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Abstract 
 

Cu+ is a vital element for cellular functions as it is a cofactor for many essential enzymes. 

However, at high concentrations, it can be toxic to the cell due to its ability to perform Fenton-like 

chemistry. Therefore, cells need to tightly control the amount of intracellular Cu+1 by either 

exporting it out of the cell or storing it in a protein. Recently, a small secreted protein with high 

Cu+1 binding capability, Csp1, has been identified in the methanotroph Methylosinus 

trichosporium OB3b.  In this work, its homologue in Pseudomonas aeruginosa was studied. This 

organism is an opportunistic pathogen in plants and animals that is commonly found in hospital 

infections. To understand its role in P. aeruginosa, the construction of expression and 

mutant/complemented strains of the csp1 gene was attempted. In addition, the transcriptional 

levels of csp1 in response to Cu+1 and related stress conditions was tested using RT-qPCR analyses. 

The results showed that the transcriptional levels of the csp1 gene remained constant under Cu+1 

toxic levels, suggesting Csp1 might not play a role in Cu+1 detoxification.  
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I. Introduction 
 

Transition metals are part of our daily life, since they are ever present in “domestic, 

agricultural, medical and technological applications” (1). Some of those elements participate in 

key biochemical process such as O2 transport, redox reactions and protein synthesis, among others 

(2). Cells should act to guaranty metal availability while preventing deleterious effects of over 

accumulation.  

 Cu+ is a critical cofactor for the function of several enzymes in eukaryotic and prokaryotic 

organisms. The binding of Cu+ to the active site of some proteins involved in aerobic respiration 

is required for their function. Examples include; Super Oxide Dismutase (SOD), which plays a 

role in converting O-
2 radicals to O2 or H2O2; and Cytochrome c Oxidase which plays a role in the 

electron transport chain of mitochondria (3,4).  

At the core of Cu+ roles in biological systems is its ability to cycle between two oxidative 

states. This characteristic makes it a versatile ion; nonetheless, over accumulation of the reduced 

form of this metal can lead to toxicity (5). Through Fenton-like chemistry Cu+ produces highly 

reactive O2 radicals in the cytosol, which generates deleterious effects to the cell. This phenomenon 

forces the cell to devise mechanisms to maintain where low cytosolic Cu+1 levels, where there is 

no free intracellular Cu+1 (6).  

Cu+ homeostasis mechanism are thus very important for survival in biological organisms. 

Impaired Cu+ homeostasis in humans has been linked to Menkes’ and Wilson’s diseases. Menkes’ 

disease is an X-linked recessive disorder that is caused by Cu+ deficiency, while Wilson’s disease 

is autosomal recessive disorder that is caused by Cu+ accumulation (7). Both diseases are caused 

by mutations in P-type Cu+ ATPases, involved in Cu+ transport; Menkes’ by a mutation in ATP7A, 

an importer, and Wilson’s diseases by a mutation in ATP7B, an exporter (8-10).  
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Studies on bacterial Cu+ homeostasis have mainly focused on membrane and periplasmic 

mechanisms of bacterial tolerance to Cu+1 overload (11,12). These have revealed the existence of 

various Cu+1 related elements: transcriptional regulators, soluble chaperones, and membrane 

transporters (13). However, distribution systems that place the metal in target cupro-enzymes, 

sensors, and storage proteins are likely to participate in Cu+ homeostasis. 

A plethora of efflux and chaperon systems for Cu+1 have been discovered, characterized or 

proposed in bacteria (summarized in Fig. 1). It is hypothesized that Cu+2 import to the cytoplasm 

of bacteria is probably achieved through major facilitator superfamily of transport proteins (14). 

Once inside the cytoplasm multiple metallo-chaperones, such as CopZ, direct the incoming Cu+1 

to its target enzyme or transcriptional regulator (15). In the case of CopZ, it can be hypothesized 

that it delivers Cu+ to the one of two P1-B ATPases, CopA1 or CopA2. Through CopA1, Cu+1 is 

transported out of the cytoplasm to the periplasm of the cell where it is then directed to an efflux 

system for detoxification. Meanwhile, it has been proposed that CopA2, although highly 

homologous to CopA1, does not play a role in detoxification, but that it aids in the metallation of 

cuproproteins in the periplasm (12,16). It has been suggested that CopA2 helps in the formation 

of cytochrome oxidases, as it is co-transcribed with two cytochrome oxidase subunits (12). 

Interestingly, the rate of transport of both enzymes is related to its functional diversity; CopA2 

displays lower rate compared to CopA1 (16).  
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The Cu+ homeostasis model shown in Figure 1 has been proposed for the opportunistic 

pathogen Pseudomonas aeruginosa. P. aeruginosa, a gram-negative bacterium, cell possess an 

outer-membrane, a periplasmic space, an inner-membrane and the cytoplasm. The outer-

membrane’s low permeability plays a big role in providing antibiotic resistance, as it restricts the 

ability of antimicrobial peptides to create stochastic holes in the bacteria, which enable bacterial 

uptake of antibiotics (17). This phenomenon allows P. aeruginosa to adapt to an array of 

environments. This organism is accredited for nearly 10% of infections acquired in hospitals 

around the world (18,19). Recently, the World Health Organization recognized P. aeruginosa as 

one of the three most critical pathogens with a need of antibiotic development (20). This creates a 

clear need to further our understanding on the mechanisms behind its increased resistance to 

harmful environments.  In this regard, it has been shown that the deletion of P-type Cu+1 ATPases 

lead to decreased virulence of P. aeruginosa (12). These transporters extrude excess Cu+1 from the 

cytosol to the periplasm in gram-negative bacteria and to the extracellular milieu in gram-positive 

Figure 1: Hypothesized Cu+ homeostasis for Pseudomonas Aeruginosa 
(12). 
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bacteria (13,21). However, this is not an immediate response. We hypothesize that a pool of storage 

proteins might serve as a fast response to Cu+1 overload. 

In eukaryotes excess of Cu+1 is stored cysteine-rich in metallothioneins (22). Cysteine is 

one of the few amino acids capable of forming covalent bonds through its thiol side chain with 

metal ions. In oxidizing environments, the thiol group loses its hydrogen making it a likely binding 

partner to transition metals like Cu+ (23). Intriguingly, most prokaryotic organisms are thought not 

to contain Cu+1 storage proteins. Nonetheless, a Cu+1 binding metallothionein, MymT, which plays 

a role in Cu+1 detoxification has been identified in Mycobacterium tuberculosis(24). MymT is a 

cysteine rich protein that is capable of binding 6 Cu+1 ions. Interestingly, MymT expression was 

induced by Cu+1, cadmium and under oxidative stress. More recently, a secreted copper storage 

protein (Csp1) was described in Methylosinus trichosporium (25). Csp1 is a cysteine-rich protein, 

with 13 cys per monomer. Its functional form is a tetramer capable of storing 52 Cu+1 ions (Fig. 

2). In methanotrophs it has been proposed that Csp1 plays a role in providing Cu+1 for methane 

oxidation (25).  

 

 

 

 

 

 

 

 Figure 2: Crystal structure of Csp1 in Methylosinus trichosporium OB3b (24). 
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 A cytosolic Csp1 homologue is present in P. aeruginosa (PA2107). The sequence 

alignment of the csp1 genes of P. aeruginosa and M. trichosporium shows that cysteine residues 

are fully conserved (Fig. 3), suggesting a similar role in Cu+ homeostasis. We hypothesize that 

Csp1 might act as a Cu+ buffer in an early response to Cu+1 stress. The main goal of this project 

was to investigate the role in Cu+ homeostasis of the Csp1 orthologue of P. aeruginosa.  

 

 

Figure 3: Homology between Csp1 from Pseudomonas aeruginosa and Methylosinus 
trichosporium OB3b. Blue arrows indicate cysteine residues that are conserved, green arrows show 
cysteine residues that are only present in P.aeruginosa and red arrows denote cysteine residues 
that are only present in M. trichosporium OB3b. 
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II. Methods 
 
Cloning of the csp1 gene: Csp1 gene sequence from P. aeruginosa PAO1 strain was obtained 

from the Pseudomonas Genome Database (26). The gene was amplified through PCR using the 

primers in Table 1. Denaturation was performed at 95 oC for 30 s, followed by an annealing step 

at 55 ºC for 30 s and an elongation at 72 ºC for 30 s. This cycle was repeated 25 times, followed 

by a final elongation step at 72 ºC for 30 s. Each PCR reaction was performed in a 50 uL reaction 

volume containing 0.5 mM of each primer, 0.5 mM dNTP mix, 5X Q5 Polymerase Buffer (New 

England Bio Labs), Q5 Polymerase(1U/1µL) (New England Bio Labs) and 100 ng of genomic 

PAO1 WT DNA as a template. The amplification of the gene was verified in 1% agarose gel 

electrophoresis, using 100 bp ladder (New England Bio Labs).  

 The PCR fragment containing the csp1 gene was cloned into the pBAD TOPO-TA 

expression vector (Invitrogen) (Fig. 4). Adenine overhangs were added to the PCR product for 

gene insertion by incubating it for 20 min at 72 oC with 0.2 mM dATPs, 10x Taq Polymerase 

Buffer (New England Bio Labs), and One Taq Polymerase(1U/1uL) (New England Bio Labs). The 

plasmid was propagated in Escherichia coli Top10 cells and the protein expression was done in E. 

coli LMG194 cells (Invitrogen). For the transformation, 1 µL of plasmid was added to both cell 

types and incubated in ice for 30 min. These were heat shocked at 42 oC for 45 s, after which 500 

µL of LB media was added. Cells were incubated at 37 oC for 1h, and 100 µL aliquots were plated 

on LB + 100 µg/ml ampicillin plates. 
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Colonies were picked and suspended in 10 µL of H2O, and boiled at 95 oC for 5 min. 

Correct insertions of the gene in the vector were tested by PCR using the cell lysates as template. 

Positive colonies were grown overnight in LB + ampicillin broth (10 g/l tryptone, 5 g/l yeast 

extract, 10 g/l NaCl, and 100 µg/ml ampicillin). Plasmids were isolated using the Qiagen kit. 

Plamids were verified by restriction digest with 800ng of purified DNA, 1 µL of each restriction 

enzyme (Kpn I and Eco-RI) (New England Bio Labs) and 1 µL of Cut Smart Buffer (New England 

Bio Labs). These products were run in a 1% agarose gel alongside an undigested plasmid, a 

partially digested plasmid and a 1kb DNA ladder (New England Bio Labs). Finally, the sequence 

of the clone was verified by automated sequencing. 

 

Figure 3: Csp1 pBAD TOPO TA expression vector map. Including the restriction digest sites, the 
ampicillin resistance gene, the arabinose promoter, origin of replication, 6x Histidine tag and TEV 
cleavage site.   
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Table 1: Primers used to create csp1 expression vector. 

Primer Sequence (5’-3’) 

E-Kpn1-Csp1-F GCATTAGGTACCATGACCCGCGCCATCAACGA 
E-EcoR1-Csp1-R TATAGGAATTCTCAGTGGTGGTGGTGGTGGTGG 

GACTGAAAATACAGGTTTTCGGCAGCAGCGGCC 
GGCAACAACGGCCGAC 

 

Plasmid to generate a csp1 mutant strain: A 361 bp region located in the center of the csp1 gene 

from P. aeruginosa PAO1 strain was amplified through PCR using the primers in Table 2. To 

create a vector capable of creating a mutant the pCHESIWKm vector was used (27). The 

pCHESIWKm vector was derived from the pUC18 family and includes a kanamycin resistance 

gene. The PCR product alongside with the pCHESIWKm vector were digested for 1h at 37 ºC with 

XbaI and KpnI (New England Bio Labs). The digested product was then dephosphorylated 

utilizing shrimp alkaline phosphatase (1 unit/ug DNA) (Promega). The dephosphorylated PCR 

product and vector were then ligated and transformed following the protocol described above into 

E. coli Top 10 cells and S17.1 cells (Invitrogen).  

 

Table 2: Primers used to create csp1 mutant vector. 

Primer Sequence (5’-3’) 

M-KpnI-Csp1-F GCATTAGGTACCATGACCCGCGCCATCAACGA 
M-XbaI-Csp1-R GCATTATCTAGAGCACATTCGCGCTCCAGCGG 

 

Plasmid to complement the mutant strain: The coding sequence of the csp1 gene and a region of 

461bp upstream of the csp1 start codon was amplified by PCR using P. aeruginosa PAO1 genomic 

DNA as template and the primers listed in Table 3. The PCR product was cloned in the PUC18T-
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miniTN7T-Gm vector (28) (Fig. 5). The PCR product and the PUC18T-miniTN7T-Gm vector were 

digested for 1h at 37 ºC with SpeI and PstI (New England Bio Labs). The digested vector was the 

dephosphorylated utilizing shrimp alkaline phosphatase (1unit/ug DNA) (Promega) and then the 

PCR product was ligated into the vector. Ligated vectors were transformed into E. coli Top 10 and 

S17.1 cells (Invitrogen). 

 

Figure 5: Csp1 pUC18T-mini-Tn7T-Gm complement vector map. Including the restriction digest 
sites, the gentamicin resistance gene, the ampicillin resistance gene, the TN7L transposon 
sequence, the arabinose promoter, origin of replication, 6x Histidine tag and TEV cleavage site.   

Table 3: Primers used to create csp1 complement vector. 

Primer Sequence (5’-3’) 

C-PstI-Csp1-F CTATACACTGCAGAGCACCGGCTGATGATCCAT 
C-SpeI-Csp1-R TATAGACTAGTTCAGTGGTGGTGGTGGTGGTGG 

GACTGAAAATACAGGTTTTCGGCAGCAGCGGCC 
GGCAACAACGGCCGAC 
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Biparental Conjugation: P. aeruginosa PAO1 strain and the mutant vector were grown overnight 

at 37 °C in a 5 mL test tube with LB media (10 g/l tryptone, 5 g/l yeast extract and 10 g/l NaCl) 

supplemented with the appropriate antibiotics. 0.2 mL of each culture were added to a 

microcentrifuge tube containing 1.2 mL of pre warm LB media, which was centrifuged for 2 min 

at 7,000 xg. The supernatant was discarded, the cell pellet resuspended in 1 mL of LB media and 

centrifuged for 2 min at 7,000 xg. The supernatant was discarded and the cell pellet resusupended 

in 50 µL LB media, which was then transferred to a 13-mm cellulose filter placed in LB agar and 

incubated at 37 °C for 5 h. The filter was then placed in a microcentrifuge tube with 0.2 mL of 

0.9% NaCl and vortexed for 30 s. The solution was plated in LB agar containing the proper 

antibiotic, incubated at 37 °C for 24 h and the colonies were screened by PCR (27).   

 

Protein Expression: Bacteria were grown in 2x YT media supplemented with 100 µg/ml 

ampicillin at 37 °C for 6 h. The cells were grown during 20 h at 20ºC in ZYP-505 autoinduction 

media supplemented with 0.05% arabinose and 100 µg/ml ampicillin (29), pelleted by 

centrifugation for 10 min at 6,000 xg, washed with 100mM KCl, 25mM Tris-HCl (pH 7.0), 

pelleted under the same conditions and stored at -80 °C until use. 

 

Protein Purification: Cell pellets were resuspended in 4 volumes of 50 mM Tris (pH 7.5) and 300 

mM NaCl. Cells were disrupted utilizing the Sonic Dismembrator Model 100 at 6 times for 30 s 

at power 8 (Fisher Scientific). Cell debris was removed by centrifugation at 15,000 xg for 30 min. 

The supernatant was loaded to a pre-equilibrated Ni-NTA His-tag column (1mL per 40mg of 

protein). The column was washed with 10 volumes of 50 mM, Tris (pH 7.5), 300 mM NaCl buffer 

with increasing concentrations of imidazole (5, 20 and 150 mM). The His-tagged protein was 
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eluted with 10 volumes of 300 mM imidazole, 50 mM Tris (pH 7.5), 300 mM NaCl. The buffer 

was exchanged to 2mM EDTA, 1 mM DTT, 50 mM Tris (pH 7.5), 200 mM NaCl by filtration 

utilizing 10 kDa molecular weight cut-off Centricon (Millipore). This step was repeated until the 

imidazole concentration dropped below 2 mM. Protein was stored at -20°C in 20% glycerol.  

 

Protein Quantification: Protein concentrations were determined in accordance to Bradford (30). 

10 µl protein samples and bovine serum albumin (BSA) standards (0, 5, and 10 µg) were mixed 

and incubated with 1000 µl Coomassie Reagent for 10 min at RT. Thereafter, absorbance was 

measured at 595 nm. Protein standards were obtained by diluting a 1 mg/ml stock solution of BSA. 

Linear regression was used to determine the protein concentration of each sample. 

 

SDS PAGE Electrophoresis: One-dimensional SDS polyacrylamide electrophoresis (SDS-

PAGE) was carried on 10% SDS polyacrylamide gels using the Mini-PROTEAN 3 electrophoresis 

module (Bio-Rad). Protein samples were mixed with 6X Laemmli sample buffer (375 mM Tris-

HCl pH 6.8, 50% Glycerol, 9% SDS, 0.03% Bromophenol Blue, β- Mercaptoethanol 5%) and 

heated at 95°C for 5 min. Electrophoresis was run at 20 mA for 60 min. Proteins were stained 

using Coomassie brilliant blue. Protein expression was tested by immunostaining Western-blots 

using rabbit anti-(His)6 polyclonal primary antibody and goat anti-rabbit IgG secondary antibody 

(GenScript, Piscataway, NJ) (31). 

 

Growth of P. aeruginosa under stress conditions: P. aeruginosa PAO1 bacteria were grown in 

2x YT media (16 g/l tryptone, 10 g/l yeast extract and 5 g/l NaCl) at 37 °C until an OD600 of 1.5. 

Cells were then divided in 5ml samples and treated with different metals (2 mM CuSO2, 4 
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mMCuSO4, 2 mM FeCl3, 2 mM ZnCl2) or 100 µM tert-butyl hydroperoxide (TBHP). The treated 

samples were then incubated at 37 °C for 1 h, 1 mL of the treated samples was mixed with one 

volume of RNA protect bacteria reagent (Qiagen). Cells were centrifuged at 5,000 xg for 10 min 

and after discarding the supernatant stored at -80 °C.  

 

RNA Extraction, DNAse Treatment and RNA Cleaning: RNA was extracted following the 

Qiagen RNeasy mini kit protocol. The RNA concentration was then measured utilizing a 

NanoDrop 2000c spectrophotometer (Thermo Fisher). The RNA sample was treated with DNase 

(1 unit/ 5 µg of RNA) (New England Bio Labs). Samples were incubated for 40 min at 37°C. One 

volume of Phenol:Choloroform:Isoamyl alcohol (25:24:1) was added to the treated RNA and 

centrifuged at 14,000 xg for 5 min. The aqueous phase was recovered and 2.5 volumes of Ethanol 

100% was added, incubated for 1h at -20°C and centrifuged at 14,000 xg for 5 min. The supernatant 

was discarded, the pellet resuspended in Ethanol 70% and centrifuged at 14,000 xg for 2 min. The 

pellet was then resuspend in water and the RNA concentration measured in a NanoDrop 

spectrophotometer.  

 

cDNA Synthesis: cDNA synthesis was achieved following Thermo Scientific RevertAid First 

Strand cDNA synthesis kit protocol utilizing random hexamer primers.  

 

RT-qPCR: Purified cDNA (1 µg), internal forward and reverse primers (Table 2) were added to 

appropriate amount of FastStart Essential DNA Green Master mix from Roche.  

copA1 and copA2 genes were used as positive and negative controls for expression under Cu+2 

stress conditions, respectively. PA4268 (30S ribosomal gene) was used as housekeeping gene. The 
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samples were loaded to a 96 well plate, and run in a LightCycler® 96 System (Roche) with the 

following settings: the RT-qPCR involved a preincubation at 95 °C for 10 min, a two-step 

amplification repeated 45 times with denaturation at 95 °C for 10 s followed by elongation at 65 

°C for 30 s, and a final a cooling step at 37 °C for 30 s. Utilizing PA4268 as a reference gene 

relative expression for csp1, copA1, copA2 and cueR was measured following the following 

formula. 

𝐸"
#$%,	()*+#$%

𝐸,
#$-,	()*+#$-

 

• ET = Amplification efficiency of the target gene 
• ER = Amplification efficiency of the reference gene 
• CqT = Quantification cycle of the target gene 
• CqR = Quantification cycle of the reference gene 
• Cal = Study Calibrator 

   

Table 4: RT-qPCR primers 

Primer Sequence (5’-3’) 

qCsp1-F GAGTCCAGCAGGGAACAA 
qCsp1-R AACAACGGCCGACAGG 
qCopA1-F GAAACGGTGCTGGCGAAGAT 
qCopA1-R TTAACCAGGGCCTGCTCCAG 
qCopA2-F CAGCAGGACGATGAGCAGGA 
qCopA2-R CTGCTCACCGGCGAGTACCT 
qPA4268-F GCAAAACTGCCCGCAACGTC 
qPA4268-R TACACGACCGCCACGGATCA 
qCueR-F TCCGTTACTACG AGTCCATCG 
qCueR-R GTGCTGAGCTCCTCGATCTT 
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III. Results 
 
Cu+-dependent gene expression 
 

Previously studied metallothioneins have been shown to be over expressed under stress conditions 

(24,32). In order to study the role of Csp1 in resistance to transition metals, RT-qPCR was 

performed to analyze the transcription levels of csp1, copA1, copA2 and cueR under different stress 

conditions. CopA1 and CopA2 and CueR are major players in Cu+ homeostasis, and thus were 

used as internal controls of the experiment. CopA1 participates in metal detoxification and CopA2 

in protein metalation. CueR is a key Cu+ sensor and transcriptional regulator. As seen in Figure 

4A, treatment with 2 mM and 4 mM Cu+2 does not affect the expression level of csp1. Moreover, 

absolute expression levels are low (data not shown). We did observe increased expression of copA1 

with respect to untreated samples. These results confirm that CopA1 plays a major role in Cu+1 

detoxification, unlike Csp1 and CopA2. When exposed to oxidative stress in the form of TBHP 

100 µM, copA1 expression is repressed (Figure 6C). Meanwhile, when exposed to other transition 

metals, we did not observe any major increases in expression for any of the genes assayed (Figure 

6B). These results suggest that the regulation of Csp1 under Cu+1 stress occurs at a post-

transcriptional level. Thus, we attempted to the role of Csp1 through functional characterization at 

the protein level. 
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Generation of csp1 mutant and complemented strains  

Cloning and Transformation: The transposon mutant collection of P. aeruginosa does not harbor 

a mutant strain for Csp1.  To study the biological role of Csp1 the generation of a mutant strain 

became imperative. To achieve this goal a truncated version of the gene was cloned into a plasmid 

for homologous recombination in WT P. aeruginosa. The vector chosen to perform this task was 

the pCHESIΩKm vector. Successful cloning was demonstrated by performing a restriction digest 

utilizing the specific sites added at the beginning (KpnI) and end (XbaI) of the PCR insert. Double 

Figure 4: Relative expression of csp1, copA1, copA2 and cueR in respect to PA4268. A. Relative 
expression of csp1, copA1 and copA2 under Cu+2 stress. B. Relative expression of csp1, copA1, 
copA2 and cueR under transition metal stress. C. Relative expression of csp1, copA1, copA2 and 
cueR under oxidative stress. 
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digestion, as shown in Figure 7, confirmed a band for the pCHESIΩKm vector of around 5.6kb 

and a second band for the Csp1 gene fragment insert of around 370 bp. 

 
Figure 7: Agarose gel electrophoresis of restriction digest of Csp1::pCHESIΩKm mutant plasmid.  

 

Insertion of Csp1::pCHESIΩKm in P. aeruginosa genome: Several attempts were carried out to 

introduce the truncated form of Csp1 into the P. aeruginosa genome using biparental conjugation 

with E. coli S17-1 as the donor strain. Colony PCR was performed using two sets of primers. As 

positive control, the primers used for cloning the gragment were employed; then, to test for the 

positive insertion a set of primers that amplify the whole gene were used. If the truncated gene had 

successfully integrated itself into the WT genome, the second set of primers would not amplify. 

As seen in Figure 8, both set of plasmid yield amplicons from antibiotic resistant colonies 

contained. This experimental constraint has not been solved, and is probably due to transitory 

recombination. 

0.5 kb

1.0 kb
1.5 kb
2.0 kb

5.0 kb
3.0 kb

empty vector

PCR insert
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Figure 8: Agarose gel electrophoresis of colony PCR products from biparental conjugation. Lane 
1 denotes the ladder. Lanes 2, 3 and 4 show positive control for the PCR amplified region of the 
gene of two antibiotic resistant mutants and WT PAO1. Lanes 5, 6 and 7 show the PCR amplified 
region of the gene of two antibiotic resistant mutants and WT PAO1. 

 
Cloning and Transformation of Complement Vector: In order to gain insight into the role of Csp1, 

complementation of the mutant should also be tested. To this end, we initiated the construction of 

necessary vector. We used PUC18T-miniTN7T-Gm vector, to insert a single copy of a gene into 

the genome using the single attTn7 sites located next to the glsm gene. A 500 bp region upstream 

of the gene, containing the promoter region, RBS and transcription start site was cloned. 

Restriction digest was subsequently performed with the specific restriction sites added at the start 

(PstI) and end (SpeI) of the PCR product. The double digest seen in lane 5 of Figure 9, confirmed 

the proper addition of the PCR product by showing a band for the PUC18T-miniTN7T-Gm vector 

of around 4.3kb and a band for the csp1 gene fraction insert of around 931bp.  

 

300 bp
400 bp
500 bp

1.0 kb
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Figure 9: Agarose gel electrophoresis of restriction digest of Csp1::PUC18T-miniTN7T-Gm 
complement plasmid.  

Protein Expression and Purification 
Cloning and Transformation of Expression Vector: To study the metal binding ability of the Csp1, 

the protein was expressed in E. coli under the control of an arabinose-inducible promoter. The 

expression clone included a copy of csp1, a TEV cleavage site and a Histidine tag for affinity 

purification (Fig. 4). Correct insertion into the pBAD Topo expression vector was verified by 

performing a restriction digest using the restriction sites KpnI and EcoRI. Double digestion (lane 

5 of Figure 10A) confirmed correct cloning by showing the band for the pBAD expression vector 

of around 4.1 kb and a band for the Csp1 gene insert of around 470 bp. As shown in Figure 10B, 

the sequence of the gene was verified through automated sequencing.  

 

0.5 kb

1.0 kb
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2.0 kb

4.0 kb
3.0 kb

empty vector

PCR insert
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Figure 10: Csp1 insertion into pBAD expression vector. A. Agarose gel electrophoresis of 
restriction digest of Csp1::pBAD expression plasmid. B. Automated sequencing results. Top row 
shows Csp1 gene and bottom row shows the Csp1 gene inserted in the pBAD vector without any 
mutations in the gene.  

Heterologous expression: Small-scale expression was performed to optimize the induction 

conditions to express Csp1 in E. coli LMG194 using arabinose as inducer. LMG-194 cells 

containing the Csp1:pBAD construct where grown in 2xYT media and Autoinduction Media 

(AIM), which were treated with different amounts of arabinose and the expression levels where 

analyzed  using TEV:His as control. Immunostaining of different fractions is depicted in Figure 

11.  Csp1 was successfully expressed under all conditions, with the highest yields in AIM media. 
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Figure 11: Immunostaining of protein expression test of Csp1::pBAD plasmid. TEV (2µg) is the 
positive control. Percentages show the amount of Arabinose used to induce the cells, while AIM 
refers to Autoinduction media (See Methods).   

Protein Purification: Csp1-His tagged protein was affinity-purified a Ni-NTA column, that binds 

6xHis tag located in the carboxylate terminal of the protein. Figure 12 shows the different steps of 

purification. Column was washed with different concentrations of imidazole (5 and 20 mM) to 

remove non-specific binging. Protein was eluted in the 150mM imidazole fractions as well as in 

the 300mM imidazole ones. 

 

 

 

 

 

 

 

 

Figure 12: Immunostaining of protein purification. Top row shows the fraction while the right 
column shows the percentage of imidazole used to elute that fraction.   
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Purity of the eluted protein was assessed with SDS-PAGE. Csp1 has a monomeric weight of 12.5 

kDa. As seen in Figure 13 there are no clear bands in that region of the gel for any of the eluted 

fractions with 150 mM and 300 mM imidazole. Then results suggest that the protein was not 

purified as a monomer, but in the form of different homomeric complexes.  The bands in the 25 

kDa and 37 kDa area at lanes 6 and 7 support this observation. 

 
Figure13: SDS PAGE with Coomassie staining of eluted fractions. Lane 1 is the ladder. Lane 2 
represent the flow through. Lane 3 shows the first wash with 5mM imidazole. Lanes 4, 5 and 6 
show 1st, 3rd and 5th fraction eluted with 150mM imidazole. Lanes 7, 8 and 9 show 1st, 3rd and 5th 
fraction eluted with 300mM imidazole. Lane 10 shows purified protein from all the 150mM 
imidazole fractions.  
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IV. Discussion 
 

Due to Cu+ ability to damage cellular machinery through Fenton-like chemistry, it has been 

a common hypothesis that a system to limit free soluble Cu+1 ions is necessary for cellular survival. 

Until recently a Cu+1 storage protein in gram-negative bacteria remained elusive (25). The 

discovery of a such a protein propelled us to study its orthologue, Csp1, in P. aeruginosa, a gram-

negative bacterium with the ability to quickly develop antibiotic resistance and survive in extreme 

environments. Our goal was to determine whether the P. aeruginosa Csp1 protein, functions as a 

Cu+1 storage compartment. attempted. Through our results, we were unable to show the importance 

of Csp1 for Cu+1 detoxification. The ability of Csp1 in P. aeruginosa to bind and store Cu+1, as 

well as its importance for cell viability, are still under investigation. 

Previous studies have shown up-regulation of metallothioneins under excess of transition 

metals and oxidative stress (24,32,33). As seen in Figure 6A, under excess Cu+2 the transcript 

levels of csp1 remained constant, suggesting Csp1 might not play a role in Cu homeostasis. 

Looking for alternative roles of Csp1, we also test the effect of other heavy metals and redox-stress 

conditions on its expression levels, however none of the treatments cause a change in the 

expression profile of csp1 (fig 6B and C). To validate the results, expression levels of CopA1 and 

CopA2, two Cu+1 efflux P-type ATPase pumps, previously described as involved in Cu+1 

detoxification and metallation of cytochrome c oxidase, respectively were tested (12). As expected, 

the expression levels of CopA1, markedly increased in a copper-dependent manner while the 

expression of CopA2 is only stimulated by oxidative stress. 

One of the major obstacles in this project was not being able to obtain a P. aeruginosa 

Csp1 mutant and complement. As seen in Figure 7 and 10, the Csp1::pCHESIΩKm and 
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Csp1::pUC18T  plasmids capable of making the mutant and complement strains were created in 

E. coli, but issues arrived when trying to integrate these vectors into P. aeruginosa. To form the 

mutant, pCHESIΩKm vector was utilized, as this vector is capable of performing homologous 

recombination through biparental conjugation. The method by which this plasmid creates a mutant 

is interrupting the gene of interest by introducing itself in the middle of the sequence, thus limiting 

any ability of the bacteria to produce the gene. Although multiple biparental conjugations were 

performed under different conditions, colony PCR never showed a full positive result for the Csp1 

mutant. This issue might have been created by transitory recombination, where there are two genes 

present in the cell: the WT genome and the Csp1 mutant gene. This transitory recombination 

allowed for WT bacteria to gain antibiotic selection and show amplification in colonies that had 

been screened by antibiotic. To overcome this issue, we suggest the use of another plasmid capable 

of performing recombination in a similar manner to pCHESIΩKm, as other laboratories have 

reported similar problems with their pCHESI strains, or utilize commercial kits to create a mutant 

of Csp1. The inability to produce a viable mutant restricted our capability of creating a proper 

Csp1 complement to study the importance of Csp1 for Cu+1 detoxification and cell viability.    

            Based on Csp1’s sequence similarity to the previously characterized orthologue we pursued 

the idea of Cu+1 binding and storage. Unfortunately, towards the end of the project we ran into 

problems purifying the protein. As observed in the immunostaining dot blot in Figure 12, the 

protein was expected to be eluted in the 300 mM imidazole fractions. However, in the Coomassie 

stained gel in Figure 13 there are no protein bands for the 150 mM imidazole or 300 mM imidazole 

fractions around the 12.5 kDa area where Csp1 is expected to separate. To determine where Csp1 

is eluting, it would be beneficial to run a Western Blot where we could observe specifically where 

our protein is congregating. Csp1, a tetramer in non-reducing environments, may have separated 
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to other weight bands if it was unable to be denatured fully. In the gel there are bands in the 25 

kDa and 37.5 kDa, which might be composed of Csp1 dimmers or trimmers, but in order to confirm 

this theory immunostaining is needed. Due to time constrains and difficulty purifying the protein 

the Cu+-Csp1 binding analysis were not performed. 

The role of Csp1 in Cu+ homeostasis remains elusive. Our RT-qPCR results show that Csp1 

might not be involved in Cu+ homeostasis. However, these results do not rule out a possible role 

for Csp1 in Cu+1 detoxification due to the high number of Cu+1 ions that it can possibly bind. 

Suggesting that regulation of Csp1 under Cu+ stress might occur at a post-transcription.  

Nonetheless, a solid path to follow has been laid down to further investigate its role. Future studies 

of Csp1 should start by looking at alternative protocols to promote the homologous recombination 

of the plasmid Csp1::pCHESIΩKm in order to obtain the mutant strain. Once obtained, plasmid 

Csp1::pUC18T can be used to complement the mutant strain. This should be done in tandem with 

the Csp1::pBAD plasmid obtained here to purify the Csp1 His-tagged protein to determine its 

ability to bind Cu+1. The completion of these experiments would give us a better and more detailed 

understanding of the role of Csp1 in P. aeruginosa. 
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