

User Guide for Atlas Looping Construct

Project Team:

Rachel Hahn
Ian Johnson

Benjamin Mattiuzzi

rhahn@wpi.edu
icjohnson@wpi.edu
bmmattiuzzi@wpi.edu

gr-roboticlang@wpi.edu

Project Advisor:
Professor Michael A. Gennert

This is supplemental material for the paper “The Design and Implementation of Looping
Constructs for Robots”.

mailto:rhahn@wpi.edu
mailto:icjohnson@wpi.edu
mailto:bmmattiuzzi@wpi.edu

Introduction to atlasLoop

The construct that we created, atlasLoop, is designed to help a programmer be able to

easily encase a robotic action in a looping function. Specifically with the robot Atlas, there are
issues where an action may have to be run multiple times before it is completed correctly. This
code can easily get complicated and confusing, so we designed this function to automatically do
some of that work.

To best understand how atlasLoop works, look at the action of picking up a hammer. This
action contains many sub-actions such as opening hand, extending arm, moving arm above
hammer, closing hand on hammer, and moving arm up. These sub-actions should be run
sequentially, but some of them depend on the success of the previous sub-action. For example,
moving arm above hammer needs the arm to be fully extended in order for it to successfully
complete. Whereas the sub-action move arm up does not depend on the success the the hand
closing on the hammer since no matter what is in the hand, it can still move its arm up.

A programmer can easily program this by grouping the sub-actions when passing them
into atlasLoop. The action pick_up_hammer has the sub-actions (1) open_hand, (2) extend_arm,
(3) move_arm_above_hammer, (4) close_hand_on_hammer, and (5) move_arm_up with the
grouping as follows: {1}, {2, 3, 4}, {5}. This tells atlasLoop that sub-actions 1, 2, and 5 can be
run without depending on any previous actions, whereas sub-actions 3 and 4 depend on the
correct completion of sub-actions 2 and 3 respectively. To implement this dependency, atlasLoop
sets breakpoints (b) to be at the beginning of each group: {b1}, {b2, 3, 4}, {b5}. The breakpoints
mean that if any sub-action in a group fails, it will jump to the first sub-action in that same
grouping. Similarly, if a whole group fails too many times, then atlasLoop will jump back to the
beginning of the previous grouping. For example, if sub-action 5 fails 10 times, atlasLoop will
start at sub-action 2 and try the sequence all over again. The full code for this example can be
found in the section Code Example C.

1

Adding atlasLoop to your Project

Adding atlasLoop to your project is quite simple. Your project must first include the

AtlasPrototype.cpp, ActionObject.cpp, and pch.h files. Then, you must include
the AtlasPrototype.h file at the top of the code file that you would like to run atlasLoop
in: #include “AtlasPrototype.h”. You can then use the functions that are listed in the
AtlasPrototype.h file as if they were functions that you had written.

2

Interacting with atlasLoop

At its most detailed, atlasLoop takes the following arguments:

1. A Loopstyle telling atlasLoop which mode to use. Currently supported modes are
“Standard” and “Other.” Defaults to “Standard” if none provided.

2. A std::list of ActionObjects, which are the actions that the loop will be
performing, in order.

3. An ordered std::list of integers, representing indexes in the list of
ActionObjects that will serve as breakpoints. Defaults to empty if none provided

Additionally, an ActionObject constructor can take the following arguments:

1. A pointer to a function. (must take no arguments and return a boolean)
2. A std::list of pairs of ints (A, B) representing that atlasLoop should jump back B

steps upon hitting A consecutive failures. Defaults to pairs of A=1 and B>> if none
provided.

3. An integer representing the minimum number of consecutive successes for the Action to
be considered passed. Defaults to 1 if none provided.

However, you do not have to specify all of these values when you invoke atlasLoop.

There are two types of ways to call atlasLoop. The first, shown above, requires you to make your
own ActionObjects, and pass them into atlasLoop using
atlasLoop(Loopstyle, std::list<ActionObject>, std::list<int>)

This method allows maximum customizability, but less usability. Often, the second method
described below will be sufficient, while being much easier to invoke.

The second method uses the class objOrList, referred to as ool in the code. Using this
method, you pass pointers to functions into atlasLoop, and atlasLoop will automatically
create ActionObjects and breakpoints. Note that this means that all breakpoints can only be
at the beginning of a list, so the input must be constructed in such a way that all groups that
depend on a single breakpoint are in the group following that breakpoint. Examples of the two
methods of calling this function are shown below.

3

Code Example A:
#include “AtlasPrototype.h”

//Declare the function pointers

bool(*pointerToFunctionA)();

pointerToFunctionA = &FunctionA;

bool(*pointerToFunctionB)();

pointerToFunctionB = &FunctionB;

...etc

//Create lists of pairs

std::list<PairInt> listPairsA = { PairInt(2, 5), PairInt(3, 10) };

std::list<PairInt> listPairsB = { PairInt(1, 2)};

..etc

//Create the ActionObjects

ActionObject myObjectA(pointerToFunctionA, listPairsA, 3);

ActionObject myObjectB(pointerToFunctionB, listPairsB, 2);

...etc

//Create the list of ActionObjects before they are passed into atlasLoop

std::list<ActionObject> listOfActionObjects = { myObjectA, myObjectB };

//Call atlasLoop with the list of ActionObjects

atlasLoop(listOfActionObjects);

//nb. The above line is equivalent to

//atlasLoop(Standard, listOfActionObjects, std::list<int>{});

//as Standard and an empty list of breakpoints are the implied values.

4

Code Example B:
#include “AtlasPrototype.h”

//Declare the function pointers

bool(*pointerToFunctionA)();

pointerToFunctionA = &FunctionA;

bool(*pointerToFunctionB)();

pointerToFunctionB = &FunctionB;

...etc

//Create the array of ObjOrLists

ool arrayOfObjOrList[] = {

ool(pointerToFunctionA),

ool(pointerToFunctionB, pointerToFunctionC)

ool(pointerToFunctionD)};

//Call atlasLoop with size of list

atlasLoop(arrayOfObjOrList, 3);

// The code will automatically place breakpoints at the beginning of each

// ool in the array. This means the above code will have breakpoints at

// actions A, B, and D.

5

Code Example C:
#include “AtlasPrototype.h”

bool(*pointerToOpenHand)();

pointerToOpenHand = &openHand;

bool(*pointerToExtendArm)();

pointerToExtendArm = &extendArm;

bool(*pointerToAlignWithHammer)();

pointerToAlignWithHammer = &alignWithHammer;

bool(*pointerToCloseHand)();pointerToCloseHand = &closeHand;

bool(*pointerToRaiseArm)();pointerToRaiseArm = &raiseArm;

//Create the array of ObjOrLists

ool arrayOfObjOrList[] = {

ool(pointerToOpenHand),

ool(pointerToExtendArm,

pointerToAlignWithHammer,

pointerToCloseHand),

ool(pointerToRaiseArm)

};

//Call atlasLoop with size of list

atlasLoop(arrayOfObjOrList, 3);

// The code will automatically place breakpoints at the beginning of each

// ool in the array. This means the above code will have breakpoints at

// actions pointerToOpenHand, pointerToExtendArm, and pointerToRaiseArm.

6

