance-
Based Theorem Proving,” Fundamenta Informaticae, 1994.

[11] J. C. Blanchette, “Nitpick: A Counterexample Generator for Isabelle/HOL
Based on the Relational Model Finder Kodkod,” in Logic for Programming,
Artificial Intelligence, and Reasoning, 2010, pp. 20–25.

104

[12] D. Jackson, “Lightweight Formal Methods,” in International Symposium of
Formal Methods Europe on Formal Methods for Increasing Software Produc-
tivity, 2001.

[13] T. Nelson, C. Barratt, D. J.Dougherty, K. Fisler, and S. Krishnamurthi, “The
Margrave Tool for Firewall Analysis,” in USENIX Large Installation System
Administration Conference, 2010.

[14] S. F. Doghmi, J. D. Guttman, and F. J. Thayer, “Searching for Shapes in
Cryptographic Protocols,” in Tools and Algorithms for the Construction and
Analysis of Systems, 2007.

[15] “Alloy Analyzer.” [Online]. Available: http://alloy.mit.edu/alloy/

[16] D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing Implications of Data
Dependencies,” ACM Transactions on Database Systems, 1979.

[17] C. Beeri and M. Y. Vardi, “A Proof Procedure for Data Dependencies,” Jour-
nal of the ACM, 1984.

[18] A. Deutsch and V. Tannen, “XML Queries and Constraints, Containment and
Reformulation,” ACM Symposium on Theory Computer Science, 2005.

[19] S. Abiteboul, R. Hull, and V. Vianu, Eds., Foundations of Databases: The
Logical Level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[20] J. Zhang and H. Zhang, “SEM: a system for enumerating models,” in Inter-
national Joint Conference on Artificial Intelligence, 1995.

[21] J. Harrison, Handbook of Practical Logic and Automated Reasoning. Cam-
bridge University Press, 2009.

[22] L. de Moura, B. Dutertre, and N. Shankar, “A Tutorial on Satisfiability Mod-
ulo Theories,” in International Conference on Computer Aided Verification,
2007.

[23] L. de Moura and N. Bjørner, “Satisfiability Modulo Theories: An Appetizer,”
in Formal Methods: Foundations and Applications, Brazilian Symposium on
Formal Methods, 2009.

[24] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh, Handbook of Sat-
isfiability: Frontiers in Artificial Intelligence and Applications. Amsterdam,
The Netherlands, The Netherlands: IOS Press, 2009.

[25] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,”
Department of Computer Science, The University of Iowa, Tech. Rep., 2010,
available at www.SMT-LIB.org.

105

[26] “SMT-LIB.” [Online]. Available: http://smt-lib.org

[27] “Boolector.” [Online]. Available: http://fmv.jku.at/boolector/

[28] “UCLID.” [Online]. Available: http://uclid.eecs.berkeley.edu

[29] “Yices.” [Online]. Available: http://yices.csl.sri.com

[30] “Z3.” [Online]. Available: http://z3.codeplex.com

[31] “Razor.” [Online]. Available: http://salmans.github.io/Razor/

[32] T. Nelson, S. Saghafi, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “Alu-
minum: Principled Scenario Exploration Through Minimality,” in Interna-
tional Conference on Software Engineering, 2013.

[33] G. Sutcliffe, “The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0,” Journal of Automated Reasoning, 2009.

[34] S. Vickers, “Geometric Logic as a Specification Language,” in Theory and
Formal Methods, 1994.

[35] ——, “Geometric Theories and Databases,” in Applications of Categories in
Computer Science, 1992.

[36] ——, “Geometric Logic in Computer Science,” in Theory and Formal Methods,
1993.

[37] S. Abramsky, “Domain Theory in Logical Form,” Annals of Pure and Applied
Logic, 1991.

[38] B. Rossman, “Existential Positive Types and Preservation under Homomor-
phisms,” in IEEE Logic in Computer Science, 2005.

[39] R. Goldblatt, Topoi: the Categorical Analysis of Logic. North-Holland, 1984.

[40] S. Vickers, “Topical Categories of Domains,” Mathematical Structures in Com-
puter Science, 1999.

[41] M. Makkai and G. Reyes, First-Order Categorical Logic: Model-Theoretical
Methods in the Theory of Topoi and Related Categories. Springer-Verlag,
1977.

[42] A. Deutsch, A. Nash, and J. B. Remmel, “The Chase Revisited,” in Symposium
on Principles of Database System, 2008.

[43] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data Exchange: Semantics
and Query Answering,” ACM Symposium on Theory Computer Science, 2005.

106

[44] D. J. Dougherty and J. D. Guttman, “Decidability for Lightweight Diffie-
Hellman Protocols,” in IEEE Computer Security Foundations Symposium,
2014.

[45] P. Baumgartner and F. M. Suchanek, “Automated Reasoning Support for
First-Order Ontologies,” Principles and Practice of Semantic Web Reasoning,
2006.

[46] K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs,” in International Conference on Functional Pro-
gramming, 2000.

[47] L. Bachmair, A. Tiwari, and L. Vigneron, “Abstract Congruence Closure,”
Journal of Automated Reasoning, 2003.

[48] T. Tammet, “Finite Model Building: Improvements and Comparisons,” in
International Conference on Automated Deduction, 2003.

[49] P. Baumgartner, A. Fuchs, H. De Nivelle, and C. Tinelli, “Computing Fi-
nite Models by Reduction to Function-Free Clause Logic,” Journal of Applied
Logic, 2009.

[50] R. Manthey and F. Bry, “SATCHMO: A Theorem Prover Implemented in
Prolog,” in International Conference on Automated Deduction, 1988.

[51] P. Baumgartner and R. A. Schmidt, “Blocking and Other Enhancements for
Bottom-Up Model Generation Methods,” in International Joint Conference
on Automated Reasoning, 2006.

[52] F. Bry and A. Yahya, “Minimal Model Generation with Positive Unit
Hyper-Resolution Tableaux,” in Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, 1996.

[53] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of Haskell:
Being Lazy with Class,” in Conference on History of Programming Languages,
2007.

[54] “The Glasgow Haskell Compiler.” [Online]. Available: https://www.haskell.
org/ghc/

[55] “SMTLib2.” [Online]. Available: https://github.com/hguenther/smtlib2

[56] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently Updating Mate-
rialized Views,” in International Conference on Management of Data, 1986.

[57] “The SBV Package.” [Online]. Available: https://hackage.haskell.org/
package/sbv

107

[58] T. Nelson, A. D. Ferguson, M. Scheer, and S. Krishnamurthi, “Tierless Pro-
gramming and Reasoning for Software-Defined Networks,” USENIX Sympo-
sium on Networked Systems Design and Implementation, 2014.

[59] “Kodkod.” [Online]. Available: http://alloy.mit.edu/kodkod/

[60] D. L. Berre and A. Parrain, “The SAT4J library, release 2.2,” Journal on
Satisfiability, Boolean Modeling and Computation, 2010.

[61] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and D. Song, “Towards a For-
mal Foundation of Web Security,” in IEEE Computer Security Foundations
Symposium, 2010.

[62] R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing. Aca-
demic Press, 2012.

[63] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[64] R. E. Shostak, “Deciding Combinations of Theories,” in International Con-
ference on Automated Deduction, 1982.

[65] J. H. Gallier, P. Narendran, D. A. Plaisted, S. Raatz, and W. Snyder, “An
Algorithm for Finding Canonical Sets of Ground Rewrite Rules in Polynomial
Time,” Journal of the ACM, 1993.

[66] W. Snyder, “A Fast Algorithm for Generating Reduced Ground Rewriting
Systems from a Set of Ground Equations,” Journal of Symbolic Computation,
1993.

[67] E. F. Codd, “Relational Completeness of Data Base Sublanguages,” Database
Systems, 1972.

[68] E. Torlak and D. Jackson, “Kodkod: A Relational Model Finder,” Tools and
Algorithms for the Construction and Analysis of Systems, 2007.

[69] K. Claessen and N. Sörensson, “New Techniques that improve MACE-Style Fi-
nite Model Finding,” in CADE-19 Workshop: Model Computation-Principles,
Algorithms, Applications, 2003.

[70] D. Jackson, Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006.

[71] “Margrave.” [Online]. Available: http://www.margrave-tool.org

[72] “Nitpick.” [Online]. Available: http://www4.in.tum.de/∼blanchet/nitpick.
html

108

[73] H. de Nivelle and J. Meng, “Geometric Resolution: A Proof Procedure Based
on Finite Model Search,” in International Joint Conference on Automated
Reasoning, 2006.

[74] K. Korovin and C. Sticksel, “iProver-Eq: An Instantiation-Based Theorem
Prover with Equality,” in International Joint Conference on Automated Rea-
soning, 2010.

[75] E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchroniza-
tion Skeletons Using Branching-Time Temporal Logic,” in Logic of Programs
Workshop, 1982.

[76] J. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems
in CESAR,” in International Symposium on Programming, 1982.

[77] M. Y. Vardi and P. Wolper, “Reasoning About Infinite Computations,” In-
formation and Computation, 1994.

[78] “BLAST.” [Online]. Available: http://forge.ispras.ru/projects/blast/

[79] “NuSMV.” [Online]. Available: http://nusmv.fbk.eu

[80] “Spin.” [Online]. Available: http://spinroot.com/spin/whatispin.html

[81] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz, “Verifica-
tion and Change-Impact Analysis of Access-Control Policies,” in International
Conference on Software Engineering, 2005.

[82] G. Soares, M. Mongiovi, and R. Gheyi, “Identifying Overly Strong Condi-
tions in Refactoring Implementations,” in International Conference on Soft-
ware Maintenance, 2011.

[83] S. M. A. Shah, K. Anastasakis, and B. Bordbar, “From UML to Alloy and Back
Again,” in International Workshop on Model-Driven Engineering, Verification
and Validation, 2009.

[84] P. N. Devyanin, A. V. Khoroshilov, V. V. Kuliamin, A. K. Petrenko, and
I. V. Shchepetkov, “Formal Verification of OS Security Model with Alloy and
Event-B,” in International Conference on Abstract State Machines, Alloy, B
and Z, 2014.

[85] L. K. Dillon, R. E. K. Stirewalt, B. Sarna-starosta, and S. D. Fleming, “De-
veloping an Alloy framework akin to OO frameworks,” in Alloy Workshop,
2006.

[86] E. Zulkoski, C. Kleynhans, M. Yee, D. Rayside, and K. Czarnecki, “Opti-
mizing Alloy for Multi-objective Software Product Line Configuration,” in
International Conference on Abstract State Machines, Alloy, B and Z, 2014.

109

[87] A. Shaffer, M. Auguston, C. Irvine, and T. Levin, “A Security Domain Model
for Implementing Trusted Subject Behaviors,” 2008.

[88] K. Anastasakis, B. Bordbar, and J. M. Kster, “Analysis of Model Transfor-
mations via Alloy,” 2007.

[89] F. Mostefaoui and J. Vachon, “Design-Level Detection of Interactions in
Aspect- UML Models Using Alloy,” Journal of Object Technology, 2007.

[90] S. Khurshid and D. Marinov, “TestEra: Specification-based Testing of Java
Programs Using SAT,” Automated Software Engineering, 2004.

[91] E. Uzuncaova, S. Khurshid, and D. Batory, “Incremental Test Generation for
Software Product Lines,” IEEE Transactions on Software Engineering, 2010.

[92] F. Rebello de Andrade, J. Faria, A. Lopes, and A. Paiva, “Specification-Driven
Unit Test Generation for Java Generic Classes,” in Integrated Formal Methods,
2012.

[93] I. Rychkova, G. Regev, and A. Wegmann, “Using Declarative Specifications
in Business Process Design,” International Journal on Computational Science,
2008.

[94] A. Wegmann, L. son Lê, and L. Hussami, “A Tool for Verified Design using
Alloy for Specification and CrocoPat for Verification,” 2006.

[95] C. Wallace, “Using Alloy in Process Modeling,” 2003.

[96] F. A. Maldonado-Lopez, J. Chavarriaga, and Y. Donoso, “Detecting Network
Policy Conflicts Using Alloy,” in International Conference on Abstract State
Machines, Alloy, B and Z, 2014.

[97] S. Mirzaei, S. Bahargam, R. Skowyra, A. Kfoury, and A. Bestavros, “Using
Alloy to Formally Model and Reason About an OpenFlow Network Switch,”
2013.

[98] S. Narain, A. Poylisher, and R. Talapade, “Network Single Point of Failure
Analysis via Model Finding,” in Alloy Workshop, 2006.

[99] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal Verifica-
tion of OAuth 2.0 Using Alloy Framework,” in International Conference on
Communication Systems and Network Technologies, 2011.

[100] T. Wang and D. Ji, “Active Attacking Multicast Key Management Protocol
Using Alloy,” in International Conference on Abstract State Machines, Alloy,
B and Z, 2012.

110

[101] C. L. Chen, P. S. Grisham, S. Khurshid, and D. E. Perry, “Design and Valida-
tion of a General Security Model with the Alloy Analyzer,” in Alloy Workshop,
2006.

[102] B. Fraikin, M. Frappier, and R. St-Denis, “Modeling the Supervisory Control
Theory with Alloy,” in International Conference on Abstract State Machines,
Alloy, B and Z, 2012.

[103] A. Vakili and N. Day, “Temporal Logic Model Checking in Alloy,” in Interna-
tional Conference on Abstract State Machines, Alloy, B and Z, 2012.

[104] T. Giannakopoulos, D. J. Dougherty, K. Fisler, and S. Krishnamurthi, “To-
wards an Operational Semantics for Alloy,” in World Congress on Formal
Methods, 2009.

[105] R. Gheyi, T. Massoni, and P. Borba, “A Theory for Feature Models in Alloy,”
in Alloy Workshop, 2006.

[106] M. Frias, J. Galeotti, C. Pombo, and N. Aguirre, “DynAlloy: Upgrading Alloy
with Actions,” in International Conference on Abstract State Machines, Alloy,
B and Z, 2005.

[107] E. Torlak, M. Taghdiri, G. Dennis, and J. P. Near, “Applications and Exten-
sions of Alloy: Past, Present and Future,” Mathematical Structures in Com-
puter Science, 2013.

[108] I. Shlyakhter, R. Seater, D. Jackson, M. Sridharan, and M. Taghdiri, “De-
bugging Overconstrained Declarative Models Using Unsatisfiable Cores,” in
International Conference on Automated Software Engineering, 2003.

[109] J. D. Ramsdell and J. D. Guttman, “CPSA: A Cryptographic Protocol
Shapes Analyzer,” MITRE Corporation, 2009. [Online]. Available: http:
//hackage.haskell.org/package/cpsa

[110] “CPSA.” [Online]. Available: https://hackage.haskell.org/package/cpsa

[111] D. Rayside, F. S. Chang, G. Dennis, R. Seater, and D. Jackson, “Automatic
Visualization of Relational Logic Models,” Electronic Communications of the
EASST, 2007.

[112] A. Zaman, I. Kazerani, M. Patki, B. Guntoori, and D. Rayside, “Improved
Visualization of Relational Logic Models,” University of Waterloo, Tech. Rep.,
2013.

[113] L. Gammaitoni and P. Kelsen, “Domain-Specific Visualization of Alloy In-
stances,” in International Conference on Abstract State Machines, Alloy, B
and Z, 2014.

111

[114] P. Ponzio, N. Rosner, N. Aguirre, and M. F. Frias, “Efficient Tight Field
Bounds Computation Based on Shape Predicates,” in International Sympo-
sium on Formal Methods, 2014.

[115] J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias, “Distributed
SAT-Based Computation of Relational Tight Bounds,” 2010.

[116] Y. Feng, “Disjunction of Regular Timing Diagrams,” Master’s thesis, Worces-
ter Polytechnic Institute, 2010.

[117] L. Momtahan, “Towards a Small Model Theorem for Data Independent Sys-
tems in Alloy,” Electric Notes on Theory of Computer Science., 2005.

[118] A. Abadi, A. Rabinovich, and M. Sagiv, “Decidable Fragments of Many-sorted
Logic,” in Logic for Programming, Artificial Intelligence, and Reasoning, 2007.

[119] T. Nelson, D. Dougherty, K. Fisler, and S. Krishnamurthi, “Toward a More
Complete Alloy,” in International Conference on Abstract State Machines,
Alloy, B and Z, 2012.

[120] E. Torlak, F. S.-H. Chang, and D. Jackson, “Finding Minimal Unsatisfiable
Cores of Declarative Specifications,” in International Symposium on Formal
Methods, 2008.

[121] N. D’Ippolito, M. F. Frias, J. P. Galeotti, E. Lanzarotti, and S. Mera, “Al-
loy+HotCore: A Fast Approximation to Unsat Core,” in International Con-
ference on Abstract State Machines, Alloy, B and Z, 2010.

[122] V. Schuppan, “Towards a Notion of Unsatisfiable Cores for LTL,” in Funda-
mentals of Software Engineering, 2010.

[123] J. Wittocx, H. Vlaeminck, and M. Denecker, “Debugging for Model Expan-
sion,” in International Conference on Logic Programming, 2009.

[124] P. Bendersky, J. P. Galeotti, and D. Garbervetsky, “The DynAlloy Visualizer,”
in Latin American Workshop on Formal Methods, 2014, pp. 59–64.

[125] H. R. Andersen, “Partial Model Checking (Extended Abstract),” in IEEE
Logic in Computer Science, 1995.

[126] M. Huth and S. Pradhan, “Consistent Partial Model Checking,” Electronic
Notes on Theoretical Computer Science, 2004.

[127] D. Saccà and C. Zaniolo, “Partial Models and Three-Valued Models in Logic
Programs with Negation,” in International Conference on Logic Programming
and Nonmonotonic Reasoning, 1991.

112

[128] M. Famelis, S. Ben-David, M. Chechik, and R. Salay, “Partial Models: A
Position Paper,” in Proceedings of the 8th International Workshop on Model-
Driven Engineering, Verification and Validation, 2011.

[129] V. Montaghami and D. Rayside, “Extending Alloy with Partial Instances,” in
International Conference on Abstract State Machines, Alloy, B and Z, 2012.

[130] A. Cunha, N. Macedo, and T. Guimarães, “Target Oriented Relational Model
Finding,” in Fundamental Approaches to Software Engineering, 2014.

[131] V. Montaghami and D. Rayside, “Staged Evaluation of Partial Instances in
a Relational Model Finder,” in International Conference on Abstract State
Machines, Alloy, B and Z, 2014.

[132] S. Saghafi and D. J. Dougherty, “Razor: Provenance and Exploration in
Model-Finding,” in Workshop on Practical Aspects of Automated Reasoning,
2014.

[133] J. D. Guttman, “Security Theorems via Model Theory,” EXPRESS: Expres-
siveness in Concurrency, 2009.

[134] M. Bezem and T. Coquand, “Automating Coherent Logic,” in Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, 2005, pp. 246–260.

[135] J. Fisher and M. Bezem, “Skolem Machines,” Fundamenta Informaticae, 2009.

[136] J. Wielemaker, T. Scherijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory
and Practice of Logic Programming, 2012.

[137] S. Saghafi, T. Nelson, and D. J. Dougherty, “Geometric Logic for Policy Anal-
ysis,” in Workshop on Automated Reasoning in Security and Software Verifi-
cation, 2013.

[138] J. D. Guttman, “Establishing and Preserving Protocol Security Goals,” Jour-
nal of Computer Security, 2014.

[139] V. Sofronie-Stokkermans and K. Stokkermans, “Modeling Interactions by
Sheaves and Geometric Logic,” in International Symposium on Fundamen-
tals of Computation Theory, 1999.

[140] V. Sofronie-Stokkermans, “Sheaves and Geometric Logic and Applications to
Modular Verification of Complex Systems,” Electronic Notes on Theoretical
Computer Science, 2009.

[141] “TPTP.” [Online]. Available: http://www.cs.miami.edu/∼tptp

[142] A. Reynolds, C. Tinelli, A. Goel, and S. Krstic, “Finite Model Finding in
SMT,” in International Conference on Computer Aided Verification, 2013.

113

[143] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley DB,” in USENIX Annual
Technical Conference, 1999.

[144] S. Schulz, “A Comparison of Different Techniques for Grounding Near-
Propositional CNF Formulae,” in The Florida Artificial Intelligence Society
Conference, 2002.

114

