
Project Number MA-BZS-022

Winkler Percolations - A Combinatorial Analysis

A Major Qualifying Project report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Jason A. Gronlund

John W. Hajeski

Date: April 28, 2005

Approved:

Professor Brigitte Servatius, Major Advisor

1. percolations
2. combinatorics
3. renormalization

Abstract

Winkler percolations, also known as coordinate percolations, are digraphs generated by

random 0-1 sequences. The percolation’s nature is determined by the frequency of 1’s in the

sequences, governed by a fixed probabilityp of occurrence. An open question is at whatp

is the completeness of the percolation no longer ensured. We look into this question using a

combinatorial study of small finite examples, and the self-similarity of this model is analyzed

using methods of renormalization group theory.

i

Acknowledgements

The authors wish to thank all who contributed to the realization of this work: our advisors

Professor B. Servatius and Professor G. Sarkozy, and Professor Peter Winkler for taking the

time to speak with us.

A Note On The Pictures

Many of the images within this report were created using the Visual Basic Winkler Perco-

lation generator written for this project, available for use at:

http://www.wpi.edu/∼johhaj/MQP/percolator.exe

(.NET framework or latest version of Visual Basic required)

ii

Contents

1 Introduction 1
1.1 Percolation - an extensive definition . 2
1.2 Random percolations . 4
1.3 A percolation with a purpose . 5
1.4 Constructing a percolation allowing deletions 6
1.5 The traveller as clairvoyant . 8

2 Terms and definitions 9
2.1 Precise meaning of compatibility . 12

2.1.1 Percolation without deletions . 12
2.1.2 Percolation with deletions . 13

3 Literature review - on Gács’s work 14
3.1 Introduction . 14
3.2 Using renormalization in proof . 15
3.3 Walls, holes, and barriers . 19

4 Other relevant works 20
4.1 On playing golf with two balls . 20
4.2 Percolation beyondZd, many questions and a few answers 21

5 Our objective - an exhaustive search 21

6 On the concept of deletion 22
6.1 A sub-percolation - making non-square lattices 23
6.2 Another approach: what does the traveller know? 24
6.3 Re-approaching Theorem 3 - the clairvoyant’s discretion 25
6.4 Conclusion - why can we delete? . 28

7 Finite cases - using actual probabilities 29
7.1 Graph setup . 29
7.2 Interpreting the graph . 29
7.3 Banning deletions - a limited scheme . 34

7.3.1 Computational Back-Up . 34
7.4 Allowing deletions - creating options . 39

7.4.1 Computational Back-Up . 39

8 Winkler’s proof for p < 1/2 44
8.1 Introduction . 44
8.2 Two carefully specified prefixes . 45

iii

8.3 Delete a zero from each . 47
8.4 Reinsert a 0 into each string . 47
8.5 Interpreting what we have done . 48

9 Conclusions 49
9.1 From small to large - a compacted problem 49
9.2 The next step . 50

List of Figures

1 A Blank Generic Percolation . 3
2 Percolation forX = AB, Y = AB . 3
3 Compatible Winkler Percolation . 10
4 Incompatible Winkler Percolation . 11
5 Examples of Deletion . 26
6 A Percolation of All 1’s and All 0’s . 43
7 Three regions of our chosen prefix . 48
8 Diagram of Winkler’s Method forp < 1/2 . 49

List of Tables

1 Total Successes Pern (Deletions Banned) . 38
2 Total Successes Pern (Deletions Allowed) . 42

iv

1 Introduction

The terms ‘percolation’ or ‘percolation theory’ both refer to “fluid flow (or any other simi-

lar process) in random media [5].” Much like a coffee percolating machine, a trail is being

followed from a point of origin (the hot water dripping downward), until some destination is

reached (the coffee pot). The random media can be thought of as the positioning of the coffee

grounds, which inhibit the flow of water. Percolations are drawn upon lattices or grids; the

starting point is defined, and the goal is typically the outermost edges of the lattice (away from

the adjacent sides of the starting point), or unto infinity, if no such edges are defined (infinite

lattices). Percolations are created as models for problems, and the existence of a trail from

beginning to end is relevant (if not equivalent) to that problem’s solution.

Winkler Percolations [3], also known as “coordinate percolations”, are built based upon

two random infinite strings of 0’s and 1’s. This type of percolation is a new one; the only major

work concerning them, Peter Gács’s “Compatible Sequences and a Slow Winkler Percolation”,

was published in late 2004. The purpose of this project is to give a thorough yet general syn-

opsis of Ǵacs’s paper, and draw upon the research suggestions that both he and Peter Winkler,

the creator of this framework, have offered. This young yet potent subject requires the kind

of “mathematical groundwork”, so to speak, that is taken for granted in much older subjects.

These tasks will come to light as we begin to unravel the definitions and inherent structures

built into coordinate percolation, and from these crude yet effective methods we will devise

new observations and conclusions. After our initial fact-finding and background searches, we

have found research within percolations at large has not been very extensive. We hope that our

contribution to the subject, as tiny as it might be, may inspire others to gain more curiosity

about this little known, but very powerful, structure.

1

1.1 Percolation - an extensive definition

A generic percolation is built upon a two-dimensional lattice (sizen x n) and the determination

of its structure is based on two arrays (or strings), both of sizen. This lattice is itself merely

a graphG(V,E), given a specific arrangement on the two-dimensional plane, to represent our

percolation.|V|= n2, and each is placed at evenly-spaced locations, in a grid. The number of

edges,|E|, is not specifically defined. Depending on the placement rules (that is, the determina-

tion of how the vertices should be connected), there can be many or few edges on a percolation

graph. Very frequently, the graph may be directed; movement would only be restricted in a sin-

gle direction (towards the goal), much like our trickling coffee that can only go further down

toward its destination. These “placement rules” are based upon two arrays (or strings),X and

Y, each of sizen, of some specified alphabet of elements,Σ. Winkler percolations use 0’s and

1’s, but any defined alphabet of characters is permitted. For every possible combination ofX[i]

and Y[j], 1≤ i ≤ n, 1≤ j ≤ n, within ΣxΣ, there must be an equivalent rule concerning the

placement of edges on the percolation.

For example, suppose we build a percolation of size 2, whose stringsX andY are A’s or

B’s. X = AB andY = AB. The placement rules are set as follows. WheneverX[i] andY[j] are

the same, we want to draw an edge from that vertex to any vertex adjacent to it (above, below,

to the left, and to the right). Whenever they are different, we will draw no new edges. Now, to

determine our percolation, we look at all pairings ofX andY:

X[1] = A, Y[1] = A→ connectV(1,1) to V(2,1) andV(1,2)

X[1] = A, Y[2] = B→ do nothing

X[2] = B, Y[1] = A→ do nothing

X[2] = B, Y[2] = B→ connectV(2,2) to V(1,2) andV(2,1)

2

Figure 1: A Blank Generic Percolation

�
Figure 2: Percolation forX = AB, Y = AB

3

1.2 Random percolations

These stringsX andY can be pre-determined, or generated at random (choose a random el-

ement fromΣ, for each element ofX andY). It is important to see the distinction between

“random strings” (where every element’s generation is unspecified), and these “independently

and identically distributed” (i.i.d.) random strings. Every string is completely random because

each and every element is randomly determined on an individual basis. Therefore, every pair-

ing of every elements from these strings will occur completely randomly, and each combination

is independent of all others (no element or pairing depends on elements created before or after

it). It may seem to go against logic, but in this “completely random” scheme, we can make

determinations, and predictions, instead of the “quasi-random” scheme where elements are not

independent or based in some probability of frequency.

Also, the strings can be infinite in length, meaning that infinite percolations are possible. While

both non-random and random strings can be infinite, we are only interested in those that we can

make some determination about (we will have some means of predicting or knowing what val-

ues will be generated). For instance, using the example above, ifX = AAA... andY = AAA...,

we know our percolation will be an infinite lattice, with all vertices connected to all of their

neighbors. If, however, we sayX andY are taken to be completely random, we cannot deter-

mine what is reachable from any vertex on the percolation, whether in a finite sampling of our

graph, or at some point in the future (vertices very far from our origin,V(0,0). The graph itself

is random, and to observe a single case tells us nothing about the general case. Therefore, it

would be best if our strings were not entirely randomized, but restricted by a probability. That

is, for anye∈ Σ, there is a probabilitype of occurrence. It goes without saying thatΣ∀pe must

be 1. This way, we are able to predict what our infinite strings will look like, and so we can

make grounded determinations. Returning once again to our randomA,B percolation, let us

now set the probability of anA to 75%, and the occurrence ofB is specified at 25%. Now, we

can at the least know that as the lengths ofX andY get larger and larger, our graph will be very

4

connected, but still not as connected as when both strings are either allA’s or all B’s. When

seeing “completely random” earlier, it may have been assumed by the reader that this meant

all elements ofΣ had equal opportunity to occur (pe = 1
||Σ||), but whatever the chances are, they

must be directly specified, as we have shown here.

1.3 A percolation with a purpose

Now that the basics have been put forth, we may define these coordinate percolations in their

terms. We will begin by taking the general purpose of this form of percolation, resolving half-

duplex communication, and designing a percolation around it. To clarify, what we mean by

half-duplex, is any media of transfer that can only send in one direction at once, such as a

Citizens Band radio. We will use an alphabetΣ = {0,1}, and the two stringsX andY will

represent two people. A 1 means that the person wishes to send a message over the media, and

a 0 means that the person is listening. Since messages cannot be sent by both parties simulta-

neous, we must avoid two ones from existing within the same locations. These strings will be

random, and probabilities set for frequency of 1’s and 0’s (that is, how more likely these people

are sending messages). From now on, we will callp1 simply p (and consequently,p0 = p−1).

The purpose of the percolation will be to prove whether or not, given ap, the two parties will

successfully receive each other’s messages. When this is possible, we say the strings arecom-

patible. If it is not possible, the strings areincompatible.

We will now introduce the concept of deletion, an aspect of Winkler percolations that we

will cover extensively later on within this paper, but for now, let us simply define it as a conve-

nient “black box” utility. In general, we want to allow ourselves to remove elements in either

string, if they will suit our needs (avoiding two 1’s in the same position). Let us specify that

the deletion of 1’s is forbidden; it is important that every message be sent. Thus, we let 0’s

be removable from the strings, to represent telling one party to not wait for messages, at that

specific point in time. When we delete, all elements in the string after the removed one shift

5

over one space, to fill this gap. This will create an empty space at the end of the string, and for

now we define away this malady, and simply say this blank is irrelevant to our problem.

It may seem counterintuitive that we can prevent two 1’s from occupying the same space by

making one party “hurry up”, but we will prove later that deleting a zero from one of these

strings is equivalent to inserting a one into the other (telling the other person to talk more)

which aesthetically sounds more productive. Either way, our percolation must now reflect the

possibility of deletions.

1.4 Constructing a percolation allowing deletions

If we did not insert the ability to delete 1’s, we would not need a percolation to solve this prob-

lem. All we would need to do is perform the followingO(n) pseudocode (whether by hand or

machine):

for i = 1 to n

if X[i] =Y[i] = 1

FAIL

end if

end for

SUCCESS

In other words, we move along both strings at the same time, and if there is ever any1≤ i ≤ n

such thatX[i] = 1 andY[i] = 1, we instantly fail our objective, since there is no way to shift our

strings and try to move these 1’s apart. To repeat, deletion is not as straightforward a process as

it seems, and later we will demonstrate specifically how our scheme without deletions ismuch

more restrictive than with, but again, for now, we simply observe that our problem is rather

trivial without deletion, but percolation isnecessarywhen including it.

6

Now, to construct our percolation that has built-in allowance of deletion. For now, we will

assume our strings are finite, but extending our constructions onto infinity is not difficult at all.

First of all, we restrict movement to either up, right, or diagonally up-right. Therefore, our

percolation is a digraph. Second, in justifying this construction, it is best to think of a perco-

lation in this case as moving across both strings simultaneously. For example, if we have an

imaginary traveller on our graph, looking to reach the outer edges, and this traveller currently

occupiesV(i, j), it is as if she were on theith position of stringX, and also on thejth position

of stringY. Whenever the traveller moves forward on the graph, she is really moving forward

on one of theX,Y strings, or both, whenever moving diagonally. Success means reaching the

final element of either string, meaning that the two strings are compatible. Therefore, we now

see one of the greatest built-in properties of coordinate percolation: they are meant to represent

two separate forces (stringsX andY), who must work in tandem to achieve a common goal.

Third, as stated before, our edge placement have to be analogous to our problem specifica-

tions. We have forbidden the existence of two 1’s in the same location, so let us define this

condition as an absolute block within our graph (no arrows in any directions whatsoever). If

there are two 0’s in the same position, we can delete either of them without having any effect

whatsoever on the problem, so let us employ the up and right arrow for this case. This repre-

sents our “traveller” having a choice; either moving forward on theX string, or theY string.

The remaining two cases are more complex. If the vertical element is 0, and the horizontal

is a 1, then we can either leave this pair untouched (move diagonally), or behave as if we had

‘deleted’ the one (which is basically true, since it has been paired with a zero), by moving

upward. The same is done if the vertical element is 1 and the horizontal element is 0: we move

either diagonally or to the right. To our traveller, this is the same as either moving forward on

both strings at once, or choosing to move on only one. The latter choice is beneficial if the

7

traveller knows that not using this 0 immediately would be best; if there are more are on the

way, this one should be reserved.

1.5 The traveller as clairvoyant

This “knowledge”, or more properly “foresight”, is built into the percolation, as will be seen.

Once this percolation is completed, any means of search can be taken, from the exhaustive,

or the less expensive or time-consuming reverse traversal. Either way, trails are sought, those

going from the origin to the outer borders. If one or many exist, then the two stringsmust be

compatible. If none exist whatsoever, then these strings are incompatible. Here is where that

foresight comes back: if any path exists, the traveller will automatically do what it takes to

reach there, simply by finding that trail. If no path exists, that means the traveller has tried all

it can, but cannot complete her task.

It is not hard to see that no person could simply look at two strings of very large size, and

be able to see what deletion schemes are needed to determine compatibility, much less tell you

every possible manner in which this could be done (and there are often enormous ways, but

the naked eye cannot discern them very quickly). However, using a percolation, this question

is translated into finding a trail in a digraph. Our imaginary traveller is left with all the brute

forcing, performed almost instantaneously when deciding on what move to make. For com-

pleteness, we will later demonstrate such a mannerism cannot exist.

Using this percolation model, we can answer the following question: “Given two parties, each

with an random plan of communication, based upon some probabilityp of wishing to talk,

and probability1− p of wishing to listen, will both parties be able to speak and ensure that

the other side will be listening?” This is a lengthy question, but reducible to “Is it possible for

two parties to utilize a half-duplex communications line?” Such will be possible only if a path

exists from the origin to the goal, and it will be impossible if no path exists. Half-duplex lines

8

are not the only application of this percolation model; this can be utilized to solve the Dining

Philosophers problem studied in distributed computing, and queue resolutions within operating

systems.

The design we have built here is called aWinkler percolation , a schematic that was cre-

ated by Peter Winkler, and written upon extensively by Peter Gács. Although the subject of

percolations is not new, this particular form has not reached massive prominence as of yet; in

fact, Ǵacs is the only author of any formal work upon the subject. Before we study it in depth,

let us leave this example behind and go through the terminology, both Gács’s own, and that

which we have devised in our study.

2 Terms and definitions

When we refer to “a pair of 0-1 sequences”, this is two infinite strings, whose elements are

either 0 or 1, chosen randomly based upon some probabilityp. Each element is independent

and identically distributed, meaning there is a probability p that any element is a 1, and a prob-

ability 1− p that any element is a 0. This pair is calledcompatible if, there exists a method of

deleting zeroes from either sequence, such that the resultant sequences will be complementary

(X[i]∧Y[i] = 0∀i). In contrast, a pair is incompatible if no suchdeletion schemeexists. If two

ones are occupying the same position, they are said to becolliding, and this event is called a

collision. We define thek-prefix of the pair as the first k elements of the infinite sequence.

This is a finite sampling, which is quite useful to us in deciding whether the pair is compatible

or not.

Theorem 1. If the k-prefixes of two 0-1 sequences are incompatible, the entire sequence will

be incompatible. (k∈ Z+)

Proof. This follows from the fact that two sequences will not suddenly become compatible if

more information is provided about them. If no deletions exist that will align the sequences cor-

9

�
Figure 3: Compatible Winkler Percolation

10

�
Figure 4: Incompatible Winkler Percolation

11

rectly, they will not exist after adding more digits to the strings. An incompatibility anywhere

in the two strings makes the entire pair incompatible.

Prefixes also have a feature that infinite sequences do not: a fixed ratio of ones to zeroes. We

will call this theactual probability of a string (note that a pair of strings have an equalp, but

they may have differing actual probabilities). Because of this, we can look at finite sequences,

and try to see what probabilities make it so that compatibility is impossible. This will give us a

near-bounds forp in the infinite case. At the very least, we should test a piece of intuition: that

if there are more ones than zeroes (p> 1/2), the sequences are not very likely to be compatible.

Winkler uses finite sequences in proving the following theorem:

Theorem 2. The probability to ensure the compatibility of two finite 0-1 sequences must be

less than 1/2.

We will return to this theorem and prove it, based on Winkler’s own technique, once we are

armed with more information and background.

2.1 Precise meaning of compatibility

Why we need to be specific = compatibility = morphism of the problem at hand

2.1.1 Percolation without deletions

1.) Compatibility simply means that given any identical location in stringsX[i], Y[i], that a

1 does not occur in both of these positions. This implies that two complementary strings are

compatible (complementary in the binary digit sense, that givenX, defineY to be the reverse

of all elements.X andY are compatible.

2.) Also, this means that given some stringX, defineY again to be the complement ofX,

but also allow any elements ofY to be changed into 0’s. The two stringsX andY are still

complementary.

12

3.) A percolation must be constructed differently without deletions. The options our lattice

allowed for are not as extensive, and our graph becomes rather simplistic:

If the elements are both 1, draw nothing.

Otherwise, draw a diagonal segment from the current node to that up and to the right

(E((i, i),(i +1, i +1))).

4.) If two strings are compatible, there will be preciselyone path from the origin (0,0) to

the farthest corner, (n,n). If they are incompatible, there will be no paths.

We will later show the implications that are apparent here; no deletion schemes means no

optional paths to take.

2.1.2 Percolation with deletions

1.) Gács defines this such that there exists a means of deleting 0’s such that no 1’s will occupy

the same space in time, but we will get more extensive than this, only within this section (we

will assume the word “compatibility” will entail all of these implications with future uses)

2.) For now, again, we imply deletion is well-defined and permissible. Also let us imply

we are able to properly choose on our own what 0’s can and cannot be deleted.

3.) Let us call alegal deletion one in which we remove a 0 from one string, and the re-

sulting sequences are still compatible. To preserve the sizes of the strings, let us move this 0 to

the end of the deleted string.

4.) We want to continue making legal deletions until we reach a point where our strings satisfy

13

the conditions described above for compatibility without deletions; two 1’s do not occupy the

same location within X and Y.

5.) This would imply that deletion is merely moving zeroes to the back of the string. It is

important to stress we have not yet proven that this is precisely how we want to define deletion,

but we will concede at this point that, assuming thatlegal deletion is properly defined (as it

soon will be), this is equivalent.

3 Literature review - on Gács’s work

What follows is a summation of “Compatible Sequences and a Slow Winkler Percolation”,

printed inCombinatorics, Probability, and Computing. We focus on the topics that will be

of greatest use to us later on within our own study, and at least mention those either irrele-

vant or beyond the scope of giving a general yet thorough introduction. Gács has spent years

researching this topic, and his dissertation is of the highest calibre of specificity and extensive-

ness. Taking many of his critical points and trying to condense them would only serve for our

portrayal of percolations to be all the more distorted.

3.1 Introduction

Peter Ǵacs formally defines coordinate percolations as graphs within his paper:

“We define a directed graphG = (V,E) as follows. V =Z2
+ is the set of points

(i,j) where i,j are nonnegative integers. When representing the set V of points (i; j)

graphically, the right direction is the one of growing i, and the upward direction is

the one of growing j. The set E of edges consists of all pairs of the form ((i,j); (i+

1,j)); ((i,j); (i,j+1)) and ((i,j); (i+1,j+1)) ... In the chat interpretation, when X(i)

= 1 then participant 0 wants to speak in the ith turn of his waking time, which is

identified with the interval [i, i + 1). In this case, we erase all edges of the form

14

((i, j), (i + 1, j)) for all j (this does not allow participant 1 to sleep through this

interval). Similarly, when Y (i) = 1 then participant 1 wants to speak in the ith

turn, and we erase all edges of the form ((j, i), (j, i + 1)). If X(i) = Y (j) then we

also erase edge ((i, j), (i + 1, j + 1)). For X(i) = 1 since we do not allow the two

participants to speak simultaneously, and for X(i) = 0 since the edge is not needed

anyway, and this will allow a nicer mathematical description. This defines a graph

G(X, Y) [3].”

3.2 Using renormalization in proof

The goal of this section is to prove the following: “If (0,0) is not blocked in any finite square,

then, by compactness, or König’s Lemma, there is an infinite path in the given Winkler per-

colation starting at (0,0)” (or equivalently, the two strings used to create this percolation are

compatible).

König’s Lemma: A tree with a finite number of branches at each fork and with a finite

number of leaves at the end of each branch is called a finitely branching tree. König’s lemma

states that a finitely branching tree is infinite iff. it has an infinite path. [6]

Thinking of a Winkler percolation as a tree (each point is a node with zero, one, or two chil-

dren), we show first that it is a finitely branching tree (trivial), and then that it is infinite (no

blocks from(0,0) to infinity), and this will prove there exists an infinite path.

The technique Peter Ǵacs uses for this is renormalization.

renormalization: The idea of renormalization is that, while some continuous physical sys-

tems are by necessity described by models with a characteristic smallest length scale (or largest

energy scale), the large-scale physical predictions of the theory should not depend on that

15

characteristic length scale.

This is a simplified definition of a much grander concept, used in statistical mechanics, im-

plementing, as Ǵacs terms it, “messy, laborious, and rather crude” methods of usage. Even

the most general of technical definitions had to resort to “automorphisms” (isomorphisms unto

itself), “isometrics” (distance bijection preservation), and “Hopf algebras”. The general usage

(at least, what Ǵacs intends to do) is define a series of sets whose truth holds when certain “bad

events” occur, and show that the probability of all of those groups occurring at once is less than

one, therefore the percolation/tree is infinite, and there exists an infinite path. The details and

sketch of the proof are reworded below:

1.) First, we define a sequence of∆k such that∆1 < ∆2 < ∆3 < ..., with the constraint

∆k+1 > 4∆k. The reason this constant 4 has been chosen is revealed later in the paper (page 10,

corresponds to eventual lookahead calculations).

2.) Using these∆k, we defineFk to be the event that the point(0,0) is blocked in the square

that is defined as[0,∆k]2.

3.) The idea is to prove that Prob(
S

k Fk) ¡ 1, which proves our finitely branching tree is infinite

= not blocked within a finite square, for all possiblek (so, any squares that we could make,

given these∆k) 4.) To do this involves the renormalization groups. First, label some events as

being “bad” and other, less common ones “very bad”. Later, we will show these “bad” events

are the existence of walls, and “very bad” are emerging and compound walls.

emerging wall: a large interval within the percolation without meeting a hole that matches

up with a particular wall.

compound wall: two or more walls that are ‘very’ close to one another, so that they operate

combined as an entirely different wall.

16

5.) Using these events, we define ‘models’M 1,M 2,M 3, ..., similar to each other, in that

the “very bad” events ofM k are the bad events ofM k+1. These will become our “mazeries”

eventually; these are not only linked to∆k, but alsoFk.

6.) Now, letF ′
k hold iff some bad eventM k happens in[0,∆k+1]. Note the similarity toFk:

one is bounded in∆k, the other in∆k+1. But, it must be mentioned here thatFk is considered

the “ultimate bad event”, butF ′
k is merely a modelM k with only a “bad event”, therefore, its

already clear that it will take severalF ′
k to be as destructive as only oneFk.

7.) Prove thatFk ⊂
S

i≤k F ′
i

Here is the true meat and potatoes of this entire proof: we must now use the properties of

these various building blocks to show that, a combination of sufficient amounts of these con-

structedF ′
k ’s (the big union) would have to include this major disaster:Fk.

(M ∗ is now set equivalent toM k+1, M = M k

We now call these modelsM “mazeries”, and look at this problem from the split point of view.

mazery: “a system for creating mazes”, a partition of the percolation, with its corner start-

ing at the origin and extending to a square of some defined ∆k, a property later associated

directly with a given mazery (as opposed to this “incursive” creation of mazeries that we are

conducting currently, i.e. building one on top of another).

split view: Term used to refer to whenever we look at the two linear mazeries M0 and

M1, instead of one huge square percolation M . Much easier to see that this is not a problem

concerning one structure, but two that must work together somehow.

Any given mazery will have inside of itself some mazeryM ∗, which corresponds to the typical

unlucky events of that mazery (walls, barriers). This is used in transitions: if there is a pair of

17

close walls inM , then inM ∗ there will be a compound wall. The same goes for an interval

without a particular hole type inM ; in M ∗ there will be an emerging wall (both defined as

such above).

The reason for this scale-up construction is to hide certain components ofM (not eliminate,

but create a system where they will resolve themselves), and to bring attention to two restric-

tions that will carry over: clean points and slope constraints.

clean point: a point that can be left (departed from). There is way much more to it

than this (this is defined in the proximity of walls and barriers to the point, but for now, the

idea is that from a clean point, traversal is very easy) Here, its simply defined that a point

is clean for M0 X M1 if xd is clean for Md (d = 0,1) (if can be departed from in either split

mazery).

slope constraint: for some defined constant σ, such that 0≤ σ < 1/2, two points (x0,x1)

and (y0,y1) satisfy this constraint if the following holds true:

σ≤ y1−x1

y0−x0
≤ 1/σ

Let Q be the event that the point(0,0) is not clean inM0 or M1 (there exists, in a close enough

proximity, a wall of some sort (a bad event). “We want to say that in a mazery, if points(x0,x1)

and(y0,y1) are such that ford = 0,1 we havexd < yd and there are no walls betweenxd and

yd, then(x0,x1) Ã (y0,y1).” [3] But theres the slope-constraint; you can only go so far so fast,

even with the most optimal of conditions.

(Lemma 2.3) We haveF ⊂ F ′∪Q . The proof is restated below.

18

Define a sequence of mazeriesM 1,M 2, ... with M k+1 = (M k)∗, with ∆k → ∞. All these

are on common probability space, sinceM k+1 is a function ofM k (a reaffirmation for some

of what were about to do). The eventQk, that(0,0) is not upper-right clean inM k plays the

role of Q in the mazeryM k.

Put this together to findQk ⊂
S

i<k F ′
i , and this proves thatFk ⊂

S
i<k F ′

i .

8.) Prove∑k Prob(F ′
k) < 1.

This is the final step, as Prob(
S

k Fk) < ∑k Prob(F ′
k), so if a < b andb < 1, thena < 1, which

is what we are ultimately looking for (wherea = Prob(
S

k Fk) andb = ∑k Prob(F ′
k). This step

is proven in (Lemma 2.5 Main).

Lemma 2.3: SupposeQ does not hold, then(0,0) would be clean. Suppose thatF ′ does

not hold (there is no bad event ofM k happening in[0,∆k+1]), then, since every interval of

size3∆ that does not intersect walls contains a clean point in its middle third, there is some

point x = (x0,x1) with xd ∈ [∆,2∆] clean inMd, for d = 0,1. With σ = 2, this point satisfies

the slope-constraint1/2≤ x1/x0≤ 2. Now we have a clean point, satisfying the slope con-

straint, reachable from the origin (the complement ofF). If F ⊂ F ′∩Q , thenF ⊂ F ′∪F

(DeMorgan’s Law).¤

3.3 Walls, holes, and barriers

Peter Ǵacs defines walls as blocks of 1’s, holes as blocks of 0’s, and barriers as particular

combinations of walls, such as the emerging or compound kind; they are walls that are harder

to get around. In this context, it is first observed that it is much harder to resolve 1’s that are

close together in proximity, such that only finding particular blocks of 0’s are the only means of

success. Compatibility is not just a matter of hoping that two strings are nearly compatible, but

19

also, whenever a string pair is full of inconsistencies, being able to apply the proper ‘holes’ to

the correct ‘wall’. Ǵacs goes into great detail on this matter, defining our previously mentioned

mazeries as structures in terms of the types of walls, holes, and barriers contained within, and

using this as the ‘quantitative’ measurement of a mazery; those with a variety of holes will be

more sought after than those with few. These calculations are the groundwork for being able to

find necessary ‘lookahead’: if mazery characteristics can be predicted, then its resolution can

be determined by seeing which walls it contains, and then comparing this to the holes that are

available for usage.

4 Other relevant works

4.1 On playing golf with two balls

In 2003, Peter Winkler collaborated with Ioana Dumitriu and Prasad Tetali on a different model

that uses two ‘individuals’ working together to reach a particular goal, this time involving

Markov systems and game theory. The former is implicated within the goal: to choose a

Markov chain that will reach a target state faster than some competing force. The latter is the

reminder that staying “loyal” to one particular entity is not always the best game plan; it might

become necessary to change from one side to another in order to win [2]. This is representative

of a situation within a Winkler percolation in which we cannot hope to move away from the

origin in equal directions (up and right), but may come across a situation where it is most

beneficial to let a person talk for a very long time, and then let the other person “catch up”. In

the best case, both people will talk in equal amounts, but it is not absolutely necessary. While

percolating is not a race (there’s no competition), theresolutionof percolations can be thought

of as set against time; we want our deletion scheme to be established in finite steps.

20

4.2 Percolation beyondZd, many questions and a few answers

This paper is one of the earliest works that challenged the traditional thought on general per-

colations, and has been referenced by many when dealing with irregular percolations. Like

Gács’s dissertation, the tools that are capable of percolation analysis are defined and justified.

For instance, the “clusters” and subgraphs referred to by Benjamini, Lyons, and Schramm are

very similar to Ǵacs’s “mazeries” [1]. However, unlike Peter Gács, some conjectures and

problems are left to the readers, to push this topic further and inspire critical thought. Time

has proven that this approach has succeeded: many additional studies were based upon the

challenges first raised in “Percolation BeyondZd”. We hope that “On Compatible Sequences

and A Slow Winkler Percolation” is also a catalyst of such curiosity.

5 Our objective - an exhaustive search

As mentioned earlier, a great deal of footwork remains to be done inside of the realm of Win-

kler percolations, of the sort that exists for many objects similar in design and complexity.

When talking about the finite percolation, we can think of this as a changeable object, with a

determinate amount of possible states (combinations ofX andY, and their possible elements).

Thus, it is possible to enumerate every possible state of a percolation. The best scheme to use

would be one based upon something we already know how to enumerate: binary digits. If we

think of these 0-1 sequences as boolean numbers, then our ranking would be based on using X

and Y to “count” from 0 to2n. Since we have two strings, we need to work with both at once,

so the following ranking manner is proposed:

1.) Start bothX andY at0n. This is the first rank.

2.) Keep “increasing”Y as if it were a binary digit, but leaveX alone (at this step).

Each successive increase is a new ranking.

3.) After a step whereY = 1n, increaseX by one, as if it were a binary digit. ResetY to 0n.

21

4.) Continue in this manner until rank22n, which will beX = (1n), Y = (1n).

Whenever we list possibilities for a finite percolation of sizen, we will use this ranking method.

Now that we have a hierarchy for our objects, we can list them, and see if there are any unify-

ing characteristics, based on certain specifications. By “specifications”, we refer to sizen, how

many 1’sX contains, how many 1’sY contains, whether or not deletions are allowed, and so

forth. As we said before, deletion requires a great deal of clarification before employing it, so

we now take the time to explain what this ability translates to, and how much it complicates

our search.

6 On the concept of deletion

Earlier, when defining Winkler percolations, we wished to avoid introducing deletion without

a proper backing-up ofwhy we are able to perform it, but it might not be obvious why such

great care must be taken with this facet of percolation. We said that a “deletion” would force

all other elements of the string to shift to the right, to fill in the newly free space. However,

what does this mean to our percolation? Assuming we begin with two strings of sizen, and we

delete an element from one of them, we now have a string of sizen, being compared to a string

sizedn− 1. How does such a comparison make sense? Our percolation scheme was based

on our two partiesX andY performing one of two activities at each “time interval”i (That is,

for X[i] andY[i], bothX andY are either talking or listening, at the same moment. IfX has

performed all of its actions, andY has more, how do we resolve those actions? Do we giveY a

“free ride” at this point? Fundamentally, the answer to this question should be yes: we do not

want to delete from strings, if it will instantaneously make them incompatible. The purpose of

deletion should be to seek compatibility, not destroy it. However, just saying this is how our

situationshouldbe does not make it necessarily true; we should look in-depth and be sure that

deleting 0’s makes sense logistically.

22

6.1 A sub-percolation - making non-square lattices

One possible solution to our problem is to introduce the concept of a non-square percolation,

one that ismxn in size, wherem is not necessarily equal ton. This is akin to omitting rows

and columns in our original percolation, almost always having our aforementioned imaginary

traveller “skip over” that value in theX or Y string, therefore this “free jump” is expressed by

truncating our lattice graph. It is obvious that the two percolations are not entirely equal (there

dimensions will be different), but now we must prove if they are fundamentally equivalent. Let

G′ be a percolation with a deletion of a 0 from percolationG. We want to be able to determine

facts similar to the following, in order for our transition to work:

1.) TheX′ andY′ constructingG′ are compatible iff. theX andY used to constructG are

compatible.

2.) TheX′ andY′ constructingG′ are incompatible iff. theX andY used to constructG are

incompatible.

For totality, we prove both statements two ways, by looking not only at the newly-scaled

graphs, but also the two strings directly. In the latter case, we will be unable to avoid the matter

of comparing two strings of unequal size; we will be forced to define away this problem, but

once again not without giving warranted justification. We will address this now outside of the

proof proper.

The easiest solution would seem to be disregarding any empty spaces that exist within either

string. That is, fundamentally, we accept the existence of rectangular percolations. Another

approach is, since 0 is a non-colliding element, in order to preserve sizes, we could append that

to the end of the string with the deleted element.

One final critical point needs to be addressed: how do we know what can and can not be

23

deleted? There exist situations where permanently deleting a 0 would cause compatible strings

to be incompatible. We want to say “just do not delete these”, but we still have not determined

how to avoid these situations. For now, we will presume that these 0’s are detectable, but this

lack of precognition will eventually be our greatest burden in defining deletion. In the theorem

below, the underlined proviso entails this foresight. Even though this is not what we want at

the moment, we will go through this theorem with our current knowledge base to demonstrate

how this “need to know” muddles everything up.

Theorem 3. Let G be a Winkler percolation of size (n) by (n), constructed by two strings,X

andY. Without loss of generality, delete a 0 from the first string,X, to create a new string

X′, that will not alter thecompatibilitystatusof thetwo strings. SetY′ = Y. Construct a new

Winkler percolation of size(n−1) by (n) with X′ andY′. If at least one trail existed inG, then

at least one will exist inG′. The converse holds as well; if no trails existed inG, then none will

exist inG′.

Proof. Our new provision makes our proof almost trivial. IfX andY were originally com-

patible, and we wish to remove a 0 without changing that, thenX′ andY′ will be compatible

also. Compatibility implies a trail will exist within the percolation, therefore bothG andG′

will contain at least one.

If the strings were incompatible, by definition, no deletion of 0’s will change that.G will

contain no complete paths, and neither willG′.

6.2 Another approach: what does the traveller know?

Our current perspective on deletion is lacking something, if we want to continue on to have

an airtight concept of what is deleting, and also what can be deleted. What we have tried to

do previously is omit sections of the percolation, in order to reduce the problem size, but keep

equivalence. We will now show in this section that is only possible under very particular cir-

cumstances. To do this, we need to prove that reducing a graph is exactly equivalent to the

24

event in which our imaginary traveller willalwayschoose to delete the 0. Without loss of gen-

erality, assume we are dealing with deletion in theX string (since percolations are symmetrical,

we could be performing the same steps in theY string, but when we refer to columns, instead

replace with ‘rows’). The situation we wish to study is labelled Figure 5.a. We want to delete

the circled line, without altering the compatibility of the two strings. The only way we can

know this will work is if we constructG′ out ofX′ andY′. If G′ has no trails, we cannot always

delete this element. Figure 5.b isG′; unlike G, it has no complete trails. However, ifG′ does

have trails, as in Figures 5.c and 5.d, then this element had no effect on the compatibility of our

percolation, and can be removed without altering our problem. At long last, we have a reduc-

tion for Winkler percolations, but one only found using an expensive trial-and-error method.

Unfortunately, since we can never know as much as our Traveller, this is the only way we will

find such elements. Though, it is important to observe this algorithm (design a percolation, and

see what can be removed) is a lot easier than the brute force approach: deleting elements, and

testing their compatibility.

6.3 Re-approaching Theorem 3 - the clairvoyant’s discretion

We have demonstrated that if we leave the daunting task of determining which 0’s are irrelevant

to the problem up to the human users of coordinate percolation, it is very easy to end up in trou-

ble. Deletion by choice, and when made permanently, can only be checkeda posteriori; there

exists no methodology of determining what zeroes must go. This makes sense fundamentally,

as the existence of such a rhetoric would render Winkler percolations obsolete. Compatibility

could be left to this greater system, one that perhaps could determine precisely which 0’s will

always be irrelevant to the problem, thus reducing the problem’s size and complexity. How-

ever, it is fortunate we have not so easily determined our subject matter to be easily replaced.

Therefore, as earlier suspected, it is up to our “Traveller” to ultimately make our decisions

for us. If a particular element fits our previous qualification (that removing it does not change

25

Figure 5: Examples of Deletion

26

our problem), then our Traveller can choose either to leave it or delete it. This is deletion at

large, a device best left to an inherent component of the percolation. If we ourselves want to

duplicate this feat, we must be prepared for a great amount of work to reach success. We do not

want to let either the Traveller or ourselves delete an element that will create incompatibility, so

let us now designate any such removal as alegal deletion. In larger percolations, the benefits

of “manual deletion” may outweigh the costs. For example, eventually we wish to consider

the infinite case, and a currently open-ended question is that of “lookahead”; how much of the

infinite percolation must be seen in order to assure compatibility with positive probability? If,

inside of our finite samplings, there exist elements that can be removed, the size of the problem

is reduced, and, depending on how large this sampling is, the time needed for the traversal of

this massive percolation may shrink drastically.

Let us now rephrase and reprove Theorem 3:

Theorem 4. (Revision of Theorem 3) Let G be a Winkler percolation of size (n) by (n), con-

structed by two strings,X andY. Without loss of generality, makea legaldeletion a 0 from the

first string,X, to create a new stringX′. SetY′ = Y. Construct a new Winkler percolation of

size(n−1) by (n) with X′ andY′. If at least one trail existed inG, than at least one will exist

in G′.

Proof. If X andY were originally compatible, and a legal deletion was made, thenX′ andY′

will be compatible also. Compatibility implies a trail will exist within the percolation, therefore

bothG andG′ will both contain at least one.

Notice we do not state the converse here, because the hypothesis of the proof implies a legal

deletion was made. Right now, that is something we can only conduct to preserve compati-

bility. It would not make sense to delete anything from an incompatible percolation, since no

alterations will change its status. Therefore, once we determine incompatibility, there is no

reason to want to reduce the problem. One of the purposes of deletion is to reduce the number

27

of trails that exist in the percolation. Why bother condensing a percolation that has no trails

whatsoever?

When all we have seen up to now is considered, Theorem 4 becomes very trivial (because

a legal deletion could be made, of courseG andG′ are compatible), but it was definitely worth

“going through the motions”, and making sure logic followed suit.

6.4 Conclusion - why can we delete?

The purpose of an in-depth look into deletion was to justify a means of simplification that will

come to light later, when we look at the total number of paths that a percolation contains, and

this count of paths is proportional to the potential deletion schemes (we will show this later

on). Eventually, we will put these two simple facts together, and enrich the existing details

that Ǵacs has suggested: that percolations have aspects of “self-similarity”, and thus can be

re-normalized in the manner summarized above. Showing this fact, and then using it to do a

combinatorial analysis of finite percolations, is the absolute goal of this work. It is easy to

see that finite percolations are extendible: just add more elements the the end, or take a big-

ger sampling of the infinite case. Here, we have laid to rest the suspicion thatreducingthese

percolations is not entirely easy, but possible, thanks mostly to finiteness. In the end, we can

deletebecausewe can add. Done ‘responsibly’, we can use either tool and find “congruent”

percolations (G has same compatibility asG′).

Armed with new cautions and new techniques, we begin our investigation of the finite ex-

amples.

28

7 Finite cases - using actual probabilities

7.1 Graph setup

The graph that we use to view our pairs of compatible sequences should be set up as follows.

The x string is set on the x-axis with each digit representing one unit. The same set-up is used

on the y-axis with the y string.

The graph is then drawn as follows. Whenever there is a 0 in both positions on each string, a

vertical and a horizontal line are drawn in that spot on the graph. If there is a 0 in the x string

and a 1 in the y string, then a horizontal line and a diagonal, bottom-left to top-right line is

inserted. If there is a 1 in the x string and a 0 in the y string, then the bottom-left to top-right

diagonal line is combined with a vertical line to fill this space. Finally, if there contains a 1 in

both positions, that spot is simply left unfilled. This is also a directed graph of sorts, so there

should be arrows on all these lines. The graph is directed up and to the right, so the arrows

should be on the top and right of the lines.

7.2 Interpreting the graph

Now the graph should look like a connecting series of lines. If the two sequences are compati-

ble then it is possible to get to either the top or the rightmost part of the graph without picking

up your pen and without going left or down. If a line can be drawn from the origin straight

through to the point (n,n), that means that these two sequences are complimentary. If there is

no possible way to traverse the graph, then the sequence is a clashing, non-compatible pair.

When the graph is being traversed, a move in the horizontal direction means that the 0 in

the x sequence has been deleted and as such, the next number in the x sequence is compared to

the number in the y sequence that was previously compared. Similarly a move in the vertical

29

direction indicates that a 0 in the y sequence has been deleted. A diagonal move indicates that

the 1 in one of the sequences as well as the 0 in the other sequence has been compared and

deemed fine to move on, so both sequences advance one term. This explains why only the

farthest right edge, or the topmost edge of the graph needs to be reached to ensure that these

sequences are complimentary.

1 X 1

The 1 x 1 case is simple enough that it will be discussed in this paragraph just to give a brief

starting point to our work. When you have two strings of length one, there are only two choices

for each sequence. Either a 1 or a 0. So for every x string, there are two y strings. This means

that there are a total of four sequence comparisons.

x = 0, y = 0 – This is the smallest example of a pair of compatible sequences.

x = 0, y = 1 – This is the smallest example of a complimentary sequence. This is a pair of

compatible sequences that in any given position of the two strings, one of the strings contains

a 0 and the other contains a 1.

x = 1, y = 0 – This may look a lot like the previous example, but it is in fact not the same.

This example is obtained by applying a coordinate change to the previous example. The same

analysis applies.

x = 1, y = 1 – This is the smallest clashing pair. This pair of sequences is not compatible.

It also contains no 0’s, so there is no way to obtain compatibility through removal of 0’s.Sum-

mary

Comparisons = 4

30

Complimentary pairs = 2 – Complimentary pairs can be matched up by coordinate change,

since every position in the pair of sequences contains a 0 in one string and a 1 in the other. So

there will always be an even number of these. In this case it is x = 1, y = 0 and x = 0, y = 1.

Compatible pairs (without deletions) = 3

Compatible pairs (with deletions) = 3

2 x 2

The 2 x 2 case there are 4 possibilities for each string. 00, 01, 10, or 11. Each of these

paired with every possible combination makes 16 possible string pairs. Here it should be inter-

esting to note some growing patterns. These patterns will be able to come into play later as we

will notice that any string we can come up with in the future will begin with one of these 16

different combinations.

A. x = 00, y = 00 – This is one of those basic cases. There are 16 different ways to traverse the

grid. There is nothing that we have to worry about as these two strings are compatible without

any deletions.

B. x = 00, y = 01 – This is almost the same as the previous case. There are still 6 ways to

cross the grid path. This is because the 1 occurs at the end of the string, and since the other

string is all 0’s there is nothing we have to worry about in terms of crossing a wall.

C. x = 00, y = 10 – This is a bit more complicated than the previous case. There is only 4

ways to cross this grid path. Since the 1 occurs in the first position of the y string, there is

31

no way we can move directly up and reach the leftmost exit of this small graph. Since there

is only a single 1 in this pair of sequences, it is easy to spot all the paths that traverse this graph.

D. x = 00, y = 11 – This is another one of those complimentary string pairs. What this means

is that it is possible to go from the origin to the point (2,2) which is the upper right hand corner

of the graph. This signifies being able to traverse through the graph without deleting any 0’s.

But since there are 0’s and these strings are very small, there are actually 4 ways to cross this

grid.

E. x = 01, y = 00 – This example is obtained by applying a coordinate change to B. The

same analysis applies.

F. x = 01, y = 01 – This is the first 2 x 2 case where these two strings are not compatible,

but through clever deletions of 0’s it is possible that these strings can be made compatible.

Depending on which 0 you choose to delete it leads you towards one of the only 2 exits of this

graph. The uppermost exit can be reached by deleting the 0 in the y string, and likewise the

rightmost exit can be reached by deleting the 0 in the x string.

G. x = 01, y = 10 – This is another complimentary pair of strings. This example also has

the property that each string has exactly half 1’s and half 0’s. What this means is that there is

only 2 ways to traverse this graph. The first by taking each digit as they come and ending up

again at the point (2,2). The other way would be to skip over the 0 in the y string and exit that

way.

H. x = 01, y = 11 – This is an incompatible string. There are no deletions you can do to

make these strings compatible, and the graph traversable. There are 3/4 ones ... and this frac-

tion is more than half, which would make them incompatible.

32

I. x = 10, y = 00 – This example is obtained by applying a coordinate change to C. The same

analysis applies.

J. x = 10, y = 01 – This example is obtained by applying a coordinate change to G. The same

analysis applies.

K. x = 10, y = 10 – This is a pair of incompatible strings. If you notice this starts with a 1

in each position, and as mentioned in the 1 x 1 section, anything that starts like this is destined

to be incompatible.

L. x = 10, y = 11 – This is another one of those cases where as we can see there are more

than half 1’s and thus, no compatibility.

M. x = 11, y = 00 – This example is obtained by applying a coordinate change to D. The

same analysis applies.

N. x = 11, y = 01 – This example is obtained by applying a coordinate change to H. The

same analysis applies.

O. x = 11, y= 10 – This example is obtained by applying a coordinate change to K. The same

analysis applies.

P. x = 11, y = 11 – At this point, when there is not a 0 to be found in any of these strings,

then you can stop looking for compatibility and trying to traverse an empty graph.

Summary

33

Comparisons = 16

Complimentary pairs = 4

Compatible (without deletions) = 9

Compatible (with deletions) = 10 – The sequence that is compatible with deletions only is

x = 01, y = 01.

7.3 Banning deletions - a limited scheme

7.3.1 Computational Back-Up

What follows are the results of a computer-generated count of the finite examples, fromn =

2ton= 12. First, the numbers of successes pern, arranged in increasing order of 1’s contained

within the first stringX. The path count average is useless for this case study; every compatible

percolation will have a single path, therefore the average paths for any givenX string withq 1’s

would be (number of successes ofq)/
(n

q

)
2n, since

(n
q

)
is the total number of pairings any given

X string will be placed with, and each of those will be compared to all other possible strings of

sizen, 2n.

For example, forn = 4, there aren+1 = 5 separate entries: 0 through 4. There is one string

of size 4 with 0 1’s: 0000. It is compared to all other strings of size n, and it is compatible

with all of these. The entry forn = 4, q = 0 is 2n. Next, isX strings with a single 1: 0001,

0010, 0100, and 1000. Each of these are paired with all other strings of size n, yielding4∗2n

different pairings. Of these, only one in each group will be incompatible: 0001 v. 1111, 0010

v. 1111, 0100 v. 1111, and 1000 v. 1111. The entry forn = 4, q = 1 will be 4∗2n−4. This

continues all the way ton = 12.

34

Although all results are reported here, the numbers we are most interested in are forq= bn/2c,
which have an asterisk in these tables.

35

n q successes (s) number of comparisonspercent successes
(2n∗ (n

q

)
) = d (s/d)100%

2 0 4 4 100%
*2 1 4 8 50%
2 2 1 4 25%
3 0 8 8 100%
*3 1 12 24 50%
3 2 6 24 25%
3 3 1 8 12.5%
4 0 16 16 100%
4 1 32 64 50%
*4 2 24 96 25%
4 3 8 64 12.5%
4 4 1 16 6.25%
5 0 32 32 100%
5 1 80 160 50%
*5 2 80 320 25%
5 3 40 320 12.5%
5 4 10 160 6.25%
5 5 1 32 3.125%
6 0 64 64 100%
6 1 192 384 50%
6 2 240 960 25%
*6 3 160 1280 12.5%
6 4 60 960 6.25%
6 5 12 384 3.125%
6 6 1 64 1.563%
7 0 128 128 100%
7 1 448 896 50%
7 2 672 2688 25%
*7 3 560 4480 12.5%
7 4 280 4480 6.25%
7 5 84 2688 3.125%
7 6 14 896 1.563%
7 7 1 128 0.781%
8 0 256 256 100%
8 1 1024 2048 50%
8 2 1792 7168 25%
8 3 1792 14336 12.5%
*8 4 1120 17920 6.25%
8 5 448 14336 3.125%
8 6 112 7168 1.563%
8 7 16 2048 0.781%
8 8 1 256 0.391%

36

n q successes (s) number of comparisonspercent successes
(2n∗ (n

q

)
) = d (s/d)100

9 0 512 512 100%
9 1 2304 4608 50%
9 2 4608 18432 25%
9 3 5376 43008 12.5%
*9 4 4032 64512 6.25%
9 5 2016 64512 3.125%
9 6 672 43008 1.563%
9 7 144 18432 0.781%
9 8 18 4608 0.391%
9 9 1 512 0.195%
10 0 1024 1024 100%
10 1 5120 10240 50%
10 2 11520 46080 25%
10 3 15360 122880 12.5%
10 4 13440 215040 6.25%
*10 5 8064 258048 3.125%
10 6 3360 215040 1.563%
10 7 960 122880 0.781%
10 8 180 46080 0.391%
10 9 20 10240 0.195%
10 10 1 1024 0.098%
11 0 2048 2048 100%
11 1 11264 22528 50%
11 2 28160 112640 25%
11 3 42240 337920 12.5%
11 4 42240 675840 6.25%
*11 5 29568 946176 3.125%
11 6 14784 946176 1.563%
11 7 5280 675840 0.781%
11 8 1320 337920 0.391%
11 9 220 112640 0.195%
11 10 22 22528 0.098%
11 11 1 2048 0.049%

37

n q successes (s) number of comparisonspercent successes
(2n∗ (n

q

)
) = d (s/d)100

12 0 4096 4096 100%
12 1 24576 49152 50%
12 2 67584 270336 25%
12 3 112640 901120 12.5%
12 4 126720 2027520 6.25%
12 5 101376 3244032 3.125%
*12 6 59136 3784704 1.563%
12 7 25344 3244032 0.781%
12 8 7920 2027520 0.391%
12 9 1760 901120 0.195%
12 10 264 270336 0.098%
12 11 24 49152 0.049%
12 12 1 4096 0.024%

Table 1: Total Successes Pern (Deletions Banned)

The pattern of decreasing compatibilities is very distinct; whenever a 0 is changed into a 1

in our baseX string, the percent compatibilities is halved. The formula for percent compatibil-

ities, given anyn andq, will be P(q) = 1
2q, where0≤ q≤ n. If n is allowed to approach∞, then

q will have to be as well, since our idealq is bq/2c. Therefore,limq→nP(q) = limq→nP(q) =

0. Given no deletions allowed, any percolation of large enough length will eventually run into

a wall, and become incompatible. This follows along with our findings: if we take two random

elements, even with the tiniest of probabilityp, theory says thateventuallywe will have two

1’s occurring at the same time, and our percolation is doomed. We have once again shown that

the utility of deletion is not obvious until it is taken away. Without deletion, percolations would

be impossible to traverse, in the infinite case, and their usefulness would be compromised.

In other words, we cannot make any least upper bound on the probabilityp for compatibil-

ity with positive probability except forp = 0, when deletions are banned. Only by being

assuredeach and everyelement is a 0 will a percolation be compatible. All other cases will

deteriorate.

38

7.4 Allowing deletions - creating options

7.4.1 Computational Back-Up

Again, we follow the same procedure from Section 7.1.3, except this time, we will include the

average path count, to try and discern the relationship between success and deletion options.

The two charts with these results follow. The average paths, which now vary with every case,

are also now included.

39

n q successes (s) number of comparisonspercent successesaverage paths
(2n∗ (n

q

)
) = d (s/d)100%

2 0 4 4 100% 5
*2 1 5 8 62.5% 4
2 2 1 4 25% 1
3 0 8 8 100% 13.25
*3 1 17 24 70.83% 14.25
3 2 9 24 37.5% 6
3 3 1 8 12.5% 1
4 0 16 16 100% 36
4 1 49 64 76.5625% 48.5
*4 2 44 96 45.83% 27.5
4 3 14 64 21.875% 8
4 4 1 16 6.25% 1
5 0 32 32 100% 99.1875
5 1 129 160 80.625% 160.625
*5 2 170 320 53.125% 113.125
5 3 92 320 28.75% 44.6875
5 4 20 160 12.5% 10
5 5 1 32 3.125% 1
6 0 64 64 100% 275.75
6 1 321 384 83.59375% 522
6 2 566 960 58.9583% 437.812
*6 3 446 1280 34.84375% 214.375
6 4 167 960 17.39583% 65.8125
6 5 27 384 7.03125% 12
6 6 1 64 1.5625% 1
7 0 128 128 100% 771.453
7 1 769 896 85.82589% 1672.67
7 2 1718 2688 63.91369% 1626.84
*7 3 1816 4480 40.53571% 943.469
7 4 986 4480 22.00893% 359.734
7 5 278 2688 10.34226% 90.8906
7 6 35 896 3.90625% 14
7 7 1 128 0.78125% 1
8 0 256 256 100% 2168.38
8 1 1793 2048 87.54883% 5301.44
8 2 4878 7168 68.05246% 5867.75
8 3 6557 14336 45.73800% 3922.19
*8 4 4764 17920 26.58482% 1767.5
8 5 1945 14336 13.56724% 556.938
8 6 433 7168 6.04074% 119.938
8 7 44 2048 2.14844% 16
8 8 1 256 0.390625% 1

40

n q successes (s) number of comparisonspercent successesaverage paths
(2n∗ (n

q

)
) = d (s/d)100%

9 0 512 512 100% 6116.9
9 1 4097 4608 88.91059% 16655.8
9 2 13185 18432 71.53320% 20681.9
9 3 21720 43008 50.50223% 15643.5
*9 4 20063 64512 31.09964% 8094.02
9 5 10918 64512 16.92398% 3015.42
9 6 3529 43008 8.20545% 813.891
9 7 643 18432 3.488498% 152.965
9 8 54 4608 1.171875% 18
9 9 1 512 0.1953125% 1
10 0 1024 1024 100% 17305.5
10 1 9217 10240 90.009766% 51953.2
10 2 34309 46080 74.4552951% 71560.7
10 3 67360 122880 54.8177083% 60428
10 4 76316 215040 35.489211% 35226
*10 5 52649 258048 20.402793% 15040.6
10 6 22649 215040 10.532459% 4809.2
10 7 6013 122880 4.8933919% 1138.59
10 8 918 46080 1.9921875% 189.98
10 9 65 10240 0.634765625% 20
10 10 1 1024 0.09765625% 1
11 0 2048 2048 100% 49076
11 1 20481 22528 90.913530% 161085
11 2 86633 112640 76.911399% 243861
11 3 198354 337920 58.698508% 227486
11 4 268446 675840 39.720348% 147419
*11 5 226764 946176 23.966366% 70713.1
11 6 123335 946176 13.035101% 25909.9
11 7 43573 675840 6.447236% 7287.5
11 8 9748 337920 2.884706% 1539.09
11 9 1271 112640 1.128373% 230.989
11 10 77 22528 0.341796875% 22
11 11 1 2048 0.048828125% 1

41

n q successes (s) number of comparisonspercent successesaverage paths
(2n∗ (n

q

)
) = d (s/d)100%

12 0 4096 4096 100% 139448
12 1 45057 49152 91.668701% 496926
12 2 213640 270336 79.027580% 820460
12 3 560201 901120 62.167192% 838325
12 4 887074 2027520 43.751677% 597828
12 5 894364 3244032 27.569518% 317734
*12 6 594230 3784704 15.700831% 130597
12 7 264938 3244032 8.166935% 42136
12 8 78958 2027520 3.894314% 10605.6
12 9 15175 901120 1.684015% 2023.42
12 10 1714 270336 0.6340258% 275.994
12 11 90 49152 0.1831055% 24
12 12 1 4096 0.0244140625% 1

Table 2: Total Successes Pern (Deletions Allowed)

Here the patterns in decrease in percentage compatibilities are less clear, but, as opposed

to the deletion-less case, we will demonstrate that this number will always be non-zero, and

that compatibility can be assured asn approaches∞.... Now, the average path counts, sorted

again by the sizen of stringX and the number of 1’s it contained. The incompatible trialsare

included in these counts; we want to see, givenn, the expectation of paths that will be inany

resultant percolation.

A few observations:

1.) There is always one path forq = n, since there is always only one compatible pair:X = 1n

andY = 0n. This percolation looks like a perfect lattice: The greyed out section of this per-

colation can be disregarded; it is entirely unreachable. The total paths in this percolation are

2n, which is equivalent to how many different strings were compared toX = 1n. Therefore, the

average is2n/2n = 1.

42

Figure 6: A Percolation of All 1’s and All 0’s

43

2.) The numbers forq = 0 vary greatly; it would be anticipated they would follow some

standardization (i.e. be very perfect). This phenomena is worthy of explanation. Forq = 0,

every other string is compatible with it, and these will all have non-zero paths. Each of these

percolations will have various path counts, since their construction will be altered by whatever

Y string is being used, and there can be massive variations in regards to the paths that will be

created. In other words, theq = 0 case offers the most variety in percolation graphs, but at the

same time, not so varied that compatibility will be impossible. Again, this is directly related

to the fact that there will be massive amounts of deletion schemes that can be taken when our

traveller moves across these two strings. Therefore, our average path counts will be the most

unpredictable.

8 Winkler’s proof for p < 1/2

8.1 Introduction

This section is an attempt to answer the big question posed earlier: what is the greatest prob-

ability p that still ensures that withpositive probability , two sequences will be compatible?

We say positive probability, because the probability space is endless, since we are dealing with

discrete, infinite objects (these 0-1 sequence pairs). A probability space is defined as a triple:

(S,S,P), where (S,S) is measurable space (S is domain,S is measurable subsets), andP is the

probability measure (P(S) = 1) [7]. For our percolations,Swould be an infinite set of all 0-1

sequences,S is all 0-1 sequences that can be generated with fixed probabilityp (also infinite),

andP(S) would determine whether any given two strings fromS would be compatible. Since

bothSandS are infinite, thisP must be constructed in a special manner, such as the following.

Let fp(n) be defined as the probability that two substrings, composed of the firstn elements of

two 0-1 infinite sequences, will be compatible. This is a finite probability space: we can list

all possible combinations, and find the ratio of compatible sequences to all sequences. We can,

44

and must, consider sequences “not likely” to be produced by the probabilityp. One example

of this would be the event ofp = .10 generating two strings sizen of all 1’s. The probability

of this event is nonzero, and we must include it withinfp(n). We now have a function dealing

41 with finite cases, which we will now extend. Now define a function`(p) as

`(p) = lim
n→∞

fp(n) = P(S)

This is what the infinite case is concerned with: what happens to ourfp(n) asn gets larger?

What happens now that our domainSand subsetsS approach infinite cardinality?̀(p) cannot

simply list all compatible pairs and divide by the total possible pairs; continuous probability

methods must be used.

Therefore, we can only say that it is with a “positive likelihood” that we will generate infi-

nite compatible sequences with this probabilityp. Various methods have been undertaken by

several individuals to find a greatest lower bound for thisp. Theoretical results by Peter Win-

kler, the creator of this percolation, and Harry Kesten, have both concluded the upper bound

p < 1/2 [3]. Peter Ǵacs have provided the lower boundp≥ 10−400. John Tromp, with com-

puter simulations, but without formal proof, has suggested a lower boundp > 0.3. Thus, there

is plenty of room for improvement between these bounds.

Throughout this proof, special care is taken at each step to show that it is possible to conduct, as

this technique hinges on precise ratios of compatible strings, and that a small, non-zero amount

of possibilities will still exist once the smoke clears.

8.2 Two carefully specified prefixes

We begin with two strings, of length2n+1. We specify that these two strings will haven+1

0’s, andn 1’s, and also that they are compatible. We now have two prefixes that have just less

45

than half 1’s, and just over half 0’s. Since we are making special demands of our infinite strings

(i.e. that they would produce such “choice” prefixes), we must demonstrate that there exists

possibility that, with sufficientn, our scenario is possible.

1.) As n approaches∞, the “actual probability” of our prefixes will converge to the set

probability of 1’s occurrence.

This is not hard to demonstrate: statistics tells us that if we make more and more trials on

a population, in search of a particular result, and this population has a set likelihood of our

target, our study’s findings will be closer to reality as we poll more and more people. In our

case, we generate more and more elements within our strings, and the frequency of 1’s should

approach our set probabilityp. Therefore, with a large enoughn, the actual probabilities (ratio

of 1’s to 0’s) will be nearly equivalent top.

2.) If p < 1/2, with a sufficient n, then our prefixes’ actual probabilities will be less than

1/2.

This is a furthering of the idea presented in (1): if this setp is less than 1/2, then with a

large enoughn, our fixed probability will be less than 1/2 as well. This is sufficient in showing

we can “ask for” a string prefix of some size, that will haven+1 0’s andn 1’s, for some hugen.

3.) ASSUMPTION:These prefixes will be compatible.

Here is the hypothetical step of our setup. We must assume at this point that these sequences

will be compatible. It has been shown that when prefixes have this ratio of 1’s to 0’s, there

exist compatible sequences, so it ispossibleto generate them on demand. Thus, depending on

one’s perspective, we either generate pairs until we get to this compatible sequence, or we skip

46

ahead to the point where it has been generated.

8.3 Delete a zero from each

If we make a legal deletion within each string, not only will compatibility be preserved, but

also we will now have exactly 50% 0’s and 50% 1’s.

1.) Result:Our two sequences are now complimentary.

Since our two strings have half 1’s and half 0’s, they must now be complimentary to each

other. That is, ifX[i] = 0, thenY[i] = 1, or vice versa. This can be proven by contradiction:

if two 0’s were in equivalent spaces, then two 1’s would be as well, and compatibility would

be impossible. In short, we would need to make more deletions to our strings to change this

alignment, and any deletion would serve to create another pair of 1’s in the same position,

therefore, these strings are not compatible, and could not result from our original setup.

8.4 Reinsert a 0 into each string

We now wish to replace our deleted 0’s, but this time, we can put them anywhere within our

strings, in an attempt to create strings that could have possibly been used to create the current

n 0’s, n 1’s situation.

1.) Since our strings are compatible, when we reinsert the 0’s, the new pair will also

be compatible.

Compatibility, by definition, means we can cast out 0’s to create complimentary pairs. If we

insert 0’s intoany complimentary string pair, we are creating two complimentary string pairs.

47

�
Figure 7: Three regions of our chosen prefix

2.) Certain reinsertions of 0’s will not change our situation.

Let us divide our prefixes into three parts: the region from the beginning to the first 1, the

region from the first 1 to the last 1, and the region from the last 1 to the end of the prefix. In-

serting 0’s in either the first or third region will not greatly change the different types of strings

that will be compatible with the one we are altering. This is because the greatest changes in

possible compatible partners come when we divide up existing walls (groups of 1’s), or spread

existing 1’s apart (make the holes in between these walls even larger). 3.)Insertions between

1’s will change our situation. As a result of (2), we will only insert our 0’s into positions that

lie in between our 1’s. Since there aren 1’s in our string prefix, we haveat leastn−1 potential

places to insert our 0’s. There will be more than this, if there are 0’s already lying in between

existing 1’s, but for the general case, we will assume that the entire second region (as defined

in (2)) is composed of 1’s.

8.5 Interpreting what we have done

In these steps, we have gone fromp < 1/2, to p = 1/2, using our carefully selected prefixes.

Then, we showed that, if we begin with a pair of strings, with equal amounts of 1’s and 0’s,

then we can “step back” top > 1/2, and demonstrate that there must be compatible sequences

in this situation. This is the positive probability: that we can be sure there will exist at least one

(and in fact, there aren+1 of them) string that will be compatible with whatever our resultant

string is. Asn→ ∞, n+ 1 is still above zero; this possibility still exists for very largen. We

48

�
Figure 8: Diagram of Winkler’s Method forp < 1/2

may not necessarily be fortunate enough to have these pairings come together at the right time,

but the chance of it is non-zero, which is what Winkler and Kesten have shown. In contrast,

this is not possible for the other two possibilities:p = 1/2 andp > 1/2.

The following picture summarizes the findings of this section.

9 Conclusions

9.1 From small to large - a compacted problem

Through this investigation, we have demonstrated that percolations are problems that are scal-

able, through two differing means. First, through Gács and his use of re-normalization, turned

a percolation into a system of “mazeries”, each with properties that could be used to answer

the lookahead and compatibility problems. Also, using deletion and reinsertion, we were able

to define non-square percolations, and demonstrate that every percolation is built upon one

smaller than it. This was essential in our analysis of the infinite case; we no longer have to gen-

erate massive percolations to discover what will happen asn becomes very large, we can make

49

determinations with smaller examples that are easy to enumerate and classify thoroughly. This

all eventually led up to the proof ofp < 1/2 using Winkler’s method: that there was enough

“self-similarity” and decomposition technique to build a compatible percolation, remove parts

of it, and then add those parts back in different ways. Our reconstructions ‘can’ be compatible,

therefore those generated at random ‘can’ also be compatible.

9.2 The next step

It was stated earlier there now exist several assertions as to what the least upper bound ofp

are. For example, simulations by John Tromp, which were reaffirmed by another source, put

the value at less than .3, yet we have demonstrated that this value is less than 1/2, around

.4381846577627952488143, according to Harry Kesten [4]. A possible continuation of the

current progress on percolations would be finding a more precise determination about which

of these numbers is closer to the truth (the truth being either percolations built using more im-

proved computational trials or combinatorial techniques).

There are many other resultant research opportunities from the current status of Winkler per-

colation development. The three dimensional case (three strings instead of two) may have

dramatic effects on our bounds for probabilityp, and the issue of phase transitions (just how

suddenly does the rate of compatibilities drop whenp is increased) has not been fully an-

swered. The computational findings suggest it is not as sharp as previously thought, but it must

be remembered these findings have inherent error, and thus are imperfect [4].

50

References

[1] I. Benjamini, R. Lyons, and O. Schramm. “Percolation beyondZd, Many Questions and
A Few Answers”.Electronic Communications in Probability. No. 1, pp.71−82. 1996.

[2] Ioana Dumitriu; Prasad Tetali; and Peter Winkler. “On Playing Golf with Two Balls.”
SIAM Journal of Discrete Math.Vol. 16 , No. 4, pp.604−615. 2003.

[3] Peter Ǵacs. “Compatible Sequences and a Slow Winkler Percolation”.Combinatorics,
Probability, and Computing. Vol.13, No.6, pp.815-856. 2004.

[4] John W. Hajeski. “Winkler Percolations: A Computational Analysis”. Worcester Poly-
technic Institute Major Qualifying Project. 2005.

[5] Eric W. Weisstein. “Percolation Theory.” FromMathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PercolationTheory.html

[6] Eric W. Weisstein, et al. “K̈onig’s Lemma.” From MathWorldA Wolfram Web Resource.
http://mathworld.wolfram.com/KoenigsLemma.html

[7] Eric W. Weisstein. “Probability Space.” From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/ProbabilitySpace.html

51

