7Factor Webhooks-as-a-Service: User Guide

Contents

Chapter 1. OVEIVIEW......cciiiiiiieeretttitiiiieccceeeeet ettt e se e e saanses et e s e s s sssssssssssnnnsssstessssssssssssssssnnnnsnes 3
Chapter 2. Getting Started........... e e e eeee e sseeeese e e e e e e e e eeeeennnnnnnnssssssssssnsssnnnns 4
Chapter 3. Database StrUCKUIE.............ccoiiiiiiiiiecrrrrrrreeeeeeee e et e e te e e eeeeeeess s s s s s s s e s e sessssssssssssasassaanans 5
Database Mana@gEmMIENT..........c.ooi ittt ettt ettt et et e ae ettt e st e e e s e te et ene e st ene e sesenneeneeneas 5
Chapter 4. SEIrVEr STIUCTUNE..........ccouuuiiiieierececeeettetereeeeeeerateeeeeeeenasessseesssnsssssseesesnssssssesesssssssssssssnnnnnnssnns 6
CONNECTION ACTIONS....cutiiiiiiiieeitetet ettt ettt et b e bttt b e sb e sb e e bt et e b e e e b saeeee 8
o1 0T Lo B e | =TT TSR 9
Webhook Payload HanGIEN............oooiiiieeee ettt ettt et ebeeebeesaesseesseeseens 10

Connection ReqUEST HANAIBT............ooouiiieceeee ettt ettt ebe e 11

Chapter 1. Overview

This user guide outlines the key features implemented by 7Factor's Webhooks-as-a-Service (WaaS)

API, started in a 2021-2022 Major Qualifying Project (MQP). A summary of how the custom APl was
designed is outlined in the Webhooks-as-a-Service: A Custom API Design report. The user guide serves
to introduce API features to future teams as they work on their MQPs as extensions of the WaaS API. The
guide covers the basic functionality and set up of the API's database and server, which handle webhook

payloads, connection actions, and connection requests.

Chapter 2. Getting Started

The WaaS APl is intended to allow for a customized automation of tasks among third party applications.
This guide is meant to walk through the code processes of creating webhooks, storing webhooks,

and relevant information in connections. The current version of the APl contains a working server

and database for managing and storing webhook data. At the end of this guide, you will have an

understanding of the framework of the application and its logic.

Chapter 3. Database Structure

For long-term storage of the webhooks created by the server, the webhook is stored inside of a SQLite

database.

The structure of the table is as follows:

Table 1. Database Table for Webhook Storage

receiver- provi der -
uui d receiver provi der user action
Settings Settings
TEXT TEXT JSON TEXT JSON TEXT TEXT

* uui d: a unique primary key for referencing a specific line of the table

* recei ver and recei ver Setti ngs: store the link to the program receiving the webhook and its
settings

« provi der and provi der Sett i ngs store the link to the program providing the webhook and its settings

« user represents the user who created the webhook

« acti on stores what action the webhook should take

Database Management

The database has a Python script called dat abase_manager . py

The script utilizes Flask, a Python framework useful for database management. The methods currently

implemented include:

* def reset_tabl e(connection):

e def add_data(connection, rec, recSet, prov, provSet, user, action):
¢ def get_data(connection):

e def get_data_by_uui d(connection, uid):

e def get_data_by_user(connection, user):

¢ def renove_connection(connection, uid):

¢ def update_data(connection, better_jason, uid):

These methods execute SQLite commands which can be found in the codebase for creating, removing,

resetting, and updating data in the database.

Chapter 4. Server Structure

This section describes the implementation of the current NodeJS server.

The server is hosted in the app. j s file located in the server folder. It utilizes connection actions, payload

parsers, a webhook payload parser, and a connection request handler, which are described in later topics

The following code sample show the progression of methods that build the infrastructure of the server,

handling webhooks and payloads

Creating an Express app for the Server

/] create express app, initialize mscellaneous m ddl eware
const app = express();
app. use(l ogger (' dev'));
app. use(express.json());
app. use(express. url encoded({ extended: false }));
app. use(function(req, res, next) {
consol e. | og(req. body) ;
next ();
1)

app. use(cooki eParser());

Sending JS, HTML, and CSS to Browser

/! send frontend javascript, htm, css to browser when requested

app. use(express.static(path.join(__dirname, '../public')));

Handling Frontend Request

/1 handl e connection creation request from frontend
app. post (' /connections/add', (req, res) => {

res.j son(connecti onRequest Handl er. add(r eq. body));

/1 handl e connection edit request from frontend
app. post (‘' /connections/edit', (req, res) =>{

res. j son(connecti onRequest Handl er. edi t (req. body));

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 7

/1 handl e connection del ete request from frontend
app. post (' /connections/renove', (req, res) => {

res. j son(connecti onRequest Handl er. r enove(req. body)) ;

/1 handl e get user's connections request from frontend
app. post (‘' / connecti ons/update', (req, res) => {

res. j son(connecti onRequest Handl er . updat e(r eq. body)) ;

Handle Received Webhook

app. post (' / webhooks/:id', (req, res) => {
webhookPayl oadHandl er (r eq. body, req.parans.id);
1)

Error Catching/Handling

/'l catch 404 and forward to error handl er
app. use(function(req, res, next) {

next (createError(404));

1)

/1 error handl er

app. use(function(err, req, res, next) {

/1 set locals, only providing error in devel opnent
res. |l ocal s. nessage = err.nessage

res.local s.error = req.app.get('env') === 'devel opnent' ? err : {};

/1 render the error page
res.status(err.status || 500);
res.json({
nessage: err.nessage
error: err
1)
1)

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 8

Connection Actions

Connection actions represent the tasks that automate among connected third-party APIs.

There is a folder named connect i on_act i ons, which contains Javascript files for specific connection

actions.

An example of a connection action is the send-1i nk. j s method shown below:

const sendLi nkActi onHandl er = {
/1 all actions nust inplenent this function
apply: function(payl oad, provider, receiver, providerSettings, receiverSettings){
return {data, options} = receiver.sendLi nk(receiverSettings, provider.getURL(providerSettings,
payl oad)) ;
b

/1 all actions nust inplenent this function

i sVal i dProvi der: function(provider){

return (typeof provider.isValidProviderSettings === "function' &&
typeof provider.getURL === 'function');
Ba

/1 all actions nust inplenent this function

i sVal i dRecei ver: function(receiver){

return (typeof receiver.isValidReceiverSettings === "'function' &&
typeof receiver.sendLink === 'function');

}
}

nmodul e. exports = sendLi nkActi onHandl er

Note:

See Payload Parsers for code samples which aid in the integration of webhook actions for the
third party APIs, Discord and GitHub.

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 9

Payload Parsers

The current payload parsers handled by the WaaS API are for Discord and GitHub. The parsers are used
in handling connections, getting information on which API is the receiver and which is the provider to

manage webhooks accordingly.

The following code snippets represent the establishment of creating webhook data with specific options
configured as receiver settings. It can be found in the di scord. j s file under payl oad_par sers.

const di scordParser = {

sendLi nk: function(receiverSettings, url) {
data = JSON. stringify({
usernane: ' Gonpei',
content: 'Hooked on a feeling',

enbeds: [{"title": "Test", "url": url}]

First, the parser is initialized as a const value. sendLi nk represents the action. The JSON data is then set
with properties specific to Discord's JSON payload formatting. The user name, cont ent, and enmbeds values
can be initialized here and changed to any value depending on user input.

options = {
host nane: ' di scordapp. coni,
pat h:
" / api / webhooks/ 902593973997146135/ 5\W\8Gs Sej vLanlolJpF_wu5El dy TODgx24- 2h0kqt ex VKWW YNKf wMLK1AMZORGF EMLW |,
met hod: ' POST',
headers: {
' Content-Type': 'application/json',

' Content-Length': data.length

Next, the options for the data is set with the appropriate path. This path is specific for webhooks
established with the Discord API.

return {data, options};

Be

The parser returns the set data and options, and connects the information to the receiverSettings, making
Discord the receiver of a payload from Github.

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 10

Webhook Payload Handler

The webhook payload handler pulls a webhook from the database and the information associated with its

provider and receiver parsers.

The code sample below shows how the webhook data is retrieved from the database and the receiver and
provider values are established:

const https = require(' https');

const getAction = require('./connection_actions/action-dict');
const getParser = require('./payl oad_parsers/parser-dict');
const validator = require('./connection-validator');

const database = require('./database-w apper');

function handl eWebhookPayl oad(payl oad, id){

/Il idis fromurl payload was sent to

/] get webhook from database

| et webhook = dat abase. get Connection(id);

Il get action, providerParser, and receiverParser
let action = getAction(webhook. action);

| et provider = getParser(webhook. prov);

l et receiver = getParser(webhook.rec);

l et providerSettings = webhook. provSet;

l et receiverSettings = webhook. recSet;

Il check if connection is valid
if (validator(action, provider, receiver, providerSettings, receiverSettings)) {
const {data, options} = action.apply(payl oad, provider, receiver, providerSettings, receiverSettings);

sendPayl oad(data, options);

sendPayload

sendPayl oad is @ method that sends a request to send the JSON payload

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 11

Parameters
data: stringified JSON with data to be sent in the payload
options: JSON of with information on the host and path to send webhook

function sendPayl oad(data, options) {
const req = https.request(options, res => {

consol e. | og(" statusCode: ${res.statusCode}");

res.on('data', d => {

process. stdout. wite(d)

req.on('error', error => {

consol e.error(error)

req.wite(data);

Connection Request Handler

The connection request handler contains authentication and specific information on the provider and

receiver for establishing a connection

The code samples below shows how the connection request handler retrieves values from the request

and adds, edits, or removes them via the database which stores these connections.

add

The add method grabs the action, parser, and validator for a payload. It sets the user, action, provider,
providerSettings, receiver, and receiverSettings which are the attributes of a webhook connection. It will

only add a connection if the validator returns t r ue as shown below.

if (validation === true) {
/'l put variables above into database as a connection
dat abase. addConnecti on(user, action, provider, providerSettings, receiver, receiverSettings);
let mesg = "Added " + action + " connection as user: " + user + " between " +

provider + " and " + receiver + ". Provider options: " + providerSettings +

7Factor Webhooks-as-a-Service: User Guide | 4 - Server Structure | 12

", Receiver options: " + receiverSettings;
consol e. | og(nesg) ;

return { nmessage: nesg };

edit

The edi t method grabs information in the same way as add. It checks if the user is the same user that

owns the connection that it is to be edited, and sets values accordingly.

dat abase. edi t Connection(id, action, provider, providerSettings, receiver, receiverSettings);

let mesg = "Edited connection " + id + " (" + action + ") as user: " + user +
" between " + provider + " and " + receiver + . Provider options: " + providerSettings
+ ", Receiver options: " + receiverSettings;

consol e. | og(nesg);

return { nmessage: nesg };

remove

The renove method does the same validation and ownership check as stated above. It makes a call to

dat abase. renoveConnecti on.

update

The updat e method calls the dat abase. updat eConnect i ons.

	7Factor Webhooks-as-a-Service: User Guide
	Contents
	Chapter 1. Overview
	Chapter 2. Getting Started
	Chapter 3. Database Structure
	Database Management

	Chapter 4. Server Structure
	Creating an Express app for the Server
	Sending JS, HTML, and CSS to Browser
	Handling Frontend Request
	Handle Received Webhook
	Error Catching/Handling
	Connection Actions
	Payload Parsers
	Webhook Payload Handler
	sendPayload
	Parameters

	Connection Request Handler
	add
	edit
	remove
	update

