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Abstract

Fluid-structure interaction arises in a wide array of technological applications

including naval and marine hydrodynamics, civil and wind engineering and flight

vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder,

the periodic vortex shedding in the wake causes fluctuating lift and drag forces on

the body. This phenomenon can lead to fatigue damage of the structure due to

large amplitude vibration. It is widely believed that the wake structures behind the

structure determine the hydrodynamic forces acting on the structure and control of

wake structures can lead to vibration control of the structure. Modeling this complex

non-linear interaction requires coupling of the dynamics of the fluid and the structure.

In this thesis, however, the vibration of the flexible cylinder is prescribed, and the

focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle

maps have been found to predict the universal dynamics of a two-oscillator system

such as the rigid cylinder wake. Coupled map lattice (CML) models that combine a

series of low-dimensional circle maps with a diffusion model have previously predicted

qualitative features of wake patterns behind freely vibrating cables at low Reynolds

number. However, the simple nature of the CML models implies that there will always

be unmodelled wake dynamics if a detailed, quantitative comparison is made with

laboratory or simulated wake flows. Motivated by a desire to develop an improved

CML model, we incorporate self-learning features into a new CML that is trained to

precisely estimate wake patterns from target numerical simulations and experimental

wake flows. The eventual goal is to have the CML learn from a laboratory flow in

real time. A real-time self-learning CML capable of estimating experimental wake

patterns could serve as a wake model in a future anticipated feedback control system

designed to produce desired wake patterns.

A new convective-diffusive map that includes additional wake dynamics is devel-

oped. Two different self-learning CML models, each capable of precisely estimating



complex wake patterns, have been developed by considering additional dynamics from

the convective-diffusive map. The new self-learning CML models use adaptive esti-

mation schemes which seek to precisely estimate target wake patterns from numerical

simulations and experiments. In the first self-learning CML, the estimator scheme

uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity

distribution in order to minimize the state error (difference between modeled and tar-

get wake patterns). The second self-learning model uses radial basis function neural

networks as online approximators of the unmodelled dynamics. Additional unmod-

elled dynamics not present in the first self-learning CML model are considered here.

The estimator model uses a combination of a multi-variable normalized least squares

scheme and a projection algorithm to adaptively vary the neural network weights.

Studies of this approach are conducted using wake patterns from spectral element

based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers

on the order of 100. It is shown that the self-learning models accurately and efficiently

estimate the simulated wake patterns within several shedding cycles.

Next, experimental wake patterns behind different configurations of rigid cylinders

were obtained. The self-learning CML models were then used for off-line estimation

of the stored wake patterns.

With the eventual goal of incorporating low-order CML models into a wake pattern

control system in mind, in a related study control terms were added to the simple

CML model in order to drive the wake to the desired target pattern of shedding.

Proportional, adaptive proportional and non-linear control techniques were developed

and their control efficiencies compared.



Acknowledgements

I would like to acknowledge the support and guidance of my advisors, Professors

David J. Olinger and Michael A. Demetriou throughout my graduate study at WPI.

It is impossible to even think of attempting a rigorous journey through higher studies

without their constant encouragement and advise. They convinced me to pursue my

PhD and very early in my PhD I had a clear-cut idea of the work ahead of me until

its completion . I strongly believe that this has helped me maintain my focus and

sustain my motivation.

I would also like to thank Professors Gatsonis, Walker, Sullivan and Karniadakis

for agreeing to serve in the dissertation committee. Thanks also go to Professor

Hermanson who served earlier in this committee and also in my MS thesis committee.

I would like to acknowledge the Office of Naval Research (Grant No. N00014-

96-1-0004) for supporting this research as well as my earlier research at WPI. I also

gratefully acknowledge the financial support from WPI.

I thank Professor Alexandrou who initially encouraged me to apply to WPI for my

graduate studies. I have had the previlege of taking some courses under Professors

Olinger, Demetriou, Gatsonis, Johari, Hermanson, Hou and Dimentberg. I simply

cannot thank them enough.

The NEKTAR simulations were conducted on Cray T3E and IBM SP super-

computers at the San Diego Supercomputer Cenetr with support from the National

Partnership for Advanced Computational Infrastructure (NPACI), and on the IBM

SP supercomputer. I thank Prof. Karniadakis for providing access to and help with

the NEKTAR code.

I thank all my friends (list is too long to name individually) at WPI for their

intellectual company. Some of them have helped me maintain my focus during tough

times. I thank Jim for helping me with my experimental work.

Finally, I would like to thank all the ME Secretaries (past and present) for all

their help in completing my degree requirements.

i



I dedicate this thesis to my family for their encouragement and support throughout

my academic career.

ii



Contents

1 Introduction 1

1.1 Low Reynolds number Cylinder Wake . . . . . . . . . . . . . . . . . . 2

1.2 Cylinder Vibration and Vortex Lock-on . . . . . . . . . . . . . . . . . 4

1.3 Three-dimensional wake structures . . . . . . . . . . . . . . . . . . . 4

1.4 Nonlinear Dynamics Approach for Modeling Cylinder Wakes . . . . . 11

1.5 Coupled Map Lattice: Review . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Motivation and goals of current work . . . . . . . . . . . . . . . . . . 19

2 Convective-Diffusive CML 23

2.1 Introduction to NEKTAR . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Development of the convective-diffusive CML . . . . . . . . . . . . . 25

3 Self-Learning CML 31

3.1 Self-learning CML based on convective-diffusive CML and MVLS al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Input parameters for NEKTAR simulation . . . . . . . . . . . 41

3.2.2 Generation of NEKTAR wake patterns . . . . . . . . . . . . . 41

3.2.3 MVLS algorithm for estimation . . . . . . . . . . . . . . . . . 58

4 Self-Learning CML based on Neural Networks 73

4.1 Development of the neural network based CML . . . . . . . . . . . . 75

4.1.1 Estimation model . . . . . . . . . . . . . . . . . . . . . . . . . 77

iii



4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Off-line estimation of laboratory wake flows 95

5.1 Experimental facilities and Instrumentation . . . . . . . . . . . . . . 96

5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Results: Rigid-periodic case . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Self-learning CML based on MVLS algorithm . . . . . . . . . 98

5.3.2 Self-learning CML based on Neural Networks . . . . . . . . . 102

5.4 Results: Oblique shedding . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4.1 Self-learning CML based on MVLS algorithm . . . . . . . . . 107

5.4.2 Self-learning CML based on Neural Networks . . . . . . . . . 110

5.5 Results: Mixed type . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.1 Self-learning CML based on MVLS algorithm . . . . . . . . . 113

5.5.2 Self-learning CML based on Neural Networks . . . . . . . . . 115

6 Control Methodology 120

6.1 Proportional Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Adaptive Proportional Control . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Discontinuous Nonlinear Control . . . . . . . . . . . . . . . . . . . . . 125

6.4 Results- Control of CML model . . . . . . . . . . . . . . . . . . . . . 127

6.5 Vortex shedding patterns . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Local dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Global dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.8 Cable dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Summary, conclusions and future work 142

A Convergence of the neural network based self-learning CML 151

iv



List of Figures

1.1 St−Re relationship in laminar shedding regime. . . . . . . . . . . . 3

1.2 Illustration of parallel vortex shedding, from Williamson (1997). . . . 5

1.3 Illustration of oblique vortex shedding, from Williamson (1997). . . . 6

1.4 Illustration of cellular shedding, from Williamson (1997). Three dis-

tinct cells with shedding frequencies f1, f2, f3 are observed. . . . . . . 7

1.5 Illustration of vortex dislocations, from Williamson (1997). . . . . . . 7

1.6 Schematic of the coupled map lattice. Adapted from Olinger, (1998). 15

1.7 Comparison of vortex shedding wake patterns from the simple CML

and the NEKTAR simulation. Re = 100,Ω = 1.0, AR = 4π, k∗ =

26, A/D = 0.68 at anti-nodes in NEKTAR simulation. (a) Ko = 0.01.

(b) Ko = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Hybrid grid used for the numerical simulations. . . . . . . . . . . . . 24

2.2 Comparison of vortex shedding patterns for the simple diffusive CML

and the convective-diffusive CML. Re = 100,Ω = 1,Ko = 0.01, wo =

0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Comparison of NEKTAR vortex shedding patterns with the simple dif-

fusive CML and the convective-diffusive CML. Re = 100,Ω = 1,Ko =

0.01, wo = 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.1 Diagram of the self-learning coupled map lattice. (a) Vortex shedding

pattern form the NEKTAR simulation that serves as target states for

the self-learning CML. (b) Schematic of the self-learning CML model.

(c) Desired vortex pattern match between the self-learning CML and

the NEKTAR simulation. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Streamwise velocity traces providing a schematic for visualizing wake

patterns: Ω = 1.0, x/D = 1.0 . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Contours of spanwise vorticity in the x-z plane from NEKTAR simulation 43

3.4 Typical vortex shedding phase distribution that serves as a target state

for the self-learning CML: Ω = 1.0, x/D = 1.0, n = 10 . . . . . . . . . 44

3.5 Sample FFTs of u(x/D = 1, z/D = 3, 6, 9, 12) for generating cross-

power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Magnitude and phase of cross-power spectrum interpreted to get vortex

shedding phase angle, Xk=11
n=10 : Ω = 1.0, z/D = 5 . . . . . . . . . . . . 45

3.7 Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 1 . 45

3.8 Sample FFTs of u(x/D = 0.5, z/D = 3, 6, 9, 12) for generating cross-

power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.9 Sample FFTs of u(x/D = 10, z/D = 3, 6, 9, 12) for generating cross-

power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.10 Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 0.5 47

3.11 Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 3 . 48

3.12 Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 5 . 48

3.13 Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 10 . 49

3.14 First 8 shedding cycles showing wake patterns at x/D = 0.5 for lock-on

case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.15 First 8 shedding cycles showing wake patterns at x/D = 1.0 for lock-on

case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.16 First 8 shedding cycles showing wake patterns at x/D = 3.0 for lock-on

case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



3.17 First 8 shedding cycles showing wake patterns at x/D = 10 for lock-on

case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.18 Streamwise velocity traces providing a schematic for visualizing wake

patterns: Ω = 1.0, x/D = 0.5 . . . . . . . . . . . . . . . . . . . . . . 53

3.19 Streamwise velocity traces providing a schematic for visualizing wake

patterns: Ω = 1.0, x/D = 3 . . . . . . . . . . . . . . . . . . . . . . . 54

3.20 Streamwise velocity traces providing a schematic for visualizing wake

patterns: Ω = 1.0, x/D = 5 . . . . . . . . . . . . . . . . . . . . . . . 54

3.21 Streamwise velocity traces providing a schematic for visualizing wake

patterns: Ω = 1.0, x/D = 10 . . . . . . . . . . . . . . . . . . . . . . . 55

3.22 Contours of spanwise vorticity in the x-z plane from NEKTAR simulation 55

3.23 Illustration of vortex shedding phase angles, Xk
n : Ω = 0.9, x/D = 5 . 56

3.24 First 8 shedding cycles showing wake patterns at x/D = 5.0 for quasi-

periodic case: Ω = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.25 Sheared freestream flow case: Illustration of vortex shedding phase

angles, Xk
n; Ωmax = 1.0, Remax = 100, Remin = 75, x/D = 5 . . . . . . 57

3.26 Sheared freestream flow: First 8 shedding cycles showing wake patterns

at x/D = 5.0; Remax = 100, Remin = 90,Ωmax = 1.0 . . . . . . . . . . 58

3.27 Estimation of first 8 shedding cycles showing wake patterns at x/D =

0.5 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 60

3.28 Estimation of first 8 shedding cycles showing wake patterns at x/D =

1.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 61

3.29 Estimation of first 8 shedding cycles showing wake patterns at x/D =

3.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 61

3.30 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 62

3.31 Estimation of first 8 shedding cycles showing wake patterns at x/D =

10 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 62

vii



3.32 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for quasi-periodic case: Ω = 0.9 . . . . . . . . . . . . . . . . . . . 63

3.33 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for shear flow case: Remax = 100, Remin = 75,Ωmax = 1.0 . . . . . 63

3.34 Temporal evolution of vortex shedding phase angles at x/D = 0.5 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 64

3.35 Temporal evolution of vortex shedding phase angles at x/D = 1.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 65

3.36 Temporal evolution of vortex shedding phase angles at x/D = 3.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 65

3.37 Temporal evolution of vortex shedding phase angles at x/D = 5.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 66

3.38 Temporal evolution of vortex shedding phase angles at x/D = 10 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 66

3.39 Temporal evolution of vortex shedding phase angles at x/D = 3.0 for

uniform flow, quasi-periodic case, Ω = 0.9 . . . . . . . . . . . . . . . 67

3.40 Temporal evolution of vortex shedding phase angles at x/D = 5 for

shear flow case, Remax = 100, Remin = 75,Ωmax = 1.0 . . . . . . . . . 67

3.41 Local state error vs. spanwise location and time, for uniform flow,

lock-on case, x/D = 5, Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . 68

3.42 Local state error vs. spanwise location and time, for uniform flow,

lock-on case, x/D = 1, Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . 69

3.43 Local state error vs. spanwise location and time, for uniform flow,

quasi-periodic case, x/D = 5, Ω = 0.9 . . . . . . . . . . . . . . . . . 69

3.44 Time evolution of the root-mean-square of the state error, ‖en‖, for

the self-learning CML. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.45 Time evolution of the root-mean-square of the state error, ‖en‖, for

the self-learning CML. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

viii



3.46 Time evolution of the estimate of spanwise velocity distribution, Γ̂k
n,

uniform flow, lock-on case, x/D = 5. . . . . . . . . . . . . . . . . . . 72

4.1 Schematic of the neural networks based self-learning CML. A single

layer recurrent neural network is used for estimation of wake patterns. 74

4.2 Optimization of the number of neural networks using the mean summed

squared error criterion, quasi-periodic case. . . . . . . . . . . . . . . . 81

4.3 Estimation of first 8 shedding cycles showing wake patterns at x/D =

0.5 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Estimation of first 8 shedding cycles showing wake patterns at x/D =

1.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Estimation of first 8 shedding cycles showing wake patterns at x/D =

3.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Estimation of first 8 shedding cycles showing wake patterns at x/D =

10 for lock-on case: Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for quasi-periodic case: Ω = 0.9 . . . . . . . . . . . . . . . . . . . 86

4.9 Estimation of first 8 shedding cycles showing wake patterns at x/D =

5.0 for shear flow, lock-on case: Remax = 100, Remin = 75,Ωmax = 1.0 87

4.10 Temporal evolution of vortex shedding phase angles at x/D = 0.5 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 88

4.11 Temporal evolution of vortex shedding phase angles at x/D = 1.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 89

4.12 Temporal evolution of vortex shedding phase angles at x/D = 3.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 89

4.13 Temporal evolution of vortex shedding phase angles at x/D = 5.0 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 90

ix



4.14 Temporal evolution of vortex shedding phase angles at x/D = 10 for

uniform flow, lock-on case, Ω = 1.0 . . . . . . . . . . . . . . . . . . . 90

4.15 Temporal evolution of vortex shedding phase angles at x/D = 5.0 for

uniform flow, quasi-periodic case, Ω = 0.9 . . . . . . . . . . . . . . . 91

4.16 Temporal evolution of vortex shedding phase angles at x/D = 10 for

shear flow, lock-on case, Remax = 100, Remin = 75,Ωmax = 1.0 . . . . 91

4.17 Local state error vs. spanwise location and time, for uniform flow,

lock-on case, x/D = 5, Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . 92

4.18 Local state error vs. spanwise location and time, for uniform flow,

quasi-periodic case, x/D = 5, Ω = 0.9 . . . . . . . . . . . . . . . . . 93

4.19 Local state error vs. spanwise location and time, for shear flow, lock-on

case, x/D = 5, Ω = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.20 Time evolution of the root-mean-square of the state error, ‖en‖, for

the self-learning CML. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Diagram of the experimental setup for velocity measurement. . . . . . 98

5.2 Streamwise wake velocity measured using the hot-wire probes. . . . . 99

5.3 Absolute value of the velocity spectrum. . . . . . . . . . . . . . . . . 99

5.4 MVLS algorithm based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 101

5.6 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 102

5.7 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Neural Networks based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



5.9 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 104

5.10 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 105

5.11 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.12 Streamwise wake velocity measured using the hot-wire probes. . . . . 106

5.13 Absolute value of the velocity spectrum. . . . . . . . . . . . . . . . . 107

5.14 MVLS algorithm based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.15 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 108

5.16 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 109

5.17 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.18 Neural network based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.19 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 111

5.20 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 112

5.21 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.22 Streamwise wake velocity measured using the hot-wire probes. . . . . 113

5.23 Absolute value of the velocity spectrum. . . . . . . . . . . . . . . . . 114

5.24 MVLS algorithm based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



5.25 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 116

5.26 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 116

5.27 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.28 Neural Network based estimation of experimental wake patterns for

uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.29 Temporal evolution of vortex shedding phase angles for uniform flow

over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . . . 118

5.30 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0 . . . 119

5.31 Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Schematic of the coupled map lattice with added control terms. . . . 122

6.2 Optimization of the feedback gain parameter used in the proportional

control signal. Control effectiveness, δ, is defined as the steady state

mean deviation of the phase of vortex shedding from the target in (6.16).128

6.3 (a) Uncontrolled wake pattern showing vortex dislocations, uniform

flow, Ω=0.99, Ko=0.1. (b) Parallel shedding patterns used as target

state X = η = 0.9. Rigid cylinder in uniform flow, Ω = 0.95,Kk = 0.9

(within the lock-on region). . . . . . . . . . . . . . . . . . . . . . . . 129

xii



6.4 (a) Lace-like vortex shedding pattern after proportional control is ac-

tivated. Ω=0.99, Ko=0.1, k∗=41, L/D=62, Re=100, Uc/U∞=0.88,

ε=0.0247, A/D=0.68 at antinode, γ = 0.9. (b) Parallel (2-D) vor-

tex shedding patterns after adaptive proportional control is activated.

Ω=0.99, Ko=0.1, k∗=41, L/D=62, Re=100, Uc/U∞=0.88, ε=0.0247,

A/D = 0.68 at antinode, Po=0.01I, R=I. (c) Parallel (2-D) vortex

shedding patterns targeted after DNL control is activated. Ω=0.99,

Ko=0.1, k∗=41, L/D=62, Re=100, Uc/U∞=0.88, ε=0.0247, A/D=0.68

at antinode, η=0.5, σmax=0.9, β=0.1, α=0.006. Freestream flow direc-

tion is from bottom to top for all vortex shedding patterns presented

in this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Temporal variation of the phase of vortex shedding X̂
15

n at k=15, z/D=21.7.

Control turned on at n=600. (a) Proportional control, (b) adaptive

proportional control and (c) DNL control. . . . . . . . . . . . . . . . 132

6.6 Temporal variation of the control signal C15
n at k=15, z/D=21.7. (a)

Proportional control, (b) adaptive proportional control and (c) DNL

control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7 Temporal variation of the norm of the system variable ‖X̂n‖ at k=15,

z/D=21.7. (a) Proportional control, (b) adaptive proportional control

and (c) DNL control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.8 Temporal variation of the norm of the error system variable ‖Xn‖ at

k=15, z/D=21.7. (a) Proportional control, (b) adaptive proportional

control and (c) DNL control. . . . . . . . . . . . . . . . . . . . . . . . 136

6.9 Temporal variation of the norm of control signal‖Cn‖ at k=15, z/D=21.7.

(a) Proportional control, (b) adaptive proportional control and (c)

DNL control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



6.10 (a) Steady state spanwise variation of the control signal, Cnfinal. Pro-

portional control (dashed line), adaptive proportional control (dotted

line) and DNL control (solid line). (b) Steady state cable displacement

K̃
k

nfinal after control. Proportional control (dashed line), adaptive pro-

portional control (dotted line) and DNL control (solid line) . . . . . . 139

6.11 Circle map lock-on region showing constant spanwise cable oscillation

amplitudes after adaptive proportional (squares) and DNL control ac-

tivation (circles), and the cable oscillation amplitude range after pro-

portional control (inverted triangles) activation. The cable amplitude

after control, K̃
k

nfinal, is driven into the lock-on region consistent with

periodic shedding behavior. . . . . . . . . . . . . . . . . . . . . . . . 140

xiv



Chapter 1

Introduction

Flow induced vibration of an elastic structure is an important problem with numerous

practical engineering applications. These include naval and marine hydrodynamics,

underwater acoustics, surveillance and detection technology, offshore exploration and

drilling, and flight vehicle aerodynamics. One classic example of flow induced vibra-

tion is the collapse of the Tacoma Narrows bridge. Such problems are also encountered

in nuclear and conventional power generation, and electric power transmission.

However, progress in understanding the interaction between an elastic structure

and the fluid flowing over it has accelerated in the last two decades, largely due to

improved experimental and computational studies. Flow induced vibration is a long

standing problem with early published works date to the late 19th century. The

intellectual challenge continues to be daunting, and a theoretical solution to this

problem for structures of practical importance is currently impossible. Therefore, be-

fore even attempting to model complex applications listed previously, a fundamental

understanding of problems involving simple geometries such as an oscillating circular

cylinder, is essential.

The wake of a circular cylinder is characterized by a vortex street, where vortices

are shed alternatively from both sides of the cylinder. This arrangement of vortices

causes an alternating pressure force and periodically fluctuating lift and drag forces

leading to bluff body vibration. It is now well understood that flows past circular
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cylinders or cables can yield large vibration amplitudes due to periodic vortex shed-

ding in the flow. This happens at resonance, when the dominant wake frequencies

happen to coincide with one of the natural frequencies of the cable. This phenomenon

is one of the main reasons for failure of structures in the marine environment. This

problem has been experimentally and numerically investigated for more than a cen-

tury (Bearman, (1984), Blevins, (1977)) but many fundamental questions still need

to be addressed, even in the low Reynolds number regime studied in this work.

The main question addressed in this thesis is whether simple models can be devel-

oped to predict the salient fatures of the vortex formation process. Recently, there has

been an increased interest in the use of low dimensional models such as coupled circle

map lattices, Ginzburg-Landau or van der Pol equations to model the spatio-temporal

dynamics of the cylinder wake. All these models use spanwise diffusive coupling of the

temporal dynamics of each oscillator on the cylinder. The current work is an extension

of earlier work by Olinger (1988, 1993, 1998) on coupled map lattices to model vortex

shedding patterns behind a cylinder wake. A review of existing literature pertaining

to this work follows.

Our review of wakes behind circular cylinders includes previous investigations on

low Reynolds number cylinder wake, cylinder vibration and vortex lock-on, three

dimensional wake structures in the low Reynolds number regime, and a summary

of work which has applied the dynamical systems approach to cylinder wakes. This

chapter then concludes with a section outlining the objectives of this research work.

1.1 Low Reynolds number Cylinder Wake

In this section, a brief outline of the various wake phenomena observed with changes

in Reynolds number is provided. The Reynolds number is given by Re = U∞D/ν,

where U∞ is the freestream velocity, D is the diameter of the cylinder, and ν is the

viscosity of the fluid. When Re < 4, the flow is steady and goes over the cylinder.

No vortices are formed behind the cylinder. Such a flow is termed Stokes flow and
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the solution is found in standard texts (Batchelor, 1967).

For 4 < Re < 40, a pair of vortices is formed behind the cylinder. The size of

the vortices increase with the Reynolds number. The wake is still laminar, and the

vortices act like rollers over which the main stream flows. Tritton (1959) showed that

a vortex street first appears behind the cylinder at a Re near 40. It arises due to the

instability of the vortex pair. Karman gave his first theory of the vortex street in

1911. Since then, numerous review articles on subsequent work have been written by

Roshko (1954), Marris (1964) and more recently Griffin et al. (1991).

When the Reynolds number approaches 100, the flow becomes more complex

giving rise to three-dimensional wake structures. We will discuss these later in this

chapter. In the case of a fixed cylinder, the shedding frequency, fso, (and hence

the Strouhal number, St = fsoD/U∞) for a fluid flow is a function of the Reynolds

number only. Roshko’s experiments (1954) on fixed cylinders were summarized in

the form of a Strouhal-Reynolds number relationship (Figure 1.1). Even today, the

Strouhal-Reynolds curve is used as a benchmark for experimental or computational

studies.
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Figure 1.1: St−Re relationship in laminar shedding regime.
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1.2 Cylinder Vibration and Vortex Lock-on

A cylinder can either be forced externally to oscillate in a flow or induced to vibrate

freely by the oncoming flow. In the latter case, the cylinder is excited by the periodic

shedding of vortices in the wake. Here, the alternate shedding of vortices creates

a fluctuating lift force on the cylinder which results in cylinder motion. This force

attains a maximum when the shedding frequency is in the vicinity of the structural

natural frequency of the cylinder. Koopman (1967) studied an elastically mounted

rigid cylinder, forced externally at a certain frequency, and found that the shedding

frequency of the wake changed to match the cylinder’s excitation frequency under

certain conditions. This phenomenon of vortex lock-on occurred when the natural

shedding frequency of the cylinder was within 25-30 % of the excitation frequency of

the cylinder. Tanida et al. (1973) showed evidence of lock-on due to cross-stream and

in-line vibrations of a cylinder. The extent of lock-on region was found to be related

to the reduced amplitude, A/D (where A is the amplitude of oscillation and D is the

cylinder diameter). Similar results were reported by Stansby (1976) for transverse

oscillations and Griffin and Ramberg (1974) for in-line oscillations. Extensive reviews

on vortex-induced oscillations and vortex lock-on can be found in Sarpkaya (1979) and

Bearman (1984). More recently, Griffin and Hall (1991) have given a detailed review

of vortex shedding lock-on and flow control in bluff body wakes. This introduction

is a very brief summary of the large number of classical investigations into vortex

shedding phenomena in the last century.

1.3 Three-dimensional wake structures

We have seen that the fundamental wake instability results in the formation of the

classical von Karman street configuration for Re > 49. However, only recently have

a large number of investigations have been concerned with the development of three-

dimensional structure in cylinder wakes. Recent developments have been reviewed
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comprehensively by Williamson (1996). The three-dimensional transition of the wake

starts at Re ≈ 190 with the formation of modes A and B in Williamson’s nomencla-

ture; mode B dominates after Re ≈ 250 and results in the formation of streamwise

vortices with a typical distance of one diameter from each other. The bulk of the re-

cent experimental efforts has focused on low Reynolds numbers, where smaller scales

have not yet developed. The possibility of control on the shedding pattern has cor-

responding implications for the control of unsteady fluid forces experienced by the

body.

Some of the commonly observed three-dimensional wake structures such as parallel

shedding, oblique shedding, cellular shedding and vortex dislocations are illustrated in

Figures 1.2- 1.5.

Flow

Figure 1.2: Illustration of parallel vortex shedding, from Williamson (1997).
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Figure 1.3: Illustration of oblique vortex shedding, from Williamson (1997).
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Frequency cells

f1 f3f2

Figure 1.4: Illustration of cellular shedding, from Williamson (1997). Three distinct
cells with shedding frequencies f1, f2, f3 are observed.

Vortex dislocations

Cylinder

Flow

Figure 1.5: Illustration of vortex dislocations, from Williamson (1997).
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Gerrard (1966) was one of the first to study in detail the three-dimensional aspects

of the cylinder wakes. He identified three ways in which vortex shedding would deviate

from a two-dimensional form: oblique shedding in which the vortices are shed at an

angle to the cylinder axis, the splitting or dislocation of vortices of similar sign and

the looping of vortices to the other side of the wake. Vortex dislocations (vortex

splitting), i.e. the strong localized distortions of a spanwise vortex and its connection

with two or more vortices, have also been studied by Gerrard (1978), Eisenlohr and

Eckelmann (1989), Williamson (1992) and Zhang et al. (1995). Williamson (1992)

has shown that vortex dislocations account for intermittent low-frequency oscillations

in the wake. Such vortex dislocations are generated between adjacent spanwise cells

of different frequency and cause a momentary difference in shedding phase of the

primary vortices between cells (spanwise regions of constant shedding frequency).

Cells are caused, for example, by cylinder inhomogeneities and by end conditions.

Gaster’s work (1971) on weakly tapered cylinders introduced the possibility of

spanwise cells of different frequency by forcing the flow to be non-uniform across the

cylinder span. Maull and Young (1973) observed similar spanwise frequency cells in

the wake of a circular cylinder placed in a spanwise freestream shear flow. Gerich and

Ecklemann (1982) observed spanwise cell structures with frequencies 10-15 % lower

than the Strouhal frequency near the cylinder endplates in the range of 10-20 cylin-

der diameters. Extensive investigation has been done on three-dimensional effects for

Reynolds numbers greater than 100. Most of the recent advances in understanding

the three-dimensional aspects of wake flows behind cylinders are discussed in review

papers of Roshko (1993) and Williamson (1996). For Re < 64 , Williamson (1988) ob-

served spanwise cells of different frequency caused by oblique shedding from cylinder

endplates and hence a quasi-periodic wake spectra. He concluded that this transition

in the mode of oblique shedding from the cylinder endplates could be responsible for

the discontinuity in the Strouhal-Reynolds number curve. Williamson (1988, 1989)

also found that the oblique vortices formed a periodic chevron pattern in his towing

tank and wind tunnel experiments.
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To summarize, the current understanding on oblique vs parallel shedding in the

wake behind a uniform cylinder is as follows; parallel shedding occurs in the absence

of side-wall influences or by manipulation of end conditions, and oblique shedding is

naturally induced by end effects (no slip condition) due to parallel side walls.

The end conditions have been altered in different ways in order to control vortex

shedding patterns. Williamson (1988) showed that end plates suitably angled with

respect to the incoming flow can be used to induce parallel shedding. Eisenlohr and

Eckelmann (1989) used end plates combined with large diameter cylinders inserted at

the ends of the main cylinder to control the wake. Miller and Williamson (1994) used

a non-mechanical technique using suction tubes from downstream to achieve parallel

vortex shedding. Hammache and Gharib (1989,1991) developed a “transverse control

cylinders technique” where two larger circular “control cylinders” were positioned

upstream of and normal to the shedding cylinder. Their study revealed that a non-

symmetric pressure distribution, which induced a spanwise flow in the base region of

the cylinder, was responsible for slantwise shedding and that a symmetric pressure

distribution with zero spanwise component of velocity was responsible for parallel

vortex shedding.

Valles et al. (2002) numerically investigated wake phenomena caused by a disconti-

nuity in the cylinder diameter. The vortex linkage and half-loop formation, originally

observed experimentally by Lewis and Gharib (1992) were reproduced numerically.

Wake structures behind oscillating cylinders

Most of recent work on understanding three-dimensional wake structures has focussed

on stationary cylinders. However, Griffin and Ramberg (1992) studied the wake

behind a vibrating flexible cable and proposed that the near wake at any point could

be sensibly represented by the near wake of a rigid cylinder under the same conditions

of frequency, amplitude, and Reynolds number. The numerical simulation work of

Newman (1996) and Newman and Karniadakis (1996,1997) provided a quantitative

comparison of forced and flow-induced cable vibrations at Reynolds numbers 100, 200
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and 300 and aspect ratios 12.6 and 45. They used a parallel spectral element/Fourier

method developed by Henderson and Karniadakis (1995). For the lower aspect ratio

case, at the low Reynolds number (Re = 100) they observed a staggered pattern

of vorticity connected in a “lace-like” pattern for a standing wave cable vibration.

A travelling wave cable response produced oblique shedding of spanwise vorticity.

When the Reynolds number was increased to 200, in the free vibration case they

observed indications of oblique shedding due to the travelling wave response of the

cable. In the forced vibration case, they noted that the pattern does not show the

strong staggered pattern as in the Re = 100 case. The vortex structures were also

analyzed at Re = 300 for the higher aspect ratio cylinder. They noticed a more three-

dimensional wake with no staggered patterns or symmetric shedding patterns as was

observed in the short wavelength case. They concluded that the forced and flow-

induced vibration responses may not be similar, and that these differences increase

at higher Reynolds numbers.

Newman (1996) also studied sheared inflow with Reynolds numbers ranging be-

tween 50 and 100 along the span of a cable of aspect ratio of 100. For the free vibration

case, the cable crossflow displacement showed a mixed standing wave/travelling wave

response forming an overall chevron pattern. A higher frequency of shedding was

observed at the location of maximum spanwise inflow (cable midspan) as compared

to the cable end. This difference in shedding frequency along the span causes vortex

dislocation. Newman observed a more turbulent wake when the maximum Reynolds

number was increased to 200. For the forced vibration case he reported relatively

similar results for the two Reynolds numbers.
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1.4 Nonlinear Dynamics Approach for Modeling

Cylinder Wakes

Experiments and computational fluid dynamics (CFD) techniques remain the classical

tools in the study of cylinder wakes and other complex fluid dynamical systems. In

addition to these techniques, a new approach to modeling complex systems using

tools from nonlinear dynamics has been pursued in the last two decades. The heart

of this approach is the concept of universality, the notion that there might be some

fundamental physics that applies to a wide range of systems. By utilizing this concept

complex fluid systems can be efficiently studied using low dimensional models.

In the case of forced cylinder wakes, the universal phenomenon of lock-on is ap-

plicable. This concept was utilized by Olinger (1998) in his modeling of the cylinder

wake as a coupled system of circle map oscillators. The basis for this wake oscillator

model (termed Coupled Map Lattice, CML in short) came from his earlier success

in the use of a circle map (Olinger, 1988,1993) to model the two-dimensional wake

behind an externally forced, rigid cylinder. He showed that a circle map could be

developed using a Landau-Stuart equation as a starting point. The Landau-Stuart

equation can be deduced from the Navier-Stokes equations, and is known to describe

the wake evolution near the critical Reynolds number for vortex shedding. A com-

prehensive discussion on coupled map lattices follows in Chapter 2.

The success of Olinger’s CML model in describing the wake evolution behind freely

vibrating cables provided the motivation for establishing the next class of models

based on CMLs. These models incorporate additional unmodelled dynamics and pro-

vide for improved wake description. The accuracy comes from self-learning adaptive

features introduced in the model. The present work largely deals with the develop-

ment of the self-learning CML models, and therefore further discussion on this will

be presented in the later chapters.

Several other investigators have proposed phenomenological models based on wake

oscillators. Diffusively coupled models for wake flows, based on Ginzburg-Landau
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(Albarede and Monkewitz, 1992) and van der Pol oscillators (Facchinetti et al., 2002)

have also been studied. Aamo and Krstic (2003) developed a backstepping control for

a non-linear Ginzburg-Landau model (Roussopoulos and Monkewitz, 1996) of vortex

shedding. Therefore, it is believed that in addition to describing the wake evolution,

these models could also be developed for purposes of flow control. In this context,

Balasubramanian (1998) added control terms to Olinger’s CML model and explored

the controlled dynamics of the CML. Proportional control and discontinuous nonlinear

control methods were used to develop the control laws and the control efficiencies were

compared. Such preliminary works will help establish a class of real-time flow control

models for laboratory wake flows.

1.5 Coupled Map Lattice: Review

In a previous section we reviewed experimental and computational approaches to

the study of three-dimensional wake structures. As we have just seen, the use of

start-of-the-art flow visualization techniques has resulted in numerous observations

of three-dimensional wake phenomena such as oblique and parallel shedding, cellular

shedding, vortex dislocations, small scale three-dimensional instabilities (mode A-B)

at transitional Reynolds numbers etc. Numerical simulations have so far mainly been

used to confirm what has already been experimentally observed. However, a thorough

physical understanding of the origin of the wake structures and their coupling effect

on structural vibration is still unavailable. We also reviewed some studies based on

the nonlinear dynamical systems approach in the previous section. In this section,

a low-dimensional iterative model, the circle map, which forms the basis of the class

of coupled map lattice (CML) models developed in this thesis, and the basic CML

model are briefly reviewed.
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The circle map

The circle map (Ostlund et al., (1983), Feigenbaum et al., (1982), Shenker, (1982))

is a standard universal model describing the non-linear dynamics of two coupled

oscillators on a Poincaré section. In the context of a rigid cylinder, the temporal

circle map,

Xn+1 = Xn + Ω − K

2π
sin(2πXn), (1.1)

was used to study a cylinder wake subjected to an imposed oscillation of controlled

amplitude and frequency. The parameters in the circle map are related to the wake

situation as follows: The system variable Xn represents the phase of the vortex shed-

ding event at discrete times t = n∆t = n/fe. The periodic vortex shedding from

a stationary cylinder (at frequency) fso and the imposed cylinder oscillation (at fre-

quency fe) yield the unforced frequency ratio, Ω = fso/fe. The forcing term K is

analogous to the imposed cylinder oscillation amplitude, A/D, where A is the ampli-

tude and D is the cylinder diameter. The dynamics of the circle map are studied by

determining the forced frequency ratio, ω = fs/fe = lim
n→∞

Xn −X0

n
, where fs is the

vortex shedding frequency for the forced cylinder wake. Lock-on or resonance states

are correlated with rational values of ω = p/q = fs/fe, where p and q are integers.

Irrational values of ω correspond to quasi-periodic states outside the lock-on regions.

A summary of results, representing contours of ω were shown on the K − Ω plane.

Multiple lock-on regions at fractional p/q ratios of the forcing frequency predicted

by the circle map (Olinger, 1988) were also confirmed experimentally (see Stansby,

(1976), Olinger, (1988), Bernhardt et al., (1996)).

The coupled map lattice

As seen already, in case of a rigid cylinder forced to oscillate in a lock-on region rep-

resented on the K − Ω plane, periodic structures parallel to the axis of the cylinder

are shed in the wake. The absence of any spanwise variation in the wake structure

meant that a purely temporal model such as the circle map was sufficient to describe
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the wake. However, the spatially varying wake flow, such as the flow-induced vi-

bration of a flexible cable results in three-dimensional wake structures. In this case,

the purely temporal circle map model is insufficient. Therefore, by combining the

highly successful circle map with a spatial diffusion model, a spatio-temporal model

capable of modeling three-dimensional wakes was developed. This model, known as

the coupled map lattice (CML), utilized a series of circle map oscillators placed at

the lattice points along the cylinder span. The coupling among the spatial oscillators

was provided by a diffusion model. The vorticity transport equation:

∂ω

∂t
= −u · ∇ω + ω · ∇u︸ ︷︷ ︸

convective

+ ν∇2ω︸ ︷︷ ︸
diffusive

, (1.2)

where ω and u are the vorticity and velocity vectors, is used as the starting point. If

we now consider the spanwise (z) component of (1.2), we have:

∂wz

∂t
= −u ∂wz

∂x
− v

∂wz

∂y
− w

∂wz

∂z
+ wx

∂w

∂x
+ wy

∂w

∂y
+ wz

∂w

∂z
+ ν∇2wz . (1.3)

Neglecting streamwise and transverse vorticity (ωx = 0, ωy = 0), streamwise and

transverse variations in spanwise vorticity (∂wz
∂x

= ∂wz
∂y

= 0), and the spanwise

velocity component (w = 0), (essentially neglecting the convective terms) yields

∂wz

∂t
= ν

∂2ωz

∂z2 . (1.4)

In order to obtain the diffusion map, we set X ≡ ωz, where X is the state variable

representing the phase of vortex shedding event. This will be justified if we understand

that the vortex shedding event (X = 1, see figure 1.6) corresponds to attainment of

a critical level of spanwise vorticity. Application of a simple explicit finite difference

technique to (1.4) then results in,

Xk
n+1 = ε

(
Xk+1

n + Xk−1
n

)
+ (1 − 2ε) Xk

n, (1.5)
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where

ε =
ν∆t

∆z2 .

We now consider the modified circle map which is combined with the diffusion

model to form the CML model:

fk
n = Xk

n + Ωk − Kk

2π

(
sin
(
2πXk

n − φk
1 −

π

2

))
. (1.6)

In (1.6), the additional input parameter, φk
1 represents the phase angle between

the vortex shedding event and the cylinder motion at a given k location in a two-

dimensional wake. The dependence of φk
1 with cable vibration amplitude was dis-

cussed by Olinger (1998).

In order to combine the modified circle map with the diffusion model, we set

Xk
n = fk

n on the right hand side of (1.5). The diffusion model (1.7) along with (1.6)

forms the coupled map lattice:

Xk
n+1 = ε

(
fk+1

n + fk−1
n

)
+ (1 − 2ε) f k

n . (1.7)
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Figure 1.6: Schematic of the coupled map lattice. Adapted from Olinger, (1998).
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Inputs for basic CML

The imposed cable oscillation is studied using the forcing term Kk in (1.6). For

example,

Kk = K0 cos (2π(k − nkt)/kwave) , (1.8)

can model both standing wave cable mode shapes (kt = 0) and traveling wave ca-

ble mode shapes (kt 6= 0). The unforced frequency ratio, (Ωk = fk
so/fe) can be

varied along the span in order to model shear flow effects arising from freestream

flow conditions or spanwise variations in geometry. Other input parameters such as

the Reynolds number, Re, the number of lattice points, k∗, the aspect ratio or the

spanwise wavelength, AR = L/D are required to determine the diffusion coefficient

ε =
ν∆t

(∆z)2 =
Ωk(k∗ − 1)2

StReAR2

in the diffusion model.Further details can be obtained in Olinger (1998). Specification

of Ωk and Kk in the CML implies that externally forced, as opposed to self-excited

cable wakes are modeled in the present study.

Freely vibrating CML

However, using the same dynamical systems framework adopted in the current work,

Davis et al.(2003) developed a coupled cable-wake model for studying freely vibrating

(self-excited) cables. He combined a CML wake model with a linear wave equation

cable model to study the free response of the wake and the resulting wake struc-

tures. Results showed that the freely vibrating CML predicted cross-flow amplitudes

comparable to numerical predictions (Newman and Karniadakis, 1997) as the cable

mass-damping parameter was varied over an order of magnitude.
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Basic CML output

The primary output of the CML model is vortex shedding patterns. The phase of

vortex shedding, Xk
n in the CML model, is converted to a downstream vortex core

location, x/D, (1.9) through a linear transformation to determine these patterns (see

Figure 1.6);
( x
D

)k

n
= Xk

n x
∗ =

Xk
n Uc

StU∞

. (1.9)

Here, x∗ represents a characteristic non-dimensional vortex spacing in the stream-

wise direction, St = fsoD/U∞ is the Strouhal number, fso is the vortex shedding

frequency, Uc is the vortex convection velocity and U∞ is the uniform freestream ve-

locity. Both (x/D)k
n and Xk

n outputs will be used interchangeably throughout this

thesis as convenient to present the results.

In addition to the vortex shedding patterns, the phase of the vortex shedding, Xk
n,

is also used to determine the forced frequency ratio, ωk = fk
s /fe, in order to determine

the lock-on regions (see Olinger 1998).

Basic CML limitations

In Figure 1.7 the resultant wake patterns due to Ko variation are compared to a wake

pattern (phase of vortex shedding event) determined from a direct numerical simula-

tion of the Navier-Stokes equations using the NEKTAR simulation. The simulation

of Figure 1.7 will serve as a sample NEKTAR run throughout the present work. Fig-

ure 1.7(a),(b) show vortex shedding patterns for one shear layer viewed by an observer

looking in the transverse (y direction) observing the x-z plane (see Figure 1.6). The

cable and flow direction (left to right) are included to orient the reader. The methods

used to determine the NEKTAR simulation wake pattern shown here will be detailed

in subsequent sections.
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Figure 1.7: Comparison of vortex shedding wake patterns from the simple CML and
the NEKTAR simulation. Re = 100,Ω = 1.0, AR = 4π, k∗ = 26, A/D = 0.68 at
anti-nodes in NEKTAR simulation. (a) Ko = 0.01. (b) Ko = 0.1.
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It can be clearly seen that simple variation of the free parameters in the CML

model ((1.7), (1.6)) cannot yield wake patterns which precisely match the NEKTAR

simulation patterns. The simple nature of our previous CML models means that there

will always be unmodelled wake dynamics if a detailed comparison is made between

an actual wake flow and the CML wake patterns. These unmodelled dynamics result

in the difference between the wake patterns from the CML model and the actual wake

flow in Figure 1.7.

Other studies on coupled maps

We will briefly mention other investigators who have studied couple map oscillators.

Kaneko (1989,1991) investigated coupled map lattices as a model for spatiotempo-

ral chaos and made some connections with the Navier-Stokes equations. Kaneko also

studied transitions among coherent, ordered, partially ordered and turbulent states in

circle maps. Alstrom and Ritala (1987) studied mode locking in coupled circle maps

with random phases and found very different behavior compared to a single circle

map. Sinha and Gupte (1998) investigated two-dimensional coupled map lattices and

targeted spatio-temporal patterns using adaptive control techniques. Balasubrama-

nian et al. (2002) introduced control terms into the basic CML model in their effort

to modify complex wake patterns behind vibrating flexible cables. Three different

control techniques were developed and applied to a modeled vortex dislocation struc-

ture. The desired parallel shedding patterns were targeted and the control efficiencies

of the different schemes were compared. A complete summary of this work is given

in Chapter 6.

1.6 Motivation and goals of current work

In our discussion of the limitations of the basic CML model, we came to the con-

clusion that the limited free parameters do not permit accurate modeling of complex

wake structures observed, for example, in NEKTAR simulations. A number of simpli-
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fying assumptions were made in order to derive the simplest possible diffusion model

from the vorticity transport equation. These simplifying assumptions meant that

some essential dynamics were not modeled. These unmodelled dynamics result in the

difference between actual and modeled wake structures.

However, the low-order models are computationally efficient and therefore pre-

ferred over computational or experimental approaches. The computationally inten-

sive Navier Stokes solvers are not suitable for an observer based feedback control of

wake flows. This fact merits the continued development of highly accurate and effi-

cient low-order models for on-line estimation and control of vortex shedding patterns.

It must be emphasized here that control of vortex shedding patterns eventually helps

in the suppression of vortex induced vibrations. The vortex patterns determine the

fluid loadings which in turn help determine the amplitude of vibration of the struc-

ture. Therefore, suitable manipulation of fluid loadings by controlling wake patterns

can lead to suppression of vortex induced vibration. We believe that use of low-

dimensional models is the best approach to solving this highly important problem.

With this eventual goal of incorporating low-order CML models into a wake control

system established, the current study focuses on achieving the following goals:

1. Overcome the limitations of the simple diffusive CML model by considering

additional dynamics in a new convective diffusive CML model (see Chapter 2). In

this new model, an additional spanwise velocity parameter can be varied across the

cable span.

2. Establish a class of self-learning CML models based on the new convective

diffusive model by incorporating adaptive estimation techniques. These techniques

have been widely applied in signal processing, speech recognition and control systems.

Adaptive estimation is a modeling technique in which certain parameters of the system

model are adaptively varied in time based on a stable learning process (estimation

model) derived for the system. A stable estimation model ensures that the error

between the modeled and the actual system does not grow unbounded. The new

self-learning CML will be useful for making quantitative comparisons between the
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modeled wake flows and wake flows from numerical simulations or experiments.

3. Compare the modeling efficiencies of two different self-learning CML models.

The first model is based on a newly developed multi-variable least-squares algorithm

(see Chapter 3). For the first time in this thesis, convergence of the multi-variable

least-squares algorithm is addressed. The second model based on neural networks

is discussed in Chapter 4. The two models are used to predict wake patterns from

NEKTAR simulations at Re = 100.

4. Apply the self-learning CML models to estimate data from laboratory experi-

ments (Chapter 5) to develop the capability of an off-line estimation scheme. In this

scheme, the wake data are measured and the stored data are used for estimation. This

is opposed to an on-line (real-time) scheme in which the generation and estimation of

wake data occur simultaneously with no time delay. The development of self-learning

CML models capable of off-line estimation of wake data is the goal of this thesis.

5. In a parallel theoretical study, incorporate control strategies into the simple

CML model (see Chapter 6) . Such flow control models could eventually model an

experimental wake flow in a feedback control system designed to produce desired wake

patterns behind vibrating cables.

The self-learning CML model extends the earlier simple basic CML model with

the introduction of self-learning features which adaptively estimate unmodelled dy-

namics. These unmodelled dynamics result in the difference between the estimated

wake patterns and simulated or experimentally observed wake patterns. The adaptive

estimation schemes are developed to eliminate the differences in observed and pre-

dicted wake patterns. The current work focuses on offline estimation of wake patterns

using self-learning CML models. However, the extension of this work towards on-line

estimation of laboratory wake flow patterns should be pursued in the near future.

This can be accomplished if the estimation of wake patterns occur within a sampling

interval (period of vortex shedding). Currently, the self-learning CML models require

O(10−2) wall-clock seconds per shedding cycle. Therefore, if the sampling intervals

are of the same order, such timing issues can be easily addressed by the current
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self-learning CML models and on-line capabilities can be immediately realized.

The on-line self-learning CML models would then serve as wake models in flow

control experiments. Methods developed for controlling wake patterns of the simple

CML model can similarly be pursued for the self-learning CML models. However, we

still need to address control actuation issues and interfacing CML models with the

control actuator in an on-line scheme.
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Chapter 2

Convective-Diffusive CML

In this chapter, we discuss the development of the convective-diffusive CML. This new

CML model is capable of modeling additional dynamics not previously considered in

the basic CML model discussed in Chapter 1. In order to motivate the development

of a new CML model, it is worth mentioning again that the goal of this thesis is to

develop highly efficient estimation models for identification of complex cylinder wake

dynamics obtained from numerical simulations, or laboratory wake flow experiments.

As a first step in realizing this goal, numerical simulation from a highly accurate

NEKTAR code was chosen for a proof-of-concept study. Simulations of uniform

freestream flow and sheared freestream flow over a uniform cylinder were carried out.

The cylinder was forced to vibrate in the standing wave mode at Reynolds number

of the order of 100. More details of the simulations will follow in Chapters 3 and 4.

We will now provide a brief introduction to the NEKTAR solver.

2.1 Introduction to NEKTAR

The NEKTAR code (see Warburton, 1998) is used to solve the three-dimensional

Navier-Stokes equations governing the coupled fluid-structure interaction. It is based

on hierarchical spectral/hp expansions on hybrid subdomains. The spectral element

method uses the same form of approximate solution as the (traditional) Galerkin
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method (Fletcher, 2000). Like the (traditional) Galerkin method the approximating

functions are non-zero throughout the computational domain. The main difference is

that spectral element method uses orthogonal functions for the approximating func-

tions. Two-dimensional elements (triangles and quadrilaterals) are used to discretize

the (x-y) planes, while a Fourier expansion is used in the spanwise (z) direction along

the cylinder axis. The code is written in C + + and MPI (Message Passing Interface)

is employed in all simulations. For parallel implementation, each Fourier mode is

assigned to a separate processor (see Crawford et al. 1996).

Figure 2.1: Hybrid grid used for the numerical simulations.

The computational domain for the (x,y)-plane used for the Re = 100 simulations

extends 69 cylinder diameters downstream and 22 diameters in front, above and

below the cylinder. The spanwise wavelength (also referred to as aspect ratio, AR

in this thesis) = 4π. A hybrid mesh (see Figure 2.1) consisting of 780 elements

was used for the simulations. An 8th order polynomial was considered for the entire

domain. 16 z-planes or 8 independent Fourier modes were used and a 3
2

de-aliasing

rule was applied. The cylinder was forced to vibrate in the standing wave mode,

y(z, t) = A cos(fet) cos(2πz/L). The amplitude was chosen as A = 0.7D, and the

frequency as fe = 2π ∗ 0.167 = 1.05, giving rise to an unforced frequency ratio,

Ω = fso/fe = 1.0. Simulations of this lock-on case were carried out on an IBM SP

supercomputer at San Diego Supercomputer Center. A non-dimensional time step of

∆tU/d = 0.001 was used giving rise to approximately 5800 time steps per shedding

cycle and a computational time close to 5 seconds per time step.
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2.2 Development of the convective-diffusive CML

The convective-diffusive CML includes additional convective dynamics in the vorticity

transport equation not considered in the basic CML.

∂ω

∂t
= −u · ∇ω + ω · ∇u︸ ︷︷ ︸

convective

+ ν∇2ω︸ ︷︷ ︸
diffusive

, (2.1)

where ∇ is the vector differential operator, u = (u, v, w) and ω = (ωx, ωy, ωz) = ∇×u,

and x, y, z represent the streamwise, crossflow and spanwise directions respectively,

ν is the kinematic viscosity of the fluid. The first two terms on the right hand side

of (2.1) are the added convective terms. The additional convective terms allow for

modeling the spanwise variations in spanwise velocity, w(z), and streamwise vorticity,

ωz(z). We now consider the z component of the vorticity transport equation to get,

∂wz

∂t
= −u ∂wz

∂x
− v

∂wz

∂y
− w

∂wz

∂z
+ wx

∂w

∂x
+ wy

∂w

∂y
+ wz

∂w

∂z
+ ν∇2wz . (2.2)

We make the following assumptions;

∂wz

∂x
=
∂wz

∂y
= 0, O(wx) � O(wz), O(wy) � O(wz).

These assumptions are reasonable for the cylinder wake flow which is modeled by the

CML. The vorticity transport equation in the z direction now simplifies to,

∂wz

∂t
= −w ∂wz

∂z
+ wz

∂w

∂z
+ ν

∂2wz

∂z2 . (2.3)

The convective-diffusive CML is obtained by combining the modified circle map with

a discrete diffusion map derived from the simplified vorticity transport equation (2.3).

In order to obtain the diffusion map, define X ≡ wz. We apply simple explicit finite

differencing (forward in time, centered in space) derived from Taylor series expansion
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of X at time n∆t and spanwise location k∆z as follows:

(
∂X

∂t

)k

n

=
(Xk

n+1 − Xk
n)

∆t
+O(∆t)

(
∂X

∂z

)k

n

=
(Xk+1

n − Xk−1
n )

2∆z
+O((∆z)2)

(
∂2X

∂z2

)k

n

=
(Xk+1

n − 2Xk
n + Xk−1

n )

(∆z)2 +O((∆z)2)

Here, ∆t and ∆z represent the spacing in time and space respectively. If we apply

the Taylor series expansions in (2.2), then replacing wz by X we get,

(
∂X

∂t

)k

n

= −
(
w
∂X

∂z

)k

n

+

(
X
∂w

∂z

)k

n

+ ν

(
∂2X

∂z2

)k

n

.

Now, omitting the O(∆t) and O((∆z)2) terms in the finite difference representation

of (2.3) with the understanding that the simple explicit scheme is of O(∆t, (∆z)2) we

get,

Xk
n+1 = Xk

n + ∆t
2∆z

(
wk

n(Xk−1
n − Xk+1

n ) + Xk
n(wk+1

n − wk−1
n )

)

+
ν∆t

(∆z)2

(
Xk−1

n − 2Xk
n + Xk+1

n

)
.

(2.4)

We will now make a further assumption that the convection is of Burger’s type.

With this assumption, the temporal variation of the spanwise velocity wk
n is ignored

and a spatially varying spanwise velocity ck ≡ wk is introduced. As one can see in

the latter steps of the development of the convective-diffusive CML, the relaxation

of temporal variation of spanwise velocity can be removed without any change in the

form of the equations in the model. The importance of a spatial-temporal spanwise

velocity is re-established in Chapter 3. However, the current objective of the de-

velopment of the convective-diffusive CML is the inclusion of additional convective

dynamics in the simplest form (Burgers type). So, we will omit wk
n in favor of ck in

(2.4).
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Using non-dimensional parameters,

ck =
ck

U∞

, γk =
ck∆t

2∆z
=
ckΩ(k∗ − 1)

2StAR
, ε =

ν∆t

∆z2 =
Ω(k∗ − 1)2

StReAR2 ,

we can rewrite (2.4) in non-dimensional form as,

Xk
n+1 =

(
−Xk

nγ
k−1 + (Xk−1

n − Xk+1
n )γk + Xk

nγ
k+1
)

︸ ︷︷ ︸
convective

+
(
εXk−1

n + (1 − 2ε)Xk
n + εXk+1

n

)
︸ ︷︷ ︸

diffusive

.
(2.5)

The coupling between (2.5) and the modified circle map (1.6) requires f k
n = Xk

n so

that,

Xk
n+1 =

(
− fk

nγ
k−1 + (fk−1

n − fk+1
n )γk + fk

nγ
k+1
)

+
(
εfk−1

n + (1 − 2ε)f k
n + εfk+1

n

)
.

(2.6)

Equation (2.6) can be written in vector form as:

Xn+1 = A(ε)F(Xn) + G(Xn)Γ

= A(ε)F(Xn)︸ ︷︷ ︸diffusive
+Yn+1︸ ︷︷ ︸convective

,
(2.7)

where Xn =
(
X1

n X2
n · · · Xk∗

n

)T
, k∗ = 1+ L

D∆z is the number of spanwise oscillators,

A(ε) =




1 + ε −2ε ε 0 · · · 0

ε 1 − 2ε ε 0 · · · 0

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 · · · 0 ε 1 − 2ε ε

0 · · · 0 ε −2ε 1 + ε




,
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G(Xn) =




fk∗−1
n − f 2

n f 1
n 0 · · · 0 −f 1

n

−f 2
n f 1

n − f 3
n f 2

n 0 · · · 0

0
. . . . . . . . . . . .

...

...
. . . . . . . . . . . . 0

0 · · · 0
. . . . . . fk∗−1

n

fk∗

n 0 · · · 0 −f k∗

n fk∗−1
n − f 2

n




,

F(Xn) =
(
f 1

n f
2
n . . . fk∗

n

)T
and Γ =

(
γ1 γ2 . . . γk∗

)T
.

In (2.7) Xn is available and Γ, i.e., the w term in the vorticity diffusion equation

(2.4) is the unknown. It is desired to estimate Γ from experimental data. It is observed

that the convective-diffusive CML predicts a more complex wake structure compared

to the diffusive CML due to the additional dynamics modeled in the vorticity equation.

It has been shown earlier in Balasubramanian et al. (2001,2002) that a simple

variation of the two input parameters, unforced frequency ratio, Ω = fso/fe, where fe

is the excitation frequency, and the forcing term, Kk, in the basic CML model cannot

yield wake patterns that precisely match wake patterns determined from a numerical

simulation of the Navier-Stokes equation using the NEKTAR code. The unmodelled

dynamics result in the difference between the CML wake patterns and the actual wake

flow. In order to overcome this limitation, self-learning features are incorporated into

the basic CML model. The unmodelled dynamics in the convective-diffusive CML

are described by the G(Xn) term in (2.7).

Typical wake patterns from the diffusive CML of (1.7), (1.6) and the convective-

diffusive CML ((2.5),(1.6)) are compared in Figure 2.2. A sinusoidal variation in the

spanwise velocity distribution, γk, is assumed to qualitatively match the NEKTAR

simulation prediction for this quantity. The spatial wavelength of γk is set at half

the value of the cable vibration wavelength given in (1.8), again consistent with the

NEKTAR simulation. It is observed that the convective-diffusive CML predicts a

more complex wake structure compared to the diffusive CML due to the additional
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dynamics modeled in the vorticity equation. For the self-learning CML developed

later in Chapter 3, the spanwise velocity distribution is adaptively estimated.

Next, in Figure 2.3 the wake patterns shown in Figure 2.2 are then compared

with the NEKTAR wake patterns (shown in Figure 1.7). We can observe that the

convective-diffusive CML (with its increased modeling capabilities in the form of the

spanwise velocity parameter) performs better in predicting complex NEKTAR wake

patterns than the basic CML. We now logically seek to extend the modeling capa-

bilities of the convective-diffusive CML by introducing self-learning features. With

this goal in mind, the assumption of temporal invariance of the spanwise velocity

parameter is removed and spatio-temporal spanwise velocity, Γk
n is established. The

increased dimension of the spanwise velocity, Γ, means that it can no longer be an

input parameter. But, by suitably varying Γ, increased modeling capabilities are

achieved. Chapters 3 and 4 are devoted to the development of a class of self-learning

CML models suitable for quantitative comparison with experimental and NEKTAR

wake patterns.
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Chapter 3

Self-Learning CML

In this chapter, we discuss the development of the self-learning CML which seeks

to accurately estimate unmodelled dynamics in wake flows. A schematic of the self-

learning CML is shown in Figure 3.1. It is worth mentioning once again that Xk
n,

the phase of the vortex shedding event, will be used to represent the wake patterns,

xk
n. This was justified in Chapter 1 by the assumption of constant vortex convection

velocities without dissipation in the near wake. The self-learning CML is required to

precisely match wake patterns from NEKTAR simulation (as shown in Figure 3.1. To

this end, target wake patterns using cross-correlation methods detailed in this Chapter

are obtained from NEKTAR (experimental) wake velocity signatures (Figure 3.1a).

The self-learning CML model computes estimated wake patterns, X̂ k
n . The difference

between the estimated and target wake patterns is called the state error. The state

error is fed into the adaptive estimation models which form the core of the self-learning

CML (Figure 3.1b). The objective is to drive the state error to zero, resulting in

accurate prediction of target wake patterns (Figure 3.1c).
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3.1 Self-learning CML based on convective-diffusive

CML and MVLS algorithm

The self-learning CML mimics the dynamics of the convective-diffusive CML (2.7). It

is assumed that the diffusion process is modeled exactly as in the convective-diffusive

CML. The diffusion and convection processes are uncoupled in the convective-diffusive

CML and also in the self-learning CML. In the first stage of model development, it is

assumed that the convective process is accurately modeled by the spanwise velocity

distribution alone. So, the only unknown term to be estimated is w(z), spanwise

distribution of the spanwise velocity, i.e. Γ term in (2.7). Now, the self-learning

CML (adaptive observer) can be written as:

X̂n+1 = A(ε)F(Xn) + G(Xn)Γ̂n

= A(ε)F(Xn) + Ŷn+1

, (3.1)

where Γ̂n is the estimator (on-line estimate) of the time invariant, unknown spanwise

velocity distribution, Γ. It is our objective to find a recursive estimation procedure

for Γ̂n. Therefore, let us define the state error as:

en+1 ≡ X̂n+1 − Xn+1

= G(Xn)(Γ̂n − Γ)

= G(Xn)Γ̃n

= G(Xn)Γ̂n − Yn+1,

(3.2)

where Γ̃ denotes the parameter error, Γ̃n = Γ̂n − Γ. Our goal is to drive the state

error to zero in the shortest possible time for efficient estimation of wake patterns.

We use a multi-variable least-squares algorithm (Goodwin and Sin, 1984) to minimize

the state error after each time step. Goodwin and Sin (1984) also address conver-

gence and boundedness issues for similar adaptive schemes. The following equations

illustrate the steps in the derivation of the adaptation scheme for the state error. The
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multi-variable least-squares algorithm involves the minimization of a positive definite

function (cost function), suitably chosen to represent the accuracy of estimation. In

our case, the cost function is defined as

Jn = (Γ − Γ̂0)
T P−1

0 (Γ − Γ̂0)

+1
2

n∑

j=1

(
Yj+1 − G(Xj)Γ

)T
R−1

(
Yj+1 − G(Xj)Γ

)
,

(3.3)

where Γ is a dummy variable used for analysis purposes, the first term is the cost

associated with parameter estimation, and the second term is the cost associated with

state estimation. The parameters P0 and R are input weighting matrices and can be

varied to achieve optimal parameter estimation.

When the parameter Γ̂0 is chosen as some finite valued vector, then minimizing

the cost function Jn with respect to the dummy variable Γ yields the solution, Γ̂n+1

as:
∂Jn

∂Γ
= 0 =⇒

P−1
0 (Γ − Γ̂0) −

n∑

j=1

G(Xj)
T
R−1

(
Yj+1 − G(Xj)Γ

)
= 0·

(3.4)

Solving (3.4) for Γ̂n+1, one obtains

Γ̂n+1 =

(
P−1

0 +
n∑

j=1

G(Xj)
T
R−1G(Xj)

)−1(
P−1

0 Γ̂0 +
n∑

j=1

G(Xj)
T
R−1Yj+1

)
·

(3.5)

Now, define the covariance matrix Pn and get a recurrence relation using the Matrix

Inversion Lemma (Harville, 1997) as follows:

P−1
n = P−1

0 +
n∑

j=1

G(Xj)
T
R−1G(Xj),

=⇒ P−1
n = P−1

n−1 + G(Xn)T
R−1G(Xn),

Pn = Pn−1 − Pn−1G(Xn)T
R

−1

n G(Xn)Pn−1·

(3.6)
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In (3.6) we introduced an intermediate variable

Rn =
(
R + G(Xn)Pn−1G(Xn)T

)
· (3.7)

The matrix Rn in (3.7) is positive definite (as R > 0,Pn−1 > 0 and G(Xn) is

invertible) and is used frequently for analysis purposes. Substituting (3.6) in (3.5)

and simplifying, we get a recurrence relation for Γ̂n as,

Γ̂n+1 = Γ̂n + Pn−1G(Xn)T
R

−1

n G(Xn)(Γ − Γ̂n)

= Γ̂n − Pn−1G(Xn)T
R

−1

n en+1·
(3.8)

Another simple recurrence relation for Γ̃n that will be useful later in the stability

analysis can be obtained from (3.6) and (3.8) as:

Γ̃n+1 = PnP
−1
n−1Γ̃n· (3.9)

We now present the main result on the application of multi-variable least-squares

algorithm for the adaptive parameter estimation as it pertains to the fluid systems

under consideration. While (3.8) is implemented from available signals, (3.9) is used

for analysis purposes.

Before implementing an adaptive observer for a given system, it is essential to

study its applicability by considering issues of convergence. We will now derive results

for convergence of the state error and also state conditions for the same.

Lemma 3.1.1 Given the algorithm (3.6) and (3.8) for the parameter updates Γ̂ of

the unknown vector of convective terms Γ in (2.7) along with the adaptive observer
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(3.1) for the plant (2.7), it follows that

(i) ‖Γ̂n+1 − Γ‖2 ≤ κ1‖Γ̂1 − Γ‖2
; n ≥ 1

where

κ1 = condition number of [P−1
0 ] ,

λmax P−1
0

λmin P−1
0

(3.10)

(ii) lim
n→∞

n∑

j=1

eT
j+1R

−1

j ej+1 < ∞

and this implies

(3.11)

(iii) lim
n → ∞

(
λminR

−1
n

)1/2
en+1 = 0 (3.12)

(iv) lim
n→∞

n∑

j=1

(
R

−1

j ej+1

)T

G(Xj)Pj−1G(Xj)
T
(
R

−1

j ej+1

)
< ∞ (3.13)

(v) lim
n→∞

n∑

j=1

‖Γ̂j+1 − Γ̂j‖
2
< ∞ (3.14)

(vi) lim
n→∞

n∑

j=k

‖Γ̂j+1 − Γ̂j+1−k‖
2
< ∞ (3.15)

(vii) lim
n→∞

‖Γ̂n+1 − Γ̂n+1−k‖ = 0 for any finite k. (3.16)

Proof : (i) Define a nonnegative scalar Lyapunov function

Vn+1 = Γ̃T
n+1P

−1
n Γ̃n+1,
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we have

Vn+1 − Vn = Γ̃T
n+1P

−1
n Γ̃n+1 − Γ̃T

nP−1
n−1Γ̃n

=
(
Γ̃n+1 − Γ̃n

)T

P−1
n−1Γ̃n using (3.9)

= −eT
n+1R

−1

n G(Xn)Γ̃n from (3.8)

= −eT
n+1R

−1

n en+1 from (3.2)

≤ 0·

(3.17)

Thus Vn is a non-negative, non-increasing function and hence

Γ̃T
n+1P

−1
n Γ̃n+1 ≤ Γ̃T

1 P−1
0 Γ̃1. (3.18)

Now from (3.6) it follows that,

P−1
n ≥ P−1

n−1

⇒ λmin
(
P−1

n

)
≥ λmin

(
P−1

n−1

)

≥ λmin
(
P−1

0

)
.

(3.19)

Equation (3.19) implies that

λmin
(
P−1

0

)
‖Γ̃n+1‖

2 ≤ λmin (P−1
n ) ‖Γ̃n+1‖

2

≤ Γ̃T
n+1P

−1
n Γ̃n+1

≤ Γ̃T
1 P−1

0 Γ̃1 using (3.18)

≤ λmax
(
P−1

0

)
‖Γ̃1‖

2

⇒ ‖Γ̃n+1‖
2 ≤ λmax

(
P−1

0

)

λmin
(
P−1

0

) ‖Γ̃1‖
2·

(3.20)

This establishes part (i). (ii) Going back to (3.17) and summing from 1 to n gives

lim
n→∞

Vn+1 = V1 − lim
n→∞

n∑

j=1

eT
j+1R

−1

j ej+1 . (3.21)
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Since Vn is nonnegative, we immediately have (3.11).

(iii) Since R
−1

j > 0

λmin

(
R

−1

j

)
eT

j+1ej+1 < eT
j+1R

−1

j ej+1·

Using (3.11) we can write

lim
n→∞

n∑

j=1

(
λminR

−1

j

)
eT

j+1ej+1 < ∞ (3.22)

Equation (3.12) follows immediately from (3.22).

(iv) Using (3.11) we can write

lim
n→∞

n∑

j=1

(
R

−1

j ej+1

)T

Rj

(
R

−1

j ej+1

)
< ∞ ⇒

lim
n→∞

n∑

j=1

(
R

−1

j ej+1

)T (
R + G(Xn)Pn−1G(Xn)T

)(
R

−1

j ej+1

)
< ∞·

(3.23)

Equation (3.13) follows immediately as R > 0.

(v) From the algorithm (3.8),

‖Γ̂j+1 − Γ̂j‖
2

=
(
Γ̂j+1 − Γ̂j

)T (
Γ̂j+1 − Γ̂j

)

= eT
j+1R

−1

j G(Xj)Pj−1Pj−1G(Xj)
T
R

−1

j ej+1

=
(
R

−1

j ej+1

)T

G(Xj)Pj−1Pj−1G(Xj)
T
(
R

−1

j ej+1

)

≤
(
R

−1

j ej+1

)T

G(Xj)Pj−1G(Xj)
T
(
R

−1

j ej+1

)
λmax (Pj−1)

≤
(
R

−1

j ej+1

)T

G(Xj)Pj−1G(Xj)
T
(
R

−1

j ej+1

)
λmax (P0) using (3.6).

(3.24)

Equation (3.14) follows immediately from (3.13).

(vi) It is clear that,

‖Γ̂j+1 − Γ̂j+1−k‖
2

= ‖Γ̂j+1 − Γ̂j + Γ̂j − Γ̂j−1 · · · Γ̂j+1−(k−1) − Γ̂j+1−k‖
2

(3.25)
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Then, using the Schwarz inequality,

‖Γ̂j+1 − Γ̂j+1−k‖
2 ≤ k

(
‖Γ̂j+1 − Γ̂j‖

2
+ · · · + ‖Γ̂j+1−(k−1) − Γ̂j+1−k‖

2
)

(3.26)

Equation (3.15) follows immediately from (3.14) since k is finite.

(vii) Equation (3.16) follows immediately from (3.15).

Parameter convergence can be similarly established by imposing a richness-like

condition and thus we have the following result.

Lemma 3.1.2 The multi-variable least-squares algorithm (3.6) and (3.8) for Γ̂n is

convergent to Γ provided that

lim
n→∞

λmin

(
n∑

j=1

G(Xj)
T
R−1G(Xj)

)
= ∞ . (3.27)

Proof : It is clear from (3.6) and the definitions of Γ̃n and Vn that Γ̃n will converge

to zero provided that

lim
n→∞

λmin P−1
n = ∞

and this is guaranteed provided that (3.27) is satisfied.

Remark 3.1.1 Equation (3.27) is a form of condition for persistence of excitation

(Goodwin and Sin, 1984).

In the following section, we apply the multi-variable estimation scheme to estimate

complex NEKTAR wake patterns from varying flow situations.
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3.2 Results

In this section, we present a detailed summary of the results obtained from the sim-

ulation of the self-learning CML model based on the multi-variable least-squares al-

gorithm. The target wake patterns are obtained from the NEKTAR code. Three

different flow situations are considered. First, we study the uniform flow over a flex-

ible cable forced to vibrate in the cross-flow direction at a frequency coinciding with

the natural vortex shedding frequency behind a stationary rigid cylinder. We use

the term lock-on periodic case (Ω = fe/fso = 1.0) to describe the flow situation.

The objective of this study is to generate complex wake structures such as lace-like

patterns, vortex dislocations etc. observed in the study of Newman and Karniadakis

(1996,1997). As we have seen before, the development of a new self-learning CML

model was required because the basic CML model was not successful in achieving

quantitative prediction of the complex wake structures.

The non-periodic case (Ω = 0.9) of uniform flow over flexible cable is considered

in the second study. As we will see later, this study will be useful in determining the

effectiveness of the self-learning CML to model transient effects (i.e. rapidly changing

wake structures within a few shedding cycles), and also more complex wake effects

than in the first study.

In the third study, we generate target wake patterns from a sheared freestream

flow over a forced flexible cable under lock-on conditions (Ω = 1.0). Studies of

Newman (1996,1997) and others show that the vortices are shed at an oblique angle

with respect to an axis parallel to the longitudinal axis of the cylinder. Therefore,

this study is useful in analyzing the ability of the self-learning CML model to model

oblique shedding patterns.

We will first select the input parameters for NEKTAR simulations, then discuss the

various methods of generating wake patterns. Later, we apply the MVLS algorithm

for each of the three cases. Finally, we discuss prediction of these patterns and also

convergence of the state error. An optimization study is also done in order to choose
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the input parameters for the self-learning CML model. The evolution in time of the

wake patterns as well as the vortex shedding phase angles for the NEKTAR wake and

the self-learning CML is also considered.

3.2.1 Input parameters for NEKTAR simulation

The mesh used for the low-Reynolds number (=100) NEKTAR simulations, and the

required computational times were already given in Chapter 2. For all three flow

situations described above, the parameters, AR = 4π,A/D = 0.69, are kept the same.

The freestream Reynolds number, Re was set to 100 for the uniform flow cases, and

to one period of a cosine distribution, with antinodal value = Remax = 100, and the

nodal value = Remin = 75 for the shear flow case.

3.2.2 Generation of NEKTAR wake patterns

The low-dimensional CML model approach considers the vortex shedding phase an-

gles, Xk
n, in order to quantify the wake patterns. Therefore the generation of the

NEKTAR wake patterns based on this approach is first considered in this section.

In order to obtain Xk
n, time-traces of streamwise (u) velocities at sampled locations,

uniformly distributed along the spanwise (z) direction are first generated from the

NEKTAR simulation. In order to consider the time evolution of wake structures at

a particular streamwise (x/D) location, the spanwise sampling of the u-velocities is

conducted. For example, in Figure 3.2 the u-velocities from the NEKTAR simulation

at 26 equispaced locations are shown.

Four near wake x/D locations, x/D = 0.5, 1, 3, 5 and a far wake location x/D =

10 are chosen for estimation of wake structures at these locations. The spanwise

vorticity (representing the wake structure) from the NEKTAR simulation at a specific

time instant is shown in Figure 3.3. One observes a lace-like structure in the near

wake of the cable (x/D < 2), characteristic of standing wave mode forcing of the

cable. Further downstream, (2 < x/D < 6), more complex vortex structures with
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Figure 3.2: Streamwise velocity traces providing a schematic for visualizing wake
patterns: Ω = 1.0, x/D = 1.0

decreased spanwise wavelengths evolve. So the choice of x/D locations provide a wide

complexity of wake structures for estimation purposes.

Cross-correlation algorithm

The vortex shedding phase angles, Xk
n at the various z/D locations are generated

using a cross-correlation algorithm. The idea is based on standard signal processing

theory. The phase difference between two signals corresponds to the phase of the

dominant frequency of the cross-power spectrum between the two signals. The cross-

power spectrum is calculated using

Cu1u2
(f) = U1(f) · U ∗

2 (f)

where U1(f) and U2(f) are the Fourier transforms of the individual time traces,

u1(t) and u2(t), respectively. The cross-power spectrum is interpreted in polar form

(magnitude, angle) to determine the phase difference, Xk
n, between the two time

histories within each shedding cycle. A typical phase angle distribution resulting
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Figure 3.3: Contours of spanwise vorticity in the x-z plane from NEKTAR simulation

from these correlation methods at one time instance is shown in Figure 3.4 for the

near wake, x/D = 1.0.

To illustrate the phase angle extraction from the cross-power spectrum, we con-

sider the tenth shedding cycle (n = 10). The magnitude of FFTs of u-velocities at

x/D = 3 and z/D = 3, 6, 9, 12 are shown in Figure 3.5. Also, in Figure 3.6 the mag-

nitude of the cross-power spectrum between u-velocities at x/D = 1 and z/D = 0, 5

(or) k = 1, 11 for the tenth shedding cycle, shows a peak at a frequency = 0.35 Hz

and a corresponding phase angle, Xk=11
n=10 = 0.5. Repeating this procedure for pairs

of u-velocities, one being a reference velocity considered at z/D = 0 throughout,

we generate vortex shedding phase angles, Xk
n for every spanwise location (k) and

shedding cycle (n) as can be seen in Figure 3.7.

We repeat the above procedure for streamwise locations x/D = 0.5, 3, 5, 10 in

order to generate the corresponding vortex shedding phase angles. The FFTs of

the streamwise velocities at representative spanwise locations, (z/D = 3, 6, 9, 12) for

x/D = 0.5 and 10 are shown in Figures 3.8- 3.9. In both the figures, we can identify

peaks at the Strouhal frequency, indicating that the cable is oscillating at the lock-on

condition.
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Figure 3.4: Typical vortex shedding phase distribution that serves as a target state
for the self-learning CML: Ω = 1.0, x/D = 1.0, n = 10
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Figure 3.5: Sample FFTs of u(x/D = 1, z/D = 3, 6, 9, 12) for generating cross-power
spectrum
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Figure 3.7: Illustration of vortex shedding phase angles, Xk
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Figure 3.8: Sample FFTs of u(x/D = 0.5, z/D = 3, 6, 9, 12) for generating cross-
power spectrum
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Figure 3.9: Sample FFTs of u(x/D = 10, z/D = 3, 6, 9, 12) for generating cross-power
spectrum
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The cross-correlation technique for extracting phase angles is then applied to 3

other near wake locations (x/D = 0.5, 3, 5), and one far wake location (x/D = 1). The

state of the wake becomes progressively more complex with increase in downstream

distance, x/D (see Figures 3.10 - 3.13). These states are then used as target states,

Xn, for the estimation methods used in Chapters 3 and 4.
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Figure 3.10: Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 0.5
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Figure 3.11: Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 3
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Figure 3.12: Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 5
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Figure 3.13: Illustration of vortex shedding phase angles, Xk
n : Ω = 1.0, x/D = 10
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Wake patterns from vortex shedding phase angles

In chapter 1, we discussed the methods of plotting wake patterns from vortex shed-

ding angles, see Figure 1.6. One of the assumptions of the current CML model is

that the spanwise oscillators are effectively moved to the streamwise location under

consideration. Then, the vortices convect downstream at a constant velocity without

any dissipation. This assumption led to the definition of a characteristic streamwise

distance, x∗, for vortex convection in a shedding cycle, x∗ = Uc/(U∞St). With this

definition, a simple equation (3.28) for the location of the vortex core of the nth

shedding cycle is given by:

( x
D

)k

n
= (Xk

n + nfinal − n) ∗ Uc/(U∞St) . (3.28)

We now apply (3.28) to the Xk
n values computed at x/D = 0.5, 1, 3, 5, 10 to gen-

erate the wake patterns (see Figures 3.15- 3.17). We will use these as target patterns

for estimation using the methods in Chapters 3 and 4.
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Figure 3.14: First 8 shedding cycles showing wake patterns at x/D = 0.5 for lock-on
case: Ω = 1.0
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Figure 3.15: First 8 shedding cycles showing wake patterns at x/D = 1.0 for lock-on
case: Ω = 1.0

Wake patterns from time history

We will now present an alternative method for drawing wake patterns using wake

velocity signatures. While this method is not used for analysis purposes, it gives

us an idea of how these wake patterns are interpreted visually. For each shedding

cycle, the peaks or troughs (easily identifiable points) in u of the adjacent spanwise

locations are joined together to form the wake pattern. Peaks (or troughs) in the

velocity trace at z/D = 0 are used as reference states. We illustrate this method

for all the x/D locations in Figures 3.18- 3.21. We can easily verify that the wake

becomes increasingly more complex with downstream distance.

Quasi-periodic case: Ω = 0.9

In this study, the cable oscillates at a frequency further removed from the natural

shedding frequency of the wake at that Reynolds number, so that Ω = fe/fso = 0.9.

All other parameters are retained from the lock-on case. We can see more complex
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Figure 3.16: First 8 shedding cycles showing wake patterns at x/D = 3.0 for lock-on
case: Ω = 1.0

wake structures including vortex dislocations in Figure 3.22. These structures are

more difficult to estimate and are also commonly observed in experiments. So the

target states, Xn, obtained from this study are correspondingly highly complex with

sudden changes in phase angles in successive shedding cycles, indicative of vortex

dislocations (see Figure 3.23). The transient states, for 1 ≤ n ≤ 4, are highly complex

and the steady state behavior (n > 20) also exhibits decreased spanwise wavelengths

compared to the lock-on case at the same x/D location. A plot of the first 8 shedding

cycles, corresponding to 1 ≤ n ≤ 8 in Figure 3.23 is shown in Figure 3.24. The vortex

dislocations near the node (z/D = 9.5) are labeled. It is our goal to estimate these

wake structures accurately using the self-learning CML models. We will apply the

estimation methods in Chapters 3 and 4 as part of a study of applicability of these

methods to varied flow-structure interaction situations.
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Figure 3.17: First 8 shedding cycles showing wake patterns at x/D = 10 for lock-on
case: Ω = 1.0
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Figure 3.18: Streamwise velocity traces providing a schematic for visualizing wake
patterns: Ω = 1.0, x/D = 0.5

Sheared freestream flow: Ωmax = 1.0

The quasi-periodic case was used to study the effect of changes in excitation fre-

quency of the cable on vortex shedding. In this section, we study the wake of a
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Figure 3.19: Streamwise velocity traces providing a schematic for visualizing wake
patterns: Ω = 1.0, x/D = 3
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Figure 3.20: Streamwise velocity traces providing a schematic for visualizing wake
patterns: Ω = 1.0, x/D = 5
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Figure 3.21: Streamwise velocity traces providing a schematic for visualizing wake
patterns: Ω = 1.0, x/D = 10
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Figure 3.22: Contours of spanwise vorticity in the x-z plane from NEKTAR simulation
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Figure 3.23: Illustration of vortex shedding phase angles, Xk
n : Ω = 0.9, x/D = 5
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Figure 3.24: First 8 shedding cycles showing wake patterns at x/D = 5.0 for quasi-
periodic case: Ω = 0.9
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sheared freestream flow interacting with a cable forced to vibrate at the Strouhal

frequency based on the maximum freestream Reynolds number, i.e. Ωmax = 1.0.

This flow can also be used to model spanwise changes in diameter (example: a ta-

pered cylinder). However, we retain the spanwise uniformity in the diameter of the

cable in the current study and create a shear flow by varying the freestream ve-

locity. The Reynolds number, as a function of the spanwise distance is given by:

Re(z) = 12.5(7 + cos(2πz/AR)). The cosine distribution gives rise to Remax = 100

at the ends and Remin = 75 at the midspan. All other parameters are unchanged.

Streamwise wake velocities are measured at x/D = 5.0 and the cross-correlation

method is used to obtain the vortex shedding phase angles for 1 ≤ n ≤ 23 in Fig-

ure 3.25. The corresponding wake patterns are then shown in Figure 3.26. Once the

transients die out, the wake exhibits a chevron like pattern in the midspan, not seen

in the uniform flow cases. Therefore, this study will be further helpful in determining

the efficiency of the estimation methods in Chapter 3 and 4 in predicting varied wake

patterns.

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

z/D
0 5 10

0

0.5

1

z/D
0 5 10

0

0.5

1

z/D

n=1 n=2 n=3 n=4 n=5 

n=10 

n=15 

n=20 

X
 n

 

Figure 3.25: Sheared freestream flow case: Illustration of vortex shedding phase
angles, Xk

n; Ωmax = 1.0, Remax = 100, Remin = 75, x/D = 5
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Figure 3.26: Sheared freestream flow: First 8 shedding cycles showing wake patterns
at x/D = 5.0; Remax = 100, Remin = 90,Ωmax = 1.0

3.2.3 MVLS algorithm for estimation

In this section we study the effectiveness of the MVLS algorithm based self-learning

model in estimating vortex shedding wake patterns from the NEKTAR simulations.

We study 3 different flow situations: Uniform flow and lock-on, uniform flow and

quasi-periodic, and shear flow and lock-on. Before going into the results of the esti-

mation procedure, we will summarize the input parameters used for the estimation

model ((3.1), (3.6), (3.8)). The input weighting matrices P0 and R are chosen to

be diagonal matrices with constant entries P0 and R respectively. With this choice,

it can be shown analytically that the ratio P0/R is relevant in the estimation study.

Therefore, an optimization study was conducted to determine an optimal value of

P0/R = 0.001. This value was uniformly applied for all 3 flow situations. The addi-

tional input parameters are X̂k
1 and Γ̂k

1, initial guesses for the vortex shedding phase

angle and the spanwise velocity respectively. A random distribution was chosen for

X̂k
1 and Γ̂k

1 was set uniformly to zero.
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First, the wake patterns are estimated for the different flow cases in Figures 3.27-

3.32. The estimation of the vortex shedding phase angles as a function of the number

of shedding cycles is shown in Figures 3.34- 3.39. Next, the state error is used to

highlight the efficiency of the self-learning CML in estimating these wake patterns.

The evolution in time of the estimator of the spanwise velocity is then considered.

Estimation of NEKTAR wake patterns

In all the flow cases (Figures 3.27- 3.32) , a random wake pattern (phase angle dis-

tribution) is used as the initial condition for the self-learning CML. From the near

wake studies (x/D = 0.5, 1) of the uniform flow, lock-on case, we see that the wake

patterns from the self-learning scheme quickly evolve from the random distribution,

and successfully estimate the lace-like patterns of the NEKTAR simulation within a

single shedding cycle. For the same flow, at x/D = 3.0 we see that the self-learning

scheme successfully captures the transient states (1 ≤ n ≤ 6) involving a transition

from an initial “M-like” pattern in the midspan to the lace-like pattern observed in

the near wake. Several other wake patterns (x/D = 5, 10) with increasing complexity

are also efficiently estimated.

Successful estimation of the quasi-periodic wake evolution at x/D = 5 is shown

in Figure 3.32. Unlike the lock-on (periodic) cases discussed in Figures 3.27- 3.32, we

see that there is no periodicity in the evolution of the wake. This feature represents

additional challenges in modeling using the self-learning CML. The wake shows some

standing wave features of the cable oscillation, however with decreased wavelengths

along the span. This feature is captured accurately by the estimation scheme for

some shedding cycles.

Finally, in Figure 3.33 we plot the wake patterns for the NEKTAR simulation

and the self-learning CML for the shear flow case. Once the initial transients die

out, (1 ≤ n ≤ 4), we see oblique shedding patterns emerge from either end of the

cylinder, consistent with the symmetrical freestream velocity distribution. An initial

random wake pattern is used for the self-learning CML just as in the other cases.
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The estimation is good for n ≥ 6, everywhere except at one end of the cylinder. This

result suggests that further improvements in the self-learning model in future. A

possible alternative for modeling such complex features in the wake is suggested in

Chapter 4. We can then directly compare the efficiency of the two methods.

For all the cases, the computational time in seconds per shedding cycle was of the

order of 10−2 wall clock seconds on a Pentium PC. This included both the genera-

tion of target patterns from velocity data and the the estimation of the target wake

patterns. The generation of NEKTAR wake data required 104 wall clock seconds

per shedding cycle on an IBM supercomputer. This highlights the computational

efficiency of the self-learning CML. Implications for future flow control studies using

CML models is discussed later.
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Figure 3.27: Estimation of first 8 shedding cycles showing wake patterns at x/D = 0.5
for lock-on case: Ω = 1.0

Estimation of vortex shedding phase angles

We plot the vortex shedding phase angles (Figures 3.34- 3.39) which were used to

generate the target and estimated wake patterns just considered. We use these to
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Figure 3.28: Estimation of first 8 shedding cycles showing wake patterns at x/D = 1.0
for lock-on case: Ω = 1.0
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Figure 3.29: Estimation of first 8 shedding cycles showing wake patterns at x/D = 3.0
for lock-on case: Ω = 1.0
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Figure 3.30: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for lock-on case: Ω = 1.0
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Figure 3.31: Estimation of first 8 shedding cycles showing wake patterns at x/D = 10
for lock-on case: Ω = 1.0
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Figure 3.32: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for quasi-periodic case: Ω = 0.9
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Figure 3.33: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for shear flow case: Remax = 100, Remin = 75,Ωmax = 1.0
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summarize the results of estimation by comparing directly the state, Xk
n, with the

adaptive estimator, X̂k
n, for all values of n and k. In Figures 3.34,3.35, we show that

the self-learning CML is highly accurate in predicting the periodic lace-like patterns

in the near wake. It is also efficient in estimating several transients in the wake (see

Figures 3.36- 3.39)
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Figure 3.34: Temporal evolution of vortex shedding phase angles at x/D = 0.5 for
uniform flow, lock-on case, Ω = 1.0

Spatio-temporal evolution of the state error

The state error, ek
n, is the difference between the target vortex shedding phase angle

(state), Xk
n, and its estimator, X̂k

n. We can use the state error to quantify the accuracy

of the self-learning CML. In Figure 3.41, we plot the evolution of the state error in

time n and spanwise distance z/D for the uniform flow, lock-on case at x/D = 5. For

purposes of clarity, the complete results (up to n = 25) are not presented. We can see

that the state error starts off high (as we have assumed a random initial distribution

for the estimator) and within a couple of shedding cycles settles down to a low value

of the order of 0.1. However, at certain discrete z/D locations, we see large values
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Figure 3.35: Temporal evolution of vortex shedding phase angles at x/D = 1.0 for
uniform flow, lock-on case, Ω = 1.0
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Figure 3.36: Temporal evolution of vortex shedding phase angles at x/D = 3.0 for
uniform flow, lock-on case, Ω = 1.0
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Figure 3.37: Temporal evolution of vortex shedding phase angles at x/D = 5.0 for
uniform flow, lock-on case, Ω = 1.0

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

0 5 10
0

0.5

1

X
 n

 

n=1 n=2 n=3 n=4 n=5 

n=10 

n=15 

n=20 

n=25 

z/Dz/Dz/Dz/Dz/D

Figure 3.38: Temporal evolution of vortex shedding phase angles at x/D = 10 for
uniform flow, lock-on case, Ω = 1.0
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Figure 3.39: Temporal evolution of vortex shedding phase angles at x/D = 3.0 for
uniform flow, quasi-periodic case, Ω = 0.9
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Figure 3.40: Temporal evolution of vortex shedding phase angles at x/D = 5 for
shear flow case, Remax = 100, Remin = 75,Ωmax = 1.0
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of the state error. We believe that this discrepancy can be removed by considering

additional spanwise oscillators especially in the mid-span regions where large errors

are encountered. We specifically considered the x/D = 5 case in order to highlight

the deficiencies of the current estimator. For the near wake cases (see Figure 3.42),

we do not encounter such difficulties and the self-learning CML estimates the target

wake patterns efficiently.

We will now consider the state error for the uniform flow, quasi-periodic case at

the same x/D = 5 location in Figure 3.43. Features similar to the observations in

Figure 3.41 are obtained. In addition, large errors are also encountered at the ends

of the cable. This suggests that optimal placement of sensors depends on the type of

flow situation, the type of forcing of the cable and the eventual interaction between

the flow and the cable.
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Figure 3.41: Local state error vs. spanwise location and time, for uniform flow,
lock-on case, x/D = 5, Ω = 1.0

Temporal evolution of the RMS error

We now present another measure to quantify the accuracy of the self-learning scheme.

The root-mean-square (RMS) value of the state error, ‖en‖ is defined for each shedding
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Figure 3.42: Local state error vs. spanwise location and time, for uniform flow,
lock-on case, x/D = 1, Ω = 1.0
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Figure 3.43: Local state error vs. spanwise location and time, for uniform flow,
quasi-periodic case, x/D = 5, Ω = 0.9
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cycle n as:

‖en‖ =
√ k∗∑

k=1

(Xk
n − X̂k

n)2

k∗
· (3.29)

The RMS value represents a global measure of the state error. We plot the RMS

value of the state error, ‖en‖, for all the 5 cases considered in Figure 3.44. The corre-

sponding values for the quasi-periodic and shear flow cases are plotted in Figure 3.45.

We can see that lock-on cases are efficiently estimated than the quasi-periodic case.

Estimation of wake patterns generated from near-wake u-velocities, x/D = 0.5, 1, 3

are more efficiently estimated compared to the far-wake cases, x/D = 5, 10. Also,

the periodic reduction and increase in ‖en‖ observed for all the cases is due to the

transients that are encountered in the wake. This was seen in the form of sudden

change in wake patterns from one shedding cycle to the next. However, the MVLS

algorithm certainly brings down the values of ‖en‖ as soon as the estimation scheme

“recognizes” the evolution of the wake patterns.
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Figure 3.44: Time evolution of the root-mean-square of the state error, ‖en‖, for the
self-learning CML.
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Figure 3.45: Time evolution of the root-mean-square of the state error, ‖en‖, for the
self-learning CML.

Temporal evolution of estimator of spanwise velocity

As we have seen before, the MVLS algorithm is used to adaptively estimate the

spanwise velocity in order to minimize the state error, the difference between the

NEKTAR wake patterns and the self-learning CML wake patterns. In Figure 3.46,

the spanwise distribution of this parameter, Γ̂k
1 to Γ̂k

5, for the uniform flow, lock-on

case, x/D = 5, is shown for the first 5 shedding cycles. Starting with zero values

for Γ̂k
1, we see that the self-learning scheme quickly estimates a complex distribution

of spanwise velocities, Γ̂k
2 to Γ̂k

5 which are used to obtain the estimates of the vortex

shedding phase angles shown in Figure 3.37. Notice the sharp change in the NEKTAR

shedding phase angle distribution, between Xk
4 and Xk

5, from n = 4 to n = 5, and the

corresponding change in the spanwise velocity estimates, Γ̂k
4 to Γ̂k

5 in Figure 3.46.

The spanwise velocity distributions show spatial oscillations from positive to neg-

ative values near cable anti-nodes (z/D = 2 ) where the spanwise velocity becomes

precisely zero. The opposite signed values correspond physically to a reversal in di-

rection of spanwise velocity in the near wake as one moves along the cable span. The

zero spanwise velocity implies that no fluid crosses the cable anti-nodes. Spanwise
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Figure 3.46: Time evolution of the estimate of spanwise velocity distribution, Γ̂k
n,

uniform flow, lock-on case, x/D = 5.

flow reversals and stagnation points such as these have also been observed in the

simulations of Newman and Karniadakis (1997), and in experiments on oscillating

tapered cylinders at low Reynolds numbers (Lin, Vorobieff and Rockwell, 1996), a

flow with many of the characteristics of oscillating cable flows. It is also observed

that the spatial wavelength of the spanwise velocity oscillations is approximately one

to two cable diameters, similar to the results of Lin et al (1996).

This study completes the use of the MVLS algorithm based self-learning CML

in targeting NEKTAR wake patterns. In Chapter 5, we will apply this model to

estimate wake patterns from laboratory wake flows.
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Chapter 4

Self-Learning CML based on

Neural Networks

Neural networks represent a class of universal approximators that are used in the

estimation and control of non-linear dynamical systems (Narendra et al., 1990). In

this study, radial basis functions are used as on-line approximators of the coupled

map lattice. We choose a large number of radial basis functions and vary the asso-

ciated weighting parameters suitably to estimate the dynamics of the coupled map

lattice. This scheme is developed to further improve upon the MVLS algorithm based

scheme discussed in Chapter 3. We no longer assume that the convection process of

the vorticity transport equation is completely described by the spanwise velocity dis-

tribution. This relaxation is useful in modeling additional unmodelled dynamics from

the self-learning CML described in Chapter 3. A schematic of the neural networks

based self-learning CML is shown in Figure 4.1. We use recurrent neural networks

in order to adaptively vary the neural network weights associated with a single layer

of radial basis functions. The state error is progressively reduced leading to efficient

estimation of target wake patterns. First, the self-learning CML is developed to esti-

mate target wake patterns. Later, the results of the current scheme are presented for

the same 7 cases considered in Chapter 3.
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4.1 Development of the neural network based CML

The starting point for this method is the vorticity diffusion equation (2.1). However,

unlike the self-learning CML of Chapter 3, we consider all terms in the z compo-

nent of the vorticity diffusion equation (2.1) in our model development. Equation

(2.2) is repeated below with the diffusive and convective terms separated for analysis

purposes:

∂wz

∂t
= ν∇2wz︸ ︷︷ ︸

diffusive

−u ∂wz

∂x
− v

∂wz

∂y
− w

∂wz

∂z
+ wx

∂w

∂x
+ wy

∂w

∂y
+ wz

∂w

∂z︸ ︷︷ ︸
convective

· (4.1)

Equation (4.1) is then rewritten as:

∂wz

∂t
= ν

∂2wz

∂z2 + h(u, ω, t), (4.2)

where h(u, ω, t) represents the difference in the right hand side of (4.1) and (4.2).

The first term in the right hand side of (4.2) is used to model the z-diffusion

exactly as in the basic CML model. The unknown term, h(u, ω, t), is modeled with

neural networks.

We now use the analogy between the vortex shedding event and the magnitude of

the wz to define X ≡ wz as before. Now, applying Simple Explicit Finite Differencing

(forward in time, centered in space) to the above PDE we get,

Xk
n+1 − Xk

n

∆t
=

ν

(∆z)2

(
Xk−1

n − 2Xk
n + Xk+1

n

)
+ hk

n (4.3)

We now use the diffusion coefficient, ε = ν∆t/(∆z)2 and the non-dimensional term,

h
k

n = hk
n∆t, to rewrite (4.3) as:

Xk
n+1 =

(
εXk−1

n + (1 − 2ε)Xk
n + εXk+1

n

)
︸ ︷︷ ︸

diffusive

+ h
k

n︸︷︷︸
convective

(4.4)
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The coupling between the above finite difference equation (4.4) and the modified

circle map (1.6) requires f k
n = Xk

n so that:

Xk
n+1 =

(
ε fk−1

n + (1 − 2ε)f k
n + εfk+1

n

)
︸ ︷︷ ︸

diffusive

+ ĥk
n︸︷︷︸

convective

, ĥk
n = f(h

k

n)· (4.5)

Equation (4.5) is written in vector form as:

Xn+1 = A(ε)F(Xn) + H(Xn), X ∈ Ψ ⊂ <k∗ · (4.6)

The set Ψ is such that it contains all possible “trajectories” of X. While being aware

of its existence, in our analysis we do not need to know the region Ψ. Equation

(4.6) represents the true dynamics of the system obtained by simple explicit finite

differencing of the vorticity diffusion equation and coupling of the resulting equation

with the modified circle map. We will assume that H(Xn) in (4.6) can be modeled

by linearly parametrized approximators, Y(Xn; θ∗) such that

Xn+1 = A(ε)F(Xn) + Y(Xn; θ∗) + Nn. (4.7)

The optimal parameter matrix θ∗ ∈ R
k∗×p is chosen to minimize the distance between

H(Xn) and Y(Xn; θ∗) over all X ∈ Ψ in some compact learning domain, subject to

the restriction that θ∗ belongs to a compact, convex region Mθ ⊂ R
k∗×p; i.e.,

θ∗ :≡ arg min
θ∈Mθ

{
supX∈Ψ

∣∣∣H(Xn) − Y(Xn; θ∗)
∣∣∣
}
. (4.8)

The modeling error Nn occurs due to the (possible) inadequacy of the approximator

Y(Xn; θ) to match exactly the non-linear function H(Xn) even if an optimal set of

parameters θ = θ∗ were to be chosen.
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4.1.1 Estimation model

Based on (4.7), we consider the estimation model

X̂n+1 = A(ε)F(Xn) + Y(Xn; θ̂n), (4.9)

where θ̂n ∈ R
k∗×p is the estimator of θ∗ at the discrete-time n, and X̂n is the output

of the estimator at time n. It is our objective to find a recursive estimation procedure

for θ̂n. Therefore, let us define the state error as

En+1 :≡ X̂n+1 − Xn+1

= Y(Xn; θ̂n) − Y(Xn; θ̂∗) − Nn.

(4.10)

Linear Parametrization

Here, the unknown function to be approximated, H(Xn), is modeled as a linear

function of the elements of the parameter estimation matrix, that is,

Y(Xn; θ̂n)
k∗×1

:≡ θ̂n
k∗×p

W(Xn)
p×1

, (4.11)

where W ∈ R
p×1 are the sigmoidal neural networks. Based on the above definition,

the state error is a linear function of the parameter estimator,

En+1 = (θ̂n − θ∗)W(Xn) − Nn. (4.12)

Let us define θ̂n :≡
(
θ̂1

n, θ̂
2
n, . . . , θ̂

k∗

n

)T

, where θj
n ∈ R

p×1 is the jth column of θ̂T
n . Now,

define a new parameter estimator vector, Q̂n ∈ R
k∗p×1 so that,

Q̂n :≡
(
(θ̂1

n)T , (θ̂2
n)T , . . . , (θ̂k∗

n )T
)T

. (4.13)
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The jth element of Y(Xn; θ̂n), yj(Xn; θ̂n) is given by:

yj(Xn; θ̂n) =
[
01×(j−1)p |W(Xn)T |01×(k∗−j)p

]
Q̂n

= Wj(Xn)Q̂n,

(4.14)

where 01×m is the standard notation for a zero vector of m columns. The on-line

approximator (4.11) can now be written as:

L(Xn; Q̂n) :≡ Y(Xn; θ̂n)

= W(Xn)Q̂n, W ∈ R
k∗×k∗p.

(4.15)

We can define the optimal parameter vector Q∗ in the same way θ∗ was defined in

(4.8). Now, the state error can be written as:

En+1 = L(Xn; Q̂n) − L(Xn;Q∗) − Nn

= W(Xn)
(
Q̂n − Q∗

)
− Nn.

(4.16)

In order to minimize the state error after each timestep, we consider the following

adaptive law which is based on a multi-variable normalized least squares scheme and

a projection algorithm (Polycarpou et al., 1992, Johnson, 1988):

Q̂n+1 =





µn+1 if ‖µn+1‖ ≤Mθ

P(µn+1) if ‖µn+1‖ > Mθ

, (4.17)

where Mθ defines the size of the hypersphere Mp = {θ̂ : |θ̂| < Mθ} with

µn+1 :≡ Q̂n − γ0W(Xn)T
En+1

β0 + ‖W(Xn)‖2 , β0 > 0, 0 < γ0 < 2, (4.18)

where we use the Frobenius norm, defined as ‖A‖ =
(
trace(AAT )

)1
2 =

(∑

i

∑

j

a2
ij

)1
2
.

The projection operator P(·) which constrains the parameter θ̂n to the compact, con-
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vex region Mp, is defined as

P(µn+1) :≡ Mθ

‖µn+1‖
µn+1. (4.19)

The neural network based CML is then comprised of (4.17),(4.18), (4.19) and the

estimation model repeated here for convenience.

X̂n+1 = A(ε)F(Xn) + W(Xn)Q̂n.

Theorem 4.1.1 The parameter adaptive law (4.17) to (4.19) guarantees that En+1

and Q̂n+1 are uniformly bounded and there exists constants λ1, λ2 such that for any

finite integer N

N−1∑

n=0

‖En+1‖2 < λ1 + λ2

N−1∑

n=0

‖Nn‖2 , λ1, λ2 > 0 (4.20)

where Nn is given by (4.7). Furthermore, if Nn ∈ `2, that is,
∞∑

n=1

‖Nn‖2 < ∞, then

E ∈ `2 and lim
n→∞

En → 0.

The proof is very long and is therefore included in the Appendix. In essence, one

constructs a positive definite Lyapunov function for the estimation model and the

parameter adaptive law (4.17) - (4.19) forces its time derivative to be negative. Ac-

cording to Theorem 1, in any discrete-time interval [0, N ], the “energy” of the state

error is (at most) of the same order as the “energy” of the modeling error.

Having discussed the convergence issues of the neural network based self-learning

CML, we will now apply this model to target the same NEKTAR wake patterns

considered in Chapter 3.
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4.2 Results

We have applied the neural network based CML to predict wake patterns from 7

different NEKTAR simulations. First, we study a lock-on case of uniform flow over a

cable forced to vibrate in standing wave mode shape at the Strouhal frequency. The

relevant parameters are Re = 100, AR = 4π,A/D = 0.69,Ω = fo/fe = 1.0, x/D =

0.5, 1, 3, 5, 10. Second, a quasi-periodic case with frequency ratio Ω = 0.9 studies the

sensitivity of the scheme to variations in cable oscillation frequency. We consider

only one x/D = 5 case for this study. Third, we study a sheared inflow which, in

the context of a spanwise periodic model such as the NEKTAR/CML, is simulated

by specifying a sinusoidal inflow. Therefore, we set the inflow velocity to

u(−∞, y, z) =
7 + cos(2πz/L)

8

resulting in a corresponding range of local Reynolds numbers from Re = 100 to

Re = 75. Once again, the NEKTAR wake patterns are obtained from u-velocities

sampled at x/D = 5.

Optimization of input parameters

The input parameters for the neural network based CML (apart from the basic input

parameters used for the basic CML model) are X̂k
n=0, γ0, β0, p- the number of radial

basis functions, type of the neural network function, and the initial guess for parame-

ter, Q̂k
n=0. A random vortex shedding phase angle distribution, X̂k

n=0, is considered as

in Chapter 3. The acceleration parameter, γ0 = 1.9, is chosen in the required stable

range of 0 to 2. The parameter β0 is typically set to a very small value, set to 0.001

here. Radial basis functions are used to represent the neural networks as they are

proven as universal approximators. The initial guess of the distribution of estimates

of the neural network weights, Q̂k
0 = 0.

We next present an optimization study to determine the number of neural net-
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works required for successful estimation. We consider the quasi-periodic case, Ω = 0.9,

to illustrate the optimization study. We define the summed squared state error, Vn,

Vn = ET
nEn,

for this purpose and observe from Figure 4.2 that Vn decreases with an increase

in the number of neural networks as expected. The neural network based CML

also outperforms the previous self-learning CML with Vn values several orders of

magnitude lower at all the discrete times.
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Figure 4.2: Optimization of the number of neural networks using the mean summed
squared error criterion, quasi-periodic case.

Estimation of NEKTAR wake patterns

In this section, we apply the neural network adaptive scheme to target NEKTAR wake

patterns estimated by the MVLS algorithm based self-learning CML in Chapter 3.

The input parameters for the neural network scheme were discussed previously. We

will compare the effectiveness of the two self-learning CML models by studying the

same NEKTAR flow situations. First, we consider the case of uniform flow over a cable

forced externally to oscillate in a standing wave motion at the Strouhal frequency.
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For this lock-on case, Ω = 1.0, lace-like flow structures are observed in NEKTAR

simulations in the near wake, (0 ≤ x/D ≤ 2) (Figure 3.3). We consider two x/D

locations, x/D = 0.5, 1, in the near wake to illustrate estimation of the lace-like wake

patterns as in Chapter 3. In Figure 4.3, an initial random wake pattern is used for

the neural network model. Successful estimation of the lace-like patterns is observed

within a single shedding cycle. There is little to compare the effectiveness of the self-

learning CML models in estimating these periodic near wake patterns (see Figures

4.3, 3.27). On closer observation, the neural network method is more accurate in

estimating the vortex cores at the nodes (z/D ≈ π, z/d ≈ 3π) for every shedding cycle.

A similar observation can be made for the near wake case, x/D = 1.0 (Figures 4.4,

3.27).
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Figure 4.3: Estimation of first 8 shedding cycles showing wake patterns at x/D = 0.5
for lock-on case: Ω = 1.0

The flow structures at x/D = 3.0 begin to show the transition from the near wake

lace-like patterns to structures with decreased spanwise lengths. In Figure 4.5, we

observe intermediate “M-like” patterns which are more difficult to estimate because

of transient effects. The neural network estimation is very good for n = 3, 4, and the
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Figure 4.4: Estimation of first 8 shedding cycles showing wake patterns at x/D = 1.0
for lock-on case: Ω = 1.0

local minima and maxima of the vortex cores are more accurately predicted by this

scheme (Figure 4.5, 3.29). However, the MVLS algorithm based self-learning CML

predicts the sixth and eighth patterns more accurately. We can say that the MVLS

algorithm models transient wake effects more accurately than the neural network

scheme. This observation is quite useful when we consider the application of these

methods to target experimental wake flow patterns in Chapter 5.

Next, we consider an intermediate location, x/D = 5.0 to further consider mod-

eling of complex transient and steady state vortex shedding patterns. In Figure 4.6,

we observe a sudden change in the NEKTAR vortex shedding pattern from n = 4

to n = 5. These are vortex dislocations and are commonly observed in experiments.

These are more difficult to estimate with the current neural network model. However,

there are limited data provided to the neural network for the adaptive estimation to

be highly accurate. If more such instances are provided for the neural network model,

successful estimation of these dislocations is possible. Comparison of the estimated

wake patterns from Figures 4.6, 3.30 shows that the neural network scheme is more
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Figure 4.5: Estimation of first 8 shedding cycles showing wake patterns at x/D = 3.0
for lock-on case: Ω = 1.0

efficient than the MVLS algorithm based self-learning CML.

We now consider the far wake location, x/D = 10, uniform flow, lock-on case,

for estimation of the NEKTAR wake patterns using the neural network model (Fig-

ure 4.7). The NEKTAR wake patterns are highly complex with decreased spanwise

lengths, rapidly changing spanwise lengths and also vortex dislocations. The neural

network model quickly and successfully predicts the second and third wake patterns,

and also gradually predicts the transition to a more uniform pattern with increased

spanwise lengths. Once again, comparison of the estimated wake patterns from Fig-

ures 4.7, 3.31 shows that the neural network scheme is more efficient than the MVLS

algorithm based self-learning CML.

In the next study, the cable is forced to oscillate at a frequency greater than the

Strouhal frequency (quasi-periodic case) so that Ω = 0.9. This interaction results in

further degradation in the periodicity of the wake. Estimation of quasi-periodic or

non-periodic wakes are important because such flow situations are often encountered

in reality. The neural network scheme is used to estimate NEKTAR wake patterns
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Figure 4.6: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for lock-on case: Ω = 1.0
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Figure 4.7: Estimation of first 8 shedding cycles showing wake patterns at x/D = 10
for lock-on case: Ω = 1.0

85



(Figure 4.8) for this flow at x/D = 5.0 and accurate prediction is observed for n = 4, 5

and 7. Comparison of the estimated wake patterns from Figures 4.8, 3.32 shows that

the neural network scheme is more accurate than the MVLS algorithm based self-

learning CML.

Similar results are obtained for the shear flow case considered in Figures 4.9, 3.33.

Oblique vortex shedding patterns are a common feature in the wake of a sheared

freestream flow. The two self-learning CML models are quite capable of modeling

these flow structures (see n = 6, 7, 8). We will also consider estimation of oblique

shedding patterns from laboratory wake flows in Chapter 5.
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Figure 4.8: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for quasi-periodic case: Ω = 0.9

Estimation of vortex shedding phase angles

The vortex shedding phase angles are used to plot the target and estimated wake

patterns considered previously. Only the first 8 wake patterns were shown for the

purpose of clarity. In this section, we plot vortex shedding phase angles, Xk
n, X̂

k
n, for

25 successive shedding cycles, corresponding to approximately 145 seconds of flow
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Figure 4.9: Estimation of first 8 shedding cycles showing wake patterns at x/D = 5.0
for shear flow, lock-on case: Remax = 100, Remin = 75,Ωmax = 1.0

simulation. First we consider uniform freestream flow at Re = 100 over a cable

(aspect ratio = L/D = 4π) oscillating at the lock-on frequency (Ω = 1.0). The

vortex shedding phase angles are highly periodic (Figures 4.10, 4.11) in the near wake

(x/D = 0.5, 1) and are accurately estimated by the neural network based self-learning

CML. Later, the accuracy of estimation is quantified using the state error, ek
n. For all

the 3 NEKTAR flow cases considered in this study, a random vortex shedding phase

angle distribution, X̂k
1 , is used as an input to this scheme. The neural network based

self-learning CML predicts the peaks near the nodes (z/D = π, 3π) more accurately

than the MVLS algorithm based self-learning CML (Figures 3.34, 3.38). Transient

wake effects are observed for further downstream locations, x/D = 3, 5, 10, and the

degradation in the periodicity of the wake with increasing downstream distance is

clearly observed. As a consequence, the vortex shedding phase angle distributions

are highly complex with high transients and rapidly changing spanwise wavelengths

(Figures 4.12 - 4.14). For the most part, the neural network based self-learning CML

predicts these complex distributions and the predictions are comparable to those of
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the MVLS algorithm based self-learning CML.
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Figure 4.10: Temporal evolution of vortex shedding phase angles at x/D = 0.5 for
uniform flow, lock-on case, Ω = 1.0

We now consider the quasi-periodic wake for freestream Re = 100. The vortex

shedding phase angles for this case are shown in Figure 4.15. The neural network

prediction of these phase angles are highly accurate for n ≥ 13. This model is also

more efficient than the MVLS based self-learning CML in predicting these highly com-

plex but somewhat periodic vortex shedding phase angle distributions (Figures 4.15,

3.39).

Finally, the case of sheared freestream flow at a lock-on situation (Ωmax = 1.0) is

considered. Once the transients die out, a bell shaped vortex shedding phase angle

distribution is observed in the midspan. This distribution as well as the spikes at

the cable ends are predicted by the neural network based self-learning CML more

accurately than the MVLS algorithm based self-learning CML (Figures 4.16, 3.40).
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Figure 4.11: Temporal evolution of vortex shedding phase angles at x/D = 1.0 for
uniform flow, lock-on case, Ω = 1.0
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Figure 4.12: Temporal evolution of vortex shedding phase angles at x/D = 3.0 for
uniform flow, lock-on case, Ω = 1.0
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Figure 4.13: Temporal evolution of vortex shedding phase angles at x/D = 5.0 for
uniform flow, lock-on case, Ω = 1.0
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Figure 4.14: Temporal evolution of vortex shedding phase angles at x/D = 10 for
uniform flow, lock-on case, Ω = 1.0
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Figure 4.15: Temporal evolution of vortex shedding phase angles at x/D = 5.0 for
uniform flow, quasi-periodic case, Ω = 0.9
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Figure 4.16: Temporal evolution of vortex shedding phase angles at x/D = 10 for
shear flow, lock-on case, Remax = 100, Remin = 75,Ωmax = 1.0
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Spatio-temporal variation of state error

We will now quantify the efficiency of the neural network based self-learning CML

using the state error. The downstream location x/D = 5 is common for all the three

flow situations considered. We choose this x/D value to make comparisons in the

efficiency of neural estimation for the different flows. For the uniform flow, lock-on

case (Figure 4.17), deviations in wake patterns of the order of O(0.1) are obtained.

Some instances of high magnitudes of state error are also observed for 14 ≤ n ≤ 17

coinciding with the formation of vortex dislocations. The steady state (n > 17) values

of the state error are of the order of O(0.01). For the uniform flow, quasi-periodic

case, we saw a marked improvement in the prediction of the vortex shedding phase

angle distributions. Correspondingly, the spatio-temporal variation of the state error

in Figure 4.18 shows exponential decrease in values within a few shedding cycles.

Some spikes in the magnitude of state error are observed for n = 4, 5, 12 at certain

spanwise locations. These are believed to be due to vortex dislocations. Finally, for

the shear flow, lock-on case, we observe relatively high values in magnitude of state

error in the midspan region (Figure 4.19).
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Figure 4.17: Local state error vs. spanwise location and time, for uniform flow,
lock-on case, x/D = 5, Ω = 1.0
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Figure 4.18: Local state error vs. spanwise location and time, for uniform flow,
quasi-periodic case, x/D = 5, Ω = 0.9
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Figure 4.19: Local state error vs. spanwise location and time, for shear flow, lock-on
case, x/D = 5, Ω = 1.0

93



Temporal variation of RMS error

The root mean square (RMS) value of the state error, ‖en‖, defined in (3.29), is used

as another quantitative measure of estimation. The efficiency of the neural network

based self-learning CML is summarized for all the cases in Figure 4.20. The steady

state values of ‖en‖ for the uniform flow, lock-on, near wake cases x/D = 0.5, 1,

uniform flow, quasi-periodic case and the shear flow case are lower for the neural

network based self-learning CML compared to the MVLS based self-learning CML

(Figure 4.20). For the other cases, the estimation of the two self-learning CML models

are comparable.
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Figure 4.20: Time evolution of the root-mean-square of the state error, ‖en‖, for the
self-learning CML.
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Chapter 5

Off-line estimation of laboratory

wake flows

We have seen that the self-learning CML models based on the MVLS algorithm and

on neural networks are quite successful in predicting NEKTAR wake patterns. The

NEKTAR simulation study was a proof-of-concept type study to validate the appli-

cation of the self-learning CML models to estimate wake flow patterns. Therefore, in

this chapter we seek to logically extend these estimation techniques to different flow

situations in a laboratory wind tunnel. Estimation of experimental wake flow pat-

terns is a pre-requisite to the future goal of development of a low-order self-learning

CML model for observer based feedback control of wake patterns. The current focus,

however, is the study of various configurations that generate different types of target

wake patterns. These target wake patterns are then used for off-line estimation using

the self-learning CML models developed in Chapters 3 and 4.

In the off-line estimation technique, the model building exercise need not keep

up with the information flow. In other words, parameters related to time such as

sampling interval, characteristic times (time period of vortex shedding in our case)

are not considered as speed of estimation is not important. This technique is op-

posed to the on-line estimation method where the computation of the model must be

done in such a way that the processing of the measurements from one sample can,
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with certainty, be completed during one sampling interval. Identification techniques

that comply with the on-line requirement are called recursive identification methods,

since the measured input-output data are processed recursively (sequentially) as they

become available. The techniques developed in Chapters 3 and 4 are also recursive

methods, but since the on-line computational requirements are not addressed, we

have instead used the term, adaptive estimation method. Later, the results from off-

line estimation of wake flow patterns will be used to study the feasibility of on-line

estimation in future anticipated studies.

The cross power spectrum method of generation of target wake patterns discussed

in Chapter 3 is applied to streamwise velocities measured in the wake. First, the

experimental facilities are discussed. Then, the details of the experimental setup

are provided. Finally the results of estimation of different target patterns using the

self-learning CML models are discussed.

5.1 Experimental facilities and Instrumentation

The experiments were carried out in the WPI AEROLAB low turbulence, low speed,

open circuit wind tunnel. A nine blade axial fan, powered by a 180 volt DC, at 9.5

Amps, variable speed motor (maximum of 1750 rpm), is used to create the flow field

with airspeed ranges of 0 to 80 mph. The air flows through a 131 x 134 cm honey

comb intake, with 0.7 cm cells, through a contraction ratio of 16:1 and into a test

section with a cross sectional area of 12 x 12 inch of 45 inches length.

An array of eight hot-wire sensors was used in conjunction with an 8 channel

constant temperature anemometry system IFA 300 from TSI. This system consists of

a bridge and an amplifier circuit used to control the hot-wire sensors. The output of

the IFA 300 system is an analog voltage proportional to fluid velocity. It is fed to an

United Electronic Industries WIN30 Analog to Digital data acquisition card, which

has a maximum data throughput rate of 1 MHz. The A/D card is inserted into a

PC running MS Windows 2000. The TSI ThermalPro software, version 2.20 is used
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for data acquisition. Communication between the acquisition software and the IFA

cabinet is established using an RS-232C digital interface.

5.2 Experimental setup

An array of 8 TSI hot-wire probes, equally spaced along the spanwise direction were

used for measuring the streamwise wake velocities. The experimental setup is shown

in Figure 5.1. The probe supports were angled at 45 degrees in order to cause minimal

obstruction to the flow. All the 8 probes were held at the same x/D = 1.9, y/D = 1.22

location. The uniform distance between adjacent probes was kept at 1 1
16

inches. The

diameter of the cylinder was chosen as 0.125 inches. This resulted in freestream

Reynolds numbers in the range of Re = 100, a range which is applicable for self-

learning CML models.

We discuss estimation of 3 different flow structures. First, we estimate rigid-

periodic patterns obtained in the wake of a rigid cylinder. Second, we estimate oblique

shedding patterns in the wake of a rigid cylinder with endplates. Two discs, each of

diameter 2.5 inches with a 0.125 inch hole for the cylinder, were placed close to the

tunnel walls. The angle of the discs was suitably varied to obtain the oblique shedding

patterns. Third, we estimate a mix of the rigid-periodic and oblique shedding wake

patterns in the near wake of a cylinder with end discs.

5.3 Results: Rigid-periodic case

In the first experiment, we consider estimation of periodic patterns in the wake of

a rigid stationary cylinder in uniform freestream flow with velocity, U∞ = 0.75m/s.

Taking the kinematic viscosity for air at a temperature of 20◦C, ν = 14.9×10−6m2/s,

resulted in Re = 160, which is in the laminar vortex shedding range. Once the

freestream flow was stabilized, the wake velocity traces were recorded for 1.6384

seconds at a sampling rate 10,000 Hz (sampling period of 0.0001 seconds), see Fig-
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Figure 5.1: Diagram of the experimental setup for velocity measurement.

ure 5.2. The hot-wire signals are mostly periodic, with occasional vortex dislocations

(see for example, the fifth and sixth shedding cycles for the third probe, z/D = 31).

Abrupt changes in amplitude of the local wake velocities are observed at z/D = 31

and z/D = 73.5 respectively. These features are suggestive of vortex dislocations in

the wake. We will attempt to identify these dislocations in observed wake patterns.

Power spectra for these velocity traces are shown in Figure 5.3. Peaks in the velocity

spectrum are detected at the local shedding frequencies, ranging from 44 Hz to 46

Hz. This resulted in a Strouhal number, St = fsoD/U∞ = 0.184, based on the data

from the first probe. We use the first probe as reference for the extraction of vortex

shedding phase angles from cross-power spectrum as discussed previously for analysis

of NEKTAR data.

5.3.1 Self-learning CML based on MVLS algorithm

In this section, we study the effectiveness of the MVLS algorithm based self-learning

CML in estimating periodic patterns from laboratory cylinder wake flows. We will

first discuss the input parameters used for the estimation model ((3.1), (3.6), (3.10)).
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Figure 5.2: Streamwise wake velocity measured using the hot-wire probes.
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The input weighting matrices, P0 and R are diagonal matrices with constant entries

P0 and R respectively. As stated previously, the relevant parameter in the estimation

study, P0/R, was optimized at 0.001. A random initial guess, with random entries

from a uniform distribution in the interval (0.0, 1.0), was used for the vortex shedding

phase angle, X̂1
k . The initial guess for the spanwise velocity distribution was uniformly

set to zero. In Figure 5.4, we show estimation of wake patterns for 31 ≤ n ≤ 38.

The periodic wake patterns are estimated with very high accuracy using the MVLS

algorithm. The vortex cores in the mid-span are estimated with good accuracy for

many shedding cycles. Any deviations from the state, X2
n, are reduced subsequently

using the algorithm. The vortex shedding phase angles, Xk
n, X̂

k
n, used to plot the

target and estimated wake patterns, are shown in Figure 5.5. The spatio-temporal

evolution of the vortex shedding phase angles, Xk
n, is highly complex. There is no

sustained periodicity in the phase angle distribution for n ≤ 23. The evolution of

these transient states is highly complex. However, the MVLS algorithm proves to be

highly efficient in estimating these transient states. There are some local errors in

estimation, (n = 5, 6, z/D = 27 and n = 47, z/D = 83), coinciding with formation

of vortex dislocations. However, these local errors are subsequently reduced with

adaptation.

The state error is used to quantify the accuracy of the estimation. The spatio-

temporal evolution of the state error shown in Figure 5.6 provides a quantitative

summary of the estimation procedure. We can see spikes in the local state error

in the initial stages of estimation, n = 5, 6, 16 to 24. However, they quickly settle

down values in the range of (−0.1, 0.1). We believe that the large initial values of

the state error are due to transient effects. After an interval of periodic patterns,

25 ≤ n ≤ 40, efficiently estimated by the MVLS algorithm, further transient effects

are seen. However, with progress in the adaptation, these effects are accurately

captured. This results in low values of the state error.

We next compare the initial state error, ek
1, with the state error for n=10, ek

10 in

Figure 5.7. The initial state error is large because of the random initial guess for the
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Figure 5.4: MVLS algorithm based estimation of experimental wake patterns for
uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.5: Temporal evolution of vortex shedding phase angles for uniform flow over
rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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self-learning CML. In comparison, low values of ek
10, in the range of (−0.1, 0.1) are

obtained.
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Figure 5.6: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0

1 2 3 4 5 6 7 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

k

e 1k ,e
10k

e
1
k

e
10
k

Figure 5.7: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
0.0

5.3.2 Self-learning CML based on Neural Networks

We will now use the neural network based self-learning CML model developed in

Chapter 4 to estimate periodic patterns from experimental cylinder wake flows. In
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this manner we can compare the efficiencies of the two self-learning CML models.

The input parameters for the neural network based estimation are first summa-

rized. Radial basis functions are used to represent the neural networks as they were

quite successful in the proof-of-concept study in Chapter 4. Nine radial basis func-

tions (i.e. p = 9) were found to be optimal for this study. The acceleration parameter,

γ0, was varied in its stable range of 0 to 2 and an optimal value of γ0 = 1.5 was ob-

tained. The parameter β0 was set to 0.001. Zero initial conditions were used for the

vortex shedding phase angle distribution, X̂k
1 , and the distribution of neural network

weights, Q̂k
1. The input parameters derived from the wake flow, such as the Re, St

etc. remain unaltered for this comparative study.

The estimation of rigid-periodic wake patterns, 31 ≤ n ≤ 38, is first shown

in Figure 5.8. It is observed that the neural network model is highly efficient in

predicting these patterns. However, comparison with Figure 5.4 reveals no significant

differences in the efficiency of estimation of the two self-learning CML models.

−5 0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

n=31 n=32 n=33 n=34 n=35 n=36 n=37 n=38 

FLOW 

x/D 

k 

Figure 5.8: Neural Networks based estimation of experimental wake patterns for
uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0

103



A summary of the estimation of vortex shedding phase angles is shown in Fig-

ure 5.9. Most of the initial transient states, 1 ≤ n ≤ 8, are accurately estimated.

Then the wake becomes highly complex in the range 9 ≤ n ≤ 24, due to the forma-

tion of vortex dislocations. These states are not predicted accurately by the neural

network model. However, in the range 25 ≤ n ≤ 40, the wake becomes organized

and rigid-periodic patterns are accurately predicted by the neural network based self-

learning CML. This range is followed by a second sequence of complex states. The

neural network model is found to be more efficient in estimating the second sequence

of transients in the range 49 ≤ n ≤ 58. In summary, the MVLS algorithm based

self-learning CML is found to be better at predicting the wake patterns considered.
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Figure 5.9: Temporal evolution of vortex shedding phase angles for uniform flow over
rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0

A three-dimensional plot of the state error for the neural network estimation is

shown in Figure 5.10. As discussed above, large local errors (|ek
n| ≈ 0.2) are occa-

sionally obtained in the non-periodic range. However, the neural network adaptation

ensures that these errors do not grow unbounded. Although the neural network based

self-learning CML is proven to be a stable adaptive estimation scheme, the occurrence
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of transient states ensures that the state errors do not converge exponentially to zero.

In Figure 5.11 we show that the state error after long time adaptation, say ek
50, is

negligible compared to the large initial error.
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Figure 5.10: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0

5.4 Results: Oblique shedding

We will now discuss the estimation of oblique shedding patterns in the wake of a rigid

stationary cylinder fixed with endplates. Two end discs, each of 2.5 cm diameter,

were placed at the ends of the cylinder, close to the tunnel walls. The discs were

angled at 14 degrees with respect to the cylinder axis as shown in Figure 5.14. A

uniform freestream velocity, U∞ = 0.77m/sec was used for this experiment, resulting

in Re = 162. The streamwise wake velocities measured by the 8 hot-wire probes

are shown in Figure 5.22. The velocity spectrum in Figure 5.13 shows sharper peaks

from the rigid-periodic case. The shedding frequency (fs = 44.5Hz) and hence the

Strouhal number (St = 0.184) are constant throughout the span. The measured

velocities are highly periodic and as we will see later, spanwise differences occur only

in the form a phase shift resulting in oblique shedding patterns in this case.
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Figure 5.11: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
0.0
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Figure 5.12: Streamwise wake velocity measured using the hot-wire probes.
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Figure 5.13: Absolute value of the velocity spectrum.

5.4.1 Self-learning CML based on MVLS algorithm

The optimal input parameters for the MLVS algorithm based self-learning CML model

remain unchanged from the previous experiment. We use wake patterns 31 to 38

to illustrate the progress of estimation in Figure 5.14. One can clearly see wake

patterns shed at an oblique angle with respect to a line drawn parallel to the cylinder

axis. Since these patterns are highly periodic, we find that the estimation is highly

efficient. The target and estimated vortex shedding phase angles, Xk
n and X̂k

n, plotted

in Figure 5.15 are almost identical. Therefore, the three-dimensional plot of the state

error in Figure 5.16 is highly flat with very minimal deviations from the origin. The

state error after 10 shedding cycles, ek
10 in Figure 5.17 is of the order of 10−2.
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Figure 5.14: MVLS algorithm based estimation of experimental wake patterns for
uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.15: Temporal evolution of vortex shedding phase angles for uniform flow
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Figure 5.16: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.17: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
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5.4.2 Self-learning CML based on Neural Networks

The neural network based self-learning CML is now used to estimate the oblique

shedding patterns. The acceleration parameter is found to be optimal at γ0 = 1.9.

All the other input parameters and the type of neural network used remain un-

changed from the previous section. Observation of wake patterns in Figure 5.18 shows

that the neural network based self-learning CML is also highly efficient in predict-

ing oblique shedding patterns. Since the vortex shedding phase angles differ from the

wake patterns only by a streamwise linear transformation, the efficiency of estimation

is equally reflected in the plot of vortex shedding phase angles in Figure 5.19. The

three-dimensional plot of state error in Figure 5.20 shows exponential convergence to

zero starting from a high value. The magnitude of state error is higher when com-

pared with the MVLS algorithm based estimation. The state error after 10 shedding

cycles, ek
10 in Figure 5.21 is of the order of 10−2. In summary, both the self-learning

CML models are highly efficient in predicting oblique shedding patterns from wake

experiments.

5.5 Results: Mixed type

In the third experiment the flow conditions and the orientation of the endplates are

unaltered. However, the position of the endplates along the axis of the cylinder was

altered from the second experiment by a distance of approximately 8D. This resulted

in wake patterns that are classified here as a mix of the rigid-periodic and oblique

shedding patterns discussed previously. The freestream velocity U∞ = 0.76m/sec

giving rise to Re = 160. The streamwise wake velocities plotted in Figure 5.22 are

highly periodic. Vortex dislocations are identified from the eighth wake velocity trace,

between t = 0.6sec and t = 0.8 sec. Power spectra for the velocity traces are shown in

Figure 5.23. Since the Reynolds number for all the experiments (≈ 160) are almost

the same, the Strouhal frequencies, fso = 44Hz, observed in Figure 5.23 are also

nearly the same as observed in the first two experiments. However, the position of
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Figure 5.18: Neural network based estimation of experimental wake patterns for
uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.19: Temporal evolution of vortex shedding phase angles for uniform flow
over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.20: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.21: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
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the endplates along the cylinder affects the pattern of shedding in the wake. We

will now discuss the estimation of wake patterns from this experiment using the two

self-learning CML models.
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Figure 5.22: Streamwise wake velocity measured using the hot-wire probes.

5.5.1 Self-learning CML based on MVLS algorithm

We have seen previously that the MVLS algorithm is quite successful in estimating

wake patterns from experiments. The input parameters for the self-learning CML

model for the current experiment are unchanged from the previous two experiments.

The estimation of wake patterns, 31 ≤ n ≤ 38, are shown in Figure 5.24. The vortex

dislocations observed by the eighth probe highlighted in Figure 5.22, are also seen

for n = 31 to n = 32 in Figure 5.24. These vortex dislocations occur intermittently

without any periodicity and are therefore very difficult to estimate. However, the

self-learning CML model proves to be quite successful in estimating these complex

wake structures. One can observe that wake patterns are shed at an oblique angle to

an axis parallel to the cylinder axis for one half of the cylinder span. These patterns
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Figure 5.23: Absolute value of the velocity spectrum.

are similar to the ones observed in the second experiment. In the other half of the

span, rigid periodic patterns similar to the ones observed in the first experiment, and

occasional vortex dislocations are observed. The self-learning CML model accurately

estimates these oblique and rigid-periodic wake patterns and their transition along

the span.

In Figure 5.25, the vortex shedding phase angle distributions, Xk
n, X̂

k
n are shown

for n = 1 to n = 59. An initial random distribution of phase angles, X̂k
1 is used

for the estimation model. Both transient and steady states are accurately estimated.

The only instance of incorrect estimation is found for n = 41, 42, coinciding with the

second formation of vortex dislocations. However, even these highly complex transient

wake structures are estimated within a couple of shedding cycles. In Figure 5.26, a

three-dimensional plot of the state error, ek
n = X̂k

n−Xk
n is shown, giving a quantitative

summary of the accuracy of the self-learning CML model. A single spike in the state

error is observed near n = 41 showing the only instance of incorrect estimation.
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Otherwise, the magnitude of state error was of the order of 0.01. A comparison of ek
1

versus ek
10 in Figure 5.27 shows two orders of magnitude improvement in estimation

from the initial state.
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Figure 5.24: MVLS algorithm based estimation of experimental wake patterns for
uniform flow over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0

5.5.2 Self-learning CML based on Neural Networks

We will now consider neural networks for the estimation of the “mixed type” of

patterns. All input parameters except the acceleration parameter (optimal β0 = 1.9

here) are the same as considered for the second experiment. In Figure 5.28, we

plot wake patterns, 31 ≤ n ≤ 38, in order to highlight the formation of vortex

dislocations. Both the oblique shedding patterns and the rigid-periodic patterns are

estimated accurately by the neural network model. The model is also quite successful

in estimating the formation of vortex dislocations. Comparison of the estimation

of the neural network based self-learning CML and the MLVS algorithm based self-

learning CML (see Figure 5.24) shows that the latter is slightly more accurate in
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Figure 5.25: Temporal evolution of vortex shedding phase angles for uniform flow
over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.26: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.27: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
0.0

predicting the “mixed type” of patterns.

The temporal evolution of the vortex shedding phase angles, Xk
n, X̂

k
n, is shown in

Figure 5.29. An initial guess, X̂k
1 = 0, is used for the neural network model. The

“mixed-type” of shedding is estimated within a single shedding cycle. As discussed

previously for the MVLS algorithm based self-learning CML, the only instance of

incorrect estimation by the neural network model is obtained for the second instance

of vortex dislocations near n = 40. However, even these highly complex wake struc-

tures are estimated within two shedding cycles. We will now present a quantitative

summary of the neural network estimation in Figure 5.30. Here, the state error is

of the order of 0.01 barring the spike near the second vortex dislocation. Finally, in

Figure 5.31 the local distribution of the state error for n = 10, ek
10, shows two orders

of magnitude improvement in accuracy from the initial estimate.

This study completes a summary of the use of two different self-learning CML

models for off-line estimation of wake patterns from experimental wake flows.
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Figure 5.29: Temporal evolution of vortex shedding phase angles for uniform flow
over rigid cylinder, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.30: 3-d plot of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko = 0.0
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Figure 5.31: Temporal variation of state error, x/D = 1.9, y/D = 1.2,Ω = 1.0, Ko =
0.0
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Chapter 6

Control Methodology

In Chapters 2-4, we have established that self-learning CML models can efficiently

estimate target wake patterns from numerical simulations and experiments. But for

an eventual wake control system, control terms must be added to the CML models to

provide feedback control signals to the scheme. In this chapter, we explore different

methods of control of the simple CML model in order to achieve desired wake patterns.

The control of wake patterns has both fundamental and practical consequences. It

is often possible to obtain a fundamental understanding of fluid dynamic mechanisms

at work when a control method is applied. On the practical side, control of wake

patterns behind bluff bodies can lead to drag and noise reduction, or altered cable-

wake coupling (and hence vibration amplitude) in the case of a flexible cable.

The control of three-dimensional wake patterns in the wake of circular cylinders

has been an area of recent focus in experimental work (Williamson, (1989), Hammache

and Gharib, (1991)). As in the present work, the goal has often been to modify the

complex wake pattern to achieve a vortex shedding pattern oriented in parallel with

the cylinder axis.

Numerical studies on vortex shedding suppression based on rigorous control the-

ories are limited due to the complexity of the Navier- Stokes equation. In a recent

numerical study, Protas and Styczek (2002) used optimal rotary control of the 2-

D cylinder wake at low Reynolds numbers, Re = 75, 100, to obtain 7% and 15%
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reduction in drag respectively.

Recently, there is an increased interest in the development of control algorithms

for simple models of wake flows. Aamo and Krstic (2003) developed a backstepping

control method for a semi-discretized Ginzburg-Landau model of vortex shedding.

Specific to the present work, addition of control terms into the coupled map lattice

constitutes a first step toward use of the CML models in flow control applications for

wake flows. The eventual goal is to run the highly efficient CML models with added

control terms in parallel with a laboratory wake experiment in which a flexible cable

is induced to vibration by an oncoming freestream flow. The primary variable in the

CML, the phase of vortex shedding, can be sensed in an experiment through standard

hot-film velocity measurement techniques (Davis et al., 2003). As a result, the coupled

map lattice studied in this work could model the wake flow in a feedback control

system designed to produce desired wake patterns behind the vibrating cable. The

present study does not yet address certain practical control issues, such as the method

of control actuation for wake forcing, but instead focuses solely on the dynamics of

the new coupled map lattice models.

The control of complex behaviors derived from low-dimensional dynamical sys-

tems has also been a topic of interest in recent years. For example, “chaos control”

techniques first proposed by Ott et al. (1990) use occasional proportional logic to

stabilize unstable periodic orbits of a chaotic attractor. While the control of unpre-

dictable, chaotic systems seems counter-intuitive at first, the fact that chaotic systems

exhibit sensitive dependence on initial conditions means that small amplitude control

inputs can have a substantial effect on final system states. Sinha and Gupte (1998)

investigated two-dimensional coupled map lattices and targeted spatio-temporal pat-

terns using adaptive control techniques. Several investigators (Singer et al., 1991,

Wang et al., (1992), Yuen et al., (1999)) have used control strategies motivated by

Ott et al. (1990) that are somewhat similar to the proportional control method ap-

plied in the present work. These investigations focussed on control of chaos in a

thermal convection loop. The desire to explore application of these techniques to the
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vortex shedding process using coupled map lattice models is an additional motivation

for this work. For comparison purposes adaptive proportional control scheme and

discontinuous nonlinear control scheme (Balasubramanian et al., 2002), which will be

described in more detail in subsequent discussion, were also applied.

In this chapter, we discuss certain features in the development of three coupled

map lattice models where control terms are added (Figure 6.1). The first model

is based on occasional proportional control logic and aims to stabilize the unstable

periodic orbits of a chaotic attractor (Ott et al., 1990). The second model uses a

linear adaptive proportional controller with a spatio-temporal feedback gain. The

third model is based on a conditional feedback linearization of the nonlinear coupled

map lattice. The resulting linearized CML is controlled using eigenvalue assignment

(Rugh, 1995). A summary of the control schemes is given below.

Figure 6.1: Schematic of the coupled map lattice with added control terms.
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6.1 Proportional Control

The CML equations (1.7), (1.6) are modified by the addition of a control signal Ck
n

to the forcing term Kk, yielding

f̃k
n = X̂

k

n + Ωk − K̃
k

n sin(ψk
n)/2π, (6.1)

X̂
k

n+1 = (1 − ε) f̃k
n + ε

(
f̃k−1

n + f̃k+1
n

)
, (6.2)

where ψk
n = 2πX̂

k

n − φk
n − π/2, K̃

k

n = Kk + Ck
n. In comparing (6.1) to (1.6), we note

that the phase angle between the vortex shedding event and the cylinder motion, φk
n,

now varies with time since K̃
k

n varies through the Ck
n term. The magnitude of the

control signal

Ck
n = γ

(
X̂

k

n − X
k
)

or Cn = γI
(
X̂n − X

)
, (6.3)

is proportional to the deviation of the system from the target pattern of vortex shed-

ding X
k
. The feedback gain γ is constant in time and space .

6.2 Adaptive Proportional Control

This method represents an extension of the proportional control method. Here, each

entry of the feedback gain Γ̂n is assumed to be different from any other one, and

thus through time adaptation of Γ̂n, the vector Γ̂n =
[
Γ̂1

n, Γ̂
2
n, . . . , Γ̂

k∗

n

]T
represents a

temporally varying vector. Along with (6.1) and (6.2), the following control law is

used:

Cn = H(X̂n)Γ̂n, H(X̂n) = diag
(
f̃n

(
X̂n

))
or

Ck
n = Γ̂k

nf̃
k
n(X̂n).

(6.4)

In order to determine an update law for the feedback gain Γ̂n, we define the state

error X as

Xn+1 = X̂n+1 − X. (6.5)
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Our goal is to drive the state error to zero in the shortest possible time. We use a

multi-variable least squares algorithm to minimize the state error after each timestep.

The following equations illustrate the steps in the derivation of the adaptation scheme

for the feedback gain Γ̂n. The feedback gain can be updated by minimizing the cost

function

Jn(Γ) =
1

2
Γ

T
P−1

0 Γ +
1

2

n∑

j=1

XT
j+1R̃

−1Xj+1,

R̃−1 =
diag (sin(Ψn))R−1diag (sin(Ψn))

4π2 ,

(6.6)

where the dummy variable Γ is used for analysis purposes only in place of Γ̂n. The

parameters P−1
0 and R−1 are diagonal input weighting matrices and can be varied

until optimal values are obtained. The equation

∂

∂Γ
Jn(Γ) = 0 (6.7)

provides iteration for Γ̂n+1 with the adaptation proceeding in the direction of decreas-

ing cost function. Next define

G(X̂n) =
diag(sin(Ψn))H(X̂n)

2π ,

P−1
n =

(
P−1

0 +
n∑

j=1

G(X̂j)
T
R−1G(X̂j)

)
,

=

(
P−1

0 +
n∑

j=1

H(X̂j)
T
R̃−1G(X̂j)

)
.

(6.8)

The feedback gain adaptation law is then given by

Pn = Pn−1 − Pn−1H(X̂n)
T
(
R̃ + H(X̂n)Pn−1H(X̂n)

T
)−1

H(X̂n)Pn−1, (6.9)

Γ̂n+1 = Γ̂n − PnH(X̂n)
T
R̃−1Xn+1, (6.10)

where P−1 = P0 is a known input weighting matrix for the state error X. In addition

to the techniques discussed in this section, we have used standard adaptive control
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techniques (Goodwin and Sin, 1984) including exponential data forgetting, covariance

resetting etc.

6.3 Discontinuous Nonlinear Control

In this method the control law is derived to send the state error to rest, so that, as

Xn→∞ → 0, X̂n→∞ → X. In the case of parallel shedding, X
k

= η,∀ k = 1, 2, . . . , k∗,

where η is a real constant. The modified coupled map lattice is written as

f̃k
n = X̂

k

n + Ωk − K̃
k
sin(ψk

n)/2π, (6.11)

X̂
k

n+1 = (1 − ε) f̃k
n + ε

(
f̃k−1

n + f̃k+1
n

)
, (6.12)

where ψk
n = 2πX̂k

n − φk
n − π/2, K̃

k

n = Kk + Ck
n.

With further manipulation,

Xk
n+1 = (1 − 2ε)

(
Xk

n + uk
n

)
+ ε
(
Xk+1

n + uk+1
n

)
+ ε
(
Xk−1

n + uk−1
n

)
(6.13)

results, where the input term uk
n is related to the forcing term K̃

k

n via uk
n = Ωk −

K̃
k

n sin(ψk
n)/2π. We can now write (6.13) in vector form as Xn+1 = A (Xn + un)

where Xn =
[
X1

n,X
2
n, . . . ,X

k∗

n

]T
, A accounts for the spatial coupling and un =

[
u1

n, u
2
n, . . . , u

k∗

n

]T
. The feedback gain matrix G is designed using a pole placement

(eigenvalue assignment) (Rugh, 1995) technique so that the control input is derived as

un = −GXn and the closed loop system becomes Xn+1 = (A − AG)Xn. The model

uses a conditional feedback linearization procedure, thereby providing for saturation

of the control input using a threshold parameter β. The control input is limited to

a threshold parameter α to ensure that the forcing term after control is limited as
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shown in (6.15).

uk
n =





−sgn
(
GkXn

)
∗ min

(
|GkXn|, α

)
if | sin(ψk

n)| > β

Ωk − 1 if | sin(ψk
n)| ≤ β

, Gk : kth row of G,

(6.14)

K̃
k

n =





−2π
(
uk

n + 1 − Ωk
)
/ sin(ψk

n) if | sin(ψk
n)| > β

0 if | sin(ψk
n)| ≤ β

. (6.15)

The control signal Ck
n which drives the error system to rest is then given by

Ck
n = K̃

k

n − Kk

=





−2π

sin(ψk
n)

(
1 − Ωk − sgn

(
GkXn

)
∗min

(
|GkXn|, α

))
− Kk, | sin(ψk

n)| > β

−Kk, otherwise

·

(6.16)
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6.4 Results- Control of CML model

The case of uniform flow (Re =100) over a cable oscillating transversely (in y − z

plane) to the oncoming flow in standing wave motion is used as the uncontrolled flow

in the CML model. The cable mode shape, L/D = 62 and cable amplitude A/D =

0.68 are matched with the parameters in the numerical simulations of Newman and

Karniadakis (1996). Other input parameters include Ω = 0.99, Ko = 0.1 and k∗ =

41. Further details will be discussed when the wake patterns for this uncontrolled

flow are presented.

In contrast to the other two control methods where energy methods are used to

design optimal feedback gain matrices, the simple nature of the proportional control

method means that the input feedback gain parameter γ, which is spatially and

temporally invariant, must be optimized through a parametric study. The effect

of the variation of the feedback gain parameter is shown in Fig. 6.2. In order to

determine control effectiveness we define an average deviation of the phase of vortex

shedding from the target as

δ =
1

k∗

k∗∑

k=1

|X̂k

nfinal − X| (6.17)

In the range 0.6 < γ < 1.0, δ is small because the wake is controlled, and periodic

patterns similar to the parallel shedding patterns shown in Figure 6.3(b) are obtained.

When γ > 1.0, larger values of δ result because other periodic states away from the

target state are activated. After this optimization study, γ = 0.9 was chosen as the

input feedback gain parameter for all presented results using proportional control.

The input parameters for the adaptive proportional control method are P−1 =

P0 = 0.01Ik∗ ,R = Ik∗ where Ik∗ is the identity matrix of dimension k∗. The main

input parameter for the DNL control method is σmax, the maximum eigenvalue of the

matrix (A−AG). The parameter σmax determines the speed at which convergence to

target state is achieved. The eigenvalues of this matrix are distributed randomly in the
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Figure 6.2: Optimization of the feedback gain parameter used in the proportional
control signal. Control effectiveness, δ, is defined as the steady state mean deviation
of the phase of vortex shedding from the target in (6.16).

circle with radius σmax from 0 to σmax. The parameter σmax lies inside the unit circle of

the complex plane. Other input parameters used in the DNL control methods include

σmax= 0.9, β= 0.1, α= 0.006. A comparative study of vortex shedding patterns, local

dynamics, global dynamics and cable dynamics after application of the three different

control methods follows.

6.5 Vortex shedding patterns

The uncontrolled flow case discussed earlier in this section results in vortex dislo-

cations near the cable vibration nodes (Figure 6.3(a)). Vortex shedding patterns

from one shear layer are shown. The patterns are viewed by an observer looking in

the transverse (y) direction observing the x-z plane (see Figure 1.6). The cable and

freestream flow direction (bottom to top) are included to orient the reader. The goal

of the control schemes will be to steer the complex wake system to realize ordered,

parallel patterns of vortex shedding. It has been shown by Olinger (1998) that paral-

lel (2-D) vortex shedding patterns are predicted by the CML when a rigid cylinder is

forced to oscillate in the 1/1 lock-on region (see Figure 6.3(b)). This vortex shedding

128



pattern serves as the target state (X
k

= η = 0.9) for the control studies.
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Figure 6.3: (a) Uncontrolled wake pattern showing vortex dislocations, uniform flow,
Ω=0.99, Ko=0.1. (b) Parallel shedding patterns used as target state X = η = 0.9.
Rigid cylinder in uniform flow, Ω = 0.95,Kk = 0.9 (within the lock-on region).

In Figure 6.4(a) proportional control techniques are applied to the uncontrolled

flow. Complex wake structures such as the vortex dislocations in Figure 6.3(a) are

eliminated and periodic patterns similar to the targeted parallel shedding patterns

result after proportional control is activated. The shedding patterns are not precisely

parallel but instead resemble the lace-like structures identified by Newman and Kar-

niadakis (1996). We believe this is due to the absence of a spanwise varying feedback

gain for proportional control. The application of adaptive proportional control or

DNL control seeks to correct this situation.
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We have achieved the desired parallel shedding patterns using adaptive propor-

tional control as shown in Figure 6.4(b). When the DNL control signal is activated

ordered parallel vortex shedding patterns (Figure 6.4(c)) are achieved. It will be

shown in later sections that there is an improvement in targeting accuracy for the

DNL method over the proportional control method, and in targeting speed over the

adaptive proportional control method.
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Figure 6.4: (a) Lace-like vortex shedding pattern after proportional control is
activated. Ω=0.99, Ko=0.1, k∗=41, L/D=62, Re=100, Uc/U∞=0.88, ε=0.0247,
A/D=0.68 at antinode, γ = 0.9. (b) Parallel (2-D) vortex shedding patterns af-
ter adaptive proportional control is activated. Ω=0.99, Ko=0.1, k∗=41, L/D=62,
Re=100, Uc/U∞=0.88, ε=0.0247, A/D = 0.68 at antinode, Po=0.01I, R=I. (c) Par-
allel (2-D) vortex shedding patterns targeted after DNL control is activated. Ω=0.99,
Ko=0.1, k∗=41, L/D=62, Re=100, Uc/U∞=0.88, ε=0.0247, A/D=0.68 at antinode,
η=0.5, σmax=0.9, β=0.1, α=0.006. Freestream flow direction is from bottom to top
for all vortex shedding patterns presented in this paper.
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6.6 Local dynamics

The temporal dynamics of a wake can be clearly represented by the successive iterates

of the phase of the vortex shedding event at a particular spanwise location, X̂
k

n. In

Figure 6.5(a) we plot the variable X̂
15

n in case of proportional control, corresponding

to a point near the cable midspan i.e. z/D=21.7 and k = 15. The variable X̂
15

n

for the uncontrolled wake (0 < n < 600) exhibits chaotic dynamics with a positive

Lyapunov exponent = 0.118 ± 0.044 (Sprott, 1992). The proportional control signal

is activated at n = 600. After approximately fifty iterates of the map, X̂
15

n reaches

a steady state value,X̂
15

nfinal= 0.3266 consistent with the periodic shedding pattern

of Figure 6.4(a). We note that this steady state value varies significantly from the

target state X
k

= η = 0.9.

The same variable, X̂
15

n is then studied using the adaptive proportional control

method (Figure 6.5(b)). The adaptive proportional control signal is again activated

at n = 600. After approximately one hundred iterations of the map, X̂
k

n reaches

the target state, X
k

= η = 0.9, within 1% accuracy. This result is consistent with

the parallel shedding observed in Figure 6.4(b). The phase dynamics of a spanwise

oscillator, X̂
15

n before and after DNL control activation is studied in Figure 6.5(c).

The variable X̂
15

n reaches the target state of X
k

= η = 0.9 within a few shedding

cycles of control activation. There is an improvement in targeting accuracy over

the proportional control method and also an improvement in targeting speed and

accuracy over the adaptive proportional control method.

The temporal variation of the proportional control signal, Ck
n, at the same spanwise

location is shown in Figure 6.6(a) and compared with the adaptive proportional con-

trol signal and the DNL control signal in Figure 6.6(b) and Figure 6.6(c) respectively.

The magnitude of the adaptive proportional control signal at this spatial location

C15
n ( Figure 6.6(b)) is less than the required proportional control signal for the same

spatial location. The DNL control signal shows an initial spike (Figure 6.6(c)) with

the signal magnitude larger than the corresponding adaptive proportional control sig-
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Figure 6.5: Temporal variation of the phase of vortex shedding X̂
15

n at k=15,
z/D=21.7. Control turned on at n=600. (a) Proportional control, (b) adaptive pro-
portional control and (c) DNL control.
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nal values, but the control signal quickly settles down to a lower constant value once

targeting is achieved.
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Figure 6.6: Temporal variation of the control signal C15
n at k=15, z/D=21.7. (a)

Proportional control, (b) adaptive proportional control and (c) DNL control.

6.7 Global dynamics

The local dynamics has highlighted certain features of the control schemes, however

study of the behavior of all k∗ oscillators (i.e. the global dynamics) will yield further

insight. The targeting accuracy over the spatial domain is studied using the spatial
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norm of the phase of the vortex shedding event, ‖X̂n‖, defined as

‖X̂n‖ =

√√√√ 1

k∗

k=k∗∑

k=1

(X̂
k

n)2 (6.18)

This variable is studied in Figure 6.7(a) for the proportional control case. The variable

‖X̂n‖ reaches a steady state value, ‖X̂nfinal‖ = 0.2489 within a few iterations of

control activation. Here nfinal = 3000. This value is different from X̂
k

nfinal = 0.3266

(see Figure 6.5(a)), further proving that ordered but not parallel shedding patterns

are achieved with the proportional control method. After the adaptive proportional

control signal is activated at n = 600, ‖X̂n‖ reaches the target state, X = η = 0.9

(Figure 6.7(b)), after a few hundred map iterations. In case of DNL control, the global

variable, ‖X̂n‖, reaches the exact value of X = η = 0.9 in Figure 6.7(c). These results

again indicate that precisely parallel shedding patterns are targeted once control is

turned on for these two control cases.

The temporal variation of the spatial norm of the error system variable, ‖Xn‖, for

the case of proportional control is studied in Figure 6.8(a). The global variable, ‖Xn‖,

reaches a constant non-zero value indicating that ordered shedding patterns deviat-

ing from the targeted parallel shedding patterns are obtained using the proportional

control method. The same variable is driven to zero when adaptive proportional

control (Figure 6.8(b)) is activated. In case of DNL control (Figure 6.8(c)) the spa-

tial norm of the error system variable, ‖Xn‖ is again driven to zero after control is

applied, once again confirming the resulting parallel shedding patterns. A dramatic

improvement in targeting speed is shown for the DNL technique compared to the

adaptive proportional method. The DNL technique achieves control within approxi-

mately 100 iterations while the adaptive proportional method requires approximately

1400 iterations.

The spatial norm of the control signal at each timestep, ‖Cn‖, represents the

energy input used to drive the system to a desired target state. This variable reaches

a constant value of 0.3355 in Figure 6.9(a) for the case of proportional control. The
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Figure 6.7: Temporal variation of the norm of the system variable ‖X̂n‖ at k=15,
z/D=21.7. (a) Proportional control, (b) adaptive proportional control and (c) DNL
control.
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Figure 6.8: Temporal variation of the norm of the error system variable ‖Xn‖ at
k=15, z/D=21.7. (a) Proportional control, (b) adaptive proportional control and (c)
DNL control.
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spatial norm of the adaptive proportional control signal ‖Xn‖ reaches a value of

0.2146 in Figure 6.9(b), 36% less than the value obtained for the proportional control

method. The temporal variation of the norm of the control signal, ‖Cn‖, near n

=600 in Figure 6.9(c) shows the complexity of the DNL control logic. The steady

state magnitude of the norm of the control signal, ‖Cnfinal‖, was found to be lowest for

the DNL logic with a value of 0.0987 (from Figure 6.9(c)). This value is comparable

to the amplitude of Ko.
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Figure 6.9: Temporal variation of the norm of control signal‖Cn‖ at k=15, z/D=21.7.
(a) Proportional control, (b) adaptive proportional control and (c) DNL control.
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6.8 Cable dynamics

The previous results have focused on local and global wake dynamics. In this section

the cable dynamics are addressed. In Figure 6.10(a) the spatial variation (along the

cable span) of the steady state control signal, Ck
nfinal, is studied. For the three control

methods, a sinusoidal variation in the magnitude of the control signal along the cable

span in observed. In Figure 6.10(b) the parameter K̃
k

nfinal = Kk + Ck
nfinal, which is

analogous to the steady state cable displacement, is presented. Addition of the control

signal to the input Kk term results in a constant cable displacement amplitude along

the cable span for the adaptive proportional and DNL methods. This implies that

the cable oscillates as a rigid cylinder after control is applied. However, a variation

in cable displacement along the cable span occurs for the proportional control case.

These findings are consistent with earlier results. The adaptive proportional and

DNL methods yielded parallel vortex shedding patterns after the control signal was

applied as would be expected for flow over a rigid cylinder. The proportional control

method yielded periodic, but lace-like, patterns consistent with a variation in cable

displacement along the cable span.

To this point the presented results have focused on control for a single flow condi-

tion detailed in Figure 6.3. In order to prove the effectiveness of the control techniques

over a wider range of flow conditions, a series of model runs varying the frequency

ratio Ω and amplitude Ko (Ω = 0.99,Ko = 0.1; Ω = 0.98,Ko = 0.2 for example) were

studied. These values placed the system dynamics just outside of the lock-on region

shown in the amplitude- frequency diagram of Figure 6.11 in order to obtain complex

wake structures out of the uncontrolled coupled map lattice. The resulting cable dis-

placement K̃
k

nfinal is plotted against the frequency ratio Ω in the amplitude-frequency

diagram of Figure 6.11. A range of values must be plotted for the proportional control

case due to the previously discussed variation in cable displacement amplitude for this

case (see Figure 6.10(b)). Single data points suffice for the adaptive proportional and

DNL cases due to the constant cable displacement for these cases in Figure 6.10(b).

138



0 20 40 60
−0.5 

−0.25

0    

0.25 

0.5  

0.75 

Spanwise Distance z/D

C
nfinal

Proportional Control
Adaptive Proportional Control
DNL

0 20 40 60
−0.5 

−0.25

0    

0.25 

0.5  

0.75 

Spanwise Distance z/D

K
nfinal

Proportional Control
Adaptive Proportional Control
DNL

~ 

Figure 6.10: (a) Steady state spanwise variation of the control signal, Cnfinal. Pro-
portional control (dashed line), adaptive proportional control (dotted line) and DNL

control (solid line). (b) Steady state cable displacement K̃
k

nfinal after control. Pro-
portional control (dashed line), adaptive proportional control (dotted line) and DNL
control (solid line)
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The solid lines in Figure 6.11 denote the boundary of the 1/1 lock-on region for

the temporal circle map in (1.1). It is observed that all three control methods achieve

the targeted state by forcing the system into the periodic 1/1 lock-on region of the

circle map. The efficiency of the DNL method is highlighted in Figure 6.11. The DNL

method incorporates the minimum control signal necessary to drive the system just

beyond the boundary of the lock-on region. The other two control methods require

larger amplitude control signals that drive the system further into the lock-on region.

The largest cable amplitudes are required for the proportional control case consistent

with Figure 6.9. Thus, the dynamics of the controlled system can be interpreted from

a dynamical systems perspective by correlating the control signal with the behavior

of the temporal circle map.
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Figure 6.11: Circle map lock-on region showing constant spanwise cable oscillation
amplitudes after adaptive proportional (squares) and DNL control activation (cir-
cles), and the cable oscillation amplitude range after proportional control (inverted

triangles) activation. The cable amplitude after control, K̃
k

nfinal, is driven into the
lock-on region consistent with periodic shedding behavior.
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6.9 Conclusions

Control terms have been added to a previously developed coupled map lattice (Olinger,

1998). Complex three dimensional vortex shedding patterns predicted by the coupled

map lattice, such as vortex dislocations were controlled, and ordered, parallel (2-D)

vortex shedding patterns and lace-like patterns were established. Three different con-

trol schemes were applied to the coupled map lattice model. The resulting models can

be used to compare the control effectiveness of different control schemes. The model

based on nonlinear control theory was most effective in controlling the complex wake

and targeting parallel shedding patterns predicted by the coupled map lattice. The

DNL technique required lower control signal amplitudes than the other two control

techniques. The adaptive proportional control method was also effective in controlling

the complex wake and targeting parallel shedding patterns. However, this method

required larger control signals and longer targeting times to achieve control. A pro-

portional control method was also used to control complex wake structures predicted

by the coupled map lattice. However, in this case only periodic lace-like patterns

were achieved after control. This limitation of the proportional control method was

overcome by designing a spatially (and temporally) adaptive feedback gain matrix

for the other two control methods. Finally, the wake structures were correlated to

the classical lock-on behavior of the standard circle map using our dynamical systems

approach. As discussed earlier, the coupled map lattice models developed are suitable

for real-time implementation in future wake experiments with further development.

This implementation will be aided by the efficiency of the coupled map lattice models.

The CML models require 10−2 wall clock seconds per shedding cycle on a Pentium

PC, while the numerical simulation of Newman and Karniadakis (1996), for exam-

ple, requires approximately 104 wall clock seconds per shedding cycle on an IBM

supercomputer for the same flow.
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Chapter 7

Summary, conclusions and future

work

A new class of low-order coupled map lattice (CML) models with self-learning fea-

tures has been developed to estimate wake patterns behind vibrating flexible cables.

The self-learning CML models were used to successfully estimate wake patterns from

NEKTAR numerical simulations of cylinder wake flows in initial proof-of-concept type

studies. Finally, these highly efficient self-learning CML models were applied off-line

to estimate wake patterns obtained from laboratory cylinder wake flows. The success

of these self-learning CML models means that they could serve as highly efficient

flow models in future flow control studies where we would seek to alter the wake to

a desired flow pattern. In pursuit of this eventual goal, control terms were added to

the basic CML model and desired wake patterns were targeted.

The starting point for this thesis was the basic CML model of Olinger (1998).

This model used a series of coupled circle map oscillators along the cylinder span to

model vortex shedding patterns in the wake of forced flexible cables. The motivation

for the basic CML model was due to the earlier success of Olinger and Sreenivasan

(1988) in using a circle map based framework for predicting and organizing wake

phenomena of rigid, externally forced cylinders. The basic CML model was shown

to model wake phenomena including vortex dislocations, lace-like structures, oblique
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shedding etc. However, the limited number of free parameters in the basic CML

meant that accurate modeling of complex wake structures observed, for example, in

NEKTAR simulations was not possible.

In this thesis, the fundamental non-linear dynamics approach based on circle maps

for modeling wake phenomena was retained. The first goal of this thesis was to over-

come the limitations of the basic CML model by considering additional vortex dy-

namics. A new convective-diffusive CML model was developed in this context. In the

new convective-diffusive CML model, an additional spanwise velocity parameter can

be varied across the cable span. Numerical simulations of the low Reynolds number

cylinder wake NEKTAR code were used to first confirm the improved capabilities of

the convective-diffusive CML model.

A class of self-learning CML models was established based on the convective-

diffusive CML by incorporating adaptive estimation techniques. These techniques

involve suitably varying the adjustable parameters of the model in order to progres-

sively reduce the error between the actual and modeled wake data.

First, a self-learning CML model based on the multi-variable least-squares (MVLS)

algorithm was developed. In this model, the spanwise velocity distribution is adap-

tively estimated in order to minimize the difference between the modeled and target

wake patterns. We have developed adaptive estimation methods for a multi-variable

discrete-time system (convective-diffusive CML) based on minimization of a cost-

function with respect to the vector of spanwise velocities. Previous investigators have

mainly focused on developing adaptive estimation methods for scalar (single output)

discrete-time systems and uncoupled multi-variable discrete-time systems. For these

methods, convergence analysis can be preformed easily in order to demonstrate their

efficiency and accuracy. For the coupled multi-variable discrete-time system such as

the CML, convergence analysis of the adaptive estimation methods had not been

previously attempted. For the first time in this thesis, convergence of the MVLS

algorithm was addressed by defining a scalar non-negative Lyapunov function which

is shown to be non-increasing. This work represents a highly useful and important
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original contribution to the field of adaptive parameter estimation, and has applica-

tions in adaptive signal processing and adaptive control. In this thesis, the MVLS

algorithm was successfully applied in the estimation of wake patterns from numerical

simulations and experiments.

A second self-learning CML model based on neural networks was then developed.

In this model, the convection of spanwise vorticity is modeled directly using a com-

bination of radial basis function neural networks. The neural network weights are

adaptively varied using a combination of a multi-variable normalized least-squares al-

gorithm and a projection algorithm. Convergence of the adaptive estimation scheme

was established using Lyapunov methods. The convergence proofs provided in the

Appendix represents an extension to the state-of-the art in neural network based

adaptive estimation of certain coupled multi-variable discrete time systems.

The self-learning CML models were first used to estimate target wake patterns

obtained from the NEKTAR code. In this proof-of-concept study, three different flow

situations were considered. The self-learning CML model based on neural networks

was found to be slightly more efficient for the uniform flow lock-on near wake cases,

x/D = 0.5, 1, predicting lace-like flow structures. However, it was found to be less

efficient in predicting the transient “M-like” wake structures observed at x/D = 3.

Highly complex wake structures with decreased spanwise lengths, rapidly changing

spanwise lengths and also vortex dislocations were observed in the far wake cases,

x/D = 5, 10. The neural network model was found to be more efficient whenever

the transition in the wake patterns, however complex, was gradual. In other stud-

ies, vortex dislocations were observed for the non-periodic wake, Ω = 0.9. Oblique

shedding patterns were observed for the sheared freestream flow situation. Both

the self-learning CML models were found to be highly accurate in predicting these

complex wake structures, with the neural network model performing slightly better.

The accuracy of the self-learning CML models was quantified using local and global

measures of the state error.

The proof-of-concept study revealed that both the self-learning CML models are
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highly efficient for estimation of wake flow patterns. It should be emphasized that

the self-learning CML is highly efficient compared to NEKTAR simulations. The

self-learning CML requires 10−2 wall clock seconds to run on a Pentium PC while

the NEKTAR simulation requires approximately 104 wall clock seconds per shedding

cycle on an IBM supercomputer.

The capabilities of the self-learning CML models were then extended to off-line

estimation of wake flow patterns. In this method, the measured wake data is post-

processed and the stored wake patterns are made available for estimation using the

self-learning models. The cases of uniform flow over a rigid cylinder with and without

angled endplates were considered. Three distinct types of patterns, namely rigid-

periodic, oblique shedding and “mixed” type, were efficiently estimated by both the

self-learning CML models. The first occurrence of vortex dislocations was highly

difficult to estimate. However, we believe that these occurrences were rare in the

current experiments. If more such instances of vortex dislocations occur, the self-

learning CML models would learn from the observed data, and predictions of these

highly complex structures would be more accurate.

The shedding frequencies measured in the experiments were approximately 45

Hz. Therefore, the average time period of vortex shedding is approximately 0.02

seconds. The self-learning CML requires approximately 0.006 wall clock seconds per

shedding cycle on a Pentium PC. This includes generation of target wake patterns

and their estimation. It doesn’t include the time required for conversion of hot-wire

voltage signals into wake velocities. For the off-line estimation currently pursued,

this conversion was performed on a Pentium PC and required approximately 0.05

seconds per shedding cycle. We believe that with improved choices of sampling rates

and with the use of simple additional hardware for computation of wake velocities

from voltages, the time required for self-learning estimation can be reduced below the

time period of vortex shedding. This improvement would allow on-line or real-time

estimation of wake flow patterns.

In future, the on-line self-learning CML models would serve as wake models in flow
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control experiments. The goal of this work would be to develop an efficient flow control

model for targeting desired wake patterns in experiments. Methods developed in this

thesis for controlling wake patterns of the simple CML model can similarly be pursued

for the self-learning CML models. The future flow control schemes would need to

address techniques of control actuation. Current experimental control techniques

such as rotary oscillation of the cylinder, transverse oscillation of the cylinder can be

explored in the context of the CML. The interfacing of the actuator dynamics to the

CML also needs to be studied.

In other studies, with applications to flow control modeling, the techniques of

adaptive estimation can be pursued for a self-learning CML modeling a freely vibrat-

ing cable-wake interaction.
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Appendix A

Convergence of the neural network

based self-learning CML

In this section, we provide proof of convergence of the neural network based self-
learning CML.

Q̂n+1 = µn+1 − Iµ
(|µn+1| − Mθ)

|µn+1|
, Iµ =

{ 1 if |µn+1| > Mθ

0 if |µn+1| ≤ Mθ
(A.1)

Let us define the parameter estimation error ζn = Q̂n − Q∗ and the Lyapunov
function candidate

V(ζn+1) = |ζn+1|2 = ζT
n+1ζn+1 =

(
Q̂n+1 − Q∗

)T (
Q̂n+1 − Q∗

)

En+1 = W(Xn)ζn − Nn (A.2)

|Q̂n+1 − Q∗|2 =
(
Q̂n+1 − Q∗

)T (
Q̂n+1 − Q∗

)

=

(
µn+1 − Iµ

(|µn+1| − Mθ)

|µn+1|
µn+1 − Q∗

)T

×
(
µn+1 − Iµ

(|µn+1| − Mθ)

|µn+1|
µn+1 − Q∗

)

= (µn+1 − Q∗)T (µn+1 − Q∗) − Iµ
(|µn+1| − Mθ)

|µn+1|
µT

n+1×
(

2µn+1 − 2Q∗ − (|µn+1| − Mθ)

|µn+1|
µn+1

)

= |µn+1 − Q∗|2 − Iµ
(|µn+1| − Mθ)

|µn+1|
µn+1×

(
|µn+1|2 − 2µT

n+1Q
∗ + |µn+1|Mθ

)

(A.3)
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|Q̂n+1 − Q∗|2 = |µn+1 − Q∗|2 − Iµ
(|µn+1| − Mθ)

|µn+1|
µn+1×

(
|µn+1 − Q∗|2 + |µn+1|Mθ − |Q∗|2

)

= |µn+1 − Q∗|2 − Iµρn+1,

(A.4)

where

ρn+1 ≡
(|µn+1| − Mθ)

|µn+1|
(
|µn+1 − Q∗|2 + |µn+1|Mθ − |Q∗|2

)
·

It can be shown that Iµρn+1 ≥ 0. Let Iµ = 1 otherwise the inequality holds
trivially. In this case, |µn+1| > Mθ. By definition, |Q∗| ≤ Mθ. We have |µn+1|Mθ −
|Q∗|2 > M2

θ − |Q∗|2 ≥ 0. This shows that ρn+1 > 0. Hence, Iµρn+1 ≥ 0.

|µn+1 − Q∗|2 = |ζn − γ0W(Xn)TEn+1

β0 + ‖W(Xn)‖2 |
2

= V(ζn) − γ0

β0 + ‖W(Xn)‖2

(
2ζT

n W(Xn)TEn+1 −
γ0|W(Xn)TEn+1|2
β0 + ‖W(Xn)‖2

)

≤ V(ζn) − γ0

β0 + ‖W(Xn)‖2

(
2(W(Xn)ζn)TEn+1 −

γ0|En+1|2‖W(Xn)‖2

β0 + ‖W(Xn)‖2

)

(A.5)
In the last step we have used the Cauchy Schwarz inequality, ‖AB‖ ≤ ‖A‖‖B‖.

From (A.2) we have,

|µn+1 − Q∗|2 ≤ V(ζn) − γ0

β0 + ‖W(Xn)‖2
×

(
2(En+1 + Nn)TEn+1 −

γ0|En+1‖2|W(Xn)‖2

β0 + ‖W(Xn)‖2

)

≤ V(ζn) − γ0

β0 + ‖W(Xn)‖2
×

(
|En+1|2

(
2 − γ0‖W(Xn)‖2

β0 + ‖W(Xn)‖2

)
+ 2ET

n+1Nn

)

(A.6)

Define αn ≡
(

2 − γ0‖W(Xn)‖2

β0 + ‖W(Xn)‖2

)
, αn ≡ γ0

β0 + ‖W(Xn)‖2
αn.

Note that since 0 < γ0 < 2, we have αn, αn > 0∀n > 1. Therefore, by completing
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the squares we obtain,

|µn+1 − Q∗|2 ≤ V(ζn) − γ0

β0 + ‖W(Xn)‖2
×

(
αn

2
|En+1|2 +

αn

2

(
|En+1|2 +

4

αn

ET
n+1Nn

))

≤ V(ζn) − αn

2
|En+1|2 −

αn

2
|
(
En+1 +

2

αn

Nn

)
|2 + 2

αn

α2
n

|Nn|2.
(A.7)

Now, if we let 4Vn+1 ≡ V(ζn+1)−V(ζn) and substitute (A.7) in (A.4), we obtain,

4Vn+1 ≤ −αn

2
|En+1|2 −

αn

2
|
(
En+1 +

2

αn

Nn

)
|2 + 2

αn

α2
n

|Nn|2 − Iµρn+1,

≤ −αn

2
|En+1|2 + 2

αn

α2
n

|Nn|2
(A.8)

Let αo ≡ inf
n
αn and let αo ≡ inf

n
αn. We rewrite (A.8) as:

|En+1|2 ≤ − 2

αo

4Vn+1 +
4

α2
o

|Nn|2. (A.9)

By summing both sides from n = 0 to n = N − 1, where N is a finite integer, we
have:

N−1∑

n=0

|En+1|2 ≤ 2

αo

(
|ζ0|2 − |ζn|2

)
+

4

α2
o

N−1∑

n=0

|Nn|2

≤ λ1 + λ2

N−1∑

n=0

|Nn|2, λ1, λ2 > 0.

(A.10)

According to the above equation, in any discrete-time interval [0, N ], the “energy”
of the prediction error E is (at most) of the same order as the “energy” of N, that
is, the sum of the modeling errors. This points out the relationship between the
prediction error and the modeling error. The parameter adaptive law (4.17)- (4.19)

guarantees that En and Q̂n are uniformly bounded. If N ∈ l2, that is
∞∑

n=0

|Nn|2 <∞,

than E ∈ l2 and lim
n→∞

En = 0.
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