
1

Geolocation Using Smartphone Sensors
A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree in Bachelor Science

In

Electrical and Computer Engineering

By

Ryan Darnley

Nathaniel Peura

Justin Seeley

Sponsored By: Date: October 9, 2018

Matt Beals Project Advisor:

Vito Mecca ________________________

Jonathan Watson Professor Edward A. Clancy

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of the Air Force under Air Force Contract
No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the Department of the Air
Force.

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the project program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html

2

Abstract

Geolocation is the process of estimating an object’s location on Earth [Djuknic and

Richton, 2001]. Most commonly, geolocation performs in a “direct” way, i.e., geolocation

involves the manipulation of Global Navigation Satellite System (GNSS) data to determine the

location of a GNSS receiver. A less common geolocation application is the location estimation of

an object of interest in an “indirect” way, i.e., the geolocation of an object of interest not co-

located with any equipment such as a GNSS receiver. Referred to as “indirect geolocation” in

this report, this method of location estimation utilizes existing knowns and reference points to

determine the final geographic location of an object of interest in the distance.

This report presents a method of indirect geolocation leveraging the pose – location and

orientation – of multiple observers. Using a GNSS receiver to determine location and an Inertial

Measurement Unit (IMU) to determine orientation, this indirect geolocation method creates an

imaginary intersection point from each observer’s pointing vector. MEMS technology has

reduced the size, weight, and cost of GNSS and IMU systems, however, these advantages have

drawbacks in accuracy. Thus, in an attempt to find a less expensive and application specific

device that has adequate sensors and sensor fusion capabilities, this report explores the feasibility

of using smartphones to perform indirect geolocation.

The developed method of indirect geolocation uses an intersection algorithm to estimate

the location of an object of interest given two or more observers’ location and orientation.

Equipped with algorithms for both two-dimensional (2-D) and three-dimensional (3-D) space,

simulations were used to characterize algorithm performance. These simulations showed that

there exists an optimal angle of 90o that minimizes intersection mean RMS error. They also

showed that position error creates a bias in the intersection error, while orientation error affects

the intersection error as a function of distance. Ultimately such work culminated in a series of

field tests where location estimations commonly formed within 3 meters of the truth value with

both observers over 30 meters in the distance.

3

Statement of Authorship

Over the course of the summer of 2018 at MIT Lincoln Laboratory, Nathan and Ryan completed

sections of the two-dimensional intersection algorithm and initial Kalman Filter design as

detailed in Chapter 3. All group members contributed equally during the scheduled 9-week

period at MIT Lincoln Laboratory.

 All sections were reviewed by all group members, but the primary authors for each

section are as follows:

Ryan Darnley: Section 2.1, 2.2, 2.3, 3, 4.1, 6.1, 6.2, 6.3

Nathan Peura: Section 2.1, 2.2, 2.3, 3, 4.3, 4.4, 5.2, 5.3

Justin Seeley: Section 2.1, 2.2, 2.4, 4.2, 4.4, 5.1, 5.3

All Team Members: Abstract, Executive Summary, Introduction, Discussion, Conclusion

4

Acknowledgements

There are many people to whom we can attribute the success of our project including, but not

limited to, Professor Edward Clancy, Professor George Heineman, Vito Mecca, Jonathan

Watson, Matthew Beals, and the entire MIT Lincoln Laboratory community. Most notably, we

would like to thank Group 108 for creating a challenging but welcoming work environment.

Professor Edward Clancy provided his direct support and suggestions as our advisor. Professor

Heineman directed the MIT Lincoln Laboratory MQP site. Vito Mecca, Jonathan Watson, and

Matthew Beals provided valuable advice and input throughout the progression of the project.

5

Executive Summary

Introduction

Geolocation is the determination of an object’s location on Earth. In its most standard application,

geolocation is the process of determining the geographical location of a measuring device. Referred to as

direct geolocation in this report, this process usually leverages a Global Navigation Satellite System

(GNSS) receiver, which estimates its location using information transmitted by satellites. Less commonly,

geolocation can also be the process of determining the geographical location of an object of interest not

co-located with a measuring device. Referred to as indirect geolocation in this report, this method utilizes

known locations and orientations to a common target to deduce this target’s location. Specifically,

indirect geolocation is the focus of this report.

 In order to perform indirect geolocation, the location and orientation, data reflecting the pose –

location and orientation – of two devices with respect to a target must be collected. In practice, several

different sensor systems can provide location and orientation data; however, this report focuses on two:

the Global Positioning System (GPS) receiver for location and the inertial measurement unit (IMU) for

orientation. A myriad of products that contain GPS and IMU sensor systems are available for purchase.

Often called Attitude and Heading Reference Systems (AHRS), these devices utilize integrated circuit

(IC) technology to create small, robust pose estimation systems. Despite their effectiveness, these systems

are often heavily customized for industry and military applications. Thus, their inflexible and expensive

nature lend these systems to be undesired by the more ordinary customer. Consequently, this report

analyzes the feasibility of using a more abundant and flexible platform to perform indirect geolocation:

smartphones.

 In order to test the practicality and effectiveness of smartphone-based indirect geolocation

systems, this report first explores the theory of indirect geolocation and the requirements necessary to

perform it. Specifically, this section highlights two major requirements: a pose algorithm and an

intersection algorithm. In order to satisfy the first requirement of indirect geolocation, creation of a pose

algorithm, the report discusses the concept of sensor fusion by means of an extended Kalman Filter

(EKF). With the first requirement satisfied, the report then discusses the second requirement, the

intersection algorithm in both two-dimensional (2-D) and three-dimensional (3-D) space. Finally, having

satisfied the two requirements necessary to perform indirect geolocation, the report discusses

experimental results obtained via simulations and field tests.

Indirect Geolocation

 As prior stated, indirect geolocation is the process of determining the geographical location of an

object of interest not co-located with a measuring device such as a GNSS receiver. For clarification,

Figure 1 illustrates a typical indirect geolocation application. The object of interest, represented by the

buildings, has no co-located equipment to determine its location. Meanwhile, two observers, A and B,

each have devices capable of determining their respective pose. If both observers orient their equipment

so that they are both facing the object of interest, each device creates a pointing vector indicative of its

orientation. When elongated infinitely, this pointing vector passes through the object of interest.

 Ultimately, by utilizing the known pose of the equipment for two observers, the location of the

object of interest can be determined by finding the intersection between each equipment’s pointing

vectors. The theory of indirect geolocation, however, becomes much more complicated when errors are

presented.

6

Figure 1: Indirect Geolocation

Sensor Fusion

Typically, smartphones are equipped with a variation of a GNSS receiver and the components of

an IMU (accelerometer, gyroscope, and magnetometer). Unfortunately, the hardware used by

smartphones is far from perfect. Corrupted by noise, drift, and external distortions, smartphone sensors

typically produce inadequate pose estimations when used without filtering. If the strengths of individual

sensors are leveraged together, however, the computed pose estimation can be drastically more accurate.

Thus, by performing a process known as sensor fusion, more accurate pose estimations can be generated.

Although many different algorithms can be used for sensor fusion, this report focuses on the extended

Kalman Filter (EKF). A nonlinear variation of the conventional Kalman Filter, the EKF leverages a

process model and a measurement model to create an optimal state estimate.

The proposed EKF had the process model based on the gyroscope and the measurement model

based on the accelerometer and magnetometer. As each model produced its own orientation estimate, the

EKF fused the two models together so that it attained a minimum distance error from truth. In order to

fuse the respective strengths of each model, the EKF represented each model with a precision factor.

Known as the covariance, this matrix determined the trustworthiness and reproducibility of each

orientation estimate. As such, creating a gain factor based on the ratio between each model’s covariance

matrix, a more optimal orientation estimate was created.

Two-Dimensional Intersection Algorithm

 A two-dimensional intersection algorithm was created that determined the unique intersection

point shown in Figure 1. Specifically, the algorithm used many trigonometric principles to determine the

intersection point and was ultimately validated using a zero-error model. To characterize the algorithm’s

performance in an environment with errors, Monte Carlo simulations were then run. First, a simple

scenario was used for the Monte Carlo simulation, as shown in Figure 2. Denoted as observers A and B,

each observer had two types of error applied to them – position and orientation. The position error applied

to both observers was zero-mean Gaussian noise with a standard deviation of 2.5 meters. Meanwhile, the

orientation error was zero-mean Gaussian noise with a standard deviation of 1 degree. Each Monte Carlo

simulation was subsequently run for 25,000 iterations.

7

From all simulations the intersection point cloud

around the object of interest was characterized. The

individual X and Y components of the intersection

cloud were found to be Gaussian distributed.

Furthermore, the RMS error was found to follow a

Rayleigh distribution, but only when the angle

between the observers was 90o.

Following, a series of simulations was performed,

each using distinct geometry, to characterize the

algorithm in a more real-world environment where

the observers could be anywhere in the two-

dimensional plane and have various orientations.

The findings for the 2-D Monte Carlo simulations

can be seen after the 3-D Intersection Algorithm

section below.

Three-Dimensional Intersection Algorithm

To supplement the two-dimensional intersection algorithm, a three-dimensional intersection

algorithm was created to add the ability to geolocate points in three-dimensional space. As three-

dimensional vectors are unlikely to intersect in 3-D space, a least-squares pseudoinverse method was used

to find the approximation or “closest point” of intersection between observer pointing vectors. Ultimately,

scenarios were used to validate the functionality of the least-squares method 3-D algorithm using simple

geometry and distance graphs.

 Simulations were used to characterize the performance of the algorithm with noisy inputs similar

to those of real-world measurements. In order to simulate a noisy environment, a simple Monte Carlo

simulation of 25,000 iterations was created to model real-world sensor errors. In this scenario, two

observers were looking at an object directly between them – a target at (50, 50, 0) – with observer A

having an angle of 45o and observer B having an angle of -45 o. Each observer had a 2.5 meter uncertainty

in the X and Y location, a 5 meter uncertainty in the Z location, and 2.5 degrees of uncertainty in their

pitch and yaw angle. These uncertainties were standard deviations of independent zero-mean Gaussian

distributions. One example scenario is shown in Figure 3 below.

Figure 3: 3-D Intersection Monte Carlo

After each simulation, the intersection point cloud around the object of interest was characterized. The

individual X, Y, and Z components of the intersection cloud were found to be Gaussian distributed.

8

Following, a series of simulations were performed to characterize the algorithm in a more real-world

environment where the relationships between intersection point cloud distribution, intersection angle, and

distance were found. The following section details the findings from the 2-D and 3-D Monte Carlo

simulations.

Two-Dimensional and Three-Dimensional Intersection Algorithm Findings

The two-dimensional and three-dimensional intersection algorithms were characterized using Monte

Carlo simulations. It was found that these two algorithms possessed similar properties, and the following

observations were made.

1. The optimal angle between observers to minimize intersection mean RMS error was 90o.

2. An optimal angle range from 75o to 105o only increased the mean RMS error by 2-3% of the

minimum mean RMS error at 90o for all distances and for standard location error of 2.5m and

orientation error of 1.0o.

3. Position error created an offset in the intersection mean RMS error that was independent of

distance, but not the angle between observers.

4. Orientation error increased the magnitude of the intersection mean RMS error depending on

distance and the angle between observers.

5. At longer distances, the intersection mean RMS error due to orientation error dominated the

intersection mean RMS error due to position error.

These findings can be used as guidelines during field tests in order to obtain the optimal indirect

geolocation solution.

Field Tests

 In order to relate the simulations to real-world testing the proposed indirect geolocation system

was tested at Wachusett Mountain in Princeton, Massachusetts. Using a United States Geological Service

(USGS) marker as the truth reference with known latitude and longitude coordinates, a series of thorough

and controlled tests were performed. Among the many locations and scenarios tested, the field tests can

be broken down into two general categories: static and dynamic.

 The results of one of the static field tests can be seen in Figure 5. In the figure, the red markers

represent Observer A and the green markers represent Observer B. Both observers were located over 30

meters from the object of interest (yellow marker) and oriented towards it. As seen by the distribution of

the estimated geolocation positions (blue markers), the 90 degree static test achieved a highly precise

cluster of results (Standard Deviation = 0.389 meters in latitude and 0.401 meters in longitude). In terms

of accuracy, however, the system was less refined. With an estimated intersection 3.8 meters from the

truth marker, the presence of GPS bias ultimately created a location offset. An inaccuracy seen regularly

within the field tests, the GPS accuracy behaved as a limiting factor in the indirect geolocation testing.

9

Figure 5: Static Field Test

Conclusion

 Overall, this report analyzed the feasibility of utilizing smartphones for indirect geolocation

applications. In order to find intersections in 2-D space, first a closed form algorithm was developed for

mapping the intersection points of two coplanar vectors in 2-D space. Running simulations to characterize

the performance of the system, the next task was the creation of a 3-D space intersection algorithm. Using

least-squares principles, a 3-D intersection algorithm was created which provided unique, optimal

solutions. These simulations produced several findings for the 2-D and 3-D algorithms. First, to minimize

intersection RMS error, an angle between observers of 90o was required. Second, position error acted as a

bias, while the effect of orientation error on the intersection solution was dependent on the distance of the

observer from the object of interest. Third, at longer distances the orientation error had more of an effect

on system accuracy than the position error. With these findings in mind, field tests were performed with

the Samsung Galaxy J7. Using an extended Kalman Filter (EKF), gyroscope, magnetometer, and

accelerometer data were ultimately fused together to create an optimal orientation estimation.

 In conclusion, the fusion of the intersection and orientation algorithms produced an indirect

geolocation system. In order to test the performance of the system using smartphone sensors in a real-

world environment, a series of field tests were conducted. Performed in both static and dynamic

scenarios, these field tests illustrated the feasibility of smartphone-based indirect geolocation applications

in the future.

10

Table of Contents

Abstract 2

Statement of Authorship 3

Acknowledgements 4

Executive Summary 5

Table of Contents 10

Chapter 1: Introduction 12

Chapter 2: Background 14

2.1 The Theory of Geolocation 14

2.1.1 Direct Geolocation 14

2.1.2 Indirect Geolocation 15

2.2 Sensors Required For Indirect Geolocation 26

2.2.1 Sensor Physics and Operation 26

2.2.2 Strengths and Weaknesses of Sensors 32

2.3 Sensor Fusion 35

2.3.1 The Kalman Filter 35

2.3.2 The Extended Kalman Filter 39

2.4 Model Validation and Evaluation 41

2.4.1 Zero-Error Model for Validation 42

2.4.2 Monte Carlo Simulation for Evaluation 44

Chapter 3: Preliminary Work Related to Project 48

Chapter 4: Kalman Filter Design and Algorithm Validation 52

4.1 Designing the Extended Kalman Filter 52

4.2 Validating the Two-Dimensional Intersection Algorithm 67

4.3 Validating the Three-Dimensional Intersection Algorithm 73

4.4 Discussion 89

Chapter 5: Algorithm Performance with Measurement Error 91

5.1 Characterization of the Two-Dimensional Intersection Algorithm 91

5.1.1 Static Scenario Monte Carlo 91

5.1.2 Varying Distance Monte Carlo 98

5.1.3 Varying Distance and Orientation Monte Carlo 105

5.1.4 Covariance Mapping, Determining a Closed-Form Solution 110

5.2 Characterization of the Three-Dimensional Intersection Algorithm 114

11

5.2.1 Static Scenario Monte Carlo 114

5.2.2 Noise Input Varying Monte Carlo 126

5.2.3 Moving Observers: Location and Angle Varying Monte Carlo 134

5.3 Discussion 141

Chapter 6: Field Tests 144

6.1 Two-Dimensional Intersection Real World Performance 144

6.2 Static Tests: Methods and Results 145

6.3 Dynamic Tests: Methods and Results 166

Chapter 7: Discussion 170

Chapter 8: Conclusion 177

References 179

Appendix A – 2-D Zero Error Model Scenarios 182

Appendix B - Validation Results of Three-Dimensional Intersection 183

Appendix C – 2-D Distance and Orientation Combinations 205

12

Chapter 1: Introduction

Indirect geolocation systems greatly aid in applications where the location of an

inaccessible object of interest is desired. Imagine for example, a search and rescue mission where

victims are stranded throughout a disaster area. In need of data that can help rescue teams

navigate themselves to the victims quickly a system, such as indirect geolocation, can be used.

The aforementioned scenario describes the usage of an indirect geolocation system by

which an observer is able to obtain the location of an object of interest while not co-located with

that object. Given the severity of the scenario, such applications most likely utilize highly

customized and expensive equipment. For the more ordinary consumer and less urgent situation,

however, such elaborate, high-end systems are impractical [Al-Hamad and El-Sheimy, 2014].

Thus, the question follows: how practical is it to create a functioning and effective indirect

geolocation system on an inexpensive, abundant, and flexible device?

Smartphones are inexpensive and abundant. According to a study performed by the Pew

Research Center, 77% of American adults own a smartphone [Pew Research Center, 2018].

While models vary by manufacturer, the majority of smartphones contain a Global Navigation

Satellite System (GNSS) receiver and an Inertial Measurement Unit (IMU). These two units

provide the two main requirements for indirect geolocation—location and orientation.

Unfortunately, smartphone sensors are not as accurate as the sensors used in customized,

military-grade indirect geolocation systems. Furthermore, differing quantities of memory and

processing capabilities create large margins between the computational ability of smartphones.

Thus, these issues raise the question: how feasible is it to create a smartphone-based indirect

geolocation system?

Previous work using smartphones for indirect geolocation has shown promising results.

Specifically, smartphones have been shown to use sensor fusion to help alleviate the issues

caused by the inaccuracy of their sensors. This fusion maximizes the strengths and reduces the

weaknesses of each sensor to obtain an overall better measurement of location and orientation.

Fusion methods are continuously improving and changing based on implementation, with one

such method being the Kalman Filter [Solin et al, 2018]. In addition to sensor fusion,

smartphones have also been shown to be capable of performing as a mobile mapping system,

13

subsequently utilizing the camera for photogrammetry to determine the location of an object of

interest [Al-Haman and El-Sheimy, 2014]. Thus, given these examples, smartphones generally

possess adequate hardware and software necessary to perform indirect geolocation.

This report explores the feasibility of using two Samsung Galaxy J7 smartphones to

determine the geographic coordinates of an object of interest not co-located with either

smartphone. The distance from each device to the object of interest ranges from 20 meters to

several km, with increasing inaccuracy as the distance becomes larger. A prototype indirect

geolocation system is presented which consists of two observers with smartphones oriented

towards an object of interest. A sensor fusion algorithm, an extended Kalman Filter (EKF), is

presented and implemented, which allows a more accurate estimation of each smartphone’s

location and orientation, as well as an error estimate of the geolocation solution. Using each

smartphone location and orientation, a three-dimensional least-squares intersection algorithm is

used to determine the location of the object of interest. This algorithm is validated through

several zero-error models and also characterized using Monte Carlo simulations. Lastly, field

tests were conducted and the entire system was evaluated using real-world data.

14

Chapter 2: Background

 In this chapter, Section 2.1 introduces the theory of geolocation and its two variations:

direct and indirect geolocation. As indirect geolocation is the focus of this report, Section 2.1.2

subsequently discusses the data and processes necessary to perform indirect geolocation.

Following, Section 2.2.1 details the sensors and data necessary to perform indirect geolocation.

As these necessary sensors have several sources of error, Section 2.3 introduces the concept of

sensor fusion. Specifically, this section discusses the implementation of the Kalman Filter, a

commonly used sensor fusion algorithm, to estimate a more accurate location and orientation.

Lastly, Section 2.4 presents common methods that can be used to validate and characterize

models such as a Kalman Filter and an indirect geolocation algorithm.

2.1 The Theory of Geolocation

Geolocation is the identification or estimation of the geographic location of an object of

interest. As defined by this report, there are two different types of geolocation: direct geolocation

and indirect geolocation. This section discusses these two variations in depth and details the

calculations that are involved with each.

2.1.1 Direct Geolocation

Direct geolocation is the location estimation of an object of interest co-located with a

measuring device. Represented in Figure 2-1, knowledge of the device’s current location is the

only necessary requirement to perform direct geolocation.

Figure 2-1: Direct Geolocation of a GPS Receiver

15

As seen in Figure 2-1, direct geolocation uses information transmitted by navigation

satellites to pinpoint a receiver’s location. There are several systems of navigation satellites that

exist and they are called Global Navigation Satellite Systems (GNSS). Commonly used in

applications such as Google Maps on smartphones, direct geolocation applications are abundant.

More detail describing direct geolocation is provided in Section 2.2.1.

2.1.2 Indirect Geolocation

Indirect geolocation is the estimation of the location of an object of interest not co-

located with any measuring device. In order to perform indirect geolocation, knowledge of one

or more “truth” references of an observer’s location and orientation are necessary. Ordinarily,

location is obtained using a Global Navigation Satellite System (GNSS) and orientation using an

inertial measurement unit (IMU). Indirect geolocation consists of finding the distance and

orientation of an object from one or more observers whose locations are known. Ultimately,

these three requirements – location, orientation, and distance – can be used to estimate the

location of the object of interest.

A method commonly used in robotics is simultaneous location and mapping (SLAM).

SLAM is a mapping algorithm theory that commonly uses vision, such as a single camera

mounted to a robot, and properties of that vision, such as the parallax effect, to map the

surrounding area. Despite its effectiveness though, SLAM has its own flaws. First, 3-D

implementations are computationally intensive as the algorithms frequently collect a significant

amount of undesired location points. Second, unless on-board processing is performed, the data

link used to transfer SLAM data requires a significant bandwidth [Mendes et al, 2016].

Therefore, the following subsection will discuss a less computationally expensive two and three-

dimensional indirect geolocation method that does not require a high amount of bandwidth, but

requires at least two observers.

Indirect Geolocation Intersection in Two-Dimensional Space

Two-dimensional (2-D) indirect geolocation uses the 2-D location of two devices and

each device’s respective heading, or yaw, angle to ultimately calculate a final location using an

intersection algorithm. Each device is pointed towards an object of interest by an observer,

known as observer A and B. Both observers’ “line of sight” coplanar vectors ultimately intersect

16

at a point in the distance. As this point is represented in a 2-D plane and only dependent on

observer location and heading (yaw), the point ultimately represents a 1D intersection.

Following, is the derivation for the 2-D intersection algorithm.

Observer A and observer B are pointed towards an object of interest off in the distance.

Observer A’s position is defined by (XA, YA) and orientation is defined by ϴA with respect to the

positive x-axis. Observer B’s position is defined by (XB, YB) and orientation is defined by ϴB

also with respect to the positive x-axis. These six inputs (XA, YA, ϴA, XB, YB, & ϴB) are the

inputs to the two-dimensional intersection algorithm.

The system and coordinate axis are shown below in Figure 2-2.

Figure 2-2: Observer A and Observer B Position and Angle Configuration

First, ensure that observer B is always on the positive x-axis in relation to observer A. If

not, the label for observer A and observer B should be switched to ensure that the correct

equations are used. Observer B does not have to have a greater Y coordinate than observer A as

depicted in Figure 2-2. If YB < YA, then the angles ϴA and ϴB will change accordingly and the

derivation remains the same.

Next, calculate the vector angle of observer B with relation to the negative x-axis, 𝛳𝐵
𝑂, at

observer B, shown in Figure 2-3. This value can be found using Equation 2-1 seen below.

17

 𝛳𝐵
𝑂 = 180° − 𝜃𝐵 (Eq. 2-1)

Figure 2-3: 𝛳𝐵
𝑂 and Δ Angle Configuration

The BASE distance and angle Δ can be isolated in a triangle seen in Figure 2-4 below. The

horizontal lines that extend from XB and XA are parallel, so therefore the angle Δ for both

observers is equivalent due to the alternate interior angles theorem.

Figure 2-4: Isolated Triangle to Calculate BASE and Δ

The BASE distance between observer A and observer B can be found using Equation 2-2 seen

below.

18

 BASE = √(XB − XA)2 + (YB − YA)2 (Eq. 2-2)

The angle Δ can then be calculated with trigonometry properties using Equation 2-3 seen below,

where ΔY and BASE are shown in Figure 2-3.

Δ = sin−1 (

ΔY

BASE
) (Eq. 2-3)

The angle Δ allows for the calculation of the angles ϴA’ and ϴB’ seen in Figure 2-5 below.

Figure 2-5: Angles ϴA’ and ϴB’ Configuration

The calculation for each of these angles is seen in Equation 2-4 and 2-5.

 𝛳𝐴
′ = 𝛳𝐴 − 𝛥 (Eq. 2-4)

 𝛳𝐵
′ = 𝛳𝐵 + 𝛥 (Eq. 2-5)

With these two known angles, the last angle, ϴC, can be calculated using Equation 2-6, because

the sum of the angles of a triangle is 180o.

 𝛳𝐶 = 180° − 𝛳𝐴
′ − 𝛳𝐵

′ (Eq. 2-6)

19

Using the law of sines, the distances from observer A and observer B to the intersection point, dA

and dB, can be calculated for the triangle with sides dA, dB, and BASE. This triangle is shown in

Figure 2-6 below.

Figure 2-6: Intersection Distance dA and dB Configuration

The following equations can be created using The Law of Sines and they are shown in Equations

2-7.

 𝐵𝐴𝑆𝐸

sin(𝛳𝐶)
=

𝑑𝐴

sin(𝛳𝐵
′)

=
𝑑𝐵

sin(𝛳𝐴
′)

(Eq. 2-7)

Equation 2-7 can then be re-arranged to obtain Equations 2-8 and 2-9 below. These equations

can then be separately solved for dA and dB respectively using the BASE and angles solved for

earlier.

𝑑𝐴 = 𝐵𝐴𝑆𝐸 ⋅

sin(𝛳𝐵
′)

sin(𝜃𝐶)

(Eq. 2-8)

𝑑𝐵 = 𝐵𝐴𝑆𝐸 ⋅

sin(𝛳𝐴
′)

sin(𝜃𝐶)

(Eq. 2-9)

20

The distance from each observer to the intersection point is the last value needed to solve for the

intersection point. The intersection point (Xi, Yi) can be calculated using the properties of a right

triangle and trigonometry functions with respect to observer A. This triangle can be seen in

Figure 2-7 below.

 Figure 2-7: Right Triangle with Respect to Observer A and Intersection Point

Figure 2-8 below shows how the X component can be analyzed as the difference of the X

intersection point and observer A X point.

Figure 2-8: X Displacement of Observer A and Intersection Point

21

Equations 2-10, 2-11, and 2-12 show the process of how to find the X intersect point. Equation

2-10 uses trigonometry of the right triangle to create a ratio of X displacement to distance.

cos(𝜃𝐴) =

𝑋𝑖 − 𝑋𝐴

𝑑𝐴

(Eq. 2-10)

The equation can be re-arranged to solve for Xi, the x-coordinate of the intersection point in

Equation 2-11 and 2-12.

 (𝑋𝑖 − 𝑋𝐴) = 𝑑𝐴 ∗ cos (𝜃𝐴)

(Eq. 2-11)

𝑋𝑖 = 𝑑𝐴 ∗ cos(𝜃𝐴) + 𝑋𝐴

(Eq. 2-12)

Figure 2-9 below shows how the Y component can be analyzed as the difference of the Y

intersection point and observer A Y point.

Figure 2-9: Y Displacement of Observer A and Intersection Point

22

Equations 2-13, 2-14, and 2-15 show the process of how to find the Y intersect point. Equation

2-13 uses trigonometry of the right triangle to create a ratio of Y displacement to distance.

sin(𝜃𝐴) =

𝑌𝑖 − 𝑌𝐴
𝑑𝐴

(Eq. 2-13)

The equation can be re-arranged to solve for Yi, the y-coordinate of the intersection point, as

shown through Equations 2-14 and 2-15.

 (𝑌𝑖 − 𝑌𝐴) = 𝑑𝐴 ∗ sin (𝜃𝐴)

(Eq. 2-14)

 𝑌𝑖 = 𝑑𝐴 ∗ sin(𝜃𝐴) + 𝑋𝐴

(Eq. 2-15)

The resulting (Xi, Yi) point is the intersection point created from the vectors of observer A and

observer B. As will be discussed in the next section though, additional input data can transform

this simple scenario into a three-dimensional model of an object of interest.

Indirect Geolocation Intersection in Three-Dimensional Space

Three dimensional (3-D) indirect geolocation integrates pitch into the two-dimensional

method, providing the 3-axis orientation in the Earth frame. Pitch is the only additional

orientation measurement needed to convert the intersection from 2-D to 3-D because in the Earth

frame, roll does not have an effect on the orientation vector that is perpendicular from the device.

The roll rotates around the perpendicular axis, having no effect on the orientation angle. The

pitch and yaw provide the ability to locate specific points in 3-D space rather than being limited

to projecting a 3-D world into a 2-D plane. To perform the 3-D calculation, the information of

each observer’s 3-axis position and 3-axis orientation in the Earth frame are needed. With this

information, a least-squares pseudo inverse is performed to calculate the 3-D intersection. The

intersection uses the least-squares method because vectors in 3-D are not likely to intersect. The

least-squares method calculates the unique point that is equidistant from each vector, and at a

minimum total distance from all vectors. Following is the derivation of the least-squares

intersection algorithm for two observers that have a location and an orientation.

23

To begin the derivation of the least-squares intersection algorithm, each 3-D vector can

be written with a starting point (location) and a unit vector (orientation). These define the starting

point and direction of each vector. In 3-D space, the starting point, or location, of observer A is

defined as [𝑥𝐴, 𝑦𝐴, 𝑧𝐴] meters and the starting point of observer B is defined as [𝑥𝐵, 𝑦𝐵, 𝑧𝐵]

meters. These can be combined into the starting point matrix, 𝑃𝑠𝑡𝑎𝑟𝑡, shown in Equation 2-16.

 𝑃𝑠𝑡𝑎𝑟𝑡 = [
𝑥𝐴 𝑦𝐴 𝑧𝐴
𝑥𝐵 𝑦𝐵 𝑧𝐵

] (Eq. 2-16)

The variables, [𝑛𝑥, 𝑛𝑦 , 𝑛𝑧] are the components of the unit vector, n, in radians, that must

be normalized to a magnitude of 1. Equation 2-17 below shows the calculation to normalize the

unit vector. The resulting vector 𝑢 is the normalized vector.

 𝑢 =
𝑛

𝑠𝑞𝑟𝑡(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)

(Eq. 2-17)

The variables, [𝑢𝑥𝐴, 𝑢𝑦𝐴, 𝑢𝑧𝐴] are the components of the normalized unit vector, u, whose

magnitude is equal to 1 and describe the orientation of observer A. For observer B,

[𝑢𝑥𝐵, 𝑢𝑦𝐵, 𝑢𝑧𝐵] similarly describe the orientation of observer B.

𝑢 = [

𝑢𝑥𝐴 𝑢𝑦𝐴 𝑢𝑧𝐴

𝑢𝑥𝐵 𝑢𝑦𝐵 𝑢𝑧𝐵
] (Eq. 2-18)

The goal of a least-squares algorithm is to find the point, which minimizes the sum of

squared distances between the point and a set of lines, to compute an approximate intersection.

To minimize the distance between a line and potential intersection point, this distance must be

defined in an equation. The distance, d, from a point on a line, a, with direction vector, u, to a

point p can be given by Equation 2-19, where I, is the identity matrix.

 𝑑 = (𝑝 − 𝑎)𝑇(𝐼 − 𝑢𝑢𝑇)(𝑝 − 𝑎) (Eq. 2-19)

Equation 2-19 can then be minimized with respect to point p to produce the least-squares

solution to the intersection of lines. The sum of squared distances, Dj, from the point aj on line

with unit vector uj to the point p is defined in Equation 2-20 below, where j is the integer

24

identifier for each line and K is the number of total lines. For simplicity and this project’s

application, K is equal to 2.

𝐷𝑗 = 𝐷(𝑝; 𝐴, 𝑢) = ∑𝐷(𝑝; 𝑎𝑗 , 𝑢𝑗)

𝐾

𝑗=1

= ∑(𝑝 − 𝑎𝑗)
𝑇(𝐼 − 𝑢𝑗𝑢𝑗

𝑇)(𝑝 − 𝑎𝑗)

𝐾

𝑖=1

(Eq. 2-20)

The objective is to find the point p that minimizes the distance D equation above, which is shown

in Equation 2-21.

 𝑝̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑝 𝐷(𝑝; 𝑎𝑖, 𝑢𝑖) (Eq. 2-21)

This equation consists of the variable, or point, p as a quadratic. By taking the derivative with

respect to p, Equation 2-20 can be reduced to a linear system of equations, which is shown in

Equation 2-22.

 ∂𝐷

∂𝑝
∑𝐷𝑗

2

𝐾

𝑖

=
∂𝐷

∂𝑝
∑[

𝐾

𝑗

(𝑝 − 𝑎𝑗)
𝑇 ∗ (𝑝 − 𝑎𝑗) − [(𝑝 − 𝑎𝑗

𝑇) ∗ 𝑢𝑗]
2]

(Eq. 2-22)

The partial derivative of this equation can be seen in Equation 2-23 below.

 ∂𝐷

∂𝑝
= ∑[

𝐾

𝑗

2 ∗ (𝑝 − 𝑎𝑗) − 2 ∗ [(𝑝 − 𝑎𝑗)
𝑇 ∗ 𝑢𝑗] ∗ 𝑢𝑗] = 0

(Eq. 2-23)

Equation 2-23 can be rearranged to isolate p and pull it out of the summation, using the

derivations seen in the LS Line Intersect [Tan, 2015]. The resulting equation can be seen in

Equation 2-24 below.

∑(𝑝 − 𝑎𝑗)

𝐾

𝑗

= ∑[𝑢𝑗 ∗ 𝑢𝑗
𝑇] ∗ (𝑝 − 𝑎𝑗)

𝐾

𝑗

(Eq. 2-24)

With this step, a linear system of equations is produced. Let,

25

𝑅 = ∑[𝑢𝑗 ∗ 𝑢𝑗

𝑇 − 𝐼]

𝐾

𝑗

(Eq. 2-25)

𝑞 = ∑[𝑢𝑗 ∗ 𝑢𝑗
𝑇 − 𝐼] ∗ 𝑎𝑗

𝐾

𝑗

(Eq. 2-26)

With the variables defined in Equations 2-25 and 2-26, Equation 2-24 can be rewritten as

𝑅𝑝 = 𝑞

(Eq. 2-27)

To solve for p, the system can be solved directly by dividing by R, or taking the inverse, seen in

Equation 2-28 below.

𝑝̂ = 𝑅−1𝑞

(Eq. 2-28)

The generalized inverse R-1 has guaranteed existence, but not uniqueness. So, the Moore-

Penrose pseudo-inverse can be used to guarantee uniqueness. When R is nonsingular, the

pseudo-inverse of R is equivalent to the inverse. Otherwise, the pseudo-inverse, 𝑅†, computes

the least-squared unique solution that is minimum distance from the point 𝑝̂ to every intersecting

line [Courrieu, 2008]. The resulting equation can be seen in Equation 2-29 below.

𝑝̂ = 𝑅†𝑞

(Eq. 2-29)

To find the matrix R as defined in Equation 2-25, the unit vectors, ui, and identity matrix, I, are

needed. This matrix calculation can be seen in Equation 2-30 below.

𝑅 = ∑[𝑢𝑗
𝑇 ∗ 𝑢𝑗 − 𝐼]

𝐾

𝑗

= [

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

]

(Eq. 2-30)

26

To find the matrix q as defined in Equation 2-26, the starting points, unit vectors, and identity

matrix are needed. This matrix calculation can be seen in Equation 2-31 below.

𝑞 = ∑[𝑢𝑗 ∗ 𝑢𝑗

𝑇 − 𝐼] ∗ 𝑎𝑗

𝐾

𝑗

= [

𝑞𝑥𝑥

𝑞𝑦𝑥

𝑞𝑧𝑥

]

(Eq. 2-31)

The intersection point, p, can then be calculated by finding the Moore-Penrose inverse of R and

q. This intersection point calculation can be seen in Equation 2-32 below.

𝑝 = 𝑅†𝑞 = [

𝑅𝑥𝑥 𝑅𝑥𝑦 𝑅𝑥𝑧

𝑅𝑦𝑥 𝑅𝑦𝑦 𝑅𝑦𝑧

𝑅𝑧𝑥 𝑅𝑧𝑦 𝑅𝑧𝑧

]

†

[

𝑞𝑥𝑥

𝑞𝑦𝑥

𝑞𝑧𝑥

] = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

]

(Eq. 2-32)

The resulting point p is the least squares intersection point of the vectors.

2.2 Sensors Required For Indirect Geolocation

As presented in Section 2.1.2, indirect geolocation systems require the location and

orientation of multiple reference points, or observers. Known as pose, an observer’s location and

orientation can be determined using many different sensor systems such as cameras and ultra-

wideband systems [Kok et al, 2017]. For simplicity, however, this report focuses on the Global

Navigation Satellite System (GNSS) receiver and the inertial measurement unit (IMU) to

perform indirect geolocation [Gikas and Perakis, 2016].

2.2.1 Sensor Physics and Operation

Global Navigation Satellite System

A Global Navigation Satellite System (GNSS) consists of several constellations of

satellites in space continuously transmitting data. Small chip receivers located on Earth can

receive said data, and ultimately use those data to calculate its position on Earth. While orbiting

the globe, each satellite specifically transmits information describing itself and the whole

constellation of satellites. Providing data such as its unique ID, almanac, ephemeris, and time of

transmission, the satellites help GNSS receivers perform direct geolocation. Ultimately, the

datum that enables GNSS receivers to determine their location is the time of transmission.

27

The receiver compares the time of transmission to its internal time and calculates the total

transmission time from satellite to receiver. In this calculation there are many variables taken

into consideration such as the effects of the atmosphere on the signal transit time. With the total

transmission time, the GNSS receiver can then determine the distance to each satellite because

all radio signals travel in a vacuum at the speed of light(300,000 km per second). Equation 2-33

describes the relationship between the speed of light (c), distance to each satellite (d), and

transmission time from satellite to receiver (t).

𝑑 = 𝑐 ⋅ 𝑡 (Eq. 2-33)

The calculated distance is a pseudo-range because the receiver only knows where the

satellite is and how far away it is from the satellite. This limited knowledge subsequently creates

a sphere around the satellite, indicating possible locations for the GNSS receiver. When a

receiver calculates four or more pseudo-ranges from different satellites, the receiver can then

perform a process known as trilateration to determine its location on the Earth. Shown in Figure

2-10, the trilateration method is used to determine a GNSS receiver’s location by finding an

overlapping region of the potential spherical locations. [Groves, 2013; Djuknic & Richton, 2001]

Figure 2-10: GPS Trilateration with Uncertainty [GISGeography]

An example of trilateration with four different satellites is shown in Figure 2-10 above.

Alone, no satellite provides sufficient data for a location solution. When a GNSS receiver

28

calculates the distance from each satellite, the receiver is not able to determine its orientation

with respect to each satellite and therefore could be anywhere on the surface of each sphere. As

the GNSS receiver collects more satellite data from different satellites, however, an overlapping

area is found where the surface of these spheres all intersect and thus an estimated location is

determined. Ultimately, with the data provided by four satellites, a GNSS receiver can estimate

its location anywhere on Earth.

Unfortunately, due to sensor inaccuracies, there is uncertainty throughout the system. If

the receiver’s distance calculation for each satellite has an error of a few meters, that error

directly affects the receiver’s location calculation. Specifically, the United States government has

acknowledged this uncertainty and supports findings stating that the GPS error of smartphones is

± 4.9 meters [van Diggelen & Enge, 2015].

Inertial Measurement Unit

Often paired with a GNSS receiver is an Inertial Measurement Unit (IMU). Although

there are different variations, an IMU frequently possesses 9 degrees of freedom (9DOF) from

three sensors each in a 3-axis configuration. Consisting of a 3-axis accelerometer, 3-axis

gyroscope, and 3-axis magnetometer, the IMU can help create a location and orientation estimate

of a device if given the proper initial conditions.

In general, there are two main categories of IMU designs: gimballed and

microelectromechanical systems (MEMS). Gimballed systems utilize gimbals to isolate the IMU

from the movement of the attached system. Largely mechanical, these systems offer simplicity

and accuracy at the cost of size and weight [Li et al, 2013]. On the contrary, MEMS IMUs take

an intrinsically mechanical action, such as rotation, and generate a corresponding electrical

signal. Often packaged into systems a few millimeters in size, MEMS technology allows for

compact sensor implementations, such as those within smartphones. Due to their implementation

with smartphones, the focus of this report will be on MEMS systems. [Barret, 2014]

Accelerometers

 MEMS accelerometers have two main categories: mechanical, but manufactured as

MEMS, and vibrating element. Mechanically based accelerometers measure the change in

position of a known mass to determine the forces, and thus, acceleration on that mass.

29

Meanwhile, vibrating element accelerometers, such as surface acoustic wave (SAW)

accelerometers, utilize a lever arm with a mass on it. When the mass has a force applied to it, the

lever arm’s resonant frequency changes. Subsequently, by measuring the change in frequency,

the force applied to that mass can be determined. This implementation is considered more

accurate and more appropriate for an inertial navigation system [Maenaka, 2008]. An example

implementation is shown below in Figure 2-11 [Woodman, 2007].

Figure 2-11: MEMS Surface Acoustic Wave Accelerometer Diagram [Woodman, 2007]

Gyroscope

A MEMS gyroscope, often called a Coriolis vibratory gyroscope (CVG), contains a

vibrating mass that allows for the measurement of rotational acceleration, or rate of direction

change, to be found. This change can be found using Newton’s first law, the conservation of

momentum: vibrating objects continue to oscillate in the same plane; any deviation from the

plane can be used to detect a change in direction. When undergoing rotation, the gyroscope

measures the Coriolis Effect, which states that a mass moving within a rotating system

experiences an external force called the Coriolis force. This force is perpendicular to the

direction of motion and to the axis of rotation. An example of a one degree of freedom MEMS

gyroscope is seen in Figure 2-12 below. [Vu et al, 2011]

30

Figure 2-12: Coriolis Vibratory Gyroscope Diagram [Vu et al, 2011]

The one degree of freedom describes the independent measurement this device will be

measuring. Since the z-axis is the rotating axis and measurement to capture, this axis acts as the

degree of freedom. The driving axis attached to the x-axis is used to vibrate the mass in one

direction. When an external force perpendicular to the x and y plane occurs, oscillations are

produced in the y-axis direction through the energy transfer of the Coriolis force. By measuring

this force, the rate of rotation around the z-axis can be found [Vu et al, 2011]. One IMU typically

consists of multiple gyroscopes or multiple-axis gyroscopes to capture a movement with 3

degrees of freedom.

Magnetometer

Most MEMS magnetometers utilize the Lorentz force, which is the force exerted by an

electromagnetic field on a moving charge, or current. Figure 2-13 shows a MEMS magnetometer

system designed by M. Pierre Courtois at the Université Catholique de Louvain. [Said et al.,

2013]

31

Figure 2-13: MEMS Magnetometer Diagram [Said et al., 2013]

 When a magnetic field is applied across the central beam, the beam moves proportionally

in the z-axis. This movement produces a change in capacitance across the finger electrodes on

both sides of the beam. The strength of the magnetic field is a function of this change in

capacitance [Said et al., 2013].

Determining Orientation with Inertial Measurement Unit Sensors

Each sensor within an IMU—accelerometer, gyroscope, and magnetometer—is typically

seen in a 3-axis configuration, taking measurements about the device’s x, y, and z direction.

Using these measurements, the IMU’s orientation can be found, most often in terms of roll,

pitch, and yaw [Luinge et al., 2005]. Figure 2-14 below shows how roll, pitch, and yaw are

typically aligned to each of the three axes.

Figure 2-14: Orientation in the XYZ Plane as Roll, Pitch, and Yaw [FitzGerald, 2015]

32

Each sensor within the IMU provides data that can be used to calculate the device’s pitch,

roll, and yaw. A gyroscope measures the device’s angular rate. Integrated over time, this

measurement can determine the device’s angle with respect to an initial orientation [Groves,

2013]. An accelerometer can be used to measure translational acceleration. This measurement

can be integrated once with respect to time to produce a 3-axis change in velocity, or twice to

produce a 3-axis change in position. As the 3-axis accelerometer also measures the constant

force of gravity, it can be also used to determine the direction of Earth’s gravity vector. By

knowing the direction of Earth’s gravity vector, or which way is down, the device’s roll and

pitch can be calculated [Titterton et al., 2004]. A magnetometer can be used to measure the

device’s relative magnetic field strength and can be calibrated to determine the direction of

magnetic North. The direction of North can be used to determine the device’s yaw compared to

North, also commonly referred to as azimuth or heading [Groves, 2013]. Figure 2-15 below

summarizes the measurement and orientation contribution of each IMU component, with Δ

meaning, “change in”.

IMU Component Measurement Uses (3 Axes) Orientation Contribution(s)

Gyroscope Δ Angle Roll, Pitch and Yaw

Accelerometer Acceleration

Δ Velocity

Δ Position

Roll and Pitch

Magnetometer Δ Angle from North Yaw

Figure 2-15: Measurement and Orientation Contribution of each IMU Component

2.2.2 Strengths and Weaknesses of Sensors

Ideally, a GPS and gyroscope paired with an accurate 3-D initial orientation would be the

only sensors necessary to determine location and orientation. Unfortunately, sensors with high

accuracy and precision are expensive and not seen in any current smartphone [Jin et al., 2011].

Consequently, current smartphone sensors will frequently produce inaccurate device locations

and orientations without any prior filtering of the measurement data.

Global Navigation Satellite System

Although a GNSS receiver can determine an estimated location, it also suffers from

multiple issues. GNSS receivers typically collect information from satellites at a much slower

rate than IMUs. Given the sampling rate inconsistencies, the GNSS can produce gaps in

33

coverage between samples. In addition to the coverage gaps, the low power satellite signals can

be easily disrupted by obstructions, resulting in an inaccurate location or no location estimate at

all. These obstructions can include tunnels, metal walled buildings, or almost anything that

prevents the receiver from having a clear view of the sky [Groves, 2013].

Inertial Measurement Unit

IMUs suffer from several problems as well. For gyroscopes, their readings often contain

significant drift. In order to calculate orientation from angular rate, the gyroscope measurement

must be integrated. As noise and inaccuracies are commonly present within the measurement, the

integration of these errors will compound and ultimately create drift. The level of drift varies

depending on the gyroscope; however, for all systems it grows with time. Thus, due to drift,

gyroscopes are accurate in determining angular change with short, jerky movements but become

inaccurate when determining orientation over a long period of time [Madgwick, 2010].

While gyroscopes are best in short, sporadic movements, accelerometer readings are best

under static or constant acceleration conditions. Different from drift, accelerometers are subject

to high levels of noise that can produce inaccurate approximations of roll and pitch. The high

amount of noise disrupts the short, jerky measurements of the gravity vector and an accurate roll

and pitch orientation cannot be determined. Contrary to the gyroscope, the accelerometer does

not deviate over time because no integration is required to produce roll and pitch estimates

[Sabatini, 2006].

Last for the IMU, magnetometer readings are subject to high levels of noise and magnetic

interference. Magnetic interference is a limitation that can affect accurate yaw orientation in both

short-term and long-term measurements. The noise affects accurate yaw orientation in the short

term but does not deviate over time, so measurements in the long term will be accurate if no

interference is present because there is no integration required [Sabatini, 2011].

High Performance IMU Compared to Consumer Grade

A high performance IMU should perform considerably better than a common smartphone

IMU. Figure 2-16 shows the specifications for VectorNav’s high performance tactical series

IMU. This IMU is likely used for industrial or military applications and is not targeted towards

ordinary consumers.

34

Smartphones contain less accurate IMU’s, but smartphones are not intended to be

extremely accurate due to the broad range of uses and cost; Figure 2-17 shows specifications for

smartphone accelerometers and gyroscopes in the market today and for the magnetometer in the

Samsung Galaxy S4. The Samsung Galaxy S4 is chosen because the specific part numbers used

within the smartphone are publicly available and there are no market specifications on

magnetometers. The VectorNav IMU has a clear performance advantage over those commonly

found in smartphones, specifically in the bias and noise specifications for the accelerometer and

gyroscope.

IMU Accelerometers Gyroscopes Magnetometers

Range ± 15g ± 490 o/s ± 2.5 Gauss

In-Run Bias

Stability

< 10 µg < 1 o/hr -

Noise Density 0.040 mg/√Hz 3.24 o/hr /√Hz 140 µGauss/√Hz

Figure 2-16: IMU Specifications for VectorNav Tactical Series [VectorNav, 2016]

IMU Accelerometers Gyroscopes Magnetometers

Range - - ± 49 Gauss

In-Run Bias

Stability

< 14.3 - 25.3 mg < 21.96 - 33.84 o/hr -

Noise Density 0.25 - 2.2 mg/√Hz 36 - 216 o/hr /√Hz -

Figure 2-17: IMU Specification Averages for Various Smartphones [Kos et al, 2016;

AsahiKASEI, 2013]

In order to produce an accurate three-dimensional orientation using an IMU, the three

inertial sensors must be used together in a method called sensor fusion. Sensor fusion algorithms

take advantage of the complementary strengths and weaknesses of the three sensors to produce a

more accurate orientation. The gyroscope captures quick, high frequency movements with which

the accelerometer and magnetometer struggle. The accelerometer and magnetometer capture

static or low frequency movements, which can prevent drift errors from the gyroscope. This

fusion results in a more accurate roll, pitch, and yaw orientation with less effect from the

detrimental sensor errors that are native to hardware solutions. [Sabatini, 2011]

35

2.3 Sensor Fusion

 Systems dependent on a single sensor commonly suffer from sensor deprivation, limited

coverage, imprecision, and uncertainties. Consequently, in an attempt to mitigate the influences

of these undesired effects, sensors often undergo a process known as sensor fusion: a process in

which individual sensor strengths are combined in order to mitigate their individual weaknesses.

Leveraging measurement redundancies and the laws of probability to increase system robustness

and confidence, sensor fusion creates more optimal system estimates. [Elmenreich, 2002]

 Many different algorithms perform variations of sensor fusion. For simplicity, this report

focuses on the Kalman Filter (KF). Specifically, this report discusses two variations of the KF:

the Linear Kalman Filter (LKF) and the Extended Kalman Filter (EKF).

2.3.1 The Kalman Filter1

 Prior to discussing the equations and principles used in the Kalman Filter (KF), it is

important to get a better understanding of the filter’s purpose. To do so, a hypothetical scenario

describing the purpose and application of the Kalman Filter is briefly described. Dynamic

systems, such as the motion of a car for example, may require the knowledge of said vehicle’s

position and velocity. Referred to as sub-states in this report, these desired system variables are

arranged into a column vector as seen in Equation 2-34. In the equation, 𝑥𝑘, is a 2-by-1 column

vector representing the state of the system. Its two specific sub-states, 𝑝𝑘 and 𝑣𝑘, represent the

unknown position and unknown velocity, respectively.

 𝑥𝑘 = [
𝑝𝑘

𝑣𝑘
] (Eq. 2-34)

To estimate the car’s current state (i.e., the car’s current position and velocity), many

algorithms, such as the complementary filter, rely exclusively on sensor data. Analyzing data

from the GPS receiver and speedometer, which measure position and velocity respectively, the

algorithm produces an estimation of the vehicle’s current position and velocity. Theoretically,

such measurement synthesis algorithms like the complementary filter provide accurate state

1
 Information describing the principles and equations of the Kalman Filter came from the following sources: [Feng

et al, 2017], [Groves, 2013].

36

estimates. Realistically, however, sensors are prone to inherent biases, scaling errors, axial

misalignments, noise, and other undesirable features; all of which corrupt the legitimacy of their

readings. Consequently, filters, such as the complementary filter, are heavily reliant on data

which can be potentially corruptible.

 In an attempt to increase the robustness and accuracy of its state estimations, the Kalman

Filter uses two different models to describe the dynamics of the system. Similar to the

complementary filter, one of the models used by the Kalman Filter is the measurement model. In

order to supplement the measurement model, however, the KF also uses a process model.

Designed to represent the theoretical propagation of the state (i.e., car’s position and velocity)

with respect to time, the process model uses equations that represent the dynamics of the state.

Thus, leveraging all possible knowns, the KF is capable of calculating an optimal state estimate.

[Kok et. al, 2017]

The fundamental principles of the KF are modeled in Equations 2-35 to 2-40. The first

stage of the KF, the prediction of the state 𝑥𝑘
−, is shown in Equation 2-35. Specifically, this stage

is known as the a priori phase.

 𝑥𝑘
− = 𝐴𝑘−1𝑥̂𝑘−1 (Eq. 2-35)

In this first step, as modeled by Equation 2-35, the KF creates an initial guess of the

current state. Based on the previous timestep’s optimized state estimate, 𝑥̂𝑘−1, the filter

propagates the previous estimate with an N-by-N transition matrix, 𝐴𝑘−1 (where N represents the

number of sub-states). Designed to represent the theoretical dynamics of the state, the

conventional transition matrix contains a linear system of equations describing the system’s

theoretical behavior. Ultimately, by propagating the best previous estimate with the appropriate

dynamic equations, a new guess of the current state can be made.

As each iteration of the KF is an estimation, there is a corresponding uncertainty with

each approximation. Modeled as an N-by-N covariance matrix, this uncertainty parameter

represents external uncertainties, system noise, and all other parameters that might alter the

legitimacy of the estimate. Specifically, the covariance matrix helps determine the variance of

37

each sub-state and the correlation between all sub-states. Further explanation of the a priori

covariance matrix can be seen in Equation 2-36.

 𝑃𝑘
− = 𝐴𝑘−1𝑃𝑘−1𝐴𝑘−1

𝑇 + 𝑄𝑘−1 (Eq. 2-36)

 The a priori covariance matrix estimate, 𝑃𝑘
−, is a function of the transition matrix from

Equation 2-35, the previous timestep’s optimized covariance, 𝑃𝑘−1, and a process noise

parameter, 𝑄𝑘−1. Just as the state vector, 𝑥̂𝑘−1, undergoes its own propagation in Equation 2-35,

its corresponding covariance matrix, 𝑃𝑘−1, must undergo its own propagation. As seen by the pre

and post-multiplication of 𝑃𝑘−1 by the transition matrix, this propagation shows the change in the

state covariance matrix with respect to time. Due to the presence of 𝑄𝑘−1, however, the a priori

covariance estimate must also model an additional parameter, the process noise. Used to

represent the increasing uncertainty due to the absence of data in between discrete-time sampling

periods, the addition of 𝑄𝑘−1 ensures that the a priori covariance estimate is either equivalent or

greater than the previous timestep’s optimized value 𝑥̂𝑘−1.

 Having used Equations 2-35 and 2-36 to create initial estimates for both the state vector

and its covariance matrix, the process model portion of the Linear Kalman Filter is complete. For

maximum accuracy, however, the Kalman Filter now implements its measurement model. While

the process model from Equations 2-35 and 2-36 was based on theory such as the laws of

kinematics, the measurement model is based on actual sensor measurements. A means of

providing tangible data and a different perspective to the state estimate, the measurement model

helps update and optimize the a priori state and covariance estimates.

 The implementation of the measurement model is represented by Equation 2-37. Using

the a priori state estimate previously generated by Equation 2-35, the measurement model

attempts to predict the values that the sensors will measure. As the monitored sub-state

parameters may differ from the parameters measured by the sensors, the measurement model

also uses a measurement relationship matrix, 𝐻𝑘. A means of connecting the state estimates to

the measurement data, this linear matrix helps conjoin the two different models.

 𝑧𝑘 = 𝐻𝑘𝑥𝑘
− (Eq. 2-37)

38

With the measurement model implemented, Equation 2-38 can be performed to compute the

Kalman gain. Acting as the weighted component to the filter, the Kalman gain updates

recursively to determine which of the two models is more trustworthy.

As seen in Equation 2-38, the Kalman gain is a ratio of covariance matrices represented

by 𝑃𝑘
− and 𝑅𝑘. 𝑃𝑘

−, as described by Equation 2-36, represents the a priori covariance value for

the system. Representative of the process model’s current estimate of uncertainty, this value

indicates the trustworthiness of the system prior to the input of the measurement model. In order

to represent the influence of the measurement model, 𝑃𝑘
− is propagated by the measurement

matrix 𝐻𝑘. Given the imperfect nature of sensors, however, an additional term is added as a

covariance matrix to embody sensor error. This term, 𝑅𝑘, is an N-by-N matrix that embodies the

variances of each sensor. For simplicity, a hypothetical 3-by-3 measurement noise covariance

matrix, 𝑅𝑘, is provided with Equation 2-38. Representative of the covariance matrix of a tri-axial

sensor, this matrix identifies the variance of each sensor axis, while also indicating zero

correlation between the axes.

𝐾𝑘 =

𝑃𝑘
−𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘

(Eq. 2-38)

where,

 𝑅𝑘 = [

𝜎𝑥𝑥
2 0 0

0 𝜎𝑦𝑦
2 0

0 0 𝜎𝑧𝑧
2

]

As seen by Equation 2-38, the Kalman gain is calculated as a function of uncertainty.

Based entirely on the system’s covariance matrices, the gain determines how much of each

model (process and measurement) the system should trust to create an optimized state estimate.

Having calculated the Kalman gain, the input from the process and measurement models

can be appropriately filtered. As seen in Equation 2-39, the Kalman gain value, 𝐾𝑘, weighs

between the actual measurement values, 𝑧̂𝑘, and the theoretical measurement values, 𝐻𝑘𝑥𝑘
−.

Known as the measurement residual, the difference between these two values is weighted by the

gain and then added to the a priori state estimate, 𝑥𝑘
−, to create an optimized a posteriori state

estimate, 𝑥̂𝑘.

39

 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧̂𝑘 − 𝐻𝑘𝑥𝑘

−) (Eq. 2-39)

 Lastly, having optimized the system’s state estimation, the system’s covariance

estimation must also be optimized. Using the same Kalman gain value, 𝐾𝑘, the measurement

matrix, 𝐻𝑘, the a priori covariance matrix, 𝑃𝑘
−, and an N-by-N identity matrix, 𝐼, the a posteriori

covariance matrix, 𝑃𝑘, can be calculated as seen in Equation 2-40.

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (Eq. 2-40)

2.3.2 The Extended Kalman Filter2

 The extended Kalman Filter (EKF) operates using the same principles as modeled by the

conventional, or linear Kalman Filter from Equations 2-35 through 2-41. Unlike the simpler

linear Kalman Filter, however, the EKF is designed to approximate nonlinear system models.

Using both a process model and a measurement model to create a refined state estimation, the

EKF utilizes Bayesian estimation principles.

 In order to create an optimal state estimate of a nonlinear system, the EKF operates using

a nonlinear state model. Additionally, the filter assumes that all process and measurement noise

is zero-mean Gaussian and that the measurement noise is additive. Similar to the Kalman Filter

description in Section 2.3.1, the EKF has both a prediction step and an update step. The

prediction step of the EKF is modeled by Equations 2-41 and 2-42. Very similar to Equations 2-

35 and 2-36 of the linear Kalman Filter, the EKF predicts its next state and covariance using a

process model and its most recent state and covariance values. Unlike Equations 2-35 and 2-36,

however, the process model that describes the state space of the system is nonlinear. The a priori

estimate, shown in Equation 2-41, uses the non-linear model 𝑓𝑘−1 instead of the linear system

model 𝐴𝑘−1.

 𝑥𝑘
− = 𝑓𝑘−1(𝑥̂𝑘−1) (Eq. 2-41)

2
 Information describing the principles and equations of the Extended Kalman Filter came from the following

sources: [Feng et al, 2017], [Kok et al, 1997], [Groves, 2013].

40

 As seen in Equation 2-41, the a priori state prediction, 𝑥𝑘
−, is a function of the previous

time step’s state estimate, 𝑥̂𝑘−1. Then, written in function notation to express the nonlinearities

of the system model 𝑓𝑘−1, Equation 2-41 has the previous state estimate undergo nonlinear

propagation.

 𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1𝐹𝑘−1

𝑇 + 𝑄𝑘−1 (Eq. 2-42)

where,

𝐹𝑘−1 =

𝜕𝑓𝑘−1(𝑥̂𝑘−1, 𝑤𝑘−1)

𝜕𝑥𝑘−1
|𝑤𝑘−1 = 0 (Eq. 2-43)

 Above, 𝑤𝑘−1 is defined as the process noise. Having created an a priori state estimation

using a nonlinear function, the next step is the calculation of the a priori covariance matrix.

Unlike the equivalent operation for the LKF, however, this calculation, as seen in Equation 2-42,

is more complicated. In order to propagate the previous time step’s covariance matrix, 𝑃𝑘−1, the

nonlinear system function must be temporarily linearized. As seen in Equation 2-43, the

transition matrix, 𝐹𝑘−1, is calculated by taking the Jacobian of the nonlinear state function. Thus,

by linearizing the process model about the most recent time step’s optimal state estimation, 𝑥̂𝑘−1,

a transition matrix similar to that of Equation 2-35 can be calculated.

 Having theorized the next state and covariance values using the nonlinear process model,

the system next incorporates the measurement model. Similar in principle to Equation 2-37 from

the LKF, the measurement model of the EKF creates an estimate as to what the measured sensor

values, 𝑧𝑘, will be based on the a priori state estimate, 𝑥𝑘
−. Unlike Equation 2-37 though, the

measurement model, as expressed in Equation 2-44, can be nonlinear in nature. Thus, function

notation is used to describe the potentially nonlinear nature of the measurement model due to

measurement relationship function, hk.

 𝑧𝑘 = ℎ𝑘(𝑥𝑘
−) (Eq. 2-44)

 With the implementation of the measurement model, the Kalman gain can be computed.

Using the same principles as those used for the LKF, the Kalman gain of the EKF is calculated

as a ratio of covariances. In order to propagate the a priori covariance matrix, 𝑃𝑘
−, with the

41

measurement model, however, the nonlinear measurement model must be linearized. Thus,

undergoing the process shown in Equation 2-45, the Jacobian of the measurement model,

Equation 2-46, function is taken in order to compute the Kalman gain, 𝐾𝑘.

𝐾𝑘 =

𝑃𝑘
−𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘

where,

𝐻𝑘 =
𝜕ℎ𝑘(𝑥𝑘

−)

𝜕𝑥𝑘
−

(Eq. 2-45)

(Eq. 2-46)

Finally, with the weighing factor calculated, the EKF can create optimized state and

covariance estimates. Using the same equation for the a posteriori state estimate as seen with the

LKF (Equation 2-47), the EKF weighs the difference between the actual measurement values, 𝑧̂𝑘,

and their theoretical values, ℎ𝑘(𝑥𝑘
−). Indicating the level of trust the system has in the process

and measurement models, this weighted residual is then added to the a priori state estimate, 𝑥𝑘
−,

to ultimately compute an updated state estimate, 𝑥̂𝑘.

 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧̂𝑘 − ℎ𝑘(𝑥𝑘

−)) (Eq. 2-47)

 Following the same principles as outlined in the LKF, execution of Equation 2-48

computes the updated a posteriori system covariance matrix.

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (Eq. 2-48)

2.4 Model Validation and Evaluation

 This report discusses the design of intersection algorithms and a Kalman Filter. In

practice, it is important to validate and characterize the performance of algorithms and filters

before they are implemented into the real-world. This section first presents the zero-error model,

which is used to prove that an algorithm performs as expected when given a scenario with no

errors. This proof is known as validation. Second, the Monte Carlo simulation is introduced,

which introduces error distributions to systems, so that the system performance can be

characterized.

42

2.4.1 Zero-Error Model for Validation

 A zero-error model is used to characterize the performance of an algorithm when no

errors are introduced into the system. This model is important because ultimately the system will

need to be characterized when errors are introduced. When that error propagates throughout the

system, the evaluator has to be confident that the output error can be attributed solely to the input

error and not a mistake in the algorithm. As such, a zero-error model removes variables and

ambiguity from the equation. An extremely simple case is the algorithm for determining a point y

on a line, given an input x and characteristics of that line, shown in Equation 2-49.

 y = mx + b (Eq. 2-49)

 The output can be defined as y. Meanwhile, the input is x, with m and b acting as

constants that characterize the line. To create a zero-error model, first these variables must be

defined, for example:

 m = 1

 b = 1

 x = 5

Analytically, the output y is determined by creating an analytical model and algebraically solving

for the point on the line. First, a triangle with the expected result is shown in the top right corner

of Figure 2-18. The result is shown as the point (x3, y3). The y-intercept of the line is shown as

(x1, y1) and the point to form a right triangle between the two points is shown as (x2, y2).

43

Figure 2-18: Line Analytical Model

𝑚 =

Δ𝑦

Δ𝑥
 (Eq. 2-50)

When Equation 2-50, the slope equation, is solved for m = 1, it is shown that Δx = Δy.

Consequently, this means the triangle shown in Figure 2-18 is an isosceles right triangle, where

the side parallel to the x axis is equal in length to the side parallel to the y axis. Since Δx is equal

to five, Δy must also be equal to five due to this property. Then, five is added to the initial x1

value of 0, and to the initial y1 value of 1 to get the result of a point at (5, 6). Now, that result is

compared to the algorithm implemented into MATLAB and Figure 2-19 shows the algorithm

solution and it is shown to be (5, 6) as well.

44

Figure 2-19: Zero-Error Model of a Line

 This zero-error modeling process can be extended to more complicated algorithms to

ensure that the algorithm functions as expected in zero error conditions. A zero-error model also

does not have to consist of one case. Often, varieties of cases are tested to examine bounds and

otherwise increase the evaluator’s confidence that their algorithm is correct.

2.4.2 Monte Carlo Simulation for Evaluation

 In the real world, measurement errors exist. Despite knowledge of their existence,

however, it is often difficult to quantify the influences of these errors when developing an

algorithm. As a result, this report utilizes techniques that introduce simulated errors as input

uncertainties into a system to characterize system performance in the presence of errors without

the complications of testing in the real world. A Monte Carlo simulation is one such technique,

which commonly uses the Gaussian distribution to model input errors.

45

Gaussian Distribution

 A Gaussian distribution, also known as a normal distribution, is one of the most

commonly known probability distributions. As represented by its histogram in Figure 2-20, the

standard Gaussian distribution has zero mean and a standard deviation of one.

Figure 2-20: Zero-Mean Gaussian Distribution

By varying the standard deviation, different distributions can be created that produce errors of

different magnitudes.

 The standard deviation (𝜎) defines the percentage of values that will fall within a certain

range. One-𝜎 is the percentage of values that fall between −𝜎 and +𝜎 from the mean of the

distribution. For a normal distribution, that percentage is 68.2%. Two-𝜎 is the percentage of

values that fall between −2(𝜎) and +2(𝜎) from the mean of the distribution, which is 95.4%.

Similarly, three-𝜎 is 99.7% of values. As the value of 𝜎 increases, the percentage of values that

fall within that range does as well. [Dowdy et al, 2004]

 The ability to choose a standard deviation that will introduce errors of a likely magnitude

into a system is very useful. For example, as shown in Section 2.2.1, GPS has an error of

46

approximately ± 5 meters. To create a zero-mean normal distribution in which 95.4% of errors

will fall within ± 5 meters, the standard deviation must equal five divided by two, or 2.50 meters.

Monte Carlo Simulation Architecture

A Monte Carlo simulation introduces a distribution of errors, or uncertainties, into a

model iteratively and characterizes the overall performance. The simulation allows the mapping

of input uncertainties to output uncertainties, sometimes allowing a closed-form solution to be

found. The Monte Carlo simulation ultimately allows the characterization of an algorithm’s or

system’s performance.

 The architecture of a Monte Carlo simulation is very simple. First, there must be a model

to simulate, with a corresponding dataset for the inputs to the model. Second, there must be an

error distribution. This distribution is often a Gaussian distribution. The scenario is then run in a

loop, each time errors are applied to the system inputs from the error distribution. This process

ensures that over the length of the Monte Carlo simulation a Gaussian distribution of errors was

applied. The output can then be characterized with those inputs errors.

Monte Carlo Example Implementation

 Following the aforementioned example of the zero-error model of a line, error is now

introduced into the system. With x defined as the input, a zero-mean, independent Gaussian

distribution with a standard deviation of 0.50 is applied the x variable. The resulting output y is

shown for 1000 iterations as small circles in Figure 2-21.

47

Figure 2-21: Monte Carlo Simulation of Line Model

 The distribution of y is seen following the line model. There is a higher concentration in

the middle centered on an x-axis value of five. The input uncertainty and output uncertainty

relationship can also be determined. When calculated, the standard deviation of the distribution

of y is found to be 0.50. This result is the same as the standard deviation of the input, as the

closed-form error solution can be made for this scenario, shown in Equation 2-51.

 𝜎𝑦 = 𝑚 ⋅ 𝜎𝑥 (Eq. 2-51)

 Being able to predict the output standard deviation given an input standard deviation is

very useful when transitioning to a real-world application where it is time consuming and

difficult to iteratively test a system to characterize its performance.

48

Chapter 3: Preliminary Work Related to Project

Two group members worked on the early stages of this project during a summer research

internship at MIT Lincoln Laboratory. During this time, the members researched the theory of

indirect geolocation and acknowledged flaws in current systems. Keen to utilize a system that

could perform accurate indirect geolocation, while still cheap and flexible in application, the two

group members studied the feasibility of using smartphones for indirect geolocation applications.

Equipment and Process

 For security reasons at the Laboratory, the group members were unable to use a

smartphone for testing purposes while at the Laboratory. Consequently, the team created a

customized testing approach. Acting as a smartphone surrogate, the team utilized a

microcontroller equipped with multiple accelerometers, gyroscopes, magnetometers, a GPS

receiver, and no camera. Readily available at the lab, while also encompassing the cheap inertial

and location sensors found within smartphones, the microcontroller was an acceptable surrogate

for testing. As the microcontroller possessed different data-link possibilities compared to a

smartphone, the team performed post-processing algorithms for simplicity. Using a micro SD

card to store all sensor data, the team performed two tests to represent the two observers. The

data would then be brought to a master PC which would perform all necessary parsing and

testing.

Sensor Fusion

 In order to optimize location and orientation estimates of the microcontroller sensors, a

series of sensor fusion algorithms were tested. The first method of sensor fusion was a

Madgwick Filter. Entirely open-source, the Madgwick Filter operated as a complementary filter.

Much simpler to implement than a Kalman Filter, the Madgwick Filter utilized the different

effective frequency ranges of sensors to create an optimal estimate. For example, the

accelerometer was most accurate in the low frequency range, while the gyroscope was most

accurate in the high frequency range. As these ranges complemented one another, the

complementary filter combined the two measurements to create an optimized value estimate.

49

 Although simple to implement, the complementary filter had significant flaws. Unlike the

Kalman Filter, the complementary filter relied solely on measurement data. Thus, the absence of

a process model meant that the complementary filter was less stable. Additionally, the

complementary filter did not keep track of an error covariance matrix like the Kalman Filter. As

a result, it became much more difficult to track the uncertainty of the estimates.

 Having experimented with the complementary filter, the two group members began to

focus on variations of the Kalman Filter. As the estimation of pose was inherently nonlinear, the

members could not use the linear Kalman Filter (LKF) to create a state estimate. Instead, the

team focused on using an extended Kalman Filter (EKF) due to its easier implementation and its

non-linear estimation. Less complicated to implement than Kalman Filter alternatives like the

Unscented Kalman Filter (UKF) and still capable of producing accurate results, the EKF was

most appropriate for implementation in a smartphone surrogate.

 The EKF used by the team was modeled by the algorithm proposed by Kaiqiang Feng, et.

al. [Feng et al, 2017]. Utilizing the same EKF principles as described in Section 2.3.2, the

algorithm based the process model on the gyroscopic measurements.

Having created the process model, the measurement model was entirely dependent on the

accelerometer, magnetometer, and most recent state estimate. Using a principle known as “Two-

Step Geometrically Intuitive Correction,” the measurement model uniquely was not linearized.

Instead, the measurements received geometric corrections based on their actual values and their

theoretical values. Representing the measurement as a four-dimensional quaternion, in order to

avoid “gimbal lock” and singularities, the measurement values underwent the correction process

described below.

The theoretical unit vectors for the body’s gravity and magnetic field were calculated

using the current time-step quaternion rotation matrix and the Earth frame gravity and magnetic

field vectors. Having created the values that the sensors should theoretically measure, the filter

then created unit vectors of the actual measurement values. Using the laws of the dot product, the

differential angle between the theoretical and actual measurement values was subsequently

calculated. Following, by using the laws of the cross product, the rotation axis common to both

pairs of vectors was found. Ultimately, by finding the error written as a quaternion and then

performing quaternion multiplication, the corrected measurements were calculated.

50

By separating the effects of magnetic distortion from the accelerometer, this correction

method helped create more optimal roll and pitch measurements. More important, however, was

the increased computation efficiency experienced due to the simplification of the Kalman Filter

model. Ultimately, such sensor fusion created a more optimal 4D quaternion orientation

estimate.

Intersection

Using the determined observer orientations, the next stage of the indirect geolocation

process was vector intersection. Due to time constraints, the team designed an intersection

algorithm in two-dimensional (2-D) space that found the single intersection point between two 2-

D vectors. Looking at the surface of the Earth in a planar sense, the team ignored any effects due

to the Earth’s curvature. Creating “observation vectors” indicative of each observer’s orientation,

the algorithm extended these vectors until they intersected with one another. The algorithm then

determined this intersection point in both a Latitude, Longitude, Altitude (LLA) reference frame

and an Earth-Centered Earth-Fixed (ECEF) reference frame.. In order to ensure intersection, the

vectors were coplanar with the intersection surface, as well as, non-parallel and non-antiparallel.

Resultantly, the altitude of both observers was assumed to the same as the altitude of the

intersection point.

Results

One of the proof of concept experiments conducted over the summer is modeled as in

Figure 3-1. In this experiment observer A and observer B both pointed themselves towards a

radar dish on the roof of a building on the MIT Lincoln Laboratory campus. The distance to the

radar dish was 78 meters and the distance between observers was 50 meters. The location and

orientation of observer A and B was recorded and the 2-D intersection was found throughout the

test.

The red central dots for both observers show their estimated locations from the GPS

receiver. Meanwhile, the blue central dot next to the object of interest shows the estimated

location from the 2-D intersection algorithm. The ellipsoids around observer A, observer B, and

the intersection represent each entity’s respective sigma uncertainty value for location. Sigma

uncertainty is the confidence for the measurement, in this case, location assuming Gaussian

51

distributed errors. The smallest ellipse indicates that there is 68.2% confidence that the location

lies within that circle. The second smallest ellipse indicates a similar 95% confidence. The last

ellipse shows 99.7% confidence.

Figure 3-1: Testing Result using Surrogate Smartphones

Conclusions

 The preliminary work performed for this project provided great intuition for future work.

Familiarizing two of the team members with the nuances of the Kalman Filter and the difficulties

of mass data analysis, the work helped the team avoid potential pitfalls. Additionally of

importance is the proof of concept provided by this experimentation. Although the system used

was not a smartphone, it possessed many of the qualities present within a smartphone. Obtaining

an answer within the two sigma bounds, although not as optimal as desired, showed the

plausibility of leveraging smartphones to perform indirect geolocation. Thus, this work helped

inspire future work, while identifying the feasibility of the task.

52

Chapter 4: Kalman Filter Design and Algorithm Validation

In this chapter, both the design of the Kalman Filter and the validation of the intersection

algorithms are presented. The extended Kalman Filter design section consists of the construction

and implementation of the pre-filtering and filter state equations. Then, the two-dimensional and

three-dimensional algorithms are both validated by comparing hand analysis to zero-error model

algorithms created in MATLAB.

4.1 Designing the Extended Kalman Filter

 In order to achieve an optimal state estimate of orientation, an extended Kalman Filter

(EKF) manipulated data from the gyroscope, magnetometer, and accelerometer.

Pre-filtering:

 Prior to entering the Kalman Filter, the raw gyroscope, magnetometer, and accelerometer

data underwent a pre-filtering and calibration stage. The first step of the stage was NaN

correction.

NaN Correction:

While testing, it was determined that the gyroscope, magnetometer, and accelerometer

produced NaNs, or Not-a-Number values for approximately 2 percent of all data. Most likely due

to some periodic processing algorithm done by the phone, the existence of these NaN values did

little to corrupt the legitimacy of the signal. Unfortunately, as such values were often unreadable

by MATLAB, however, their presence often threatened divergence with the extended Kalman

Filter (EKF). Consequently, in order to ensure system functionality, NaN elimination was

performed using smoothing.

 The smoothing method replaced each NaN with the most recent time-step’s non-NaN

value. As the frequency of NaN occurrences was low with respect to the sampling rate and

dynamics of the tests, this method of smoothing did not have a significant effect on the data. Had

the frequency of NaNs been greater, however, such smoothing could have skewed data metrics.

53

Low-pass Filtering of the Accelerometer and Magnetometer

 After undergoing NaN correction, the data next went through low-pass and high-pass

filters. As prior stated in Section 2.2.2, the accelerometer, magnetometer, and gyroscope were all

prone to sensor errors. Especially prevalent in cheaper units, such as those within smartphones,

sensor errors often consisted of noise, sensor drift, sensor bias, sensor misalignment, sensor

perpendicularity, and external distortion effects. Although subject to all errors, the accelerometer

and magnetometer present within the phone were most prone to high frequency noise. Thus, in

order to help eliminate some of the high frequency noise, data from both the accelerometer and

magnetometer were passed through a fourth-order Butterworth low-pass filter with a cut-off

frequency of 25 Hz.

High-pass Filtering of Gyroscope

A different procedure was used to better filter the gyroscope data. Naturally, as explained

in Section 2.2.2, the gyroscope did not suffer from the same high frequency noise effects as did

the accelerometer and magnetometer. Instead, the gyroscope was susceptible to low frequency

noise. Due to the fact that the gyroscope measured angular rate and not orientation directly, all

sensor inaccuracies by the gyroscope were integrated. A phenomenon known as drift, the

orientation estimate generated by gyroscope integration increasingly diverged from truth over

time in the presence of noise. An error function with respect to time, the presence of drift

corrupted gyroscope measurements within seconds if left uncorrected. Thus, in order to mitigate

the effects of gyroscopic drift by means of low frequency noise, all gyroscope data were first

passed through a fourth-order Butterworth high-pass filter with a cut-off frequency of 0.001 Hz.

Magnetometer Calibration:

 Having performed pre-filtering of the three sensors and NaN correction, the final stage

prior to implementing the EKF was sensor calibration. The magnetometer, a device essential for

establishing heading, measured Earth’s ambient magnetic field strength. When used in an

environment absent of hard and soft iron materials, the magnetometer could very accurately

measure the ambient magnetic field strength. Unfortunately, when exposed to magnetic

interference, the magnetometer was unable to differentiate between Earth’s magnetic field and

54

distortion. As such, the magnetometer had to be corrected for both a translational offset and an

inaccurate scaling using a transformation matrix and scaling matrix, respectively.

 In order to get a better understanding of the errors for the Galaxy J7 smartphone’s

magnetometer, two pre-calibration tests were performed. For the first test, a data sweep was

performed. Conducted in an outdoors environment away from potentially magnetic material, it

was assumed that the only magnetic interference present was from the other hardware

components within the phone (hard iron distortion). The data sweep consisted of the phone

continuously changing orientation so that it had theoretically pointed in every direction while

testing. From the data sweep, the magnetometer readings as seen in Figure 4-1 were created.

Figure 4-1: Uncalibrated Magnetometer Data Sweep

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT)
Mean 31.4669 12.3527 -43.1674
Range 103.0050 101.3990 101.6740

Figure 4-2: Uncalibrated Magnetometer Data Sweep Metrics

 As seen in Figure 4-1 and Figure 4-2, the data sweep created a roughly spherical

distribution. Supportive of a uniform scaling, this spherical distribution indicated little to no soft

iron distortion. In addition to the distribution, the range of the values with respect to each axis

further supported the theory that the scaling matrix was uncorrupted. As the magnetic field

strength of the Earth ranges from approximately -50uT to 50uT depending on orientation, these

values supported a pure scaling matrix. This matrix, however, is only an estimate because the

true scaling matrix is unknown.

55

 Despite the seemingly accurate scaling matrix, the distribution did appear to have some

error. As can be seen in the offset from the origin from Figure 4-1, as well as the mean values

from Figure 4-2, the data distribution experienced a translational error. Indicative of a hard iron

bias, such error was likely due to magnetometer biases and the surrounding hardware within the

phone. Fortunately, such bias was easily corrected with a linear translation.

 In order to better understand the performance of the magnetometer in a non-ideal

environment, the second test introduced magnetic interference into the system. The same data

sweep was performed as in the first test; however, an audio speaker was placed near the phone.

Indicative of a less controlled environment experiencing magnetic distortion, this test specifically

targeted the axial scaling abilities of the magnetometer. Figure 4-3 illustrates the magnetometer

data.

Figure 4-3: Uncalibrated Magnetometer Data Sweep With Interference

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT)
Mean 17.3791 12.3527 -43.1674
Range 190.1250 176.2500 126.7490

Figure 4-4: Uncalibrated Magnetometer Data Sweep With Interference Metrics

 Evident in Figures 4-3 and 4-4, the presence of magnetic interference severely corrupted

the accuracy of the distribution. As seen by the “egg” shape of the data distribution and the

dramatic increase in range values, the scaling matrix of the magnetometer was altered. The

presence of hard iron effects additionally varied the linear offset experienced by the data. Of

most importance, however, was the distortion of the scaling matrix due to soft iron effects.

56

 Having established the need to correct for magnetic offset and more specifically scaling,

the magnetometer data underwent a calibration. In order to convert the point cloud of data, as

seen in Figure 4-3, into a three-dimensional geometric shape, the data first underwent a spherical

fit. Specifically, this fit helped characterize the distribution of the point cloud.

 With the center, radii, and eigenvectors of the point cloud determined from the spherical

fit function, the data then received its first adjustment, where the center was shifted as shown in

Equation 4-1.

Magnetometer_x – Center_x = New_Magnetometer_x(i)

 Magnetometer_y – Center_y = New_Magnetometer_y(i) (Eq. 4-1)

Magnetometer_z – Center_z = New_Magnetometer_z(i)

 With each axial array of data adjusted by the scalar offset of the data distribution, a

linearly translated data sweep was generated as seen in Figure 4-5. Much closer to the origin, as

can be seen by the mean values of Figure 4-6, this translation helped accounted for some of the

offset due to hard iron effects.

Figure 4-5: Translation of Offset Magnetometer Data

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT)
Mean -9.4204 -3.3177 -5.6302
Range 190.1250 176.2500 126.7490

Figure 4-6: Translation of Offset Magnetometer Data Metrics

57

 With most of the hard iron effects corrected, the next step was the calibration of the

scaling matrix. Using the calculated radii from the spherical fit, a new scaling matrix was

created. Then, using the eigenvectors, a transformation matrix was created in order to map the

spherical axes to the coordinate system. Ultimately, by multiplying the new scaling matrix with

the transformation matrix, a final fully compensated matrix was created.

 As seen in Figures 4-7 and 4-8, the new matrix centered the sphere very close to the

origin. The data still experienced a slight offset due to assumptions made by the spherical fit

algorithm; however, such offset was negligible in comparison to the previous offset values. Of

more importance was the correction of the shape of the data distribution. Possessing much more

of a spherical shape as opposed to the “egg” shape from earlier, the scaling matrix helped

compensate for the distortion effects of soft iron. Furthermore, the scaling matrix also helped

reduce the range of each axis to values closer to the range of Earth’s magnetic field strength.

Figure 4-7: Fully Calibrated Magnetometer Data Sweep

 X-Axis (uT) Y-Axis (uT) Z-Axis (uT)
Mean -0.2942 -2.3870 -2.6020
Range 126.5507 108.9374 108.6303

Figure 4-8: Fully Calibrated Magnetometer Data Sweep Metrics

58

Gyroscope Calibration:

Meanwhile, for the gyroscope, the calibration was much simpler. Due to the fact that the

gyroscope measured angular rate, a stationary gyroscope theoretically measured zero degrees per

second across all three axes. Thus, by placing the gyroscope on a flat surface and letting it collect

data, the sensor inaccuracies of the gyroscope were exposed. Although the high-pass filter helped

mitigate some of the low frequency noise, the presence of sensor biases still created drift.

Inherent to the sensor and independent about each of the sensor’s three axes, sensor bias created

a permanent offset that very slowly changed with time. As seen in Figure 4-9, the sensor biases

native to the Galaxy J7 used in testing were as follows.

Figure 4-9: Gyroscope Sensor Biases

Having captured the approximate biases from the stationary gyroscope, the angular rates

were integrated to generate relative orientation values. As the gyroscope was stationary, each of

the three axes was expected to report values of zero degrees for the duration of the report. From

Figure 4-10, however, a linear drift of all angles occurred.

59

Figure 4-10: Gyroscope Drift

With the gyroscope bias eliminated by a linear offset, Figure 4-9 transformed into Figure

4-11 and Figure 4-10 transformed into Figure 4-12.

Figure 4-11: Gyroscope Sensor Bias After Calibration

60

Figure 4-12: Gyroscope Drift With Bias After Calibration

Consequently, the gyroscope drift significantly decreased in amplitude, most notably along the

Z-Axis.

Extended Kalman Filter

State:

For maximum computational efficiency, the proposed extended Kalman Filter (EKF)

only monitored the four-dimensional quaternion, q, which represented the orientation. Modeled

in Equation 4-2, the quaternion state vector was comprised of a scalar value, 𝑞0, and a vector

value, [𝑞1, 𝑞2, 𝑞3].

𝑥 = [𝑞0, 𝑞1, 𝑞2, 𝑞3] (Eq. 4-2)

For additional system accuracy, the state could have also contained parameters for

gyroscope and magnetometer biases (𝛿𝑔𝑦𝑟𝑜
𝑏 , 𝛿𝑚𝑎𝑔

𝑏
). Helpful in mitigating the negative effects

of noise and drift, these additional sub-states would have provided increased knowledge

regarding the effectiveness of the system. As the data already passed through significant

prefiltering and calibration though, the increased complexity of monitoring these additional

parameters was unnecessary for the marginal expected improvement in performance.

61

Process Model:

 As stated in Section 2.3.2, the process model of the EKF was based on Equation 4-3.

 𝑥̇(𝑡) = 𝑓(𝑥, 𝑡) + 𝑔(𝑤, 𝑡) (Eq. 4-3)

In this continuous-time equation, x represented the state vector of the system, w

represented the Gaussian noise of the system, 𝑥̇ represented the time derivative of the state

vector, and f and g represented nonlinear functions.

Indicative of the relationship between a state and its time derivative, Equation 4-3 was

remodeled to calculate the quaternion orientation as seen in Equation 4-4.

 𝑞̇(𝑡) =
1

2
[Ω ×]𝑞(𝑡) (Eq. 4-4)

 where,

1

2
[Ω ×] =

𝜕𝑓(𝑥, 𝑡𝑘)

𝜕𝑥

As the state x from Equation 4-3 only monitored the quaternion orientation, all instances

of x were replaced with q. Additionally, the noise parameter, w, and its nonlinear function, g,

were withdrawn and moved to an additional equation. The most important change between

equations, however, was the replacement of the nonlinear function f with the term
1

2
[Ω ×]. The

4-by-4 skew matrix of the gyroscope’s angular rates,
1

2
[Ω ×] temporarily linearized the system

matrix.

 [Ω ×] =

(

0 −𝜔𝑥 −𝜔𝑦 −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦

𝜔𝑦 −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦 −𝜔𝑥 0
)

 (Eq. 4-5)

As seen in Equation 4-5, the skew matrix was comprised of the gyroscope’s angular rates

(𝜔𝑘 = [𝜔𝑥,𝑘, 𝜔𝑦,𝑘, 𝜔𝑧,𝑘]). Due to the fact that the gyroscope only performed discrete-time

measurements, however, Equations 4-4 and 4-5 had to be remodeled. Using the Van Loan

procedure, Equation 4-4 was rewritten as Equation 4-6. Assuming the time between iterations

(dt) was appropriately small, Equation 4-6 calculated the state transition matrix, ∅𝑘. Based on the

62

principle that 𝑓(𝑥, 𝑡𝑘) ≈ 𝑓(𝑥, 𝑡𝑘−1), ∅𝑘 represented the discrete-time linearization of the

nonlinear function f. Furthermore, Equation 4-5 was rewritten as seen in Equation 4-7, where the

subscript k represented the discrete-time sampling index.

∅𝑘 ≈ exp ([Ω ×]𝑘 ∗ 𝑑𝑡)

[Ω ×]𝑘 =

(

0 −𝜔𝑥,𝑘 −𝜔𝑦,𝑘 −𝜔𝑧,𝑘

𝜔𝑥,𝑘 0 𝜔𝑧,𝑘 −𝜔𝑦,𝑘

𝜔𝑦,𝑘 −𝜔𝑧,𝑘 0 𝜔𝑥,𝑘

𝜔𝑧,𝑘 𝜔𝑦,𝑘 −𝜔𝑥,𝑘 0
)

(Eq. 4-6)

(Eq. 4-7)

 Ultimately, using this state transition matrix, ∅𝑘, and the previous time-step’s a posteriori

state estimate, 𝑥̂𝑘−1
+ , the current time-step’s a priori state estimate, 𝑥𝑘

−, was calculated as seen in

Equation 4-8.

 𝑥𝑘
− = ∅𝑘 ∗ 𝑥𝑘−1

+ (Eq. 4-8)

Measurement Model:

 While the process model was based on the gyroscope data, the measurement model was

based on the accelerometer (𝑎 = [𝑎𝑥,𝑘, 𝑎𝑦,𝑘, 𝑎𝑧,𝑘]) and magnetometer (𝑚𝑘 = [𝑚𝑥,𝑘 , 𝑚𝑦,𝑘, 𝑚𝑧,𝑘])

data. In regard to the accelerometer, its ability to measure external specific force, including the

force of gravity, allows it to act as a tilt sensor. Specifically, the accelerometer was capable of

measuring both pitch and roll.

As seen in Equation 4-9, the first step of the measurement model was the estimation of

pitch.

𝑝𝑖𝑡𝑐ℎ = sin−1 (
−𝑎𝑦,𝑘

|𝑎𝑘|
)

(Eq. 4-9)

Taking the inverse sine of the ratio between the y-axis acceleration, 𝑎𝑦,𝑘, and the magnitude of

the acceleration vector, |𝑎𝑘|, a pitch angle approximation was generated in radians. In a similar

manner, the roll was estimated as seen in Equation 4-10.

𝑟𝑜𝑙𝑙 = sin−1 (
𝑎𝑥,𝑘

|𝑎𝑘|
)

(Eq. 4-10)

63

Having created satisfactory pitch and roll estimates for static or quasi-static conditions,

the next step was the implementation of the magnetometer. Providing a reference to magnetic

north, the magnetometer helped create an azimuth (yaw) approximation which connected the

body frame of the sensors to the inertial frame of the Earth. As seen in Equation 4-11, the

computation of the azimuth angle was broken into several parts. Using the tilt data provided by

the accelerometer (roll and pitch), the magnetometer data helped determine the Earth’s magnetic

field components. As these data helped create a planar representation of Earth’s magnetic field,

the azimuth could then be computed using the laws of trigonometry.

𝑎𝑧𝑖𝑚𝑢𝑡ℎ = tan−1 (
𝑦

𝑥
)

 where,

𝑦 = −𝑚𝑥,𝑘 ∗ cos(𝑟𝑜𝑙𝑙) + 𝑚𝑧,𝑘 ∗ sin(𝑟𝑜𝑙𝑙)

𝑥 = 𝑚𝑥,𝑘 ∗ sin(𝑝𝑖𝑡𝑐ℎ) ∗ sin(𝑟𝑜𝑙𝑙) + 𝑚𝑦,𝑘 ∗ cos(𝑝𝑖𝑡𝑐ℎ) + 𝑚𝑧,𝑘 ∗ sin(𝑝𝑖𝑡𝑐ℎ) ∗ cos(𝑟𝑜𝑙𝑙)

(Eq. 4-11)

With the angle estimations computed in terms of radians, the measurement model then

converted the angles calculated in the measurement model into quaternions. Ultimately, this

conversion allowed the process model quaternion estimate to be compared to the measurement

model quaternion estimate, 𝑧𝑘.

Noise:

 In both the process and measurement models, noise and inaccuracies corrupted the

orientation estimations. Due to random sensor noise, sensor biases, external interference, and

axis misalignment, uncertainties altered system accuracy. For this specific application, the

prefiltering and calibration most likely reduced most uncertainties with sensor biases, axis

misalignment, and external interference; however, the sensors were still prone to some noise

variances.

 It was assumed that the noise of the accelerometer (𝛴𝑎𝑐𝑐), magnetometer (𝛴𝑚𝑎𝑔), and

gyroscope (𝛴𝑔𝑦𝑟𝑜) followed an independent zero-mean Gaussian (normal) distribution.

Additionally, it was assumed that each axis possessed independent variance, 𝜎2, with no

correlation between axes. Thus, the noise matrices were modeled as seen in Equation 4-12 with

values of zero at all off-diagonal elements.

64

𝛴𝑎𝑐𝑐 = [

𝜎𝑎,𝑥
2 0 0

0 𝜎𝑎,𝑦
2 0

0 0 𝜎𝑎,𝑧
2

]

 𝛴𝑚𝑎𝑔 = [

𝜎𝑚,𝑥
2 0 0

0 𝜎𝑚,𝑦
2 0

0 0 𝜎𝑚,𝑧
2

] (Eq. 4-12)

𝛴𝑔𝑦𝑟𝑜 = [

𝜎𝜔,𝑥
2 0 0

0 𝜎𝜔,𝑦
2 0

0 0 𝜎𝜔,𝑧
2

]

 Just as the process and measurement models propagated the previous iteration’s state

vector to a current-time value, the models also propagated their respective noise matrices. In

order to model the covariance matrix of the measurement model, 𝑅𝑘, the accelerometer and

magnetometer covariance matrices were combined. As shown in Equation 4-13, the new 6-by-6

covariance matrix, 𝛴𝑎,𝑚, modeled both sensor uncertainties.

 𝛴𝑎,𝑚 =

[

𝜎𝑎,𝑥

2 0 0 0 0 0

0 𝜎𝑎,𝑦
2 0 0 0 0

0 0 𝜎𝑎,𝑧
2 0 0 0

0 0 0 𝜎𝑚,𝑥
2 0 0

0 0 0 0 𝜎𝑚,𝑦
2 0

0 0 0 0 0 𝜎𝑚,𝑧
2]

 (Eq. 4-13)

 In order to propagate the covariance matrix from Equation 4-13, the measurement model

was used. Given the nonlinearity of the measurement model, the measurement model was

temporarily linearized. As seen in Equation 4-14, the Jacobian or first-order partial derivative of

the measurement model was taken for linearization.

 𝐽 =
𝜕𝑞𝑚𝑒𝑎𝑠

𝜕{𝑎𝑥,𝑎𝑦,𝑎𝑧,𝑚𝑥,𝑚𝑦,𝑚𝑧}
 (Eq. 4-14)

To better illustrate the meaning of the Jacobian, the linearization equation is expanded in

Equation 4-15. Specifically, the partial derivatives of the Jacobian were estimated using first

backward differences.

65

 𝐽 =

[

𝜕𝑞0

𝜕𝑎𝑥

𝜕𝑞0

𝜕𝑎𝑦

𝜕𝑞0

𝜕𝑎𝑧

𝜕𝑞0

𝜕𝑚𝑥

𝜕𝑞0

𝜕𝑚𝑦

𝜕𝑞0

𝜕𝑚𝑧

𝜕𝑞1

𝜕𝑎𝑥

𝜕𝑞1

𝜕𝑎𝑦

𝜕𝑞1

𝜕𝑎𝑧

𝜕𝑞1

𝜕𝑚𝑥

𝜕𝑞1

𝜕𝑚𝑦

𝜕𝑞1

𝜕𝑚𝑧

𝜕𝑞2

𝜕𝑎𝑥

𝜕𝑞2

𝜕𝑎𝑦

𝜕𝑞2

𝜕𝑎𝑧

𝜕𝑞2

𝜕𝑚𝑥

𝜕𝑞2

𝜕𝑚𝑦

𝜕𝑞2

𝜕𝑚𝑧

𝜕𝑞3

𝜕𝑎𝑥

𝜕𝑞3

𝜕𝑎𝑦

𝜕𝑞3

𝜕𝑎𝑧

𝜕𝑞3

𝜕𝑚𝑥

𝜕𝑞3

𝜕𝑚𝑦

𝜕𝑞3

𝜕𝑚𝑧]

 (Eq. 4-15)

 The Jacobian linearized the measurement model about the linearization point, 𝑞𝑚𝑒𝑎𝑠.

Having computed the Jacobian, J, the measurement model covariance matrix, 𝑅𝑘, was then

computed as in Equation 4-16.

 𝑅𝑘 = 𝐽𝛴𝑎,𝑚𝐽𝑇 (Eq. 4-16)

 Similar to the measurement model covariance matrix, 𝑅𝑘, the process noise covariance

matrix, 𝑄𝑘, was calculated by the propagation of the gyroscope covariance matrix, 𝛴𝑔𝑦𝑟𝑜. Unlike

the measurement model, in which the system was linearized via the Jacobian, the process model

utilized matrix 𝛯𝑘. Related to the 4-by-4 skew matrix, [Ω ×], matrix 𝛯𝑘 was the linearized

approximation to the nonlinear function g from Equation 4-3. Thus, the process noise covariance

matrix 𝑄𝑘, was calculated as seen in Equation 4-17.

 𝑄𝑘 = (
Δ𝑡

2
)
2
𝛯𝑘𝛴𝑔𝑦𝑟𝑜𝛯𝑘

𝑇 (Eq. 4-17)

where,

𝛯𝑘 = (

𝑞1 𝑞2 𝑞3

−𝑞0 −𝑞3 −𝑞2

𝑞2 −𝑞0 −𝑞1

−𝑞2 𝑞1 −𝑞0

)

Kalman Loop:

 Having created both a process and measurement model both accompanied by their

respective noise matrices, the optimization process via the Kalman Filter was performed. As

prior written in Equation 4-18, the first step of the EKF was the state prediction using the process

model.

𝑥𝑘
− = ∅𝑘 ∗ 𝑥𝑘−1

+ (Eq. 4-18)

66

 As seen in the restatement of Equation 4-8, the previous time-step state estimate, 𝑥̂𝑘−1
+ ,

was propagated by the 4-by-4 matrix ∅𝑘. Using that same transition matrix and the process noise

covariance matrix, 𝑄𝑘, the predicted covariance was then recursively updated as in Equation 4-

19.

 𝑃𝑘
− = ∅𝑘𝑃𝑘−1

+∅𝑘
𝑇 + 𝑄𝑘 (Eq. 4-19)

 With the a priori predictions of both the state, 𝑥𝑘
−, and covariance, 𝑃𝑘

−, the next step of

the EKF algorithm was the determination of the Kalman gain, 𝐺𝑘. As modeled in Equation 4-20,

the Kalman gain was the filter’s weighting factor that was dependent on the current state

covariance matrix, 𝑃𝑘
−, and the current state measurement noise 𝑅𝑘. Weighing their relative

uncertainties with one another, the Kalman gain determined whether the process or measurement

model was more trustworthy.

 𝐺𝑘 =
𝑃𝑘

−

𝑃𝑘
−+𝑅𝑘

 (Eq. 4-20)

 With an optimized weight for the filter, the state correction was next performed (Equation

4-21). This updated estimate, known as the a posteriori estimate, reflected the inputs from both

the measurement and process models. Leveraging the data provided by both models and the

Kalman gain from Equation 4-19, the filter deduced a linear approximation of the optimal state

estimate.

 𝑥𝑘
+ = 𝑥𝑘

− + 𝐺𝑘(𝑧𝑘 − 𝑥𝑘
−) (Eq. 4-21)

 Ultimately, the Kalman gain weighing factor was used to generate the uncertainty of the

optimized state estimate from Equation 4-21. Proven to be smaller or at least the same value as

the a priori covariance prediction in Equation 4-18, this a posteriori covariance was calculated

using Equation 4-22.

 𝑃𝑘
+ = (𝐼4𝑥4 − 𝐺𝑘)𝑃𝑘

− (Eq. 4-22)

The Kalman Filter full procedure is shown in Figure 4-13.

67

Figure 4-13: Kalman Filter Procedure for Optimized Orientation Estimation

4.2 Validating the Two-Dimensional Intersection Algorithm

The two-dimensional (2-D) intersection algorithm described in Section 2.1.2 was

implemented in MATLAB as a standalone function. Figure 4-14 shows the four inputs and single

output of the intersection algorithm.

68

Figure 4-14: Two-Dimensional Intersection Algorithm System Block

The designed intersection algorithm required horizontal position and orientation as inputs

for both observers. In the real-world these inputs would be latitude-longitude and yaw, however,

for testing and simulation they were defined on a 2-D x-y coordinate plane with an orientation

angle measured with respect to the +y-axis. Therefore, in total there were six inputs required for

the intersection algorithm.

The first step in characterizing the algorithm was to create a zero-error model. As

described in Section 2.4.1, zero-error models helped validate that an algorithm produced the

expected results in a zero-error environment. As such, these zero-error models were designed to

model several scenarios in which both observers are oriented towards the same object of interest.

Ultimately, the algorithm inputs and outputs for each scenario were determined analytically and

then compared to the MATLAB algorithm output to validate the intersection points produced

from the algorithm.

Methods

An example for analytically determining each scenario’s inputs and outputs is shown

below. The intersection algorithm inputs included the 2-D coordinates and orientation (angle

with respect to the +y-axis) of both observers. Processing said input, the algorithm then produced

a single output which was the object of interest’s 2-D coordinates. The first task in creating each

scenario in the zero-error model was to determine locations for both observers and the object of

interest. To begin, a coordinate system was established as a 2-D plane, shown in Figure 4-15. In

69

the coordinate system, the x and y-axes were perpendicular, with a 0o theta angle corresponding

to the +y-axis.

Figure 4-15: Two-Dimensional Coordinate Plane

 Having created a coordinate system, the location of the observers were then chosen

within this 2-D plane. For example, one scenario had observer A at (-146.4102 m, 0 m) and

observer B at (-100 m, -100 m). The object of interest was chosen to be (200 m, 200 m). Figure

4-16 shows this scenario.

Figure 4-16: Scenario with Two Observers and Object of Interest

70

The only variable remaining, orientation, was then solved for by creating two triangles,

one for each observer, with the hypotenuse representing the pointing vector towards the object of

interest. The two triangles are shown below in Figure 4-17.

Figure 4-17: Triangles Used to Solve for Orientation

 Using trigonometry, the orientation for each observer with respect to the +x-axis, 𝜃𝑎𝑥 and

𝜃𝑏𝑥, were found. Equation 4-23 shows how this angle was found using the tangent function, the

change in vertical position, Δy, and the change in horizontal position, Δx, for observer A.

𝜃𝑎𝑥 = tan−1 (
Δ𝑦

Δ𝑥
)

(Eq. 4-23)

Then each observer’s angle was shifted by 90o to align 0o with the +y-axis as shown in Equation

4-24.

𝜃𝑎𝑦 = 90𝑜 − 𝜃𝑎𝑥 (Eq. 4-24)

Having determined both observers’ orientations, all inputs and outputs for this zero-error

scenario were found. For further validation, this process was completed for an additional 9

scenarios that covered a range of different situations. Appendix A shows the complete data set

used to construct the full zero-error model while Figure 4-18 shows a representative model

graphically.

71

Figure 4-18: Zero-Error Model with Ten Scenarios

 In Figure 4-18 above, points are labeled as observer A or B with the appropriate number

pair to which they belong. For example, in the bottom left of Figure 4-18, points “A: 1” and “B:

1” are a pair of observers. For consistency, the intersection point was the same for all scenarios,

(200 m, 200 m). The same scenarios were then used in the 2-D intersection algorithm to produce

a set of intersection points, which was then compared to this model, which will be discussed in

the results. Additionally, the algorithm also determined if both observers’ orientations were

parallel and consequently returned NaN in MATLAB for the parallel lines would never intersect.

Results

The results of the validation of the 2-D intersection algorithm consisted of comparing the

distance of each intersection point to the actual truth value of (200 m, 200 m). Visually, the zero-

error model, shown in Figure 4-18, appears to have all scenarios intersect at the correct location.

When the exact error is examined, however, small magnitude errors become evident as shown in

Figure 4-19.

72

Figure 4-19: Bar Graph of Mean RMS Error in X and Y

These errors range from zero to 1.404e-11 meters, with only one scenario having exactly zero

error.

Discussion

 The validation of the two-dimensional intersection algorithm was completed in

MATLAB, which has the capability to determine its estimated precision error. For the personal

computer used to conduct the zero-error models, a MATLAB error of 2.22e-16 was observed.

This value is much smaller than the maximum error presented in Figure 4-19 above; therefore,

the simulation result error is not due to the precision of the personal computer. The source is

most likely precision error in the zero-error model as the values used, shown in Appendix A,

were only accurate to four decimal places. Also, scenario 2 shown in Appendix A, which had no

decimal approximation for its input values, produced a perfect result with exactly zero error.

With the only error in the intersection algorithm being due to precision error, the two-

dimensional algorithm was validated.

73

4.3 Validating the Three-Dimensional Intersection Algorithm

Validation Methods of Three-Dimensional Intersection Algorithm

The three-dimensional (3-D) intersection method described in Section 2.1.2 was validated

using a zero-error model implemented in MATLAB. This model consisted of scenarios that were

chosen to represent different, simple configurations that two observers might encounter during

testing. These included: 30, 60, and 90 degrees between both observers’ pointing vectors. The

following section details the scenarios that were tested.

The zero-error model was produced to ensure that the 3-D intersection calculation was

implemented correctly in MATLAB. The first four scenarios can be grouped together, due to

similar observer locations and yaw angles. Each yaw angle was with respect to the positive y-

axis, with the positive x-axis being 90 degrees, and the negative x-axis being -90 degrees.

Furthermore, the true location of the target was listed when the vectors intersect, but was listed

as N/A when the least-squares approximation was utilized. These scenarios can be seen in Figure

4-20 below.

Figure 4-20: 3-D Intersection Scenarios 1 to 4 Zero-Error Model

These four scenarios can be used to show that the 3-D intersection algorithm worked correctly

with a 90 degree angle between the intersection of both observers’ pointing vectors. The first

scenario consisted of an intersection on a 2-D plane, as there was no pitch angle added for either

observer and each observer was at the same Z position. Ultimately, this scenario showed that the

intersection worked correctly in the 2-D plane with no least-squares approximation. The second

scenario consisted of the same location and yaw angle as the previous, but there was an added

pitch angle to each observer. Since the two observers had the same Z position and pitch angle,

their two vectors were set to intersect. Consequently, this scenario showed that the 3-D

74

intersection function worked correctly, without the use of the least-square approximation. The

third and fourth scenarios consisted of the same location and yaw angle as scenarios 1 and 2, but

differing pitch angles. Therefore, these vectors would not intersect and the least-squares

approximation was implemented. As such, the third and fourth scenarios tested the use of the

least-squares approximation.

The next four scenarios, 5-8, tested similar situations with a different yaw angle

configuration and location for observer A and observer B. The true location of target was listed

when the vectors intersected, but was listed as N/A when the least-squares approximation was

utilized. The configurations can be seen in Figure 4-21 below.

Figure 4-21: 3-D Intersection Scenarios 5 to 8 Zero-Error Model

These four scenarios were used to test that the 3-D intersection worked with a 30 degree angle

between the each observer. These testing configurations were similar to the scenarios 1-4, just

with different yaw angles and starting coordinates for both observers.

The next four scenarios, 8-12, tested similar situations as 4-8, but with a different yaw

angle configuration. The true location of target was listed when the vectors intersected, but was

listed as N/A when the least-squares approximation was utilized. The configurations can be seen

in Figure 4-22 below.

Figure 4-22: 3-D Intersection Scenarios 9 to 12 Zero-Error Model

75

These four scenarios were used to show that the 3-D intersection worked with a 30 degree angle

between the each observer’s pointing vector. These testing configurations were similar to the

scenarios 5-8, just with different yaw angles.

The last three scenarios, 13-16, tested similar situations with a different yaw angle

configuration, but the same location for observer A and observer B as scenarios 5-8. The true

location of target was listed when the vectors intersected, but was listed as N/A when the least-

squares approximation was utilized. The configurations can be seen in Figure 4-23 below.

Figure 4-23: 3-D Intersection Scenarios 13 to 16 Zero-Error Model

These four scenarios were used to test that the 3-D intersection least squares method worked

with two observers with different starting Z coordinates. The angle configuration was similar to

scenarios 1-4, except for the difference in Z coordinate.

To validate the correctness of the least squares method, geometry could not be used.

Instead, the distance from each vector to the intersection point was used to determine the

correctness of the intersection. As described in Section 2.1.2, the least-squares method

minimized the distance from the intersection to each vector. As a result, when the distance was

minimized between the two vectors, the distance was the same for each vector. Therefore, the

least-squares intersection occurred at the distance intersection.

Ultimately, these scenarios were analyzed using two distinct techniques: simple geometry

was used to analyze the intersection point when the vectors directly intersected and vector

distance graphs were used to analyze the correct intersection position of the least-squares

calculation when the vectors did not intersect.

Validation Results of Three-Dimensional Intersection Algorithm

The first scenario seen in Figure 4-20 was analyzed using simple geometry as well as the

zero-error model on MATLAB. The geometry analysis can be seen below in Figure 4-24 to 4-26.

76

Figure 4-24: Base Scenario 1

From this scenario, the base distance was calculated using the difference in distance between

observer A and B. This value is found from Equation 4-25 below.

𝐵𝐴𝑆𝐸 = √(𝑋𝐵 − 𝑋𝐴)2 + (𝑌𝐵 − 𝑌𝐴)2 + (𝑍𝐵 − 𝑍𝐴)2

(Eq. 4-25)

Using this equation and after entering the X, Y, and Z location for observer A and B, the

BASE distance was found to be 100. Next, the angle, ϴC, and the distance, dA, from the observer

A, to the intersection point was found, shown in Figure 4-25.

Figure 4-25: Scenario 1 dA Configuration

77

The angle ϴC can be found using Equation 4-26 below.

𝜃𝐶 = 180 − 𝜃𝐴 − 𝜃𝐵

(Eq. 4-26)

Using this equation and after entering the angle for each observer within the triangle, ϴC

was found to be 90 degrees. With this value, the distance dA was then found using the law of

sines in Equation 4-27 below.

𝑑𝐴

sin (𝜃𝐵)
=

𝐵𝐴𝑆𝐸

sin (𝜃𝐶)

(Eq. 4-27)

After rearranging this equation, the distance dA was calculated. Specifically, Equation 4-28 was

used to determine this distance.

𝑑𝐴 = 𝐵𝐴𝑆𝐸
sin (𝜃𝐵)

sin (𝜃𝐶)

(Eq. 4-28)

The distance dA was equal to 70.7107. With this distance, the intersection point was

calculated. The following Figure 4-26 shows the geometry that was necessary to find the

intersection point.

Figure 4-26: Scenario 1 Intersection

78

Then, using Figure 4-26, the X and Y coordinates of the intersection point were found using the

following equation, with ϴA being 45° ϴA.

𝑋𝑖 = cos(45°) ∗ 𝑑𝐴

(Eq. 4-29)

 𝑌𝑖 = sin (45°) ∗ 𝑑𝐴 (Eq. 4-30)

Using Equations 4-29 and 4-30, the intersection point occurred at (50, 50, 0). Next, the scenario

was analyzed using MATLAB. The resulting plot can be seen in Figure 4-27 and 4-28 below.

Figure 4-27: Scenario 1 MATLAB Zero Error Model View A

79

Figure 4-28: Scenario 1 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations using the MATLAB algorithm,

occurred at (50 m, 50 m, 0 m). This MATLAB intersection was found to match up with the

intersection that was calculated using geometric analysis.

The second scenario seen in Figure 4-29 was analyzed using simple geometry as well as

the algorithm on MATLAB. This scenario was similar to the analysis of scenario 1, only with an

added pitch component. Due to the position and yaw being the same, and the pitch being the

same for each observer, the two vectors were set to intersect. Therefore, the X, Y intersect was

the same as in scenario 1. Following the intersect determination, geometric analysis was used to

calculate the Z intersection coordinates. The dA was the distance along the 2-D plane and helped

determine the Z intersection coordinate from Equation 4-31, with 𝜌 being the pitch angle.

 𝑍 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝐴 ∗ tan (𝜌) (Eq. 4-31)

The resulting Z coordinate intersection was 25.736 m; thus, the intersection point occurred at (50

m, 50 m, 25.736 m). Next, the scenario was analyzed using MATLAB. The resulting plot can be

seen in Figure 4-29 and 4-30 below.

80

Figure 4-29: Scenario 2 MATLAB Zero Error Model View A

Figure 4-30: Scenario 2 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations using the MATLAB algorithm,

occurred at (50, 50, 25.7366). This MATLAB intersection was found to match up with the

intersection that was calculated using geometric analysis.

The third scenario seen in Figure 4-20 was analyzed using a different method than simple

geometry, as the vectors did not truly intersect. The analysis graph can be seen in Figure 4-31

81

below, with distance from each vector being on the y-axis and the index, or position, along each

vector being on the x-axis.

Figure 4-31: Scenario 3 Distance to Least Squares Intersection

The distance intersection seen in Figure 4-31 occurred at the point (45.5679, 45.5679, 23.4552)

for Vector A and (51.5077, 48.4923, 0) for Vector B. The least-squares intersection found in

MATLAB was expected to be directly in between these two points. Next, this scenario was

analyzed using MATLAB. The resulting plot can be seen in Figure 4-32 and 4-33 below.

82

Figure 4-32: Scenario 3 MATLAB Zero Error Model View A

Figure 4-33: Scenario 3 MATLAB Zero Error Model View B

The resulting least-squares intersection using the MATLAB zero error model occurred at (47.076

m, 47.076 m, 11.363 m). This MATLAB intersection was found to occur in between the

83

intersection of Vector A and Vector B, which was the goal of the least squares approximation.

Therefore, the least-squares approximation was found to be working correctly.

The fourth scenario seen in Figure 4-20 was analyzed using the same distance method as

scenario three. The analysis graph can be seen in Figure 4-34 below.

Figure 4-34: Scenario 4 Distance to Least Squares Intersection

The distance intersection for Vector A is (48.4923, 48.4923, 0) and the position for Vector B at

this intersection was (54.4321, 45.5679, 23.4552). The least-squares intersection found in

MATLAB was expected to be directly in between these two points. Next, the scenario was

analyzed using MATLAB. The resulting plot can be seen in Figures 4-35 and 4-36 below.

84

Figure 4-35: Scenario 4 MATLAB Zero Error Model View A

Figure 4-36: Scenario 4 MATLAB Zero Error Model View B

The resulting least-squares intersection, determined through calculations using the MATLAB

algorithm, occurred at (52.9244, 47.0756, 11.3630). This MATLAB intersection was found to

occur in between the intersection of Vector A and Vector B, which was the goal of the least-

squares approximation. Therefore, the least-squares approximation was found to be working

correctly.

85

The results from scenarios 5-12 can be seen in Appendix B. The thirteenth scenario seen

in Figure 4-23 was analyzed using a similar method as scenario 3 and 4, as the vectors did not

directly intersect. The analysis graph can be seen in Figure 4-37 below.

Figure 4-37: Scenario 13 Distance to Least Squares Intersection

The position for Vector A at this intersection was (50.0632, 50.0632, 0) and the position for

Vector B at this intersection was (49.9368, 50.0632, 20.0000). The distance from vector A and

vector B was the same in Figure 4-37 since both observer A and observer B’s pitch angles were

the same, therefore, the distance lines overlapped one another. Next, the scenario was analyzed

using MATLAB. The resulting plot can be seen in Figures 4-38 and 4-39 below.

86

Figure 4-38: Scenario 13 MATLAB Zero Error Model View A

Figure 4-39: Scenario 13 MATLAB Zero Error Model View B

The resulting least-squares intersection, determined through calculations using the MATLAB

algorithm, occurred at (50, 50, 10). This intersection point was found to very similar to the

middle of each intersection point specified in the distance analysis.

87

The fourteenth scenario seen in Figure 4-23 was analyzed using a similar method to the

third, fourth, and thirteenth scenarios, as the vectors did not intersect. The analysis graph can be

seen in Figure 4-40 below.

Figure 4-40: Scenario 14 Distance to Least Squares Intersection

The position for Vector A at this intersection was (50.0000, 50.0000, 25.7366) and the position

for Vector B at this intersection was (50.0000, 50.0000, 45.7366). The least-squares intersection

found in MATLAB was expected to be directly in between these two points. Next, the scenario

was analyzed using MATLAB. The resulting plot can be seen in Figures 4-41 and 4-42 below.

88

Figure 4-41: Scenario 14 MATLAB Zero Error Model View A

Figure 4-42: Scenario 14 MATLAB Zero Error Model View B

The resulting least-squares intersection, determined through calculations using the MATLAB

algorithm, occurred at (54.0692, 50, 35.7366). This intersection was found to be very similar to

the middle of each intersection point specified in the distance analysis. Therefore, the least-

squares approximation produced the correct intersection point for this scenario. The results from

89

the remaining scenarios, 15 and 16, can be seen in Appendix B. After each scenario was

analyzed and reproduced with the MATLAB algorithms, it was found that each intersection

occurred in the correct position. Therefore, it was determined that the 3-D intersection worked

correctly.

Discussion

Scenarios were analyzed using two distinct techniques: simple geometry was used to

analyze the intersection when the vectors directly intersected and vector distance graphs were

used to analyze the correct intersection position of the least-squares calculation when the vectors

did not intersect. These two techniques were used to validate the output of the MATLAB 3D

intersection algorithm. Direct intersection using simple geometry was used when the vectors

directly intersected and was compared to the intersection using the MATLAB algorithm. These

direct intersections were seen in scenarios 1, 5, and 9. The calculated intersection points directly

matched up with the points found using the MATLAB algorithm, which showed that the

intersection, without the approximation, worked correctly. Next, the least squares intersection

calculation was shown to produce the correct intersection point by comparing the distance

between two vectors and the calculated intersection. In this method, the correctness of the

approximate intersection had to be determined after the least-squares method was calculated and

an intersection was found. With this intersection point, the distance from intersection to each

observer’s vector was used to determine if the intersection point occurred at both the same

distance and minimum distance from both vectors. This assertion was found to be true for every

non-intersecting scenario that was tested. After every scenario was tested, it was determined that

every 3-D intersection scenario computed with MATLAB matched up with the theoretical

expected point of intersection. Due to this, it was concluded that the 3-D intersection was

validated.

4.4 Discussion

In this chapter, the design of the extended Kalman Filter and the validation of the two-

dimensional intersection and three-dimensional intersection were detailed. Designed to make an

optimal orientation estimate, the EKF leveraged all sensor data provided by the magnetometer,

90

accelerometer, and gyroscope. With a built-in function determining the appropriate variance

values for each sensor axis, the EKF created custom noise measurements for each individual test.

Second, the two-dimensional algorithm was validated by comparing ten analytical

intersection results obtained via geometry and intersection algorithm outputs. In scenarios where

there was no rounding, the error between the analytical and actual results was exactly zero.

However, when inputs with four decimal places of accuracy were used, a maximum error of

1.404e-11 was observed. This significantly small error showed that the algorithm was validated.

Lastly, the three-dimensional algorithm was validated using simple geometry and vector

distance graphs to compare to the MATLAB algorithm. When the observers’ vectors had a direct

intersection, and were not skew, the geometry analysis intersection was observed to directly

match up with the intersection found from the MATLAB algorithm. When the observers’ vectors

did not have a direct intersection, vector distance graphs had to be used to determine the distance

from the least-squares intersection to each observer’s vector. The intersection point was found to

be in the correct position if it was at both the same distance and minimum distance from both

vectors. This was determined to be true for every non-intersecting scenario that was tested. After

the validation analysis was complete, the two-dimensional intersection and three-dimensional

intersection algorithms were found to be working correctly. Future work in the validation of both

the 2-D and 3-D intersection algorithm could involve examining more edge cases.

91

Chapter 5: Algorithm Performance with Measurement Error

This chapter presents the methods, results, and discussion in characterizing the

performance of the two-dimensional intersection algorithm and three-dimensional intersection

algorithm.

5.1 Characterization of the Two-Dimensional Intersection

Algorithm

The knowledge that the two-dimensional (2-D) intersection algorithm performed as

expected with zero errors was valuable, however, in the real world there are measurement errors

that cause the resulting intersection location estimation to be inaccurate. To model these errors,

noise was added to each observer’s orientation and location. Monte Carlo simulations, as shown

in Section 2.4.2, were conducted to simulate the noisy environment that would be seen in the real

world. This section presents several Monte Carlo simulations that were performed to characterize

the performance of the 2-D intersection algorithm. These simulations were produced using

MATLAB and the results were analyzed graphically as well as quantitatively.

5.1.1 Static Scenario Monte Carlo

Methods

The first Monte Carlo simulation was a static scenario where a simple noise distribution

was applied to the location and orientation of two observers pointing at an object of interest. The

same coordinate system as the zero-error model shown in Figure 5-1 was used for the two-

dimensional Monte Carlo simulations. Within the two-dimensional plane, an indirect geolocation

scenario was then established with two observers and a single object of interest. The truth values

for this scenario are shown in Figure 5-1 below.

92

Figure 5-1: Truth Values for Monte Carlo Simulation

As shown in Figure 5-1, observer A was located at (100 m, 200 m) with an orientation of

90o degrees with respect to the positive y-axis. Observer B was located at (450 m, 450 m) with

an orientation of -135 degrees with respect to the positive y-axis. For the remainder of Section

5.1, orientation will be defined as the angle with respect to the positive y-axis. The object of

interest was located at (200 m, 200 m). Each Monte Carlo simulation had six input variables

(four for locations and two for orientations) that could have error applied to them in order to

observe how that error propagates through the system and affects the intersection solution.

To introduce errors, independent Gaussian zero-mean noise distributions were applied to

the position and orientation of both observers; these noise distributions were applied by adding

their values directly to each observer’s truth values. For all simulations conducted in this report,

zero-mean Gaussian distributions were used as the error distributions. The position distribution

has a standard deviation of 2.5 meters. The standard deviation value of 2.5 meters was chosen so

that 95.4% of the errors would fall within ± 5 meters, the standard GPS error as presented in

Section 2.4.2. Figure 5-2 shows this position error distribution for observer A. The orientation

distribution has a standard deviation of 1 degrees, which was based on data from field tests.

Figure 5-3 shows this distribution also for observer A. Observer B has the same error distribution

for both location and orientation.

93

Figure 5-2: Distribution for Observer A Position Error

Figure 5-3: Distribution for Observer A Orientation Error

 Then, the Monte Carlo simulation was run where the distribution was applied over a run

of 25,000 iterations (n = 25,000). The only variable that was changed for each run of the

simulation was that a different error instance was applied to each input.

94

Results

Figure 5-4 shows the system after one Monte Carlo simulation.

Figure 5-4: Single Scenario Monte Carlo Points

There were “clouds” of points on both observers and the intersection solutions. The

position clouds for both observers were known to fit a Gaussian distribution in the x and y

coordinates. The cloud of intersection points, however, was unknown and was characterized by

several methods.

One of the characteristics of the intersection cloud was the standard deviation and mean

of the cloud for both the x and y coordinates. Figure 5-5 shows the distribution of the x-

coordinates and Figure 5-6 shows the distribution of the y-coordinates.

95

Figure 5-5: Intersection X Distribution

Figure 5-6: Intersection Y Distribution

 Both distributions were centered on the truth value of (200 m, 200 m) with a standard

deviation, 𝜃𝑥,of 9.8897 m for the x-coordinate and a standard deviation, 𝜃𝑦, of 3.0396 m for the

y-coordinate. The overall standard deviation was then found by taking the square root of the sum

of the squares of both the X and Y standard deviation values, which was 10.3463 m.

96

 Another metric of the intersection cloud that was examined was the distribution of

distances from each intersection point to the truth value, known as RMS error. For the truth

position of (xt, yt) and the Monte Carlo intersection point (xm, ym) the distance, d, was found for

all 25,000 intersection points in the Monte Carlo simulation by Equation 5-1.

𝑑 = √(𝑥𝑚 − 𝑥𝑡)
2 + (𝑦𝑚 − 𝑦𝑡)

2 (Eq. 5-1)

The value, d, could also be called the RMS Error, and its distribution is shown in Figure 5-7.

Figure 5-7: RMS Error Distribution for 2-D Static Scenario

This distribution looked to follow a Rayleigh distribution, which is a distribution of the positive

square root of the sum of the square of two independent random variables. Both random

variables are normally distributed with the same mean and standard deviation. The non-linear fit

shown in Figure 5-7 is an attempt to fit the distribution to a Rayleigh distribution, but as shown

in Figure 5-5 and 5-6 the X and Y distributions are not equal. Therefore, the distribution in

Figure 5-7 did not follow a Rayleigh distribution well. When the same static scenario Monte

Carlo was run, but with zero-error on the observer’s orientation, the RMS error with Rayleigh fit

shown in Figure 5-8 was obtained.

97

Figure 5-8: RMS Error Distribution with Zero Orientation Error

 The fit was closer when the degrees of freedom were reduced, however, another

requirement of the Rayleigh distribution is that the two random variables that create it are

independently and identically Gaussian distributed. The two random variables in these

simulations are the intersection point coordinates as shown in Equation 5-1 and could only be

identically distributed when the angle between observers is 90o. A scenario in which the angle

between observers was 90o and zero orientation error was run and the resulting RMS Error

distribution is shown in Figure 5-9.

98

Figure 5-9: RMS Error Distribution with Zero Orientation Error and Observer Angle of 90o

The Rayleigh distribution fit shown in Figure 5-9, fits the RMS distribution.

Discussion

 The results of the two-dimensional static scenario Monte Carlo demonstrated how the

Monte Carlo results for the intersection algorithm could be characterized. There were two

characterizations, standard deviation and RMS error. When both observers had Gaussian errors

applied to them, the errors in the X and Y coordinates of the intersection cloud were also seen to

be Gaussian, seen in Figures 5-5 and 5-6. When the RMS error distribution was found using

Equation 5-1, it was not Gaussian, because the error distributions in the X and Y direction were

not identical. In a specific scenario, however, when the angle between observers was 90o and

there is no orientation error, the RMS error distribution was shown to follow a Rayleigh

distribution.

5.1.2 Varying Distance Monte Carlo

Methods

In the previous Monte Carlo simulation, the observers’ average location and orientation

were kept constant. In the real world, however, these values vary and as such, simulations were

conducted that varies the location of observer A. The series of simulations began with the same

99

scenario presented shown in Figure 5-1, however, observer A’s x-coordinate is varied by 20

meters each Monte Carlo run until observer A is a total distance of 900 meters from the object of

interest. For these series of simulations, distance refers to the absolute value of the x-coordinate

difference between observer A and the object of interest. Observer B remains stationary

throughout all simulations. Figure 5-10 shows the truth locations for the series of Monte Carlo

simulations performed.

Figure 5-10: Varying Distance Monte Carlo Truth

 Both observers’ orientations remained constant throughout the simulations at 90o and

225o for A and B, respectively. This scenario formed an angle between the observers of 135o.

Observer A’s distance from the object of interest ranges from 100 m to 900 m in steps of 20 m.

For both observers, the position standard deviation is 2.5 m and the orientation standard

deviation is 1o. Shown in Figure 5-11, is the first of 20 Monte Carlo simulations with error

clouds on the observers and intersection.

100

Figure 5-11: Monte Carlo Simulations Showing Observer and Intersection Distributions

The series of simulations shown in Figure 5-10 was then run multiple times, but with different

error magnitudes on both observers’ location and orientation. Then, a comparison was made

between the effects of position error to orientation error. Figure 5-12 shows the different

conditions in a table.

101

Run # Position Standard Deviation (meters) Orientation Standard Deviation (degrees)

1 2.5 0

2 2.5 0.5

3 2.5 0.7

4 2.5 1.0

5 2.5 1.2

6 2.5 1.5

7 2.5 2.0

8 0.001 0.0

9 0.001 1.0

10 0.001 1.2

11 0.001 1.5

12 0.001 2.0

Figure 5-12: Table of Variations of Position and Orientation Error Distributions

Results

The distance of observer A from the object of interest versus the mean RMS error of the

intersection for the first series of simulations is shown in Figure 5-13. In this series, observer A

was iteratively moved 20 m away from the object. Figure 5-13 showed the mean RMS error to be

a function of the distance with a non-linear relationship.

102

Figure 5-13: Distance vs. Mean RMS Error

This comparison was also conducted for each of the runs with different errors on each observer,

described by the table in Figure 5-12. Figure 5-14 shows all of these runs.

Figure 5-14: Distance vs. Mean RMS Error with Varying Observer Error

103

In Figure 5-14, position error seemed to act as a bias in the intersection mean RMS error.

This bias is shown below in Figure 5-15.

Figure 5-15: Mean RMS Error Position Bias

 There are two distinct groupings of lines in Figure 5-15. The first consists of the bias for

no orientation error. That bias remains constant over the entire run around 5 m, even when

observer A is 900 m away from the object. The other four, however, show a clear trend

downwards and the lines themselves are different magnitudes. The bias for an orientation error

sigma of 1.0o falls from 1.431 m to 0.698 m. Also, generally the higher the standard deviation of

the orientation error distribution, the lower the mean RMS error position bias. To explore this

relationship more, the percent of each bias to the total mean RMS error was examined, shown in

Figure 5-16.

104

Figure 5-16: Mean RMS Error Position Bias Percentage

 One of the lines in Figure 5-16 had no orientation error and it was clear that 100% of the

bias was due to the position error. With orientation error ranging from 1.0o to 2.0o, it was

similarly observed as in Figure 5-15 that the higher the standard deviation of the orientation error

distribution, the lower the percentage the mean RMS error position bias was compared to the

overall mean RMS error. Interestingly, the difference between each different orientation error

becomes smaller as the distance from observer A to the object of interest increases.

This leads to two main findings. One, the effect that position errors have over longer

distances diminishes due to the orientation error essentially overpowering them. Two, as the

orientation error increases, the position error begins to have less of an overall effect on the

intersection mean RMS error.

Discussion

 The results of the varying distance Monte Carlo showed that when an observer is moved

away from the object of interest, while keeping the angle between observers constant, the

intersection mean RMS error increases. This finding was, however, dependent on there being an

orientation error for the observer. As shown in Figure 5-14, the effect of error on position was

characterized as a bias, mostly independent of how far away an observer was. When examined

further, however, this bias actually decreased as distance increased due to the orientation error

105

essentially overpowering the effect of the position error. The effect of the orientation error was

dependent on how far away the observer was. As an observer moved farther and farther away,

the magnitude of the intersection mean RMS error increased due to the orientation error.

5.1.3 Varying Distance and Orientation Monte Carlo

Methods

In the previous series of Monte Carlo simulations, the observers’ orientation was kept

constant and only the x-coordinate difference between observer A and the object of interest was

varied. In a new series of simulations, the distance and angle between observers was varied

across each Monte Carlo run. The angle between observers is also referred to as the angle on the

object in this report. Figure 5-17 shows the distance and angle between observer variables.

Figure 5-17: Distance and Orientation Monte Carlo Variables

 By iterating over the distance and angle between observers as shown in Figure 5-17 a

series of angles between observers, ɵo, at varying distances, d, from the object could be

characterized. The simulation swept through ɵo from 160o to 20o in 5o increments beginning at

distance of 25 m. Then, distance was increased by 25 m and the angles were swept through

again. The object of interest was kept constant at (200 m, 200 m). This process was repeated

until the distance was equal to 350 m. Shown in Appendix C is the table of distance and

orientations used and Figure 5-18 shows all truth positions for both observers.

106

Figure 5-18: Distance and Orientation Monte Carlo Truth Locations

Each Monte Carlo simulation applied the same error distribution to both observers, so

that the only change between Monte Carlo simulations was in the observer's position and the

angle between the observers, not the errors applied to them. The position error distribution’s

standard deviation was 2.5 meters and the orientation error distributions standard deviation was

1o.

Results

From the intersection cloud, the mean RMS error from the truth intersection coordinate

(200 m, 200 m) was found for each Monte Carlo run. The mean RMS error was then plotted

against the angle between observers which is shown in Figure 5-19 to explore if an optimal angle

existed where the mean RMS error was minimized. Each line in Figure 5-19 represents a sweep

through each angle between observers at a different distance from the object.

107

Figure 5-19: Mean RMS Error with Orientation and Position Error. The bottom-most line

corresponds to a distance, d, of 25 m. Each line higher is 25 m more in distance, with the top-

most line showing 350 m.

The data followed a U-formation with a valley that is centered at 90o, which showed that for this

series of simulations, when a 90o angle was formed on the object by the observers, there was in

general the least amount of error on the intersection. The mean RMS error exponentially

increased when the angle between observers became more acute and more obtuse. The increase

from the minimum mean RMS error value for all lines at 90o to the mean RMS error value at 75o

and 105o for all lines only ranged from 2% - 3%. At the angles of 60o and 120o, there was a 17%

- 18% increase from the minimum mean RMS error for all lines. Overall, as the distance of the

observers from the object increased, the magnitude of the mean RMS error increased.

To compare the individual effects of position and orientation, the same series of

simulations was repeated twice with the same conditions, but one had only position error and the

other had only orientation error. Figure 5-20 shows the intersection mean RMS error results with

only position error and Figure 5-21 shows the intersection mean RMS error results with only

orientation error.

108

Figure 5-20: Mean RMS Error with Only Position Error

Figure 5-21: Mean RMS Error with Only Orientation Error

The results in Figures 5-20 and 5-21 both follow the same trend that an angle between observers

of 90o produces the least mean RMS error. With only position error, however, the same mean

RMS error was seen at all distances. With only position error, however, the same mean RMS

error was seen at all distances and is essentially a lower bound. With only orientation error, the

109

overall magnitude of the mean RMS error increased as the distance increased. There was,

however, an exception at acute angles at the least distance of 25 m, where the mean RMS error

spiked. To compare the effects the position lower bound on the intersection, a single only

position error mean RMS error line from Figure 5-20 was plotted with the only orientation error

lines in Figure 5-19, which is shown in Figure 5-22.

Figure 5-22: Mean RMS Error of Only Position Error and Only Orientation Error

The only position error line was very close the distance of 25 m line. It was also found that at a

distance of 250 m, the mean RMS error with position and orientation errors is double that of the

lower bound shown in Figure 5-22. This finding shows that at a distance of 250 m, the additional

effect of orientation error begins to have more of an effect on the intersection mean RMS error

than position error.

Discussion

 The results of the distance and orientation Monte Carlo simulation showed that the

optimal angle between observers to minimize intersection mean RMS error is 90o. As the angle

between observers became more acute or obtuse the mean RMS error increased exponentially.

The results in Figure 5-19 show that even with an angle between observers within 75o to 105o,

there is only an increase in 2% - 3% of mean RMS error. Therefore, in a real-world application

where verifying or obtaining a 90o angle between observers might be difficult, there is only a

110

small increase in mean RMS error at slightly larger or smaller angles. The position error was

essentially a bias that kept the same trend for all distances. The orientation error, however,

affected the intersection mean RMS error based on the distance of the observers from the object.

At a distance of 250 m the intersection mean RMS error due to only orientation error was

approximately equal to the intersection mean RMS error due to only position error at all

distances.

5.1.4 Covariance Mapping, Determining a Closed-Form Solution

Methods

One of the objectives of this report was the ability to map the uncertainty of the indirect

geolocation result. Therefore, a closed-form solution was found to determine the covariance of

the intersection. The following is the derivation of the closed-form solution for mapping the

covariance of the location and orientation to the covariance of the intersection solution.

In order to map the uncertainty, the covariance of each device’s location and orientation

must be known. This covariance can be represented by the covariance matrix seen in Equation 5-

2, which shows each variance (𝜎𝑥,𝑥
2 , 𝜎𝑦,𝑦

2 , 𝜎𝑧,𝑧
2) and covariance (𝜎𝑦,𝑥

2 , 𝜎𝑧,𝑥
2 , 𝜎𝑥,𝑦

2 , 𝜎𝑧,𝑦
2 , 𝜎𝑥,𝑧

2 , 𝜎𝑦,𝑧
2).

The subscripts x, y, and z represent the location coordinates in three-dimensional space.

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = [

𝜎𝑥,𝑥
2 𝜎𝑦,𝑥

2 𝜎𝑧,𝑥
2

𝜎𝑥,𝑦
2 𝜎𝑦,𝑦

2 𝜎𝑧,𝑦
2

𝜎𝑥,𝑧
2 𝜎𝑦,𝑧

2 𝜎𝑧,𝑧
2

] (Eq. 5-2)

Conveniently, the orientation covariance is modeled during each cycle of the extended

Kalman Filter (EKF). Thus, this orientation uncertainty can be represented by the covariance

matrix seen in Equation 5-3, where r represents roll, p represents pitch, and ψ represents yaw.

𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = [

𝜎𝑟,𝑟
2

𝜎𝑟,𝑝
2

𝜎𝑟,ψ
2

𝜎𝑝,𝑟
2

𝜎𝑝,𝑝
2

𝜎𝑝,ψ
2

𝜎ψ,𝑟
2

𝜎ψ,𝑝
2

𝜎ψ,ψ
2

] (Eq. 5-3)

The main diagonal of the covariance’s in Equation 5-3 represents either the variance of

each location or variance of each orientation angle with respect to itself. In the two-dimensional

intersection method proposed in Section 2.1.2, the 2-D location variances represent the x and y

111

uncertainties while the orientation variance 𝜎𝑧,𝑧
2 represents the yaw uncertainty. When combined,

these variances represent the overall 2-D system uncertainty for one observer. In the intersection

method, there must be two observers, so the overall system covariance matrix contains the

location and orientation uncertainties of two observers. The combined uncertainty matrix can be

seen in Equation 5-4, where A represents observer one and B represents observer two. The zero

components of the matrix occur when the two variables are independent from each other.

𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =

[

𝜎𝐴 𝑥,𝑥

2 𝜎𝐴 𝑦,𝑥
2 0 0 0 0

𝜎𝐴 𝑥,𝑦
2 𝜎𝐴 𝑦,𝑦

2 0 0 0 0

0 0 𝜎𝐵 𝑥,𝑥
2 𝜎𝐵 𝑦,𝑥

2 0 0

0 0 𝜎𝐵 𝑥,𝑦
2 𝜎𝐴 𝑦,𝑦

2 0 0

0 0 0 0 𝜎𝐴 𝜓,𝜓
2 0

0 0 0 0 0 𝜎𝐵 𝜓,𝜓
2

]

 (Eq. 5-4)

Once the system covariance is found, it must be transformed from each observer’s

location to the intersection point. The Jacobian of the intersection function can be used to

transform these two points to the intersecting point.

 A Jacobian matrix is useful to linearly transform and approximate a function to a new

point. The Jacobian of this intersection function was found by taking the partial derivative of the

intersection function with respect to the variables in the 2-D location and orientation. The

configuration of the Jacobian matrix of this function can be seen in Equation 5-5, where A is

observer one, B is observer two, X is the x-axis location component, Y is the y-axis location

component, 𝜓 is the yaw orientation.

𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 =

[

𝜕𝑋𝑖

𝜕𝐴𝑋

𝜕𝑌𝑖

𝜕𝐴𝑋

𝜕𝑋𝑖

𝜕𝐴𝑌

𝜕𝑌𝑖

𝜕𝐴𝑌

𝜕𝑋𝑖

𝜕𝐵𝑋

𝜕𝑌𝑖

𝜕𝐵𝑋

𝜕𝑋𝑖

𝜕𝐵𝑌

𝜕𝑌𝑖

𝜕𝐵𝑌

𝜕𝑋𝑖

𝜕𝐴𝜓

𝜕𝑌𝑖

𝜕A𝜓

𝜕𝑋𝑖

𝜕B𝜓

𝜕𝑌𝑖

𝜕B𝜓]

 (Eq. 5-5)

In order to transform the system covariance into the intersection covariance, the system

covariance must be multiplied by the Jacobian. The matrix multiplication property can be used to

112

perform this transformation, which is shown in Equation 5-6. A is the original matrix and B is

the transform matrix.

(𝐴 ⋅ 𝐵) = 𝐵 ⋅ 𝐴 ⋅ 𝐵𝑇 (Eq. 5-6)

This property can be implemented into the intersection covariance transformation. The final

intersection covariance equation can be seen in Equation 5-7, where the transpose of the

Jacobian is matrix B for the matrix multiplication property.

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛𝑇 × 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 × 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 (Eq. 5-7)

The resulting intersection covariance will be in the form of a 2x2 matrix that represents

an ellipse of location uncertainty. The ellipse can then be mapped directly to the intersection

point to represent the uncertainty of the indirect geolocation intersection point. This closed-form

solution was then compared to an actual system result.

Results

To characterize the performance of the closed-form solution, the solution was compared

to the first actual result of the distance and orientation Monte Carlo, shown in Section 5.1.3. The

covariance of the intersection was obtained using the closed-form solution and converted to

standard deviation, so that this expected standard deviation from the closed-form solution could

be compared to the standard deviation of the actual intersection result. Figure 5-23, shows the

standard deviation from the closed-form solution.

113

Figure 5-23: Expected Standard Deviation for Distance and Orientation Simulation

Then, these data were subtracted from the standard deviation of the actual result to obtain Figure

5-24.

Figure 5-24: Expected Standard Deviation for Distance and Orientation Simulation

The difference between the expected and actual standard deviation error ranges from -0.06388 to

-2.638 m, excluding the distance of 25 m simulation.

114

Discussion

 When the expected standard deviation error shown in Figure 5-24 was subtracted from

the actual standard deviation error, there was a range of difference between the two. Overall, the

closed-form solution was fairly accurate, but as the angle became very obtuse, there were

significant standard deviation differences up to -2.638 m. There was also a significant difference

when the distance was 25 m and the angle was very acute. The ability to determine the two-

dimensional intersection uncertainty from the observer’s uncertainty was very useful because the

Kalman Filter estimates the orientation and location uncertainty on each iteration. Therefore,

each iteration could then estimate the uncertainty of each solution found through the two-

dimensional intersection algorithm. A real-time system would be able to take advantage of this

capability by knowing its estimated accuracy in real-time.

5.2 Characterization of the Three-Dimensional Intersection

Algorithm

The three-dimensional (3-D) intersection model created in MATLAB was shown to work

correctly in the zero error model seen in Section 4.1.1. In a real world implementation, there are

errors within sensor measurements, as described in Section 2.1.1, and these errors produce

inaccuracies within the final intersection location estimate. To observe and quantify how these

errors affect the intersection location estimate Monte-Carlo simulations, as described in Section

2.4.1, were performed with the 3-D intersection algorithm. The three-dimensional intersection

simulations were produced using MATLAB and the results were characterized graphically as

well as quantitatively.

5.2.1 Static Scenario Monte Carlo

Methods

To begin, a Monte Carlo simulation was ran with 25,000 iterations using a few of the

scenario configurations from the validation and zero-error model in Section 4.3 and errors were

applied to the position and orientation of both observers. The X and Y position had a standard

deviation of 2.5 m, the Z position had a standard deviation of 5 m, and the yaw and pitch both

had a standard deviation of 2.5 degrees. These standard deviation were for zero-mean Gaussian

115

distributions. These standard deviation values were modeled after typical static sensor noise and

uncertainties that were observed during a real world test. This simulation produced a “cloud” of

points in the form of an ellipsoid that showed the observers’ location uncertainty and a cloud of

points that occurred at the intersection of the vectors. This cloud of points increased in area as

the noise inputs became larger. The specific scenarios that were be analyzed in this section are

similar to the zero-error model scenarios. The simulation scenarios are listed in Figure 5-25

below.

Figure 5-25: Static Scenario Simulations

These scenarios were chosen specifically in order to observe the distribution and shape of the

location uncertainty. The intersection distribution was represented by the standard deviation from

the true intersection point along each axis, known as the RMS error value. As the RMS error

became larger, the larger the distribution along the axis became. Ultimately, this section showed

the performance of the system with real world noise on the measurements.

Results

A constant noise was applied to the position and orientation of both observer’s

measurements to observe the effect of real-world noise to the intersection location shape. There

were four separate scenario configurations to observe the intersection shape. The first simulation

configuration consisted of truth values with noise added afterwards. The configuration of this

simulation is: starting point of (0 m, 0 m, 0 m), 45 degree yaw angle, and 0 degree pitch angle for

observer A, and a starting point of (100, 0, 0), -45 degree yaw angle, and 0 degree pitch angle for

observer B. The resulting intersection cloud can be seen in Figure 5-26 and 5-27 below.

116

Figure 5-26: Scenario 1 Monte Carlo View A

Figure 5-27: Scenario 1 Monte Carlo View B

The cloud of this intersection can be described using the RMS distribution along each X,

Y, and Z plane. Figure 5-28 shows the RMS error values along each axis.

117

Figure 5-28: Monte Carlo Scenario 1 RMS Error

A probability density function (PDF) was used to represent this RMS error distribution. Figure 5-

29 shows the PDF representation of the intersection uncertainty.

Figure 5-29: Monte Carlo Scenario 1 PDF

Note: if each axis distribution line cannot be seen, they are overlapping.

Next, these PDF distributions for each X, Y, and Z were combined to represent a single absolute

PDF distribution for the intersection point cloud.

118

Figure 5-30: Monte Carlo Scenario 1 Absolute PDF

These RMS error values were seen to have similar distribution along each axis, since the

intersection occurs directly in between each observer. This circular intersection distribution can

be seen within the Figure 5-26 and 5-27 above.

The second simulation configuration consisted of truth values with noise added

afterwards. The configuration of this simulation is: starting point of (10, 10, 10), 30 degree yaw

angle, and 0 degree pitch angle for observer A, and a starting point of (100, 10, 10), 0 degree

yaw angle, and 0 degree pitch angle for observer B. The resulting intersection cloud can be seen

in Figures 5-31 and 5-32 below.

119

Figure 5-31: Scenario 2 Monte Carlo View A

Figure 5-32: Scenario 2 Monte Carlo View B

The cloud of this intersection can be described using the RMS distribution along each X,

Y, and Z plane. Figure 5-33 shows the RMS error values along each axis.

Figure 5-33: Monte Carlo Scenario 2 RMS Error

120

A PDF was used to represent this RMS error distribution. Figure 5-34 shows the PDF

representation of the intersection uncertainty.

Figure 5-34: Monte Carlo Scenario 2 PDF

These RMS errors were seen to have larger distribution than the previous scenario. There are

similar distributions along the X and Z axis, but there is a large distribution along the Y axis.

This larger distribution is due to the intersection occurring further away from both observers and

a smaller intersection angle. This intersection distribution can be seen within the Figures 5-31

and 5-32 above.

The first simulation configuration consisted of truth values with noise added afterwards.

The configuration of this simulation is: starting point of (10, 10, 10), 60 degree yaw angle, and 0

degree pitch angle for observer A, and a starting point of (100, 10, 10), 0 degree yaw angle, and

0 degree pitch angle for observer B. The resulting intersection cloud can be seen in Figures 5-35

and Figure 5-36 below.

121

Figure 5-35: Scenario 3 Monte Carlo View A

Figure 5-36: Scenario 3 Monte Carlo View B

The cloud of this intersection can be described using the RMS distribution along each X,

Y, and Z plane. Figure 5-37 shows the RMS error values along each axis.

122

Figure 5-37: Monte Carlo Scenario 3 RMS Error

A PDF was used to represent this RMS error distribution. Figure 5-38 shows the PDF

representation of the intersection uncertainty. Note: if each axis distribution cannot be seen, they

are overlapping.

Figure 5-38: Monte Carlo Scenario 3 PDF

These RMS error values were seen to have the most distribution along the Y axis, with Z and X

distributions being more precise. This distribution can be seen in Figures 5-35 and 5-36 above.

The fourth simulation configuration consisted of truth values with noise added

afterwards. The configuration of this simulation is: starting point of (0, 0, 0), 45 degree yaw

angle, and 0 degree pitch angle for observer A, and a starting point of (100, 0, 20), -45 degree

123

yaw angle, and 0 degree pitch angle for observer B. The resulting intersection cloud can be seen

in Figures 5-39 and 5-40 below.

Figure 5-39: Scenario 4 Monte Carlo View A

Figure 5-40: Scenario 4 Monte Carlo View B

The cloud of this intersection can be described using the RMS distribution along each X,

Y, and Z plane. Figure 5-41 shows the RMS error values along each axis.

124

Figure 5-41: Monte Carlo Scenario 4 RMS Error

A PDF was used to represent this RMS error distribution. Figure 5-42 shows the PDF

representation of the intersection uncertainty. Note: if each axis distribution cannot be seen, they

are overlapping.

Figure 5-42: Monte Carlo Scenario 4 PDF

These RMS error values were seen to have similar distribution along each axis, since the

intersection occurs directly in between each observer. This circular intersection distribution can

be seen within the Figures 5-39 and 5-40 above.

125

 These RMS values and Monte Carlo figures were interpreted to determine the effect of

typical sensor noise to observe the intersection uncertainty during a real world test. Further

investigation and explanation is detailed in the following discussion section.

Discussion

The cloud of intersection points was seen to change shape as the position and angle of

each observer changes. The intersection seen in the first scenario of this section consists of an

intersection angle of 90 degrees in the X, Y plane. With this angle of intersection, the cloud was

seen to have equal X and Y distribution, with the Z distribution being independent from these

measurements. As the pitch angle error was the same as the yaw error, the distribution of Z was

similar to the X and Y. The intersection seen in the second scenario of this section shows a

greater uncertainty in the Y direction than X and Z. This uncertainty was due to the intersection

angle being smaller.

When the intersection angle becomes smaller, the more effect the yaw angle error will

have on the resulting intersection position between the two vectors. Since these two vectors start

on the same Y position, the greater the distribution in the Y direction, as it is between the two

vectors. The intersection seen in the third scenario shows a large Y distribution and a similar

distribution for X and Z. This distribution in the Y direction was less than the previous scenario

due to the intersection angle being 60 degrees instead of 30. The yaw uncertainty still has an

effect on the Y distribution, but is not as significant of an effect because the intersection angle is

larger than the previous.

The intersection seen in the fourth scenario of this section was seen to be almost identical

to the first scenario. This similarity was expected because the least squares method takes the

average value between both observers’ vectors. These two vectors, on average, were parallel in

the Z axis, therefore the intersection points occurred at a Z coordinate directly between each

observer in the Z axis. This intersection produced an intersection distribution in the Z axis that

was half of the difference in the Z coordinate between observer A and B. This intersection cloud

resulted in a similar distribution to scenario 1 but shifted up in the Z direction. In 2-D, the X Y

intersection angle was 90 degrees therefore the X and Y distribution was very similar as well.

These intersection distributions were modeled after real world errors and gave the ability to

determine what errors and uncertainty might be seen in a field test.

126

5.2.2 Noise Input Varying Monte Carlo

Methods

 In the previous Monte Carlo simulation, the observers’ location and orientation values

were analyzed with a constant noise distribution. In the real-world, however, these variables will

encounter changing noise distributions, and these differences were tested with a Monte Carlo

simulation. The simulation tests consisted of: varying the X and Y location error of a single

observer, varying the Z location error of an observer, varying the yaw error of an observer, and

varying the pitch error of an observer. The specific configuration of each input in the tested

scenarios can be seen in Figure 5-43 to 5-46 below. In each scenario, there is no error for

observer B. Observer B acted as a truth location and orientation vector, so the effects of each

error could be observed from only observer A. The X Y noise test seen in Figure 5-43 started

with no error on any of the measurements and the X Y position error was incremented. After

each increment, a Monte Carlo simulation was run. The X Y position error was incremented by

0.1 m until it was equal to 10m of error.

Figure 5-43: X Y Simulation Noise Test

The Z noise test seen in Figure 5-44 started with no error on any of the measurements,

and the Z position error was incremented. After each increment, a Monte Carlo simulation was

ran. The Z position error was incremented by 0.1 m until it was equal to 10m of error.

Figure 5-44: Z Simulation Noise Test

The yaw noise test seen in Figure 5-45 started with no error on any of the angle and

location measurements, and the yaw angle error incremented. After each increment, a Monte

127

Carlo simulation was ran. The yaw angle error was incremented by 0.1 degree until it was equal

to 10 degrees of error.

Figure 5-45: Yaw Simulation Noise Test

The pitch noise test seen in Figure 5-46 started with no error on any of the angle

measurements, and the pitch angle error was incremented. After each increment, a Monte Carlo

simulation was ran. The pitch angle error was incremented by 0.1 degree it was equal to 10

degrees of error.

Figure 5-46: Pitch Simulation Noise Test

A resulting intersection location sensitivity, or variable-dependent area of uncertainty,

was determined by varying each input one at a time. This test determined the specific variables

that produced the highest intersection-location variance and was used to place the most emphasis

to filter or ensure the specific variables were accurate. Ultimately, this simulation provided the

correlation between each input variable’s uncertainty to the accuracy and precision of the

intersection location estimate.

Results

Noise was applied to the position and orientation of one observer’s measurements

individually and incrementally increased to observe the variable’s effect on the intersection

shape. Refer to Section 5.2.1 specific noise values during each test.

The first scenario was analyzed with increasing noise applied to the X and Y locations.

Refer to Figure 5-43 for the progression of the noise being tested. The resulting intersection and

position uncertainty can be seen in Figure 5-47 below.

128

Figure 5-47: Observer A X Y Uncertainty Ending with 10 m Noise

The resulting RMS error value of the intersection uncertainty can be seen in Figure 5-48 below.

Figure 5-48: Monte Carlo RMS Values with X Y Uncertainty. The X RMS line cannot be seen

because it is identical to the Y RMS line.

129

In Figure 5-48 above, The X and Y RMS error value of intersection distribution was seen to

increase linearly as the X and Y location uncertainty increases.

The first scenario was next analyzed with noise applied to the Z coordinate, to model the

location uncertainty in the Z direction. Refer to Figure 5-44 for the progression of the noise

being tested. The resulting intersection uncertainty shape can be seen in Figure 5-49 below.

Figure 5-49: Observer A Z Uncertainty Ending with 10m Noise

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-50 below.

130

Figure 5-50: Monte Carlo RMS Values with Z Uncertainty The X RMS line cannot be seen

because it is identical to the Y RMS line.

The Z RMS value of the intersection distribution was seen to increase linearly as the Z location

uncertainty increases.

The first scenario was next analyzed with noise applied to the yaw angle, to model the 2-

D angle uncertainty. Refer to Figure 5-45 for the progression of the noise being tested. The

resulting intersection uncertainty shape can be seen in Figure 5-51 below.

131

Figure 5-51: Observer A Yaw Ending with 10 degree Uncertainty

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-52 below.

Figure 5-52: Monte Carlo RMS Values with Yaw Uncertainty. The X RMS line cannot be seen

because it is identical to the Y RMS line.

132

The X and Y RMS value of intersection distribution was seen to increase linearly as the yaw

angle uncertainty increases.

The first scenario was next analyzed with noise applied to the pitch angle, to model the 3-

D angle uncertainty. Refer to Figure 5-46 for the progression of the noise being tested. The

resulting intersection uncertainty shape can be seen in Figure 5-53 below.

Figure 5-53: Observer A Pitch Ending with 10 degree Uncertainty

The resulting RMS value of the intersection uncertainty can be seen in Figure 5-54 below.

133

Figure 5-54: Monte Carlo RMS Values with Pitch Uncertainty. The X RMS line cannot be seen

because it is identical to the Y RMS line.

The Z RMS value of intersection distribution was seen to increase linearly and the X and

Y RMS was seen to increase at a slower rate than the Z RMS as the pitch angle uncertainty

increases. These results are further analyzed within the discussion section of this chapter.

Discussion

Simulations were run while independently varying location or orientation noise in order

to determine the influences of each sensor error to the resulting intersection uncertainty cloud

using the initial configurations from scenario 1. Each scenario involved increasing noise on one

variable for one observer, while the other observer had no location or orientation error. This

simulation was conducted in order to characterize each variable noise and compare it to a truth

vector. Seen in Figure 5-48, the X and Y RMS error values of the intersection uncertainty were

seen to linearly increase as the X and Y location uncertainty for observer A increased, and Z

RMS error remained constant. This X and Y position uncertainty simulation shows a relation to

an X and Y intersection uncertainty. Next, the Z position noise was varied, with no noise on the

X and Y position or angles. As the Z position uncertainty became larger, the Z RMS error of the

intersection uncertainty became larger, and the X and Y intersection uncertainty stayed constant.

134

The Z RMS error was seen to increase linearly as the Z uncertainty increased, but at a smaller

rate than the previous scenario with the X and Y RMS error, due to the averaging in the least-

squares method when the vectors did not directly intersect, even when the target was stationary

at Z = 0. This Z position uncertainty simulation shows a relation to a Z intersection uncertainty.

In the next simulation, the yaw angle noise was varied with no noise on the position or

pitch angle. As the noise became larger, the X and Y RMS error of the intersection uncertainty

became larger, and the Z RMS error remained constant. The X and Y RMS error was seen to

follow a linear trend as the yaw error increased. This yaw angle uncertainty simulation shows a

relation to X and Y intersection uncertainty. Lastly, the pitch angle noise was varied with no

noise on the position or yaw angle. As the noise became larger, the Z RMS error of the

intersection uncertainty followed a linear trend, and the X and Y RMS error increased with a

smaller slope, but still a linear trend, after the pitch uncertainty was greater than 4 degrees. The

pitch angle uncertainty simulation shows a relation to the Z intersection uncertainty and a

relation with the X and Y intersection uncertainty after a certain error threshold.

This additional component was due to the least-squares approximation; when the pitch

difference between each observer was large enough, the minimum difference between each

vector will occur in a location with a different X and Y position than the 2-D intersection. This

occurrence can be seen in simulations 3-4, 6-8, and 10-16 in the validation section 4.3. These

simulations provided the relationships between each observer measurement uncertainty and the

resulting intersection uncertainty. An important finding was determining that pitch uncertainty

can cause the X and Y intersection uncertainty to become greater and to occur at a different X

and Y coordinate than the 2-D intersection. These findings were further used to determine the

root cause of the intersection uncertainty distributions.

5.2.3 Moving Observers: Location and Angle Varying Monte Carlo

Methods

 The next simulation consisted of modeling moving observers to analyze the effect of

intersection angle and distance on the intersection uncertainty shape and distribution. The first

simulation was used to assess the optimal vector intersection angle on the object of interest that

produced the most precise intersection uncertainty distribution, and the next simulation observed

135

the effect of location and orientation error on the resulting intersection uncertainty, as distance

increased. In the first simulation, observer A started at position (193.96, 249.634, 0) with a yaw

angle of 160°, and observer B started at the position (193.65, 150.4, 0) with an yaw angle of 20°,

and the intersection point was static at (200, 200, 0). The starting configuration can be seen in

Figure 5-55 below.

Figure 5-55: Simulation Starting Point

The error values for each variable can be seen in Figure 5-56 below. Notably, the location error

in the Z direction is larger than the error in the X and Y to reflect the larger GPS uncertainty

when determining altitude.

Figure 5-56: Optimal Angle Simulation Error Values

136

These two observers were swept following a circular path, with a 1° increment and a radius of 50

m. The resulting intersection RMS error was observed as the intersection angle changed. The

distance was then incremented by 50 m and the resulting error was observed, until the distance

was equal to 350 m. The position sweep for each iteration can be seen in the Figure 5-57 below.

Figure 5-57: Simulation Distance and Angle Sweep

The second simulation had the same test parameters seen in Figure 5-56, but the

orientation and location errors were changed in order to observe their effects on the resulting

intersection uncertainty. The test parameters for this simulation can be seen in Figure 5-58

below.

Figure 5-58: Location and Orientation Error Test

137

The location test consisted of only location error, and the effect of the resulting intersection

uncertainty as distance increased was observed. Next, the orientation test consisted of only

orientation error, and the effect was observed as well. Lastly, the location test was used to

determine the lower bound, or best case intersection uncertainty. It was imposed on the figure

resulting from the test seen in Figure 5-56 and was used to also determine the distance at which

the orientation error effects the intersection uncertainty more than the location error.

Results

The RMS error from the intersection cloud to the truth intersection coordinate (200 m,

200 m, 0 m) was found for each Monte Carlo run. In the first simulation, the RMS error was

found with relation to the intersection angle for each distance increment. The configuration for

the test can be seen in Figures 5-56 and 5-58, and the resulting plot can be seen in Figure 5-59

below. The minimum line is at a distance of 50 m, and each increasing line is from an additional

50 m away from the intersection point.

Figure 5-59: Monte Carlo Mean RMS Error with Changing Intersection Angle

138

The data followed a U-formation with a valley that is centered at 90o, so in general, the mean

RMS error minimum will occur around 90 o. It can also be observed that as distance increases, so

does the RMS error.

In the second simulation, two separate tests were performed with the same varying

parameters as the previous simulation. First, the location error test was performed with only

location error, no orientation error. The resulting plot can be seen in Figure 5-60 below, with the

distances incremented by 50 m until 350 m is reached.

Figure 5-60: Monte Carlo Mean RMS Error with Changing Intersection Angle for Location Error

Note: The lines, for every distance, are overlapping each other

The data followed a similar trend as Figure 5-59, with a U-formation with a valley that is

centered at 90o. But, the mean RMS error did not increase as the distance increased. Instead, the

error was a direct translation from each observer to the resulting intersection, not dependent upon

the distance from the intersection point.

139

Second, the orientation error test was performed with only orientation error, no location

error. The resulting plot can be seen in Figure 5-61 below, with the starting distance 50 m being

the minimum line and each increasing RMS error line is from an additional 50 m away from the

intersection point.

Figure 5-61: Monte Carlo RMS Error with Changing Intersection Angle for Orientation Error

The data followed a similar trend as Figure 5-59, with a U-formation with a valley that is

centered at 90o and the RMS error increased as the distance increased. Except, the mean RMS

error is shifted down compared to Figure 5-59 due to the absence of the location error.

 Lastly, the location error in Figure 5-60 was imposed on the graph in Figure 5-61 to

exemplify the lower bound, or limiting factor, to the indirect geolocation solution with errors

added. The resulting plot can be seen in Figure 5-62 below, with the lower bound being the bold

black line.

140

Figure 5-62: Monte Carlo RMS Error with Changing Intersection Angle with Lower Bound

The lower bound was observed to be the minimum line seen in the plot in Figure 5-62 above.

This lower bound is the best case indirect geolocation mean RMS error solution. At this line, the

system is considered GPS limited, where the lowest intersection RMS error can be found. This

system is considered GPS limited because the location is solely found using the GPS, so the best

intersection solution the system can calculate is limited by the location error in the GPS. The

point where orientation error has more effect on the location solution can be determined from the

data produced in Figure 5-62 as well. The lower bound was divided by each distance to

determine its contribution to each distance uncertainty. The 50% point was determined to occur

close to 250 m, and any distance after this point was considered to be more orientation dependent

error. These results are further analyzed and interpreted within the discussion section of this

chapter.

Discussion

In this section, simulations were run with observer A and observer B being moved in a

circular position with different radii to observe the relationship between the mean RMS error and

141

intersection angle as distance increased. And next, simulations were run with the same test

parameters, but the location and orientation errors were changed to observe their effect on the

intersection uncertainty as the distance increased. Figure 5-59 shows that as the intersection

angle changed, the minimum mean RMS error minimum centered on an intersection angle of

90o, and remained true as distance from the intersection point increased. This minimum is due to

the factors that acute or obtuse angles have on the resulting intersection uncertainty, with input

errors added. When these angles are acute or obtuse, the yaw and location errors are amplified

and each error has a larger effect on the point of the resulting intersection. From this figure, it

was determined that the most precise intersection uncertainty distribution occurs at an

intersection angle 90o with typical real world error values added. The second scenario consisted

of similar test parameters, but the difference in location error and orientation error was tested as

distance increased. Seen in Figure 5-60, it was observed that distance is not a factor when there

is only location error in the system. Due to the location being found directly from the GPS, it is

the limiting factor for obtaining a flawless system. Therefore, this location error can be

determined as the lower-bound error when comparing to the first simulation in this section. The

resulting comparison can be seen in Figure 5-62. The orientation error test showed that distance

is a factor when there is only orientation error in the system. The results from Figure 5-62 were

used to determine that at 250 m, the orientation effects the intersection uncertainty cloud more

than the location error. This point can be used to determine which error to take into account more

when wanting to perform indirect geolocation at particular distances. These simulations provided

valuable information regarding the optimal intersection angle to produce the most precise

intersection uncertainty, and the effect of location and orientation error over distance to the

intersection uncertainty.

5.3 Discussion

In this chapter, the characterization of the two-dimensional intersection algorithm, the

three-dimensional algorithm were detailed. First, the two-dimensional algorithm was

characterized using Monte Carlo simulations. The specific simulations consisted of: static

scenario, varying distance, and varying distance and orientation. The static scenario simulations

showed the two main characteristics of the intersection point cloud that can be characterized:

142

RMS error and standard deviation. These simulations showed that when the degrees of freedom

are limited by removing orientation error and having an angle on the observer of 90o the RMS

error follows a Rayleigh distribution. The varying distance simulations showed the different

effects that position and orientation errors have. In general, position error acted as a bias in the

intersection mean RMS error. Orientation error was the main source of mean RMS error for all

runs. The varying distance and orientation simulations showed mainly that there exists an

optimal angle on the observer that minimizes the intersection mean RMS error. That angle over a

series of simulations was shown to be 90o. All these simulations characterized the two-

dimensional intersection algorithm throughout a variety of scenarios. Future work in

characterizing the 2-D intersection could examine observer with different error distributions, i.e.

if one observer has a bad device, what is the effect on the intersection if the other observer has a

good device.

Second, the three-dimensional algorithm was characterized using Monte Carlo

simulations. The specific simulations consisted of: static scenario, noise input varying, and

location and angle varying simulations. The static scenario simulations were conducted with

similar measurement errors that would be seen in real world simulations. The simulations

provided insight about the intersection distributions with various configurations and gave the

ability to determine what errors and uncertainty might be seen in a field test. The noise input

varying simulations were conducted with each input being independently varied in order to

observe the effects of each variable on the resulting intersection distribution. It was found that

when the X and Y position errors become greater, the intersection X and Y RMS error values

increased linearly, and the Z RMS error remained constant. When the Z position error became

greater, the intersection Z RMS error value increased linearly, and the X and Y RMS error

remained constant. When the yaw error was increased, the intersection X and Y RMS error

values increased linearly, and the Z RMS error remained constant. Lastly, when the pitch error

increased, the intersection Z RMS error increased linearly, and the X and Y RMS error value was

observed to increase at a slower rate than the Z RMS error, but still increase linearly with the

pitch error. The finding from these simulations provided information to determine the root cause

of the intersection uncertainty distributions that might be seen in noisy environments. Lastly, the

location and angle varying simulations were conducted to observe the relation between RMS

absolute error and intersection angle as distance increased, and the effect of location and

143

orientation error on the resulting intersection uncertainty. It was found that the most precise

intersection uncertainty distribution occurs at an intersection angle 90o with typical real world

error values added, and remained true as distance increased. It was also seen that as distance

increased, the location error had the same effect on the intersection uncertainty and acts as a

lower bound limitation to the indirect geolocation system. For orientation error, however, the

RMS absolute error increased as distance increased. It was found that at 250 m distance away

from the intersection, the orientation error has more of an effect on the intersection uncertainty

than the location error. These simulations provided valuable information regarding the

characteristics of the 3-D intersection and the resulting uncertainties that would be experienced

in field tests.

Future work in the characterization of the 3-D intersection could include a model that

introduces user error, e.g. inadvertent shaking of the device, into the simulations, rather than only

sensor errors. The additional user error would create a more realistic real world simulation, but

the user error would have to be estimated, or quantified within field tests. Overall, these

simulations are a representation of a few scenarios that were encountered during field tests and

relationships between observer position and intersection angle that were able to be observed and

concluded.

144

Chapter 6: Field Tests

 This chapter begins with a summary of the process used to conduct field tests. Following,

a more detailed description of the methods and results for static field tests are presented. After

discussing the static tests, the methods and results of a dynamic test are presented. Finally, a

detailed discussion of the results and some ideas for future work are presented.

6.1 Two-Dimensional Intersection Real World Performance

In order to supplement the results obtained using simulations, a series of field tests was

also conducted. Specifically, these field tests were classified into two groups: static and dynamic.

The static field tests were executed using a very strict, controlled protocol. Changing one

variable at a time, these tests sought to model the theory provided by the 2-D and 3-D

simulations of Sections 5.1 and 5.2. Reflective of highly idealized case scenarios, these tests

attempted to mitigate the many random variables present within real-world testing.

On the contrary, the dynamic tests were more indicative of a real-world application. A

means of testing the true rigidity, precision, and accuracy of the system, the dynamic tests helped

indicate the feasibility of using smartphones for indirect geolocation. In order to make the data

analysis of the dynamic tests simpler, the tests still followed relatively strict protocols. Despite

these strict protocols, however, the increased degrees of freedom made the dynamic tests

difficult to replicate with simulation.

In order to establish as much certainty into the testing procedure as possible, the tests

were performed at Wachusett Mountain in Princeton, Massachusetts. At the summit of the

mountain is a United States Geological Survey (USGS) marker with very accurate latitude and

longitude coordinates. Leveraging the truth reference provided by these coordinates, a 5-foot-tall

tripod was placed on top of the USGS marker as the object of interest. As stated per the USGS

datasheet, this marker was located at 42 29 20.59612 (N) and 071 53 12.26962 (W) (NGS Data

Sheet).

For data collection, the smartphones used the SensorFusion application available on

Google Play. Using just one Samsung Galaxy J7 smartphone, the application’s data logging

feature logged raw data from the accelerometer, magnetometer, gyroscope, and GPS to the

145

phone’s internal storage. The data from each experiment, arranged by timestamp, was then

transferred to a micro SD card for post-processing.

6.2 Static Tests: Methods and Results

 As seen in Figure 6-1, six locations, as represented by the blue dots, were chosen for

testing. Furthermore, at each location a series of different tests was performed. For the sake of

thoroughness and simplicity, however, this section focuses on just two different tests performed

at three specific angles: 90 degrees, 60 degrees and 135 degrees.

Figure 6-1: User Testing Locations and Orientations for Field Tests at Wachusett Mountain

In order to ensure that testing was performed as accurately as possible, two major

precautions were taken. First, all observer locations, as represented by the blue dots, were

measured using a tape measure with respect to the USGS marker (i.e. the object of interest).

Consequently, this precaution allowed each observer location to be measured comparatively to

146

the known truth. Second, in order to obtain accurate orientation data, all observer pointing

vectors, as represented by the red lines, were measured using a laboratory field-testing compass.

Together, these two precautions helped create a much more consistent testing experience based

on known and estimated truths.

GPS Error:

 In order to better understand the performance of the indirect geolocation system under

static tests, the performance of the GPS had to be well characterized. Unlike the accelerometer,

gyroscope, and magnetometer values, which underwent pre-filtering, calibration, and Kalman

Filtering, the GPS data had thus far been unaltered.

 In order to determine the accuracy and precision of the GPS, the phone was placed with

its back lying down on the USGS marker. As each of the two phones was likely to have different

GPS errors, only one phone was used throughout the duration of the static testing. Furthermore,

the GPS error test was performed after all other experiments. As such, the GPS had already

established frequent communication with the nearest constellation of satellites, thus eliminating

the possibility of a cold start by the receiver.

 After conducting two one-minute static tests with the phone positioned on the USGS

marker, the location distributions in Figure 6-2 and Figure 6-3, respectively were obtained.

Although these distributions referred to specific static tests, the two figures represented the

general trends of the GPS data.

147

Figure 6-2: Location Distribution from GPS #1

Figure 6-3: Location Distribution from GPS #2

 As seen in Figure 6-2, the GPS data represented by the blue markers tended to congregate

southeast of the truth location as represented by the yellow marker. With a standard deviation of

0.258 meters in latitude and 0.735 meters in longitude, the GPS achieved fairly consistent and

precise results. In regard to the accuracy of the system, however, the mean GPS location was 2.9

148

meters away from the USGS marker. As such, the GPS possessed a clear offset and thus was

moderately inaccurate.

 As the bias of the GPS was assumed to be consistent, it was expected that Figure 6-3

would produce similar results to those of Figure 6-2. Unexpectedly, however, the performance of

the GPS changed. Although the standard deviation values differed, with 1.107 meters in latitude

and 0.544 meters in longitude, these parameters still indicated a highly precise system.

Additionally, the accuracy of the system achieved comparable results as in Figure 6-2, as the

mean GPS location was 4.4 meters away from the USGS marker. The major difference between

the two tests, however, was the direction of the bias.

 As seen in Figure 6-2, the bias translated the GPS location southeast of the actual USGS

marker. Meanwhile, in Figure 6-3, the bias translated the GPS location northwest of the actual

USGS marker. From these data collected, the GPS appeared to undergo a Rician distribution.

Due to the presence of a drift value, however, the behavior of the receiver regularly changed;

thus making the randomness of the GPS difficult to model. As such, no action was taken in order

to attempt to offset the translational error caused by the GPS.

90 Degree Tests:

As illustrated in Figures 6-4 and 6-5, all 90 degree tests consisted of two observers whose

pointing vectors formed a 90 degree angle about the blue marker (the object of interest).

Observer A, as represented by the red marker, was located 100 feet away from the object of

interest oriented 180 degrees (due South). Meanwhile, observer B, as represented by the green

marker, was located 98 feet away from the object of interest oriented 270 degrees (due West).

Among the many variations of the test performed, those of most importance were: user versus

tripod and flat versus portrait.

149

Figure 6-4: Illustration of 90 Degree Test

Figure 6-5: Metrics of 90 Degree Test

90 Degree Test
 Observer A Observer B Target
Location 100 Feet From

Target
98 Feet From
Target

42.4890544777778
Deg.,
-71.8867415611111
Deg.

Orientation
(including magnetic
declination)

180 Degrees 270 Degrees N/A

150

Results: User versus Tripod

Figure 6-6: Estimated Intersection from Tripod

 Figure 6-6 illustrates the tripod test performed with a 90 degree rotation between the

pointing vectors of observer A and observer B. Observer A, as represented by the red markers,

was located via the smartphone’s GPS receiver. Additionally, observer B, as represented by the

green markers, was located via the same smartphone GPS receiver. At each observer location, a

5-foot-tall tripod was stationed with the smartphone held upright in the portrait orientation.

Using both the compass and the camera of the smartphone to achieve accurate alignment with

the object of interest, the indirect geolocation system ultimately achieved a spread of intersection

estimates. Represented by the cloud of blue markers, this distribution was then averaged in order

to help determine system accuracy. As seen by the white marker, this average was then

compared to the yellow marker, the location of the object of interest. For further understanding

of the metrics corresponding to Figure 6-6, refer to Figure 6-7.

151

Mean Latitude of Intersections (Degrees) 42.489084950459770
Mean Longitude of Intersections (Degrees) -71.886761720937670

Standard Deviation of Intersection:
Latitude, Longitude (meters)

0.389, 0.401

Standard Deviation of Observer A:
Latitude, Longitude (meters)

0.942, 0.630

Standard Deviation of Observer B:
Latitude, Longitude (meters)

0.083, 0

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

36.3 versus 30.48

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

30.2 versus 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

3.8

Observer A Angle Error Using Mean GPS
Location (Degrees)

3.661

Observer B Angle Error Using Mean GPS
Location (Degrees)

4.733

 Figure 6-7: Metrics of 90-Degree Test: Tripod

Figure 6-8: Estimated Intersection from User

 Figure 6-8 illustrates the user test performed with a 90 degree rotation between the

pointing vectors of observer A and observer B. Following the same variable representation as

seen in Figure 6-6, observer A and observer B were represented by the red and green markers,

respectively. Their estimated intersection points, based on heading and observer location, were

then represented as the blue cloud of markers. The mean of the intersection cloud was

152

represented by the white marker, which could then be compared to the yellow marker, the USGS

marker, to determine system accuracy.

 Unlike the tripod test illustrated in Figures 6-6 and 6-7, however, the user test had less

control. Without the stability of the tripod, the phone was held in portrait mode by the user.

Leveraging the phone’s camera, the user attempted to increase precision and accuracy by

aligning the object of interest to the center of the screen. For further understanding of the metrics

corresponding to Figure 6-8, refer to Figure 6-9.

Mean Latitude of Intersections (Degrees) 42.489025447656740
Mean Longitude of Intersections (Degrees) -71.886784587850170

Standard Deviation of Intersection:
 Latitude, Longitude (meters)

3.995, 0.363

Standard Deviation of Observer A:
 Latitude, Longitude (meters)

0.635, 0.265

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.226, 2.178

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

30.1 vs 30.48

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

27.9 vs 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

4.8

Observer A Angle Error Using Mean GPS
Location (Degrees)

8.766

Observer B Angle Error Using Mean GPS
Location (Degrees)

2.653

Figure 6-9: Metrics of 90-Degree Test: User

Analysis: User versus Tripod

 The user versus tripod tests provided a means of quantifying human error. In any real-

world scenario, there is a large number of random variables that can affect the outcome of an

experiment. Of the many, one of the most influential is the impact of human error. When

performing a geolocation test, the user, among many flaws, is prone to temporary distraction and

shaking. As such, both the accuracy and precision of the system can be reduced, when

integrating human error into testing. When using the tripod, however, many of the undesired

negative effects of human error are mitigated. Possessing greater stability and not prone to the

153

many variables of human life, the tripod provides an element of consistency and accuracy unique

to the real world.

The performance of the tripod test can be seen from the illustration in Figure 6-6 and the

corresponding data in Figure 6-7. Meanwhile, the performance of the user test can be seen from

the illustration in Figure 6-8 and the corresponding data in Figure 6-9. Among the many metrics

that categorized the system’s overall performance in the two tests, those of most importance

were precision and accuracy.

In terms of precision, the tripod test performed drastically better. Reflected by the tight

cluster of blue markers in Figure 6-6, the indirect geolocation system produced highly precise

location estimates. Experiencing one sigma standard deviations of 0.389 meters in latitude and

0.401 meters in longitude, the several thousand intersection points were highly reproducible.

On the contrary, the user test performed with significantly less precision. As seen in

Figure 6-8, the intersection estimates created a significantly larger cluster. Supported by the

metrics shown in Figure 6-9, the user test experienced one sigma standard deviation bounds of

3.995 meters in latitude and 0.363 meters in longitude.

Due to the implementation of user error, the decrease in precision was expected. The

unique distribution of the intersection estimates, however, was not expected. The intersection

estimates from the tripod case, as shown in Figure 6-6, followed a relatively circular distribution.

In support of theory, the circular distribution of the data points indicated the lack of correlation

between the latitude and longitude intersection estimates when the two observers were

perpendicular to one another.

Despite the increased horizontal heading error within the user test, the system was

expected to also generate a circular distribution of data. As the implemented human error was

assumed to be zero-mean Gaussian, the intersection cluster was supposed to be less compact, but

still circular. Unexpectedly, however, the user test created high levels of imprecision in latitude.

Reflected by the comparatively large standard deviation value, 3.995 meters, the intersection

estimates formed a long and narrow data distribution.

 Among the many potential reasons as to why the standard deviation value of the latitude

was so large, one of the most likely was the inaccuracy of the magnetometer. Given the static

154

nature of the test (angular rate equaled zero), the EKF was heavily dependent on the accuracy of

the magnetometer. As such, any perturbations or noise values corrupting the magnetometer also

corrupted the estimated orientation accuracy. Consequently, this increased error extended the one

sigma bounds of the intersection distribution.

 Due to the severity of the increase in latitude uncertainty, there were likely additional

faults in the system. With a more refined and robust magnetometer, however, the distribution

would become much more circular in nature.

 In terms of accuracy, the difference in performance between the two systems was less

clear. Using the Haversine formula to calculate the distance between a pair of latitude, longitude

coordinates, the absolute distance from the mean intersection value to the truth location was used

to determine system accuracy. Not accounting for GPS drift, the tripod test produced a mean

intersection estimation 3.8 meters away from the truth value. Meanwhile, for the user test, the

mean intersection estimation was located 4.8 meters away from the truth value. Unfortunately,

such offsets were larger than desired. By taking the GPS locational bias into account though, the

errors can decrease substantially.

 Ultimately, from the 90 degree static tests, two main limitations were found. First in

terms of precision, the gyroscope provided little to no insight regarding the orientation of the

smartphone. As such, the EKF became largely dependent on one sensor, the magnetometer, to

produce heading estimations. Although frequently accurate, the magnetometer was subject to

random perturbations disturbing the system. As this was the only sensor that provided heading

data, however, the precision of the system was limited by the precision of the magnetometer.

Second in terms of accuracy, the occurrence of GPS drift created a translational offset error for

the estimated intersection points. Furthermore, as the nature of the GPS drift was difficult to

characterize, this offset subsequently induced absolute error randomly.

155

Results: Flat versus Portrait

Figure 6-10: Estimated Intersection from Flat Orientation

 Figure 6-10 illustrates the flat orientation test performed with a 90 degree rotation

between the pointing vectors of observer A and observer B. Following the same variable

representation as seen in Figures 6-6 and 6-8, this test helped quantify the accuracy and precision

of the system depending on the orientation of the phone. In order to perform the test, the phone

was placed in the tripod on its back. As zero pitch and roll were desired, a level was used to help

ensure that the plane of the back of the phone was parallel to the two-dimensional plane of the

ground. Finally for accurate heading, the high accuracy compass was used in order to ensure that

the top of the phone was aligned to the object of interest. For further understanding of the metrics

corresponding to Figure 6-10, refer to Figure 6-11.

156

Mean Latitude of Intersections (Degrees) 42.489084754891020
Mean Longitude of Intersections (Degrees) -71.886731271597920

Standard Deviation of Intersection: Latitude,
Longitude (meters)

0.358, 0.119

Standard Deviation of Observer A: Latitude,
Longitude (meters)

0.741, 0.472

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.083, 0

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

35.8 vs 30.48

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

30.2 vs 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

3.5

Observer A Angle Error Using Mean GPS
Location (Degrees)

7.764

Observer B Angle Error Using Mean GPS
Location (Degrees)

4.739

Figure 6-11: Metrics of 90 Degree Test: Flat

Figure 6-12: Estimated Intersection from Portrait Orientation

 Figure 6-12 illustrates the portrait orientation test performed with a 90 degree rotation

between the pointing vectors of observer A and observer B. Identical to the data collected in the

90 degree tripod test from Figure 6-5, the metrics corresponding to Figure 6-12 are found in

Figure 6-13.

157

Mean Latitude of Intersections (Degrees) 42.489084950459770
Mean Longitude of Intersections (Degrees) -71.886761720937670

Standard Deviation of Intersection: Latitude,
Longitude (meters)

0.389, 0.401

Standard Deviation of Observer A: Latitude,
Longitude (meters)

0.942, 0.630

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.083, 0

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

36.3 vs 30.48

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

30.2 vs 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

3.8

Observer A Angle Error Using Mean GPS
Location (Degrees)

3.661

Observer B Angle Error Using Mean GPS
Location (Degrees)

4.733

Figure 6-13: Metrics of 90 Degree Test: Portrait

Analysis: Flat versus Portrait

 As can be seen in Figures 6-10 to 6-13, the indirect geolocation system achieved

comparable results in both the flat and portrait tests. In terms of precision, comparison of each

test’s intersection sigma bounds indicated the similarity in performance. Meanwhile, in terms of

accuracy, both systems reported comparable results (3.8 meters versus 3.5 meters). A theme seen

in all of the analyzed flat versus portrait tests, the similarity in performance between the two

phone orientations indicated that the phone orientation was a parameter that no longer had to be

monitored.

Prior to testing, however, there were concerns with location estimation using portrait

mode. Specifically, there was uncertainty as to the ability of the system to track multiple degrees

of freedom. When the phone is positioned flat, both its roll and pitch values are set to

approximately zero. Thus, the system relies almost entirely on the magnetometer. When the

phone is positioned in a portrait orientation, however, more sensor fusion must occur. Using the

accelerometer as a tilt sensor, the rotation matrix between the phone’s body frame and that of the

inertial frame must be determined. Thus, the increased data manipulation creates more

opportunity for error.

158

60 Degree Tests:

As illustrated in Figure 6-14 and Figure 6-15, the 60 degree test consisted of two

observers whose pointing vectors formed a 60 degree angle about the object of interest. Observer

A, as represented by the red marker, was located 92 feet away from the object of interest at an

angle of 210 degrees. Meanwhile, observer B, as represented by the green marker, was located

98 feet away from the object of interest at an angle of 270 degrees.

Additionally, all 60 degree tests utilized the same variable representation as seen in the

90 degree tests. As a result, red markers represented observer A, green markers represented

observer B, blue markers represented the estimated geolocation points, the white marker

represented the mean of the estimated geolocation points, and the yellow marker represented the

truth location.

 Figure 6-14: Illustration of 60 Degree Test

159

Figure 6-15: Metrics of 60 Degree Test

Results: User versus Tripod

Figure 6-16: Estimated Intersection from Tripod

 Following an identical procedure to the tripod test for the 90 degree case, the phone was

placed upright onto the tripod. Additionally, in order to increase system accuracy and precision,

the tripod was aligned with the object of interest by utilizing both the high accuracy compass and

the smartphone camera. For further understanding of the metrics corresponding to Figure 6-16,

refer to Figure 6-17.

60 Degree Test
 Observer A Observer B Target
Location 92 Feet From Target 98 Feet From

Target
42.4890544777778
Deg.,
-71.8867415611111
Deg.

Orientation
(including magnetic
declination)

210 Degrees 270 Degrees N/A

160

Mean Latitude of Intersections (Degrees) 42.489084316553100
Mean Longitude of Intersections (Degrees) -71.886664341803380

Standard Deviation of Intersection: Latitude,
Longitude (meters)

0.287, 1.320

Standard Deviation of Observer A: Latitude,
Longitude (meters)

0.165, 1.079

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.083, 0

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

30.0 vs. 28.0416

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

30.2 vs 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

7.1

Observer A Angle Error Using Mean GPS
Location (Degrees)

10.119

Observer B Angle Error Using Mean GPS
Location (Degrees)

4.744

Figure 6-17: Metrics of 60 Degree Test: Tripod

Figure 6-18: Estimated Intersection from User

 Figure 6-18 illustrates the user test performed with a 60 degree rotation between the

pointing vectors of observer A and observer B. Following the same procedure as outlined in the

90 degree user test, the observer leveraged both the high accuracy compass and the phone’s

camera to achieve as accurate and precise of intersection estimates as possible. For further

understanding of the metrics corresponding to Figure 6-18, refer to Figure 6-19.

161

Mean Latitude of Intersections (Degrees) 42.489041442320630
Mean Longitude of Intersections (Degrees) -71.886760869365990

Standard Deviation of Intersection: Latitude,
Longitude (meters)

4.236, 4.412

Standard Deviation of Observer A: Latitude,
Longitude (meters)

0.358, 0.528

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.226, 2.178

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

27.6 vs. 28.0416

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

27.9 vs. 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

2.1

Observer A Angle Error Using Mean GPS
Location (Degrees)

2.664

Observer B Angle Error Using Mean GPS
Location (Degrees)

1.965

Figure 6-19: Metrics of 60-Degree Test: User

Analysis: User versus Tripod

 Based on the same reasoning as in the 90 degree user versus tripod test, the 60 degree

tripod test, as illustrated in Figures 6-16 and 6-17, experienced significantly better precision than

the user test. Illustrated in Figure 6-17, the tripod test experienced an intersection estimate

standard deviation of 0.287 meters in latitude and 1.320 meters in longitude. Meanwhile, the user

test, as seen in Figure 6-19, experienced an intersection estimate standard deviation of 4.236

meters in latitude and 4.412 meters in longitude.

 While the difference in precision between the two tests was expected, the difference in

accuracy of the two tests was unique. As seen in Figures 6-16 and 6-17 of the tripod test, the

system achieved a mean location estimation 7.1 meters away from the truth location. For the user

test, however, as seen in Figures 6-18 and 6-19, the system achieved a mean location estimation

2.1 meters away from the truth location. Drastically better than that of the tripod test, the system

achieved greater accuracy in the test subject to human error.

 As both tests experienced many random variables, it is difficult to fully explain the

reasoning as to why the user test achieved more accurate results than the tripod. Most likely,

162

however, the comparative success of the user test was due to the random nature of the GPS drift

that corrupted observer locations.

 As prior stated, the static and user tests performed at the 60 degree orientation were very

static. Consequently, the orientation estimation of the phone became largely dependent on the

accuracy of the magnetometer. Despite the heavy pre-calibration and filtering undergone by the

magnetometer, the device was prone to error and inconsistency. As such, slightly inaccurate

heading estimations from the magnetometer were possible.

 As any potentially random GPS bias or small angle offset could alter the accuracy of the

system, it was therefore not unlikely for an alternative test to perform more accurately, despite

the presence of human error.

135 Degree Tests:

As illustrated in Figure 6-20 and Figure 6-21, the 135 degree test consisted of two

observers whose pointing vectors formed a 135 degree angle about the object of interest.

Observer A, as represented by the red marker, was located 94 feet away from the object of

interest at an angle of 135 degrees. Meanwhile, observer B, as represented by the green marker,

was located 98 feet away from the object of interest at an angle of 270 degrees.

Figure 6-20: Illustration of 135 Degree Test

163

Figure 6-21: Metrics of 135 Degree Test

Results of User versus Tripod:

Figure 6-22: Estimated Intersection from Tripod

 Figure 6-22 illustrates the tripod test performed with a 135 degree rotation between the

pointing vectors of observer A and observer B. For further understanding of the metrics

corresponding to Figure 6-22, refer to Figure 6-23.

135 Degree Test
 Observer A Observer B Target
Location 94 Feet From Target 98 Feet From

Target
42.4890544777778
Deg.,
-71.8867415611111
Deg.

Orientation
(including magnetic
declination)

135 Degrees 270 Degrees N/A

164

Mean Latitude of Intersections (Degrees) 42.489083949368750
Mean Longitude of Intersections (Degrees) -71.886749956984730

Standard Deviation of Intersection: Latitude,
Longitude (meters)

0.412, 5.978

Standard Deviation of Observer A: Latitude,
Longitude (meters)

0.708, 0.384

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.083, 0

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

28.2 vs. 29.2608

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

30.2 vs. 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

3.3

Observer A Angle Error Using Mean GPS
Location (Degrees)

4.716

Observer B Angle Error Using Mean GPS
Location (Degrees)

3.604

Figure 6-23: Metrics of 135 Degree Test: Tripod

Figure 6-24: Estimated Intersection from User

Figure 6-24 illustrates the user test performed with a 135 degree rotation between the

pointing vectors of observer A and observer B. For further understanding of the metrics

corresponding to Figure 6-24, refer to Figure 6-25.

165

Mean Latitude of Intersections (Degrees) 42.489031525133880
Mean Longitude of Intersections (Degrees) -71.886705749412030

Standard Deviation of Intersection: Latitude,
Longitude (meters)

3.56, 6.343

Standard Deviation of Observer A: Latitude,
Longitude (meters)

2.774, 3.346

Standard Deviation of Observer B:
 Latitude, Longitude (meters)

0.226, 2.178

Mean Observer A GPS Location Distance To
Truth Versus Actual Distance (meters)

28.0 vs. 29.2608

Mean Observer B GPS Location Distance To
Truth Versus Actual Distance (meters)

27.9 vs. 29.8704

Haversine Distance From Mean Intersection
To Truth (meters)

3.9

Observer A Angle Error Using Mean GPS
Location (Degrees)

1.942

Observer B Angle Error Using Mean GPS
Location (Degrees)

0.762

Figure 6-25: Metrics of 135 Degree Test: User

Analysis of User versus Tripod

 As seen in Figures 6-22 and 6-23 the tripod test achieved modest precision and high

accuracy. Similar to the user test in the 90 degree scenario, the 135 degree tripod test generated

large standard deviation values in one direction. Represented by the flat and wide distribution of

blue markers, the intersection estimate had significant longitudinal uncertainty. Among the many

potential reasons for explaining the system’s longitudinal imprecision, the most likely

explanation was the magnetometer. As prior mentioned, the magnetometer was prone to small

angle errors. A trend seen in many other tests, the performance of the magnetometer appeared to

take on a random distribution. Therefore, for some orientation estimations, such as the one for

observer B in Figure 6-22, the magnetometer produced a relatively constant angular output.

While in others, the magnetometer produced less accurate and consistent data.

 Meanwhile, in the user test, the system behaved much more normally. As expected, the

user test produced a much more imprecise intersection distribution. Specifically, by

superimposing the uncertainty correlated with human error onto the already existing data

distribution map, the data formed the distribution as modeled by the blue markers in Figure 6-24.

Ideally, the distribution would have been more angular and ellipsoidal than circular due to the

correlation between axes at 135 degrees.

166

 Lastly in terms of accuracy, both tests experienced comparable results. As seen in Figure

6-23, the tripod test achieved a mean intersection location 3.3 meters away from the USGS

marker. Meanwhile for the user test, the addition of user error did little to affect the accuracy of

the system. As such, the system achieved a mean intersection location 3.9 meters away from the

USGS marker.

6.3 Dynamic Tests: Methods and Results

 The static tests performed and analyzed in Section 6.2 provided valuable insight into the

effectiveness of the system under ideal scenarios. In order to test the real world feasibility of an

indirect geolocation system using a smartphone, however, dynamic tests also had to be

performed. Among the many dynamic tests performed, the test from Figure 6-26 well represents

the system’s results.

As seen in Figure 6-26, observer A, the red marker, underwent significant motion. Much

more comparable to a real-world scenario, observer A first began at the left-most red marker.

Moving slowly from each red marker to the next, observer A attempted to keep the hand-held

phone aligned with the object of interest. Once observer A reached the location of observer B,

the green marker, observer A then turned around and followed the same path back to the starting

point. As the user attempted to aim the smartphone while also walking in a different direction, a

significant decrease in both accuracy and precision was expected. Consequently, observer A tried

to best mitigate these increased errors by operating the phone in portrait mode, so as to use the

camera to maintain relatively constant positioning on the target.

167

Results: Dynamic Test

Figure 6-26: Illustration of Dynamic User Test

Figure 6-27: Estimated Intersection from Dynamic User Test

 Figure 6-27 illustrates the dynamic user test. Observer A, as represented by the red

markers, followed the path as illustrated in Figure 6-26. Meanwhile, observer B, as represented

by the green markers, remained stationary with the phone placed in the tripod in portrait mode.

168

Ultimately, the resulting intersection estimations created a spread of data as represented by the

blue markers. With a mean estimation location represented by the white marker, this location

was then compared to the yellow marker, the truth location, in order to determine system

accuracy. For further metrics describing Figure 6-27, refer to Figure 6-28.

Mean Latitude of Intersections (Degrees) 42.489061038924648
Mean Longitude of Intersections (Degrees) -71.886723034926578

Standard Deviation of Intersection: Latitude,
Longitude (meters)

0.73, 3.12

Haversine Distance From Mean Intersection
To Truth (meters)

1.6

Figure 6-28: Metrics of Dynamic Test

Analysis: Dynamic Test

 As seen in Figures 6-27 and 6-28, the dynamic test performed successfully. In terms of

precision, the one sigma standard deviation bounds were larger than several of the static

experiments. Despite the decrease in precision, however, this decrease in performance was

expected. Unlike the static tests from Section 6.2, the dynamic test underwent a much more

complicated data collection process. As the observer was both walking and turning, while also

attempting to keep the phone aligned with the object of interest, there was a lot of new error

introduced into the system. The ability of the EKF to leverage all sensor data, however, kept the

system relatively precise. In terms of accuracy, the dynamic test uniquely achieved more

accurate results than the static tests. Most likely due to the more frequent updates of the GPS

receiver, the influence of GPS drift seemed to be somewhat mitigated.

Summary:

 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒
(meters)

𝜎𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒(meters) Absolute Error
(meters)

90 Degrees Tripod 0.389 0.401 3.8
 User 3.995 0.363 4.8
 Flat 0.358 0.119 3.5
 Portrait 0.389 0.401 3.8
60 Degrees Tripod 0.287 1.320 7.1
 User 4.236 4.412 2.1
135 Degrees Tripod 0.412 5.978 3.3
 User 3.56 6.343 3.9
Dynamic User 0.73 3.12 1.6

Figure 6-29: Summary of Calculated Test Values

169

 To summarize, Figure 6-29 restates many of the calculated test values from each of the

prior mentioned experiments. Specifically, Figure 6-29 presents the standard deviation latitude,

standard deviation longitude, and absolute error of the estimated intersection points. An

interesting trend in the data was the difference in performance between the static and dynamic

tests. For the static tests, the absolute errors were frequently 10 to 20% of the observer distance

from the object of interest (about 30 to 35 meters). Meanwhile, for the dynamic test, the absolute

error was approximately 6%. In terms of precision, both systems performed reasonably well.

Under most circumstances, the static tests achieved tight data distributions representing the

appropriate degree of correlation between the observers. Furthermore, the intersection estimates

often accurately modeled the addition of human error, which most likely embodied a zero-mean

normal distribution. Meanwhile, for the dynamic test, the precision well represented the nature of

the test. Most uncertain in terms of longitude, the distribution of the intersection data helped

indicate that the observer was walking at approximately the same latitude coordinates.

170

Chapter 7: Discussion

 This chapter discusses the results and findings for the two-dimensional intersection

algorithm, three-dimensional intersection algorithm, field tests, and future work.

Two-Dimensional Intersection Algorithm

 The two-dimensional (2-D) intersection algorithm was validated using a zero-error

model, where analytical results were compared to actual results obtained from the algorithm. A

range of errors from the zero-error intersection solution was observed to be from zero to 1.404e-

11 meters. The only scenario where zero error in the intersection solution was calculated was

when there was no decimal approximation of the input location and orientation for both

observers. When a precision to four decimal places was used, errors up to 1.404e-11 were

observed. With such small errors observed due to precision, the algorithm was considered

validated.

 To characterize the performance of the two-dimensional algorithm, Monte Carlo

simulations were used. When errors were introduced to both observers’ locations and

orientations, an intersection point cloud was formed; two characteristics of this point cloud were

analyzed. First, was the standard deviation of the point cloud along the x-axis and y-axis, which

described the precision of the intersection solution. Second, was the distribution of the root-

mean-square (RMS) difference between each intersection point and the zero-error value. This

error was commonly referred to as RMS error in this report. For each Monte Carlo simulation

there were four total parameters: location error, orientation error, distance, and angle between

observers. The two error parameters were a distribution of zero-mean Gaussian noise with a

specified standard deviation. The distance and angle between observers was varied according to

each test and were essentially test parameters.

 In Section 5.1.2, a series of simulations was used to examine the performance of the

intersection algorithm while an observer moved away from the object of interest. These

simulations were repeated for different error parameters, including a position error of 2.5 m and

0.001 m for a range of orientation errors from 0.0° to 2.0°. These values corresponded to the

standard deviation of the zero-mean Gaussian distribution used to introduce the error. Two main

observations were made after examining these scenarios.

171

First, as an observer’s distance increased and there was orientation, the intersection mean

RMS error also increased. When there was no orientation error, the mean RMS error remained

the same at all distances. The position error acted as a bias in the intersection mean RMS error.

For the test where the position error was 2.5 m and the orientation error was 1.0°, the orientation

error was observed to have a larger effect on the overall RMS error as the distance increased.

From Figure 5-16, the position error at 100 m consisted of 13.7% of the total RMS error, but at

880 m, the position error only accounted for 2.9% of the total RMS error.

 In Section 5.1.3, another series of simulations was used to examine not only the distance

of the observers, but also the angle between both observers. During the series the observers were

placed at a range of distances from 25 m to 350 m in 25 m increments. At each distance

increment, the angle between observers was swept through from 20° to 160° in 5° increments.

These simulations showed that the optimal angle to obtain the most accurate intersection point

was an angle between observers of 90°. These simulations also supported the finding that as the

distance from both observers to the object increases, the orientation error plays a greater role in

the total RMS error than the position error. For the simulation shown in Figure 5-22, the error

due to orientation was found to be greater than that of position at a distance greater than 250 m.

This simulation consisted of the standard GPS error of 2.5m and orientation error of 1.0°.

Future work in characterizing the 2-D intersection could examine observers with different

error distributions, i.e. if one observer has a malfunctioning device, what is the effect on the

intersection if the other observer has a working device? Additional errors could also be

characterized, in this report only zero-mean Gaussian distributions were used, but another error

distribution that was found consistent with location errors found in the field tests for GPS

location was the Rician distribution.

Three-Dimensional Intersection Algorithm

 The three-dimensional (3-D) intersection algorithm was validated using a zero-error

model in MATLAB consisting of simple geometry and vector distance graphs. The algorithm

was observed to work correctly and match up with the simple geometry and vector distance

graphs. When the observers’ vectors had a direct intersection, geometry analysis was used to

validate the MATLAB algorithm. The geometry analysis’s intersections were observed to match

the MATLAB algorithm’s intersections. When the observers’ vectors did not have a direct

172

intersection, vector distance graphs were used. Each vector distance graph was created after the

MATLAB algorithm computed the intersection point and showed if the MATLAB algorithm

found the minimum and equidistant point from both vectors, the two properties of the least-

squares pseudo inverse calculation. The resulting intersection approximation from the MATLAB

algorithm was found to satisfy the least-squares pseudo inverse calculation traits in every

scenario that was tested. After the validation was complete, the intersection algorithm was

judged to be working correctly.

 To characterize the performance of the 3-D intersection performance with input errors

typically observed in the real world, Monte Carlo simulations were used. For each simulation,

errors were added and the resulting intersection point cloud was characterized using X, Y, and Z

RMS error and total RMS error values. Three overall simulations were conducted. First, the

observers’ positions were held constant with location and orientation errors and the resulting

intersection point cloud was evaluated. Second, location and orientation variables were

independently varied and the influences of each error to the resulting intersection point cloud

was observed. Third, the observers’ angles and distances to the object were varied to observe the

optimal angle that produced the most accurate intersection point cloud, and determined the

influence between location and orientation error.

 In Section 5.2.1, the simulations examined typical real world errors for each observer and

the relationship between the shape of the intersection point cloud as position and angle

configurations changed for each observer. These simulations were used to observe that when the

two observers’ vectors intersect at a 90 degree angle, the intersection point cloud had equal X

and Y distributions, with the Z distribution being dependent on the pitch angle and difference in

Z position between observers. As the angle between observers became increasingly acute or

obtuse, yaw angle error increasingly affected the distribution of the intersection cloud. As the

difference in Z position changed for the observers, the intersection point cloud occurred halfway

between the two vectors in the Z position due to the vector approximation. These intersection

scenarios and distribution observations gave the ability determine what errors and uncertainty

might be seen in a field test.

 In Section 5.2.2, the simulations examined the influences of each error to the resulting

intersection point cloud. Each simulation involved increasing noise on one variable for one

observer, while the other observer had no location or orientation error, in order to individually

173

characterize the effect of each variable to the resulting intersection. As the X and Y position

errors become greater, the intersection X and Y RMS error values increased linearly, and the Z

RMS error remained constant. When the Z position error became greater, the intersection Z RMS

error value increased linearly, and the X and Y RMS error remained constant. When the yaw

error was increased, the intersection X and Y RMS error values increased linearly, and the Z

RMS error remained constant. Lastly, when the pitch error increased, the intersection Z RMS

error increased linearly, and the X and Y RMS error value was observed to increase at a slower

rate than the Z RMS error, but still increase linearly with the pitch error. These findings provided

the ability to determine the root cause of abnormal intersection uncertainty distributions.

 In Section 5.2.3, the simulations examined the optimal intersection angle which produced

the most precise intersection point cloud, and determined the influence between location and

orientation error as distance increased. Each simulation consisted of a starting point 50 m from

the intersection point and sweeping the angles between observers from 20° to 160°. The resulting

mean RMS error versus angle between observers was observed and the distance was incremented

by 50 m until 350 m was reached. The minimum RMS error was found to occur around 90°, and

the minimum error remained at 90° as distance from the object increased. Next, the individual

effect of location and orientation error on the intersection point cloud was compared as distance

increased. First, the location error was tested without orientation error, with the same test

conditions as the optimal angle simulation. From the simulation, it was observed that as distance

increased, the RMS absolute error remained the same. As the distance increased with orientation

error, however, the RMS absolute error increased as well. Using this observation, it was found

that at a distance smaller than 250 m, the location error had more of an effect on the resulting

intersection point cloud distribution. When the distance is greater than 250 m, the orientation

error had a larger effect on the resulting point cloud distribution. This distance can be used to

determine major factor for intersection uncertainty cloud for particular configurations.

 Overall, the 3-D intersection was validated using geometry, vector distance graphs, and

MATLAB intersections, and the simulations were used to observe the characteristics of the

algorithm with real world errors added. This information was used to ensure the algorithm would

work correctly during field tests and the simulations were used to compare field test outcomes.

174

Field Tests Discussion:

 One of the fundamental goals of this project was to show the feasibility of a smartphone-

based indirect geolocation system. In order to deem the smartphone implementation as

“feasible,” no real metrics were set. In general the goal was to have the system achieve accuracy

levels within approximately 10% of the average observer distance from the truth marker. If most

importance, however, were two additional sub-goals. First, an algorithm that could generate an

orientation estimate had to be created. Among its many tasks, this algorithm had to take

potentially poor sensor data and create a coherent, optimized result. Second, a connection had to

be established between simulations and field tests. By showing that the field tests followed many

of the same trends as seen in the simulations, the performance of the system would become more

legitimate and trustworthy. Ultimately, completion of these two sub-goals would indicate that

smartphones possess the qualities necessary to theoretically perform indirect geolocation.

Sub-goal One: Creation of an Orientation Algorithm

 To satisfy the first sub-goal, an extended Kalman Filter (EKF) was created. Designed to

be a sensor fusion algorithm, the EKF created a coherent orientation estimate from individual

sensors. In real-world static tests, the EKF regularly generated orientation estimates within a

degree of the estimated truth (refer to Section 6.2). Furthermore, in real-world dynamic tests, the

EKF seemingly produced accurate results although there was no estimated truth comparison

(refer to Section 6.3). Despite the success of the EKF, however, there were several problems

with its design.

For one, the magnitude of the individual sensor errors produced by the phone was

unexpected. Consequently, it took longer than expected to design a system that could accurately

fuse all sensor data together. Although the EKF naturally eliminated a lot of the uncertainty and

error within individual sensor data, there was a tremendous need for pre-filtering and pre-

calibration. As seen in Section 4.1, the data underwent NaN correction, high-pass filters, low-

pass filters, and calibrations prior to entering the EKF. Thus, it took longer than expected to

customize each filtering and calibration stage to optimize the sensor data.

In addition to the unexpected length of time it took to accurately fuse the data, the EKF

also required extensive customization for fusion in each individual test. Using a tuning parameter

which altered the process noise, the behavior of the EKF would change. Although customization

175

of this parameter is helpful in optimizing the system based on the dynamics of the test, the tuning

parameter required more frequent calibration than desired to obtain an optimal result.

Ultimately, the creation of a sensor fusion algorithm that generated an accurate orientation

estimation was a success. The system took longer to create than expected and did not act as

autonomously as desired, however, it produced accurate orientation results given the scenarios it

experienced. In order to further optimize the system, however, it should undergo more real-world

testing, particularly tests exploiting edge cases. Such testing would help determine the rigidity of

all stages of the filter and further characterize the phone sensors.

Sub-goal Two: Connection Between Simulations and Field Testing

 As seen in Sections 5.1 and 5.2, many simulations were performed to reflect both 2-D

and 3-D indirect geolocation scenarios. Naturally, the simulations were unable to reflect the

distribution of random variables in real-world testing. Despite this limitation, however, the

simulations did provide theoretical justification for ideal real-world scenarios. Among the many

results generated from the simulations in Sections 5.1 and 5.2, two of the most important were

the 90 degree optimal angle analysis and the location versus orientation error analysis.

 The 90 degree optimal angle analysis was a result generated in both 2-D and 3-D cases.

Specifically, it stated that the absolute error, measured by the root-mean-square (RMS) of the

distance between the estimated intersection point and the truth, was a minimum when the angle

between the two observers was 90 degrees. When comparing the simulated result with the result

obtained in field testing, there were both similarities and differences. In terms of precision, the

field test modeled the behavior seen in simulation. Specifically, the field test produced a very

small, nearly circular intersection distribution which indicated the lack of correlation between

errors from the two observers. In terms of accuracy, however, there was an inconsistency in

results. As can be seen by the various testing results shown in Section 6.2, the 90 degree test did

not produce the most accurate orientation estimate. This inconsistency with the simulated results

most likely was a bi-product of the many random variables that plague real-world tests. Among

the many random variables unmodeled in simulation, however, the most significant influence on

the inaccuracy of the real-world system was most likely the GPS location error.

 Undergoing some form of drift, the GPS uncertainty, as seen in Section 6.2, did not

model the zero-mean Gaussian distribution used in simulations. Consequently, the simulations

never accounted for a data set in which the mean observer location value experienced some form

176

of offset. An error prevalent in many of the real-world tests performed, this GPS bias ultimately

created inaccuracies in the intersection estimations.

 Using the location versus orientation error analysis generated in both the 2-D and 3-D

simulations, the influence of the inaccurate GPS readings could be measured. Specifically, the

analysis stated that observer location inaccuracy created more intersection estimate error than did

orientation inaccuracy when both observers were relatively close to the object of interest.

Therefore, as restrictions in space made the field tests relatively small in size (approximately 30

to 35 meters), the inaccurate GPS locations negatively affected the intersection accuracy more

than the orientation error. As such, reduction of the GPS error would most likely produce field

test results that better modeled the accuracy generated by the simulations.

Main Goal:

 Ultimately, as seen in Sections 6.2 and 6.3, the main accuracy goals were met, however,

not with the consistency desired. As seen in the 90 degree tripod test, there were cases in which

static tests achieved approximately 10% error. Due to the significant GPS bias, however, further

optimization of such scenarios was often difficult. Meanwhile, for dynamic tests, the system

uniquely achieved greater accuracy. Helping mitigate GPS drift by forcing the GPS to more

regularly update, the system was no longer as severely limited by the performance of the GPS.

As such, the ability of the EKF to generate accurate orientation estimations produced more

accurate intersection results.

 Having acknowledged such limitations in experimental success, future work should

increase the distance used in field tests. As a result, the influence of the location error should

decrease and the system will become much more subject to the accuracy of the EKF.

Furthermore, future work should acquire a more refined GPS receiver. Such an acquisition

should not be difficult though, as smartphones will most likely soon possess more accurate GPS

receivers as technology improves. Future work could also look for a method in correcting the

orientation error of the smartphones using the smartphone camera.

177

Chapter 8: Conclusion

In summary, this report examined the effectiveness of using smartphones as an indirect

geolocation system. With multiple known observation vectors representing individual

smartphone’s “lines of sight,” two-dimensional (2-D) and three-dimensional (3-D) intersection

algorithms were created, validated, and characterized for indirect geolocation. Leveraging the

existing hardware and software found within ordinary smartphones, an Extended Kalman Filter

(EKF) was designed to accurately calculate these smartphone poses’. The algorithms and EKF

were then subjected to field tests to introduce real-world error into the system and characterize

performance.

Several observations were made after characterizing the 2-D and 3-D intersection

algorithms. First, with orientation error present in the input, it was found that the intersection

mean RMS error increases with distance. Second, it was found that the effect of the position

error on the mean RMS error is independent of distance, and acts as a bias. Third, at longer

distances the mean RMS error due to orientation error dominates over that due to position error.

Fourth, it was found that the intersection angle of 90° minimizes the mean RMS error of the

intersection cloud. For a standard location error of 2.5 m and orientation error of 1.0°, an angle

from 75° to 105° only produces 2-3% additional mean RMS error in the intersection compared to

minimum mean RMS error value at 90°.

The field tests introduced real-world errors into the EKF and 2-D intersection algorithm

and assessed the performance of the accuracy of the system. The EKF was designed to be a

sensor fusion algorithm, it created a coherent orientation estimate from individual inertial sensors

found in smartphones: gyroscope, accelerometer, and magnetometer. In real-world static tests,

the EKF regularly generated orientation estimates within a degree of the estimated truth.

Although the EKF naturally eliminated a lot of the uncertainty and error within individual sensor

data, there was a tremendous need for pre-filtering and pre-calibration. In order to further

optimize the system, however, it should undergo more real-world testing, particularly tests

exploiting edge cases and tests at longer distances. Such testing would help determine the

rigidity of all stages of the filter, further characterize the phone sensors, and further quantify the

performance of the Extended Kalman Filter.

178

 Next, a connection was established between simulations and field tests. When comparing

the simulated result with the result obtained in field testing, there were both similarities and

differences. In terms of precision, the field test modeled the behavior seen in simulation.

Specifically, the field test produced a very small, nearly circular intersection distribution which

indicated the lack of correlation between errors from the two observers. In terms of accuracy,

however, there was an inconsistency in results. This inconsistency with the simulated results

most likely was a bi-product of the many random variables that plague real-world tests.

 Ultimately through field tests, the main accuracy goals were met, however, not with the

consistency desired. As seen in the 90 degree tripod test, there were cases in which static tests

achieved approximately 10% error. Due to the significant GPS bias, however, further

optimization of such scenarios was often difficult. Meanwhile, for dynamic tests, the system

uniquely achieved greater accuracy. Helping mitigate GPS drift by forcing the GPS to more

regularly update, the system was no longer as severely limited by the performance of the GPS.

As such, the ability of the EKF to generate accurate orientation estimations produced more

accurate intersection results.

179

References

AsahiKASEI. (2013). AK8963 3-axis Electronic Compass. Asahi Kasei Microdevices

Corporation Datasheets. https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf

Al-Hamad, A., & El-Sheimy, N. (2014). Smartphones based mobile mapping systems. The

International Archives of Photogrammetry, Remote Sensing and Spatial Information

Sciences, 40(5), 29.

Apache. (2004). Apache License Version 2.0, January 2004. The Apache Software Foundation.

Barrett, J. M., (2014). Analyzing and Modeling Low-Cost MEMS IMUs for use in an Inertial

Navigation System. Masters Theses (All Theses, All Years) submitted to Worcester

Polytechnic Institute. 581. https://digitalcommons.wpi.edu/etd-theses/581

Civera, J., Grasa, O., Davison, A., Montiel, J., Stachniss, C., Williams, S., & Neira, J. (2010).

1‐Point RANSAC for extended Kalman filtering: Application to real‐time structure from

motion and visual odometry. Journal of Field Robotics, 27(5), 609–631.

Courrieu, P. (2008). Fast computation of Moore-Penrose inverse matrices. Neural Information

Processing-Letters and Reviews. 8.

“Demographics of Mobile Device Ownership and Adoption in the United States.” Pew Research

Center, Washington, D.C. (2018, February 5) http://www.pewinternet.org/fact-

sheet/mobile/.

Ding, W., & Wang, J. (2011). Precise Velocity Estimation with a Stand-Alone GPS Receiver.

Journal of Navigation, 64(2), 311-325.

Djuknic, G. M., & Richton, R. E. (2001). Geolocation and assisted GPS. Computer, (2), 123-125.

Dowdy, S., Wearden, S., and Chilko, D. (2004) Statistics for Research. Hoboken, New Jersey:

John Wiley & Sons. pp. 354-355.

Euler Angles, Quaternions, and Transformation Matrices (pp. 1-42, Rep.). (1977). Houston, TX:

NASA.

Fakharian, A., Gustafsson, T., and Mehrfam, M. (2011) "Adaptive Kalman filtering based

navigation: An IMU/GPS integration approach," 2011 International Conference on

Networking, Sensing and Control, Delft, pp. 181-185.

Feng, K., Li, J., Zhang, X., Shen, C., Bi, Y., Zheng, T., and Liu, J. (2017) A New Quaternion-

Based Kalman Filter for Real-Time Attitude Estimation Using the Two-Step

Geometrically-Intuitive Correction Algorithm. Sensors (Basel, Switzerland).

2017;17(9):2146. doi:10.3390/s17092146.

https://www.akm.com/akm/en/file/datasheet/AK8963C.pdf
https://digitalcommons.wpi.edu/etd-theses/581

180

FitzGerald, D. and Perrin, J. (2015). Magnetic Compensation of Survey Aircraft; a poor

 man's approach and some re-imagination. Conference: Extended Abstracts of 14th SAGA

 Biennial Technical. 10.1190/sbgf2015-145.

Gikas, V., & Perakis, H. (2016). Rigorous performance evaluation of smartphone GNSS/IMU

sensors for ITS applications. Sensors, 16(8), 1240.

GISGeography. (2018, February 23). Trilateration vs Triangulation – How GPS Receivers Work.

Image Retrieved from https://gisgeography.com/trilateration-triangulation-gps/

Groves, P. D. (2013). Principles of GNSS, inertial, and multisensor integrated navigation

systems. Boston, MA: Artech house. pp. 13, 23-136, 137-162.

Guo, S., Wu, J., Wang, Z., & Qian, J. (2017). Novel MARG-Sensor Orientation Estimation

Algorithm Using Fast Kalman Filter (Vol. 2017, Journal of Sensors, Rep. No. 8542153).

Hindawi.

Jin, Y., Toh, H. S., Soh, W. S., & Wong, W. C. (2011, March). A robust dead-reckoning

pedestrian tracking system with low cost sensors. In Pervasive Computing and

Communications (PerCom), 2011 IEEE International Conference on (pp. 222-230).

IEEE.

Kazusuke M., "MEMS inertial sensors and their applications," 2008 5th International

Conference on Networked Sensing Systems, Kanazawa, 2008, pp. 71-73.

Kos, A., Tomazic, S., Umek, A., & Kos, A. (2016). Evaluation of Smartphone Inertial Sensor

Performance for Cross-Platform Mobile Applications. Sensors, 16(4), 477–477.

Li, C., Zhang, S., Cao, Y. (2013). One new onboard calibration scheme for gimballed IMU,

Measurement, Volume 46, Issue 8, Pp. 2359-2375, ISSN 0263-2241.

Lorenz, A. (2013). Sensorstream IMU+GPS. Google Play Applications.

Madgwick, S. (2010). An efficient orientation filter for inertial and inertial/magnetic sensor

arrays. Report x-io and University of Bristol (UK), 25, 113-118.

Magers, M. (2016). Geolocation of RF Emitters Using a Low-Cost UAV-Based Approach.

Thesis presented to the Faculty of the Department of Aeronautics and Astronautics, Air

Force Institute of Technology. Write-Patterson Air Force Base, Ohio. United States of

America.

Manon Kok, Jeroen D. Hol and Thomas B. Sch¨on (2017), ”Using Inertial Sensors for Position

and Orientation Estimation”, Foundations and Trends in Signal Processing: Vol. 11: No.

1-2, pp 1-153. http://dx.doi.org/10.1561/2000000094

The MathWorks (2018). MATLAB Mobile. Google Play Applications.

181

Mendes, E., Lacroix, S., & Sola, J. (2016). Parallax angle parametrization in incremental SLAM.

Control, Automation, Robotics and Vision (ICARCV), 2016 14th International

Conference on (pp. 1–7). IEEE.

Musoff, H., and Zarchan, P. (2009). Fundamentals of Kalman filtering: a practical approach.

Reston, Virginia: American Institute of Aeronautics and Astronautics. pp. 257-292.

Paromik Chakraborty. (2017). In The News: Global Smartphone Sales up by 9.1 per cent, with

Maximum Impact from Chinese Firms. Electronics Bazaar. Retrieved from Nexis Uni.

Roetenberg, D., Luinge, H. J., Baten, C. T., & Veltink, P. H. (2005). Compensation of magnetic

disturbances improves inertial and magnetic sensing of human body segment orientation.

IEEE Transactions on neural systems and rehabilitation engineering, 13(3), 395-405.

Sabatini, A. M. (2006). Quaternion-based extended Kalman filter for determining orientation by

inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering, 53(7),

1346-1356.

Sabatini, A. M. (2011). Kalman-filter-based orientation determination using inertial/magnetic

sensors: Observability analysis and performance evaluation. Sensors, 11(10), 9182-9206.

Solin, A., Cortes, S., Rahtu, E., and Kannala, J. (2018). Inertial Odometry on Handheld

Smartphones. International Conference on Information Fusion (FUSION 2018),

Cambridge, UK.

Tan, Q. J. (2015). Passive coherent detection and target location with multiple non-cooperative

transmitters. Thesis presented to the Naval Postgraduate School. Monterey, CA.

Titterton, D., and Weston, J. L.(2004). Strapdown inertial navigation technology. Reston,

Virginia: The American Institute of Aeronautics. pp. 56.

US Department of Commerce, NOAA, & National Geodetic Survey. (2009, May 27). The NGS

Data Sheet. Retrieved from https://www.ngs.noaa.gov/

van Diggelen, F., Enge, P., (2015, September) "The World’s first GPS MOOC and Worldwide

Laboratory using Smartphones," Proceedings of the 28th International Technical

Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015),

Tampa, Florida, pp. 361-369.

VectorNav. (2016). VN-310 DUAL GNSS/INS. Tactical Series Product Brochure.

Vu, H., Palacios, A., In, V., Longhini, P., & Neff, J. D. (2011). A drive-free vibratory gyroscope.

Chaos (Woodbury, N.Y.). 21. 013103. doi:10.1063/1.3532802.

Woodman, O. J. (2007). An Introduction to Inertial Navigation. University of Cambridge

Computer Library Technical Report, (ISSN) 1476-2986. 696, 1-37.

182

Appendix A – 2-D Zero Error Model Scenarios

Scenario x_A

(m)

y_A

(m)

theta_A

(deg)

x_B

(m)

y_B

(m)

theta_B

(deg)

1 -146.4102 0 30 -100 -100 45

2 100 200 0 200 0 90

3 0 200 0 546.4102 0 150

4 100 373.2051 -60 100 100 45

5 300 373.2051 -120 300 200 0

6 200 500 -90 400 546.4102 -120

7 373.2051 100 150 300 100 135

8 400 -100 123.6901 300 0 116.5651

9 150 -100 80.5376 250 -100 99.4624

10 100 500 -71.5651 0 300 -26.5651

Figure A-1: 2-D Error Model Scenarios

*All scenarios intersect at (200 m, 200 m)

183

Appendix B - Validation Results of Three-Dimensional Intersection

Below, the validation results from scenarios 5 to 11 and 15 to 16 are detailed.

Scenario 5:

Figure B-1 shows the configuration for scenario 5:

Figure B-1: Scenario 5 Configuration

Using Equation 4-27, the final angle in the triangle can be found. This angle ϴC can be seen in

Figure B-2 below.

Figure B-2: Scenario 5 with ϴC Angle

184

The angle was found to be 30 degrees. Using equation 4-25, the base distance can be found. This

distance is found to be 100. With the BASE distance and ϴC, the distance dA and dB can be found

using the law of sines. The distances can be seen in the Figure B-3 below.

Figure B-3: Scenario 5 with dA and dB

Using dB, the intersection point can be found. This point can be found because there is a right

angle formed at observer B, so the distance dB only contributes to the Y-axis change. The

resulting intersection was found to occur at (100, 165.88, 10). Next, the MATLAB zero-error

model was analyzed, seen in Figure B-4 and B-5, to observe the resulting intersection.

Figure B-4: Scenario 5 MATLAB Zero Error Model View A

185

Figure B-5: Scenario 5 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (100.0000, 165.8846, 10.0000) and matches up with the geometry analysis.

186

Scenario 6:

This scenario has a different intersection than scenario 5 due to the two vectors not truly

intersecting. Therefore an analysis graph can be seen in Figure B-6 below, with distance from

each vector being on the y-axis and the index, or position, along each vector being on the x axis,

which allows for the position along each line to be found.

Figure B-6: Scenario 6 Distance to Least Squares Intersection

The position for Vector A at this intersection is (93.9711, 155.4423, 71.1260) and the position

for Vector B at this intersection is (100.0000, 177.9423, 71.1260). Next, the scenario was

analyzed using MATLAB. The resulting plot can be seen in Figure B-7 and B-8 below.

187

Figure B-7: Scenario 6 MATLAB Zero Error Model View A

Figure B-8: Scenario 6 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (99.6252, 165.9850, 71.1260).

188

Scenario 7:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-9 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x axis, which allows for the position along each line to be found.

Figure B-9: Scenario 7 Distance to Least Squares Intersection

The position for Vector A at this intersection is (63.3506, 102.4059, 48.8360) and the position

for Vector B at this intersection is (100.0000, 123.5490, 10.0000). Next, the scenario was

analyzed using MATLAB. The resulting plot can be seen in Figure B-10 and B-11 below.

189

Figure B-10: Scenario 7 MATLAB Zero Error Model View A

Figure B-11: Scenario 7 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (84.4137, 111.8922, 31.4115).

190

Scenario 8:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-12 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x axis, which allows for the position along each line to be found.

Figure B-12: Scenario 8 Distance to Least Squares Intersection

The position for Vector A at this intersection is (70.4182, 114.6473, 10.0000) and the position

for Vector B at this intersection is (100.0000, 123.5490 , 51.3285). Next, the scenario was

analyzed using MATLAB. The resulting plot can be seen in Figure B-13 and B-14 below.

191

Figure B-13: Scenario 8 MATLAB Zero Error Model View A

Figure B-14: Scenario 8 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (88.3103, 118.6412, 28.5429).

192

Scenario 9:

The Figure B-15 shows the configuration for scenario 9:

Figure B-15: Scenario 9 Configuration

Using Equation 4-23, the final angle in the triangle can be found. This angle ϴC can be seen in

Figure B-16 below.

Figure B-16: Scenario 9 with ϴC Angle

This angle was found to be 60 degrees. Using equation 4-22, the base distance can be found. This

distance is found to be 100. With the BASE distance and ϴC, the distance dA and dB can be found

using the law of sines. The distances can be seen in the Figure B-17 below.

193

Figure B-17: Scenario 9 with dA and dB

Using dB, the intersection point can be found. This point can be found because there is a right

angle formed at observer B, so the distance dB only contributes to the Y-axis change. The

resulting intersection was found to occur at (100, 61.96, 10). Next, the MATLAB zero-error

model was analyzed, seen in Figure B-18 and B-19, to observe the resulting intersection.

Figure B-18: Scenario 9 MATLAB Zero Error Model View B

194

Figure B-19: Scenario 9 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (100.0000, 61.9615, 10.0000) and matches up with the geometry analysis.

195

Scenario 10:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-20 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x axis, which allows for the position along each line to be found.

Figure B-20: Scenario 10 Distance to Least Squares Intersection

The position for Vector A at this intersection is (77.5000, 48.9711, 38.3687) and the position for

Vector B at this intersection is (100.0000, 87.9423, 38.3687). Next, the scenario was analyzed

using MATLAB. The resulting plot can be seen in Figure B-21 and B-22 below.

196

Figure B-21: Scenario 10 MATLAB Zero Error Model View A

Figure B-22: Scenario 10 MATLAB Zero Error Model View B

197

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (98.3112, 62.9366, 38.3687).

Scenario 11:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-23 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x axis, which allows for the position along each line to be found.

Figure B-23: Scenario 11 Distance to Least Squares Intersection

The position for Vector A at this intersection is (66.2139, 42.4551, 33.6254) and the position for

Vector B at this intersection is (100.0000, 79.0760, 10.0000). Next, the scenario was analyzed

using MATLAB. The resulting plot can be seen in Figure B-24 and B-25 below.

198

Figure B-24: Scenario 11 MATLAB Zero Error Model View A

Figure B-25: Scenario 11 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (93.2447, 54.1612, 26.0734).

199

Scenario 12:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-26 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x-axis, which allows for the position along each line to be found.

Figure B-26: Scenario 12 Distance to Least Squares Intersection

The position for Vector A at this intersection is (73.6608, 46.7546, 10.0000) and the position for

Vector B at this intersection is (100.0000, 79.0760, 35.1416). Next, the scenario was analyzed

using MATLAB. The resulting plot can be seen in Figure B-27 and B-28 below.

200

Figure B-27: Scenario 12 MATLAB Zero Error Model View A

Figure B-28: Scenario 12 MATLAB Zero Error Model View B

201

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (98.3112, 57.0863, 18.0367).

Scenario 15:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-29 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x-axis, which allows for the position along each line to be found.

Figure B-29: Scenario 15 Distance to Least Squares Intersection

The position for Vector A at this intersection is (47.8405, 47.8405, 24.6250) and the position for

Vector B at this intersection is (49.0892, 50.9108, 20.0000). Next, the scenario was analyzed

using MATLAB. The resulting plot can be seen in Figure B-30 and B-31 below.

202

Figure B-30: Scenario 15 MATLAB Zero Error Model View A

Figure B-31: Scenario 15 MATLAB Zero Error Model View B

203

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (49.3482, 49.3482, 22.5328).

Scenario 16:

This scenario has two vectors not truly intersecting. Therefore an analysis graph can be seen in

Figure B-32 below, with distance from each vector being on the y-axis and the index, or position,

along each vector being on the x-axis, which allows for the position along each line to be found.

Figure B-32: Scenario 16 Distance to Least Squares Intersection

The position for Vector A at this intersection is (46.0739, 46.0739, 0) and the position for Vector

B at this intersection is (56.7047, 43.2953, 42.2854). Next, the scenario was analyzed using

MATLAB. The resulting plot can be seen in Figure B-33 and B-34 below.

204

Figure B-33: Scenario 16 MATLAB Zero Error Model View A

Figure B-34: Scenario 16 MATLAB Zero Error Model View B

The resulting intersection, determined through calculations from the MATLAB zero error model,

occurs at (55.1970, 44.8030, 20.1932).

205

Appendix C – 2-D Distance and Orientation Combinations

(ɵo, d)
distance d (meters)

25 50 … … 325 350

Angle

between

Observers

ɵo

(degrees)

20 (20, 25) (20, 50) (20, …) (20, …) (20, 325) (20, 350)

25 (25, 25) (25, 50) (25, …) (25, …) (25, 325) (25, 350)

… (…, 25) (…, 50) (…, …) (…, …) (…, 325) (…, 350)

… (…, 25) (…, 50) (…, …) (…, …) (…, 325) (…, 350)

155 (155, 25) (155, 50) (155, …) (155, …) (155, 325) (155, 350)

160 (160, 25) (160, 50) (160, …) (160, …) (160, 325) (160, 350)

Figure C-1: 2-D Distance and Angle Between Observers Simulation Combinations

*Refer to Figure 5-7 in Section 5.1.3 for classification of distance and Angle Between Observers

variables.

