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Abstract 

Geolocation is the process of estimating an object’s location on Earth [Djuknic and 

Richton, 2001]. Most commonly, geolocation performs in a “direct” way, i.e., geolocation 

involves the manipulation of Global Navigation Satellite System (GNSS) data to determine the 

location of a GNSS receiver. A less common geolocation application is the location estimation of 

an object of interest in an “indirect” way, i.e., the geolocation of an object of interest not co-

located with any equipment such as a GNSS receiver. Referred to as “indirect geolocation” in 

this report, this method of location estimation utilizes existing knowns and reference points to 

determine the final geographic location of an object of interest in the distance.  

This report presents a method of indirect geolocation leveraging the pose – location and 

orientation – of multiple observers. Using a GNSS receiver to determine location and an Inertial 

Measurement Unit (IMU) to determine orientation, this indirect geolocation method creates an 

imaginary intersection point from each observer’s pointing vector. MEMS technology has 

reduced the size, weight, and cost of GNSS and IMU systems, however, these advantages have 

drawbacks in accuracy. Thus, in an attempt to find a less expensive and application specific 

device that has adequate sensors and sensor fusion capabilities, this report explores the feasibility 

of using smartphones to perform indirect geolocation.  

The developed method of indirect geolocation uses an intersection algorithm to estimate 

the location of an object of interest given two or more observers’ location and orientation. 

Equipped with algorithms for both two-dimensional (2-D) and three-dimensional (3-D) space, 

simulations were used to characterize algorithm performance. These simulations showed that 

there exists an optimal angle of 90o that minimizes intersection mean RMS error. They also 

showed that position error creates a bias in the intersection error, while orientation error affects 

the intersection error as a function of distance. Ultimately such work culminated in a series of 

field tests where location estimations commonly formed within 3 meters of the truth value with 

both observers over 30 meters in the distance. 
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Executive Summary 

Introduction 

Geolocation is the determination of an object’s location on Earth. In its most standard application, 

geolocation is the process of determining the geographical location of a measuring device. Referred to as 

direct geolocation in this report, this process usually leverages a Global Navigation Satellite System 

(GNSS) receiver, which estimates its location using information transmitted by satellites. Less commonly, 

geolocation can also be the process of determining the geographical location of an object of interest not 

co-located with a measuring device. Referred to as indirect geolocation in this report, this method utilizes 

known locations and orientations to a common target to deduce this target’s location. Specifically, 

indirect geolocation is the focus of this report. 

 In order to perform indirect geolocation, the location and orientation, data reflecting the pose – 

location and orientation – of two devices with respect to a target must be collected. In practice, several 

different sensor systems can provide location and orientation data; however, this report focuses on two: 

the Global Positioning System (GPS) receiver for location and the inertial measurement unit (IMU) for 

orientation. A myriad of products that contain GPS and IMU sensor systems are available for purchase. 

Often called Attitude and Heading Reference Systems (AHRS), these devices utilize integrated circuit 

(IC) technology to create small, robust pose estimation systems. Despite their effectiveness, these systems 

are often heavily customized for industry and military applications. Thus, their inflexible and expensive 

nature lend these systems to be undesired by the more ordinary customer. Consequently, this report 

analyzes the feasibility of using a more abundant and flexible platform to perform indirect geolocation: 

smartphones. 

 In order to test the practicality and effectiveness of smartphone-based indirect geolocation 

systems, this report first explores the theory of indirect geolocation and the requirements necessary to 

perform it. Specifically, this section highlights two major requirements: a pose algorithm and an 

intersection algorithm. In order to satisfy the first requirement of indirect geolocation, creation of a pose 

algorithm, the report discusses the concept of sensor fusion by means of an extended Kalman Filter 

(EKF). With the first requirement satisfied, the report then discusses the second requirement, the 

intersection algorithm in both two-dimensional (2-D) and three-dimensional (3-D) space. Finally, having 

satisfied the two requirements necessary to perform indirect geolocation, the report discusses 

experimental results obtained via simulations and field tests. 

Indirect Geolocation 

 As prior stated, indirect geolocation is the process of determining the geographical location of an 

object of interest not co-located with a measuring device such as a GNSS receiver. For clarification, 

Figure 1 illustrates a typical indirect geolocation application. The object of interest, represented by the 

buildings, has no co-located equipment to determine its location. Meanwhile, two observers, A and B, 

each have devices capable of determining their respective pose. If both observers orient their equipment 

so that they are both facing the object of interest, each device creates a pointing vector indicative of its 

orientation. When elongated infinitely, this pointing vector passes through the object of interest. 

 Ultimately, by utilizing the known pose of the equipment for two observers, the location of the 

object of interest can be determined by finding the intersection between each equipment’s pointing 

vectors. The theory of indirect geolocation, however, becomes much more complicated when errors are 

presented. 
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Figure 1: Indirect Geolocation 

Sensor Fusion 

Typically, smartphones are equipped with a variation of a GNSS receiver and the components of 

an IMU (accelerometer, gyroscope, and magnetometer). Unfortunately, the hardware used by 

smartphones is far from perfect. Corrupted by noise, drift, and external distortions, smartphone sensors 

typically produce inadequate pose estimations when used without filtering. If the strengths of individual 

sensors are leveraged together, however, the computed pose estimation can be drastically more accurate. 

Thus, by performing a process known as sensor fusion, more accurate pose estimations can be generated. 

Although many different algorithms can be used for sensor fusion, this report focuses on the extended 

Kalman Filter (EKF). A nonlinear variation of the conventional Kalman Filter, the EKF leverages a 

process model and a measurement model to create an optimal state estimate.  

The proposed EKF had the process model based on the gyroscope and the measurement model 

based on the accelerometer and magnetometer. As each model produced its own orientation estimate, the 

EKF fused the two models together so that it attained a minimum distance error from truth. In order to 

fuse the respective strengths of each model, the EKF represented each model with a precision factor. 

Known as the covariance, this matrix determined the trustworthiness and reproducibility of each 

orientation estimate. As such, creating a gain factor based on the ratio between each model’s covariance 

matrix, a more optimal orientation estimate was created.  

Two-Dimensional Intersection Algorithm 

 A two-dimensional intersection algorithm was created that determined the unique intersection 

point shown in Figure 1. Specifically, the algorithm used many trigonometric principles to determine the 

intersection point and was ultimately validated using a zero-error model. To characterize the algorithm’s 

performance in an environment with errors, Monte Carlo simulations were then run. First, a simple 

scenario was used for the Monte Carlo simulation, as shown in Figure 2. Denoted as observers A and B, 

each observer had two types of error applied to them – position and orientation. The position error applied 

to both observers was zero-mean Gaussian noise with a standard deviation of 2.5 meters. Meanwhile, the 

orientation error was zero-mean Gaussian noise with a standard deviation of 1 degree. Each Monte Carlo 

simulation was subsequently run for 25,000 iterations.  
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From all simulations the intersection point cloud 

around the object of interest was characterized. The 

individual X and Y components of the intersection 

cloud were found to be Gaussian distributed. 

Furthermore, the RMS error was found to follow a 

Rayleigh distribution, but only when the angle 

between the observers was 90o.  

Following, a series of simulations was performed, 

each using distinct geometry, to characterize the 

algorithm in a more real-world environment where 

the observers could be anywhere in the two-

dimensional plane and have various orientations. 

The findings for the 2-D Monte Carlo simulations 

can be seen after the 3-D Intersection Algorithm 

section below. 

Three-Dimensional Intersection Algorithm 

To supplement the two-dimensional intersection algorithm, a three-dimensional intersection 

algorithm was created to add the ability to geolocate points in three-dimensional space. As three-

dimensional vectors are unlikely to intersect in 3-D space, a least-squares pseudoinverse method was used 

to find the approximation or “closest point” of intersection between observer pointing vectors. Ultimately, 

scenarios were used to validate the functionality of the least-squares method 3-D algorithm using simple 

geometry and distance graphs. 

 Simulations were used to characterize the performance of the algorithm with noisy inputs similar 

to those of real-world measurements. In order to simulate a noisy environment, a simple Monte Carlo 

simulation of 25,000 iterations was created to model real-world sensor errors. In this scenario, two 

observers were looking at an object directly between them – a target at (50, 50, 0) – with observer A 

having an angle of 45o and observer B having an angle of -45 o. Each observer had a 2.5 meter uncertainty 

in the X and Y location, a 5 meter uncertainty in the Z location, and 2.5 degrees of uncertainty in their 

pitch and yaw angle. These uncertainties were standard deviations of independent zero-mean Gaussian 

distributions. One example scenario is shown in Figure 3 below. 

 

Figure 3: 3-D Intersection Monte Carlo 

After each simulation, the intersection point cloud around the object of interest was characterized. The 

individual X, Y, and Z components of the intersection cloud were found to be Gaussian distributed. 
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Following, a series of simulations were performed to characterize the algorithm in a more real-world 

environment where the relationships between intersection point cloud distribution, intersection angle, and 

distance were found. The following section details the findings from the 2-D and 3-D Monte Carlo 

simulations.  

Two-Dimensional and Three-Dimensional Intersection Algorithm Findings 

The two-dimensional and three-dimensional intersection algorithms were characterized using Monte 

Carlo simulations. It was found that these two algorithms possessed similar properties, and the following 

observations were made.  

1. The optimal angle between observers to minimize intersection mean RMS error was 90o. 

2. An optimal angle range from 75o to 105o only increased the mean RMS error by 2-3% of the 

minimum mean RMS error at 90o for all distances and for standard location error of 2.5m and 

orientation error of 1.0o. 

3. Position error created an offset in the intersection mean RMS error that was independent of 

distance, but not the angle between observers. 

4. Orientation error increased the magnitude of the intersection mean RMS error depending on 

distance and the angle between observers. 

5. At longer distances, the intersection mean RMS error due to orientation error dominated the 

intersection mean RMS error due to position error.  

These findings can be used as guidelines during field tests in order to obtain the optimal indirect 

geolocation solution.  

Field Tests 

 In order to relate the simulations to real-world testing the proposed indirect geolocation system 

was tested at Wachusett Mountain in Princeton, Massachusetts. Using a United States Geological Service 

(USGS) marker as the truth reference with known latitude and longitude coordinates, a series of thorough 

and controlled tests were performed. Among the many locations and scenarios tested, the field tests can 

be broken down into two general categories: static and dynamic. 

 The results of one of the static field tests can be seen in Figure 5. In the figure, the red markers 

represent Observer A and the green markers represent Observer B. Both observers were located over 30 

meters from the object of interest (yellow marker) and oriented towards it. As seen by the distribution of 

the estimated geolocation positions (blue markers), the 90 degree static test achieved a highly precise 

cluster of results (Standard Deviation = 0.389 meters in latitude and 0.401 meters in longitude). In terms 

of accuracy, however, the system was less refined. With an estimated intersection 3.8 meters from the 

truth marker, the presence of GPS bias ultimately created a location offset. An inaccuracy seen regularly 

within the field tests, the GPS accuracy behaved as a limiting factor in the indirect geolocation testing. 
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Figure 5: Static Field Test 

Conclusion 

 Overall, this report analyzed the feasibility of utilizing smartphones for indirect geolocation 

applications. In order to find intersections in 2-D space, first a closed form algorithm was developed for 

mapping the intersection points of two coplanar vectors in 2-D space. Running simulations to characterize 

the performance of the system, the next task was the creation of a 3-D space intersection algorithm. Using 

least-squares principles, a 3-D intersection algorithm was created which provided unique, optimal 

solutions. These simulations produced several findings for the 2-D and 3-D algorithms. First, to minimize 

intersection RMS error, an angle between observers of 90o was required. Second, position error acted as a 

bias, while the effect of orientation error on the intersection solution was dependent on the distance of the 

observer from the object of interest. Third, at longer distances the orientation error had more of an effect 

on system accuracy than the position error. With these findings in mind, field tests were performed with 

the Samsung Galaxy J7. Using an extended Kalman Filter (EKF), gyroscope, magnetometer, and 

accelerometer data were ultimately fused together to create an optimal orientation estimation. 

 In conclusion, the fusion of the intersection and orientation algorithms produced an indirect 

geolocation system. In order to test the performance of the system using smartphone sensors in a real-

world environment, a series of field tests were conducted. Performed in both static and dynamic 

scenarios, these field tests illustrated the feasibility of smartphone-based indirect geolocation applications 

in the future. 
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Chapter 1: Introduction 

Indirect geolocation systems greatly aid in applications where the location of an 

inaccessible object of interest is desired. Imagine for example, a search and rescue mission where 

victims are stranded throughout a disaster area. In need of data that can help rescue teams 

navigate themselves to the victims quickly a system, such as indirect geolocation, can be used. 

The aforementioned scenario describes the usage of an indirect geolocation system by 

which an observer is able to obtain the location of an object of interest while not co-located with 

that object. Given the severity of the scenario, such applications most likely utilize highly 

customized and expensive equipment. For the more ordinary consumer and less urgent situation, 

however, such elaborate, high-end systems are impractical [Al-Hamad and El-Sheimy, 2014]. 

Thus, the question follows: how practical is it to create a functioning and effective indirect 

geolocation system on an inexpensive, abundant, and flexible device? 

Smartphones are inexpensive and abundant. According to a study performed by the Pew 

Research Center, 77% of American adults own a smartphone [Pew Research Center, 2018]. 

While models vary by manufacturer, the majority of smartphones contain a Global Navigation 

Satellite System (GNSS) receiver and an Inertial Measurement Unit (IMU). These two units 

provide the two main requirements for indirect geolocation—location and orientation. 

Unfortunately, smartphone sensors are not as accurate as the sensors used in customized, 

military-grade indirect geolocation systems. Furthermore, differing quantities of memory and 

processing capabilities create large margins between the computational ability of smartphones. 

Thus, these issues raise the question: how feasible is it to create a smartphone-based indirect 

geolocation system?  

Previous work using smartphones for indirect geolocation has shown promising results. 

Specifically, smartphones have been shown to use sensor fusion to help alleviate the issues 

caused by the inaccuracy of their sensors. This fusion maximizes the strengths and reduces the 

weaknesses of each sensor to obtain an overall better measurement of location and orientation. 

Fusion methods are continuously improving and changing based on implementation, with one 

such method being the Kalman Filter [Solin et al, 2018]. In addition to sensor fusion, 

smartphones have also been shown to be capable of performing as a mobile mapping system, 
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subsequently utilizing the camera for photogrammetry to determine the location of an object of 

interest [Al-Haman and El-Sheimy, 2014]. Thus, given these examples, smartphones generally 

possess adequate hardware and software necessary to perform indirect geolocation.  

This report explores the feasibility of using two Samsung Galaxy J7 smartphones to 

determine the geographic coordinates of an object of interest not co-located with either 

smartphone. The distance from each device to the object of interest ranges from 20 meters to 

several km, with increasing inaccuracy as the distance becomes larger. A prototype indirect 

geolocation system is presented which consists of two observers with smartphones oriented 

towards an object of interest. A sensor fusion algorithm, an extended Kalman Filter (EKF), is 

presented and implemented, which allows a more accurate estimation of each smartphone’s 

location and orientation, as well as an error estimate of the geolocation solution. Using each 

smartphone location and orientation, a three-dimensional least-squares intersection algorithm is 

used to determine the location of the object of interest. This algorithm is validated through 

several zero-error models and also characterized using Monte Carlo simulations. Lastly, field 

tests were conducted and the entire system was evaluated using real-world data. 
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Chapter 2: Background 

 In this chapter, Section 2.1 introduces the theory of geolocation and its two variations: 

direct and indirect geolocation. As indirect geolocation is the focus of this report, Section 2.1.2 

subsequently discusses the data and processes necessary to perform indirect geolocation. 

Following, Section 2.2.1 details the sensors and data necessary to perform indirect geolocation. 

As these necessary sensors have several sources of error, Section 2.3 introduces the concept of 

sensor fusion. Specifically, this section discusses the implementation of the Kalman Filter, a 

commonly used sensor fusion algorithm, to estimate a more accurate location and orientation. 

Lastly, Section 2.4 presents common methods that can be used to validate and characterize 

models such as a Kalman Filter and an indirect geolocation algorithm.  

2.1 The Theory of Geolocation 

Geolocation is the identification or estimation of the geographic location of an object of 

interest. As defined by this report, there are two different types of geolocation: direct geolocation 

and indirect geolocation. This section discusses these two variations in depth and details the 

calculations that are involved with each.  

2.1.1 Direct Geolocation 

Direct geolocation is the location estimation of an object of interest co-located with a 

measuring device. Represented in Figure 2-1, knowledge of the device’s current location is the 

only necessary requirement to perform direct geolocation.  

 

Figure 2-1: Direct Geolocation of a GPS Receiver 
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As seen in Figure 2-1, direct geolocation uses information transmitted by navigation 

satellites to pinpoint a receiver’s location. There are several systems of navigation satellites that 

exist and they are called Global Navigation Satellite Systems (GNSS). Commonly used in 

applications such as Google Maps on smartphones, direct geolocation applications are abundant. 

More detail describing direct geolocation is provided in Section 2.2.1. 

2.1.2 Indirect Geolocation 

Indirect geolocation is the estimation of the location of an object of interest not co-

located with any measuring device. In order to perform indirect geolocation, knowledge of one 

or more “truth” references of an observer’s location and orientation are necessary. Ordinarily, 

location is obtained using a Global Navigation Satellite System (GNSS) and orientation using an 

inertial measurement unit (IMU). Indirect geolocation consists of finding the distance and 

orientation of an object from one or more observers whose locations are known. Ultimately, 

these three requirements – location, orientation, and distance – can be used to estimate the 

location of the object of interest. 

A method commonly used in robotics is simultaneous location and mapping (SLAM). 

SLAM is a mapping algorithm theory that commonly uses vision, such as a single camera 

mounted to a robot, and properties of that vision, such as the parallax effect, to map the 

surrounding area. Despite its effectiveness though, SLAM has its own flaws. First, 3-D 

implementations are computationally intensive as the algorithms frequently collect a significant 

amount of undesired location points. Second, unless on-board processing is performed, the data 

link used to transfer SLAM data requires a significant bandwidth [Mendes et al, 2016]. 

Therefore, the following subsection will discuss a less computationally expensive two and three-

dimensional indirect geolocation method that does not require a high amount of bandwidth, but 

requires at least two observers.   

Indirect Geolocation Intersection in Two-Dimensional Space 

Two-dimensional (2-D) indirect geolocation uses the 2-D location of two devices and 

each device’s respective heading, or yaw, angle to ultimately calculate a final location using an 

intersection algorithm. Each device is pointed towards an object of interest by an observer, 

known as observer A and B. Both observers’ “line of sight” coplanar vectors ultimately intersect 
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at a point in the distance. As this point is represented in a 2-D plane and only dependent on 

observer location and heading (yaw), the point ultimately represents a 1D intersection. 

Following, is the derivation for the 2-D intersection algorithm. 

Observer A and observer B are pointed towards an object of interest off in the distance. 

Observer A’s position is defined by (XA, YA) and orientation is defined by ϴA with respect to the 

positive x-axis. Observer B’s position is defined by (XB, YB) and orientation is defined by ϴB 

also with respect to the positive x-axis. These six inputs (XA, YA, ϴA, XB, YB, & ϴB) are the 

inputs to the two-dimensional intersection algorithm.  

The system and coordinate axis are shown below in Figure 2-2.  

 

Figure 2-2: Observer A and Observer B Position and Angle Configuration 

 

First, ensure that observer B is always on the positive x-axis in relation to observer A. If 

not, the label for observer A and observer B should be switched to ensure that the correct 

equations are used. Observer B does not have to have a greater Y coordinate than observer A as 

depicted in Figure 2-2. If YB < YA, then the angles ϴA and ϴB will change accordingly and the 

derivation remains the same. 

Next, calculate the vector angle of observer B with relation to the negative x-axis, 𝛳𝐵
𝑂, at 

observer B, shown in Figure 2-3. This value can be found using Equation 2-1 seen below.  
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 𝛳𝐵
𝑂 = 180° − 𝜃𝐵 (Eq. 2-1) 

 

 

Figure 2-3: 𝛳𝐵
𝑂 and Δ Angle Configuration 

 

The BASE distance and angle Δ can be isolated in a triangle seen in Figure 2-4 below. The 

horizontal lines that extend from XB and XA are parallel, so therefore the angle Δ for both 

observers is equivalent due to the alternate interior angles theorem.  

  

Figure 2-4: Isolated Triangle to Calculate BASE and Δ 

 

The BASE distance between observer A and observer B can be found using Equation 2-2 seen 

below.  
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 BASE =  √(XB − XA)2 + (YB − YA)2 (Eq. 2-2) 

 

The angle Δ can then be calculated with trigonometry properties using Equation 2-3 seen below, 

where ΔY and BASE are shown in Figure 2-3.  

 
Δ = sin−1 (

ΔY

BASE
) (Eq. 2-3) 

 

The angle Δ allows for the calculation of the angles ϴA’ and ϴB’ seen in Figure 2-5 below.  

 

 

Figure 2-5: Angles ϴA’ and ϴB’ Configuration 

 

The calculation for each of these angles is seen in Equation 2-4 and 2-5.  

 𝛳𝐴
′ = 𝛳𝐴 −  𝛥 (Eq. 2-4) 

 

 𝛳𝐵
′ = 𝛳𝐵 +  𝛥 (Eq. 2-5) 

 

With these two known angles, the last angle, ϴC, can be calculated using Equation 2-6, because 

the sum of the angles of a triangle is 180o. 

 𝛳𝐶 = 180° − 𝛳𝐴
′ − 𝛳𝐵

′  (Eq. 2-6) 
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Using the law of sines, the distances from observer A and observer B to the intersection point, dA 

and dB, can be calculated for the triangle with sides dA, dB, and BASE. This triangle is shown in 

Figure 2-6 below.  

 

Figure 2-6: Intersection Distance dA and dB Configuration 

 

The following equations can be created using The Law of Sines and they are shown in Equations 

2-7. 

 𝐵𝐴𝑆𝐸

sin(𝛳𝐶)
=

𝑑𝐴

sin(𝛳𝐵
′ )

=
𝑑𝐵

sin(𝛳𝐴
′ )

 
(Eq. 2-7) 

   

Equation 2-7 can then be re-arranged to obtain Equations 2-8 and 2-9 below. These equations 

can then be separately solved for dA and dB respectively using the BASE and angles solved for 

earlier.  

 
𝑑𝐴 = 𝐵𝐴𝑆𝐸 ⋅

sin(𝛳𝐵
′ )

sin(𝜃𝐶)
 

(Eq. 2-8) 

 

 
𝑑𝐵 = 𝐵𝐴𝑆𝐸 ⋅

sin(𝛳𝐴
′ )

sin(𝜃𝐶)
 

(Eq. 2-9) 
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The distance from each observer to the intersection point is the last value needed to solve for the 

intersection point. The intersection point (Xi, Yi) can be calculated using the properties of a right 

triangle and trigonometry functions with respect to observer A. This triangle can be seen in 

Figure 2-7 below.  

  

 Figure 2-7: Right Triangle with Respect to Observer A and Intersection Point 

 

Figure 2-8 below shows how the X component can be analyzed as the difference of the X 

intersection point and observer A X point.  

 

Figure 2-8: X Displacement of Observer A and Intersection Point 
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Equations 2-10, 2-11, and 2-12 show the process of how to find the X intersect point. Equation 

2-10 uses trigonometry of the right triangle to create a ratio of X displacement to distance. 

 
cos(𝜃𝐴) =

𝑋𝑖 − 𝑋𝐴

𝑑𝐴
 

(Eq. 2-10) 

 

The equation can be re-arranged to solve for Xi, the x-coordinate of the intersection point in 

Equation 2-11 and 2-12.  

 (𝑋𝑖 − 𝑋𝐴) =  𝑑𝐴 ∗ cos (𝜃𝐴) 

 

(Eq. 2-11) 

 

 
𝑋𝑖 = 𝑑𝐴 ∗ cos(𝜃𝐴) + 𝑋𝐴 

(Eq. 2-12) 

 

Figure 2-9 below shows how the Y component can be analyzed as the difference of the Y 

intersection point and observer A Y point.  

 

Figure 2-9: Y Displacement of Observer A and Intersection Point 
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Equations 2-13, 2-14, and 2-15 show the process of how to find the Y intersect point. Equation 

2-13 uses trigonometry of the right triangle to create a ratio of Y displacement to distance. 

 
sin(𝜃𝐴) =

𝑌𝑖 − 𝑌𝐴
𝑑𝐴

 
 
(Eq. 2-13) 

   

The equation can be re-arranged to solve for Yi, the y-coordinate of the intersection point, as 

shown through Equations 2-14 and 2-15. 

 (𝑌𝑖 − 𝑌𝐴) =  𝑑𝐴 ∗ sin (𝜃𝐴) 
 

(Eq. 2-14) 

   
 𝑌𝑖 = 𝑑𝐴 ∗ sin(𝜃𝐴) + 𝑋𝐴 

 

(Eq. 2-15) 

 

The resulting (Xi, Yi) point is the intersection point created from the vectors of observer A and 

observer B. As will be discussed in the next section though, additional input data can transform 

this simple scenario into a three-dimensional model of an object of interest. 

Indirect Geolocation Intersection in Three-Dimensional Space 

Three dimensional (3-D) indirect geolocation integrates pitch into the two-dimensional 

method, providing the 3-axis orientation in the Earth frame. Pitch is the only additional 

orientation measurement needed to convert the intersection from 2-D to 3-D because in the Earth 

frame, roll does not have an effect on the orientation vector that is perpendicular from the device. 

The roll rotates around the perpendicular axis, having no effect on the orientation angle. The 

pitch and yaw provide the ability to locate specific points in 3-D space rather than being limited 

to projecting a 3-D world into a 2-D plane. To perform the 3-D calculation, the information of 

each observer’s 3-axis position and 3-axis orientation in the Earth frame are needed. With this 

information, a least-squares pseudo inverse is performed to calculate the 3-D intersection. The 

intersection uses the least-squares method because vectors in 3-D are not likely to intersect. The 

least-squares method calculates the unique point that is equidistant from each vector, and at a 

minimum total distance from all vectors. Following is the derivation of the least-squares 

intersection algorithm for two observers that have a location and an orientation.  
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To begin the derivation of the least-squares intersection algorithm, each 3-D vector can 

be written with a starting point (location) and a unit vector (orientation). These define the starting 

point and direction of each vector. In 3-D space, the starting point, or location, of observer A is 

defined as [𝑥𝐴, 𝑦𝐴, 𝑧𝐴] meters and the starting point of observer B is defined as [𝑥𝐵, 𝑦𝐵, 𝑧𝐵] 

meters. These can be combined into the starting point matrix, 𝑃𝑠𝑡𝑎𝑟𝑡, shown in Equation 2-16.  

 𝑃𝑠𝑡𝑎𝑟𝑡 = [
𝑥𝐴 𝑦𝐴 𝑧𝐴
𝑥𝐵 𝑦𝐵 𝑧𝐵

] (Eq. 2-16) 

 

The variables, [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧] are the components of the unit vector, n, in radians, that must 

be normalized to a magnitude of 1. Equation 2-17 below shows the calculation to normalize the 

unit vector. The resulting vector 𝑢 is the normalized vector. 

 𝑢 =
𝑛

𝑠𝑞𝑟𝑡(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)

 

 

(Eq. 2-17) 

 

The variables, [𝑢𝑥𝐴, 𝑢𝑦𝐴, 𝑢𝑧𝐴] are the components of the normalized unit vector, u, whose 

magnitude is equal to 1 and describe the orientation of observer A. For observer B, 

[𝑢𝑥𝐵, 𝑢𝑦𝐵, 𝑢𝑧𝐵] similarly describe the orientation of observer B.  

 
𝑢 = [

𝑢𝑥𝐴 𝑢𝑦𝐴 𝑢𝑧𝐴

𝑢𝑥𝐵 𝑢𝑦𝐵 𝑢𝑧𝐵
] (Eq. 2-18) 

 

The goal of a least-squares algorithm is to find the point, which minimizes the sum of 

squared distances between the point and a set of lines, to compute an approximate intersection. 

To minimize the distance between a line and potential intersection point, this distance must be 

defined in an equation. The distance, d, from a point on a line, a, with direction vector, u, to a 

point p can be given by Equation 2-19, where I, is the identity matrix.  

 𝑑 = (𝑝 − 𝑎)𝑇(𝐼 − 𝑢𝑢𝑇)(𝑝 − 𝑎) (Eq. 2-19) 
 

Equation 2-19 can then be minimized with respect to point p to produce the least-squares 

solution to the intersection of lines. The sum of squared distances, Dj, from the point aj on line 

with unit vector uj to the point p is defined in Equation 2-20 below, where j is the integer 
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identifier for each line and K is the number of total lines. For simplicity and this project’s 

application, K is equal to 2. 

 
𝐷𝑗 = 𝐷(𝑝; 𝐴, 𝑢) = ∑𝐷(𝑝; 𝑎𝑗 , 𝑢𝑗)

𝐾

𝑗=1

= ∑(𝑝 − 𝑎𝑗)
𝑇(𝐼 − 𝑢𝑗𝑢𝑗

𝑇)(𝑝 − 𝑎𝑗)

𝐾

𝑖=1

 
 
(Eq. 2-20) 

 

The objective is to find the point p that minimizes the distance D equation above, which is shown 

in Equation 2-21. 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 𝐷(𝑝; 𝑎𝑖, 𝑢𝑖) (Eq. 2-21) 

 

This equation consists of the variable, or point, p as a quadratic. By taking the derivative with 

respect to p, Equation 2-20 can be reduced to a linear system of equations, which is shown in 

Equation 2-22. 

 ∂𝐷

∂𝑝
∑𝐷𝑗

2

𝐾

𝑖

=
∂𝐷

∂𝑝
∑[

𝐾

𝑗

(𝑝 − 𝑎𝑗)
𝑇 ∗ (𝑝 − 𝑎𝑗) − [(𝑝 − 𝑎𝑗

𝑇) ∗ 𝑢𝑗]
2] 

 

(Eq. 2-22) 

 

The partial derivative of this equation can be seen in Equation 2-23 below. 

 ∂𝐷

∂𝑝
= ∑[

𝐾

𝑗

2 ∗ (𝑝 − 𝑎𝑗) − 2 ∗ [(𝑝 − 𝑎𝑗)
𝑇 ∗ 𝑢𝑗] ∗ 𝑢𝑗] = 0 

 

(Eq. 2-23) 

 

Equation 2-23 can be rearranged to isolate p and pull it out of the summation, using the 

derivations seen in the LS Line Intersect [Tan, 2015]. The resulting equation can be seen in 

Equation 2-24 below. 

 
∑(𝑝 − 𝑎𝑗)

𝐾

𝑗

= ∑[𝑢𝑗 ∗ 𝑢𝑗
𝑇] ∗ (𝑝 − 𝑎𝑗)

𝐾

𝑗

 
(Eq. 2-24) 

 

With this step, a linear system of equations is produced. Let, 
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𝑅 = ∑[𝑢𝑗 ∗ 𝑢𝑗

𝑇 − 𝐼]

𝐾

𝑗

 

 

 

(Eq. 2-25) 

  

𝑞 = ∑[𝑢𝑗 ∗ 𝑢𝑗
𝑇 − 𝐼] ∗ 𝑎𝑗

𝐾

𝑗

 

 

 

(Eq. 2-26) 

 

With the variables defined in Equations 2-25 and 2-26, Equation 2-24 can be rewritten as 

  

𝑅𝑝 = 𝑞 

 

(Eq. 2-27) 

To solve for p, the system can be solved directly by dividing by R, or taking the inverse, seen in 

Equation 2-28 below. 

  

�̂� = 𝑅−1𝑞 

 

(Eq. 2-28) 

The generalized inverse R-1 has guaranteed existence, but not uniqueness. So, the Moore-

Penrose pseudo-inverse can be used to guarantee uniqueness. When R is nonsingular, the 

pseudo-inverse of R is equivalent to the inverse. Otherwise, the pseudo-inverse, 𝑅†, computes 

the least-squared unique solution that is minimum distance from the point �̂� to every intersecting 

line [Courrieu, 2008]. The resulting equation can be seen in Equation 2-29 below. 

  
�̂� = 𝑅†𝑞 

 

 
(Eq. 2-29) 

To find the matrix R as defined in Equation 2-25, the unit vectors, ui, and identity matrix, I, are 

needed. This matrix calculation can be seen in Equation 2-30 below. 

 

𝑅 = ∑[𝑢𝑗
𝑇 ∗ 𝑢𝑗 − 𝐼]

𝐾

𝑗

= [

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

] 

 
(Eq. 2-30) 
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To find the matrix q as defined in Equation 2-26, the starting points, unit vectors, and identity 

matrix are needed. This matrix calculation can be seen in Equation 2-31 below. 

 
𝑞 = ∑[𝑢𝑗 ∗ 𝑢𝑗

𝑇 − 𝐼] ∗ 𝑎𝑗

𝐾

𝑗

= [

𝑞𝑥𝑥

𝑞𝑦𝑥

𝑞𝑧𝑥

] 
 
(Eq. 2-31) 

 

The intersection point, p, can then be calculated by finding the Moore-Penrose inverse of R and 

q. This intersection point calculation can be seen in Equation 2-32 below. 

 

𝑝 = 𝑅†𝑞 = [

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

]

†

[

𝑞𝑥𝑥

𝑞𝑦𝑥

𝑞𝑧𝑥

] = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] 

 
(Eq. 2-32) 

 

The resulting point p is the least squares intersection point of the vectors.  

2.2 Sensors Required For Indirect Geolocation 

As presented in Section 2.1.2, indirect geolocation systems require the location and 

orientation of multiple reference points, or observers. Known as pose, an observer’s location and 

orientation can be determined using many different sensor systems such as cameras and ultra-

wideband systems [Kok et al, 2017]. For simplicity, however, this report focuses on the Global 

Navigation Satellite System (GNSS) receiver and the inertial measurement unit (IMU) to 

perform indirect geolocation [Gikas and Perakis, 2016]. 

2.2.1 Sensor Physics and Operation 

Global Navigation Satellite System 

A Global Navigation Satellite System (GNSS) consists of several constellations of 

satellites in space continuously transmitting data. Small chip receivers located on Earth can 

receive said data, and ultimately use those data to calculate its position on Earth. While orbiting 

the globe, each satellite specifically transmits information describing itself and the whole 

constellation of satellites. Providing data such as its unique ID, almanac, ephemeris, and time of 

transmission, the satellites help GNSS receivers perform direct geolocation. Ultimately, the 

datum that enables GNSS receivers to determine their location is the time of transmission.  
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The receiver compares the time of transmission to its internal time and calculates the total 

transmission time from satellite to receiver. In this calculation there are many variables taken 

into consideration such as the effects of the atmosphere on the signal transit time. With the total 

transmission time, the GNSS receiver can then determine the distance to each satellite because 

all radio signals travel in a vacuum at the speed of light(300,000 km per second). Equation 2-33 

describes the relationship between the speed of light (c), distance to each satellite (d), and 

transmission time from satellite to receiver (t). 

𝑑 = 𝑐 ⋅ 𝑡 (Eq. 2-33) 

The calculated distance is a pseudo-range because the receiver only knows where the 

satellite is and how far away it is from the satellite. This limited knowledge subsequently creates 

a sphere around the satellite, indicating possible locations for the GNSS receiver. When a 

receiver calculates four or more pseudo-ranges from different satellites, the receiver can then 

perform a process known as trilateration to determine its location on the Earth. Shown in Figure 

2-10, the trilateration method is used to determine a GNSS receiver’s location by finding an 

overlapping region of the potential spherical locations. [Groves, 2013; Djuknic & Richton, 2001]  

 

Figure 2-10: GPS Trilateration with Uncertainty [GISGeography] 

An example of trilateration with four different satellites is shown in Figure 2-10 above. 

Alone, no satellite provides sufficient data for a location solution. When a GNSS receiver 



 
 

28 
 

calculates the distance from each satellite, the receiver is not able to determine its orientation 

with respect to each satellite and therefore could be anywhere on the surface of each sphere. As 

the GNSS receiver collects more satellite data from different satellites, however, an overlapping 

area is found where the surface of these spheres all intersect and thus an estimated location is 

determined. Ultimately, with the data provided by four satellites, a GNSS receiver can estimate 

its location anywhere on Earth. 

Unfortunately, due to sensor inaccuracies, there is uncertainty throughout the system. If 

the receiver’s distance calculation for each satellite has an error of a few meters, that error 

directly affects the receiver’s location calculation. Specifically, the United States government has 

acknowledged this uncertainty and supports findings stating that the GPS error of smartphones is 

± 4.9 meters [van Diggelen & Enge, 2015]. 

Inertial Measurement Unit 

Often paired with a GNSS receiver is an Inertial Measurement Unit (IMU). Although 

there are different variations, an IMU frequently possesses 9 degrees of freedom (9DOF) from 

three sensors each in a 3-axis configuration. Consisting of a 3-axis accelerometer, 3-axis 

gyroscope, and 3-axis magnetometer, the IMU can help create a location and orientation estimate 

of a device if given the proper initial conditions.  

In general, there are two main categories of IMU designs: gimballed and 

microelectromechanical systems (MEMS). Gimballed systems utilize gimbals to isolate the IMU 

from the movement of the attached system. Largely mechanical, these systems offer simplicity 

and accuracy at the cost of size and weight [Li et al, 2013]. On the contrary, MEMS IMUs take 

an intrinsically mechanical action, such as rotation, and generate a corresponding electrical 

signal. Often packaged into systems a few millimeters in size, MEMS technology allows for 

compact sensor implementations, such as those within smartphones. Due to their implementation 

with smartphones, the focus of this report will be on MEMS systems. [Barret, 2014] 

Accelerometers 

 MEMS accelerometers have two main categories: mechanical, but manufactured as 

MEMS, and vibrating element. Mechanically based accelerometers measure the change in 

position of a known mass to determine the forces, and thus, acceleration on that mass. 
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Meanwhile, vibrating element accelerometers, such as surface acoustic wave (SAW) 

accelerometers, utilize a lever arm with a mass on it. When the mass has a force applied to it, the 

lever arm’s resonant frequency changes. Subsequently, by measuring the change in frequency, 

the force applied to that mass can be determined. This implementation is considered more 

accurate and more appropriate for an inertial navigation system [Maenaka, 2008]. An example 

implementation is shown below in Figure 2-11 [Woodman, 2007].  

 

Figure 2-11: MEMS Surface Acoustic Wave Accelerometer Diagram [Woodman, 2007] 

Gyroscope 

A MEMS gyroscope, often called a Coriolis vibratory gyroscope (CVG), contains a 

vibrating mass that allows for the measurement of rotational acceleration, or rate of direction 

change, to be found. This change can be found using Newton’s first law, the conservation of 

momentum: vibrating objects continue to oscillate in the same plane; any deviation from the 

plane can be used to detect a change in direction. When undergoing rotation, the gyroscope 

measures the Coriolis Effect, which states that a mass moving within a rotating system 

experiences an external force called the Coriolis force. This force is perpendicular to the 

direction of motion and to the axis of rotation. An example of a one degree of freedom MEMS 

gyroscope is seen in Figure 2-12 below. [Vu et al, 2011] 
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Figure 2-12: Coriolis Vibratory Gyroscope Diagram [Vu et al, 2011] 

The one degree of freedom describes the independent measurement this device will be 

measuring. Since the z-axis is the rotating axis and measurement to capture, this axis acts as the 

degree of freedom. The driving axis attached to the x-axis is used to vibrate the mass in one 

direction. When an external force perpendicular to the x and y plane occurs, oscillations are 

produced in the y-axis direction through the energy transfer of the Coriolis force. By measuring 

this force, the rate of rotation around the z-axis can be found [Vu et al, 2011]. One IMU typically 

consists of multiple gyroscopes or multiple-axis gyroscopes to capture a movement with 3 

degrees of freedom.  

Magnetometer 

Most MEMS magnetometers utilize the Lorentz force, which is the force exerted by an 

electromagnetic field on a moving charge, or current. Figure 2-13 shows a MEMS magnetometer 

system designed by M. Pierre Courtois at the Université Catholique de Louvain. [Said et al., 

2013] 
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Figure 2-13: MEMS Magnetometer Diagram [Said et al., 2013] 

 When a magnetic field is applied across the central beam, the beam moves proportionally 

in the z-axis. This movement produces a change in capacitance across the finger electrodes on 

both sides of the beam. The strength of the magnetic field is a function of this change in 

capacitance [Said et al., 2013]. 

Determining Orientation with Inertial Measurement Unit Sensors 

Each sensor within an IMU—accelerometer, gyroscope, and magnetometer—is typically 

seen in a 3-axis configuration, taking measurements about the device’s x, y, and z direction. 

Using these measurements, the IMU’s orientation can be found, most often in terms of roll, 

pitch, and yaw [Luinge et al., 2005]. Figure 2-14 below shows how roll, pitch, and yaw are 

typically aligned to each of the three axes.  

 

Figure 2-14: Orientation in the XYZ Plane as Roll, Pitch, and Yaw [FitzGerald, 2015] 
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Each sensor within the IMU provides data that can be used to calculate the device’s pitch, 

roll, and yaw. A gyroscope measures the device’s angular rate. Integrated over time, this 

measurement can determine the device’s angle with respect to an initial orientation [Groves, 

2013]. An accelerometer can be used to measure translational acceleration. This measurement 

can be integrated once with respect to time to produce a 3-axis change in velocity, or twice to 

produce a 3-axis change in position. As the 3-axis accelerometer also measures the constant 

force of gravity, it can be also used to determine the direction of Earth’s gravity vector. By 

knowing the direction of Earth’s gravity vector, or which way is down, the device’s roll and 

pitch can be calculated [Titterton et al., 2004]. A magnetometer can be used to measure the 

device’s relative magnetic field strength and can be calibrated to determine the direction of 

magnetic North. The direction of North can be used to determine the device’s yaw compared to 

North, also commonly referred to as azimuth or heading [Groves, 2013]. Figure 2-15 below 

summarizes the measurement and orientation contribution of each IMU component, with Δ 

meaning, “change in”. 

IMU Component Measurement Uses (3 Axes) Orientation Contribution(s) 

Gyroscope Δ Angle Roll, Pitch and Yaw 

Accelerometer Acceleration 

Δ Velocity 

Δ Position 

Roll and Pitch 

Magnetometer Δ Angle from North Yaw 

Figure 2-15: Measurement and Orientation Contribution of each IMU Component 

2.2.2 Strengths and Weaknesses of Sensors 

Ideally, a GPS and gyroscope paired with an accurate 3-D initial orientation would be the 

only sensors necessary to determine location and orientation. Unfortunately, sensors with high 

accuracy and precision are expensive and not seen in any current smartphone [Jin et al., 2011]. 

Consequently, current smartphone sensors will frequently produce inaccurate device locations 

and orientations without any prior filtering of the measurement data. 

Global Navigation Satellite System 

Although a GNSS receiver can determine an estimated location, it also suffers from 

multiple issues. GNSS receivers typically collect information from satellites at a much slower 

rate than IMUs. Given the sampling rate inconsistencies, the GNSS can produce gaps in 
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coverage between samples. In addition to the coverage gaps, the low power satellite signals can 

be easily disrupted by obstructions, resulting in an inaccurate location or no location estimate at 

all. These obstructions can include tunnels, metal walled buildings, or almost anything that 

prevents the receiver from having a clear view of the sky [Groves, 2013]. 

Inertial Measurement Unit 

IMUs suffer from several problems as well. For gyroscopes, their readings often contain 

significant drift. In order to calculate orientation from angular rate, the gyroscope measurement 

must be integrated. As noise and inaccuracies are commonly present within the measurement, the 

integration of these errors will compound and ultimately create drift. The level of drift varies 

depending on the gyroscope; however, for all systems it grows with time. Thus, due to drift, 

gyroscopes are accurate in determining angular change with short, jerky movements but become 

inaccurate when determining orientation over a long period of time [Madgwick, 2010].  

While gyroscopes are best in short, sporadic movements, accelerometer readings are best 

under static or constant acceleration conditions. Different from drift, accelerometers are subject 

to high levels of noise that can produce inaccurate approximations of roll and pitch. The high 

amount of noise disrupts the short, jerky measurements of the gravity vector and an accurate roll 

and pitch orientation cannot be determined. Contrary to the gyroscope, the accelerometer does 

not deviate over time because no integration is required to produce roll and pitch estimates 

[Sabatini, 2006]. 

Last for the IMU, magnetometer readings are subject to high levels of noise and magnetic 

interference. Magnetic interference is a limitation that can affect accurate yaw orientation in both 

short-term and long-term measurements. The noise affects accurate yaw orientation in the short 

term but does not deviate over time, so measurements in the long term will be accurate if no 

interference is present because there is no integration required [Sabatini, 2011].  

High Performance IMU Compared to Consumer Grade 

A high performance IMU should perform considerably better than a common smartphone 

IMU. Figure 2-16 shows the specifications for VectorNav’s high performance tactical series 

IMU. This IMU is likely used for industrial or military applications and is not targeted towards 

ordinary consumers.  
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Smartphones contain less accurate IMU’s, but smartphones are not intended to be 

extremely accurate due to the broad range of uses and cost; Figure 2-17 shows specifications for 

smartphone accelerometers and gyroscopes in the market today and for the magnetometer in the 

Samsung Galaxy S4. The Samsung Galaxy S4 is chosen because the specific part numbers used 

within the smartphone are publicly available and there are no market specifications on 

magnetometers. The VectorNav IMU has a clear performance advantage over those commonly 

found in smartphones, specifically in the bias and noise specifications for the accelerometer and 

gyroscope. 

IMU Accelerometers Gyroscopes Magnetometers 

Range ± 15g ± 490 o/s ± 2.5 Gauss 

In-Run Bias 

Stability 

< 10 µg < 1 o/hr - 

Noise Density 0.040 mg/√Hz 3.24 o/hr /√Hz 140 µGauss/√Hz 

Figure 2-16: IMU Specifications for VectorNav Tactical Series [VectorNav, 2016] 

IMU Accelerometers Gyroscopes Magnetometers 

Range - - ± 49 Gauss 

In-Run Bias 

Stability 

< 14.3 - 25.3 mg < 21.96 - 33.84 o/hr - 

Noise Density 0.25 - 2.2 mg/√Hz 36 - 216 o/hr /√Hz - 

Figure 2-17: IMU Specification Averages for Various Smartphones [Kos et al, 2016; 

AsahiKASEI, 2013] 

In order to produce an accurate three-dimensional orientation using an IMU, the three 

inertial sensors must be used together in a method called sensor fusion. Sensor fusion algorithms 

take advantage of the complementary strengths and weaknesses of the three sensors to produce a 

more accurate orientation. The gyroscope captures quick, high frequency movements with which 

the accelerometer and magnetometer struggle. The accelerometer and magnetometer capture 

static or low frequency movements, which can prevent drift errors from the gyroscope. This 

fusion results in a more accurate roll, pitch, and yaw orientation with less effect from the 

detrimental sensor errors that are native to hardware solutions. [Sabatini, 2011] 
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2.3 Sensor Fusion 

 Systems dependent on a single sensor commonly suffer from sensor deprivation, limited 

coverage, imprecision, and uncertainties.  Consequently, in an attempt to mitigate the influences 

of these undesired effects, sensors often undergo a process known as sensor fusion: a process in 

which individual sensor strengths are combined in order to mitigate their individual weaknesses. 

Leveraging measurement redundancies and the laws of probability to increase system robustness 

and confidence, sensor fusion creates more optimal system estimates. [Elmenreich, 2002]  

 Many different algorithms perform variations of sensor fusion. For simplicity, this report 

focuses on the Kalman Filter (KF). Specifically, this report discusses two variations of the KF: 

the Linear Kalman Filter (LKF) and the Extended Kalman Filter (EKF). 

2.3.1 The Kalman Filter1 

 Prior to discussing the equations and principles used in the Kalman Filter (KF), it is 

important to get a better understanding of the filter’s purpose. To do so, a hypothetical scenario 

describing the purpose and application of the Kalman Filter is briefly described. Dynamic 

systems, such as the motion of a car for example, may require the knowledge of said vehicle’s 

position and velocity. Referred to as sub-states in this report, these desired system variables are 

arranged into a column vector as seen in Equation 2-34. In the equation, 𝑥𝑘, is a 2-by-1 column 

vector representing the state of the system. Its two specific sub-states, 𝑝𝑘 and 𝑣𝑘, represent the 

unknown position and unknown velocity, respectively. 

 𝑥𝑘 = [
𝑝𝑘

𝑣𝑘
] (Eq. 2-34) 

 

To estimate the car’s current state (i.e., the car’s current position and velocity), many 

algorithms, such as the complementary filter, rely exclusively on sensor data. Analyzing data 

from the GPS receiver and speedometer, which measure position and velocity respectively, the 

algorithm produces an estimation of the vehicle’s current position and velocity. Theoretically, 

such measurement synthesis algorithms like the complementary filter provide accurate state 

                                                 
1
 Information describing the principles and equations of the Kalman Filter came from the following sources: [Feng 

et al, 2017], [Groves, 2013]. 
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estimates. Realistically, however, sensors are prone to inherent biases, scaling errors, axial 

misalignments, noise, and other undesirable features; all of which corrupt the legitimacy of their 

readings. Consequently, filters, such as the complementary filter, are heavily reliant on data 

which can be potentially corruptible. 

 In an attempt to increase the robustness and accuracy of its state estimations, the Kalman 

Filter uses two different models to describe the dynamics of the system. Similar to the 

complementary filter, one of the models used by the Kalman Filter is the measurement model. In 

order to supplement the measurement model, however, the KF also uses a process model. 

Designed to represent the theoretical propagation of the state (i.e., car’s position and velocity) 

with respect to time, the process model uses equations that represent the dynamics of the state. 

Thus, leveraging all possible knowns, the KF is capable of calculating an optimal state estimate. 

[Kok et. al, 2017] 

The fundamental principles of the KF are modeled in Equations 2-35 to 2-40. The first 

stage of the KF, the prediction of the state 𝑥𝑘
−, is shown in Equation 2-35. Specifically, this stage 

is known as the a priori phase. 

 𝑥𝑘
− = 𝐴𝑘−1�̂�𝑘−1 (Eq. 2-35) 

 

In this first step, as modeled by Equation 2-35, the KF creates an initial guess of the 

current state. Based on the previous timestep’s optimized state estimate, �̂�𝑘−1, the filter 

propagates the previous estimate with an N-by-N transition matrix, 𝐴𝑘−1 (where N represents the 

number of sub-states). Designed to represent the theoretical dynamics of the state, the 

conventional transition matrix contains a linear system of equations describing the system’s 

theoretical behavior. Ultimately, by propagating the best previous estimate with the appropriate 

dynamic equations, a new guess of the current state can be made.  

As each iteration of the KF is an estimation, there is a corresponding uncertainty with 

each approximation. Modeled as an N-by-N covariance matrix, this uncertainty parameter 

represents external uncertainties, system noise, and all other parameters that might alter the 

legitimacy of the estimate. Specifically, the covariance matrix helps determine the variance of 
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each sub-state and the correlation between all sub-states. Further explanation of the a priori 

covariance matrix can be seen in Equation 2-36.  

 𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄𝑘−1 (Eq. 2-36) 

 

 The a priori covariance matrix estimate, 𝑃𝑘
−, is a function of the transition matrix from 

Equation 2-35, the previous timestep’s optimized covariance, 𝑃𝑘−1, and a process noise 

parameter, 𝑄𝑘−1. Just as the state vector, �̂�𝑘−1, undergoes its own propagation in Equation 2-35, 

its corresponding covariance matrix, 𝑃𝑘−1, must undergo its own propagation. As seen by the pre 

and post-multiplication of 𝑃𝑘−1 by the transition matrix, this propagation shows the change in the 

state covariance matrix with respect to time. Due to the presence of 𝑄𝑘−1, however, the a priori 

covariance estimate must also model an additional parameter, the process noise. Used to 

represent the increasing uncertainty due to the absence of data in between discrete-time sampling 

periods, the addition of 𝑄𝑘−1 ensures that the a priori covariance estimate is either equivalent or 

greater than the previous timestep’s optimized value �̂�𝑘−1. 

 Having used Equations 2-35 and 2-36 to create initial estimates for both the state vector 

and its covariance matrix, the process model portion of the Linear Kalman Filter is complete. For 

maximum accuracy, however, the Kalman Filter now implements its measurement model. While 

the process model from Equations 2-35 and 2-36 was based on theory such as the laws of 

kinematics, the measurement model is based on actual sensor measurements. A means of 

providing tangible data and a different perspective to the state estimate, the measurement model 

helps update and optimize the a priori state and covariance estimates.  

 The implementation of the measurement model is represented by Equation 2-37. Using 

the a priori state estimate previously generated by Equation 2-35, the measurement model 

attempts to predict the values that the sensors will measure. As the monitored sub-state 

parameters may differ from the parameters measured by the sensors, the measurement model 

also uses a measurement relationship matrix, 𝐻𝑘. A means of connecting the state estimates to 

the measurement data, this linear matrix helps conjoin the two different models.  

 𝑧𝑘 = 𝐻𝑘𝑥𝑘
− (Eq. 2-37) 
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With the measurement model implemented, Equation 2-38 can be performed to compute the 

Kalman gain. Acting as the weighted component to the filter, the Kalman gain updates 

recursively to determine which of the two models is more trustworthy.  

As seen in Equation 2-38, the Kalman gain is a ratio of covariance matrices represented 

by 𝑃𝑘
− and 𝑅𝑘. 𝑃𝑘

−, as described by Equation 2-36, represents the a priori covariance value for 

the system. Representative of the process model’s current estimate of uncertainty, this value 

indicates the trustworthiness of the system prior to the input of the measurement model. In order 

to represent the influence of the measurement model, 𝑃𝑘
− is propagated by the measurement 

matrix 𝐻𝑘. Given the imperfect nature of sensors, however, an additional term is added as a 

covariance matrix to embody sensor error. This term, 𝑅𝑘, is an N-by-N matrix that embodies the 

variances of each sensor. For simplicity, a hypothetical 3-by-3 measurement noise covariance 

matrix, 𝑅𝑘, is provided with Equation 2-38. Representative of the covariance matrix of a tri-axial 

sensor, this matrix identifies the variance of each sensor axis, while also indicating zero 

correlation between the axes. 

 
𝐾𝑘 = 

𝑃𝑘
−𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘

 
(Eq. 2-38) 

   
where, 

              𝑅𝑘 = [

𝜎𝑥𝑥
2 0 0

0 𝜎𝑦𝑦
2 0

0 0 𝜎𝑧𝑧
2

] 

As seen by Equation 2-38, the Kalman gain is calculated as a function of uncertainty. 

Based entirely on the system’s covariance matrices, the gain determines how much of each 

model (process and measurement) the system should trust to create an optimized state estimate.  

Having calculated the Kalman gain, the input from the process and measurement models 

can be appropriately filtered. As seen in Equation 2-39, the Kalman gain value, 𝐾𝑘, weighs 

between the actual measurement values, �̂�𝑘, and the theoretical measurement values, 𝐻𝑘𝑥𝑘
−. 

Known as the measurement residual, the difference between these two values is weighted by the 

gain and then added to the a priori state estimate, 𝑥𝑘
−, to create an optimized a posteriori state 

estimate, �̂�𝑘.  
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 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(�̂�𝑘 − 𝐻𝑘𝑥𝑘

−) (Eq. 2-39) 

 

 Lastly, having optimized the system’s state estimation, the system’s covariance 

estimation must also be optimized. Using the same Kalman gain value, 𝐾𝑘, the measurement 

matrix, 𝐻𝑘, the a priori covariance matrix, 𝑃𝑘
−, and an N-by-N identity matrix, 𝐼, the a posteriori 

covariance matrix, 𝑃𝑘, can be calculated as seen in Equation 2-40.  

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (Eq. 2-40) 

2.3.2 The Extended Kalman Filter2 

 The extended Kalman Filter (EKF) operates using the same principles as modeled by the 

conventional, or linear Kalman Filter from Equations 2-35 through 2-41. Unlike the simpler 

linear Kalman Filter, however, the EKF is designed to approximate nonlinear system models. 

Using both a process model and a measurement model to create a refined state estimation, the 

EKF utilizes Bayesian estimation principles.  

 In order to create an optimal state estimate of a nonlinear system, the EKF operates using 

a nonlinear state model. Additionally, the filter assumes that all process and measurement noise 

is zero-mean Gaussian and that the measurement noise is additive. Similar to the Kalman Filter 

description in Section 2.3.1, the EKF has both a prediction step and an update step. The 

prediction step of the EKF is modeled by Equations 2-41 and 2-42. Very similar to Equations 2-

35 and 2-36 of the linear Kalman Filter, the EKF predicts its next state and covariance using a 

process model and its most recent state and covariance values. Unlike Equations 2-35 and 2-36, 

however, the process model that describes the state space of the system is nonlinear. The a priori 

estimate, shown in Equation 2-41, uses the non-linear model 𝑓𝑘−1 instead of the linear system 

model 𝐴𝑘−1. 

 𝑥𝑘
− = 𝑓𝑘−1(�̂�𝑘−1) (Eq. 2-41) 

 

                                                 
2
 Information describing the principles and equations of the Extended Kalman Filter came from the following 

sources: [Feng et al, 2017], [Kok et al, 1997], [Groves, 2013]. 
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 As seen in Equation 2-41, the a priori state prediction, 𝑥𝑘
−, is a function of the previous 

time step’s state estimate,  �̂�𝑘−1. Then, written in function notation to express the nonlinearities 

of the system model 𝑓𝑘−1, Equation 2-41 has the previous state estimate undergo nonlinear 

propagation.  

 𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝑄𝑘−1 (Eq. 2-42) 
 

where, 

 
𝐹𝑘−1 =

𝜕𝑓𝑘−1(�̂�𝑘−1, 𝑤𝑘−1)

𝜕𝑥𝑘−1
|𝑤𝑘−1 = 0 (Eq. 2-43) 

 

 Above, 𝑤𝑘−1 is defined as the process noise. Having created an a priori state estimation 

using a nonlinear function, the next step is the calculation of the a priori covariance matrix. 

Unlike the equivalent operation for the LKF, however, this calculation, as seen in Equation 2-42, 

is more complicated. In order to propagate the previous time step’s covariance matrix, 𝑃𝑘−1, the 

nonlinear system function must be temporarily linearized. As seen in Equation 2-43, the 

transition matrix, 𝐹𝑘−1, is calculated by taking the Jacobian of the nonlinear state function. Thus, 

by linearizing the process model about the most recent time step’s optimal state estimation, �̂�𝑘−1, 

a transition matrix similar to that of Equation 2-35 can be calculated.              

 Having theorized the next state and covariance values using the nonlinear process model, 

the system next incorporates the measurement model. Similar in principle to Equation 2-37 from 

the LKF, the measurement model of the EKF creates an estimate as to what the measured sensor 

values, 𝑧𝑘, will be based on the a priori state estimate, 𝑥𝑘
−. Unlike Equation 2-37 though, the 

measurement model, as expressed in Equation 2-44, can be nonlinear in nature. Thus, function 

notation is used to describe the potentially nonlinear nature of the measurement model due to 

measurement relationship function, hk. 

 𝑧𝑘 = ℎ𝑘(𝑥𝑘
−) (Eq. 2-44) 

 

 With the implementation of the measurement model, the Kalman gain can be computed. 

Using the same principles as those used for the LKF, the Kalman gain of the EKF is calculated 

as a ratio of covariances. In order to propagate the a priori covariance matrix, 𝑃𝑘
−, with the 
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measurement model, however, the nonlinear measurement model must be linearized. Thus, 

undergoing the process shown in Equation 2-45, the Jacobian of the measurement model, 

Equation 2-46, function is taken in order to compute the Kalman gain, 𝐾𝑘. 

 
𝐾𝑘 = 

𝑃𝑘
−𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘

 

 
where, 

 

𝐻𝑘 = 
𝜕ℎ𝑘(𝑥𝑘

−)

𝜕𝑥𝑘
−  

 

 
(Eq. 2-45) 
 
 
 
 
(Eq. 2-46) 

   
Finally, with the weighing factor calculated, the EKF can create optimized state and 

covariance estimates. Using the same equation for the a posteriori state estimate as seen with the 

LKF (Equation 2-47), the EKF weighs the difference between the actual measurement values, �̂�𝑘, 

and their theoretical values, ℎ𝑘(𝑥𝑘
−). Indicating the level of trust the system has in the process 

and measurement models, this weighted residual is then added to the a priori state estimate, 𝑥𝑘
−, 

to ultimately compute an updated state estimate, �̂�𝑘. 

 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(�̂�𝑘 − ℎ𝑘(𝑥𝑘

−)) (Eq. 2-47) 

 

 Following the same principles as outlined in the LKF, execution of Equation 2-48 

computes the updated a posteriori system covariance matrix. 

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (Eq. 2-48) 

 

2.4 Model Validation and Evaluation 

 This report discusses the design of intersection algorithms and a Kalman Filter. In 

practice, it is important to validate and characterize the performance of algorithms and filters 

before they are implemented into the real-world. This section first presents the zero-error model, 

which is used to prove that an algorithm performs as expected when given a scenario with no 

errors. This proof is known as validation. Second, the Monte Carlo simulation is introduced, 

which introduces error distributions to systems, so that the system performance can be 

characterized.  
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2.4.1 Zero-Error Model for Validation 

 A zero-error model is used to characterize the performance of an algorithm when no 

errors are introduced into the system. This model is important because ultimately the system will 

need to be characterized when errors are introduced. When that error propagates throughout the 

system, the evaluator has to be confident that the output error can be attributed solely to the input 

error and not a mistake in the algorithm. As such, a zero-error model removes variables and 

ambiguity from the equation. An extremely simple case is the algorithm for determining a point y 

on a line, given an input x and characteristics of that line, shown in Equation 2-49. 

 y = mx + b (Eq. 2-49) 
   

 The output can be defined as y. Meanwhile, the input is x, with m and b acting as 

constants that characterize the line. To create a zero-error model, first these variables must be 

defined, for example:  

 m = 1 

 b = 1 

 x = 5 

Analytically, the output y is determined by creating an analytical model and algebraically solving 

for the point on the line. First, a triangle with the expected result is shown in the top right corner 

of Figure 2-18. The result is shown as the point (x3, y3). The y-intercept of the line is shown as 

(x1, y1) and the point to form a right triangle between the two points is shown as (x2, y2).  
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Figure 2-18: Line Analytical Model 

 

 
𝑚 = 

Δ𝑦

Δ𝑥
 (Eq. 2-50) 

   
When Equation 2-50, the slope equation, is solved for m = 1, it is shown that Δx = Δy. 

Consequently, this means the triangle shown in Figure 2-18 is an isosceles right triangle, where 

the side parallel to the x axis is equal in length to the side parallel to the y axis. Since Δx is equal 

to five, Δy must also be equal to five due to this property. Then, five is added to the initial x1 

value of 0, and to the initial y1 value of 1 to get the result of a point at (5, 6). Now, that result is 

compared to the algorithm implemented into MATLAB and Figure 2-19 shows the algorithm 

solution and it is shown to be (5, 6) as well.   
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Figure 2-19: Zero-Error Model of a Line 

 This zero-error modeling process can be extended to more complicated algorithms to 

ensure that the algorithm functions as expected in zero error conditions. A zero-error model also 

does not have to consist of one case. Often, varieties of cases are tested to examine bounds and 

otherwise increase the evaluator’s confidence that their algorithm is correct.  

2.4.2 Monte Carlo Simulation for Evaluation 

 In the real world, measurement errors exist. Despite knowledge of their existence, 

however, it is often difficult to quantify the influences of these errors when developing an 

algorithm.  As a result, this report utilizes techniques that introduce simulated errors as input 

uncertainties into a system to characterize system performance in the presence of errors without 

the complications of testing in the real world. A Monte Carlo simulation is one such technique, 

which commonly uses the Gaussian distribution to model input errors.  
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Gaussian Distribution 

 A Gaussian distribution, also known as a normal distribution, is one of the most 

commonly known probability distributions. As represented by its histogram in Figure 2-20, the 

standard Gaussian distribution has zero mean and a standard deviation of one.  

 

Figure 2-20: Zero-Mean Gaussian Distribution 

By varying the standard deviation, different distributions can be created that produce errors of 

different magnitudes.  

 The standard deviation (𝜎) defines the percentage of values that will fall within a certain 

range. One-𝜎 is the percentage of values that fall between −𝜎 and +𝜎 from the mean of the 

distribution. For a normal distribution, that percentage is 68.2%. Two-𝜎 is the percentage of 

values that fall between −2(𝜎) and +2(𝜎) from the mean of the distribution, which is 95.4%. 

Similarly, three-𝜎 is 99.7% of values. As the value of 𝜎 increases, the percentage of values that 

fall within that range does as well. [Dowdy et al, 2004] 

 The ability to choose a standard deviation that will introduce errors of a likely magnitude 

into a system is very useful. For example, as shown in Section 2.2.1, GPS has an error of 
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approximately ± 5 meters. To create a zero-mean normal distribution in which 95.4% of errors 

will fall within ± 5 meters, the standard deviation must equal five divided by two, or 2.50 meters.  

Monte Carlo Simulation Architecture 

A Monte Carlo simulation introduces a distribution of errors, or uncertainties, into a 

model iteratively and characterizes the overall performance. The simulation allows the mapping 

of input uncertainties to output uncertainties, sometimes allowing a closed-form solution to be 

found. The Monte Carlo simulation ultimately allows the characterization of an algorithm’s or 

system’s performance.  

 The architecture of a Monte Carlo simulation is very simple. First, there must be a model 

to simulate, with a corresponding dataset for the inputs to the model. Second, there must be an 

error distribution. This distribution is often a Gaussian distribution. The scenario is then run in a 

loop, each time errors are applied to the system inputs from the error distribution. This process 

ensures that over the length of the Monte Carlo simulation a Gaussian distribution of errors was 

applied. The output can then be characterized with those inputs errors. 

Monte Carlo Example Implementation 

 Following the aforementioned example of the zero-error model of a line, error is now 

introduced into the system. With x defined as the input, a zero-mean, independent Gaussian 

distribution with a standard deviation of 0.50 is applied the x variable. The resulting output y is 

shown for 1000 iterations as small circles in Figure 2-21. 
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Figure 2-21: Monte Carlo Simulation of Line Model 

 The distribution of y is seen following the line model. There is a higher concentration in 

the middle centered on an x-axis value of five. The input uncertainty and output uncertainty 

relationship can also be determined. When calculated, the standard deviation of the distribution 

of y is found to be 0.50. This result is the same as the standard deviation of the input, as the 

closed-form error solution can be made for this scenario, shown in Equation 2-51. 

 𝜎𝑦 = 𝑚 ⋅ 𝜎𝑥 (Eq. 2-51) 

   
 Being able to predict the output standard deviation given an input standard deviation is 

very useful when transitioning to a real-world application where it is time consuming and 

difficult to iteratively test a system to characterize its performance.  
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Chapter 3: Preliminary Work Related to Project 

Two group members worked on the early stages of this project during a summer research 

internship at MIT Lincoln Laboratory. During this time, the members researched the theory of 

indirect geolocation and acknowledged flaws in current systems. Keen to utilize a system that 

could perform accurate indirect geolocation, while still cheap and flexible in application, the two 

group members studied the feasibility of using smartphones for indirect geolocation applications. 

Equipment and Process 

 For security reasons at the Laboratory, the group members were unable to use a 

smartphone for testing purposes while at the Laboratory. Consequently, the team created a 

customized testing approach. Acting as a smartphone surrogate, the team utilized a 

microcontroller equipped with multiple accelerometers, gyroscopes, magnetometers, a GPS 

receiver, and no camera. Readily available at the lab, while also encompassing the cheap inertial 

and location sensors found within smartphones, the microcontroller was an acceptable surrogate 

for testing. As the microcontroller possessed different data-link possibilities compared to a 

smartphone, the team performed post-processing algorithms for simplicity. Using a micro SD 

card to store all sensor data, the team performed two tests to represent the two observers. The 

data would then be brought to a master PC which would perform all necessary parsing and 

testing. 

Sensor Fusion 

 In order to optimize location and orientation estimates of the microcontroller sensors, a 

series of sensor fusion algorithms were tested. The first method of sensor fusion was a 

Madgwick Filter. Entirely open-source, the Madgwick Filter operated as a complementary filter. 

Much simpler to implement than a Kalman Filter, the Madgwick Filter utilized the different 

effective frequency ranges of sensors to create an optimal estimate. For example, the 

accelerometer was most accurate in the low frequency range, while the gyroscope was most 

accurate in the high frequency range. As these ranges complemented one another, the 

complementary filter combined the two measurements to create an optimized value estimate. 
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 Although simple to implement, the complementary filter had significant flaws. Unlike the 

Kalman Filter, the complementary filter relied solely on measurement data. Thus, the absence of 

a process model meant that the complementary filter was less stable. Additionally, the 

complementary filter did not keep track of an error covariance matrix like the Kalman Filter. As 

a result, it became much more difficult to track the uncertainty of the estimates. 

 Having experimented with the complementary filter, the two group members began to 

focus on variations of the Kalman Filter. As the estimation of pose was inherently nonlinear, the 

members could not use the linear Kalman Filter (LKF) to create a state estimate. Instead, the 

team focused on using an extended Kalman Filter (EKF) due to its easier implementation and its 

non-linear estimation. Less complicated to implement than Kalman Filter alternatives like the 

Unscented Kalman Filter (UKF) and still capable of producing accurate results, the EKF was 

most appropriate for implementation in a smartphone surrogate.  

 The EKF used by the team was modeled by the algorithm proposed by Kaiqiang Feng, et. 

al. [Feng et al, 2017]. Utilizing the same EKF principles as described in Section 2.3.2, the 

algorithm based the process model on the gyroscopic measurements.  

Having created the process model, the measurement model was entirely dependent on the 

accelerometer, magnetometer, and most recent state estimate. Using a principle known as “Two-

Step Geometrically Intuitive Correction,” the measurement model uniquely was not linearized. 

Instead, the measurements received geometric corrections based on their actual values and their 

theoretical values. Representing the measurement as a four-dimensional quaternion, in order to 

avoid “gimbal lock” and singularities, the measurement values underwent the correction process 

described below.   

The theoretical unit vectors for the body’s gravity and magnetic field were calculated 

using the current time-step quaternion rotation matrix and the Earth frame gravity and magnetic 

field vectors. Having created the values that the sensors should theoretically measure, the filter 

then created unit vectors of the actual measurement values. Using the laws of the dot product, the 

differential angle between the theoretical and actual measurement values was subsequently 

calculated. Following, by using the laws of the cross product, the rotation axis common to both 

pairs of vectors was found. Ultimately, by finding the error written as a quaternion and then 

performing quaternion multiplication, the corrected measurements were calculated. 
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By separating the effects of magnetic distortion from the accelerometer, this correction 

method helped create more optimal roll and pitch measurements. More important, however, was 

the increased computation efficiency experienced due to the simplification of the Kalman Filter 

model. Ultimately, such sensor fusion created a more optimal 4D quaternion orientation 

estimate. 

Intersection 

Using the determined observer orientations, the next stage of the indirect geolocation 

process was vector intersection. Due to time constraints, the team designed an intersection 

algorithm in two-dimensional (2-D) space that found the single intersection point between two 2-

D vectors. Looking at the surface of the Earth in a planar sense, the team ignored any effects due 

to the Earth’s curvature. Creating “observation vectors” indicative of each observer’s orientation, 

the algorithm extended these vectors until they intersected with one another. The algorithm then 

determined this intersection point in both a Latitude, Longitude, Altitude (LLA) reference frame 

and an Earth-Centered Earth-Fixed (ECEF) reference frame.. In order to ensure intersection, the 

vectors were coplanar with the intersection surface, as well as, non-parallel and non-antiparallel. 

Resultantly, the altitude of both observers was assumed to the same as the altitude of the 

intersection point. 

Results 

One of the proof of concept experiments conducted over the summer is modeled as in 

Figure 3-1. In this experiment observer A and observer B both pointed themselves towards a 

radar dish on the roof of a building on the MIT Lincoln Laboratory campus. The distance to the 

radar dish was 78 meters and the distance between observers was 50 meters. The location and 

orientation of observer A and B was recorded and the 2-D intersection was found throughout the 

test.  

The red central dots for both observers show their estimated locations from the GPS 

receiver. Meanwhile, the blue central dot next to the object of interest shows the estimated 

location from the 2-D intersection algorithm. The ellipsoids around observer A, observer B, and 

the intersection represent each entity’s respective sigma uncertainty value for location. Sigma 

uncertainty is the confidence for the measurement, in this case, location assuming Gaussian 
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distributed errors. The smallest ellipse indicates that there is 68.2% confidence that the location 

lies within that circle. The second smallest ellipse indicates a similar 95% confidence. The last 

ellipse shows 99.7% confidence.  

  

Figure 3-1: Testing Result using Surrogate Smartphones 

Conclusions 

 The preliminary work performed for this project provided great intuition for future work. 

Familiarizing two of the team members with the nuances of the Kalman Filter and the difficulties 

of mass data analysis, the work helped the team avoid potential pitfalls. Additionally of 

importance is the proof of concept provided by this experimentation. Although the system used 

was not a smartphone, it possessed many of the qualities present within a smartphone. Obtaining 

an answer within the two sigma bounds, although not as optimal as desired, showed the 

plausibility of leveraging smartphones to perform indirect geolocation. Thus, this work helped 

inspire future work, while identifying the feasibility of the task.  



 
 

52 
 

Chapter 4: Kalman Filter Design and Algorithm Validation 

In this chapter, both the design of the Kalman Filter and the validation of the intersection 

algorithms are presented. The extended Kalman Filter design section consists of the construction 

and implementation of the pre-filtering and filter state equations. Then, the two-dimensional and 

three-dimensional algorithms are both validated by comparing hand analysis to zero-error model 

algorithms created in MATLAB. 

4.1 Designing the Extended Kalman Filter 

 In order to achieve an optimal state estimate of orientation, an extended Kalman Filter 

(EKF) manipulated data from the gyroscope, magnetometer, and accelerometer. 

Pre-filtering: 

 Prior to entering the Kalman Filter, the raw gyroscope, magnetometer, and accelerometer 

data underwent a pre-filtering and calibration stage. The first step of the stage was NaN 

correction.  

NaN Correction: 

While testing, it was determined that the gyroscope, magnetometer, and accelerometer 

produced NaNs, or Not-a-Number values for approximately 2 percent of all data. Most likely due 

to some periodic processing algorithm done by the phone, the existence of these NaN values did 

little to corrupt the legitimacy of the signal. Unfortunately, as such values were often unreadable 

by MATLAB, however, their presence often threatened divergence with the extended Kalman 

Filter (EKF). Consequently, in order to ensure system functionality, NaN elimination was 

performed using smoothing. 

 The smoothing method replaced each NaN with the most recent time-step’s non-NaN 

value. As the frequency of NaN occurrences was low with respect to the sampling rate and 

dynamics of the tests, this method of smoothing did not have a significant effect on the data. Had 

the frequency of NaNs been greater, however, such smoothing could have skewed data metrics. 
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Low-pass Filtering of the Accelerometer and Magnetometer 

 After undergoing NaN correction, the data next went through low-pass and high-pass 

filters. As prior stated in Section 2.2.2, the accelerometer, magnetometer, and gyroscope were all 

prone to sensor errors. Especially prevalent in cheaper units, such as those within smartphones, 

sensor errors often consisted of noise, sensor drift, sensor bias, sensor misalignment, sensor 

perpendicularity, and external distortion effects. Although subject to all errors, the accelerometer 

and magnetometer present within the phone were most prone to high frequency noise. Thus, in 

order to help eliminate some of the high frequency noise, data from both the accelerometer and 

magnetometer were passed through a fourth-order Butterworth low-pass filter with a cut-off 

frequency of 25 Hz.  

High-pass Filtering of Gyroscope 

A different procedure was used to better filter the gyroscope data. Naturally, as explained 

in Section 2.2.2, the gyroscope did not suffer from the same high frequency noise effects as did 

the accelerometer and magnetometer. Instead, the gyroscope was susceptible to low frequency 

noise. Due to the fact that the gyroscope measured angular rate and not orientation directly, all 

sensor inaccuracies by the gyroscope were integrated. A phenomenon known as drift, the 

orientation estimate generated by gyroscope integration increasingly diverged from truth over 

time in the presence of noise. An error function with respect to time, the presence of drift 

corrupted gyroscope measurements within seconds if left uncorrected. Thus, in order to mitigate 

the effects of gyroscopic drift by means of low frequency noise, all gyroscope data were first 

passed through a fourth-order Butterworth high-pass filter with a cut-off frequency of 0.001 Hz.  

Magnetometer Calibration: 

 Having performed pre-filtering of the three sensors and NaN correction, the final stage 

prior to implementing the EKF was sensor calibration. The magnetometer, a device essential for 

establishing heading, measured Earth’s ambient magnetic field strength. When used in an 

environment absent of hard and soft iron materials, the magnetometer could very accurately 

measure the ambient magnetic field strength. Unfortunately, when exposed to magnetic 

interference, the magnetometer was unable to differentiate between Earth’s magnetic field and 
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distortion. As such, the magnetometer had to be corrected for both a translational offset and an 

inaccurate scaling using a transformation matrix and scaling matrix, respectively. 

 In order to get a better understanding of the errors for the Galaxy J7 smartphone’s 

magnetometer, two pre-calibration tests were performed. For the first test, a data sweep was 

performed. Conducted in an outdoors environment away from potentially magnetic material, it 

was assumed that the only magnetic interference present was from the other hardware 

components within the phone (hard iron distortion). The data sweep consisted of the phone 

continuously changing orientation so that it had theoretically pointed in every direction while 

testing. From the data sweep, the magnetometer readings as seen in Figure 4-1 were created.  

 

Figure 4-1: Uncalibrated Magnetometer Data Sweep 

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT) 
Mean 31.4669 12.3527 -43.1674 
Range 103.0050 101.3990 101.6740 

Figure 4-2: Uncalibrated Magnetometer Data Sweep Metrics 

 As seen in Figure 4-1 and Figure 4-2, the data sweep created a roughly spherical 

distribution. Supportive of a uniform scaling, this spherical distribution indicated little to no soft 

iron distortion. In addition to the distribution, the range of the values with respect to each axis 

further supported the theory that the scaling matrix was uncorrupted. As the magnetic field 

strength of the Earth ranges from approximately -50uT to 50uT depending on orientation, these 

values supported a pure scaling matrix. This matrix, however, is only an estimate because the 

true scaling matrix is unknown.  
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 Despite the seemingly accurate scaling matrix, the distribution did appear to have some 

error. As can be seen in the offset from the origin from Figure 4-1, as well as the mean values 

from Figure 4-2, the data distribution experienced a translational error. Indicative of a hard iron 

bias, such error was likely due to magnetometer biases and the surrounding hardware within the 

phone. Fortunately, such bias was easily corrected with a linear translation. 

 In order to better understand the performance of the magnetometer in a non-ideal 

environment, the second test introduced magnetic interference into the system. The same data 

sweep was performed as in the first test; however, an audio speaker was placed near the phone. 

Indicative of a less controlled environment experiencing magnetic distortion, this test specifically 

targeted the axial scaling abilities of the magnetometer. Figure 4-3 illustrates the magnetometer 

data. 

 

Figure 4-3: Uncalibrated Magnetometer Data Sweep With Interference 

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT) 
Mean 17.3791 12.3527 -43.1674 
Range 190.1250 176.2500 126.7490 

Figure 4-4: Uncalibrated Magnetometer Data Sweep With Interference Metrics 

 Evident in Figures 4-3 and 4-4, the presence of magnetic interference severely corrupted 

the accuracy of the distribution. As seen by the “egg” shape of the data distribution and the 

dramatic increase in range values, the scaling matrix of the magnetometer was altered. The 

presence of hard iron effects additionally varied the linear offset experienced by the data. Of 

most importance, however, was the distortion of the scaling matrix due to soft iron effects. 
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 Having established the need to correct for magnetic offset and more specifically scaling, 

the magnetometer data underwent a calibration. In order to convert the point cloud of data, as 

seen in Figure 4-3, into a three-dimensional geometric shape, the data first underwent a spherical 

fit. Specifically, this fit helped characterize the distribution of the point cloud.  

 With the center, radii, and eigenvectors of the point cloud determined from the spherical 

fit function, the data then received its first adjustment, where the center was shifted as shown in 

Equation 4-1.   

Magnetometer_x – Center_x = New_Magnetometer_x(i) 

             Magnetometer_y – Center_y = New_Magnetometer_y(i)      (Eq. 4-1) 

Magnetometer_z – Center_z = New_Magnetometer_z(i) 

 With each axial array of data adjusted by the scalar offset of the data distribution, a 

linearly translated data sweep was generated as seen in Figure 4-5. Much closer to the origin, as 

can be seen by the mean values of Figure 4-6, this translation helped accounted for some of the 

offset due to hard iron effects. 

 

Figure 4-5: Translation of Offset Magnetometer Data 

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT) 
Mean -9.4204 -3.3177 -5.6302 
Range 190.1250 176.2500 126.7490 

Figure 4-6: Translation of Offset Magnetometer Data Metrics 
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 With most of the hard iron effects corrected, the next step was the calibration of the 

scaling matrix. Using the calculated radii from the spherical fit, a new scaling matrix was 

created. Then, using the eigenvectors, a transformation matrix was created in order to map the 

spherical axes to the coordinate system. Ultimately, by multiplying the new scaling matrix with 

the transformation matrix, a final fully compensated matrix was created. 

 As seen in Figures 4-7 and 4-8, the new matrix centered the sphere very close to the 

origin. The data still experienced a slight offset due to assumptions made by the spherical fit 

algorithm; however, such offset was negligible in comparison to the previous offset values. Of 

more importance was the correction of the shape of the data distribution. Possessing much more 

of a spherical shape as opposed to the “egg” shape from earlier, the scaling matrix helped 

compensate for the distortion effects of soft iron. Furthermore, the scaling matrix also helped 

reduce the range of each axis to values closer to the range of Earth’s magnetic field strength. 

 

Figure 4-7: Fully Calibrated Magnetometer Data Sweep 

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT) 
Mean -0.2942 -2.3870 -2.6020 
Range 126.5507 108.9374 108.6303 

Figure 4-8: Fully Calibrated Magnetometer Data Sweep Metrics 
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Gyroscope Calibration: 

Meanwhile, for the gyroscope, the calibration was much simpler. Due to the fact that the 

gyroscope measured angular rate, a stationary gyroscope theoretically measured zero degrees per 

second across all three axes. Thus, by placing the gyroscope on a flat surface and letting it collect 

data, the sensor inaccuracies of the gyroscope were exposed. Although the high-pass filter helped 

mitigate some of the low frequency noise, the presence of sensor biases still created drift. 

Inherent to the sensor and independent about each of the sensor’s three axes, sensor bias created 

a permanent offset that very slowly changed with time. As seen in Figure 4-9, the sensor biases 

native to the Galaxy J7 used in testing were as follows. 

 

Figure 4-9: Gyroscope Sensor Biases 

Having captured the approximate biases from the stationary gyroscope, the angular rates 

were integrated to generate relative orientation values. As the gyroscope was stationary, each of 

the three axes was expected to report values of zero degrees for the duration of the report. From 

Figure 4-10, however, a linear drift of all angles occurred. 
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Figure 4-10: Gyroscope Drift 

With the gyroscope bias eliminated by a linear offset, Figure 4-9 transformed into Figure 

4-11 and Figure 4-10 transformed into Figure 4-12. 

 

Figure 4-11: Gyroscope Sensor Bias After Calibration 
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Figure 4-12: Gyroscope Drift With Bias After Calibration 

Consequently, the gyroscope drift significantly decreased in amplitude, most notably along the 

Z-Axis. 

Extended Kalman Filter 

State: 

For maximum computational efficiency, the proposed extended Kalman Filter (EKF) 

only monitored the four-dimensional quaternion, q, which represented the orientation. Modeled 

in Equation 4-2, the quaternion state vector was comprised of a scalar value, 𝑞0, and a vector 

value, [𝑞1, 𝑞2, 𝑞3]. 

𝑥 = [𝑞0, 𝑞1, 𝑞2, 𝑞3]                               (Eq. 4-2) 

For additional system accuracy, the state could have also contained parameters for 

gyroscope and magnetometer biases (𝛿𝑔𝑦𝑟𝑜
𝑏 , 𝛿𝑚𝑎𝑔

𝑏
). Helpful in mitigating the negative effects 

of noise and drift, these additional sub-states would have provided increased knowledge 

regarding the effectiveness of the system. As the data already passed through significant 

prefiltering and calibration though, the increased complexity of monitoring these additional 

parameters was unnecessary for the marginal expected improvement in performance. 
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Process Model: 

 As stated in Section 2.3.2, the process model of the EKF was based on Equation 4-3. 

  �̇�(𝑡) =  𝑓(𝑥, 𝑡) +  𝑔(𝑤, 𝑡)                    (Eq. 4-3) 

In this continuous-time equation, x represented the state vector of the system, w 

represented the Gaussian noise of the system, �̇� represented the time derivative of the state 

vector, and f and g represented nonlinear functions.  

Indicative of the relationship between a state and its time derivative, Equation 4-3 was 

remodeled to calculate the quaternion orientation as seen in Equation 4-4. 

       �̇�(𝑡) =  
1

2
[Ω ×]𝑞(𝑡)                  (Eq. 4-4) 

 where, 

1

2
[Ω ×] =  

𝜕𝑓(𝑥, 𝑡𝑘)

𝜕𝑥
 

As the state x from Equation 4-3 only monitored the quaternion orientation, all instances 

of x were replaced with q. Additionally, the noise parameter, w, and its nonlinear function, g, 

were withdrawn and moved to an additional equation. The most important change between 

equations, however, was the replacement of the nonlinear function f with the term 
1

2
[Ω ×]. The 

4-by-4 skew matrix of the gyroscope’s angular rates, 
1

2
[Ω ×] temporarily linearized the system 

matrix.  

                                                 [Ω ×] =  

(

 
 

0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0
)

 
 

                           (Eq. 4-5) 

As seen in Equation 4-5, the skew matrix was comprised of the gyroscope’s angular rates 

(𝜔𝑘 = [𝜔𝑥,𝑘, 𝜔𝑦,𝑘, 𝜔𝑧,𝑘]). Due to the fact that the gyroscope only performed discrete-time 

measurements, however, Equations 4-4 and 4-5 had to be remodeled. Using the Van Loan 

procedure, Equation 4-4 was rewritten as Equation 4-6. Assuming the time between iterations 

(dt) was appropriately small, Equation 4-6 calculated the state transition matrix, ∅𝑘. Based on the 
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principle that 𝑓(𝑥, 𝑡𝑘) ≈ 𝑓(𝑥, 𝑡𝑘−1), ∅𝑘 represented the discrete-time linearization of the 

nonlinear function f. Furthermore, Equation 4-5 was rewritten as seen in Equation 4-7, where the 

subscript k represented the discrete-time sampling index. 

∅𝑘 ≈ exp ([Ω ×]𝑘 ∗ 𝑑𝑡) 

 

[Ω ×]𝑘 = 

(

 
 

0 −𝜔𝑥,𝑘 −𝜔𝑦,𝑘 −𝜔𝑧,𝑘

𝜔𝑥,𝑘 0 𝜔𝑧,𝑘 −𝜔𝑦,𝑘

𝜔𝑦,𝑘 −𝜔𝑧,𝑘 0 𝜔𝑥,𝑘

𝜔𝑧,𝑘 𝜔𝑦,𝑘 −𝜔𝑥,𝑘 0
)

 
 

 

 

(Eq. 4-6) 
 

 
(Eq. 4-7) 

 Ultimately, using this state transition matrix, ∅𝑘, and the previous time-step’s a posteriori 

state estimate, �̂�𝑘−1
+ , the current time-step’s a priori state estimate, 𝑥𝑘

−, was calculated as seen in 

Equation 4-8. 

        𝑥𝑘
− = ∅𝑘 ∗ 𝑥𝑘−1

+                   (Eq. 4-8) 

Measurement Model: 

 While the process model was based on the gyroscope data, the measurement model was 

based on the accelerometer (𝑎 = [𝑎𝑥,𝑘, 𝑎𝑦,𝑘, 𝑎𝑧,𝑘]) and magnetometer (𝑚𝑘 = [𝑚𝑥,𝑘 , 𝑚𝑦,𝑘, 𝑚𝑧,𝑘]) 

data. In regard to the accelerometer, its ability to measure external specific force, including the 

force of gravity, allows it to act as a tilt sensor. Specifically, the accelerometer was capable of 

measuring both pitch and roll. 

As seen in Equation 4-9, the first step of the measurement model was the estimation of 

pitch. 

𝑝𝑖𝑡𝑐ℎ = sin−1 (
−𝑎𝑦,𝑘

|𝑎𝑘|
) 

(Eq. 4-9) 

 

Taking the inverse sine of the ratio between the y-axis acceleration, 𝑎𝑦,𝑘, and the magnitude of 

the acceleration vector, |𝑎𝑘|, a pitch angle approximation was generated in radians. In a similar 

manner, the roll was estimated as seen in Equation 4-10. 

𝑟𝑜𝑙𝑙 = sin−1 (
𝑎𝑥,𝑘

|𝑎𝑘|
) 

(Eq. 4-10) 
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Having created satisfactory pitch and roll estimates for static or quasi-static conditions, 

the next step was the implementation of the magnetometer. Providing a reference to magnetic 

north, the magnetometer helped create an azimuth (yaw) approximation which connected the 

body frame of the sensors to the inertial frame of the Earth. As seen in Equation 4-11, the 

computation of the azimuth angle was broken into several parts. Using the tilt data provided by 

the accelerometer (roll and pitch), the magnetometer data helped determine the Earth’s magnetic 

field components. As these data helped create a planar representation of Earth’s magnetic field, 

the azimuth could then be computed using the laws of trigonometry. 

𝑎𝑧𝑖𝑚𝑢𝑡ℎ = tan−1 (
𝑦

𝑥
) 

         where, 

𝑦 =  −𝑚𝑥,𝑘 ∗ cos(𝑟𝑜𝑙𝑙) + 𝑚𝑧,𝑘 ∗ sin(𝑟𝑜𝑙𝑙) 

 

𝑥 =  𝑚𝑥,𝑘 ∗ sin(𝑝𝑖𝑡𝑐ℎ) ∗ sin(𝑟𝑜𝑙𝑙) + 𝑚𝑦,𝑘 ∗ cos(𝑝𝑖𝑡𝑐ℎ) + 𝑚𝑧,𝑘 ∗ sin(𝑝𝑖𝑡𝑐ℎ) ∗ cos(𝑟𝑜𝑙𝑙) 

(Eq. 4-11) 

  

With the angle estimations computed in terms of radians, the measurement model then 

converted the angles calculated in the measurement model into quaternions. Ultimately, this 

conversion allowed the process model quaternion estimate to be compared to the measurement 

model quaternion estimate, 𝑧𝑘. 

Noise: 

 In both the process and measurement models, noise and inaccuracies corrupted the 

orientation estimations. Due to random sensor noise, sensor biases, external interference, and 

axis misalignment, uncertainties altered system accuracy. For this specific application, the 

prefiltering and calibration most likely reduced most uncertainties with sensor biases, axis 

misalignment, and external interference; however, the sensors were still prone to some noise 

variances. 

 It was assumed that the noise of the accelerometer (𝛴𝑎𝑐𝑐), magnetometer (𝛴𝑚𝑎𝑔), and 

gyroscope (𝛴𝑔𝑦𝑟𝑜) followed an independent zero-mean Gaussian (normal) distribution. 

Additionally, it was assumed that each axis possessed independent variance, 𝜎2, with no 

correlation between axes. Thus, the noise matrices were modeled as seen in Equation 4-12 with 

values of zero at all off-diagonal elements. 
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𝛴𝑎𝑐𝑐 = [

𝜎𝑎,𝑥
2 0 0

0 𝜎𝑎,𝑦
2 0

0 0 𝜎𝑎,𝑧
2

] 

      𝛴𝑚𝑎𝑔 = [

𝜎𝑚,𝑥
2 0 0

0 𝜎𝑚,𝑦
2 0

0 0 𝜎𝑚,𝑧
2

]      (Eq. 4-12) 

𝛴𝑔𝑦𝑟𝑜 = [

𝜎𝜔,𝑥
2 0 0

0 𝜎𝜔,𝑦
2 0

0 0 𝜎𝜔,𝑧
2

] 

 

 Just as the process and measurement models propagated the previous iteration’s state 

vector to a current-time value, the models also propagated their respective noise matrices. In 

order to model the covariance matrix of the measurement model, 𝑅𝑘, the accelerometer and 

magnetometer covariance matrices were combined. As shown in Equation 4-13, the new 6-by-6 

covariance matrix, 𝛴𝑎,𝑚, modeled both sensor uncertainties. 

                                 𝛴𝑎,𝑚 = 

[
 
 
 
 
 
 
 
𝜎𝑎,𝑥

2 0 0 0 0 0

0 𝜎𝑎,𝑦
2 0 0 0 0

0 0 𝜎𝑎,𝑧
2 0 0 0

0 0 0 𝜎𝑚,𝑥
2 0 0

0 0 0 0 𝜎𝑚,𝑦
2 0

0 0 0 0 0 𝜎𝑚,𝑧
2 ]

 
 
 
 
 
 
 

                 (Eq. 4-13) 

          In order to propagate the covariance matrix from Equation 4-13, the measurement model 

was used. Given the nonlinearity of the measurement model, the measurement model was 

temporarily linearized. As seen in Equation 4-14, the Jacobian or first-order partial derivative of 

the measurement model was taken for linearization. 

                                                          𝐽 =  
𝜕𝑞𝑚𝑒𝑎𝑠

𝜕{𝑎𝑥,𝑎𝑦,𝑎𝑧,𝑚𝑥,𝑚𝑦,𝑚𝑧}
                                       (Eq. 4-14) 

To better illustrate the meaning of the Jacobian, the linearization equation is expanded in 

Equation 4-15. Specifically, the partial derivatives of the Jacobian were estimated using first 

backward differences. 
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                                              𝐽 =  

[
 
 
 
 
 
 
 
𝜕𝑞0

𝜕𝑎𝑥

𝜕𝑞0

𝜕𝑎𝑦

𝜕𝑞0

𝜕𝑎𝑧

𝜕𝑞0

𝜕𝑚𝑥

𝜕𝑞0

𝜕𝑚𝑦

𝜕𝑞0

𝜕𝑚𝑧

𝜕𝑞1

𝜕𝑎𝑥

𝜕𝑞1

𝜕𝑎𝑦

𝜕𝑞1

𝜕𝑎𝑧

𝜕𝑞1

𝜕𝑚𝑥

𝜕𝑞1

𝜕𝑚𝑦

𝜕𝑞1

𝜕𝑚𝑧

𝜕𝑞2

𝜕𝑎𝑥

𝜕𝑞2

𝜕𝑎𝑦

𝜕𝑞2

𝜕𝑎𝑧

𝜕𝑞2

𝜕𝑚𝑥

𝜕𝑞2

𝜕𝑚𝑦

𝜕𝑞2

𝜕𝑚𝑧

𝜕𝑞3

𝜕𝑎𝑥

𝜕𝑞3

𝜕𝑎𝑦

𝜕𝑞3

𝜕𝑎𝑧

𝜕𝑞3

𝜕𝑚𝑥

𝜕𝑞3

𝜕𝑚𝑦

𝜕𝑞3

𝜕𝑚𝑧]
 
 
 
 
 
 
 

                           (Eq. 4-15) 

          The Jacobian linearized the measurement model about the linearization point, 𝑞𝑚𝑒𝑎𝑠. 

Having computed the Jacobian, J, the measurement model covariance matrix, 𝑅𝑘, was then 

computed as in Equation 4-16. 

                                                                  𝑅𝑘 = 𝐽𝛴𝑎,𝑚𝐽𝑇                                             (Eq. 4-16) 

           Similar to the measurement model covariance matrix, 𝑅𝑘, the process noise covariance 

matrix, 𝑄𝑘, was calculated by the propagation of the gyroscope covariance matrix, 𝛴𝑔𝑦𝑟𝑜. Unlike 

the measurement model, in which the system was linearized via the Jacobian, the process model 

utilized matrix 𝛯𝑘. Related to the 4-by-4 skew matrix, [Ω ×], matrix 𝛯𝑘 was the linearized 

approximation to the nonlinear function g from Equation 4-3. Thus, the process noise covariance 

matrix 𝑄𝑘, was calculated as seen in Equation 4-17.  

                                                             𝑄𝑘 = (
Δ𝑡

2
)
2
𝛯𝑘𝛴𝑔𝑦𝑟𝑜𝛯𝑘

𝑇                                       (Eq. 4-17) 

where, 

𝛯𝑘 = (

𝑞1 𝑞2 𝑞3

−𝑞0 −𝑞3 −𝑞2

𝑞2 −𝑞0 −𝑞1

−𝑞2 𝑞1 −𝑞0

) 

Kalman Loop: 

 Having created both a process and measurement model both accompanied by their 

respective noise matrices, the optimization process via the Kalman Filter was performed. As 

prior written in Equation 4-18, the first step of the EKF was the state prediction using the process 

model. 

𝑥𝑘
− = ∅𝑘 ∗ 𝑥𝑘−1

+       (Eq. 4-18) 
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 As seen in the restatement of Equation 4-8, the previous time-step state estimate, �̂�𝑘−1
+ , 

was propagated by the 4-by-4 matrix ∅𝑘. Using that same transition matrix and the process noise 

covariance matrix, 𝑄𝑘, the predicted covariance was then recursively updated as in Equation 4-

19. 

                           𝑃𝑘
− = ∅𝑘𝑃𝑘−1

+∅𝑘
𝑇 + 𝑄𝑘                             (Eq. 4-19) 

 With the a priori predictions of both the state, 𝑥𝑘
−, and covariance, 𝑃𝑘

−, the next step of 

the EKF algorithm was the determination of the Kalman gain, 𝐺𝑘. As modeled in Equation 4-20, 

the Kalman gain was the filter’s weighting factor that was dependent on the current state 

covariance matrix, 𝑃𝑘
−, and the current state measurement noise 𝑅𝑘. Weighing their relative 

uncertainties with one another, the Kalman gain determined whether the process or measurement 

model was more trustworthy. 

                                  𝐺𝑘 =
𝑃𝑘

−

𝑃𝑘
−+𝑅𝑘

                              (Eq. 4-20) 

 With an optimized weight for the filter, the state correction was next performed (Equation 

4-21). This updated estimate, known as the a posteriori estimate, reflected the inputs from both 

the measurement and process models. Leveraging the data provided by both models and the 

Kalman gain from Equation 4-19, the filter deduced a linear approximation of the optimal state 

estimate. 

                                                      𝑥𝑘
+ = 𝑥𝑘

− + 𝐺𝑘(𝑧𝑘 − 𝑥𝑘
−)                                     (Eq. 4-21) 

 Ultimately, the Kalman gain weighing factor was used to generate the uncertainty of the 

optimized state estimate from Equation 4-21. Proven to be smaller or at least the same value as 

the a priori covariance prediction in Equation 4-18, this a posteriori covariance was calculated 

using Equation 4-22. 

                                                             𝑃𝑘
+ = (𝐼4𝑥4 − 𝐺𝑘)𝑃𝑘

−                                        (Eq. 4-22) 

The Kalman Filter full procedure is shown in Figure 4-13.  
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Figure 4-13: Kalman Filter Procedure for Optimized Orientation Estimation 

4.2 Validating the Two-Dimensional Intersection Algorithm 

The two-dimensional (2-D) intersection algorithm described in Section 2.1.2 was 

implemented in MATLAB as a standalone function. Figure 4-14 shows the four inputs and single 

output of the intersection algorithm.  
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Figure 4-14: Two-Dimensional Intersection Algorithm System Block 

The designed intersection algorithm required horizontal position and orientation as inputs 

for both observers. In the real-world these inputs would be latitude-longitude and yaw, however, 

for testing and simulation they were defined on a 2-D x-y coordinate plane with an orientation 

angle measured with respect to the +y-axis. Therefore, in total there were six inputs required for 

the intersection algorithm.  

The first step in characterizing the algorithm was to create a zero-error model. As 

described in Section 2.4.1, zero-error models helped validate that an algorithm produced the 

expected results in a zero-error environment. As such, these zero-error models were designed to 

model several scenarios in which both observers are oriented towards the same object of interest. 

Ultimately, the algorithm inputs and outputs for each scenario were determined analytically and 

then compared to the MATLAB algorithm output to validate the intersection points produced 

from the algorithm. 

Methods 

An example for analytically determining each scenario’s inputs and outputs is shown 

below. The intersection algorithm inputs included the 2-D coordinates and orientation (angle 

with respect to the +y-axis) of both observers. Processing said input, the algorithm then produced 

a single output which was the object of interest’s 2-D coordinates. The first task in creating each 

scenario in the zero-error model was to determine locations for both observers and the object of 

interest. To begin, a coordinate system was established as a 2-D plane, shown in Figure 4-15. In 
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the coordinate system, the x and y-axes were perpendicular, with a 0o theta angle corresponding 

to the +y-axis. 

 

Figure 4-15: Two-Dimensional Coordinate Plane 

 Having created a coordinate system, the location of the observers were then chosen 

within this 2-D plane. For example, one scenario had observer A at (-146.4102 m, 0 m) and 

observer B at (-100 m, -100 m). The object of interest was chosen to be (200 m, 200 m). Figure 

4-16 shows this scenario. 

 

Figure 4-16: Scenario with Two Observers and Object of Interest 
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The only variable remaining, orientation, was then solved for by creating two triangles, 

one for each observer, with the hypotenuse representing the pointing vector towards the object of 

interest. The two triangles are shown below in Figure 4-17.  

 

Figure 4-17: Triangles Used to Solve for Orientation 

 Using trigonometry, the orientation for each observer with respect to the +x-axis, 𝜃𝑎𝑥 and 

𝜃𝑏𝑥, were found. Equation 4-23 shows how this angle was found using the tangent function, the 

change in vertical position, Δy, and the change in horizontal position, Δx, for observer A. 

𝜃𝑎𝑥 = tan−1 (
Δ𝑦

Δ𝑥
) 

(Eq. 4-23) 

Then each observer’s angle was shifted by 90o to align 0o with the +y-axis as shown in Equation 

4-24.  

𝜃𝑎𝑦 = 90𝑜 − 𝜃𝑎𝑥 (Eq. 4-24) 

Having determined both observers’ orientations, all inputs and outputs for this zero-error 

scenario were found. For further validation, this process was completed for an additional 9 

scenarios that covered a range of different situations. Appendix A shows the complete data set 

used to construct the full zero-error model while Figure 4-18 shows a representative model 

graphically. 
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Figure 4-18: Zero-Error Model with Ten Scenarios 

 In Figure 4-18 above, points are labeled as observer A or B with the appropriate number 

pair to which they belong. For example, in the bottom left of Figure 4-18, points “A: 1” and “B: 

1” are a pair of observers. For consistency, the intersection point was the same for all scenarios, 

(200 m, 200 m). The same scenarios were then used in the 2-D intersection algorithm to produce 

a set of intersection points, which was then compared to this model, which will be discussed in 

the results. Additionally, the algorithm also determined if both observers’ orientations were 

parallel and consequently returned NaN in MATLAB for the parallel lines would never intersect.  

Results 

The results of the validation of the 2-D intersection algorithm consisted of comparing the 

distance of each intersection point to the actual truth value of (200 m, 200 m). Visually, the zero-

error model, shown in Figure 4-18, appears to have all scenarios intersect at the correct location. 

When the exact error is examined, however, small magnitude errors become evident as shown in 

Figure 4-19.  
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Figure 4-19: Bar Graph of Mean RMS Error in X and Y 

These errors range from zero to 1.404e-11 meters, with only one scenario having exactly zero 

error. 

Discussion 

 The validation of the two-dimensional intersection algorithm was completed in 

MATLAB, which has the capability to determine its estimated precision error. For the personal 

computer used to conduct the zero-error models, a MATLAB error of 2.22e-16 was observed. 

This value is much smaller than the maximum error presented in Figure 4-19 above; therefore, 

the simulation result error is not due to the precision of the personal computer. The source is 

most likely precision error in the zero-error model as the values used, shown in Appendix A, 

were only accurate to four decimal places. Also, scenario 2 shown in Appendix A, which had no 

decimal approximation for its input values, produced a perfect result with exactly zero error. 

With the only error in the intersection algorithm being due to precision error, the two-

dimensional algorithm was validated.  
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4.3 Validating the Three-Dimensional Intersection Algorithm 

Validation Methods of Three-Dimensional Intersection Algorithm 

The three-dimensional (3-D) intersection method described in Section 2.1.2 was validated 

using a zero-error model implemented in MATLAB. This model consisted of scenarios that were 

chosen to represent different, simple configurations that two observers might encounter during 

testing. These included: 30, 60, and 90 degrees between both observers’ pointing vectors. The 

following section details the scenarios that were tested.  

The zero-error model was produced to ensure that the 3-D intersection calculation was 

implemented correctly in MATLAB. The first four scenarios can be grouped together, due to 

similar observer locations and yaw angles. Each yaw angle was with respect to the positive y-

axis, with the positive x-axis being 90 degrees, and the negative x-axis being -90 degrees. 

Furthermore, the true location of the target was listed when the vectors intersect, but was listed 

as N/A when the least-squares approximation was utilized. These scenarios can be seen in Figure 

4-20 below.  

  

Figure 4-20: 3-D Intersection Scenarios 1 to 4 Zero-Error Model 

These four scenarios can be used to show that the 3-D intersection algorithm worked correctly 

with a 90 degree angle between the intersection of both observers’ pointing vectors. The first 

scenario consisted of an intersection on a 2-D plane, as there was no pitch angle added for either 

observer and each observer was at the same Z position. Ultimately, this scenario showed that the 

intersection worked correctly in the 2-D plane with no least-squares approximation. The second 

scenario consisted of the same location and yaw angle as the previous, but there was an added 

pitch angle to each observer. Since the two observers had the same Z position and pitch angle, 

their two vectors were set to intersect. Consequently, this scenario showed that the 3-D 
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intersection function worked correctly, without the use of the least-square approximation. The 

third and fourth scenarios consisted of the same location and yaw angle as scenarios 1 and 2, but 

differing pitch angles. Therefore, these vectors would not intersect and the least-squares 

approximation was implemented. As such, the third and fourth scenarios tested the use of the 

least-squares approximation.  

The next four scenarios, 5-8, tested similar situations with a different yaw angle 

configuration and location for observer A and observer B. The true location of target was listed 

when the vectors intersected, but was listed as N/A when the least-squares approximation was 

utilized. The configurations can be seen in Figure 4-21 below.  

 

Figure 4-21: 3-D Intersection Scenarios 5 to 8 Zero-Error Model 

These four scenarios were used to test that the 3-D intersection worked with a 30 degree angle 

between the each observer. These testing configurations were similar to the scenarios 1-4, just 

with different yaw angles and starting coordinates for both observers.   

The next four scenarios, 8-12, tested similar situations as 4-8, but with a different yaw 

angle configuration. The true location of target was listed when the vectors intersected, but was 

listed as N/A when the least-squares approximation was utilized. The configurations can be seen 

in Figure 4-22 below. 

 

Figure 4-22: 3-D Intersection Scenarios 9 to 12 Zero-Error Model 
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These four scenarios were used to show that the 3-D intersection worked with a 30 degree angle 

between the each observer’s pointing vector. These testing configurations were similar to the 

scenarios 5-8, just with different yaw angles.   

The last three scenarios, 13-16, tested similar situations with a different yaw angle 

configuration, but the same location for observer A and observer B as scenarios 5-8. The true 

location of target was listed when the vectors intersected, but was listed as N/A when the least-

squares approximation was utilized. The configurations can be seen in Figure 4-23 below. 

 

Figure 4-23: 3-D Intersection Scenarios 13 to 16 Zero-Error Model 

These four scenarios were used to test that the 3-D intersection least squares method worked 

with two observers with different starting Z coordinates. The angle configuration was similar to 

scenarios 1-4, except for the difference in Z coordinate. 

To validate the correctness of the least squares method, geometry could not be used. 

Instead, the distance from each vector to the intersection point was used to determine the 

correctness of the intersection. As described in Section 2.1.2, the least-squares method 

minimized the distance from the intersection to each vector. As a result, when the distance was 

minimized between the two vectors, the distance was the same for each vector. Therefore, the 

least-squares intersection occurred at the distance intersection.  

Ultimately, these scenarios were analyzed using two distinct techniques: simple geometry 

was used to analyze the intersection point when the vectors directly intersected and vector 

distance graphs were used to analyze the correct intersection position of the least-squares 

calculation when the vectors did not intersect.  

Validation Results of Three-Dimensional Intersection Algorithm 

The first scenario seen in Figure 4-20 was analyzed using simple geometry as well as the 

zero-error model on MATLAB. The geometry analysis can be seen below in Figure 4-24 to 4-26. 
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Figure 4-24: Base Scenario 1 

From this scenario, the base distance was calculated using the difference in distance between 

observer A and B. This value is found from Equation 4-25 below. 

  

𝐵𝐴𝑆𝐸 = √(𝑋𝐵 − 𝑋𝐴)2 + (𝑌𝐵 − 𝑌𝐴)2 + (𝑍𝐵 − 𝑍𝐴)2 
 

 
(Eq. 4-25) 

Using this equation and after entering the X, Y, and Z location for observer A and B, the 

BASE distance was found to be 100. Next, the angle, ϴC, and the distance, dA, from the observer 

A, to the intersection point was found, shown in Figure 4-25.  

 

Figure 4-25: Scenario 1 dA Configuration 
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The angle ϴC can be found using Equation 4-26 below. 

  
𝜃𝐶 = 180 − 𝜃𝐴 − 𝜃𝐵 

 
(Eq. 4-26) 

 

Using this equation and after entering the angle for each observer within the triangle, ϴC 

was found to be 90 degrees. With this value, the distance dA was then found using the law of 

sines in Equation 4-27 below. 

  
𝑑𝐴

sin (𝜃𝐵)
=

𝐵𝐴𝑆𝐸

sin (𝜃𝐶)
 

 
(Eq. 4-27) 

 

After rearranging this equation, the distance dA was calculated. Specifically, Equation 4-28 was 

used to determine this distance. 

  

𝑑𝐴 = 𝐵𝐴𝑆𝐸
sin (𝜃𝐵)

sin (𝜃𝐶)
 

 
(Eq. 4-28) 

 

The distance dA was equal to 70.7107. With this distance, the intersection point was 

calculated. The following Figure 4-26 shows the geometry that was necessary to find the 

intersection point.  

 

Figure 4-26: Scenario 1 Intersection 
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Then, using Figure 4-26, the X and Y coordinates of the intersection point were found using the 

following equation, with ϴA being 45° ϴA. 

  
𝑋𝑖 = cos(45°) ∗ 𝑑𝐴 

 
(Eq. 4-29) 

 𝑌𝑖 = sin (45°) ∗ 𝑑𝐴 (Eq. 4-30) 
   

Using Equations 4-29 and 4-30, the intersection point occurred at (50, 50, 0). Next, the scenario 

was analyzed using MATLAB. The resulting plot can be seen in Figure 4-27 and 4-28 below. 

 

Figure 4-27: Scenario 1 MATLAB Zero Error Model View A 
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Figure 4-28: Scenario 1 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations using the MATLAB algorithm, 

occurred at (50 m, 50 m, 0 m). This MATLAB intersection was found to match up with the 

intersection that was calculated using geometric analysis.  

The second scenario seen in Figure 4-29 was analyzed using simple geometry as well as 

the algorithm on MATLAB. This scenario was similar to the analysis of scenario 1, only with an 

added pitch component. Due to the position and yaw being the same, and the pitch being the 

same for each observer, the two vectors were set to intersect. Therefore, the X, Y intersect was 

the same as in scenario 1. Following the intersect determination, geometric analysis was used to 

calculate the Z intersection coordinates. The dA was the distance along the 2-D plane and helped 

determine the Z intersection coordinate from Equation 4-31, with 𝜌 being the pitch angle. 

 𝑍 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝐴 ∗ tan (𝜌) (Eq. 4-31) 
   

The resulting Z coordinate intersection was 25.736 m; thus, the intersection point occurred at (50 

m, 50 m, 25.736 m). Next, the scenario was analyzed using MATLAB. The resulting plot can be 

seen in Figure 4-29 and 4-30 below. 
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Figure 4-29: Scenario 2 MATLAB Zero Error Model View A 

 

Figure 4-30: Scenario 2 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations using the MATLAB algorithm, 

occurred at (50, 50, 25.7366). This MATLAB intersection was found to match up with the 

intersection that was calculated using geometric analysis. 

The third scenario seen in Figure 4-20 was analyzed using a different method than simple 

geometry, as the vectors did not truly intersect. The analysis graph can be seen in Figure 4-31 
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below, with distance from each vector being on the y-axis and the index, or position, along each 

vector being on the x-axis. 

 

Figure 4-31: Scenario 3 Distance to Least Squares Intersection 

The distance intersection seen in Figure 4-31 occurred at the point (45.5679, 45.5679, 23.4552) 

for Vector A and (51.5077, 48.4923, 0) for Vector B. The least-squares intersection found in 

MATLAB was expected to be directly in between these two points. Next, this scenario was 

analyzed using MATLAB. The resulting plot can be seen in Figure 4-32 and 4-33 below. 
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Figure 4-32: Scenario 3 MATLAB Zero Error Model View A 

 

Figure 4-33: Scenario 3 MATLAB Zero Error Model View B 

The resulting least-squares intersection using the MATLAB zero error model occurred at (47.076 

m, 47.076 m, 11.363 m). This MATLAB intersection was found to occur in between the 
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intersection of Vector A and Vector B, which was the goal of the least squares approximation. 

Therefore, the least-squares approximation was found to be working correctly. 

The fourth scenario seen in Figure 4-20 was analyzed using the same distance method as 

scenario three. The analysis graph can be seen in Figure 4-34 below. 

 

Figure 4-34: Scenario 4 Distance to Least Squares Intersection 

The distance intersection for Vector A is (48.4923, 48.4923, 0) and the position for Vector B at 

this intersection was (54.4321, 45.5679, 23.4552). The least-squares intersection found in 

MATLAB was expected to be directly in between these two points. Next, the scenario was 

analyzed using MATLAB. The resulting plot can be seen in Figures 4-35 and 4-36 below. 
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Figure 4-35: Scenario 4 MATLAB Zero Error Model View A 

 

Figure 4-36: Scenario 4 MATLAB Zero Error Model View B 

The resulting least-squares intersection, determined through calculations using the MATLAB 

algorithm, occurred at (52.9244, 47.0756, 11.3630). This MATLAB intersection was found to 

occur in between the intersection of Vector A and Vector B, which was the goal of the least- 

squares approximation. Therefore, the least-squares approximation was found to be working 

correctly. 
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The results from scenarios 5-12 can be seen in Appendix B. The thirteenth scenario seen 

in Figure 4-23 was analyzed using a similar method as scenario 3 and 4, as the vectors did not 

directly intersect. The analysis graph can be seen in Figure 4-37 below.  

 

Figure 4-37: Scenario 13 Distance to Least Squares Intersection 

The position for Vector A at this intersection was (50.0632, 50.0632, 0) and the position for 

Vector B at this intersection was (49.9368, 50.0632, 20.0000). The distance from vector A and 

vector B was the same in Figure 4-37 since both observer A and observer B’s pitch angles were 

the same, therefore, the distance lines overlapped one another. Next, the scenario was analyzed 

using MATLAB. The resulting plot can be seen in Figures 4-38 and 4-39 below. 
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Figure 4-38: Scenario 13 MATLAB Zero Error Model View A 

 

Figure 4-39: Scenario 13 MATLAB Zero Error Model View B 

The resulting least-squares intersection, determined through calculations using the MATLAB 

algorithm, occurred at (50, 50, 10). This intersection point was found to very similar to the 

middle of each intersection point specified in the distance analysis.  
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The fourteenth scenario seen in Figure 4-23 was analyzed using a similar method to the 

third, fourth, and thirteenth scenarios, as the vectors did not intersect. The analysis graph can be 

seen in Figure 4-40 below. 

 

Figure 4-40: Scenario 14 Distance to Least Squares Intersection 

The position for Vector A at this intersection was (50.0000, 50.0000, 25.7366) and the position 

for Vector B at this intersection was (50.0000, 50.0000, 45.7366). The least-squares intersection 

found in MATLAB was expected to be directly in between these two points.  Next, the scenario 

was analyzed using MATLAB. The resulting plot can be seen in Figures 4-41 and 4-42 below. 
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Figure 4-41: Scenario 14 MATLAB Zero Error Model View A 

 

Figure 4-42: Scenario 14 MATLAB Zero Error Model View B 

The resulting least-squares intersection, determined through calculations using the MATLAB 

algorithm, occurred at (54.0692, 50, 35.7366). This intersection was found to be very similar to 

the middle of each intersection point specified in the distance analysis. Therefore, the least-

squares approximation produced the correct intersection point for this scenario. The results from 
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the remaining scenarios, 15 and 16, can be seen in Appendix B. After each scenario was 

analyzed and reproduced with the MATLAB algorithms, it was found that each intersection 

occurred in the correct position. Therefore, it was determined that the 3-D intersection worked 

correctly.  

Discussion 

Scenarios were analyzed using two distinct techniques: simple geometry was used to 

analyze the intersection when the vectors directly intersected and vector distance graphs were 

used to analyze the correct intersection position of the least-squares calculation when the vectors 

did not intersect. These two techniques were used to validate the output of the MATLAB 3D 

intersection algorithm. Direct intersection using simple geometry was used when the vectors 

directly intersected and was compared to the intersection using the MATLAB algorithm. These 

direct intersections were seen in scenarios 1, 5, and 9. The calculated intersection points directly 

matched up with the points found using the MATLAB algorithm, which showed that the 

intersection, without the approximation, worked correctly. Next, the least squares intersection 

calculation was shown to produce the correct intersection point by comparing the distance 

between two vectors and the calculated intersection. In this method, the correctness of the 

approximate intersection had to be determined after the least-squares method was calculated and 

an intersection was found. With this intersection point, the distance from intersection to each 

observer’s vector was used to determine if the intersection point occurred at both the same 

distance and minimum distance from both vectors. This assertion was found to be true for every 

non-intersecting scenario that was tested. After every scenario was tested, it was determined that 

every 3-D intersection scenario computed with MATLAB matched up with the theoretical 

expected point of intersection. Due to this, it was concluded that the 3-D intersection was 

validated. 

4.4 Discussion 

In this chapter, the design of the extended Kalman Filter and the validation of the two-

dimensional intersection and three-dimensional intersection were detailed. Designed to make an 

optimal orientation estimate, the EKF leveraged all sensor data provided by the magnetometer, 
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accelerometer, and gyroscope. With a built-in function determining the appropriate variance 

values for each sensor axis, the EKF created custom noise measurements for each individual test. 

Second, the two-dimensional algorithm was validated by comparing ten analytical 

intersection results obtained via geometry and intersection algorithm outputs. In scenarios where 

there was no rounding, the error between the analytical and actual results was exactly zero. 

However, when inputs with four decimal places of accuracy were used, a maximum error of 

1.404e-11 was observed. This significantly small error showed that the algorithm was validated.  

Lastly, the three-dimensional algorithm was validated using simple geometry and vector 

distance graphs to compare to the MATLAB algorithm. When the observers’ vectors had a direct 

intersection, and were not skew, the geometry analysis intersection was observed to directly 

match up with the intersection found from the MATLAB algorithm. When the observers’ vectors 

did not have a direct intersection, vector distance graphs had to be used to determine the distance 

from the least-squares intersection to each observer’s vector. The intersection point was found to 

be in the correct position if it was at both the same distance and minimum distance from both 

vectors. This was determined to be true for every non-intersecting scenario that was tested. After 

the validation analysis was complete, the two-dimensional intersection and three-dimensional 

intersection algorithms were found to be working correctly. Future work in the validation of both 

the 2-D and 3-D intersection algorithm could involve examining more edge cases.  
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Chapter 5: Algorithm Performance with Measurement Error 

This chapter presents the methods, results, and discussion in characterizing the 

performance of the two-dimensional intersection algorithm and three-dimensional intersection 

algorithm.  

5.1 Characterization of the Two-Dimensional Intersection 

Algorithm 

The knowledge that the two-dimensional (2-D) intersection algorithm performed as 

expected with zero errors was valuable, however, in the real world there are measurement errors 

that cause the resulting intersection location estimation to be inaccurate. To model these errors, 

noise was added to each observer’s orientation and location. Monte Carlo simulations, as shown 

in Section 2.4.2, were conducted to simulate the noisy environment that would be seen in the real 

world. This section presents several Monte Carlo simulations that were performed to characterize 

the performance of the 2-D intersection algorithm. These simulations were produced using 

MATLAB and the results were analyzed graphically as well as quantitatively.  

5.1.1 Static Scenario Monte Carlo 

Methods 

The first Monte Carlo simulation was a static scenario where a simple noise distribution 

was applied to the location and orientation of two observers pointing at an object of interest. The 

same coordinate system as the zero-error model shown in Figure 5-1 was used for the two-

dimensional Monte Carlo simulations. Within the two-dimensional plane, an indirect geolocation 

scenario was then established with two observers and a single object of interest. The truth values 

for this scenario are shown in Figure 5-1 below. 
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Figure 5-1: Truth Values for Monte Carlo Simulation 

As shown in Figure 5-1, observer A was located at (100 m, 200 m) with an orientation of 

90o degrees with respect to the positive y-axis. Observer B was located at (450 m, 450 m) with 

an orientation of -135 degrees with respect to the positive y-axis. For the remainder of Section 

5.1, orientation will be defined as the angle with respect to the positive y-axis. The object of 

interest was located at (200 m, 200 m). Each Monte Carlo simulation had six input variables 

(four for locations and two for orientations) that could have error applied to them in order to 

observe how that error propagates through the system and affects the intersection solution.  

To introduce errors, independent Gaussian zero-mean noise distributions were applied to 

the position and orientation of both observers; these noise distributions were applied by adding 

their values directly to each observer’s truth values. For all simulations conducted in this report, 

zero-mean Gaussian distributions were used as the error distributions. The position distribution 

has a standard deviation of 2.5 meters. The standard deviation value of 2.5 meters was chosen so 

that 95.4% of the errors would fall within ± 5 meters, the standard GPS error as presented in 

Section 2.4.2. Figure 5-2 shows this position error distribution for observer A. The orientation 

distribution has a standard deviation of 1 degrees, which was based on data from field tests. 

Figure 5-3 shows this distribution also for observer A. Observer B has the same error distribution 

for both location and orientation. 
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Figure 5-2: Distribution for Observer A Position Error 

 

Figure 5-3: Distribution for Observer A Orientation Error 

 Then, the Monte Carlo simulation was run where the distribution was applied over a run 

of 25,000 iterations (n = 25,000). The only variable that was changed for each run of the 

simulation was that a different error instance was applied to each input.  
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Results 

Figure 5-4 shows the system after one Monte Carlo simulation.  

 

Figure 5-4: Single Scenario Monte Carlo Points 

There were “clouds” of points on both observers and the intersection solutions. The 

position clouds for both observers were known to fit a Gaussian distribution in the x and y 

coordinates. The cloud of intersection points, however, was unknown and was characterized by 

several methods. 

One of the characteristics of the intersection cloud was the standard deviation and mean 

of the cloud for both the x and y coordinates. Figure 5-5 shows the distribution of the x-

coordinates and Figure 5-6 shows the distribution of the y-coordinates.  
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Figure 5-5: Intersection X Distribution 

 

Figure 5-6: Intersection Y Distribution 

 Both distributions were centered on the truth value of (200 m, 200 m) with a standard 

deviation, 𝜃𝑥,of 9.8897 m for the x-coordinate and a standard deviation, 𝜃𝑦, of 3.0396 m for the 

y-coordinate. The overall standard deviation was then found by taking the square root of the sum 

of the squares of both the X and Y standard deviation values, which was 10.3463 m. 
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 Another metric of the intersection cloud that was examined was the distribution of 

distances from each intersection point to the truth value, known as RMS error. For the truth 

position of (xt, yt) and the Monte Carlo intersection point (xm, ym) the distance, d, was found for 

all 25,000 intersection points in the Monte Carlo simulation by Equation 5-1. 

𝑑 =  √(𝑥𝑚 − 𝑥𝑡)
2 + (𝑦𝑚 − 𝑦𝑡)

2 (Eq. 5-1) 

 

The value, d, could also be called the RMS Error, and its distribution is shown in Figure 5-7. 

 

Figure 5-7: RMS Error Distribution for 2-D Static Scenario 

This distribution looked to follow a Rayleigh distribution, which is a distribution of the positive 

square root of the sum of the square of two independent random variables. Both random 

variables are normally distributed with the same mean and standard deviation. The non-linear fit 

shown in Figure 5-7 is an attempt to fit the distribution to a Rayleigh distribution, but as shown 

in Figure 5-5 and 5-6 the X and Y distributions are not equal. Therefore, the distribution in 

Figure 5-7 did not follow a Rayleigh distribution well. When the same static scenario Monte 

Carlo was run, but with zero-error on the observer’s orientation, the RMS error with Rayleigh fit 

shown in Figure 5-8 was obtained.  
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Figure 5-8: RMS Error Distribution with Zero Orientation Error 

 The fit was closer when the degrees of freedom were reduced, however, another 

requirement of the Rayleigh distribution is that the two random variables that create it are 

independently and identically Gaussian distributed. The two random variables in these 

simulations are the intersection point coordinates as shown in Equation 5-1 and could only be 

identically distributed when the angle between observers is 90o. A scenario in which the angle 

between observers was 90o and zero orientation error was run and the resulting RMS Error 

distribution is shown in Figure 5-9. 
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Figure 5-9: RMS Error Distribution with Zero Orientation Error and Observer Angle of 90o 

The Rayleigh distribution fit shown in Figure 5-9, fits the RMS distribution. 

Discussion 

 The results of the two-dimensional static scenario Monte Carlo demonstrated how the 

Monte Carlo results for the intersection algorithm could be characterized. There were two 

characterizations, standard deviation and RMS error. When both observers had Gaussian errors 

applied to them, the errors in the X and Y coordinates of the intersection cloud were also seen to 

be Gaussian, seen in Figures 5-5 and 5-6. When the RMS error distribution was found using 

Equation 5-1, it was not Gaussian, because the error distributions in the X and Y direction were 

not identical. In a specific scenario, however, when the angle between observers was 90o and 

there is no orientation error, the RMS error distribution was shown to follow a Rayleigh 

distribution.  

5.1.2 Varying Distance Monte Carlo 

Methods 

In the previous Monte Carlo simulation, the observers’ average location and orientation 

were kept constant. In the real world, however, these values vary and as such, simulations were 

conducted that varies the location of observer A. The series of simulations began with the same 
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scenario presented shown in Figure 5-1, however, observer A’s x-coordinate is varied by 20 

meters each Monte Carlo run until observer A is a total distance of 900 meters from the object of 

interest. For these series of simulations, distance refers to the absolute value of the x-coordinate 

difference between observer A and the object of interest. Observer B remains stationary 

throughout all simulations. Figure 5-10 shows the truth locations for the series of Monte Carlo 

simulations performed.  

 

Figure 5-10: Varying Distance Monte Carlo Truth 

 Both observers’ orientations remained constant throughout the simulations at 90o and 

225o for A and B, respectively. This scenario formed an angle between the observers of 135o. 

Observer A’s distance from the object of interest ranges from 100 m to 900 m in steps of 20 m. 

For both observers, the position standard deviation is 2.5 m and the orientation standard 

deviation is 1o. Shown in Figure 5-11, is the first of 20 Monte Carlo simulations with error 

clouds on the observers and intersection.  
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Figure 5-11: Monte Carlo Simulations Showing Observer and Intersection Distributions 

The series of simulations shown in Figure 5-10 was then run multiple times, but with different 

error magnitudes on both observers’ location and orientation. Then, a comparison was made 

between the effects of position error to orientation error. Figure 5-12 shows the different 

conditions in a table. 
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Run # Position Standard Deviation (meters) Orientation Standard Deviation (degrees) 

1 2.5 0 

2 2.5 0.5 

3 2.5 0.7 

4 2.5 1.0 

5 2.5 1.2 

6 2.5 1.5 

7 2.5 2.0 

8 0.001 0.0 

9 0.001 1.0 

10 0.001 1.2 

11 0.001 1.5 

12 0.001 2.0 

Figure 5-12: Table of Variations of Position and Orientation Error Distributions 

Results 

The distance of observer A from the object of interest versus the mean RMS error of the 

intersection for the first series of simulations is shown in Figure 5-13. In this series, observer A 

was iteratively moved 20 m away from the object. Figure 5-13 showed the mean RMS error to be 

a function of the distance with a non-linear relationship. 
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Figure 5-13: Distance vs. Mean RMS Error 

This comparison was also conducted for each of the runs with different errors on each observer, 

described by the table in Figure 5-12. Figure 5-14 shows all of these runs. 

 

Figure 5-14: Distance vs. Mean RMS Error with Varying Observer Error 
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In Figure 5-14, position error seemed to act as a bias in the intersection mean RMS error. 

This bias is shown below in Figure 5-15.  

 

Figure 5-15: Mean RMS Error Position Bias 

 There are two distinct groupings of lines in Figure 5-15. The first consists of the bias for 

no orientation error. That bias remains constant over the entire run around 5 m, even when 

observer A is 900 m away from the object. The other four, however, show a clear trend 

downwards and the lines themselves are different magnitudes. The bias for an orientation error 

sigma of 1.0o falls from 1.431 m to 0.698 m. Also, generally the higher the standard deviation of 

the orientation error distribution, the lower the mean RMS error position bias. To explore this 

relationship more, the percent of each bias to the total mean RMS error was examined, shown in 

Figure 5-16. 
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Figure 5-16: Mean RMS Error Position Bias Percentage 

 One of the lines in Figure 5-16 had no orientation error and it was clear that 100% of the 

bias was due to the position error. With orientation error ranging from 1.0o to 2.0o, it was 

similarly observed as in Figure 5-15 that the higher the standard deviation of the orientation error 

distribution, the lower the percentage the mean RMS error position bias was compared to the 

overall mean RMS error. Interestingly, the difference between each different orientation error 

becomes smaller as the distance from observer A to the object of interest increases. 

This leads to two main findings. One, the effect that position errors have over longer 

distances diminishes due to the orientation error essentially overpowering them. Two, as the 

orientation error increases, the position error begins to have less of an overall effect on the 

intersection mean RMS error.  

Discussion 

 The results of the varying distance Monte Carlo showed that when an observer is moved 

away from the object of interest, while keeping the angle between observers constant, the 

intersection mean RMS error increases. This finding was, however, dependent on there being an 

orientation error for the observer. As shown in Figure 5-14, the effect of error on position was 

characterized as a bias, mostly independent of how far away an observer was. When examined 

further, however, this bias actually decreased as distance increased due to the orientation error 
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essentially overpowering the effect of the position error. The effect of the orientation error was 

dependent on how far away the observer was. As an observer moved farther and farther away, 

the magnitude of the intersection mean RMS error increased due to the orientation error.  

5.1.3 Varying Distance and Orientation Monte Carlo 

Methods 

In the previous series of Monte Carlo simulations, the observers’ orientation was kept 

constant and only the x-coordinate difference between observer A and the object of interest was 

varied. In a new series of simulations, the distance and angle between observers was varied 

across each Monte Carlo run. The angle between observers is also referred to as the angle on the 

object in this report. Figure 5-17 shows the distance and angle between observer variables.  

 

Figure 5-17: Distance and Orientation Monte Carlo Variables 

 By iterating over the distance and angle between observers as shown in Figure 5-17 a 

series of angles between observers, ɵo, at varying distances, d, from the object could be 

characterized. The simulation swept through ɵo from 160o to 20o in 5o increments beginning at 

distance of 25 m. Then, distance was increased by 25 m and the angles were swept through 

again. The object of interest was kept constant at (200 m, 200 m). This process was repeated 

until the distance was equal to 350 m. Shown in Appendix C is the table of distance and 

orientations used and Figure 5-18 shows all truth positions for both observers.  
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Figure 5-18: Distance and Orientation Monte Carlo Truth Locations 

Each Monte Carlo simulation applied the same error distribution to both observers, so 

that the only change between Monte Carlo simulations was in the observer's position and the 

angle between the observers, not the errors applied to them. The position error distribution’s 

standard deviation was 2.5 meters and the orientation error distributions standard deviation was 

1o.  

Results 

From the intersection cloud, the mean RMS error from the truth intersection coordinate 

(200 m, 200 m) was found for each Monte Carlo run. The mean RMS error was then plotted 

against the angle between observers which is shown in Figure 5-19 to explore if an optimal angle 

existed where the mean RMS error was minimized. Each line in Figure 5-19 represents a sweep 

through each angle between observers at a different distance from the object.  
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Figure 5-19: Mean RMS Error with Orientation and Position Error. The bottom-most line 

corresponds to a distance, d, of 25 m. Each line higher is 25 m more in distance, with the top-

most line showing 350 m.  

The data followed a U-formation with a valley that is centered at 90o, which showed that for this 

series of simulations, when a 90o angle was formed on the object by the observers, there was in 

general the least amount of error on the intersection. The mean RMS error exponentially 

increased when the angle between observers became more acute and more obtuse. The increase 

from the minimum mean RMS error value for all lines at 90o to the mean RMS error value at 75o 

and 105o for all lines only ranged from 2% - 3%. At the angles of 60o and 120o, there was a 17% 

- 18% increase from the minimum mean RMS error for all lines. Overall, as the distance of the 

observers from the object increased, the magnitude of the mean RMS error increased.  

To compare the individual effects of position and orientation, the same series of 

simulations was repeated twice with the same conditions, but one had only position error and the 

other had only orientation error. Figure 5-20 shows the intersection mean RMS error results with 

only position error and Figure 5-21 shows the intersection mean RMS error results with only 

orientation error.  
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Figure 5-20: Mean RMS Error with Only Position Error 

 

Figure 5-21: Mean RMS Error with Only Orientation Error 

The results in Figures 5-20 and 5-21 both follow the same trend that an angle between observers 

of 90o produces the least mean RMS error. With only position error, however, the same mean 

RMS error was seen at all distances. With only position error, however, the same mean RMS 

error was seen at all distances and is essentially a lower bound. With only orientation error, the 
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overall magnitude of the mean RMS error increased as the distance increased. There was, 

however, an exception at acute angles at the least distance of 25 m, where the mean RMS error 

spiked. To compare the effects the position lower bound on the intersection, a single only 

position error mean RMS error line from Figure 5-20 was plotted with the only orientation error 

lines in Figure 5-19, which is shown in Figure 5-22.  

 

Figure 5-22: Mean RMS Error of Only Position Error and Only Orientation Error 

The only position error line was very close the distance of 25 m line. It was also found that at a 

distance of 250 m, the mean RMS error with position and orientation errors is double that of the 

lower bound shown in Figure 5-22. This finding shows that at a distance of 250 m, the additional 

effect of orientation error begins to have more of an effect on the intersection mean RMS error 

than position error.  

Discussion 

 The results of the distance and orientation Monte Carlo simulation showed that the 

optimal angle between observers to minimize intersection mean RMS error is 90o. As the angle 

between observers became more acute or obtuse the mean RMS error increased exponentially. 

The results in Figure 5-19 show that even with an angle between observers within 75o to 105o, 

there is only an increase in 2% - 3% of mean RMS error. Therefore, in a real-world application 

where verifying or obtaining a 90o angle between observers might be difficult, there is only a 
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small increase in mean RMS error at slightly larger or smaller angles. The position error was 

essentially a bias that kept the same trend for all distances. The orientation error, however, 

affected the intersection mean RMS error based on the distance of the observers from the object. 

At a distance of 250 m the intersection mean RMS error due to only orientation error was 

approximately equal to the intersection mean RMS error due to only position error at all 

distances.  

5.1.4 Covariance Mapping, Determining a Closed-Form Solution 

Methods  

One of the objectives of this report was the ability to map the uncertainty of the indirect 

geolocation result. Therefore, a closed-form solution was found to determine the covariance of 

the intersection. The following is the derivation of the closed-form solution for mapping the 

covariance of the location and orientation to the covariance of the intersection solution. 

In order to map the uncertainty, the covariance of each device’s location and orientation 

must be known. This covariance can be represented by the covariance matrix seen in Equation 5-

2, which shows each variance (𝜎𝑥,𝑥
2 , 𝜎𝑦,𝑦

2 , 𝜎𝑧,𝑧
2 ) and covariance (𝜎𝑦,𝑥

2 , 𝜎𝑧,𝑥
2 ,  𝜎𝑥,𝑦

2 , 𝜎𝑧,𝑦
2 ,  𝜎𝑥,𝑧

2 ,  𝜎𝑦,𝑧
2 ). 

The subscripts x, y, and z represent the location coordinates in three-dimensional space. 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = [

𝜎𝑥,𝑥
2 𝜎𝑦,𝑥

2 𝜎𝑧,𝑥
2

𝜎𝑥,𝑦
2 𝜎𝑦,𝑦

2 𝜎𝑧,𝑦
2

𝜎𝑥,𝑧
2 𝜎𝑦,𝑧

2 𝜎𝑧,𝑧
2

]                                     (Eq. 5-2) 

Conveniently, the orientation covariance is modeled during each cycle of the extended 

Kalman Filter (EKF). Thus, this orientation uncertainty can be represented by the covariance 

matrix seen in Equation 5-3, where r represents roll, p represents pitch, and ψ represents yaw.  

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = [

𝜎𝑟,𝑟
2

𝜎𝑟,𝑝
2

𝜎𝑟,ψ
2

    

𝜎𝑝,𝑟
2

𝜎𝑝,𝑝
2

𝜎𝑝,ψ
2

    

𝜎ψ,𝑟
2

𝜎ψ,𝑝
2

𝜎ψ,ψ
2

]                                    (Eq. 5-3) 

The main diagonal of the covariance’s in Equation 5-3 represents either the variance of 

each location or variance of each orientation angle with respect to itself. In the two-dimensional 

intersection method proposed in Section 2.1.2, the 2-D location variances represent the x and y 
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uncertainties while the orientation variance 𝜎𝑧,𝑧
2  represents the yaw uncertainty. When combined, 

these variances represent the overall 2-D system uncertainty for one observer. In the intersection 

method, there must be two observers, so the overall system covariance matrix contains the 

location and orientation uncertainties of two observers. The combined uncertainty matrix can be 

seen in Equation 5-4, where A represents observer one and B represents observer two. The zero 

components of the matrix occur when the two variables are independent from each other.  

𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  

[
 
 
 
 
 
 
 
𝜎𝐴 𝑥,𝑥

2 𝜎𝐴 𝑦,𝑥
2 0 0 0 0

𝜎𝐴 𝑥,𝑦
2 𝜎𝐴 𝑦,𝑦

2 0 0 0 0

0 0 𝜎𝐵 𝑥,𝑥
2 𝜎𝐵 𝑦,𝑥

2 0 0

0 0 𝜎𝐵 𝑥,𝑦
2 𝜎𝐴 𝑦,𝑦

2 0 0

0 0 0 0 𝜎𝐴 𝜓,𝜓
2 0

0 0 0 0 0 𝜎𝐵 𝜓,𝜓
2

]
 
 
 
 
 
 
 

           (Eq. 5-4) 

Once the system covariance is found, it must be transformed from each observer’s 

location to the intersection point. The Jacobian of the intersection function can be used to 

transform these two points to the intersecting point.  

 A Jacobian matrix is useful to linearly transform and approximate a function to a new 

point. The Jacobian of this intersection function was found by taking the partial derivative of the 

intersection function with respect to the variables in the 2-D location and orientation. The 

configuration of the Jacobian matrix of this function can be seen in Equation 5-5, where A is 

observer one, B is observer two, X is the x-axis location component, Y is the y-axis location 

component, 𝜓 is the yaw orientation. 

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =  

[
 
 
 
 
 
 
 
 
 
 
𝜕𝑋𝑖

𝜕𝐴𝑋

𝜕𝑌𝑖

𝜕𝐴𝑋

𝜕𝑋𝑖

𝜕𝐴𝑌

𝜕𝑌𝑖

𝜕𝐴𝑌

𝜕𝑋𝑖

𝜕𝐵𝑋

𝜕𝑌𝑖

𝜕𝐵𝑋

𝜕𝑋𝑖

𝜕𝐵𝑌

𝜕𝑌𝑖

𝜕𝐵𝑌

𝜕𝑋𝑖

𝜕𝐴𝜓

𝜕𝑌𝑖

𝜕A𝜓

𝜕𝑋𝑖

𝜕B𝜓

𝜕𝑌𝑖

𝜕B𝜓]
 
 
 
 
 
 
 
 
 
 

                                                   (Eq. 5-5) 

In order to transform the system covariance into the intersection covariance, the system 

covariance must be multiplied by the Jacobian. The matrix multiplication property can be used to 
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perform this transformation, which is shown in Equation 5-6. A is the original matrix and B is 

the transform matrix. 

(𝐴 ⋅ 𝐵) = 𝐵 ⋅ 𝐴 ⋅ 𝐵𝑇                                           (Eq. 5-6) 

This property can be implemented into the intersection covariance transformation. The final 

intersection covariance equation can be seen in Equation 5-7, where the transpose of the 

Jacobian is matrix B for the matrix multiplication property.  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛𝑇 × 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 × 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛      (Eq. 5-7) 

The resulting intersection covariance will be in the form of a 2x2 matrix that represents 

an ellipse of location uncertainty. The ellipse can then be mapped directly to the intersection 

point to represent the uncertainty of the indirect geolocation intersection point. This closed-form 

solution was then compared to an actual system result. 

Results 

To characterize the performance of the closed-form solution, the solution was compared 

to the first actual result of the distance and orientation Monte Carlo, shown in Section 5.1.3. The 

covariance of the intersection was obtained using the closed-form solution and converted to 

standard deviation, so that this expected standard deviation from the closed-form solution could 

be compared to the standard deviation of the actual intersection result. Figure 5-23, shows the 

standard deviation from the closed-form solution. 
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Figure 5-23: Expected Standard Deviation for Distance and Orientation Simulation 

Then, these data were subtracted from the standard deviation of the actual result to obtain Figure 

5-24. 

 

Figure 5-24: Expected Standard Deviation for Distance and Orientation Simulation 

The difference between the expected and actual standard deviation error ranges from -0.06388 to 

-2.638 m, excluding the distance of 25 m simulation. 
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Discussion 

 When the expected standard deviation error shown in Figure 5-24 was subtracted from 

the actual standard deviation error, there was a range of difference between the two. Overall, the 

closed-form solution was fairly accurate, but as the angle became very obtuse, there were 

significant standard deviation differences up to -2.638 m. There was also a significant difference 

when the distance was 25 m and the angle was very acute. The ability to determine the two-

dimensional intersection uncertainty from the observer’s uncertainty was very useful because the 

Kalman Filter estimates the orientation and location uncertainty on each iteration. Therefore, 

each iteration could then estimate the uncertainty of each solution found through the two-

dimensional intersection algorithm. A real-time system would be able to take advantage of this 

capability by knowing its estimated accuracy in real-time.  

5.2 Characterization of the Three-Dimensional Intersection 

Algorithm 

The three-dimensional (3-D) intersection model created in MATLAB was shown to work 

correctly in the zero error model seen in Section 4.1.1. In a real world implementation, there are 

errors within sensor measurements, as described in Section 2.1.1, and these errors produce 

inaccuracies within the final intersection location estimate. To observe and quantify how these 

errors affect the intersection location estimate Monte-Carlo simulations, as described in Section 

2.4.1, were performed with the 3-D intersection algorithm. The three-dimensional intersection 

simulations were produced using MATLAB and the results were characterized graphically as 

well as quantitatively.  

5.2.1 Static Scenario Monte Carlo 

Methods 

To begin, a Monte Carlo simulation was ran with 25,000 iterations using a few of the 

scenario configurations from the validation and zero-error model in Section 4.3 and errors were 

applied to the position and orientation of both observers. The X and Y position had a standard 

deviation of 2.5 m, the Z position had a standard deviation of 5 m, and the yaw and pitch both 

had a standard deviation of 2.5 degrees. These standard deviation were for zero-mean Gaussian 
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distributions. These standard deviation values were modeled after typical static sensor noise and 

uncertainties that were observed during a real world test. This simulation produced a “cloud” of 

points in the form of an ellipsoid that showed the observers’ location uncertainty and a cloud of 

points that occurred at the intersection of the vectors. This cloud of points increased in area as 

the noise inputs became larger. The specific scenarios that were be analyzed in this section are 

similar to the zero-error model scenarios. The simulation scenarios are listed in Figure 5-25 

below.  

 

Figure 5-25: Static Scenario Simulations 

These scenarios were chosen specifically in order to observe the distribution and shape of the 

location uncertainty. The intersection distribution was represented by the standard deviation from 

the true intersection point along each axis, known as the RMS error value. As the RMS error 

became larger, the larger the distribution along the axis became. Ultimately, this section showed 

the performance of the system with real world noise on the measurements.  

Results 

A constant noise was applied to the position and orientation of both observer’s 

measurements to observe the effect of real-world noise to the intersection location shape. There 

were four separate scenario configurations to observe the intersection shape. The first simulation 

configuration consisted of truth values with noise added afterwards. The configuration of this 

simulation is: starting point of (0 m, 0 m, 0 m), 45 degree yaw angle, and 0 degree pitch angle for 

observer A, and a starting point of (100, 0, 0), -45 degree yaw angle, and 0 degree pitch angle for 

observer B. The resulting intersection cloud can be seen in Figure 5-26 and 5-27 below. 
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Figure 5-26: Scenario 1 Monte Carlo View A 

 

Figure 5-27: Scenario 1 Monte Carlo View B 

The cloud of this intersection can be described using the RMS distribution along each X, 

Y, and Z plane. Figure 5-28 shows the RMS error values along each axis. 
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Figure 5-28: Monte Carlo Scenario 1 RMS Error 

A probability density function (PDF) was used to represent this RMS error distribution. Figure 5-

29 shows the PDF representation of the intersection uncertainty. 

 

Figure 5-29: Monte Carlo Scenario 1 PDF 

Note: if each axis distribution line cannot be seen, they are overlapping. 

Next, these PDF distributions for each X, Y, and Z were combined to represent a single absolute 

PDF distribution for the intersection point cloud.  
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Figure 5-30: Monte Carlo Scenario 1 Absolute PDF 

These RMS error values were seen to have similar distribution along each axis, since the 

intersection occurs directly in between each observer. This circular intersection distribution can 

be seen within the Figure 5-26 and 5-27 above.  

The second simulation configuration consisted of truth values with noise added 

afterwards. The configuration of this simulation is: starting point of (10, 10, 10), 30 degree yaw 

angle, and 0 degree pitch angle for observer A, and a starting point of (100, 10, 10), 0 degree 

yaw angle, and 0 degree pitch angle for observer B. The resulting intersection cloud can be seen 

in Figures 5-31 and 5-32 below. 
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Figure 5-31: Scenario 2 Monte Carlo View A 

 

Figure 5-32: Scenario 2 Monte Carlo View B 

The cloud of this intersection can be described using the RMS distribution along each X, 

Y, and Z plane. Figure 5-33 shows the RMS error values along each axis. 

 

Figure 5-33: Monte Carlo Scenario 2 RMS Error 
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A PDF was used to represent this RMS error distribution. Figure 5-34 shows the PDF 

representation of the intersection uncertainty.  

 

Figure 5-34: Monte Carlo Scenario 2 PDF 

These RMS errors were seen to have larger distribution than the previous scenario. There are 

similar distributions along the X and Z axis, but there is a large distribution along the Y axis. 

This larger distribution is due to the intersection occurring further away from both observers and 

a smaller intersection angle. This intersection distribution can be seen within the Figures 5-31 

and 5-32 above.  

The first simulation configuration consisted of truth values with noise added afterwards. 

The configuration of this simulation is: starting point of (10, 10, 10), 60 degree yaw angle, and 0 

degree pitch angle for observer A, and a starting point of (100, 10, 10), 0 degree yaw angle, and 

0 degree pitch angle for observer B. The resulting intersection cloud can be seen in Figures 5-35 

and Figure 5-36 below. 
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Figure 5-35: Scenario 3 Monte Carlo View A 

 

Figure 5-36: Scenario 3 Monte Carlo View B 

The cloud of this intersection can be described using the RMS distribution along each X, 

Y, and Z plane. Figure 5-37 shows the RMS error values along each axis. 
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Figure 5-37: Monte Carlo Scenario 3 RMS Error 

A PDF was used to represent this RMS error distribution. Figure 5-38 shows the PDF 

representation of the intersection uncertainty. Note: if each axis distribution cannot be seen, they 

are overlapping.  

 

Figure 5-38: Monte Carlo Scenario 3 PDF 

These RMS error values were seen to have the most distribution along the Y axis, with Z and X 

distributions being more precise. This distribution can be seen in Figures 5-35 and 5-36 above.  

The fourth simulation configuration consisted of truth values with noise added 

afterwards. The configuration of this simulation is: starting point of (0, 0, 0), 45 degree yaw 

angle, and 0 degree pitch angle for observer A, and a starting point of (100, 0, 20), -45 degree 
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yaw angle, and 0 degree pitch angle for observer B.  The resulting intersection cloud can be seen 

in Figures 5-39 and 5-40 below. 

 

Figure 5-39: Scenario 4 Monte Carlo View A 

 

Figure 5-40: Scenario 4 Monte Carlo View B 

The cloud of this intersection can be described using the RMS distribution along each X, 

Y, and Z plane. Figure 5-41 shows the RMS error values along each axis. 
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Figure 5-41: Monte Carlo Scenario 4 RMS Error 

A PDF was used to represent this RMS error distribution. Figure 5-42 shows the PDF 

representation of the intersection uncertainty. Note: if each axis distribution cannot be seen, they 

are overlapping.  

 

Figure 5-42: Monte Carlo Scenario 4 PDF 

These RMS error values were seen to have similar distribution along each axis, since the 

intersection occurs directly in between each observer. This circular intersection distribution can 

be seen within the Figures 5-39 and 5-40 above.  
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 These RMS values and Monte Carlo figures were interpreted to determine the effect of 

typical sensor noise to observe the intersection uncertainty during a real world test. Further 

investigation and explanation is detailed in the following discussion section.  

Discussion 

The cloud of intersection points was seen to change shape as the position and angle of 

each observer changes. The intersection seen in the first scenario of this section consists of an 

intersection angle of 90 degrees in the X, Y plane. With this angle of intersection, the cloud was 

seen to have equal X and Y distribution, with the Z distribution being independent from these 

measurements. As the pitch angle error was the same as the yaw error, the distribution of Z was 

similar to the X and Y.  The intersection seen in the second scenario of this section shows a 

greater uncertainty in the Y direction than X and Z. This uncertainty was due to the intersection 

angle being smaller.  

When the intersection angle becomes smaller, the more effect the yaw angle error will 

have on the resulting intersection position between the two vectors. Since these two vectors start 

on the same Y position, the greater the distribution in the Y direction, as it is between the two 

vectors. The intersection seen in the third scenario shows a large Y distribution and a similar 

distribution for X and Z. This distribution in the Y direction was less than the previous scenario 

due to the intersection angle being 60 degrees instead of 30. The yaw uncertainty still has an 

effect on the Y distribution, but is not as significant of an effect because the intersection angle is 

larger than the previous.  

The intersection seen in the fourth scenario of this section was seen to be almost identical 

to the first scenario. This similarity was expected because the least squares method takes the 

average value between both observers’ vectors. These two vectors, on average, were parallel in 

the Z axis, therefore the intersection points occurred at a Z coordinate directly between each 

observer in the Z axis. This intersection produced an intersection distribution in the Z axis that 

was half of the difference in the Z coordinate between observer A and B. This intersection cloud 

resulted in a similar distribution to scenario 1 but shifted up in the Z direction. In 2-D, the X Y 

intersection angle was 90 degrees therefore the X and Y distribution was very similar as well. 

These intersection distributions were modeled after real world errors and gave the ability to 

determine what errors and uncertainty might be seen in a field test. 
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5.2.2 Noise Input Varying Monte Carlo 

Methods 

 In the previous Monte Carlo simulation, the observers’ location and orientation values 

were analyzed with a constant noise distribution. In the real-world, however, these variables will 

encounter changing noise distributions, and these differences were tested with a Monte Carlo 

simulation. The simulation tests consisted of: varying the X and Y location error of a single 

observer, varying the Z location error of an observer, varying the yaw error of an observer, and 

varying the pitch error of an observer. The specific configuration of each input in the tested 

scenarios can be seen in Figure 5-43 to 5-46 below. In each scenario, there is no error for 

observer B. Observer B acted as a truth location and orientation vector, so the effects of each 

error could be observed from only observer A. The X Y noise test seen in Figure 5-43 started 

with no error on any of the measurements and the X Y position error was incremented. After 

each increment, a Monte Carlo simulation was run. The X Y position error was incremented by 

0.1 m until it was equal to 10m of error. 

 

Figure 5-43: X Y Simulation Noise Test 

The Z noise test seen in Figure 5-44 started with no error on any of the measurements, 

and the Z position error was incremented. After each increment, a Monte Carlo simulation was 

ran. The Z position error was incremented by 0.1 m until it was equal to 10m of error. 

 

Figure 5-44: Z Simulation Noise Test 

The yaw noise test seen in Figure 5-45 started with no error on any of the angle and 

location measurements, and the yaw angle error incremented. After each increment, a Monte 



 
 

127 
 

Carlo simulation was ran. The yaw angle error was incremented by 0.1 degree until it was equal 

to 10 degrees of error. 

 

Figure 5-45: Yaw Simulation Noise Test 

The pitch noise test seen in Figure 5-46 started with no error on any of the angle 

measurements, and the pitch angle error was incremented. After each increment, a Monte Carlo 

simulation was ran. The pitch angle error was incremented by 0.1 degree it was equal to 10 

degrees of error. 

 

Figure 5-46: Pitch Simulation Noise Test 

A resulting intersection location sensitivity, or variable-dependent area of uncertainty, 

was determined by varying each input one at a time. This test determined the specific variables 

that produced the highest intersection-location variance and was used to place the most emphasis 

to filter or ensure the specific variables were accurate. Ultimately, this simulation provided the 

correlation between each input variable’s uncertainty to the accuracy and precision of the 

intersection location estimate. 

Results 

Noise was applied to the position and orientation of one observer’s measurements 

individually and incrementally increased to observe the variable’s effect on the intersection 

shape. Refer to Section 5.2.1 specific noise values during each test.  

The first scenario was analyzed with increasing noise applied to the X and Y locations. 

Refer to Figure 5-43 for the progression of the noise being tested. The resulting intersection and 

position uncertainty can be seen in Figure 5-47 below.  
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Figure 5-47: Observer A X Y Uncertainty Ending with 10 m Noise 

The resulting RMS error value of the intersection uncertainty can be seen in Figure 5-48 below. 

 

Figure 5-48: Monte Carlo RMS Values with X Y Uncertainty. The X RMS line cannot be seen 

because it is identical to the Y RMS line.  
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In Figure 5-48 above, The X and Y RMS error value of intersection distribution was seen to 

increase linearly as the X and Y location uncertainty increases.  

The first scenario was next analyzed with noise applied to the Z coordinate, to model the 

location uncertainty in the Z direction. Refer to Figure 5-44 for the progression of the noise 

being tested. The resulting intersection uncertainty shape can be seen in Figure 5-49 below. 

 

Figure 5-49: Observer A Z Uncertainty Ending with 10m Noise 

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-50 below. 
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Figure 5-50: Monte Carlo RMS Values with Z Uncertainty The X RMS line cannot be seen 

because it is identical to the Y RMS line. 

The Z RMS value of the intersection distribution was seen to increase linearly as the Z location 

uncertainty increases.  

The first scenario was next analyzed with noise applied to the yaw angle, to model the 2-

D angle uncertainty. Refer to Figure 5-45 for the progression of the noise being tested. The 

resulting intersection uncertainty shape can be seen in Figure 5-51 below. 
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Figure 5-51: Observer A Yaw Ending with 10 degree Uncertainty 

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-52 below. 

 

Figure 5-52: Monte Carlo RMS Values with Yaw Uncertainty. The X RMS line cannot be seen 

because it is identical to the Y RMS line. 
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The X and Y RMS value of intersection distribution was seen to increase linearly as the yaw 

angle uncertainty increases.  

The first scenario was next analyzed with noise applied to the pitch angle, to model the 3-

D angle uncertainty. Refer to Figure 5-46 for the progression of the noise being tested. The 

resulting intersection uncertainty shape can be seen in Figure 5-53 below. 

 

Figure 5-53: Observer A Pitch Ending with 10 degree Uncertainty 

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-54 below. 
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Figure 5-54: Monte Carlo RMS Values with Pitch Uncertainty. The X RMS line cannot be seen 

because it is identical to the Y RMS line. 

The Z RMS value of intersection distribution was seen to increase linearly and the X and 

Y RMS was seen to increase at a slower rate than the Z RMS as the pitch angle uncertainty 

increases. These results are further analyzed within the discussion section of this chapter. 

Discussion 

Simulations were run while independently varying location or orientation noise in order 

to determine the influences of each sensor error to the resulting intersection uncertainty cloud 

using the initial configurations from scenario 1. Each scenario involved increasing noise on one 

variable for one observer, while the other observer had no location or orientation error. This 

simulation was conducted in order to characterize each variable noise and compare it to a truth 

vector. Seen in Figure 5-48, the X and Y RMS error values of the intersection uncertainty were 

seen to linearly increase as the X and Y location uncertainty for observer A increased, and Z 

RMS error remained constant. This X and Y position uncertainty simulation shows a relation to 

an X and Y intersection uncertainty. Next, the Z position noise was varied, with no noise on the 

X and Y position or angles. As the Z position uncertainty became larger, the Z RMS error of the 

intersection uncertainty became larger, and the X and Y intersection uncertainty stayed constant. 
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The Z RMS error was seen to increase linearly as the Z uncertainty increased, but at a smaller 

rate than the previous scenario with the X and Y RMS error, due to the averaging in the least-

squares method when the vectors did not directly intersect, even when the target was stationary 

at Z = 0. This Z position uncertainty simulation shows a relation to a Z intersection uncertainty.  

In the next simulation, the yaw angle noise was varied with no noise on the position or 

pitch angle. As the noise became larger, the X and Y RMS error of the intersection uncertainty 

became larger, and the Z RMS error remained constant. The X and Y RMS error was seen to 

follow a linear trend as the yaw error increased. This yaw angle uncertainty simulation shows a 

relation to X and Y intersection uncertainty. Lastly, the pitch angle noise was varied with no 

noise on the position or yaw angle. As the noise became larger, the Z RMS error of the 

intersection uncertainty followed a linear trend, and the X and Y RMS error increased with a 

smaller slope, but still a linear trend, after the pitch uncertainty was greater than 4 degrees. The 

pitch angle uncertainty simulation shows a relation to the Z intersection uncertainty and a 

relation with the X and Y intersection uncertainty after a certain error threshold.  

This additional component was due to the least-squares approximation; when the pitch 

difference between each observer was large enough, the minimum difference between each 

vector will occur in a location with a different X and Y position than the 2-D intersection. This 

occurrence can be seen in simulations 3-4, 6-8, and 10-16 in the validation section 4.3. These 

simulations provided the relationships between each observer measurement uncertainty and the 

resulting intersection uncertainty. An important finding was determining that pitch uncertainty 

can cause the X and Y intersection uncertainty to become greater and to occur at a different X 

and Y coordinate than the 2-D intersection. These findings were further used to determine the 

root cause of the intersection uncertainty distributions.  

5.2.3 Moving Observers: Location and Angle Varying Monte Carlo  

Methods 

 The next simulation consisted of modeling moving observers to analyze the effect of 

intersection angle and distance on the intersection uncertainty shape and distribution. The first 

simulation was used to assess the optimal vector intersection angle on the object of interest that 

produced the most precise intersection uncertainty distribution, and the next simulation observed 
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the effect of location and orientation error on the resulting intersection uncertainty, as distance 

increased. In the first simulation, observer A started at position (193.96, 249.634, 0) with a yaw 

angle of 160°, and observer B started at the position (193.65, 150.4, 0) with an yaw angle of 20°, 

and the intersection point was static at (200, 200, 0). The starting configuration can be seen in 

Figure 5-55 below.  

 

Figure 5-55: Simulation Starting Point 

The error values for each variable can be seen in Figure 5-56 below. Notably, the location error 

in the Z direction is larger than the error in the X and Y to reflect the larger GPS uncertainty 

when determining altitude. 

 

Figure 5-56: Optimal Angle Simulation Error Values 



 
 

136 
 

These two observers were swept following a circular path, with a 1° increment and a radius of 50 

m. The resulting intersection RMS error was observed as the intersection angle changed. The 

distance was then incremented by 50 m and the resulting error was observed, until the distance 

was equal to 350 m. The position sweep for each iteration can be seen in the Figure 5-57 below.  

 

Figure 5-57: Simulation Distance and Angle Sweep 

The second simulation had the same test parameters seen in Figure 5-56, but the 

orientation and location errors were changed in order to observe their effects on the resulting 

intersection uncertainty. The test parameters for this simulation can be seen in Figure 5-58 

below.  

 

Figure 5-58: Location and Orientation Error Test 
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The location test consisted of only location error, and the effect of the resulting intersection 

uncertainty as distance increased was observed. Next, the orientation test consisted of only 

orientation error, and the effect was observed as well. Lastly, the location test was used to 

determine the lower bound, or best case intersection uncertainty. It was imposed on the figure 

resulting from the test seen in Figure 5-56 and was used to also determine the distance at which 

the orientation error effects the intersection uncertainty more than the location error.  

Results 

The RMS error from the intersection cloud to the truth intersection coordinate (200 m, 

200 m, 0 m) was found for each Monte Carlo run. In the first simulation, the RMS error was 

found with relation to the intersection angle for each distance increment. The configuration for 

the test can be seen in Figures 5-56 and 5-58, and the resulting plot can be seen in Figure 5-59 

below. The minimum line is at a distance of 50 m, and each increasing line is from an additional 

50 m away from the intersection point.  

 

Figure 5-59: Monte Carlo Mean RMS Error with Changing Intersection Angle 
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The data followed a U-formation with a valley that is centered at 90o, so in general, the mean 

RMS error minimum will occur around 90 o. It can also be observed that as distance increases, so 

does the RMS error.  

In the second simulation, two separate tests were performed with the same varying 

parameters as the previous simulation. First, the location error test was performed with only 

location error, no orientation error. The resulting plot can be seen in Figure 5-60 below, with the 

distances incremented by 50 m until 350 m is reached.  

 

Figure 5-60: Monte Carlo Mean RMS Error with Changing Intersection Angle for Location Error 

Note: The lines, for every distance, are overlapping each other 

 

The data followed a similar trend as Figure 5-59, with a U-formation with a valley that is 

centered at 90o. But, the mean RMS error did not increase as the distance increased. Instead, the 

error was a direct translation from each observer to the resulting intersection, not dependent upon 

the distance from the intersection point.  
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Second, the orientation error test was performed with only orientation error, no location 

error. The resulting plot can be seen in Figure 5-61 below, with the starting distance 50 m being 

the minimum line and each increasing RMS error line is from an additional 50 m away from the 

intersection point. 

 

Figure 5-61: Monte Carlo RMS Error with Changing Intersection Angle for Orientation Error 

 

The data followed a similar trend as Figure 5-59, with a U-formation with a valley that is 

centered at 90o and the RMS error increased as the distance increased. Except, the mean RMS 

error is shifted down compared to Figure 5-59 due to the absence of the location error.  

 Lastly, the location error in Figure 5-60 was imposed on the graph in Figure 5-61 to 

exemplify the lower bound, or limiting factor, to the indirect geolocation solution with errors 

added. The resulting plot can be seen in Figure 5-62 below, with the lower bound being the bold 

black line.  
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Figure 5-62: Monte Carlo RMS Error with Changing Intersection Angle with Lower Bound 

The lower bound was observed to be the minimum line seen in the plot in Figure 5-62 above. 

This lower bound is the best case indirect geolocation mean RMS error solution. At this line, the 

system is considered GPS limited, where the lowest intersection RMS error can be found. This 

system is considered GPS limited because the location is solely found using the GPS, so the best 

intersection solution the system can calculate is limited by the location error in the GPS. The 

point where orientation error has more effect on the location solution can be determined from the 

data produced in Figure 5-62 as well. The lower bound was divided by each distance to 

determine its contribution to each distance uncertainty. The 50% point was determined to occur 

close to 250 m, and any distance after this point was considered to be more orientation dependent 

error. These results are further analyzed and interpreted within the discussion section of this 

chapter. 

Discussion 

In this section, simulations were run with observer A and observer B being moved in a 

circular position with different radii to observe the relationship between the mean RMS error and 
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intersection angle as distance increased. And next, simulations were run with the same test 

parameters, but the location and orientation errors were changed to observe their effect on the 

intersection uncertainty as the distance increased. Figure 5-59 shows that as the intersection 

angle changed, the minimum mean RMS error minimum centered on an intersection angle of 

90o, and remained true as distance from the intersection point increased. This minimum is due to 

the factors that acute or obtuse angles have on the resulting intersection uncertainty, with input 

errors added. When these angles are acute or obtuse, the yaw and location errors are amplified 

and each error has a larger effect on the point of the resulting intersection. From this figure, it 

was determined that the most precise intersection uncertainty distribution occurs at an 

intersection angle 90o with typical real world error values added. The second scenario consisted 

of similar test parameters, but the difference in location error and orientation error was tested as 

distance increased. Seen in Figure 5-60, it was observed that distance is not a factor when there 

is only location error in the system. Due to the location being found directly from the GPS, it is 

the limiting factor for obtaining a flawless system. Therefore, this location error can be 

determined as the lower-bound error when comparing to the first simulation in this section. The 

resulting comparison can be seen in Figure 5-62. The orientation error test showed that distance 

is a factor when there is only orientation error in the system. The results from Figure 5-62 were 

used to determine that at 250 m, the orientation effects the intersection uncertainty cloud more 

than the location error. This point can be used to determine which error to take into account more 

when wanting to perform indirect geolocation at particular distances. These simulations provided 

valuable information regarding the optimal intersection angle to produce the most precise 

intersection uncertainty, and the effect of location and orientation error over distance to the 

intersection uncertainty.  

 

5.3 Discussion 

In this chapter, the characterization of the two-dimensional intersection algorithm, the 

three-dimensional algorithm were detailed. First, the two-dimensional algorithm was 

characterized using Monte Carlo simulations. The specific simulations consisted of: static 

scenario, varying distance, and varying distance and orientation. The static scenario simulations 

showed the two main characteristics of the intersection point cloud that can be characterized: 
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RMS error and standard deviation. These simulations showed that when the degrees of freedom 

are limited by removing orientation error and having an angle on the observer of 90o the RMS 

error follows a Rayleigh distribution. The varying distance simulations showed the different 

effects that position and orientation errors have. In general, position error acted as a bias in the 

intersection mean RMS error. Orientation error was the main source of mean RMS error for all 

runs. The varying distance and orientation simulations showed mainly that there exists an 

optimal angle on the observer that minimizes the intersection mean RMS error. That angle over a 

series of simulations was shown to be 90o. All these simulations characterized the two-

dimensional intersection algorithm throughout a variety of scenarios. Future work in 

characterizing the 2-D intersection could examine observer with different error distributions, i.e. 

if one observer has a bad device, what is the effect on the intersection if the other observer has a 

good device.  

Second, the three-dimensional algorithm was characterized using Monte Carlo 

simulations. The specific simulations consisted of: static scenario, noise input varying, and 

location and angle varying simulations. The static scenario simulations were conducted with 

similar measurement errors that would be seen in real world simulations. The simulations 

provided insight about the intersection distributions with various configurations and gave the 

ability to determine what errors and uncertainty might be seen in a field test. The noise input 

varying simulations were conducted with each input being independently varied in order to 

observe the effects of each variable on the resulting intersection distribution. It was found that 

when the X and Y position errors become greater, the intersection X and Y RMS error values 

increased linearly, and the Z RMS error remained constant. When the Z position error became 

greater, the intersection Z RMS error value increased linearly, and the X and Y RMS error 

remained constant. When the yaw error was increased, the intersection X and Y RMS error 

values increased linearly, and the Z RMS error remained constant. Lastly, when the pitch error 

increased, the intersection Z RMS error increased linearly, and the X and Y RMS error value was 

observed to increase at a slower rate than the Z RMS error, but still increase linearly with the 

pitch error. The finding from these simulations provided information to determine the root cause 

of the intersection uncertainty distributions that might be seen in noisy environments. Lastly, the 

location and angle varying simulations were conducted to observe the relation between RMS 

absolute error and intersection angle as distance increased, and the effect of location and 
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orientation error on the resulting intersection uncertainty. It was found that the most precise 

intersection uncertainty distribution occurs at an intersection angle 90o with typical real world 

error values added, and remained true as distance increased. It was also seen that as distance 

increased, the location error had the same effect on the intersection uncertainty and acts as a 

lower bound limitation to the indirect geolocation system. For orientation error, however, the 

RMS absolute error increased as distance increased. It was found that at 250 m distance away 

from the intersection, the orientation error has more of an effect on the intersection uncertainty 

than the location error. These simulations provided valuable information regarding the 

characteristics of the 3-D intersection and the resulting uncertainties that would be experienced 

in field tests.  

Future work in the characterization of the 3-D intersection could include a model that 

introduces user error, e.g. inadvertent shaking of the device, into the simulations, rather than only 

sensor errors. The additional user error would create a more realistic real world simulation, but 

the user error would have to be estimated, or quantified within field tests. Overall, these 

simulations are a representation of a few scenarios that were encountered during field tests and 

relationships between observer position and intersection angle that were able to be observed and 

concluded.   
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Chapter 6: Field Tests 

 This chapter begins with a summary of the process used to conduct field tests. Following, 

a more detailed description of the methods and results for static field tests are presented. After 

discussing the static tests, the methods and results of a dynamic test are presented. Finally, a 

detailed discussion of the results and some ideas for future work are presented.  

6.1 Two-Dimensional Intersection Real World Performance  

In order to supplement the results obtained using simulations, a series of field tests was 

also conducted. Specifically, these field tests were classified into two groups: static and dynamic. 

The static field tests were executed using a very strict, controlled protocol. Changing one 

variable at a time, these tests sought to model the theory provided by the 2-D and 3-D 

simulations of Sections 5.1 and 5.2. Reflective of highly idealized case scenarios, these tests 

attempted to mitigate the many random variables present within real-world testing. 

On the contrary, the dynamic tests were more indicative of a real-world application. A 

means of testing the true rigidity, precision, and accuracy of the system, the dynamic tests helped 

indicate the feasibility of using smartphones for indirect geolocation. In order to make the data 

analysis of the dynamic tests simpler, the tests still followed relatively strict protocols. Despite 

these strict protocols, however, the increased degrees of freedom made the dynamic tests 

difficult to replicate with simulation. 

In order to establish as much certainty into the testing procedure as possible, the tests 

were performed at Wachusett Mountain in Princeton, Massachusetts. At the summit of the 

mountain is a United States Geological Survey (USGS) marker with very accurate latitude and 

longitude coordinates. Leveraging the truth reference provided by these coordinates, a 5-foot-tall 

tripod was placed on top of the USGS marker as the object of interest. As stated per the USGS 

datasheet, this marker was located at 42 29 20.59612 (N) and 071 53 12.26962 (W) (NGS Data 

Sheet). 

For data collection, the smartphones used the SensorFusion application available on 

Google Play. Using just one Samsung Galaxy J7 smartphone, the application’s data logging 

feature logged raw data from the accelerometer, magnetometer, gyroscope, and GPS to the 
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phone’s internal storage. The data from each experiment, arranged by timestamp, was then 

transferred to a micro SD card for post-processing.  

6.2 Static Tests: Methods and Results 

 As seen in Figure 6-1, six locations, as represented by the blue dots, were chosen for 

testing. Furthermore, at each location a series of different tests was performed. For the sake of 

thoroughness and simplicity, however, this section focuses on just two different tests performed 

at three specific angles: 90 degrees, 60 degrees and 135 degrees.   

 

Figure 6-1: User Testing Locations and Orientations for Field Tests at Wachusett Mountain 

In order to ensure that testing was performed as accurately as possible, two major 

precautions were taken. First, all observer locations, as represented by the blue dots, were 

measured using a tape measure with respect to the USGS marker (i.e. the object of interest). 

Consequently, this precaution allowed each observer location to be measured comparatively to 
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the known truth. Second, in order to obtain accurate orientation data, all observer pointing 

vectors, as represented by the red lines, were measured using a laboratory field-testing compass. 

Together, these two precautions helped create a much more consistent testing experience based 

on known and estimated truths. 

GPS Error: 

 In order to better understand the performance of the indirect geolocation system under 

static tests, the performance of the GPS had to be well characterized. Unlike the accelerometer, 

gyroscope, and magnetometer values, which underwent pre-filtering, calibration, and Kalman 

Filtering, the GPS data had thus far been unaltered. 

 In order to determine the accuracy and precision of the GPS, the phone was placed with 

its back lying down on the USGS marker. As each of the two phones was likely to have different 

GPS errors, only one phone was used throughout the duration of the static testing. Furthermore, 

the GPS error test was performed after all other experiments. As such, the GPS had already 

established frequent communication with the nearest constellation of satellites, thus eliminating 

the possibility of a cold start by the receiver. 

 After conducting two one-minute static tests with the phone positioned on the USGS 

marker, the location distributions in Figure 6-2 and Figure 6-3, respectively were obtained. 

Although these distributions referred to specific static tests, the two figures represented the 

general trends of the GPS data. 
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Figure 6-2: Location Distribution from GPS #1 

 

Figure 6-3: Location Distribution from GPS #2 

 As seen in Figure 6-2, the GPS data represented by the blue markers tended to congregate 

southeast of the truth location as represented by the yellow marker. With a standard deviation of 

0.258 meters in latitude and 0.735 meters in longitude, the GPS achieved fairly consistent and 

precise results. In regard to the accuracy of the system, however, the mean GPS location was 2.9 
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meters away from the USGS marker. As such, the GPS possessed a clear offset and thus was 

moderately inaccurate. 

 As the bias of the GPS was assumed to be consistent, it was expected that Figure 6-3 

would produce similar results to those of Figure 6-2. Unexpectedly, however, the performance of 

the GPS changed. Although the standard deviation values differed, with 1.107 meters in latitude 

and 0.544 meters in longitude, these parameters still indicated a highly precise system. 

Additionally, the accuracy of the system achieved comparable results as in Figure 6-2, as the 

mean GPS location was 4.4 meters away from the USGS marker. The major difference between 

the two tests, however, was the direction of the bias. 

 As seen in Figure 6-2, the bias translated the GPS location southeast of the actual USGS 

marker. Meanwhile, in Figure 6-3, the bias translated the GPS location northwest of the actual 

USGS marker. From these data collected, the GPS appeared to undergo a Rician distribution. 

Due to the presence of a drift value, however, the behavior of the receiver regularly changed; 

thus making the randomness of the GPS difficult to model. As such, no action was taken in order 

to attempt to offset the translational error caused by the GPS. 

90 Degree Tests: 

As illustrated in Figures 6-4 and 6-5, all 90 degree tests consisted of two observers whose 

pointing vectors formed a 90 degree angle about the blue marker (the object of interest). 

Observer A, as represented by the red marker, was located 100 feet away from the object of 

interest oriented 180 degrees (due South). Meanwhile, observer B, as represented by the green 

marker, was located 98 feet away from the object of interest oriented 270 degrees (due West). 

Among the many variations of the test performed, those of most importance were: user versus 

tripod and flat versus portrait.  
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Figure 6-4: Illustration of 90 Degree Test 

Figure 6-5: Metrics of 90 Degree Test 

 

 

 

 

 

90 Degree Test 
 Observer A Observer B Target 
Location 100 Feet From 

Target 
98 Feet From 
Target 

42.4890544777778 
Deg.,       
-71.8867415611111 
Deg. 

Orientation 
(including magnetic 
declination) 

180 Degrees 270 Degrees N/A 
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Results: User versus Tripod 

 

Figure 6-6: Estimated Intersection from Tripod  

 Figure 6-6 illustrates the tripod test performed with a 90 degree rotation between the 

pointing vectors of observer A and observer B. Observer A, as represented by the red markers, 

was located via the smartphone’s GPS receiver. Additionally, observer B, as represented by the 

green markers, was located via the same smartphone GPS receiver. At each observer location, a 

5-foot-tall tripod was stationed with the smartphone held upright in the portrait orientation. 

Using both the compass and the camera of the smartphone to achieve accurate alignment with 

the object of interest, the indirect geolocation system ultimately achieved a spread of intersection 

estimates. Represented by the cloud of blue markers, this distribution was then averaged in order 

to help determine system accuracy. As seen by the white marker, this average was then 

compared to the yellow marker, the location of the object of interest. For further understanding 

of the metrics corresponding to Figure 6-6, refer to Figure 6-7. 
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Mean Latitude of Intersections (Degrees) 42.489084950459770 
Mean Longitude of Intersections (Degrees) -71.886761720937670 

Standard Deviation of Intersection: 
Latitude, Longitude (meters) 

0.389, 0.401 

Standard Deviation of Observer A: 
Latitude, Longitude (meters) 

0.942, 0.630 

Standard Deviation of Observer B: 
Latitude, Longitude (meters) 

0.083, 0 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

36.3 versus 30.48 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.2 versus 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

3.8  

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

3.661 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

4.733 

 Figure 6-7: Metrics of 90-Degree Test: Tripod   

 

Figure 6-8: Estimated Intersection from User 

 Figure 6-8 illustrates the user test performed with a 90 degree rotation between the 

pointing vectors of observer A and observer B. Following the same variable representation as 

seen in Figure 6-6, observer A and observer B were represented by the red and green markers, 

respectively. Their estimated intersection points, based on heading and observer location, were 

then represented as the blue cloud of markers. The mean of the intersection cloud was 
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represented by the white marker, which could then be compared to the yellow marker, the USGS 

marker, to determine system accuracy. 

 Unlike the tripod test illustrated in Figures 6-6 and 6-7, however, the user test had less 

control. Without the stability of the tripod, the phone was held in portrait mode by the user. 

Leveraging the phone’s camera, the user attempted to increase precision and accuracy by 

aligning the object of interest to the center of the screen. For further understanding of the metrics 

corresponding to Figure 6-8, refer to Figure 6-9. 

Mean Latitude of Intersections (Degrees) 42.489025447656740 
Mean Longitude of Intersections (Degrees) -71.886784587850170 

Standard Deviation of Intersection: 
 Latitude, Longitude (meters) 

3.995, 0.363 

Standard Deviation of Observer A: 
 Latitude, Longitude (meters) 

0.635, 0.265 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.226, 2.178 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.1 vs 30.48 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

27.9 vs 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

4.8 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

8.766 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

2.653 

Figure 6-9: Metrics of 90-Degree Test: User   

Analysis: User versus Tripod 

 The user versus tripod tests provided a means of quantifying human error. In any real-

world scenario, there is a large number of random variables that can affect the outcome of an 

experiment. Of the many, one of the most influential is the impact of human error. When 

performing a geolocation test, the user, among many flaws, is prone to temporary distraction and 

shaking. As such, both the accuracy and precision of the system can be reduced, when 

integrating human error into testing. When using the tripod, however, many of the undesired 

negative effects of human error are mitigated. Possessing greater stability and not prone to the 
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many variables of human life, the tripod provides an element of consistency and accuracy unique 

to the real world.    

The performance of the tripod test can be seen from the illustration in Figure 6-6 and the 

corresponding data in Figure 6-7. Meanwhile, the performance of the user test can be seen from 

the illustration in Figure 6-8 and the corresponding data in Figure 6-9. Among the many metrics 

that categorized the system’s overall performance in the two tests, those of most importance 

were precision and accuracy.  

In terms of precision, the tripod test performed drastically better. Reflected by the tight 

cluster of blue markers in Figure 6-6, the indirect geolocation system produced highly precise 

location estimates. Experiencing one sigma standard deviations of 0.389 meters in latitude and 

0.401 meters in longitude, the several thousand intersection points were highly reproducible. 

On the contrary, the user test performed with significantly less precision. As seen in 

Figure 6-8, the intersection estimates created a significantly larger cluster. Supported by the 

metrics shown in Figure 6-9, the user test experienced one sigma standard deviation bounds of 

3.995 meters in latitude and 0.363 meters in longitude. 

Due to the implementation of user error, the decrease in precision was expected. The 

unique distribution of the intersection estimates, however, was not expected. The intersection 

estimates from the tripod case, as shown in Figure 6-6, followed a relatively circular distribution. 

In support of theory, the circular distribution of the data points indicated the lack of correlation 

between the latitude and longitude intersection estimates when the two observers were 

perpendicular to one another.  

Despite the increased horizontal heading error within the user test, the system was 

expected to also generate a circular distribution of data. As the implemented human error was 

assumed to be zero-mean Gaussian, the intersection cluster was supposed to be less compact, but 

still circular. Unexpectedly, however, the user test created high levels of imprecision in latitude. 

Reflected by the comparatively large standard deviation value, 3.995 meters, the intersection 

estimates formed a long and narrow data distribution. 

 Among the many potential reasons as to why the standard deviation value of the latitude 

was so large, one of the most likely was the inaccuracy of the magnetometer. Given the static 
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nature of the test (angular rate equaled zero), the EKF was heavily dependent on the accuracy of 

the magnetometer. As such, any perturbations or noise values corrupting the magnetometer also 

corrupted the estimated orientation accuracy. Consequently, this increased error extended the one 

sigma bounds of the intersection distribution. 

 Due to the severity of the increase in latitude uncertainty, there were likely additional 

faults in the system. With a more refined and robust magnetometer, however, the distribution 

would become much more circular in nature. 

 In terms of accuracy, the difference in performance between the two systems was less 

clear. Using the Haversine formula to calculate the distance between a pair of latitude, longitude 

coordinates, the absolute distance from the mean intersection value to the truth location was used 

to determine system accuracy. Not accounting for GPS drift, the tripod test produced a mean 

intersection estimation 3.8 meters away from the truth value. Meanwhile, for the user test, the 

mean intersection estimation was located 4.8 meters away from the truth value. Unfortunately, 

such offsets were larger than desired. By taking the GPS locational bias into account though, the 

errors can decrease substantially. 

 Ultimately, from the 90 degree static tests, two main limitations were found. First in 

terms of precision, the gyroscope provided little to no insight regarding the orientation of the 

smartphone. As such, the EKF became largely dependent on one sensor, the magnetometer, to 

produce heading estimations. Although frequently accurate, the magnetometer was subject to 

random perturbations disturbing the system. As this was the only sensor that provided heading 

data, however, the precision of the system was limited by the precision of the magnetometer. 

Second in terms of accuracy, the occurrence of GPS drift created a translational offset error for 

the estimated intersection points. Furthermore, as the nature of the GPS drift was difficult to 

characterize, this offset subsequently induced absolute error randomly. 
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Results: Flat versus Portrait 

 

Figure 6-10: Estimated Intersection from Flat Orientation  

 Figure 6-10 illustrates the flat orientation test performed with a 90 degree rotation 

between the pointing vectors of observer A and observer B. Following the same variable 

representation as seen in Figures 6-6 and 6-8, this test helped quantify the accuracy and precision 

of the system depending on the orientation of the phone. In order to perform the test, the phone 

was placed in the tripod on its back. As zero pitch and roll were desired, a level was used to help 

ensure that the plane of the back of the phone was parallel to the two-dimensional plane of the 

ground. Finally for accurate heading, the high accuracy compass was used in order to ensure that 

the top of the phone was aligned to the object of interest. For further understanding of the metrics 

corresponding to Figure 6-10, refer to Figure 6-11. 
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Mean Latitude of Intersections (Degrees) 42.489084754891020 
Mean Longitude of Intersections (Degrees) -71.886731271597920 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

0.358, 0.119 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

0.741, 0.472 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.083, 0 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

35.8 vs 30.48 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.2 vs 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

3.5  

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

7.764 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

4.739 

Figure 6-11: Metrics of 90 Degree Test: Flat 

 

Figure 6-12: Estimated Intersection from Portrait Orientation 

 Figure 6-12 illustrates the portrait orientation test performed with a 90 degree rotation 

between the pointing vectors of observer A and observer B. Identical to the data collected in the 

90 degree tripod test from Figure 6-5, the metrics corresponding to Figure 6-12 are found in 

Figure 6-13. 
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Mean Latitude of Intersections (Degrees) 42.489084950459770 
Mean Longitude of Intersections (Degrees) -71.886761720937670 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

0.389, 0.401 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

0.942, 0.630 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.083, 0 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

36.3 vs 30.48 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.2 vs 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

3.8 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

3.661 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

4.733 

Figure 6-13: Metrics of 90 Degree Test: Portrait 

Analysis: Flat versus Portrait 

 As can be seen in Figures 6-10 to 6-13, the indirect geolocation system achieved 

comparable results in both the flat and portrait tests. In terms of precision, comparison of each 

test’s intersection sigma bounds indicated the similarity in performance. Meanwhile, in terms of 

accuracy, both systems reported comparable results (3.8 meters versus 3.5 meters). A theme seen 

in all of the analyzed flat versus portrait tests, the similarity in performance between the two 

phone orientations indicated that the phone orientation was a parameter that no longer had to be 

monitored. 

Prior to testing, however, there were concerns with location estimation using portrait 

mode. Specifically, there was uncertainty as to the ability of the system to track multiple degrees 

of freedom. When the phone is positioned flat, both its roll and pitch values are set to 

approximately zero. Thus, the system relies almost entirely on the magnetometer. When the 

phone is positioned in a portrait orientation, however, more sensor fusion must occur. Using the 

accelerometer as a tilt sensor, the rotation matrix between the phone’s body frame and that of the 

inertial frame must be determined. Thus, the increased data manipulation creates more 

opportunity for error. 
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60 Degree Tests: 

As illustrated in Figure 6-14 and Figure 6-15, the 60 degree test consisted of two 

observers whose pointing vectors formed a 60 degree angle about the object of interest. Observer 

A, as represented by the red marker, was located 92 feet away from the object of interest at an 

angle of 210 degrees. Meanwhile, observer B, as represented by the green marker, was located 

98 feet away from the object of interest at an angle of 270 degrees.  

Additionally, all 60 degree tests utilized the same variable representation as seen in the 

90 degree tests. As a result, red markers represented observer A, green markers represented 

observer B, blue markers represented the estimated geolocation points, the white marker 

represented the mean of the estimated geolocation points, and the yellow marker represented the 

truth location. 

 

 Figure 6-14: Illustration of 60 Degree Test 
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Figure 6-15: Metrics of 60 Degree Test 

Results: User versus Tripod 

 

Figure 6-16: Estimated Intersection from Tripod  

 Following an identical procedure to the tripod test for the 90 degree case, the phone was 

placed upright onto the tripod. Additionally, in order to increase system accuracy and precision, 

the tripod was aligned with the object of interest by utilizing both the high accuracy compass and 

the smartphone camera. For further understanding of the metrics corresponding to Figure 6-16, 

refer to Figure 6-17. 

  

60 Degree Test 
 Observer A Observer B Target 
Location 92 Feet From Target 98 Feet From 

Target 
42.4890544777778 
Deg.,       
-71.8867415611111 
Deg. 

Orientation 
(including magnetic 
declination) 

210 Degrees 270 Degrees N/A 
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Mean Latitude of Intersections (Degrees) 42.489084316553100 
Mean Longitude of Intersections (Degrees) -71.886664341803380 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

0.287, 1.320 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

0.165, 1.079 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.083, 0 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.0 vs. 28.0416 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.2 vs 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

7.1 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

10.119 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

4.744 

Figure 6-17: Metrics of 60 Degree Test: Tripod 

 

Figure 6-18: Estimated Intersection from User 

 Figure 6-18 illustrates the user test performed with a 60 degree rotation between the 

pointing vectors of observer A and observer B. Following the same procedure as outlined in the 

90 degree user test, the observer leveraged both the high accuracy compass and the phone’s 

camera to achieve as accurate and precise of intersection estimates as possible. For further 

understanding of the metrics corresponding to Figure 6-18, refer to Figure 6-19. 
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Mean Latitude of Intersections (Degrees) 42.489041442320630 
Mean Longitude of Intersections (Degrees) -71.886760869365990 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

4.236, 4.412 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

0.358, 0.528 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.226, 2.178 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

27.6 vs. 28.0416 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

27.9 vs. 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

2.1 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

2.664 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

1.965 

Figure 6-19: Metrics of 60-Degree Test: User 

Analysis: User versus Tripod 

 Based on the same reasoning as in the 90 degree user versus tripod test, the 60 degree 

tripod test, as illustrated in Figures 6-16 and 6-17, experienced significantly better precision than 

the user test. Illustrated in Figure 6-17, the tripod test experienced an intersection estimate 

standard deviation of 0.287 meters in latitude and 1.320 meters in longitude. Meanwhile, the user 

test, as seen in Figure 6-19, experienced an intersection estimate standard deviation of 4.236 

meters in latitude and 4.412 meters in longitude. 

 While the difference in precision between the two tests was expected, the difference in 

accuracy of the two tests was unique. As seen in Figures 6-16 and 6-17 of the tripod test, the 

system achieved a mean location estimation 7.1 meters away from the truth location. For the user 

test, however, as seen in Figures 6-18 and 6-19, the system achieved a mean location estimation 

2.1 meters away from the truth location. Drastically better than that of the tripod test, the system 

achieved greater accuracy in the test subject to human error. 

 As both tests experienced many random variables, it is difficult to fully explain the 

reasoning as to why the user test achieved more accurate results than the tripod. Most likely, 
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however, the comparative success of the user test was due to the random nature of the GPS drift 

that corrupted observer locations. 

 As prior stated, the static and user tests performed at the 60 degree orientation were very 

static. Consequently, the orientation estimation of the phone became largely dependent on the 

accuracy of the magnetometer. Despite the heavy pre-calibration and filtering undergone by the 

magnetometer, the device was prone to error and inconsistency. As such, slightly inaccurate 

heading estimations from the magnetometer were possible. 

 As any potentially random GPS bias or small angle offset could alter the accuracy of the 

system, it was therefore not unlikely for an alternative test to perform more accurately, despite 

the presence of human error. 

135 Degree Tests: 

As illustrated in Figure 6-20 and Figure 6-21, the 135 degree test consisted of two 

observers whose pointing vectors formed a 135 degree angle about the object of interest. 

Observer A, as represented by the red marker, was located 94 feet away from the object of 

interest at an angle of 135 degrees. Meanwhile, observer B, as represented by the green marker, 

was located 98 feet away from the object of interest at an angle of 270 degrees.  

 

Figure 6-20: Illustration of 135 Degree Test 
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Figure 6-21: Metrics of 135 Degree Test 

Results of User versus Tripod: 

 

Figure 6-22: Estimated Intersection from Tripod 

 Figure 6-22 illustrates the tripod test performed with a 135 degree rotation between the 

pointing vectors of observer A and observer B. For further understanding of the metrics 

corresponding to Figure 6-22, refer to Figure 6-23. 

  

135 Degree Test 
 Observer A Observer B Target 
Location 94 Feet From Target 98 Feet From 

Target 
42.4890544777778 
Deg.,      
-71.8867415611111 
Deg. 

Orientation 
(including magnetic 
declination) 

135 Degrees 270 Degrees N/A 



 
 

164 
 

Mean Latitude of Intersections (Degrees) 42.489083949368750 
Mean Longitude of Intersections (Degrees) -71.886749956984730 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

0.412, 5.978 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

0.708, 0.384 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.083, 0 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

28.2 vs. 29.2608 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

30.2 vs. 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

3.3 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

4.716 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

3.604 

Figure 6-23: Metrics of 135 Degree Test: Tripod 

 

Figure 6-24: Estimated Intersection from User 

Figure 6-24 illustrates the user test performed with a 135 degree rotation between the 

pointing vectors of observer A and observer B. For further understanding of the metrics 

corresponding to Figure 6-24, refer to Figure 6-25. 
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Mean Latitude of Intersections (Degrees) 42.489031525133880 
Mean Longitude of Intersections (Degrees) -71.886705749412030 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

3.56, 6.343 

Standard Deviation of Observer A: Latitude, 
Longitude (meters) 

2.774, 3.346 

Standard Deviation of Observer B: 
 Latitude, Longitude (meters) 

0.226, 2.178 

Mean Observer A GPS Location Distance To 
Truth Versus Actual Distance (meters) 

28.0 vs. 29.2608 

Mean Observer B GPS Location Distance To 
Truth Versus Actual Distance (meters) 

27.9 vs. 29.8704 

Haversine Distance From Mean Intersection 
To Truth (meters) 

3.9 

Observer A Angle Error Using Mean GPS 
Location (Degrees) 

1.942 

Observer B Angle Error Using Mean GPS 
Location (Degrees) 

0.762 

Figure 6-25: Metrics of 135 Degree Test: User 

Analysis of User versus Tripod 

 As seen in Figures 6-22 and 6-23 the tripod test achieved modest precision and high 

accuracy. Similar to the user test in the 90 degree scenario, the 135 degree tripod test generated 

large standard deviation values in one direction. Represented by the flat and wide distribution of 

blue markers, the intersection estimate had significant longitudinal uncertainty. Among the many 

potential reasons for explaining the system’s longitudinal imprecision, the most likely 

explanation was the magnetometer. As prior mentioned, the magnetometer was prone to small 

angle errors. A trend seen in many other tests, the performance of the magnetometer appeared to 

take on a random distribution. Therefore, for some orientation estimations, such as the one for 

observer B in Figure 6-22, the magnetometer produced a relatively constant angular output. 

While in others, the magnetometer produced less accurate and consistent data. 

 Meanwhile, in the user test, the system behaved much more normally. As expected, the 

user test produced a much more imprecise intersection distribution. Specifically, by 

superimposing the uncertainty correlated with human error onto the already existing data 

distribution map, the data formed the distribution as modeled by the blue markers in Figure 6-24. 

Ideally, the distribution would have been more angular and ellipsoidal than circular due to the 

correlation between axes at 135 degrees. 
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 Lastly in terms of accuracy, both tests experienced comparable results. As seen in Figure 

6-23, the tripod test achieved a mean intersection location 3.3 meters away from the USGS 

marker. Meanwhile for the user test, the addition of user error did little to affect the accuracy of 

the system. As such, the system achieved a mean intersection location 3.9 meters away from the 

USGS marker. 

6.3 Dynamic Tests: Methods and Results 

          The static tests performed and analyzed in Section 6.2 provided valuable insight into the 

effectiveness of the system under ideal scenarios. In order to test the real world feasibility of an 

indirect geolocation system using a smartphone, however, dynamic tests also had to be 

performed. Among the many dynamic tests performed, the test from Figure 6-26 well represents 

the system’s results. 

As seen in Figure 6-26, observer A, the red marker, underwent significant motion. Much 

more comparable to a real-world scenario, observer A first began at the left-most red marker. 

Moving slowly from each red marker to the next, observer A attempted to keep the hand-held 

phone aligned with the object of interest. Once observer A reached the location of observer B, 

the green marker, observer A then turned around and followed the same path back to the starting 

point. As the user attempted to aim the smartphone while also walking in a different direction, a 

significant decrease in both accuracy and precision was expected. Consequently, observer A tried 

to best mitigate these increased errors by operating the phone in portrait mode, so as to use the 

camera to maintain relatively constant positioning on the target.  
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Results: Dynamic Test 

 

Figure 6-26: Illustration of Dynamic User Test 

 

Figure 6-27: Estimated Intersection from Dynamic User Test 

 Figure 6-27 illustrates the dynamic user test. Observer A, as represented by the red 

markers, followed the path as illustrated in Figure 6-26. Meanwhile, observer B, as represented 

by the green markers, remained stationary with the phone placed in the tripod in portrait mode. 
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Ultimately, the resulting intersection estimations created a spread of data as represented by the 

blue markers. With a mean estimation location represented by the white marker, this location 

was then compared to the yellow marker, the truth location, in order to determine system 

accuracy. For further metrics describing Figure 6-27, refer to Figure 6-28. 

Mean Latitude of Intersections (Degrees) 42.489061038924648 
Mean Longitude of Intersections (Degrees) -71.886723034926578 

Standard Deviation of Intersection: Latitude, 
Longitude (meters) 

0.73, 3.12 

Haversine Distance From Mean Intersection 
To Truth (meters) 

1.6 

Figure 6-28: Metrics of Dynamic Test 

Analysis: Dynamic Test 

 As seen in Figures 6-27 and 6-28, the dynamic test performed successfully. In terms of 

precision, the one sigma standard deviation bounds were larger than several of the static 

experiments. Despite the decrease in precision, however, this decrease in performance was 

expected. Unlike the static tests from Section 6.2, the dynamic test underwent a much more 

complicated data collection process. As the observer was both walking and turning, while also 

attempting to keep the phone aligned with the object of interest, there was a lot of new error 

introduced into the system. The ability of the EKF to leverage all sensor data, however, kept the 

system relatively precise. In terms of accuracy, the dynamic test uniquely achieved more 

accurate results than the static tests. Most likely due to the more frequent updates of the GPS 

receiver, the influence of GPS drift seemed to be somewhat mitigated. 

Summary: 

  𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 
(meters) 

𝜎𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(meters) Absolute Error 
(meters) 

90 Degrees Tripod 0.389 0.401 3.8 
 User 3.995 0.363 4.8 
 Flat 0.358 0.119 3.5 
 Portrait 0.389 0.401 3.8 
60 Degrees Tripod 0.287 1.320 7.1 
 User 4.236 4.412 2.1 
135 Degrees Tripod 0.412 5.978 3.3 
 User 3.56 6.343 3.9 
Dynamic User 0.73 3.12 1.6 

Figure 6-29: Summary of Calculated Test Values 
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 To summarize, Figure 6-29 restates many of the calculated test values from each of the 

prior mentioned experiments. Specifically, Figure 6-29 presents the standard deviation latitude, 

standard deviation longitude, and absolute error of the estimated intersection points. An 

interesting trend in the data was the difference in performance between the static and dynamic 

tests. For the static tests, the absolute errors were frequently 10 to 20% of the observer distance 

from the object of interest (about 30 to 35 meters). Meanwhile, for the dynamic test, the absolute 

error was approximately 6%. In terms of precision, both systems performed reasonably well. 

Under most circumstances, the static tests achieved tight data distributions representing the 

appropriate degree of correlation between the observers. Furthermore, the intersection estimates 

often accurately modeled the addition of human error, which most likely embodied a zero-mean 

normal distribution. Meanwhile, for the dynamic test, the precision well represented the nature of 

the test. Most uncertain in terms of longitude, the distribution of the intersection data helped 

indicate that the observer was walking at approximately the same latitude coordinates. 
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Chapter 7: Discussion 

 This chapter discusses the results and findings for the two-dimensional intersection 

algorithm, three-dimensional intersection algorithm, field tests, and future work.    

Two-Dimensional Intersection Algorithm 

 The two-dimensional (2-D) intersection algorithm was validated using a zero-error 

model, where analytical results were compared to actual results obtained from the algorithm. A 

range of errors from the zero-error intersection solution was observed to be from zero to 1.404e-

11 meters. The only scenario where zero error in the intersection solution was calculated was 

when there was no decimal approximation of the input location and orientation for both 

observers. When a precision to four decimal places was used, errors up to 1.404e-11 were 

observed. With such small errors observed due to precision, the algorithm was considered 

validated. 

 To characterize the performance of the two-dimensional algorithm, Monte Carlo 

simulations were used. When errors were introduced to both observers’ locations and 

orientations, an intersection point cloud was formed; two characteristics of this point cloud were 

analyzed. First, was the standard deviation of the point cloud along the x-axis and y-axis, which 

described the precision of the intersection solution. Second, was the distribution of the root-

mean-square (RMS) difference between each intersection point and the zero-error value. This 

error was commonly referred to as RMS error in this report. For each Monte Carlo simulation 

there were four total parameters: location error, orientation error, distance, and angle between 

observers. The two error parameters were a distribution of zero-mean Gaussian noise with a 

specified standard deviation. The distance and angle between observers was varied according to 

each test and were essentially test parameters.  

 In Section 5.1.2, a series of simulations was used to examine the performance of the 

intersection algorithm while an observer moved away from the object of interest. These 

simulations were repeated for different error parameters, including a position error of 2.5 m and 

0.001 m for a range of orientation errors from 0.0° to 2.0°. These values corresponded to the 

standard deviation of the zero-mean Gaussian distribution used to introduce the error. Two main 

observations were made after examining these scenarios. 
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First, as an observer’s distance increased and there was orientation, the intersection mean 

RMS error also increased. When there was no orientation error, the mean RMS error remained 

the same at all distances. The position error acted as a bias in the intersection mean RMS error. 

For the test where the position error was 2.5 m and the orientation error was 1.0°, the orientation 

error was observed to have a larger effect on the overall RMS error as the distance increased. 

From Figure 5-16, the position error at 100 m consisted of 13.7% of the total RMS error, but at 

880 m, the position error only accounted for 2.9% of the total RMS error.  

 In Section 5.1.3, another series of simulations was used to examine not only the distance 

of the observers, but also the angle between both observers. During the series the observers were 

placed at a range of distances from 25 m to 350 m in 25 m increments. At each distance 

increment, the angle between observers was swept through from 20° to 160° in 5° increments. 

These simulations showed that the optimal angle to obtain the most accurate intersection point 

was an angle between observers of 90°. These simulations also supported the finding that as the 

distance from both observers to the object increases, the orientation error plays a greater role in 

the total RMS error than the position error. For the simulation shown in Figure 5-22, the error 

due to orientation was found to be greater than that of position at a distance greater than 250 m. 

This simulation consisted of the standard GPS error of 2.5m and orientation error of 1.0°. 

Future work in characterizing the 2-D intersection could examine observers with different 

error distributions, i.e. if one observer has a malfunctioning device, what is the effect on the 

intersection if the other observer has a working device? Additional errors could also be 

characterized, in this report only zero-mean Gaussian distributions were used, but another error 

distribution that was found consistent with location errors found in the field tests for GPS 

location was the Rician distribution.  

 

Three-Dimensional Intersection Algorithm 

 The three-dimensional (3-D) intersection algorithm was validated using a zero-error 

model in MATLAB consisting of simple geometry and vector distance graphs. The algorithm 

was observed to work correctly and match up with the simple geometry and vector distance 

graphs. When the observers’ vectors had a direct intersection, geometry analysis was used to 

validate the MATLAB algorithm. The geometry analysis’s intersections were observed to match 

the MATLAB algorithm’s intersections. When the observers’ vectors did not have a direct 
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intersection, vector distance graphs were used. Each vector distance graph was created after the 

MATLAB algorithm computed the intersection point and showed if the MATLAB algorithm 

found the minimum and equidistant point from both vectors, the two properties of the least-

squares pseudo inverse calculation. The resulting intersection approximation from the MATLAB 

algorithm was found to satisfy the least-squares pseudo inverse calculation traits in every 

scenario that was tested. After the validation was complete, the intersection algorithm was 

judged to be working correctly.  

 To characterize the performance of the 3-D intersection performance with input errors 

typically observed in the real world, Monte Carlo simulations were used. For each simulation, 

errors were added and the resulting intersection point cloud was characterized using X, Y, and Z 

RMS error and total RMS error values. Three overall simulations were conducted. First, the 

observers’ positions were held constant with location and orientation errors and the resulting 

intersection point cloud was evaluated. Second, location and orientation variables were 

independently varied and the influences of each error to the resulting intersection point cloud 

was observed. Third, the observers’ angles and distances to the object were varied to observe the 

optimal angle that produced the most accurate intersection point cloud, and determined the 

influence between location and orientation error.  

 In Section 5.2.1, the simulations examined typical real world errors for each observer and 

the relationship between the shape of the intersection point cloud as position and angle 

configurations changed for each observer. These simulations were used to observe that when the 

two observers’ vectors intersect at a 90 degree angle, the intersection point cloud had equal X 

and Y distributions, with the Z distribution being dependent on the pitch angle and difference in 

Z position between observers. As the angle between observers became increasingly acute or 

obtuse, yaw angle error increasingly affected the distribution of the intersection cloud. As the 

difference in Z position changed for the observers, the intersection point cloud occurred halfway 

between the two vectors in the Z position due to the vector approximation. These intersection 

scenarios and distribution observations gave the ability determine what errors and uncertainty 

might be seen in a field test. 

 In Section 5.2.2, the simulations examined the influences of each error to the resulting 

intersection point cloud. Each simulation involved increasing noise on one variable for one 

observer, while the other observer had no location or orientation error, in order to individually 
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characterize the effect of each variable to the resulting intersection. As the X and Y position 

errors become greater, the intersection X and Y RMS error values increased linearly, and the Z 

RMS error remained constant. When the Z position error became greater, the intersection Z RMS 

error value increased linearly, and the X and Y RMS error remained constant. When the yaw 

error was increased, the intersection X and Y RMS error values increased linearly, and the Z 

RMS error remained constant. Lastly, when the pitch error increased, the intersection Z RMS 

error increased linearly, and the X and Y RMS error value was observed to increase at a slower 

rate than the Z RMS error, but still increase linearly with the pitch error. These findings provided 

the ability to determine the root cause of abnormal intersection uncertainty distributions.  

 In Section 5.2.3, the simulations examined the optimal intersection angle which produced 

the most precise intersection point cloud, and determined the influence between location and 

orientation error as distance increased. Each simulation consisted of a starting point 50 m from 

the intersection point and sweeping the angles between observers from 20° to 160°. The resulting 

mean RMS error versus angle between observers was observed and the distance was incremented 

by 50 m until 350 m was reached. The minimum RMS error was found to occur around 90°, and 

the minimum error remained at 90° as distance from the object increased. Next, the individual 

effect of location and orientation error on the intersection point cloud was compared as distance 

increased. First, the location error was tested without orientation error, with the same test 

conditions as the optimal angle simulation. From the simulation, it was observed that as distance 

increased, the RMS absolute error remained the same. As the distance increased with orientation 

error, however, the RMS absolute error increased as well. Using this observation, it was found 

that at a distance smaller than 250 m, the location error had more of an effect on the resulting 

intersection point cloud distribution. When the distance is greater than 250 m, the orientation 

error had a larger effect on the resulting point cloud distribution. This distance can be used to 

determine major factor for intersection uncertainty cloud for particular configurations.  

 Overall, the 3-D intersection was validated using geometry, vector distance graphs, and 

MATLAB intersections, and the simulations were used to observe the characteristics of the 

algorithm with real world errors added. This information was used to ensure the algorithm would 

work correctly during field tests and the simulations were used to compare field test outcomes. 
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Field Tests Discussion: 

           One of the fundamental goals of this project was to show the feasibility of a smartphone-

based indirect geolocation system. In order to deem the smartphone implementation as 

“feasible,” no real metrics were set. In general the goal was to have the system achieve accuracy 

levels within approximately 10% of the average observer distance from the truth marker. If most 

importance, however, were two additional sub-goals. First, an algorithm that could generate an 

orientation estimate had to be created. Among its many tasks, this algorithm had to take 

potentially poor sensor data and create a coherent, optimized result. Second, a connection had to 

be established between simulations and field tests. By showing that the field tests followed many 

of the same trends as seen in the simulations, the performance of the system would become more 

legitimate and trustworthy. Ultimately, completion of these two sub-goals would indicate that 

smartphones possess the qualities necessary to theoretically perform indirect geolocation. 

Sub-goal One: Creation of an Orientation Algorithm 

           To satisfy the first sub-goal, an extended Kalman Filter (EKF) was created. Designed to 

be a sensor fusion algorithm, the EKF created a coherent orientation estimate from individual 

sensors. In real-world static tests, the EKF regularly generated orientation estimates within a 

degree of the estimated truth (refer to Section 6.2). Furthermore, in real-world dynamic tests, the 

EKF seemingly produced accurate results although there was no estimated truth comparison 

(refer to Section 6.3). Despite the success of the EKF, however, there were several problems 

with its design.  

For one, the magnitude of the individual sensor errors produced by the phone was 

unexpected. Consequently, it took longer than expected to design a system that could accurately 

fuse all sensor data together. Although the EKF naturally eliminated a lot of the uncertainty and 

error within individual sensor data, there was a tremendous need for pre-filtering and pre-

calibration. As seen in Section 4.1, the data underwent NaN correction, high-pass filters, low-

pass filters, and calibrations prior to entering the EKF. Thus, it took longer than expected to 

customize each filtering and calibration stage to optimize the sensor data. 

In addition to the unexpected length of time it took to accurately fuse the data, the EKF 

also required extensive customization for fusion in each individual test. Using a tuning parameter 

which altered the process noise, the behavior of the EKF would change. Although customization 
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of this parameter is helpful in optimizing the system based on the dynamics of the test, the tuning 

parameter required more frequent calibration than desired to obtain an optimal result. 

Ultimately, the creation of a sensor fusion algorithm that generated an accurate orientation 

estimation was a success. The system took longer to create than expected and did not act as 

autonomously as desired, however, it produced accurate orientation results given the scenarios it 

experienced. In order to further optimize the system, however, it should undergo more real-world 

testing, particularly tests exploiting edge cases. Such testing would help determine the rigidity of 

all stages of the filter and further characterize the phone sensors. 

Sub-goal Two: Connection Between Simulations and Field Testing 

           As seen in Sections 5.1 and 5.2, many simulations were performed to reflect both 2-D 

and 3-D indirect geolocation scenarios. Naturally, the simulations were unable to reflect the 

distribution of random variables in real-world testing. Despite this limitation, however, the 

simulations did provide theoretical justification for ideal real-world scenarios. Among the many 

results generated from the simulations in Sections 5.1 and 5.2, two of the most important were 

the 90 degree optimal angle analysis and the location versus orientation error analysis. 

           The 90 degree optimal angle analysis was a result generated in both 2-D and 3-D cases. 

Specifically, it stated that the absolute error, measured by the root-mean-square (RMS) of the 

distance between the estimated intersection point and the truth, was a minimum when the angle 

between the two observers was 90 degrees. When comparing the simulated result with the result 

obtained in field testing, there were both similarities and differences. In terms of precision, the 

field test modeled the behavior seen in simulation. Specifically, the field test produced a very 

small, nearly circular intersection distribution which indicated the lack of correlation between 

errors from the two observers. In terms of accuracy, however, there was an inconsistency in 

results. As can be seen by the various testing results shown in Section 6.2, the 90 degree test did 

not produce the most accurate orientation estimate. This inconsistency with the simulated results 

most likely was a bi-product of the many random variables that plague real-world tests. Among 

the many random variables unmodeled in simulation, however, the most significant influence on 

the inaccuracy of the real-world system was most likely the GPS location error. 

           Undergoing some form of drift, the GPS uncertainty, as seen in Section 6.2, did not 

model the zero-mean Gaussian distribution used in simulations. Consequently, the simulations 

never accounted for a data set in which the mean observer location value experienced some form 
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of offset. An error prevalent in many of the real-world tests performed, this GPS bias ultimately 

created inaccuracies in the intersection estimations. 

           Using the location versus orientation error analysis generated in both the 2-D and 3-D 

simulations, the influence of the inaccurate GPS readings could be measured. Specifically, the 

analysis stated that observer location inaccuracy created more intersection estimate error than did 

orientation inaccuracy when both observers were relatively close to the object of interest. 

Therefore, as restrictions in space made the field tests relatively small in size (approximately 30 

to 35 meters), the inaccurate GPS locations negatively affected the intersection accuracy more 

than the orientation error. As such, reduction of the GPS error would most likely produce field 

test results that better modeled the accuracy generated by the simulations. 

Main Goal: 

           Ultimately, as seen in Sections 6.2 and 6.3, the main accuracy goals were met, however, 

not with the consistency desired. As seen in the 90 degree tripod test, there were cases in which 

static tests achieved approximately 10% error. Due to the significant GPS bias, however, further 

optimization of such scenarios was often difficult. Meanwhile, for dynamic tests, the system 

uniquely achieved greater accuracy. Helping mitigate GPS drift by forcing the GPS to more 

regularly update, the system was no longer as severely limited by the performance of the GPS. 

As such, the ability of the EKF to generate accurate orientation estimations produced more 

accurate intersection results.  

           Having acknowledged such limitations in experimental success, future work should 

increase the distance used in field tests. As a result, the influence of the location error should 

decrease and the system will become much more subject to the accuracy of the EKF. 

Furthermore, future work should acquire a more refined GPS receiver. Such an acquisition 

should not be difficult though, as smartphones will most likely soon possess more accurate GPS 

receivers as technology improves. Future work could also look for a method in correcting the 

orientation error of the smartphones using the smartphone camera.  
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Chapter 8: Conclusion 

In summary, this report examined the effectiveness of using smartphones as an indirect 

geolocation system. With multiple known observation vectors representing individual 

smartphone’s “lines of sight,” two-dimensional (2-D) and three-dimensional (3-D) intersection 

algorithms were created, validated, and characterized for indirect geolocation. Leveraging the 

existing hardware and software found within ordinary smartphones, an Extended Kalman Filter 

(EKF) was designed to accurately calculate these smartphone poses’. The algorithms and EKF 

were then subjected to field tests to introduce real-world error into the system and characterize 

performance. 

Several observations were made after characterizing the 2-D and 3-D intersection 

algorithms. First, with orientation error present in the input, it was found that the intersection 

mean RMS error increases with distance. Second, it was found that the effect of the position 

error on the mean RMS error is independent of distance, and acts as a bias. Third, at longer 

distances the mean RMS error due to orientation error dominates over that due to position error. 

Fourth, it was found that the intersection angle of 90° minimizes the mean RMS error of the 

intersection cloud. For a standard location error of 2.5 m and orientation error of 1.0°, an angle 

from 75° to 105° only produces 2-3% additional mean RMS error in the intersection compared to 

minimum mean RMS error value at 90°.  

The field tests introduced real-world errors into the EKF and 2-D intersection algorithm 

and assessed the performance of the accuracy of the system. The EKF was designed to be a 

sensor fusion algorithm, it created a coherent orientation estimate from individual inertial sensors 

found in smartphones: gyroscope, accelerometer, and magnetometer. In real-world static tests, 

the EKF regularly generated orientation estimates within a degree of the estimated truth. 

Although the EKF naturally eliminated a lot of the uncertainty and error within individual sensor 

data, there was a tremendous need for pre-filtering and pre-calibration. In order to further 

optimize the system, however, it should undergo more real-world testing, particularly tests 

exploiting edge cases and tests at longer distances. Such testing would help determine the 

rigidity of all stages of the filter, further characterize the phone sensors, and further quantify the 

performance of the Extended Kalman Filter.  
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 Next, a connection was established between simulations and field tests. When comparing 

the simulated result with the result obtained in field testing, there were both similarities and 

differences. In terms of precision, the field test modeled the behavior seen in simulation. 

Specifically, the field test produced a very small, nearly circular intersection distribution which 

indicated the lack of correlation between errors from the two observers. In terms of accuracy, 

however, there was an inconsistency in results. This inconsistency with the simulated results 

most likely was a bi-product of the many random variables that plague real-world tests.   

 Ultimately through field tests, the main accuracy goals were met, however, not with the 

consistency desired. As seen in the 90 degree tripod test, there were cases in which static tests 

achieved approximately 10% error. Due to the significant GPS bias, however, further 

optimization of such scenarios was often difficult. Meanwhile, for dynamic tests, the system 

uniquely achieved greater accuracy. Helping mitigate GPS drift by forcing the GPS to more 

regularly update, the system was no longer as severely limited by the performance of the GPS. 

As such, the ability of the EKF to generate accurate orientation estimations produced more 

accurate intersection results.  
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Appendix A – 2-D Zero Error Model Scenarios 

Scenario x_A 

(m) 

y_A 

(m) 

theta_A 

(deg) 

x_B 

(m) 

y_B 

(m) 

theta_B 

(deg) 

1 -146.4102 0 30 -100 -100 45 

2 100 200 0 200 0 90 

3 0 200 0 546.4102 0 150 

4 100 373.2051 -60 100 100 45 

5 300 373.2051 -120 300 200 0 

6 200 500 -90 400 546.4102 -120 

7 373.2051 100 150 300 100 135 

8 400 -100 123.6901 300 0 116.5651 

9 150 -100 80.5376 250 -100 99.4624 

10 100 500 -71.5651 0 300 -26.5651 

Figure A-1: 2-D Error Model Scenarios 

*All scenarios intersect at (200 m, 200 m) 
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Appendix B - Validation Results of Three-Dimensional Intersection 

Below, the validation results from scenarios 5 to 11 and 15 to 16 are detailed.  

Scenario 5: 

Figure B-1 shows the configuration for scenario 5: 

 

Figure B-1: Scenario 5 Configuration 

Using Equation 4-27, the final angle in the triangle can be found. This angle ϴC can be seen in 

Figure B-2 below.  

 

Figure B-2: Scenario 5 with ϴC Angle 
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The angle was found to be 30 degrees. Using equation 4-25, the base distance can be found. This 

distance is found to be 100. With the BASE distance and ϴC, the distance dA and dB can be found 

using the law of sines. The distances can be seen in the Figure B-3 below. 

 

Figure B-3: Scenario 5 with dA and dB 

Using dB, the intersection point can be found. This point can be found because there is a right 

angle formed at observer B, so the distance dB only contributes to the Y-axis change. The 

resulting intersection was found to occur at (100, 165.88, 10). Next, the MATLAB zero-error 

model was analyzed, seen in Figure B-4 and B-5, to observe the resulting intersection.  

 

Figure B-4: Scenario 5 MATLAB Zero Error Model View A 
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Figure B-5: Scenario 5 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (100.0000, 165.8846, 10.0000) and matches up with the geometry analysis. 
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Scenario 6: 

This scenario has a different intersection than scenario 5 due to the two vectors not truly 

intersecting. Therefore an analysis graph can be seen in Figure B-6 below, with distance from 

each vector being on the y-axis and the index, or position, along each vector being on the x axis, 

which allows for the position along each line to be found. 

 

Figure B-6: Scenario 6 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (93.9711, 155.4423, 71.1260) and the position 

for Vector B at this intersection is (100.0000, 177.9423, 71.1260). Next, the scenario was 

analyzed using MATLAB. The resulting plot can be seen in Figure B-7 and B-8 below. 
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Figure B-7: Scenario 6 MATLAB Zero Error Model View A 

 

 

Figure B-8: Scenario 6 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (99.6252, 165.9850, 71.1260).  
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Scenario 7: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-9 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x axis, which allows for the position along each line to be found. 

 

Figure B-9: Scenario 7 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (63.3506, 102.4059, 48.8360) and the position 

for Vector B at this intersection is (100.0000, 123.5490, 10.0000). Next, the scenario was 

analyzed using MATLAB. The resulting plot can be seen in Figure B-10 and B-11 below. 
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Figure B-10: Scenario 7 MATLAB Zero Error Model View A 

 

 

Figure B-11: Scenario 7 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (84.4137, 111.8922, 31.4115).  
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Scenario 8: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-12 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x axis, which allows for the position along each line to be found. 

 

Figure B-12: Scenario 8 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (70.4182, 114.6473, 10.0000) and the position 

for Vector B at this intersection is (100.0000, 123.5490 , 51.3285). Next, the scenario was 

analyzed using MATLAB. The resulting plot can be seen in Figure B-13 and B-14 below. 
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Figure B-13: Scenario 8 MATLAB Zero Error Model View A 

 

Figure B-14: Scenario 8 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (88.3103, 118.6412, 28.5429).  
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Scenario 9: 

The Figure B-15 shows the configuration for scenario 9: 

 

Figure B-15: Scenario 9 Configuration 

Using Equation 4-23, the final angle in the triangle can be found. This angle ϴC can be seen in 

Figure B-16 below.  

 

 

Figure B-16: Scenario 9 with ϴC Angle 

This angle was found to be 60 degrees. Using equation 4-22, the base distance can be found. This 

distance is found to be 100. With the BASE distance and ϴC, the distance dA and dB can be found 

using the law of sines. The distances can be seen in the Figure B-17 below. 
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Figure B-17: Scenario 9 with dA and dB 

Using dB, the intersection point can be found. This point can be found because there is a right 

angle formed at observer B, so the distance dB only contributes to the Y-axis change. The 

resulting intersection was found to occur at (100, 61.96, 10). Next, the MATLAB zero-error 

model was analyzed, seen in Figure B-18 and B-19, to observe the resulting intersection.  

 

Figure B-18: Scenario 9 MATLAB Zero Error Model View B 
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Figure B-19: Scenario 9 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (100.0000, 61.9615, 10.0000) and matches up with the geometry analysis. 
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Scenario 10: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-20 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x axis, which allows for the position along each line to be found. 

 

Figure B-20: Scenario 10 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (77.5000, 48.9711, 38.3687) and the position for 

Vector B at this intersection is (100.0000, 87.9423, 38.3687). Next, the scenario was analyzed 

using MATLAB. The resulting plot can be seen in Figure B-21 and B-22 below. 
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Figure B-21: Scenario 10 MATLAB Zero Error Model View A 

 

Figure B-22: Scenario 10 MATLAB Zero Error Model View B 
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The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (98.3112, 62.9366, 38.3687).  

Scenario 11: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-23 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x axis, which allows for the position along each line to be found. 

 

Figure B-23: Scenario 11 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (66.2139, 42.4551, 33.6254) and the position for 

Vector B at this intersection is (100.0000, 79.0760, 10.0000). Next, the scenario was analyzed 

using MATLAB. The resulting plot can be seen in Figure B-24 and B-25 below. 
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Figure B-24: Scenario 11 MATLAB Zero Error Model View A 

 

 

Figure B-25: Scenario 11 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (93.2447, 54.1612, 26.0734).  
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Scenario 12: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-26 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x-axis, which allows for the position along each line to be found. 

 

Figure B-26: Scenario 12 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (73.6608, 46.7546, 10.0000) and the position for 

Vector B at this intersection is (100.0000, 79.0760, 35.1416). Next, the scenario was analyzed 

using MATLAB. The resulting plot can be seen in Figure B-27 and B-28 below. 
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Figure B-27: Scenario 12 MATLAB Zero Error Model View A 

 

Figure B-28: Scenario 12 MATLAB Zero Error Model View B 
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The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (98.3112, 57.0863, 18.0367).  

Scenario 15: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-29 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x-axis, which allows for the position along each line to be found. 

 

Figure B-29: Scenario 15 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (47.8405, 47.8405, 24.6250) and the position for 

Vector B at this intersection is (49.0892, 50.9108, 20.0000). Next, the scenario was analyzed 

using MATLAB. The resulting plot can be seen in Figure B-30 and B-31 below. 
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Figure B-30: Scenario 15 MATLAB Zero Error Model View A 

 

Figure B-31: Scenario 15 MATLAB Zero Error Model View B 
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The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (49.3482, 49.3482, 22.5328).  

Scenario 16: 

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in 

Figure B-32 below, with distance from each vector being on the y-axis and the index, or position, 

along each vector being on the x-axis, which allows for the position along each line to be found. 

 

Figure B-32: Scenario 16 Distance to Least Squares Intersection 

The position for Vector A at this intersection is (46.0739, 46.0739, 0) and the position for Vector 

B at this intersection is (56.7047, 43.2953, 42.2854). Next, the scenario was analyzed using 

MATLAB. The resulting plot can be seen in Figure B-33 and B-34 below. 
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Figure B-33: Scenario 16 MATLAB Zero Error Model View A 

 

Figure B-34: Scenario 16 MATLAB Zero Error Model View B 

The resulting intersection, determined through calculations from the MATLAB zero error model, 

occurs at (55.1970, 44.8030, 20.1932). 
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Appendix C – 2-D Distance and Orientation Combinations 

(ɵo, d) 
distance d (meters) 

25 50 … … 325 350 

Angle 

between 

Observers 

ɵo 

(degrees) 

20 (20, 25) (20, 50) (20, …) (20, …) (20, 325) (20, 350) 

25 (25, 25) (25, 50) (25, …) (25, …) (25, 325) (25, 350) 

… (…, 25) (…, 50) (…, …) (…, …) (…, 325) (…, 350) 

… (…, 25) (…, 50) (…, …) (…, …) (…, 325) (…, 350) 

155 (155, 25) (155, 50) (155, …) (155, …) (155, 325) (155, 350) 

160 (160, 25) (160, 50) (160, …) (160, …) (160, 325) (160, 350) 

Figure C-1: 2-D Distance and Angle Between Observers Simulation Combinations 

*Refer to Figure 5-7 in Section 5.1.3 for classification of distance and Angle Between Observers 

variables. 

 

 

 




