
7Factor Webhooks-as-a-Service: User Guide

Contents

Chapter 1. Overview... 3

Chapter 2. Getting Started... 4

Chapter 3. Database Structure... 5

Database Management.. 5

Chapter 4. Server Structure..6

Connection Actions.. 8

Payload Parsers..9

Webhook Payload Handler.. 10

Connection Request Handler...11

Chapter 1. Overview
This user guide outlines the key features implemented by 7Factor's Webhooks-as-a-Service (WaaS)

API, started in a 2021-2022 Major Qualifying Project (MQP). A summary of how the custom API was

designed is outlined in the Webhooks-as-a-Service: A Custom API Design report. The user guide serves

to introduce API features to future teams as they work on their MQPs as extensions of the WaaS API. The

guide covers the basic functionality and set up of the API's database and server, which handle webhook

payloads, connection actions, and connection requests.

Chapter 2. Getting Started
The WaaS API is intended to allow for a customized automation of tasks among third party applications.

This guide is meant to walk through the code processes of creating webhooks, storing webhooks,

and relevant information in connections. The current version of the API contains a working server

and database for managing and storing webhook data. At the end of this guide, you will have an

understanding of the framework of the application and its logic.

Chapter 3. Database Structure
For long-term storage of the webhooks created by the server, the webhook is stored inside of a SQLite

database.

The structure of the table is as follows:

Table 1. Database Table for Webhook Storage

uuid receiver
receiver

Settings
provider

provider

Settings
user action

TEXT TEXT JSON TEXT JSON TEXT TEXT

• uuid: a unique primary key for referencing a specific line of the table

• receiver and receiverSettings: store the link to the program receiving the webhook and its

settings

• provider and providerSettings store the link to the program providing the webhook and its settings

• user represents the user who created the webhook

• action stores what action the webhook should take

Database Management
The database has a Python script called database_manager.py

The script utilizes Flask, a Python framework useful for database management. The methods currently

implemented include:

• def reset_table(connection):

• def add_data(connection, rec, recSet, prov, provSet, user, action):

• def get_data(connection):

• def get_data_by_uuid(connection, uid):

• def get_data_by_user(connection, user):

• def remove_connection(connection, uid):

• def update_data(connection, better_jason, uid):

These methods execute SQLite commands which can be found in the codebase for creating, removing,

resetting, and updating data in the database.

Chapter 4. Server Structure
This section describes the implementation of the current NodeJS server.

The server is hosted in the app.js file located in the server folder. It utilizes connection actions, payload

parsers, a webhook payload parser, and a connection request handler, which are described in later topics

The following code sample show the progression of methods that build the infrastructure of the server,

handling webhooks and payloads

Creating an Express app for the Server

// create express app, initialize miscellaneous middleware

const app = express();

app.use(logger('dev'));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));

app.use(function(req, res, next) {

console.log(req.body);

 next();

});

app.use(cookieParser());

Sending JS, HTML, and CSS to Browser

// send frontend javascript, html, css to browser when requested

app.use(express.static(path.join(__dirname, '../public')));

Handling Frontend Request

// handle connection creation request from frontend

app.post('/connections/add', (req, res) => {

 res.json(connectionRequestHandler.add(req.body));

});

// handle connection edit request from frontend

app.post('/connections/edit', (req, res) => {

 res.json(connectionRequestHandler.edit(req.body));

});

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 7

// handle connection delete request from frontend

app.post('/connections/remove', (req, res) => {

 res.json(connectionRequestHandler.remove(req.body));

});

// handle get user's connections request from frontend

app.post('/connections/update', (req, res) => {

 res.json(connectionRequestHandler.update(req.body));

})

Handle Received Webhook

app.post('/webhooks/:id', (req, res) => {

webhookPayloadHandler(req.body, req.params.id);

});

Error Catching/Handling

// catch 404 and forward to error handler

app.use(function(req, res, next) {

 next(createError(404));

});

// error handler

app.use(function(err, req, res, next) {

// set locals, only providing error in development

 res.locals.message = err.message;

 res.locals.error = req.app.get('env') === 'development' ? err : {};

 // render the error page

 res.status(err.status || 500);

 res.json({

message: err.message,

 error: err

 });

});

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 8

Connection Actions
Connection actions represent the tasks that automate among connected third-party APIs.

There is a folder named connection_actions, which contains Javascript files for specific connection

actions.

An example of a connection action is the send-link.js method shown below:

const sendLinkActionHandler = {

// all actions must implement this function

 apply: function(payload, provider, receiver, providerSettings, receiverSettings){

return {data, options} = receiver.sendLink(receiverSettings, provider.getURL(providerSettings,

 payload));

 },

 // all actions must implement this function

 isValidProvider: function(provider){

return (typeof provider.isValidProviderSettings === 'function' &&

typeof provider.getURL === 'function');

 },

 // all actions must implement this function

 isValidReceiver: function(receiver){

return (typeof receiver.isValidReceiverSettings === 'function' &&

typeof receiver.sendLink === 'function');

 }

}

module.exports = sendLinkActionHandler;

Note:

See Payload Parsers for code samples which aid in the integration of webhook actions for the

third party APIs, Discord and GitHub.

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 9

Payload Parsers
The current payload parsers handled by the WaaS API are for Discord and GitHub. The parsers are used

in handling connections, getting information on which API is the receiver and which is the provider to

manage webhooks accordingly.

The following code snippets represent the establishment of creating webhook data with specific options

configured as receiver settings. It can be found in the discord.js file under payload_parsers.

const discordParser = {

 sendLink: function(receiverSettings, url) {

 data = JSON.stringify({

 username: 'Gompei',

 content: 'Hooked on a feeling',

 embeds: [{"title": "Test", "url": url}]

 });

First, the parser is initialized as a const value. sendLink represents the action. The JSON data is then set

with properties specific to Discord's JSON payload formatting. The username, content, and embeds values

can be initialized here and changed to any value depending on user input.

options = {

 hostname: 'discordapp.com',

 path:

 '/api/webhooks/902593973997146135/5WW8GsSejvLam1o1JpF_wu5EIdyT0Dqx24-2h0kqtexVkwWjYMxfwM1K1AMZ0RGfEMLw',

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'Content-Length': data.length

 }

 };

Next, the options for the data is set with the appropriate path. This path is specific for webhooks

established with the Discord API.

return {data, options};

 },

The parser returns the set data and options, and connects the information to the receiverSettings, making

Discord the receiver of a payload from Github.

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 10

Webhook Payload Handler
The webhook payload handler pulls a webhook from the database and the information associated with its

provider and receiver parsers.

The code sample below shows how the webhook data is retrieved from the database and the receiver and

provider values are established:

const https = require('https');

const getAction = require('./connection_actions/action-dict');

const getParser = require('./payload_parsers/parser-dict');

const validator = require('./connection-validator');

const database = require('./database-wrapper');

function handleWebhookPayload(payload, id){

 // id is from url payload was sent to

 // get webhook from database

 let webhook = database.getConnection(id);

 // get action, providerParser, and receiverParser

 let action = getAction(webhook.action);

 let provider = getParser(webhook.prov);

 let receiver = getParser(webhook.rec);

 let providerSettings = webhook.provSet;

 let receiverSettings = webhook.recSet;

 // check if connection is valid

 if (validator(action, provider, receiver, providerSettings, receiverSettings)) {

 const {data, options} = action.apply(payload, provider, receiver, providerSettings, receiverSettings);

 sendPayload(data, options);

 }

}

sendPayload

sendPayload is a method that sends a request to send the JSON payload

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 11

Parameters

data: stringified JSON with data to be sent in the payload

options: JSON of with information on the host and path to send webhook

function sendPayload(data, options) {

 const req = https.request(options, res => {

 console.log(`statusCode: ${res.statusCode}`);

 res.on('data', d => {

 process.stdout.write(d)

 });

 })

 req.on('error', error => {

 console.error(error)

 });

 req.write(data);

}

Connection Request Handler
The connection request handler contains authentication and specific information on the provider and

receiver for establishing a connection

The code samples below shows how the connection request handler retrieves values from the request

and adds, edits, or removes them via the database which stores these connections.

add

The add method grabs the action, parser, and validator for a payload. It sets the user, action, provider,

providerSettings, receiver, and receiverSettings which are the attributes of a webhook connection. It will

only add a connection if the validator returns true as shown below.

if (validation === true) {

 // put variables above into database as a connection

 database.addConnection(user, action, provider, providerSettings, receiver, receiverSettings);

 let mesg = "Added " + action + " connection as user: " + user + " between " +

 provider + " and " + receiver + ". Provider options: " + providerSettings +

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 12

 ", Receiver options: " + receiverSettings;

 console.log(mesg);

 return { message: mesg };

 }

edit

The edit method grabs information in the same way as add. It checks if the user is the same user that

owns the connection that it is to be edited, and sets values accordingly.

database.editConnection(id, action, provider, providerSettings, receiver, receiverSettings);

 let mesg = "Edited connection " + id + " (" + action + ") as user: " + user +

 " between " + provider + " and " + receiver + ". Provider options: " + providerSettings

 + ", Receiver options: " + receiverSettings;

 console.log(mesg);

 return { message: mesg };

remove

The remove method does the same validation and ownership check as stated above. It makes a call to

database.removeConnection.

update

The update method calls the database.updateConnections.

	7Factor Webhooks-as-a-Service: User Guide
	Contents
	Chapter 1. Overview
	Chapter 2. Getting Started
	Chapter 3. Database Structure
	Database Management

	Chapter 4. Server Structure
	Creating an Express app for the Server
	Sending JS, HTML, and CSS to Browser
	Handling Frontend Request
	Handle Received Webhook
	Error Catching/Handling
	Connection Actions
	Payload Parsers
	Webhook Payload Handler
	sendPayload
	Parameters

	Connection Request Handler
	add
	edit
	remove
	update

