
The Impact of Latency on Players in First-person Shooter
Games

A Dissertation Submitted to the Faculty

by

Shengmei Liu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Computer Science Department
Worcester Polytechnic Institute

Dec 2022

Ph.D. Advisor (Mark Claypool) Department Head (Craig Shue)

Committee

Professor Mark Claypool - Computer Science, Worcester Polytechnic Institute

Professor Carl Gutwin - Computer Science, University of Saskatchewan

Professor Lane Harrison - Computer Science, Worcester Polytechnic Institute

Doctor Jamie Sherman - Senior Researcher, Atlassian

Abstract

The first-person shooter game is the most popular genre in esports [Mur21] and

among the most affected by latency [CC10]. In general, the lower the latency, the

sooner a player sees the outcome of their actions. Techniques to study latency and

individual games cannot scale to cover all possible first-person shooter games. Our

approach is to study and model the primary actions in first-person shooter games,

and use the models as building blocks to simulate first-person shooter scenarios with

latency. We focus on the two main actions players take in first-person shooter games

– navigation (get in position to shoot or avoid being shot), and selection (shoot at

a moving or stationary target). We gather data on each action via user studies and

build mathematical models for player performance. By incorporating the models for

different actions, we simulate game scenarios by sampling in-sight windows and shots

in the windows and varying parameters for different game scenarios. We validate

the simulation results using data from first-person shooter games, finding that our

simulation predicts outcomes from a custom FPS game well, but less well on CS:GO

data probably due to difference in game modes and built-in latency compensation.

Once validated, we simulate first-person shooter games with a broad range of games

and game configurations including latency, latency compensation, player skill, room

size, firing rate and target size. We find that latency compensation, number of hits

required to kill an opponent and player skill have large effects on the performance

of players with latency, but map size, effect size and firing rate do not.

Contents

1 Introduction 1

2 Background 6

2.1 First-person shooter game . 6

2.2 Client-server Architecture . 10

2.3 Latency Compensation . 11

2.3.1 Self-prediction . 16

2.3.2 Time Warp . 17

3 Related Research 19

3.1 Gaming Actions . 19

3.1.1 Selection . 19

3.1.2 Navigation . 20

3.2 Impact of Latency . 21

3.2.1 Local Latency . 22

3.2.2 Network Latency . 23

3.2.3 Quality of Experience (QoE) 24

3.2.4 Latency Compensation Techniques 25

3.3 First-person Shooter Games . 27

3.4 Players . 28

i

3.4.1 Reaction Time . 28

3.4.2 Player Skill . 29

4 Proposed Approach 31

5 Navigation 34

5.1 Navigation Methodology . 35

5.1.1 Hide and Seek Game . 35

5.1.2 Navigation Testbed Setup . 37

5.1.3 Navigation User Study Procedure 41

5.2 Navigation Results . 45

5.2.1 Navigation Demographics . 46

5.2.2 Opponent . 47

5.3 Navigation Analysis . 48

5.3.1 Local Latency versus Network Latency 49

5.3.2 Player Performance of Navigation 50

5.3.3 QoE of Navigation . 51

5.3.4 Seeker Time and Hider Time 52

5.3.5 Actions per Minute . 52

5.3.6 With Latency Compensation Techniques 54

5.3.7 Navigation Summary . 56

5.4 Navigation Models . 57

5.5 Navigation Limitations . 61

5.6 Navigation Summary . 63

6 Selection 64

6.1 Selection Methodology . 64

6.1.1 3D Target Selection Game . 65

ii

6.1.2 Testbed Setup of Selection . 66

6.1.3 User Study Procedure of Selection 69

6.2 Selection Analysis . 72

6.2.1 Selection Results . 72

6.2.2 Without Latency Compensation 74

6.2.3 With Latency Compensation 76

6.2.4 Local Latency and Network Latency 79

6.2.5 Target Motion . 82

6.2.6 Selection Models . 84

6.3 Selection Limitations . 86

6.4 Selection Summary . 87

7 Simulations 89

7.1 Simulation Game . 89

7.2 Models with Player Skill . 90

7.3 Simulation Overview . 94

7.4 Simulation Algorithm . 95

7.4.1 Structures . 96

7.4.2 Functions . 96

7.5 Number of Iterations . 106

7.6 Simulation Parameters . 106

7.6.1 Change Parameters - Bottom Up 107

7.6.2 Change Parameters - Top Down 109

8 Validation: Commercial First-person Shooter Game 113

8.1 The Effects of Local Latency on CS:GO Game Players 113

8.1.1 CSGO (Local Latency) Study Methodology 114

iii

8.1.2 CSGO (Local Latency) Study Analysis 120

8.1.3 CSGO (Local Latency) Study Limitations 130

8.1.4 CSGO (Local Latency) Study Summary 132

8.1.5 Simulation Validation (CSGO (Local Latency) Study) 133

8.2 The Effects of Network Latency on CS:GO Game Players 136

8.2.1 CSGO (Network Latency) Study Methodology 136

8.2.2 CSGO (Network Latency) Study Analysis 140

8.2.3 CSGO (Network Latency) Study Limitations 146

8.2.4 CSGO (Network Latency) Study Summary 146

8.2.5 Simulation Comparison (CSGO (Network Latency) Study) . . 147

8.3 Validation with CS:GO Summary . 151

9 Validation: Custom First-person Shooter Game 152

9.1 Methodology for Validation with the Custom Game 152

9.1.1 A Custom First-Person Shooter Game 153

9.1.2 Testbed Setup for Validation with the Custom Game 155

9.1.3 User Study Procedure for Validation with the Custom Game . 158

9.2 Results . 161

9.2.1 Demographic Information . 161

9.2.2 Fatigue Analysis . 163

9.2.3 Inconsistency Analysis . 163

9.3 Comparison of the Seeker and Hider Intervals 164

9.4 Comparison with Simulations . 167

9.5 Simulations Accuracy . 169

10 Exploration 171

10.1 Performance and Latency . 171

iv

10.2 Latency Compensation Techniques 172

10.3 Local latency . 174

10.4 Number of Hits . 175

10.5 Firing Rate . 175

10.6 Map Size . 176

10.7 Target Size . 177

10.8 Player Skill . 178

10.9 Comparison of Parameter Effects . 179

10.10Exploration Summary . 181

11 Conclusion 182

12 Future work 186

v

List of Figures

2.1 Game genres – precision-deadline classification [CC10] 8

2.2 Delay sensitivity decision tree depending upon different gaming char-

acteristics [SSZ+20] . 8

2.3 Trade-offs between responsiveness and consistency of latency com-

pensation techniques . 11

2.4 An example of self-prediction. 17

2.5 Time warp . 17

2.6 Shot around corner . 17

4.1 Methodology . 32

5.1 Hide and Seek map. 36

5.2 Hide and Seek screenshot. 36

5.3 Hide and Seek computer configuration. 37

5.4 Measuring local latency . 38

5.5 Reaction trial - step 1 . 43

5.6 Reaction trial - step 2 . 43

5.7 Reaction trial - step 3 . 43

5.8 Reaction trial - step 4 . 43

5.9 Reaction time (ms) - user study A . 46

vi

5.10 Reaction time (ms) - user study B . 46

5.11 Opponent score versus player order. 48

5.12 Score versus latency – comparing local latency and network latency. . 49

5.13 Score versus latency. 51

5.14 QoE versus latency. 51

5.15 Seeker time versus latency. 53

5.16 Hider time versus latency. 53

5.17 Actions per minute versus latency. 53

5.18 Score versus latency. 55

5.19 Seeker interval distribution. 58

5.20 Hider interval distribution. 58

5.21 Weibull model parameters based on latency. 59

6.1 3D target selection game screenshot. 66

6.2 Client and server configuration of the selection study. 67

6.3 Reaction time (ms) . 73

6.4 Elapsed time versus total latency . 74

6.5 Accuracy versus total latency . 74

6.6 QoE versus total latency without latency compensation 76

6.7 Elapsed time versus latency. 77

6.8 Accuracy versus latency. 77

6.9 QoE versus network latency with latency compensation 78

6.10 Elapsed time versus local latency with 100 ms network latency 81

6.11 Accuracy versus local latency with 100 ms network latency 81

6.12 QoE versus local latency with 100 ms network latency 81

6.13 Elapsed time versus target motion . 83

6.14 Accuracy versus target motion . 83

vii

6.15 Distributions of first hits without latency compensation 84

6.16 Distributions of first hits with latency compensation and 175 ms of

latency . 84

7.1 Distributions of in-sight windows . 91

7.2 Distributions of out-of-sight windows 91

7.3 Distributions of elapsed time . 92

7.4 Opponent visibility intervals in simulation game 95

7.5 Opponent visibility intervals in simulation game 95

7.6 Hit timeline. The player gets the required number of hits first win

the game. 95

7.7 Average win rate versus iterations . 107

7.8 Average win rate standard deviation versus iterations 107

8.1 User study CS:GO map – Mirage . 115

8.2 CS:GO hours played . 121

8.3 Reaction times . 121

8.4 Accuracy – Automatic . 123

8.5 Accuracy – Sniper . 123

8.6 Score – Automatic . 123

8.7 Score – Sniper . 123

8.8 Accuracy – Combined . 123

8.9 Score – Combined . 123

8.10 QoE – separate questions . 125

8.11 QoE – combined questions . 127

8.12 QoE – combined questions and weapons 127

8.13 Shots fired – Automatic . 129

viii

8.14 Shots fired – Sniper . 129

8.15 Movement – Automatic . 130

8.16 Movement – Sniper . 130

8.17 Accuracy – Sniper versus Automatic 131

8.18 Score – Sniper versus Automatic . 131

8.19 CS:GO simulation . 135

8.20 CS:GO user study . 135

8.21 CS:GO computer configuration . 137

8.22 FPS hours . 141

8.23 CS:GO hours . 141

8.24 Reaction time . 141

8.25 Accuracy (means with 95% confidence intervals) 141

8.26 Score (means with 95% confidence intervals) 141

8.27 Accuracy – latency compensation (means with 95% ci) 143

8.28 Score – latency compensation (means with 95% ci) 143

8.29 QoE – combined questions (means with 95% ci) 145

8.30 CS:GO simulation . 150

8.31 CS:GO user study . 150

9.1 The custom FPS game map. 154

9.2 The custom FPS game screenshot. 154

9.3 First-person shooter game computer configuration. 155

9.4 Reaction time (ms) . 162

9.5 Win rate of “best” rounds . 164

9.6 Fraction visible . 165

9.7 Seeker interval distribution from the navigation study 166

9.8 Seeker interval distribution from the custom FPS game study 166

ix

9.9 Hider interval distribution from the navigation study 166

9.10 Hider interval distribution from the custom FPS game study 166

9.11 Win rate for test player . 169

9.12 Simulation accuracy . 170

10.1 Simulated win rate for test player . 173

10.2 Simulated win rate for test player - compensation 173

10.3 Simulated win rate for test player - local latency and no latency com-

pensation . 174

10.4 Simulated win rate for test player - with local latency both time warp

and self-prediction . 174

10.5 Simulated win rate for test player - number of hits required 175

10.6 Win rate with firing rate (number of hits required to kill is 1) 176

10.7 Win rate with firing rate (number of hits required to kill is 10) 176

10.8 Simulated win rate for test player - map size 177

10.9 Simulated win rate for test player - target size 178

10.10Simulated win rate for test player - skill 179

x

List of Tables

2.1 Top 10 Esports Games in 2019 [Mur21] 7

2.2 Latency compensation techniques . 13

5.1 Testing conditions for user study A. 38

5.2 Testing conditions for user study B. 39

5.3 Study A demographic information . 45

5.4 Results Summary - study A . 56

5.5 Results Summary - study B . 57

5.6 Models for seeker interval. 59

5.7 Modeling results for seeker and hider intervals with Equation 5.1. . . 60

5.8 Seeker modeling results with latency compensation techniques. 61

6.1 Parameters for the user study. 69

6.2 Demographic information . 72

6.3 Pairwise T-test (p-value) for data at local latency 25 ms, in order of

elapsed time, accuracy and QoE . 80

6.4 Pairwise T-test (p-value) for data at local latency 100 ms, in order of

elapsed time, accuracy and QoE . 80

xi

6.5 Effect size (Cohen’s d) for data at local latency 25 ms, in order of

elapsed time, accuracy and QoE. (We compute effect size only if T-

test reports significance in Table 6.3) 80

6.6 Effect size (Cohen’s d) for data at local latency 100 ms, in order

of elapsed time, accuracy and QoE. (We compute effect size only if

T-test reports significance in Table 6.4) 80

6.7 Models for selection. 85

6.8 Parameters of models for elapsed time distributions (Equation 6.1) . . 86

7.1 Simulation coefficient values - in sight window 93

7.2 Simulation coefficient values - selection 94

7.3 Change parameters - bottom up . 110

7.4 Change parameters - top down . 112

8.1 Total latencies for the user study. 115

8.2 Weapon attributes . 115

8.3 Subjective questions per round . 116

8.4 Demographic information . 120

8.5 Performance summary . 122

8.6 Analysis Summary – Accuracy . 126

8.7 Analysis Summary – Score . 127

8.8 Parameters values for the CS:GO local latency simulation. 134

8.9 Subjective questions per round . 138

8.10 Demographics . 140

8.11 Significance and Cohen’s D Effect Size (compared to 25 ms) 143

8.12 Linear regression for performance . 143

8.13 Linear regression for QoE questions 144

xii

8.14 Parameters values for the CS:GO network latency simulation. 149

8.15 Validation with CS:GO Summary . 151

9.1 Latency values for the user study. 157

9.2 Game parameter values for the user study. 158

9.3 Demographic information for test players 161

10.1 Two-player FPS Game parameters values for the “base” exploration. 172

10.2 Simulation results for test player with default values and 10 x values

of parameters . 180

xiii

Chapter 1

Introduction

Computer games are one of the world’s most popular forms of entertainment, with

global sales increasing at an annual rate of 10% or more [wep22]. Among the different

game genres, first-person shooter (FPS) games are some of the most popular. Over

20% of sales of computer games were FPS games in 2019 and about one-third of all

gamers like to play FPS games [rai21]. In all FPS games, players take on the first-

person perspective of an avatar and move and shoot targets to accomplish tasks,

but there is a wide range of play modes, weapons and maps.

FPS games are among the most sensitive to latency [CC06]. Latency between

a player’s input and the game output can impact the responsiveness and consis-

tency of the game, hurting player performance and degrading quality of experience.

To reduce latencies, serious gamers typically want fast computers with upgraded

processing, memory and graphics capabilities, and fast networks with low round-

trip times between the client and the game server. There are two main sources

of latency in first-person shooter games – from the local system, such as from the

mouse, operating system and monitor, and from the network between the client and

the server. While both sources of latency affect the player, they manifest differ-

1

ently – local latency lags all player input until game output, while network latency

lags communication with the server. This means local latency makes game controls

feel unresponsive, while network latency makes player actions resolved later by the

server.

Many latency compensation techniques [LXC21] were developed to mitigate the

effects of latency on gamers, usually designed for network latency. In general, the

techniques either mask latency from the player perspective or adjust game states

between clients for more consistency and fairness. Most online commercial first-

person shooter games deploy several latency compensation technique to improve

player performance and quality of experience: 1) With time warp, the server makes

decisions based on game states when the client acted so players can play as if there

is no network latency; and 2) with self-prediction, the client predicts the game state

based on player input, but before getting confirmation from the server.

There have been studies on latency and commercial games [FRS05, HFPG16],

especially network latency and FPS games [Arm03, BCL+04, QML+04, AJG+13]

owing to the sensitivity of FPS games to network latency and the popularity of

FPS games in the competitive and esports scenes. However, such studies often eval-

uate games with built-in latency compensation techniques, thus the results might

not generalize to other games. Moreover, theses studies do not evaluate how the

latency compensation techniques improve player performance and quality of expe-

rience. Other games research has studied local latency, usually focusing on a subset

of a full game [LC15, LG18, LG19] - for example, a gaming action or task instead

of the full game. While this prior research has been valuable for understanding

latency and games, it has focused on a specific game task or a specific game with

pre-set conditions. There has been no good answer as to how latency degrades

performance for first-person shooter gamers across different games and game con-

2

figurations (e.g., weapons, avatar size and map size), latency types, latency values

and latency compensation techniques.

A common approach to study latency and games is with user studies, which can

be expensive and time-consuming. A user study for one game and a limited set of

conditions normally takes at least 6 months and tens of thousands of dollars. Given

the wide range of games and possible configurations, player skills, latency types and

values, and latency compensation techniques, it is not practical to iterate over all

possible FPS configurations with user studies. Plus, there are future first-person

shooter games with different configurations that have not yet been developed.

Instead of studying each possible FPS configuration, our approach is to isolate

and model game actions in FPS games and then use those models to simulate full

games. Game actions are types of player interactions within the game. There are 2

primary game actions in FPS games: navigation and selection. Navigation is moving

an avatar to a position to avoid being shot or to better shoot enemies. Selection is

pointing to a target with an input device and clicking to shoot, e.g., moving a reticle

over an opponent avatar and clicking the mouse to shoot the opponent. We collect

player performance and QoE data on the two FPS game actions with user studies.

In the user studies, the latency types and values and compensation techniques are

controlled and applied to the game rounds.

From the user study data, we build mathematical models for the distribution of

player performance versus latency considering latency compensation techniques and

player skill. We integrate the models of navigation and selection into simulations

on different FPS game scenarios and validate the simulation results using data from

FPS games. The validated simulations are used to explore a wide range of game

scenarios and game configurations.

Analysis of the results from the navigation user study indicates local latency

3

and network latency have similar effects on navigation in the absence of latency

compensation. Both subjective quality of experience (QoE) and objective player

performance degrade linearly with total latency, where 100 ms increase in latency

results in about an 8 percent decrease in player score and a 20 percent decrease

in QoE. The impact of latency depends upon the navigation goal, however, with

latency hindering seeking far more than hiding. We derive an analytic model that

uses a Weibull equation to describe the time intervals that is of use for generalizing

navigation with latency and is used in our first-person shooter simulations. Analysis

of the results from the selection user study indicates both subjective quality of expe-

rience (QoE) and objective player performance degrade linearly with total latency.

A 100 ms increase in latency results in about 30 percent improvement in time to

select (shoot a target) and a 12 percent decrease in QoE. We derive analytic models

of the time to select that generalize target selection with latency and latency com-

pensation that uses an exponential equation and is used in our first-person shooter

simulations. Both latency compensation techniques investigated – time warp and

self-prediction – can improve player performance and QoE and, when applied to-

gether, can nearly completely overcome the effects of latency on performance and

QoE.

We use our models in simulations of first-person shooter scenarios, validating

them with data from a custom first-person shooter game and CS:GO. The simulation

predicts game scenarios from the the custom first-person shooter game well for most

conditions evaluated. There are some differences between simulation results and

CS:GO results, probably due to difference in game mode (in CS:GO, players play

against 20 other bots) and built-in latency compensation techniques, but overall

trends with latency hold.

Finally, we are able to explore the rich space of first-person shooter games with

4

the validated simulations. The exploration reveals that latency, latency compensa-

tion, number of hits required to kill, firing rate (when number of hits required to kill

is high), and player skill have a large effect on player performance in the presence

of latency, while target size, map size and firing rate (when number of hits required

to kill is low) have a lower effect.

The rest of this thesis is organized as follows: Chapter 2 gives background on

work related to games, latency and latency compensation techniques; Chapter 3

describes the related work and literature on the actions of selection and navigation

based on latency and player skills; Chapter 4 provides our approach to understand

the impact of latency on first-person shooter game players; Chapter 5 and Chap-

ter 6 details user studies and model of navigation and target selection in first-person

shooter games respectively; Chapter 7 describes the simulations where we inte-

grate the models and simulate first-person shooter scenarios; Chapter 9 validates

the simulations using a custom first-person shooter game; Chapter 8 validates the

simulations using a commercial first-person shooter game - Counter Strike: Global

Offensive; Chapter 10 explores the impacts of latency on player performance with

different latency compensation techniques, number of hits required, firing rate, map

size, target size and player skill using the validated simulations; Chapter 11 summa-

rizes our conclusions and contributions in this dissertation; and Chapter 12 includes

possible future work.

5

Chapter 2

Background

This chapter presents the background of our research in First-person shooter games

(Section 2.1), client-server architectures (Section 2.2) and latency compensation

techniques (Section 2.3).

2.1 First-person shooter game

A computer game involves player interactions in a virtual world using an input de-

vice – such as a mouse or a controller – to update the game states, which are then

rendered and displayed on a screen, such as a monitor or a TV. Players typically

execute one or more tasks to accomplish missions for fun and satisfaction. In many

games, players can also easily interact with other players over the Internet. Com-

puter games have been one of the most popular entertainments. The computer game

industry is estimated to be worth $197 billion USD in 2022, with a steady upward

trend over the past 10 years. Among all gaming platforms, PCs continue to be one of

the most popular platforms for computer games despite the increasing competition

from console and mobile gaming platforms [wep22]. First-person shooter games are

among the most popular game genres. Table 2.1 lists the top 10 esports games by

6

total prize pool in 2019 [Mur21], of which 6 are first-person shooter games.

In a first-person shooter game, players take on the first-person perspective of an

avatar, moving and shooting targets with various types of weapons to accomplish

goals in a 3D environment. The game mode can be either single player, multi-

ple players playing against each other (free for all), or multiple players forming a

team and collaborating. Most first-person shooter games are beginner-friendly and

challenging at the same time [rai21]. Jansz and Tanis [JT07] point out that the

socialization in first-person shooter games makes people spend even more time play-

ing them. First-person shooters have been one of the most popular game genres.

Valorant (Riot Games, 2020), a first-person shooter game launched in June 2020,

was played by about 3 million people per day [Sha21]; Apex Legends (Electronic

Arts, 2019) has over 70 million total registered players and the “old school” game

Counter Strike: Global Offensive (Valve, 2012) first released in April 2012 still has

about 600,000 concurrent players on average [gam20].

Table 2.1: Top 10 Esports Games in 2019 [Mur21]

Rank Prize pool(USD) Game Year Publisher Game genre
1 64.4M Fortnite 2017 Epic Games First/Third-person Shooter
2 46.7M DOTA 2 2013 Valve Corporation Multiplayer Online Battle Arena
3 21M Counter Strike: Global Offensive 2012 Valve Corporation First-person Shooter
4 12.7M PUBG 2017 Bluehole Inc. First/Third-person Shooter
5 9.1M Overwatch 2016 Blizzard Entertainment First-person Shooter
6 9M League of Legends 2009 Riot Games Multiplayer Online Battle Arena
7 8.9M Magic: The Gathering 1993 Wizards of the Coast Strategy
8 6.5M Call of Duty: Black Ops 2010 Activision First-person Shooter
9 5.8M Arena of Valor 2016 Garena Multiplayer Online Battle Arena
10 4.1M Rainbow Six Siege 2015 Ubisoft First-person Shooter

Moreover, first-person shooter games are among the game genres which are most

impacted by latency. Related research has proposed game classification approaches

and models to help identify the sensitivity of games to latency.

Claypool and Claypool [CC06] define the precision-deadline model motivated by

the effects of latency. Figure 2.1 depicts the model where the x-axis is deadline and

the y-axis is precision. With the model, for a given game action, the higher the

7

Figure 2.1: Game genres – precision-deadline classification [CC10]

precision required and the tighter the deadline the greater the impact of latency on

performance. The closer the game to the origin in the model (the bottom left corner),

the greater the impact of latency on performance. First-person perspective games

normally have the highest precision and tightest deadline, third person perspective

games follow and omnipresent perspective games generally have the lowest precision

and loosest deadline. Within first-person perspective games, shooting games with

high-precision weapons are among the most heavily impacted by latency.

Figure 2.2: Delay sensitivity decision tree depending upon different gaming charac-
teristics [SSZ+20]

8

Based on the precision-deadline model, Sabet et al. [SSZ+20] present an evalua-

tion method to classify games with respect to their delay sensitivity. They define 9

characteristics which influence the sensitivity of a game towards delay (without the

presence of latency compensation techniques), and provide the approaches to quan-

tify the characteristics. The 9 characteristics are Temporal Accuracy (TA) – the

available time interval for a player to perform a desired interaction, Spatial Accu-

racy (SA) – the degree of precision required to complete an interaction successfully,

Predictability – if a player is able to estimate the upcoming events in the game,

number of Input Directions (NID): – the number of possible input directions in a

game scenario, Consequences (CQ) – the negative consequences due to failing to

perform the desired action, Importance of Actions (IoA) – how much each action

for a game scenario can change its outcome, number of Required Actions (NRA),

Feedback Frequency (FF) – how often the game gives feedback to the player and

Type of Input (ToI) – the temporal aspects of player inputs on a spectrum of dis-

crete to continuous. The characteristics were quantified with 30 different games,

and the games were mapped by means of a decision tree, as indicated in Figure 2.2.

With the decision tree, two classes of sensitivity (low and high) were defined based

on four characteristics, ToI, NID, PR and TA.

First-person shooter games typically have both continuous and discrete inputs

which have a TOI of 5. Moreover, first-person shooter games often require immediate

interactions which have a TA of 6. According to the decision tree model, first-person

shooter games have high sensitivity to latency, indicated by the red arrows and FPS

labels in Figure 2.2.

In my research, we focus on first-person shooter games on a PC, with a mouse

and a keyboard as input devices, and a monitor as a display; the mouse and keyboard

are best for aiming [gee21] and are the most common peripherals for professional

9

first-person shooter game players in esports.

2.2 Client-server Architecture

While underlying network game architectures can be peer-to-peer [SKH02], most

use a client-server architecture with an authoritative game server. With the author-

itative game server, most player actions are required to be approved on the server

for their effects to change the game state. Moreover, the consequences of actions

are often processed on the server and then synchronized to clients. For example, in

a first-person shooter game, once a player pulls the trigger of a weapon, the client

will notify the server about the action information and server will then decide if this

shot is a hit or a miss before sending the updated game states to the client. This

architecture is popular for network games since firewall rules can make it difficult

for clients to connect to each other. Having a single server can also help a game

scale with number of players. Architectures with a trusted server (e.g., run by the

game publisher) can reduce the risk of players cheating.

Typically, the server is at a “well-known” IP address and port and is public –

reachable by all clients. In some cases, a “server browser” setup allows game servers

to register their individual IP addresses and ports with a sort of central server,

allowing clients to connect to the central server and browse available game servers,

the individual game servers begin differentiated based on configuration parameters

(e.g., a certain game mode, map or latency). Once an individual game server is

chosen, the central server provides the client with the game server IP address and

port whereupon the client connects to the game server to play the game. Some

network game architectures have one client act as the host to which the other clients

connect. While these have peer-to-peer connections, they can still be viewed as a

10

client-server architecture in that the host acts as a server, even though it also acts

as a client for that player.

2.3 Latency Compensation

Figure 2.3: Trade-offs between responsiveness and consistency of latency compen-
sation techniques

Latency affects the responsiveness and consistency of a game. Responsiveness

denotes how fast the game gives feedback to player actions. Consistency denotes

how tightly the game states synchronize between the clients. Latency compensation

techniques have been widely used in most commercial games to mitigate the effects

of latency on players. Latency compensation techniques often provide a trade-off

between responsiveness and consistency, as indicated in Figure 2.3. In the figure, the

x-axis is inconsistency and the y-axis is unresponsiveness. The closer the game to the

bottom left corner, the better the responsiveness and consistency. Games with “no

compensation” would be at the top right. Different game genres may use different

sets of compensation techniques to find the best balance between responsiveness and

11

consistency for their player actions. For example, real time strategy (RTS) games

often use synchronization to ensure fairness between players and may trade-off worse

responsiveness for better consistency. In contrast, first-person shooter games require

low response time to help with aiming but may care less about consistency.

Table 2.2 includes eleven compensation techniques [LXC21] applied to first-

person shooter games. The first column is the name of the technique. The second

column is the usage of the technique in first-person shooter games. The third col-

umn is the impact of the technique in first-person shooter games. The forth column

is whether we study the technique with the thesis.

The first technique in the list is latency concealment. Latency concealment

visually masks latency from the client to the server so as to minimize the perception

of unresponsiveness. In first-person shooter games, clients can show an animation

and play sounds of movement and shooting before the action is resolved by the server.

This technique may improve QoE. Since this technique likely does not change player

performance, which is the main focus of our research, we do not study it.

Latency exposure gives a visual indicator of the magnitude of the latency from

the client to the server. In first-person shooter games, the latency value is often

shown on the screen. Players may change their weapon choice and play style upon

observing the latency. However, latency exposure may not directly change player

performance and QoE and so is excluded from our research.

Self-prediction predicts game state based on player input but before getting con-

firmation from the server. In first-person shooter games, movement and aiming

are typically predicted on the client; the client does not wait on the server before

rendering the result of these actions. Self-prediction is widely used in first-person

shooter games. Self-prediction may change both player performance and QoE. We

implement self-prediction on customized games made with Unity and study the tech-

12

Table 2.2: Latency compensation techniques

Technique Use in FPS Primary Player Impact Study?
Latency Clients immediately QoE No
concealment show animations, sounds

Latency Latency value shows Play style No
exposure on screen

Self- Client predicts movement Performance Yes
prediction and orientation and QoE

Interpolation Client predicts previous QoE No
states for other avatars

Extrapolation Client predicts future Performance No
states of other clients and QoE

Speculative Server predicts game Performance No
execution state based on and QoE

possible player inputs

Time Server resolves actions Performance Yes
warp based on previous and QoE

client game states

Incoming Equalize delay Fairness No
delay after receiving a

message (synchronization)

Outgoing Adds delay before Fairness No
delay sending message

(synchronization)

Control Server or client assists Performance No
assistance aim and movement and QoE

Attribute Server changes game Performance No
scaling world attributes (e.g., AoE) and QoE

13

nique with user studies. We then incorporate the user study results into subsequent

models and simulations.

Interpolation predicts past states for objects controlled by other players based

on the current state and previously known states. In first-person shooter games,

the client predicts previous states for other avatars in order to smooth visuals be-

tween server updates. Interpolation may improves QoE since avatar movement are

smoothed, but since it may not affect player performance which is the main focus

of our research, we do not study it.

Extrapolation predicts future states for objects controlled by other players as-

suming current behaviors continue. In first-person shooter games, extrapolation

improves consistency between players and allows players to aim at opponents when

shooting instead of aiming ahead of them. Extrapolation may improve both player

performance and QoE with accurate prediction, but the effect of extrapolation re-

lies on the accuracy of the prediction algorithm. Errors in prediction may actually

degrade player performance and QoE. The variety of possible prediction algorithms

also complicates its study. We do not study this technique in our research due to

these challenges.

Speculative execution computes the game world state based on possible player

input before it has actually happened and adopts this pre-computed state if/when

the input is provided. Speculative execution may improve both player performance

and QoE with accurate prediction on player input. To the best of our knowledge,

speculative execution is not used in any of commercial first-person shooter games,

perhaps due to the difficulties in implementation. Because its lack of use in first-

person shooter games, we do not include this technique in our thesis.

Time warp rolls back game state on the server to when the player action occurred

on the client, applies the action, then rolls the game state forward to the current

14

time. In first-person shooter games, the server decides whether a player hits a target

based on the previous game state when the player fired the shot. This technique

improves game responsiveness and lets players aim directly at the target as if there

is no latency. Time warp may improve both player performance and QoE and is

widely used in commercial first-person shooter games. We implement time warp on

customized games made with Unity and evaluate its impact on player performance

and quality of experience with user studies. We then incorporate the user study

results into subsequent models and simulations.

Incoming time delay buffers player actions before applying them so that actions

arrive (and are applied) at all clients simultaneously. Outgoing delay works similarly

to incoming delay but adds delay before sending a message instead. Both incoming

delay and outgoing delay improve fairness but may not improve player performance

and QoE since they may increase latency. These two techniques are normally not

used in multi-player first-person shooter games. We do not study incoming time

delay and outgoing time delay because they may not improve player performance

and QoE.

Control assistance adjusts the outcome of player input to accommodate for inac-

curacies due to latency. In first-person shooters, control assistance normally refers

to aim assistance. It improves performance and QoE but it is not typically used in

games with a PC with mouse. Since our research focus is on first-person shooter

games on PCs with a mouse, we do not include it.

Attribute scaling increases or decreases numeric attributes of objects and other

game world parameters to adjust game difficulty so as to make player actions easier

to complete with higher latency. For example, in first-person shooter games, at-

tribute scaling can increase target size and lower target moving speed with higher

latency. This should improve both player performance and QoE since it lowers game

15

difficulty. However, attribute scaling is not typically used in multi-player games be-

cause clients may have different latency values, so we do not include this technique

in our research.

Some latency compensation techniques may change player style or improve fair-

ness but may not improve player performance and QoE (e.g., latency exposure).

Some techniques may only improve QoE but may not improve performance (e.g.,

latency concealment). Some techniques such as control assistance are typically used

in console games. Given this, we focus on techniques that improve both performance

and QoE and are widely used in first-person shooter games on PCs - self-prediction

and time warp - with user studies on both actions. We then incorporate the user

study results into subsequent models and simulations.

Sections 2.3.1 and 2.3.2 introduce the two techniques - self-prediction [LSGH17]

and time warp [SG13] in detail.

2.3.1 Self-prediction

Self-prediction predicts game state based on player input, but before getting con-

firmation from the server. Self-prediction is a natural technique to use for network

game programmers since most clients run a full-featured game engine able to incor-

porate player input and compute game object interactions (e.g., physics, including

collisions), and doing so can provide immediate feedback for the player.

Figure 2.4 depicts an example of self-prediction. A time t0 on the left, the player

has a view of the game world that is consistent with the server’s (not shown). At

time t1, the player has provided some game input (e.g., press the right arrow key) in

order to move the green avatar to the right. The client assumes that this movement

will be allowed by the server and renders the world with the green avatar in the

predicted location. Once the server receives and then responds to the player input

16

Figure 2.4: An example of self-prediction.

Figure 2.5: Time warp

Figure 2.6: Shot around corner

at time t2 there are two possibilities: in the first case, shown at the top, the server

has accepted the input and the green avatar’s new position is confirmed; in the

second case, shown at the bottom, the server has rejected the player input (e.g., if

the avatar is blocked by another object unknown to the client) and the client renders

the world as specified by the server.

2.3.2 Time Warp

Time warp rolls back game state on the server to when the player action occurred

on the client, applies the action, then rolls the game state forward to the current

17

time.

Figure 2.5 depicts an example of time warp. The figure shows the game world

for a shooter game on a Client and the Server, with time advancing from top to

bottom. The player on the client is shooting at a green avatar that is moving right

to left, with the “plus” sign in the middle representing a weapon reticle. At time t0

at the client, the green avatar is to the right of the reticle, moving into the reticle

at time t1 where the player pulls the trigger and that action is sent to the server

arriving just after time t2. Meanwhile, on the server, the green avatar moved past

the reticle at time t1 and has continued right at time t2. When the action arrives

at the server, the server “warps” time back to when the action occurred at time t1,

applying the action to the world representation at that time.

However, resolving an event in the past and rolling it forward may cause already

rendered client game states to be inconsistent with the new view. This is a well-

known artifact of some shooting games, known as “shot around the corner”, shown

in Figure 2.6. At time t1, at the blue avatar’s client, the green avatar is in sight

and the blue player fires. However, by time t2, the green avatar has reached a safe

position around the corner from the blue player and cannot be targeted. However,

with time warp, the server, upon receiving the blue player’s action, rolls back time

to the green avatar’s position at time t1 and applies the action. This hits the green

avatar. Rolling the game world forward, with the green avatar hurt or killed, may

feel like being “shot around the corner” for the green player.

Time warp is often called latency compensation or lag compensation in some

papers and, more often, in online blogs and player posts.

18

Chapter 3

Related Research

This chapter presents previous research in related topics - gaming actions (Sec-

tion 3.1), impact of latency (Section 3.2), first-person shooter games (Section 3.3)

and players (Section 3.4).

3.1 Gaming Actions

Game actions are the main actions player take within game. There are mainly two

game actions in first-person shooters - navigation and selection. The navigation

action is moving an avatar to a position to shoot an opponent or avoid been shot.

The selection action is pointing to a moving or a stationary target and clicking the

“fire” button. This section presents related work about these two actions.

3.1.1 Selection

Selection refers to a player’s ability to click on a target with an input device. Long

and Gutwin [LG18] study the effects of latency on selecting a moving target. They

find target speed directly affects the impact of latency, with fast targets affected by

19

latency as low as 50 ms, but slower targets resilient to latency as high as 150 ms.

Long and Gutwin [LG19] measure selection time for different sized moving targets.

They find that the effects of delay are exacerbated by fast target speeds. Claypool

et al. [CER17] investigate selecting a moving target with a mouse in the presence

of latency. Their analysis showed target selection time is impacted exponentially by

latency and target speed for constant-velocity targets. Janzen and Teather [JT14]

conduct a study with 12 users playing a target selection game with frame rates from

15 to 60 f/s and latencies from 0 to 100 ms. The work revealed that in the lowest

frame rate conditions, latency does not significantly affect performance. However,

Latency degrades player performance significantly with decent frame rate.

There have been many studies on selection related tasks, while almost all of

them are for 2D objects. In general, while these approaches and previous work

have helped understand latency and the selection action, they generally have not

applied a model to the data gathered, or if they have, the models are for average

(expected) values and not the distributions of the values. In our research, we model

the distribution of elapsed times for selection. With the models, we can simulate

the range of player target selection actions which can help us better understand the

impact of latency on first-person shooter players.

3.1.2 Navigation

Navigation refers to controlling and moving an avatar, for example, steering a vehicle

in racing car games. Drury [Dru71] simulates vehicle steering on a path with straight

lines and circles and confirmed a linear relationship between the average velocity

and the width of the tolerance band. Accot and Zhai [AZ97] propose the Steering

Law, a predictive model of human movement, concerning the speed and total time

with which a user may steer a pointing device (e.g., a mouse) through a tunnel

20

presented on a screen (i.e., with a bird’s eye view of the tunnel), where the user

travels from one end of the path to the other as quickly as possible while staying

within the confines of the path. The total time is a function of path width and index

of difficulty. The authors later evaluate the model with 5 different input devices on

2 steering tasks [AZ99], and the model has a 0.98 or greater R2 for all devices.

Accot et al. [AZ01] study the scale effect in the framework of the Steering Law, and

found a significant scale effect in path steering performance. There are extensions

to the Steering Law since then. Kattinakere et al. [KGS07] enrich the model with

the condition of steering through constrained and unconstrained paths in above-

the-surface layers. Zhai et al. [ZAW04] extend the Steering Law to Virtual Reality

(VR) games by examining the applicability in a VR locomotion task. Friston et

al. [FKS16] conduct a user study on pointing and steering tasks and found that

latency low as 16 ms can affect player performance and the effect is non-linear.

Although the previous work is helpful in understanding the steering task - moving

an avatar to a designated position following path constraints - navigation in first-

person shooter games, where the purpose of movement is to get into position to

shoot opponents or avoid being shot, remains unexplored. Navigation in first-person

shooter games generally has no specific path constraints and the performance metrics

are also different. To the best of our knowledge, there is no such work evaluating

the impact of latency on player movement in first-person games.

3.2 Impact of Latency

This section introduces related research on latency and games, where Section 3.2.1

focuses on local latency - the latency induced by hardware like input devices and

displays; Section 3.2.2 focuses on network latency and Section 3.2.3 focuses on qual-

21

ity of experience. Section 3.2.4 describes related work in three latency compensation

techniques.

3.2.1 Local Latency

There are several works that have characterized the effects of local latency on game

player performance [ISGS15, CER17, ERC18, LG18, LG19]. These papers have gen-

erally focused on a single player action, isolating and analyzing the effects of latency

without considering the broader set of interactions of a typical game [LKS+21a].

Claypool et al. [CER17] show local latency and target speed exponentially im-

pact target selection time. Ivkovic et al. [ISGS15] find significant main effects for

local latency on target tracking and acquisition tasks, both with and without latency

compensation (aim assistance), and with a greater effect for higher target speeds.

Long and Gutwin [LG18] find target speed directly affects target acquisition with

latency, with fast targets affected by latencies as low as 50 ms but slower targets

resilient to latencies as high as 150 ms. Eg et al. [ERC18] show local latencies

from 40 ms to 400 ms negatively affect player performance for moving target se-

lection, but that performance does not co-vary with self-reported game skill. Long

and Gutwin [LG19] compare the effects of local latency across 4 different gaming

devices, demonstrating that latency affects each device differently for moving target

selection [LKS+21a]. Durnez et al. [DZC+21] show that while player performance

and quality of experience degrades with latency, exergame actions are fairly tolerant

of even hundreds of milliseconds of latency.

Understanding the effect of local latency can help understand how improvement

on systems can benefit players. Better systems can help reduce local latency. For

example, frame rate has been crucial in game-related analysis (e.g., analysis of CPU

performance) and affects player performance. Higher frame rate helps render feed-

22

back faster and provides a lower local latency. Previous studies generally focus on

frame rate and resolution as independent variables in their analysis. Claypool and

Claypool [CC07] show that player actions that require precise, rapid response, such

as shooting, are greatly impacted by degradation in frame rates below 30 f/s for a

first-person shooter game [LKS+21b].

While helpful for ascertaining the impact of system level configurations on game

players, previous research do not provide a model on how frame rate affect player

performance. However, with our model in local latency and player performance,

we are able to predict how change in system configurations affect performance of

first-person shooter players through simulations.

3.2.2 Network Latency

Numerous studies have detailed the effects of network latency and games [PW02,

Arm03, QML+04, DWW05, FRS05, CC06, AJG+13, HCW+14, HFPG16]. Most

of these studies utilize commercial games with controlled amounts of network la-

tency in a laboratory environment, rather than observing players in gaming ac-

tions [LKS+21b].

Dick et al. [DWW05] show via a survey that players generally think about 120

ms is the maximum tolerable latency for a network game, regardless of game genre,

but their user study shows players find 150 ms acceptable for the two First-Person

Shooter games and racing game tested. Pantel and Wolf [PW02] show latencies of

about 100 ms can affect car racing games. Fritsch et al. [FRS05] find players of

the role-playing game Everquest 2 can tolerate hundreds of milliseconds of network

latency, while Hoßfeld et al. [HFPG16] find players of the casual game Minecraft

are insensitive to network latencies of up to 1 second. Howard et al. [HCW+14]

indicate that for online cooperative games, a player can be affected by latency for

23

a teammate due to cascading effects on the game outcome. Based on this body

of work, Claypool and Claypool [CC06] suggest game action sensitivity to latency

can be classified by precision and deadline – higher precision and tighter deadlines

mean more sensitivity to latency. Halbhuber et al. [HKS+22] investigate the effects

of auditory latency (0 - 500 ms) on experienced first-person shooter players via a

24-player user study. They find that player experience degrades significantly with

latency and high skill players are more impacted by latency.

However, while such works have been instrumental in better understanding the

effects of network latency on players of online games, they do not necessarily repre-

sent the effects of latencies on player performance since they combine local latency

with network latency. As such, they typically deal with a high range of latencies

which are avoided by computer gamers. Also, the results in the previous work were

on specific games and the results may not generalize to other first-person shooter

games. Moreover, most network games have latency compensation techniques that

help mitigate the effects of network latency [LXC22] which can cause inaccuracy to

the results. Instead, we build games without latency compensation techniques to

evaluate the impact of network latency accurately.

3.2.3 Quality of Experience (QoE)

In game related area, Quality of experience (QoE) is a measure of player satisfaction

of a player’s experiences in a game round. More broadly, it can be a measure of

enjoyment and pleasure. The effect of latency on a gamer’s quality of experience

(QoE) is widely investigated in many papers [AGC+18]. Quax et al. [QBV+13] show

that latency has different influence in different game genres; for instance, first-person

shooter (FPS) games are more sensitive to delay than platform games. Also, Beyer

et al. [BM14] show that within the same genre, depending on the game rules and

24

implementation, the sensitivity of games may differ significantly. Moreover, Schmidt

et al. [SZM17] show that even within the same game, different scenarios might lead

to different latency sensitivities. Sabel et al. find that player’s adaptation to latency

can mitigate the impact of latency on players’ quality of experience [SSSZ+18].

Quality of experience is an important metric in gaming. Players might quit the

game when they perform well but have a poor quality of experience. We access and

analyze the impact of latency on player’s quality of experience in our user studies

of games and game actions.

3.2.4 Latency Compensation Techniques

As indicated in Section 2.3, latency compensation techniques are software algorithms

that run on the game client or game server (or both) and have been widely used

in first-person shooter games to mitigate the impact of network latency on players.

Such techniques might improve responsiveness or increase consistency (or both), but

often sacrifice one for the other (i.e., increased consistency at the cost of reduced

responsiveness or vice versa).

Much of the previous work in latency compensation techniques propose new

techniques or improve upon existing techniques but with limited evaluation. Jef-

ferson [Jef85] first proposed virtual time as a paradigm for distributed computa-

tion, with time warp as an implementation. Although multi-player games were

not identified as a use at that time, distributed discrete event simulations were.

Mauve [Mau00b] describes how timestamps and time warp can be used to overcome

mistakes made using extrapolation. In particular, an extrapolated state update

may miss a key event, such as a player being killed that time warp can roll back

to correct. Mauve [Mau00a] and Mauve et al. [MVHE04] provide a formalization

of time warp in the context of continuous, interactive media, such as computer

25

games. Jiang et al. [JSB05] mention time warp in their survey as a means to over-

come inconsistencies caused by prediction. Savery et al. [SGG10] mention the use

of time warp and the “shot around the corner” problem in commercial first-person

shooter games, whereby time warp can undo a players move to a safe location to

instead being damaged. Lee and Chang [LC15, LC17] describe and evaluate the

“shot around the corner” problem. Subsequently, they [LC18] describe how com-

mercial first-person shooters provide a limit on how far back a server rolls back time

and propose an advanced time warp technique to prevent “shot around the corner”

whereby a client can identify the player is currently safe (using their local time)

and prevent rollback. Sun and Claypool [SC19] implement and evaluate time warp

for a cloud-based custom game streaming system running a 2d arcade game. They

test 5 latency values on 30 players finding that time warp can mitigate the effects

of latency on player performance. Although this work helps evaluating time warp,

the results may not generalize to first-person shooter games. Brun et al. [BSB06]

mention self-prediction as it affects game state consistency in multiplayer games.

Burgess and Shelly [SK05, BK06] describe the use of a software design pattern

based on the notion of “optimism” where a prediction on the client is assumed to

be valid until the server does the official computation and returns the results. They

provide additional techniques for synchronization and consistency checking. Chen

et al. [CCC+07] use a form of self-prediction called an “echo” to immediately show

the player the effects of an action, even if additional delay is incurred before the

official confirmation. Wu and Ouhyoung [WO00] study “look-ahead” algorithms for

3d, head-mounted displays that predict object position and orientation. They study

algorithms with different prediction complexities – simple to more complex. Also

for a virtual environment with a head-mounted display, Tumanov et al. [TAS07]

describe predictions of “poses” for players based on the position and orientation in

26

the motion space. Le et al. [LSGH17] capture movements of the hand in a touch

interface, use these movements in a neural network, and predict the location of

future touch positions. Similarly, Antoine et al. [AMC18] use high-frequency data

gathered from a computer mouse to predict the future velocity and position. They

provide specific context for fairness in multi-player games, where players may have

different amounts of latency. Halbhuber et al. [HHS21] investigates if latency can

be compensated with data-driven ANNs predicting user inputs within a live first-

person action game. They trained the system with 24 participants and evaluated

the system in a second user study with 96 participants. The results show that the

prediction technique significantly improves player performance and experience.

Though the work may help understand the impact of the compensation tech-

niques, the evaluations do not generalize to FPS games. To the best of our knowl-

edge, none of them provide a model with the techniques on first-person shooter

game players. In our research, we study self-prediction and time warp, and model

the effects of latency on player performance self-prediction and/or time warp.

3.3 First-person Shooter Games

First-person shooter games have been a popular topic in game related research.

Amin et al [AJG+13] show player experience defines and determines the sensitivity

to latency for the FPS game Call of Duty, with competitive gamers more adept at

compensating for impaired conditions. Armitage et al. [Arm03] estimate the latency

tolerance threshold for Quake 3 to be about 150-180 ms. Quax et al. [QML+04] show

players for UT2003 that latency and latency jitter under 100 ms can degrade player

performance and quality of experience. Lee and Chang [LC15] evaluate how interpo-

lation in Counter-Strike: Global Offensive (Valve, 2012) improves player accuracy.

27

They test two latency values - 0 and 150 ms - with 4 users and find that inter-

polation can increase player accuracy significantly. Spjut et al. [SBB+19] show a

reduction in 30 ms of latency benefits first-person targeting tasks more than frame

rates above 60 f/s. Claypool et al. [CCD06] find frame rate has a marked impact

on both player performance and game enjoyment while frame resolution has little

impact on performance and some impact on enjoyment for a first-person shooter

game

While beneficial in understanding first-person shooter games, these papers gener-

ally focus on a specific game, and the results may not generalize to other first-person

shooter games with different configurations. In our research, we study and model

gaming actions as building blocks, simulate first-person shooter scenarios and vali-

date the simulations. Then, we explore general first-person shooter games with the

validated simulations.

3.4 Players

This section includes related work regarding game players, especially reaction time

(3.4.1) and player skill assessment and evaluation (3.4.2).

3.4.1 Reaction Time

Reaction time refers to the speed in responding to a stimulus. Kosinski [Kos08]

finds measured reaction time might differ because of the purpose of a study, age of

participants and types of stimulus. The human benchmark [Ben] reports that the

average human reaction time is 284 ms based on 81 million users. Related work

shows that gamers tend to have faster reaction time than non-gamers. Richardson

et al. [Ric14] depict that gamers who play over 4 hours of video game on average

28

each week have about 45 ms shorter reaction time than non-gamers. Thornton

and Gilden [TG05] point out that factors such as fatigue and sequential effects are

generally assumed to be of negligible impact and therefore ignored in reaction time

measurement.

Importantly, research shows response-time distributions are not Gaussian (nor-

mal) distributions but rather rise rapidly on the left and have a long positive tail

on the right. Reaction-time distributions are similar to the ex-Gaussian distribu-

tion [Luc86], which is a convolution (mixture) of a Gaussian and an exponential dis-

tribution that has been shown to fit empirical reaction time distributions well [BS99].

This distribution has three parameters. The mean and the standard deviation of a

Gaussian body are described by mu (µ) and sigma (σ), respectively [HPM91]. Tau

(τ) describes both the mean and the standard deviation of the exponential compo-

nent. Whelan [Whe08] simulates a distribution of reaction time to demonstrate the

distribution shape but not to predict reaction time for certain group of people on

certain task.

Although human reaction time has been a well-studied topic with a long history,

there are fewer works on the correlation of reaction time and player skill in first-

person shooter games. In our research, we assess the role of reaction time in first-

person shooter player performance.

3.4.2 Player Skill

Game players generally want low network latency to maximize their chances of

winning, but how much latency affects players with different levels of skill is not

well-known. There is some, albeit limited, work investigating the effects of latency

on players with consideration to players grouped by skill. Claypool [Cla18] triage 51

users into three skill groups, have them play a target selection game with latency and

29

show that higher skill players are resilient to performance degredations for latencies

above 350 milliseconds. While useful for some interactive applications, these delays

are much higher than many gamers experience, and the game studied is for 2D

target selection only. Amin et al. [AJG+13] query two users with different amounts

of skill after playing the first-person shooter game Call of Duty with latency and

infer that higher-skilled players notice even small amounts of latency but are able

to compensate for it better than lower-skill players. As the authors themselves

note, their small sample size makes their objective evaluation hard to generalize.

While useful for understanding the impact of latency on the game Call of Duty,

the work did not provide a model, and the results may not represent the players in

other first-person shooter games. Dick et al. [DWW05] separate 8 users into two

teams, have them play four first-person shooter games with network latency and

jitter to study the factors that impact players, finding skill impacts score but not

mean opinion score (MOS). While useful for understanding the factors that affect

players, player skill is differentiated by self-report score only with a total sample of

only eight players total.

Although the related work might help understand latency and a specific first-

person shooter game, there is no model on player skill and in-game performance.

The results may not generalize to other first-person shooter games with different

maps, weapons, target sizes and speeds.

In our research, we separate player skill by their in-game performance - players

with top third performance are higher skill players and bottom third performance are

lower skill players. We then model elapsed time and navigation windows separately

for each skill group. With the models, we can simulate first-person shooter scenarios

for players with different level of skill.

30

Chapter 4

Proposed Approach

Our goal is to develop a thorough understanding on the impact of latency on first-

person shooter game players. The methodology is depicted in Figure 4.1, where the

boxes show the main steps of our methodology, and the arrows indicate progression

from one step to the next. To explore the space of first-person shooter games without

iterating over all game and system configurations (e.g., weapons, maps, latencies),

we first break first-person shooter games into two fundamental actions that are the

basis for player interactions in the game: target selection and navigation. These two

gaming actions can be seen as the building blocks for first-person shooter games that

are impacted by latency and can be integrated into more complicated game scenarios

with different game configurations.

We conduct user studies to obtain data on player performance for the isolated

actions under different conditions (Sections 5.1 and 6.1). Data from the user studies

are directly used in our modeling of the gaming actions, but is also a contribution

to the game development and research communities by providing insights into the

effects of latency on game interactions.

We build models from the user study data to explain the relationship between

31

Figure 4.1: Methodology

32

latencies, player skills, game configurations and player performance (Sections 5.4

and 6.2.6). The models are used directly in simulations for first-person shooter

games with different types and values of latency, latency compensation techniques,

target speed, target size, map size and player skills in Chapter 7.

We then validate our simulations by comparing the simulated data with empirical

data from first-person shooter games in Chapters 8 and 9. Finally, we explore the

first-person shooter game space with additional simulations, varying latency types

and values, weapon choices, latency compensation techniques and player skills in

Chapter 10. The simulations reveal how player performance is affected by latency

conditions across a broad set of first-person shooter game conditions.

33

Chapter 5

Navigation

The navigation action is used by players to move an avatar in position to shoot

opponent(s) or to avoid being shot. To build the model for the impact of latency on

player performance for navigation, we collect data with a user study where partici-

pants play a custom game that isolates the navigation action. Local latency, network

latency and latency compensation techniques are controlled. Objective performance

and subjective QoE are collected via game logs and surveys after game rounds. With

player performance and QoE data collected, we analyze how player performance and

QoE change with latency. We fit the distribution of time being seen by the seeker

or seeing the hider with mathematical models. Finally, we get the models for time

windows related to local latency, network latency and compensation techniques.

This section presents results from two user studies that evaluate the impact of

latency and latency compensation techniques on first-person navigation using a cus-

tom “hide and seek” game that isolates avatar movement in first-person shooter

games. Analysis of the results shows pronounced benefits to player performance

(score and positioning to hide/seek), with subjective opinions on Quality of Expe-

rience following suit. Time warp and self-prediction both mitigate the effects of

34

latency, and when applied together, can eliminate the effects of latency on player

performance. We derive an analytic model for the distribution of the time intervals

with opponents in sight, which can be combined with target selection to model and

simulate player performance in a full-range of first-person shooter games.

5.1 Navigation Methodology

In order to assess the effects of latency on navigation in a first-person game, we

built a custom game that isolates the navigation action, added controlled amounts

of local and network latency, recruited participants for user studies, and measured

player performance and quality of experience.

5.1.1 Hide and Seek Game

We designed and implemented a custom first-person game in Unity that isolated the

action of first-person navigation in a first-person shooter-type setting. Our game is

a two-player game called “hide and seek”, shown via screen shot in Figure 5.2. At

any given time, one player is the hider and the other player is the seeker. The goal

for each player is the spot the opponent’s avatar when the seeker, and hide from

the opponent’s avatar when the hider. These roles capture typical interactions in

first-person shooter games where a player navigates to get an opponent in sight to

shoot at and, similarly, navigates to hide from an opponent while being shot at. In

our game, the roles switch every 2-6 seconds – this abrupt and random switching of

roles captures the dynamics in a first-person shooter game where a player is both

hunting (trying to shoot an opponent) and hunted (trying to avoid being shot) in a

short amount of time. Anecdotally, several users said, unprompted, that the game

tension felt like a first-person shooter game, albeit without the weapons.

35

Figure 5.1: Hide and Seek map.
Figure 5.2: Hide and Seek screenshot.

The update rate for the game engine is fixed at 50 frames per second. In a frame,

if the seeker can see any part of the hider, the seeker earns a point; otherwise, the

hider earns a point. A game round terminates after 40 seconds. While the roles

are switched randomly, we ensure each player is the hider for exactly half the time

(i.e., 20 seconds per round) and the seeker for half the time. When the timer runs

out, the player with more points wins. Each frame, the game logs whether the hider

or the seeker gets points, the running score for both players, and the keyboard and

mouse actions.

Hide and Seek has one map, depicted in Figure 5.1. The map is a single, square

room, 36 meters in length and width, with multiple obstacles to mimic maps in

typical first-person shooter games where terrain can play a role in the combat. The

player avatars spawn at a random location on the map near, but not currently in

view of, the opposing player. Upon spawning, the game provides a countdown for

each player until the round starts. Figure 5.2 shows a Hide and Seek screenshot

where the player is currently a seeker. The semi-transparent green “Seek!” or red

“Hide!” message in the middle of the screen informs the player of their current role.

The score and timer are shown in blue at the top of the screen. In the screenshot,

the opponent is in sight at that moment, thus the player is gaining points as long

as the opponent remains visible (or the roles switch).

36

Figure 5.3: Hide and Seek computer configuration.

Hide and Seek has a client-server architecture typical of most network games

where the authoritative server keeps the master world state and communicates state

updates to the clients.

We conduct two studies that use the Hide and Seek game and a client server

architecture - study A and study B.

5.1.2 Navigation Testbed Setup

We setup the game for our user studies in a dedicated, on-campus computer lab.

The testbed setup is depicted in Figure 5.3. The server hosts the game and is

connected via high-speed LAN to the clients. The clients and server are Alienware

PCs with Intel i7-4790K CPUs @4 GHz with 16 GB RAM and an Intel HD 4600

graphics card. The clients are each equipped with a gaming mouse and monitor so

as to minimize local system latency and maintain consistency. The clients have a

25” Lenovo Legion monitor running at 1920x1080 pixels displayed at 16:9 and 240

Hz, with AMD FreeSync and a 1 ms response time. The mouse is a Logitech G502

12k DPI with a 1000 Hz polling rate. The clients and the server run Ubuntu 20.04

LTS, with Linux kernel version 5.4.

To provide for accurate assessment of the latencies user experienced in the study

described here, the base system latency was measured on the test system. The

measurement method is depicted in Figure 5.4. A high-frame rate camera (a Casio

37

Figure 5.4: Measuring local latency

EX-ZR100) was setup completely external to the game system and filmed a user

at 1000 f/s, capturing the moment the mouse button was clicked. By manually

examining the video frames, the frame number when the mouse was clicked (finger

bent, frame number 214 in Figure 5.4) is subtracted from the frame number when the

output was visible based on the user input click (frame number 239 in Figure 5.4),

giving the base system latency (25 milliseconds in Figure 5.4). The measurement

method was repeated 10 times on our system, resulting in an average base latency

of 22 milliseconds (ms), with a standard deviation of 5 milliseconds.

Table 5.1: Testing conditions for user study A.

Parameters Values

Local Latency 25, 100, 175 ms

Network Latency 0, 100, 200 ms

Latency Compensation None

Local latency delays all input until resulting rendered output, whereas network

latency delays receipt of the player’s action at the server and subsequent server

response to the client. Since the Hide and Seek server is authoritative, the client

38

Table 5.2: Testing conditions for user study B.

Parameter Values

Local Latency 25 ms

Network Latency 0, 175, 350 ms

latency compensation None, Self-prediction, Time warp, Both

cannot update the position of an avatar until the server response has arrived. Thus,

for Hide and Seek (as for all client-server games without latency compensation),

local latency manifests similarly to network latency. Player movement input until

resulting avatar movement is seen on the screen is delayed by at least the sum of

the local latency and the network latency.

Two user studies were conducted to study the impact of latencies and compensa-

tion techniques on players with the first study - study A focuses on network latency

and local latency. Our intent is to assess local latencies over ranges that might

typically be found in personal computers, which range from about 25 milliseconds

for a fast gaming system, are around 100 milliseconds for a typical computer sys-

tem, and can be 175 milliseconds for a slower gaming system [ISGS15]. In order to

test the effects of latencies above the baseline 25 ms, additional latency was added

to all keyboard and mouse user input with a custom C program we wrote called

EvLag [LC21a]. EvLag is a stand-alone executable that adds a constant amount

of latency to any input device in Linux using evdev, interfaces that generalize raw

input events from device drivers as character devices. EvLag accesses the devices

via libevdev, a user-space library that abstracts I/O calls through a type-safe inter-

face. When enabled, EvLag intercepts and enqueues all input events from a selected

device and, after the specified delay, dequeues and delivers the events. Timing in

EvLag is maintained via the real-time clock drivers for Linux, accessed through

/dev/rtc, giving fine-grained time resolution (less than a millisecond) for control.

39

Given our client has an average local latency of 22 milliseconds, EvLag adds either

3, 78 or 153 milliseconds of latency for resulting total local latencies of 25, 100 and

175 milliseconds, respectively, as shown in Table 5.1. Note that 25, 100 and 175

milliseconds are average values since the underlying system does not have a fixed,

constant latency, consistent with all personal computers that do not have real-time

control over devices, operating system scheduling and game computations.

Similarly, our intent is to assess network latencies over ranges typically experi-

enced by PC network game players, which can be near 0 milliseconds for a local

area network (LAN) game, 100 milliseconds for a reasonable Internet connection,

and 200 milliseconds for a slower Internet connection [opt20]. We added network

latency to the server uplink and downlink equally using Linux tc with Netem1 –

a network control tool. The total network latency added to the client was either

of 0, 100, or 200 milliseconds as indicated in Table 5.1. The total latency is the

round trip time between the client and the server - it equals to the summation of

the uplink latency and downlink latency. For example, if the total latency is 100

ms, the uplink latency and downlink latency are equal at 50 ms in our user studies.

The second study - study B - focuses on latency compensation techniques. La-

tency compensation techniques can mitigate the impact of latency on players. Self-

prediction and time warp are one of the most common compensation techniques

applied to first-person shooter game. With self-prediction, the client predicts self

movement and orientation. With time warp, the server resolves actions based on

previous client game states when the actions triggered on the client. In user study

B, we studied four latency compensation techniques conditions - none, only self-

prediction, only time warp, both self-prediction and time warp. The total local

latency is 25 ms across all game rounds. There are 3 network latency values - 0,

1https://wiki.linuxfoundation.org/networking/netem

40

175 and 350 ms. When the network latency is 0, there is no latency compensation.

The latency values and compensation techniques tested are listed in Table 5.2. In

commercial first-person shooter games played over the Internet, to avoid cheating,

the server is always the one who makes decision on game outcomes instead of the

clients. Our games take players in a closed lab and cheating is not an issue. In our

Hide and Seek game, with time warp, the client calculates the outcome of the frame

based on the game state on the client. The client then notifies the server of the

outcome. Upon receive the notifications, the server updates the game state accord-

ing to the outcome and synchronize to the clients. To avoid inaccuracy caused by

inconsistency between clients and server during role switching synchronization time

period (e.g., the player has been switched to seeker on server but remains hider on

the client), the data during role switching synchronization time period is removed

from further analysis. In both our implementation and commercial implementa-

tions, the players aim directly at the target in order to hit the target and players

need to wait a round trip time to see the outcome displayed on the screen.

5.1.3 Navigation User Study Procedure

Before the launch of the formal user studies, a pilot study with 3 volunteers was

conducted in order to test the viability of the procedure and tune the study settings.

The pilot study results helped adjust round length, map size and layout, number of

rounds, latency values and user instructions.

Interested participants first filled out a screener questionnaire with questions on

first-person shooter game-related experience to help distinguish player skill.

The IRB-approved user studies was conducted during the COVID pandemic, so

everyone wore masks and respected social distancing requirements. Before starting

each study, all computer devices and touched surfaces were carefully sanitized. Se-

41

lected users were invited to the lab at a pre-set time. Users then signed a consent

form and positioned themselves at the test computer.

Before any sessions started, users first completed a reaction-time test written

in Javascript and launched via a Chrome Web browser on the laptop. In the test,

users click anywhere on the screen to start in Figure 5.5. Users then waited for

a screen color change in Figure 5.6, and clicked the mouse as quickly as possible

in Figure 5.7. The reaction time is then recorded and displayed on the screen as

indicated in Figure 5.8. The screen also displays average and the best reaction time

across the trials. Then users click anywhere on the screen for the next trail. Users

did this 10 times (the total test time was about 30 seconds) before starting the game

sessions. The average of the 10 values provides a measure of reaction time.

To ensure the consistency of play conditions across different users and the re-

liability of the between-subject results, all participants played against the same

opponent, who served as a control. Network latency and local latency were only

applied to the participant’s avatar and not to the control avatar, as indicated in

Figure 5.3.

In both of the studies, Users started by playing a practice round without any

added latency to get familiar with the game. This data was not analyzed.

In the user study on network latency and local latency (user study A), users

next played additional rounds, each with a different local latency (25, 100, or 175

milliseconds) and network latency (0, 100, or 200 ms), randomly shuffled. Each

combination of local latency and network latency was repeated 3 times, for a total

27 rounds (plus the practice round) for each user.

In the user study on latency compensation techniques (user study B), users next

played additional rounds, each with a different network latency (0, 175, or 350 ms)

and latency compensation techniques (none, self-prediction only, time warp only,

42

Figure 5.5: Reaction trial - step 1

Figure 5.6: Reaction trial - step 2

Figure 5.7: Reaction trial - step 3

Figure 5.8: Reaction trial - step 4

43

both self-prediction and time warp), randomly shuffled. When network latency is 0,

there is no latency compensation techniques. Each combination of network latency

and latency compensation techniques was repeated 3 times, for a total 27 rounds

(plus the practice round) for each user.

In both of the studies, after each round, users provided a subjective Mean Opin-

ion Score (MOS) on a discrete 5-point Likert scale about the game experience in the

preceding round. The question was “Rate the quality of the previous game round”,

and players chose an answer from 5 options: Excellent, Good, Fair, Poor or Bad.

After completing the survey, the next round would commence when the user was

ready, but users could take as much time as needed before starting the subsequent

round,

It took each user about 30 minutes to complete all the tasks in each of the

studies. A user study proctor was available for questions and trouble-shooting for

the duration.

After completing all the game rounds, users were given a questionnaire with

additional demographics questions about gamer experience – average time spent

playing games and self-rated expertise with computer games.

In summary, the procedure each user followed was:

1. Fill out the screener questionnaire to ensure interest in participation and help

understand player skill.

2. Come to the dedicated lab with pre-configured computers.

3. Adjust the computer chair height and monitor angle and height so as to be

comfortably looking at the center of the screen.

4. Read the instructions regarding setup and game controls on the desktop.

44

Table 5.3: Study A demographic information

Gaming per Game FPS Reaction-
Study Users Age (yrs) Gender week (hours) Self-rating Self-rating time (ms)

A 36 22.6 (3.4) 29 ♂7 ♀ 11.2 (6.9) 3.5 (1.0) 3.3 (1.3) 206.9 (22.4)

B 30 23.1 (4.0) 26 ♂4 ♀ 10.4 (8.3) 3.4 (1.1) 3.1 (1.0) 227.2 (40.0)

5. Complete the reaction-time test. (Takes about 30 seconds.)

6. Complete the hide and seek game rounds (1 practice round and 27 rounds with

shuffled latencies), including the QoE surveys after each round. Take breaks

between rounds if needed. (Takes a bit less than 30 minutes, total.)

7. Complete the final demographics questionnaire.

All users were eligible for a raffle to win a $25 USD Amazon gift card upon

completion of the study, and many users received playtesting credit for relevant

classes in which they were enrolled.

Study participants were solicited via university email lists. Thirty (30) users

were recruited and participated in total for user study A and thirty-six (36) users

were recruited and participated in total for user study B.

5.2 Navigation Results

This section first provides some summary demographics for the 30 participants from

study A and 36 participants from study B (Section 5.2.1). Then, consistency of the

human opponent is analyzed as a scrutiny of the methodology consistency (Sec-

tion 5.2.2).

45

Figure 5.9: Reaction time (ms) - user
study A

Figure 5.10: Reaction time (ms) - user
study B

5.2.1 Navigation Demographics

Table 5.3 summarizes the demographic information for the user study participants.

First-person shooter (FPS) self-rating is on a five-point scale, 1-low to 5-high. For

age, FPS self-rating, and reaction times, the mean values are given with standard

deviations in parentheses.

User study A had 30 participants, ranging from 18-31 years old but with the

large majority of typical college age. Gender breakdown is predominantly male (26

males versus 4 female). We were slightly disappointed by the low number of female

participants, but note that this reflects the gender breakdown of first-person shooter

game players (about 7% of first-person shooter gamers are women [Lee17]) and our

sample pool of university students skews male. Half of the participants played 10

or more hours of computer games per week. User self-ratings in general computer

games slightly skews towards above the mid-point (mean 3.4), with self-rating in

FPS games slightly lower (mean 3.1). Most participants majored in Robotics Engi-

neering, Computer Science, or Game Development.

User study B had 36 participants, ranging from 18-28 years old but with the

large majority of typical college age. Gender breakdown is predominantly male

(29 males versus 7 female). Similar to study A, number of female participants is

relatively low. Half of the participants played 10 or more hours of computer games

46

per week. User self-ratings in general computer games slightly skews towards above

the mid-point (mean 3.5), with self-rating in FPS games slightly lower (mean 3.3).

Most participants majored in Robotics Engineering, Computer Science, or Game

Development.

Figures 5.9 and 5.10 depicts the distribution of users’ reaction times in user

study A and user study B as a boxplot, respectively. The base local latency (22

ms) was subtracted from all reaction time trials and the resulting reaction times

averaged for each user. The boxes depict quartiles and median for the distribution.

The whiskers span from the minimum non-outlier to the maximum non-outlier. The

black plus shows the mean value. From the graph, reaction times are mostly fast

(about 230 ms for user study A and 200 ms for user study B), typical of computer

game players [DGB09].

5.2.2 Opponent

The goal of our methodology is to have the same game conditions for each player,

only varying the latency, hence our choice for the same opponent across all game

rounds and all participants. However, there is a risk that the opponent either:

a) gets better at the game over time, making the game more difficult for later

participants, or b) gets fatigued and plays worse over time, making the game easier

for later participants. Figure 5.11 depicts the performance of the opponent across

the 30 users. The x-axis is the participant (player) number from one to thirty by

participation order, and the y-axis is the score percent of the opponent – a score

above 50 means the opponent got more than half the points and won, while a score

below 50 means the participant got more than half the points and won. The circles

are the mean scores of all game rounds against the opponent, and the dashed line

is a linear regression through the mean values.

47

Figure 5.11: Opponent score versus player order.

From the graph, there is visible variation in performance across participants

and while the opponent won more often than lost (the opponent never had added

latency, only the participant), some participants beat the opponent. The p value of

the linear regression is 0.54, indicating that there is no significant difference in the

opponent’s performance across the 30 players. Correspondingly, the regression line

is visually flat, suggesting the opponent had consistent effort and skill over time.

In other words, the participants likely faced a similar challenge regardless of their

participation order.

Note, all analysis is done using the participant’s data, not the opponent’s data.

5.3 Navigation Analysis

This section first focuses on user study A. We compare the effects of local latency

and network latency (Section 5.3.1), then present the core results – user performance

(Section 5.3.2) and Quality of Experience (Section 5.3.3) in the presence of latency.

Additional analysis examines the total time with the opponent in sight as a seeker

and out of the opponent’s sight as a hider (Section 5.3.4) and actions per minute

48

Figure 5.12: Score versus latency – comparing local latency and network latency.

(Section 5.3.5). Data from user study B are analyzed to compare player performance

with different compensation techniques (Section 5.3.6).

5.3.1 Local Latency versus Network Latency

Previous work has shown that local latency has a higher impact on player per-

formance than network latency [LKS+21a], but that was for a commercial game

that has built-in latency compensation techniques. Our study allows comparison

of player performance with local latency versus network latency in the absence of

latency compensation.

We measure player performance based on the points earned. For each frame (50

f/s), if the player is a seeker and has the opponent in sight or if the player is hider

and is not visible by the opponent, the player earns a point. For easier analysis,

we convert the points to a score percentage which is the number of points earned

divided by the maximum possible number of points (2000), multiplied by 100. A

score percent above 50 means the participant won, while a score percent below 50

means the opponent won.

49

Figure 5.12 depicts score percent versus latency for network latency and local

latency. The x-axis is the total latency (network plus local) in milliseconds. The y-

axis is score percent for the player. The circles are the score percent means bounded

by 95% confidence intervals and the dashed lines are linear regressions through the

mean values. Blue is for rounds with network latency only, but without any added

local latency and red is for rounds with local latency only without extra network

latency. From the graph, player performance degrades with both types of network

latency. While the slope for the network latency regression appears slightly steeper

than the slope for the local latency regression, a regression for a unified model

with latency (local/network) as a parameter shows the latency parameter is not

statistically significant (p = 0.36). Given this, and since our expectation is that

in the absence of latency compensation local latency and network latency impact

navigation identically, for all subsequent analysis we do not differentiate the data

by latency type but instead add local latency and network latency together. This

provides a total of nine (9) different total latencies: 25, 100, 125, 175, 200, 225, 275,

300, and 375 ms.

5.3.2 Player Performance of Navigation

Figure 5.13 depicts player score percent versus total latency. The axes, data and

trendlines are as for Figure 5.12 but the datasets are not differentiated based on

latency type. From the graph, there is a generally linear downward trend in player

performance with latency – i.e., players perform worse with higher latency. The

linear regression fits the mean values well, with an R2 of 0.93 and p < .001. As a

take-away, an increase in total latency by 100 ms decreases score percent by 4.4 per

minute of gameplay.

50

Figure 5.13: Score versus latency. Figure 5.14: QoE versus latency.

5.3.3 QoE of Navigation

Quality of Experience (QoE) was assessed from the user responses to a Mean opinion

Score (MOS) question filled out at the end of each round. Responses are converted

to a 5 point scale, from 1-low to 5-high.

Figure 5.14 depicts QoE versus latency. The x-axes and trendline are as for

Figure 5.13, but the data here are the QoE responses, shown on the y-axis, instead

of the score. From the graph, mean user quality of experience degrades with latency.

The linear regression fits the means well, with R2 0.95 and p < .001. As a take-

away, an increase in total latency by 100 ms decreases player QoE by 0.5 points on

a 5-point scale.

While linear trends fit both Figure 5.13 and Figure 5.14 well, we note there are

sub-regions where the linear trend does not clearly hold. For 100 - 175 ms and 200

- 275 ms of total latency, player performance does not vary much with latency, nor

does QoE. Future work could analyze if and how sub-ranges of latency deviate from

the overall linear trend.

51

5.3.4 Seeker Time and Hider Time

In first-person shooter games, what often matters is how long a player can see or be

seen by an opponent. Longer time windows make it more likely to get a target in

sight, aim, shoot and hit. For our game, seeker time is the total round time that a

user has the opponent in sight while seeking, and hider time is the total round time

that a user is out of the opponent’s sight while hiding.

Figure 5.15 depicts seeker time versus latency and Figure 5.16 depicts hider time

versus latency. The x-axes and trendlines are as for Figure 5.13, but the data and

y-axes here are the seeker time in a round (Figure 5.15) and hider time in a round

(Figure 5.16).

From Figure 5.15, the seeker time gets shorter with latency, meaning the player

sees less of the opponent with an increase in latency. The linear regression fits the

means well, with R2 0.96 and p < .001. As a take-away, an increase in total latency

by 100 ms degrades seeker time by 1.5 seconds per minute. Contrast this to the hider

time in Figure 5.16. The hider time is relatively constant with latency, as indicated

by the mostly flat regression line. The linear regression has an R2 of only 0.34 and

p = 0.1. This indicates that the ability of a player to hide from an opponent is not

significantly impacted by latency.

Put together, latency would appear to have the strongest effect on navigation

when a player is maneuvering to see an opponent but a much more limited effect on

navigation when a player is avoiding being seen.

5.3.5 Actions per Minute

Actions per minute has been proposed as one metric to classify a game’s sensitivity

to latency [SSZ+20]. We analyze the converse – whether latency affects the player’s

52

Figure 5.15: Seeker time versus latency. Figure 5.16: Hider time versus latency.

Figure 5.17: Actions per minute versus latency.

53

actions per minute. For navigation, the core parameter is how often the player

intentionally moves in a particular direction, and for first-person navigation games

on a PC this is via the WASD keys. For Hide and Seek, we compute actions per

minute by the number of times a player presses a keyboard in a round divided by

the round length (40 seconds).

Figure 5.17 depicts actions per minute versus latency. The x-axes and trendlines

are as for Figure 5.13, but the data and y-axes here are the actions per minute.

In general, there is considerable variation in actions per minute, more so than for

score (Figure 5.13) and considerably more so than for QoE (Figure 5.14). There

is also a noticeable downward trend as latency increases. The linear regression fits

the means well with R2 0.89 and p < .001. This indicates players move less often

with an increase in latency, possibly because the lower responsiveness requires more

deliberate movement actions by the players.

5.3.6 With Latency Compensation Techniques

Latency compensation techniques can mitigate the impact of network latency on

players and are widely used in computer games, and self-prediction and time warp

are commonly used latency compensation techniques in first-person shooter games [LXC22].

We compare four different latency compensation conditions: none, only self-

prediction, only time warp, and both self-prediction and time warp. Local latency

is kept at a minimum (25 milliseconds), and network latency varies: 0 ms, 175 ms

and 350 ms.

Self-prediction [LSGH17] predicts game state based on player input, but before

getting confirmation from the server. In first-person shooter games, self-prediction

primarily helps a player’s movement in the presence of network latency where an

avatar will move and change direction as if there is no network latency. In our Hide

54

Figure 5.18: Score versus latency.

and Seek game, player prediction provides immediate feedback to the player for

changing orientation (aiming) without having to get confirmation from the server.

Time warp [SG13] rolls back game state on the server to when the player action

occurred on the client, applies the action, then rolls the game state forward to the

current time. In our Hide and Seek game, the server decides whether the hider is

in the seeker’s sight based on the previous game state on the server when the game

state sent by the client.

Figure 5.18 depicts score percent versus network latency where the axes and data

are as for Figure 5.13. The data is separated out (means and trendlines) by the four

latency compensation conditions: blue is without latency compensation, red is for

self-prediction, purple is for time warp, and black is for both self-prediction and time

warp. In the graph, the blue line has the steepest slope, showing that latency has

the most impact on player performance when there is no latency compensation. The

red line and the purple lines have shallower slopes with the green line decreasing

faster than the red line, indicating that each technique individually can mitigate

network latency and self-prediction helps players more. The black line is almost

flat, indicating that both techniques together can nearly completely overcome the

55

effects of network latency. The blue, red and purple lines fit their respective mean

values well, with R2 1, 0.99 and 0.97 and p = 0.001, 0.06, 0.11 respectively. The

black line is almost flat with R2 0.07 and p = 0.83, indicating that with both self-

prediction and time warp, latency does not have statistically significant impact on

player performance.

5.3.7 Navigation Summary

Table 5.4 summarizes the results from the study A in tabular form, providing the

slope, y-intercept, adjusted coefficient of determination (R2) and statistical signif-

icance (p value). Statistical significance is indicated in bold. Overall, navigation

performance (score and seeker time) and perception (QoE) are impacted by total la-

tency, both degrading with an increase in latency and accompanied by fewer actions

per minute. Hider time, however, is not significantly affected by latency.

Table 5.5 summarizes the results from the study B in tabular form, providing

the slope, y-intercept, adjusted coefficient of determination (R2) and statistical sig-

nificance (p value). Statistical significance is indicated in bold. Both self-prediction

and time warp can mitigate the effects of latency on player performance.

Table 5.4: Results Summary - study A

metric slope y-intercept R2 p value

score -0.029 49.3 0.93 <.001

QoE -0.005 4.03 0.95 <.001

seeker time -0.010 7.38 0.96 <.001

hider time -0.001 12.23 0.34 0.10

APM -0.065 91.20 0.89 <.001

56

Table 5.5: Results Summary - study B

Compensation slope y-intercept R2 p value

none -0.033 49.6 1 <.001

self-prediction -0.015 49.0 0.99 0.06

time warp -0.025 49.0 0.97 0.11

both -0.001 49.3 0.07 0.83

5.4 Navigation Models

Analytic models can help generalize results beyond the necessarily narrow range of

conditions tested in a user study. In our case, this means generalizing to latencies

that are not one of the 9 discrete values used in our experiments. Analytic models

can also be used to help with game design, where predicting player performance

with latency can be used to adjust the game parameters [LG18] and change in-

game attributes [SSSZ+18] in order to accommodate latency. Moreover, analytic

models may be useful for discrete event simulations, where game performance can

be selected using the model and applied to a simulated game outcome.

In our case, a model of navigation with latency is combined with models of target

selection with latency [LC21b] in order to simulate moving and shooting in a first-

person shooter game (Chapter 7). This enables predictions of player performance

over a broad range of latency conditions, as well as other in-game conditions such

as specific game parameters such as weapon attributes (Chapter 10).

Since the intent of navigation during first-person shooter combat is to position

to shoot or not be shot, we analyze and then model the individual hider and seeker

time intervals with latency. The former represents time windows when the player

is hidden and cannot be shot, while the latter represents time windows when the

player can see the opponent and potentially shoot them. In both cases, longer is

better – more time being hidden or more time seeing a target.

57

Figure 5.19: Seeker interval distribution. Figure 5.20: Hider interval distribution.

Figure 5.19 depicts the cumulative distribution function (CDF) of seeker inter-

vals. The x-axis is length of the individual seeker intervals in seconds (i.e., a 2 second

interval means the seeker had the hider in sight for 2 continuous seconds) and the

y-axis is the cumulative distribution. The data is grouped for four2 different total

latency conditions. From the graph, the vast majority of the seeker intervals are

below 2.5 seconds and the medians are less than 200 ms regardless of the latency.

For reference, in first-person shooter games 200 ms is a relatively small time window

to aim and shoot at an opponent. There is some visual separation of the lines based

on latency, with lower latencies having slightly longer intervals (the lines are shifted

down and to the right).

Figure 5.20 depicts the same data but for the hider intervals. From the graph,

visually, the shape and distributions of the hider intervals looks similar to that of

the seeker intervals (Figure 5.19). The hider interval distributions, however, do

not separate based on latency. Put another way, the distribution of time durations

where a hider cannot be seen is about the same regardless of the latency.

Since the CDF distributions appear to be an exponential fit but with a heavy

2The other latency conditions are not shown on the graph to make it readable.

58

Table 5.6: Models for seeker interval.

Name Model Adjusted R2

Log gamma γ(α,β·T)
Γ(α)

0.53

Pareto 1−
(
Tm
T

)α
0.80

Exponential 1− e−α∗T 0.86

Stretched exponential 1− e−α∗Tβ 0.96

Weibull 1− e−(x/λ)k 0.99

Figure 5.21: Weibull model parameters based on latency.

tail, we fit different heavy-tailed models to the data as indicated in Table 5.6 and

find Weibull fits the data best. The CDF of a Weibull distribution is:

1− e−(x/λ)k (5.1)

where k is the shape parameter and λ is the scale parameter.

Our goal is to have models representing performance with different latencies.

Based on Figure 5.20, for the hider intervals, we do not parameterize the Weibull

model based on latency. For the seeker intervals, rather than have a separate Weibull

model for each latency value in our dataset, we model the Weibull parameters (k

and λ) based on latency.

59

To integrate latency into the model, we use linear regression to fit the two param-

eters (λ and k) in Weibull distribution with latency and integrate linear regression

to the Weibull distribution.

Figure 5.21 depicts a graph of the Weibull parameters fit to the seeker interval

distributions for each latency. The dashed lines are a linear regression through these

parameters, one line for each parameter. The red dashed line fits the λ values with

R2 0.97 and p = 0.01. The blue dashed line fits the k values with R2 0.80 and p =

0.11. The slopes and intercepts are included in the second row in Table 6.8. These

parameters provide a generalized Weibull model shown as lines for each latency

group in Figure 5.19. Similarly, we overlay a Weibull model line for the hider interval

distributions in Figure 5.20, albeit not parameterized based on latency. Details on

these models is shown in Table 6.8. For both hider intervals and seeker intervals,

the resulting model fits the data well with R2 0.99 and low RMSE values.

Table 5.7: Modeling results for seeker and hider intervals with Equation 5.1.

interval distribution λ k R2 RMSE

All 0.29 0.61 0.99 0.01

Seeker −0.0005 · l + 0.27 −0.0003 · l + 0.63 0.99 0.01

Hider 0.50 0.72 0.99 0.02

To assess whether there is time dependence in the intervals (e.g., does the length

of one interval correlate to the length of the next), we computed an auto-correlation

for all intervals for all rounds with τ from 1 to 20. Almost all the resulting auto-

correlations were negative with an absolute value less than 0.05. These weak auto-

correlations suggest that the interval lengths are independent. In other words, the

length of an interval does not correspond to the length of intervals that follow.

Since seeker intervals are affected by latency, seeker intervals can be improved

with latency compensation techniques. We build models of seeker intervals with

60

different latency compensation techniques using data from user study B. To better

fit the data with compensation techniques, we try different ways of improving the

model. As a result, we modify equation in Section 5.4 with a parameter d:

1− e−(x/λ)k+d (5.2)

where d is a constant number. Details on these models with latency compensation

techniques are shown in Table 5.8. For all the compensation techniques, the resulting

model fits the data well with R2 from 0.93 to 1 and RMSE values from 0.0001 to

0.0006.

Table 5.8: Seeker modeling results with latency compensation techniques.

Compensation technique λ k d R2 RMSE

None −0.0004 · l + 0.22 −0.0004 · l + 0.69 -0.27 0.99 0.0001

Self-prediction −0.0001 · l + 0.22 −6.24e− 16 · l + 0.69 -0.23 1 0.0001

Time warp −0.0006 · l + 0.25 −0.0008 · l + 0.77 -0.43 0.93 0.0005

Both −5.65e− 29 · l + 0.34 −0.0001 · l + 0.82 -0.29 0.97 0.0006

The models in Table 5.7 and Table 5.8 can be used to reason about visibility

intervals (hiding or seeking) in first-person shooter games (e.g., what is the likeli-

hood of staying hidden for more than a second) and are incorporated in simulations

(Chapter 7) of first-person shooter player performance.

5.5 Navigation Limitations

As noted in Section 5.2, both of the user studies had over 30 users (30 for user study

A and 36 for user study B). While this sample size was large enough for statistically

significant results for user performance and quality of experience with latency, more

users would tighten the confidence bounds in Figure 5.13 and Figure 5.14. Similarly,

61

potentially sampling more latencies, especially within the ranges we currently study,

could help determine where linear trends do and do not hold.

Our sample is skewed towards males for both studies. While this may reflect

the gender breakdown present in some first-person shooter games today, the re-

sults reported may not be representative of female performance. A follow-on study

might also screen users for expertise in first-person games (e.g., using self-rated

skill [LCD+20]) in order to provide for more focused analysis.

Our methodology intentionally had users compete against the same opponent

in order to provide consistency across game conditions, save for the latency. This

means, however, that our results are based on a specific opponent skill level – the

impact of latency combined with different opponent skills was not assessed. Our

use of the same human opponent for all users may limit the reproducibility of the

study. While we would expect that trends would hold for other human opponents,

the relative amounts may differ.

Serious game players often customize the software settings on their computers

and games to suit their personal play preferences. For example, players may alter the

mouse sensitivity or change the graphics resolution from the system defaults. These

custom changes presumably improve that player’s experience and/or performance.

However, since customizations that deviated from our settings create a difference

in test conditions between users, we did not allow any changes to the computer

settings. This holds for other game configurations, too, such as using other mice,

keyboards or monitors.

62

5.6 Navigation Summary

Analysis of results from our first-person navigation user studies shows that there

is no significant difference in the impact of local latency versus network latency on

player navigation performance in the absence of latency compensation techniques.

Across the range of total latencies studied, player performance and quality of expe-

rience (QoE) both degrade linearly as latencies increase from 25 milliseconds to 375

milliseconds. Specifically, player scores at 25 milliseconds average over 25% better

than player scores at 375 milliseconds. Over this same range, QoE decreases even

more (nearly 60%), with the QoE at 25 milliseconds being about 4 (on a 5 point

scale) and the QoE at 375 milliseconds falling to about 2.2. Player ability to move

into position to see opponents decreases with latency; however player ability to hide

to avoid being seen does not vary much with latency. The rate of player game ac-

tions decreases with latency by about 30% from 25 milliseconds to 375 milliseconds

of latency. Time warp and self-prediction both mitigate the effects of latency, and,

when applied together, can eliminate the effects of latency on player performance

in navigation – i.e., players can perform as if there is no network latency when time

warp and self-prediction are both used.

63

Chapter 6

Selection

The target selection action is a player pointing to and clicking on a moving or

stationary target with an input device (e.g. a mouse). While target selection in a

2D space is fairly well-studied, target selection in a 3D space, such as shooting in

first-person shooter (FPS) games, is not, nor are the benefits to players for many

latency compensation techniques.

This chapter presents results from a user study that evaluates the impact of

latency and latency compensation techniques on 3D target selection via a custom 3D

selection game. User study participants play a game that isolates target selection.

The target size, speed, latency values and latency compensation techniques vary

between rounds. The combinations of testing conditions are shuffled and randomly

applied to game rounds.

6.1 Selection Methodology

In order to assess the effects of latency on 3D target selection in a first-person

game, we built a custom game that isolates the shooting action, implemented two

commonly used latency compensation techniques, added controlled amounts of local

64

and network latency, recruited participants for a user study, and measured player

performance and quality of experience.

6.1.1 3D Target Selection Game

We designed and implemented a custom game in Unity that isolates the action of

3D target selection in a first-person shooter-type setting. In the game, the player

stays at a fixed position at a corner of the map and can rotate to change orientation

and aim, but cannot move or otherwise change positions. The opponent is a bot

that spawns at a random location moving along one of three possible linear paths

in the field of view and changes directions to avoid being hit. To mimic opponent

movement in first-person shooter games, we extracted player movements patterns

from data from a previous user study on Counter Strike: Global Offensive [LKS+21b]

(CS:GO, Valve, 2012). Specifically, we obtain the frequency of direction changes and

jumps and the distribution of intervals between the same and use these values as

the basis for our bot. From the data, the bot changes direction randomly every

3.02 - 8.70 seconds with a standard deviation of 1.43 seconds and jumps randomly

every 1.41 - 9.95 seconds with a standard deviation of 2.43 seconds. The player

tries to shoot the bot on the screen as fast as possible using a pistol with unlimited

ammunition and a firing rate of 1 shot every 250 ms. It takes two hits to kill the

bot. While the bot cannot shoot or otherwise damage the player, in order to provide

some urgency for the player to shoot the bot quickly, the player’s health is shown

to decrease the longer the player takes to kill the bot.

The update rate for the game engine is fixed at 50 frames per second. Each

frame, the game logs the running score for the player, the position of the enemy,

the 2D distance of the reticle to the avatar, and 3D distance between the player’s

position and the bot’s position. The game logs every shot as a hit or miss with

65

Figure 6.1: 3D target selection game screenshot.

corresponding timestamps.

A game round is over after the bot is killed (2 hits) or after 40 seconds, whichever

comes first.

The game has one map – a single, square room, 36 meters in length and width,

without any cover or obstacles. The player is always at a fixed location on the map

in a corner. Before the round starts, a player is given a countdown timer whereupon

a bot spawns at one of three different locations in the field of view. Figure 6.1 shows

a screenshot of the game where the player is aiming at the target. The player health,

score, number of kills and timer are shown in blue at the top of the screen.

The game has a client-server architecture typical of most network games where an

authoritative server keeps the master world state and communicates state updates

to the clients. In the default state, without latency compensation, all player input

is sent to the server, the server applies the input to the game world and sends the

new world state to the client which renders the state for the player.

6.1.2 Testbed Setup of Selection

We setup the game for our user study in a dedicated, on-campus computer lab. The

testbed setup is depicted in Figure 6.2. The server hosts the game and is connected

66

Figure 6.2: Client and server configuration of the selection study.

via high-speed LAN to the client. The client and server are Alienware PCs with

Intel i7-4790K CPUs @4 GHz with 16 GB RAM and an Intel HD 4600 graphics

card. The client is equipped with a gaming mouse and monitor so as to minimize

local system latency and maintain consistency. The client has a 25” Lenovo Legion

monitor running at 1920x1080 pixels displayed at 16:9 and 240 Hz, with AMD

FreeSync and a 1 ms response time. The mouse is a Logitech G502 12k DPI with a

1000 Hz polling rate. The clients and the server run Ubuntu 20.04 LTS, with Linux

kernel version 5.4.

The local latency was measured using the same technique as indicated in Sec-

tion 5.1.2. This measurement method was done 10 times on our client, yielding an

average base latency of 22 milliseconds, with a standard deviation of 5 milliseconds.

Local latency delays all input until resulting rendered output, whereas network

latency delays receipt of the player’s action at the server and subsequent server

response to the client. Since the game server is authoritative, the client cannot

update the position of an avatar until the server response has arrived. Thus, for

the selection game without latency compensation techniques (as for all client-server

games without latency compensation), local latency manifests similarly to network

latency. Player orientation input until resulting avatar orientation change seen on

the screen is delayed by at least the sum of the local latency and the network latency.

Our intent is to assess local latencies over ranges that might typically be found

67

in personal computers, which range from about 25 milliseconds for a fast gaming

system, are around 100 milliseconds for a typical computer system [ISGS15]. We

added latency to all mouse and keyboard input using EvLag [LC21a] – an open-

source tool for Linux that adds a constant amount of latency to any input device.

Given our client has an average local latency of 22 milliseconds, EvLag adds either

3, 28, 53 or 78 milliseconds of latency for resulting total local latencies of 25, 50, 75,

100 milliseconds, respectively.

Similarly, our intent is to assess network latencies over ranges typically experi-

enced by PC network game players, which can be near 0 milliseconds for a local

area network (LAN) game, 100 milliseconds for a reasonable Internet connection,

and 200 milliseconds for a slower Internet connection [opt20]. We added network

latency to the server uplink and downlink equally using Linux tc with Netem1 – a

network control tool. The total network latency added to the client was either of

0, 50, 100 or 150 milliseconds. The total latency is the round trip time between

the client and the server - it equals to the summation of the uplink latency and

downlink latency. For example, if the total latency is 100 ms, the uplink latency

and downlink latency are equal at 50 ms in our user studies.

Latency compensation techniques can mitigate the effects of network latency

on game players. While there are many different types of latency compensation

techniques, time warp and self-prediction are among the most commonly used in

first-person shooter games [LXC22]. To better understand and quantify how much

each helps users in 3D selection tasks with network latency, we investigated four

different latency compensation conditions: none, time warp only, self-prediction

only, and both time warp and self-prediction. We implemented the different latency

compensation techniques in our custom selection game. Time warp is implemented

1https://wiki.linuxfoundation.org/networking/netem

68

the same way as in our user study in Section 5.1.

Target movement can change the game difficulty and affect player experience [CCG20].

To better understand the effects of target movement, we studied three motion modes

of the enemy bot - normal that includes the movement described above (direction

changes and jumping), normal but without jumping, and stationary without move-

ment or jumping.

Table 6.1 summarizes the user study parameters.

Table 6.1: Parameters for the user study.

Parameters Values

Local latency 25, 50, 75, 100 (ms)

Network latency 0, 50, 100, 150 (ms)

Latency compensation none, time warp, self-prediction, both

Opponent motion stationary, normal without jump, normal

Before the launch of the formal user study, a pilot study with 3 volunteers was

conducted in order to test the viability of the procedure and tune the study settings.

The pilot study results helped adjust round length, map size and layout, number of

rounds, latency values and user instructions.

6.1.3 User Study Procedure of Selection

The study was approved by our Institute Review Board (IRB). Interested partici-

pants first filled out a screener questionnaire with questions on first-person shooter

game-related experience to help select participants with some prior familiarity with

FPS games. Selected users were invited to the lab at a pre-set time. Users then

signed a consent form and positioned themselves at the test computer.

Users first did a custom reaction-time test written in Javascript and launched

via a Chrome Web browser, the same reaction test as in our navigation study in

69

Section 5.1.3. In the test, users waited for a screen color change then clicked the

mouse as quickly as possible, doing this 10 times. The average of the 10 values

provides a measure of reaction time.

Users started by playing a practice round without any added latency to get

familiar with the game. This data was not analyzed. Users next played additional

rounds, each with options for local latency, network latency, latency compensation

techniques, and target motion, randomly shuffled. The conditions tested include:

A Local latency: There are 3 conditions investigating local latency only (network

latency of 0 ms, no latency compensation and normal bot motion): local

latencies of 50, 75 or 100 ms.

B Network latency and latency compensation: There are 12 conditions investi-

gating network latency with and without latency compensation (with local

latency of 25 ms and normal bot motion): all combinations of network laten-

cies of 50, 100 or 150 ms and four latency compensation conditions: none,

time warp, self-prediction or both.

C Local latency and network latency: There are 3 conditions assessing latency

compensation with local latency and network latency (network latency of 100

ms, local latency of 100 ms and normal bot motion): time warp, self-prediction

or both.

D Target motion: There are 3 conditions investigating target motion (network

latency and local latency of 100 ms, no latency compensation): normal bot

motion, normal bot motion without jumping, or stationary bots.

Each condition above was repeated 3 times, for a total (3 + 12 + 3 + 3)× 3 = 63

rounds plus the practice round. Other than the 64 rounds, there are 5 rounds with

70

no latency, no latency compensation techniques and normal motion only. The 5

rounds are uniformly distributed between all rounds to ensure the consistency of

player performance and test if there is fatigue giving the large number of game

rounds. In total, each player played 64 + 5 = 69 rounds.

After each round, users provided a subjective Mean Opinion Score (MOS) rating

on a discrete 5-point Likert scale about their experience: “Rate the quality of the

previous game round”. Players chose from 5 options: Excellent, Good, Fair, Poor

or Bad. After completing the survey, the next round would commence when the

user was ready, but users could take as much time as needed before starting the

subsequent round.

It took each user about one hour to complete all the tasks in the study. A user

study proctor was available for questions and trouble-shooting for the duration.

After completing all the game rounds, users were given a questionnaire with

additional demographics questions about gamer experience – average time spent

playing games and self-rated expertise with computer games.

In summary, the procedure each user followed was:

1. Fill out the screener questionnaire to ensure interest in participation and help

understand player game familiarity.

2. Come to the dedicated lab at a pre-set time.

3. Adjust the computer chair height and monitor angle and height so as to be

comfortably looking at the center of the screen.

4. Read the instructions regarding setup and game controls on the desktop.

5. Complete the reaction-time test. (Takes about 30 seconds.)

71

Table 6.2: Demographic information

Gaming per Gamer FPS Reaction-
Users Age (yrs) Gender week (hours) Self-rating Self-rating time (ms)

39 20.0 (3.0) 31♂ 7♀ 1 Other 12.5 3.4 (1.3) 3.0 (1.2) 198.4 (16.9)

6. Complete the 3D target selection game rounds (1 practice round and 68 rounds

with shuffled testing conditions), including the QoE surveys after each round.

Take breaks between rounds if needed. (Takes a bit less than one hour, total.)

7. Complete the final demographics questionnaire.

Study participants were solicited via university email lists. All users were eligible

for a raffle to win a $25 USD Amazon gift card upon completion of the study,

and many users received playtesting credit for relevant classes in which they were

enrolled.

6.2 Selection Analysis

This section first summarizes the demographics of our participants, then analyzes

player performance and QoE for latency conditions without latency compensation,

followed by analysis of latency compensation, and lastly, the effects of target motion

on player performance.

6.2.1 Selection Results

Thirty-nine (39) users were recruited and participated in total. This section provides

summary demographics for the participants.

Table 6.2 summarizes the demographic information for the user study partici-

pants. Gamer and first-person shooter (FPS) self-rating are on a five-point scale,

72

Figure 6.3: Reaction time (ms)

1-low to 5-high. For age, gamer self-rating, FPS self-rating, and reaction times,

the mean values are given with standard deviations in parentheses. Ages ranged

from 18-32 years old but with the large majority of typical college age. Gender

breakdown is predominantly male (31 males), but does reflect the gender break-

down of first-person shooter game players (about 7% of first-person shooter gamers

are women [Lee17]) and our sample pool of students at our university. Half of the

participants played 10 or more hours of computer games per week. User self-ratings

in general computer games slightly skews towards above the mid-point (mean 3.4),

with self-rating in FPS games slightly lower (mean 3.0). Most participants majored

in Robotics Engineering, Computer Science, or Game Development.

Figure 6.3 depicts the distribution of users’ reaction times as a boxplot. The

base local latency (22 ms) was subtracted from all reaction time trials and the re-

sulting reaction times averaged for each user. The box depicts quartiles and median

for the distribution. The whiskers span from the minimum non-outlier to the max-

imum non-outlier. The black plus shows the mean value. From the graph, reaction

times are mostly fast (with an average about 200 ms), typical of computer game

players [DGB09].

73

Figure 6.4: Elapsed time versus total la-
tency

Figure 6.5: Accuracy versus total la-
tency

6.2.2 Without Latency Compensation

We first analyze player performance without latency compensation. Analysis is for

conditions where the opponent bot moves normally (test conditions A-C, but not

D in Section 6.1). Since previous work [LKS+21a] shows that local latency and

network latency have an equivalent impact on players in the absence of latency

compensation, we combine the conditions of local latency and network latency into

seven different total latencies: 25, 50, 75, 100, 125, 175 and 200 ms. Thus, the

analysis in this section pertains to selecting a moving, 3D target where all input –

whether from the local computer system or from the network and remote servers –

is delayed.

Figure 6.4 depicts the elapsed time required to select (hit) the target versus the

total latency. The x-axis is the total latency (network plus local) in milliseconds and

the y-axis is elapsed time in seconds. The circles are the mean elapsed times bounded

by 95% confidence intervals and the dashed lines are linear regressions through the

mean values. The blue points and line are for the first hit and the green points and

74

line are for the second hit (the target takes 2 hits before the round ends). From

the graph, the elapsed times increase with latency, indicating that latency makes it

harder for players to shoot an opponent. The linear regressions fit the means well,

with R2 0.96 and p < 0.001 for the first hit (blue) and R2 0.94 and p < 0.001 for the

second hit (green). The blue line is above the green line meaning the first hit takes

longer, on average, than does the first hit. The slopes differ slightly and suggest

that the first hit is impacted slightly more by latency than the second hit. As a

take-away, an increase in total latency by 100 ms increases elapsed time by about 2

seconds for the first hit, and 1.5 seconds for the second hit.

Figure 6.5 depicts accuracy versus total latency. The x-axis and trendlines are

as for Figure 6.4, but here the y-axis is the accuracy (shots fired divided by shots

taken) as a percent. From the graph, player accuracies for first and second hits

degrade with latency, and the steeper slope of the blue line indicates that latency

has higher impact for the first hit. The linear regressions fit the means well, with R2

0.92 and p = 0.001 for the first hit (blue). R2 0.87 and p = 0.002 for the second hit

(green). As a take-away, an increase in total latency by 100 ms degrades accuracy

percent by about 13% for the first hit, and about 8% for the second hit.

Note, the second hit times are affected by the weapon firing rate (i.e., the mini-

mum time between successive shots – 250 ms in our study). Moreover, many first-

person shooter games (although not ours) have weapon recoil that reduces accuracy

and increases elapsed time for successive shots. While both factors – firing rate and

recoil – are important for first-person shooter game performance, they are not the

focus of our current study. Hence, for all subsequent analysis, we analyze the first

hit only.

Figure 6.6 shows an analysis of quality of experience (QoE) versus total latency.

The QoE is from the question “Rate the quality of the previous game round” from 1

75

Figure 6.6: QoE versus total latency without latency compensation

(low) to 5 (high). The y-axis is the QoE and the x-axis is total latency. Each point

is the QoE averaged over all users, bounded by 95% confidence intervals. The line

is a regression through the mean values - with an R2 of 0.62, p = 0.064. From the

graph, latency degrades player experience, dropping about 0.4 points every 100 ms.

6.2.3 With Latency Compensation

Latency compensation techniques can mitigate the impact of network latency on

players and are widely used in computer games, and self-prediction and time warp

are commonly used latency compensation techniques in first-person shooter games [LXC22].

We compare four different latency compensation condition: none, only self-

prediction, only time warp, and both self-prediction and time warp. Local latency

is kept at a minimum (25 milliseconds), and network latency varies: 0 ms, 50 ms,

100 ms and 150 ms.

Self-prediction [LSGH17] predicts game state based on player input, but before

getting confirmation from the server. In first-person shooter games, self-prediction

76

Figure 6.7: Elapsed time versus latency. Figure 6.8: Accuracy versus latency.

primarily helps a player’s movement in the presence of network latency where an

avatar moves and change direction as if there is no network latency. In our first-

person shooter, player prediction provides immediate feedback to the player for

changing orientation (aiming) without having to get confirmation from the server.

Time warp [SG13] rolls back game state on the server to when the player action

occurred on the client, applies the action, then rolls the game state forward to the

current time. In first-person shooter games, the server decides whether a player hits

a target based on the previous game state when the player fired the shot. With time

warp, players can aim directly at the target.

Figure 6.7 depicts elapsed time versus network latency where the axes and data

are as for Figure 6.4. The data is separated out (means and trendlines) by the four

latency conditions: blue is without latency compensation, red is for self-prediction,

purple is for time warp, and black is for both self-prediction and time warp. In

the graph, the blue line has the steepest slope, showing that latency has the most

impact on elapsed time when there is no latency compensation. The red line and the

77

Figure 6.9: QoE versus network latency with latency compensation

purple line have shallower slopes and are comparable, indicating that each technique

individually has about the same ability to mitigate network latency. The black

line is almost flat, indicating that both techniques together can nearly completely

overcome the effects of network latency. The blue, red and purple lines fit their

respective mean values well, with R2 0.95, 0.89 and 0.88 and p = 0.025, 0.057, 0.061

respectively. The black line is almost flat with R2 0.03 and p = 0.817, indicating

that with both self-prediction and time warp, latency does not have statistically

significant impact on player elapsed time.

Figure 6.8 depicts the same data, but for accuracy. As for the elapsed time

analysis, the uncompensated line (blue) is steeper than self-prediction (red) and

time warp (purple), and with both self-prediction and time warp (black) the trend

line is flat. The blue, red and purple lines fits have R2 0.88, 0.32 and 0.49 and

p = 0.060, 0.433, 0.297 respectively, while the black line has R2 0.57 and p = 0.244

– with both self-prediction and time warp, network latency does not have significant

impact on accuracy.

78

Figure 6.9 depicts QoE versus network latency with compensation techniques.

The graph is the same as Figure 6.6 but the x-axis is only network latency and the

data is separated by latency compensation condition. From the graph, as for player

performance, QoE degrades the most with latency without compensation (blue),

while self-prediction (red) and time warp (purple) both ameliorate the effects of

network latency on QoE. The slightly steeper slope of the purple line compared to

the red line indicates self-prediction helps QoE more than does time warp. The

blue, red and purple lines have R2 0.99, 0.99 and 0.99 and p = 0.048, 0.073, 0.058,

respectively. The black line for QoE is almost flat with R2 0.25 and p = 0.667 –

with both time warp and self-prediction, latency has little impact on QoE.

As a take away, with self-prediction and time warp both on, latency does not

appreciably affect player performance and QoE on 3D target selection tasks.

6.2.4 Local Latency and Network Latency

The latency compensation benefits from Section 6.2.3 can only mitigate the net-

work latencies experienced in Section 6.2.2. We analyze how effective latency com-

pensation is when there are also high local latencies (test condition C from our

methodology).

So, for Figure 6.10, Figure 6.11 and Figure 6.12 the network latency is fixed at

100 ms, while the local latency – either 25 ms or 100 ms – is on the y-axis. The

Cohen’s d effect size quantifies the differences in means in relation to the standard

deviation. Generally small effect sizes are anything under 0.2, medium is 0.2 to 0.5,

large 0.5 to 0.8, and very large is above 0.8. The t test and effect size results are

shown in Table 6.3, 6.4, 6.5 and 6.6. Statistically significance is highlighted in bold.

From these graphs, performance is worse without compensation and using both

techniques helps more than each individually. However, even with both latency

79

Table 6.3: Pairwise T-test (p-value) for data at local latency 25 ms, in order of
elapsed time, accuracy and QoE

None Self-prediction Time warp Both
Elapsed Elapsed Elapsed Elapsed

time Accuracy QoE time Accuracy QoE time Accuracy QoE time Accuracy QoE
None - - - 0.400 0.955 0.484 0.220 0.702 0.833 <0.001 0.003 0.018

Self-prediction 0.400 0.955 0.484 - - - 0.826 0.661 0.607 <0.001 0.002 0.123
Time warp 0.220 0.702 0.833 0.826 0.661 0.607 - - - <0.001 0.007 0.027

Both <0.001 0.003 0.018 <0.001 0.002 0.123 <0.001 0.007 0.027 - - -

Table 6.4: Pairwise T-test (p-value) for data at local latency 100 ms, in order of
elapsed time, accuracy and QoE

None Self-prediction Time warp Both
Elapsed Elapsed Elapsed Elapsed

time Accuracy QoE time Accuracy QoE time Accuracy QoE time Accuracy QoE
None - - - <0.001 0.007 0.758 <0.001 <0.001 0.917 <0.001 <0.001 0.758

Self-prediction <0.001 0.007 0.758 - - - 0.778 0.254 0.817 0.003 0.002 1.0
Time warp <0.001 <0.001 0.917 0.778 0.254 0.817 - - - <0.001 0.060 0.817

Both <0.001 <0.001 0.758 0.003 0.002 1.0 <0.001 0.060 0.817 - - -

Table 6.5: Effect size (Cohen’s d) for data at local latency 25 ms, in order of elapsed
time, accuracy and QoE. (We compute effect size only if T-test reports significance
in Table 6.3)

None Self-prediction Time warp Both
Elapsed Elapsed Elapsed Elapsed

time Accuracy QoE time Accuracy QoE time Accuracy QoE time Accuracy QoE
None - - - - - - - - - 0.72 0.40 0.57

Self-prediction - - - - - - - - - 0.53 0.41 -
Time warp - - - - - - - - - 0.65 0.36 0.54

Both 0.72 0.40 0.57 0.53 0.41 - 0.65 0.36 0.54 - - -

Table 6.6: Effect size (Cohen’s d) for data at local latency 100 ms, in order of elapsed
time, accuracy and QoE. (We compute effect size only if T-test reports significance
in Table 6.4)

None Self-prediction Time warp Both
Elapsed Elapsed Elapsed Elapsed

time Accuracy QoE time Accuracy QoE time Accuracy QoE time Accuracy QoE
None - - - 0.56 0.36 - 0.64 0.50 - 0.95 0.76 -

Self-prediction 0.56 0.36 - - - - - - - 0.40 0.41 -
Time warp 0.64 0.50 - - - - - - - 0.45 - -

Both 0.95 0.76 - 0.40 0.41 - - 0.45 - - - - -

80

Figure 6.10: Elapsed time versus local
latency with 100 ms network latency

Figure 6.11: Accuracy versus local la-
tency with 100 ms network latency

Figure 6.12: QoE versus local latency with 100 ms network latency

81

compensation techniques in effect, local latency of 100 ms still has worse performance

than at 25 ms since the latency compensation techniques only mitigate the network

latency and not the additional 75 ms of local latency.

In Figure 6.10, without latency compensation, there is significant difference be-

tween player elapsed time for 25 ms and 100 ms with p < 0.001. With only self-

prediction or time warp, there is no significant different between player elapsed time

at 25 ms and 100 ms with p = 0.169 and p = 0.005, respectively. With both com-

pensation techniques on, there is significant difference between player elapsed time

at 25 ms and 100 ms with p < 0.001. In Figure 6.11, without latency compensation,

there is significant difference between 25 ms and 100 ms with p < 0.001. With only

self-prediction or time warp, there is no significant different between 25 ms and 100

ms with p = 0.121 and p = 0.364, respectively. With both compensation techniques,

there is no significant difference between 25 ms and 100 ms with p = 0.094.

For QoE, the individual techniques cannot fully overcome the 100 ms of network

latency so player QoE is about the same, although both techniques together improve

QoE from about 3.25 to 3.75 when there is only 25 ms of local latency.

In Figure 6.12, without latency compensation, there is no significant difference

between 25 ms and 100 ms with p = 0.922. With only self-prediction or time

warp, there is no significant different between 25 ms and 100 ms with p = 0.753

and p = 1.0, respectively. With both compensation techniques, there is significant

difference between 25 ms and 100 ms with p = 0.041.

6.2.5 Target Motion

While players in first-person shooter games usually shoot at moving opponents, some

opponents deliberately jump to avoid being shot while others deliberately stand still,

either unaware they are being shot at or to better aim their own weapons.

82

Figure 6.13: Elapsed time versus target
motion

Figure 6.14: Accuracy versus target mo-
tion

The data from test condition D in our methodology lets us assess how much

these motion variants impact target selection. For this condition, the motion varies

– normal, normal without jumping, and stationary – with local latency and network

latency are fixed at 100 ms, each.

Figure 6.13 depicts elapsed time versus the three motion conditions. The x-axis

is the motion condition and the y-axis is the elapsed time. The circles are mean

values and the bars are 95% confidence intervals. Figure 6.14 is as Figure 6.13 but

the y-axis is accuracy instead of elapsed time. From the graphs, player performance

is significantly better – about 1/2 the elapsed time and twice the accuracy – when

the target is still. Moreover, jumping – a commonly used tactic by first-person

shooter opponents – does not significantly degrade player performance. While we

believe these results likely hold in other first-person shooter games, the degree to

which they hold will depend upon the avatar speeds, and frequency of jumping and

direction changes.

83

Figure 6.15: Distributions of first hits
without latency compensation

Figure 6.16: Distributions of first hits
with latency compensation and 175 ms
of latency

6.2.6 Selection Models

Analytic models can help generalize results beyond the necessarily narrow range of

conditions tested in a user study. In our case, a model of 3D target selection with

latency is be combined with models of navigation with latency from Chapter 5 in

order to simulate moving and shooting in a first-person shooter game in Chapter 7.

This enables predictions of player performance over a broad range of latency condi-

tions, as well as other in-game conditions such as specific game parameters such as

weapon attributes in Chapter 10.

Since the intent of 3D target selection is to click on the target as fast as possible,

we analyze and then model the elapsed time with latency. For now, we only consider

the rounds with normal target movement and without latency compensation.

Figure 6.15 depicts the cumulative distribution functions (CDF) of elapsed time.

The x-axis is length of elapsed time in seconds and the y-axis is the cumulative

84

distribution. The data is grouped for three2 different total latency conditions. From

the graph, there is some visual separation of the lines based on latency, with lower

latencies having shorter elapsed times (the lines are shifted up and to the left).

Table 6.7: Models for selection.

Name Model Adjusted R2

Log gamma γ((a·L+b),(c·L+d)·T)
Γ(a·L+b)

0.62

Pareto 1−
(
Tm
T

)a·L+b
0.92

Weibull 1− e−(T/(a·L+b))c·L+d
0.95

Stretched exponential 1− a ∗ e−(b·L+c)∗T f ·L+g
0.97

Exponential 1− a ∗ e−(b·L+c)∗T 0.98

Since the CDF distributions appear have an exponential shape, we fit different

exponential-like models to the data as indicated in Table 6.7 and find exponential

fits the data best. The CDF (p) of the exponential distribution is described by:

p = 1− a ∗ e−(b·L+c)∗T (6.1)

where L is the total latency in milliseconds, T is the elapsed time in seconds and a,

b and c are constants.

Figure 6.16 depicts the CDFs of elapsed time with latency compensation at

175 ms, as an example. In the graph, blue is for no compensation, red is for self-

prediction, purple is for time warp, and black is for both techniques. Since there is

no latency compensation in Figure 6.15, the blue line in Figure 6.16 is the same as

the green line in Figure 6.15. From the graph, there is some visual separation of the

lines based on latency compensation techniques, with the “both” condition having

the shortest elapsed times, self-prediction only and time warp only having slightly

longer elapsed times and “none” having the longest elapsed times. An exponential

2The other latency conditions are not shown on the graph to make it readable.

85

distribution fits the data of the four latency compensation conditions well, with an

average R2 0.98 and average RMSE of 0.041. For reference, the model parameters

are included in Table 6.8.

Table 6.8: Parameters of models for elapsed time distributions (Equation 6.1)

Latency compensation a b c R2 RMSE

None 1.34 -1.57 0.51 0.99 0.033

Self-prediction 1.33 -0.97 0.50 0.98 0.039

Time warp 1.39 -1.16 0.53 0.98 0.042

Both 1.54 -0.52 0.60 0.97 0.049

6.3 Selection Limitations

Our methodology intentionally had users play against a bot. The movement of the

target can alter the difficulty of the game and hence affect player performance and

experience. Although the movement of the bot is simulated from real player data

from the first-person shooter game CS:GO, the results may not generalize to all FPS

games which may differ in their target motion parameters.

In our custom game, the player only has a pistol as the weapon. However, the

play style and strategy can vary with different types weapons, which, in turn, may

result in different elapsed times and accuracy. Similarly, weapon accuracies and

firing rates different than the ones in our study may have alternate performance

data.

As noted in Section 6.2.1, our sample is skewed towards young males. While

this may reflect the gender and age breakdown present in some first-person shooter

games today, the results reported may not be indicative of players outside of this

demographic.

86

There might be learning effects where players become more familiar with the

game and perform better at later rounds, regardless of the latency. While we did

not explicitly look for learning effects, our shuffled test conditions across all rounds

should minimize any learning effects on specific conditions.

Serious game players often customize the software settings on their computers

and games to suit their personal play preferences. For example, players may alter

the mouse sensitivity or change the graphics resolution from the system defaults.

These custom changes presumably improve the specific player’s experience and may

improve the player’s performance. However, since customizations that deviated from

our settings create a difference in test conditions between users, we did not allow

any changes to the computer settings. This holds for other game configurations,

too, such as other mice, keyboards or monitors.

6.4 Selection Summary

This chapter presents results from a user study on first-person selection under con-

trolled latency conditions. We isolated selection in first-person games via a custom

3D target selection game where players took a fixed position, selected avatars in a

matter akin to first-person shooter games – aiming and shooting the opponent. We

setup our game in a private, local area network where we could control the local

latency and network latency. We also investigated common latency compensation

techniques applied in first-person shooter games and studied different types of tar-

get movement. Thirty-nine (39) participants played our custom game for 69 rounds

across 22 different latency, latency compensation techniques and target motion con-

ditions (a total of 60 minutes of gameplay), providing objective player performance

data (elapsed time, hit/miss ratio) via log files and subjective opinion data (Quality

87

of Experience) via surveys.

Analysis of the results shows that across the range of total latencies studied,

player performance and quality of experience both degrade linearly as latencies

increase from 25 ms to 200 ms. Specifically, elapsed time to select at 25 ms of

latency average about 60% shorter than elapsed time at 200 ms. Over this same

range, Quality of Experience (QoE) decreases about 0.4 with every 100 ms of latency.

Time warp and self-prediction both mitigate the effects of latency, and, when applied

together, can eliminate the effects of latency on both player performance and QoE

– i.e., players can feel and perform as if there is no network latency when time warp

and self-prediction are both used. Moreover, we derive models for elapsed time

with different latency compensation techniques. The selection model is combined

with the navigation model from Chapter 5 to simulate various first-person shooter

scenarios in Chapter 7.

88

Chapter 7

Simulations

Analytic models and simulations have the potential to enable exploration of player

performance with latency and game parameters as an alternative to time-intensive

user studies. We develop simulations of first-person shooter scenarios using the

navigation models from Chapter 5 and the selection models from Chapter 6. Then

we validate the simulations with a study using a custom first-person shooter game

in Chapter 9 and two studies using Counter Strike: Global Offensive in Chapter 8.

Finally, we use our simulations to explore player performance with different game

configurations and delays in Chapter 10. This section describes how we use our

models of navigation and selection from Chapter 5 and Chapter 6 in our simulations

of first-person shooter games.

7.1 Simulation Game

The default game we simulate is a two player first-person shooter. We simulate this

game because killing the opponent is the core part of first-person shooter games.

First-person shooter games may have different game mode and goals. However,

players all need to shoot and kill the opponent. The goal for each player is to kill

89

the opponent - the other player - as fast as possible. A game is over after one of

the two players is killed or a 40 seconds time limit is reached, whichever comes

first. The game map is a single, square room, default size of 36 meters in length and

width, with multiple obstacles, the same as in our Hide and Seek game in Chapter 5.

The player avatars spawn at at random location on the map but not currently in

view of the opposing player. Each player spawns with a pistol-type weapon with

unlimited ammo. The simulation also assumes a client-server architecture typical

of most network games where an authoritative server keeps the master world state

and communicates state updates to the clients. We simulate the win rates of players

while varying local latency, network latency, latency compensation techniques, firing

rate, number of hits required for a kill, map size, target size and player skill.

7.2 Models with Player Skill

To integrate player skill into our model, we first assess skill indicators, considering

self-rated score, reaction time and in-game performance.

Our previous work [LCD+20] concluded that self-rated skill can be a good indi-

cator of actual player skill on average. However, in our custom FPS game user study

(Chapter 9), player performance also has a weak correlation with self-rated score

in FPS games (R 0.21). Computer gamers tend to have faster reaction than aver-

age [Ric14]. We correlate reaction time from players in our user studies with their

performance. However, in our custom FPS game user study (Chapter 9), player

performance has a weak correlation with reaction time (R -0.13).

Instead, we use in-game performance as an indicator of player skill and separate

player skill into two groups - players with top third performance are higher skill

players and players with bottom third performance are lower skill players. We have

90

Figure 7.1: Distributions of in-sight win-
dows

Figure 7.2: Distributions of out-of-sight
windows

the separate models for 3 different skill groups of player - higher, using only top

third players data; lower, using only bottom third players data; and all, using all

players data.

Figure 7.1 depicts the cumulative distribution of in-sight window length from our

navigation study in Chapter 5. The x axis is in-sight window length in seconds and

the y axis is the cumulative distribution. The blue line is for lower skill players and

the orange line is for higher skill players. From this graph, higher skill players have

longer in-sight windows in general. Figure 7.2 depicts the cumulative distribution

of out-of-sight window length. This graph is as Figure 7.1 but the data is for out-

of-sight window length. From this graph, out-of-sight window length does not differ

between higher skill players and lower skill players.

Figure 7.3 depicts the cumulative distribution of selection time. This graph is as

Figure 7.1 but the data is for selection time. From this graph, higher skill players

has shorter elapsed time.

91

Figure 7.3: Distributions of elapsed time

The final models for in-sight windows CDF is:

p = 1− e(− in sight window
a×(loc lat+net lat)+b

)c×(loc lat+net lat)+d+e (7.1)

where p is probability, in insight window is the length of in insight window, loc lat

is local latency, net lat is the network latency, and a,b,c,d and e are constants. We

have separate constants for each latency compensation and player skill. The values

of a, b, c, d and e of all the in-sight window models are included in Table 7.1.

Since player skill does not alter out-of-sight distribution as indicated in Fig-

ure 7.2, out-of sight window does not have skill as a parameter. The final models

for out-of-sight windows are:

p = 1− e−(out of sight window
0.5

)0.72 (7.2)

92

where p is probability, and out of sight window is the length of out of sight windows.

The final models with player skill for selection times are:

p =1− a× e(−(b×(loc lat+net lat)+c×firing rate+d×3D distance+e× target size

3D distance2
+f)×elapsed time)

(7.3)

where p is probability, elapsed time is the selection time, loc lat is the local latency,

net lat is the network latency, firing rate is the weapon firing rate, target size is

the height of the target, and 3D distance is the 3D distance between two players,

and a, b, c, d, e and f are constants. We have separate constants for each latency

compensation and player skill. The values of a, b, c, d, e and f of all the selection

models are included in Table 7.2.

Table 7.1: Simulation coefficient values - in sight window

Player Latency

skill compensation a b c d e

All none - 3.64e-4 0.22 - 4.06e-4 0.69 - 0.27

All self-prediction - 9.44e-5 0.22 - 6.24e-16 0.69 - 0.23

All time warp - 5.60e-4 0.25 - 8.38e-4 0.77 - 0.43

All self-prediction and time warp - 5.65e-29 0.34 - 9.91e-5 0.82 - 0.29

Low none - 2.90e-4 0.19 - 3.05e-4 0.66 - 0.27

Low self-prediction - 6.53e-5 0.16 - 2.18e-23 0.67 - 0.21

Low time warp - 3.92e-4 0.19 - 4.66e-4 0.67 - 0.35

Low self-prediction and time warp - 6.28e-34 0.31 - 1.28e-4 0.81 - 0.30

High none - 4.05e-4 0.24 - 4.53e-4 0.72 - 0.24

High self-prediction - 1.23e-4 0.24 - 3.85e-5 0.71 - 0.21

High time warp - 6.37e-4 0.28 - 1.00e-3 0.83 - 0.43

High self-prediction and time warp - 1.21e-24 0.34 - 9.54e-5 0.82 - 0.24

93

Table 7.2: Simulation coefficient values - selection

Player Latency

skill compensation a b c d e f

All none 1.18e-3 -1.43 -0.75 -3.03e-5 -0.53 0.82

All self-prediction 1.17e-3 -0.93 -0.48 9.73e-4 16.07 0.64

All time warp 1.22e-3 -0.97 -0.55 3.60e-4 12.89 0.75

All self-prediction and time warp 1.27e-3 -0.02 -0.69 3.04e-3 57.63 0.69

Low none 1.14e-3 -1.20 -0.50 -2.37e-5 2.54 0.61

Low self-prediction 1.18e-3 -0.39 -0.63 9.92e-4 7.97 0.64

Low time warp 1.20e-3 -0.40 -0.50 -8.29e-4 -4.05 0.67

Low self-prediction and time warp 1.19e-3 0.17 -0.52 -2.14e-3 -18.40 0.76

High none 1.23e-3 -1.72 -0.87 1.68e-3 21.13 0.96

High self-prediction 1.17e-3 -1.21 -0.25 1.67e-3 29.38 0.60

High time warp 1.22e-3 -1.56 -0.52 -1.40e-4 -0.61 0.89

High self-prediction and time warp 1.32e-3 -0.09 -0.75 7.74e-3 118.67 0.66

7.3 Simulation Overview

For each game, we represent moving to shoot and avoid being shot with successive,

alternative in-sight window and out-of-sight windows. Each in-sight window is fol-

lowed by an out-of-sight window and each out-of-sight window is followed by an

in-sight window. The game starts with an out-of-sight window since both players

cannot see each other upon spawning. The time windows are generated until the

time line reaches the game round time limit of 40 seconds , as depicted in Figure 7.4.

In each of the in-sight windows, we generate elapsed times from the selection

model. If the elapsed time is within the in-sight window, the player hits the shot.

Otherwise, if the elapsed time is longer than the end of the in-sight window, the

shot is a miss as shown in Figure 7.5.

We keep generating hit times until the number of hits for a kill is required. Each

player then has a series of hit timestamps indicating when they hit their shots in the

game. Whoever gets the required number of hits soonest wins the game. Figure 7.6

94

Figure 7.4: Opponent visibility intervals in simulation game

Figure 7.5: Opponent visibility intervals in simulation game

depicts the hit timestamps for each player. If we assume the number of hits required

to kill is 5, in this example, player 2 gets 5 hits on player 1 before player 1 gets 5

hits on player 2, so player 2 wins the game.

7.4 Simulation Algorithm

This section shows the pseudocode for a first-person shooter game simulation. In

the code blocks, variables have a style of “snake case”, functions and structures have

a style of “camelCase”, comments are in green and constants are CAPS.

Figure 7.6: Hit timeline. The player gets the required number of hits first win the
game.

95

7.4.1 Structures

The structure of gameInfo is included in Listing 7.1. The gameInfo includes game

specific information. This structure is used in the simulation functions to pass game

related information.

1 # Game parameters are the same for both players

2 struct gameInfo {

3 latency_compensation = 0

4 firing_rate = 250

5 number_of_hits_required = 1

6 map_size = 36

7 target_size = 2

8 time_limit = 40

9 }

Listing 7.1: The gameInfo structure with default values shown

The structure of playerInfo is included in Listing 7.2. The playerInfo structure

holds the latency conditions, game parameters and the skill of the specific player.

The skill values can be low, high and all. This structure is used in the simulation

functions to pass game related information specific for a player.

1 # Parameters which can vary between players

2 struct playerInfo {

3 local_latency = 0

4 network_latency = 0

5 skill = All

6 }

Listing 7.2: The playerInfo structure with default values shown

7.4.2 Functions

96

1 # Return a sample from model

2 function deriveSampleFromModel (gameInfo , playerInfo , model_type) {

3 # Pick model based on model type , compensation and player skill

4 compensation = gameInfo.latency_compensation

5 skill = playerInfo.skill

6 local_latency = playerInfo.local_latency

7 network_latency = playerInfo.network_latency

8 tot_lat = local_latency + network_latency

9 # Sample a random probability from 0 to 1

10 p = random (0, 1)

11 if (model_type == in_sight_window)

12 {

13 # Find values of coefficient from lookup table

14 # See Table 7.1

15 a = COEFFICIENTS_IN_SIGHT[a][skill][compensation]

16 b = COEFFICIENTS_IN_SIGHT[b][skill][compensation]

17 c = COEFFICIENTS_IN_SIGHT[c][skill][compensation]

18 d = COEFFICIENTS_IN_SIGHT[d][skill][compensation]

19 e = COEFFICIENTS_IN_SIGHT[e][skill][compensation]

20 in_sight_window_length =

21 (e - ln(1 - p)) ^ (1 / (c * tot_lat + d)) * (a * tot_lat + b)

22 return in_sight_window_length

23 }

24 elif (model_type == out_of_sight_window)

25 {

26 # Find values of coefficient from lookup table

27 # See equation 7.2

28 a = COEFFICIENTS_OUT_OF_SIGHT[a][skill][compensation]

29 b = COEFFICIENTS_OUT_OF_SIGHT[b][skill][compensation]

30 out_of_sight_window_length = a*(-ln(1-p))^(1/b)

31 return out_of_sight_window_length

97

32 }

33 elif (model_type == selection)

34 {

35 # Find values of coefficient from lookup table

36 # See Table 7.2

37 a = COEFFICIENTS_SELECTION[a][skill][compensation]

38 b = COEFFICIENTS_SELECTION[b][skill][compensation]

39 c = COEFFICIENTS_SELECTION[c][skill][compensation]

40 d = COEFFICIENTS_SELECTION[d][skill][compensation]

41 e = COEFFICIENTS_SELECTION[e][skill][compensation]

42 f = COEFFICIENTS_SELECTION[f][skill][compensation]

43 distance = random (0, gameInfo.map_size)

44 firing_rate = gameInfo.firing_rate

45 target_size = gameInfo.target_size

46 elapsed_time = - ln((1 - p) / a) / (b * tot_lat +

47 c * firing_rate + d * distance +

48 target_size * e / distance ^2 + f)

49 return elapsed_time

50 }

51 else

52 return "Model type does not exist"

53 }

Listing 7.3: Pick model equation and return random sample

1 # Return in-sight sample window (in seconds)

2 function getInSightWindow (gameInfo , playerInfo) {

3 model_type = in_sight_window

4 # Get in-sight window with model

5 window = deriveSampleFromModel(gameInfo , playerInfo , model_type)

6 return window

98

7 }

Listing 7.4: Sample in-sight window from navigation model

1 # Return out -of-sight window (in seconds)

2 function getOutOfSightWindow (gameInfo , playerInfo) {

3 model_type = out_of_sight_window

4 # Get out -of-sight window with model

5 window = deriveSampleFromModel(gameInfo , playerInfo , model_type)

6 return window

7 }

Listing 7.5: Sample out-of-sight window from navigation model

In Chapter 5, we modeled the CDF of the seeker intervals - length of the time

window with the opponent in sight; and the CDF of hider intervals - length of the

time window that the player is out of the opponent’s sight. An in-sight window

is a time window when the player can see the opponent. We are able to simulate

in-sight windows with the navigation seeker intervals model, using Equation 7.1.

Function 7.4 depicts how an in-sight window is sampled. We first specify the model

type and pass it in to Function 7.3 along with gameInfo and playerInfo. In Func-

tion 7.3, we first randomize a probability value between 0 and 1. Then we find

model coefficients values corresponding to compensation technique and player skill.

With the probability value and the model of the in-sight window CDF, we are able

to derive a sample of the length of an in-sight window. An out-of-sight window is a

time window when the player cannot see the opponent. We simulate an out-of-sight

window the same as an in-sight window with the navigation hider intervals model,

using Equation 7.2.

1 # Return elapsed time (in seconds)

2 function getSelectionTime (gameInfo , playerInfo) {

99

3 model_type = selection

4 # Get elapsed time with model

5 time = deriveSampleFromModel(gameInfo , playerInfo , model_type)

6 return time

7 }

Listing 7.6: Sample elapsed time from selection model

In Chapter 6, we modeled elapsed time for selection - time taken to hit the target.

We are able to simulate elapsed time with the selection model, using Equation 6.1

in Section 6.2.6 on page 84. Function 7.6 depicts how an elapsed time is sampled.

We first randomize a probability value between 0 and 1. With probability value and

the elapsed time CDF model, we are able to derive an elapsed time.

1 # Return the length of a time window (in seconds)

2 function getWindow (is_hider , gameInfo , playerInfo) {

3 current_window = 0

4 if (is_hider)

5 current_window = getOutOfSightWindow(gameInfo , playerInfo)

6 else

7 current_window = getInSightWindow(gameInfo , playerInfo)

8 return current_window

9 }

Listing 7.7: Get a time window

Function 7.7 depicts how we simulate a time window. If the opponent is hiding,

the current window is an out-of-sight window. Function 7.5 is called to sample an

out-of-sight window. Otherwise, the opponent is in sight and Function 7.4 is called

to sample an in-sight window.

1 # Return all hit timestamps in an in-sight window and total hits

2 function getHitTimestampsInAWindow (window_start_time ,

window_end_time , hit_count , gameInfo , playerInfo){

100

3 hit_timestamps_window = []

4 total_time = window_start_time #Timeline

5 while (total_time < window_end_time

6 and hit_count < gameInfo.number_of_hits_required)

7 {

8 elapsed_time = getSelectionTime(gameInfo , playerInfo)

9 hit_timestamp = total_time + elapsed_time

10 # Player missed shot , or already enough hits to kill

11 if (hit_timestamp > time_limit or

12 hit_count >= gameInfo.number_of_hits_required)

13 break

14 hit_timestamps.append(hit_timestamp)

15 hit_count += 1

16 }

17 return hit_timestamps_window , hit_count

18 }

Listing 7.8: Get hit timestamps in a window

Function 7.8 shows the pseudocode of getting hit timestamps for a player in

an in-sight window. In each of the in-sight windows, if the hit count is less than

the number of hits required, we keep generating elapsed times from the selection

model, as indicated by line 8 in Function 7.8. If the elapsed time is within the

in-sight window, the player hits the shot. Otherwise, if the elapsed time is longer

than the end of the in-sight window, the shot is a miss as shown in Figure 7.5

(line 11 in Function 7.8). When complete, getHitTimestampsInaWindow() returns

all timestamps where a player hits the target in an in-sight window.

1 # Return all hit timestamps for a player in a game

2 function getHitTimestamps (gameInfo , playerInfo) {

3 hit_timestamps = []

4 isHiderWindow = true

101

5 total_time = 0

6 hit_count = 0

7 while(total_time < gameInfo.time_limit)

8 {

9 window_length = getWindow(isHiderWindow , gameInfo)

10 window_start_time = total_time

11 window_end_time = min(window_start_time + window_length ,

12 GAME_TIME_LIMIT)

13 # In-sight window

14 if (! isHiderWindow)

15 {

16 hit_timestamps_this_window , hit_count =

17 getHitTimestampsInAWindow(

18 window_start_time , window_end_time , hit_count , gameInfo ,

19 playerInfo)

20 hit_timestamps.append(hit_timestamps_this_window)

21 }

22 isHiderWindow = !isHiderWindow

23 total_time += window_length

24 }

25 return hit_timestamps

26 }

Listing 7.9: Get hit timestamps in a game for a player

Function 7.9 shows the pseudocode for getting all the hit timestamps for a player

in a game. Each while loop iteration (line 7), we first generate an either in-sight

window or an out-of-sight window in line 9 with Function 7.7, depending on the state

decided by the Boolean value isHiderWindow in line 4. For each in-sight window,

the functions calls Function 7.8 to get all hit timestamps in the time window and add

them to the results. After dealing with each window, the simulation accumulates

102

time and resets current state of window, as indicated by lines 22 - 23. The function

returns a series of all the hit timestamps in a game when a player hits an opponent.

Whichever player kills their opponent first wins the game. With the hits times-

tamps from both players, 7.10 detects the winner. Function 7.10 first calls Func-

tion 7.9 for both players passing in struct playerInfo which contains their gameInfo

to get their hit timestamps, respectively (line 4 and line 5). The two players are

simulated independently - their actions such as hiding and seeking and selection

times are independent of what the other player is doing.

1 # Return the winner of a game

2 function findWinnerForaGame (gameInfo , player0Info , player1Info) {

3 # Get player hit timestamps

4 player_0_hits = getHitTimestamps(gameInfo , player0Info)

5 player_1_hits = getHitTimestamps(gameInfo , player1Info)

6

7 nhits = gameInfo.number_of_hits_required

8 # Draw , did not kill each other in time limit

9 if (len(player_0_hits) < nhits)

10 and (len(player_1_hits) < nhits)

11 return "Draw"

12 # Player 1 did not have enough hits

13 elif (len(player_1_hits) < nhits)

14 return player0

15 # Player 1 kills player 0

16 elif (len(player_0_hits) < nhits)

17 return player1

18 # Both have enough hits , so whoever gets enough hits first wins

19 elif (player_1_hits[nhits -1] < player_0_hits[nhits -1])

20 return player1

21 elif (player_1_hits[nhits -1] > player_0_hits[nhits -1])

22 return player0

103

23 else # They kill each other at the same time

24 return "Draw"

25 }

Listing 7.10: Find winner for a game

In Function 7.10, there are 4 outcomes for a game: both of players did not get

enough hits and the game is a draw (line 9); only one player gets enough hits and

the player with enough hits wins (line 13 and line 16); both players get enough

hits, so the player with enough hits first wins (line 19); both players get enough

hits and they get enough hits at the same time, so the game is a draw (line 23).

findWinnerForaGame() returns the winner of a game.

1 # Return win rates of both player across a large number of rounds

2 function fpsSimulation (gameInfo , player0Info , player1Info) {

3 win_count_player_0 = 0

4 win_count_player_1 = 0

5 for i in range(ITERATION)

6 {

7 winner = findWinnerForAGame(gameInfo , player0Info , player1Info)

8 if (winner == player_0)

9 win_count_player_0 += 1

10 if (winner == player_1)

11 win_count_player_1 += 1

12 }

13 player_0_win_rate = win_count_player_0/ITERATION

14 player_1_win_rate = win_count_player_1/ITERATION

15 return player_0_win_rate , player_1_win_rate

16 }

Listing 7.11: Entry function to the simulation

Function 7.10 simulates a single game and has one winner. Function 7.11 shows

104

how we run a large number of games. Constant ITERATIONS denotes number

of games to simulate (line 5). Each loop (line 5) is a game. For each game, we

call Function 7.10 (line 7) with struct gameInfo to get the winner of the game.

Function 7.10, we count how many times the players win across all the games (line 9).

Finally, win count divided by number of iterations gets the win rate of both players

(line 15).

1 # Print win rate of both players with 100 ,000 games.

2 function main(){

3 # Set up gameInfo , player0Info and player1Info.

4 gameInfo.latency_compensation = 0

5 gameInfo.firing_rate = 0

6 gameInfo.number_of_hits_required = 4

7 gameInfo.map_size = 50

8 gameInfo.target_size = 50

9 gameInfo.time_limit = 60

10 player0Info.local_latency = 25

11 player0Info.network_latency = 100

12 player0Info.skill = high

13 player1Info.local_latency = 25

14 player1Info.network_latency = 0

15 player1Info.skill = high

16

17 # Set number of games

18 ITERATION = 100 ,000

19

20 # Print both player win rate out of the games

21 print(fpsSimulation(gameInfo , player0Info , player1Info))

22 }

Listing 7.12: How fpsSimulation() is called

105

Listing 7.12 shows how we setup and invoke function 7.11. As an example,

assume we wanted to simulate a game no compensation, firing rate at 250 ms,

number of hits required to kill at 4, map size at 50 x 50 m, target size at 2 m and

time limit at 60 secs; player 0 has 100 ms of network latency, player 1 has no network

latency and both players 25 ms of local latency; and both players are from high skill

group. Listing 7.12 first apply values to gameInfo, playerInfo for both players and

set number of games. Finally, it prints both player win rate out of the games.

7.5 Number of Iterations

In order to determine the number of iterations required for consistent results (con-

stant ITERATION in Function 7.1), we run simulations with our base conditions

- network latency at 150 ms and other parameters at the defaults. We increase

number of iterations by 1000 each time (1000, 2000, 3000...) and observe the point

where win rate mean and standard deviation are stable. Figure 7.7 depicts average

win rate for the test player versus number of iterations. The x axis is the number

of iterations and the y axis is average win rate. Figure 7.8 is as Figure 7.7 but the

y axis is the standard deviation of the win rate. From the graphs, the mean and

standard deviation stabilize after about 10,000 iterations. We use 100,000 iterations

in all following simulations and explorations.

7.6 Simulation Parameters

The simulation allows specifications of the following game parameters: local latency

and network latency, latency compensation techniques, weapon firing rate, number

of hits, map size, target size and player skill. This section describes the bottom-

up procedure (Section 7.6.1) and top-down procedure (Section 7.6.2) for how the

106

Figure 7.7: Average win rate versus it-
erations

Figure 7.8: Average win rate standard
deviation versus iterations

parameters are represented in the simulation.

7.6.1 Change Parameters - Bottom Up

The local latency and network latency impact the distribution of the in-sight window

as indicated by line 7 in Function 7.4. The out-of-sight window is not impacted by

latency. The distribution of selection (elapsed time) is also be changed with latency,

so is the value generated from the selection model as indicated by line 8 in Func-

tion 7.6. The changes in distribution of selection and in-sight window can change

elapsed time and window length generated from the models, followed by player’s

hit timestamp in a time window (Function 7.7) and in a game (Function 7.9). As

a result, the winner from Function 7.10 can be different which can affect simulation

results (win rates) from Function 7.11.

There are four conditions for latency compensation - no compensation, self-

prediction only, time warp only and both. In our studies, player skills are decided

by player performance. Players in the top third performance are higher skill players.

Players in the bottom third performance are lower skill players. Our simulations

107

consider two conditions for player skill - lower and higher. For each of the latency

compensation and player skill conditions, we model selection and in-sight windows.

There is a model for selection and a model for in-sight window under every latency

compensation/player skill conditions. For each latency compensation / player skill

conditions, Function 7.4 and 7.6 first pick the corresponding model at line 5, and

then generate in-sight window lengths and selection time. The changes in distribu-

tion of selection and in-sight window can potentially change player’s hit timestamp

in an in-sight window from Function 7.8 and in a game from Function 7.9.

To change number of hits required to kill an opponent, we change number of

total hits allowed in gameInfo as indicated by Listing 7.1. Once the number of hits

reach preset value, the function returns hits timestamps. A change to number of hits

required can potentially change players hit timestamps return from Function 7.9.

Firing rate is a parameter in selection model. In the 3D selection study (Chap-

ter 6), it takes the player two shots to kill the enemy bot. The weapon firing rate

is 4 rounds per second with unlimited ammo (no reload) as indicated in Chapter 6.

We set 250 ms to be the firing rate of all shots after the first shot, and the minimum

first hit elapsed time as the firing rate for the first shot. We then integrate the firing

rate values into the selection model. By change weapon firing rate, we change the

distribution of selection as indicated by line 5 in Function 7.6. Then the value gener-

ated from the selection model may be changed, changing the players hit timestamp

in an in-sight window from Function 7.8 and in a game from Function 7.9.

Map size can be represented by the furthest 3D distance between the two players.

3D target size, 3D distance and 2D target size are mathematically related, any one

of the three metrics can be derived from the other two. In our target selection

game, we logged 2D target size and 3D distance between the two players every

frame. To simulate map size, we integrated 3D distance into our selection model.

108

With simulation for each in-sight time window, we randomize a 3D distance value

within the furthest 3D distance based on map size. The map size decides the limit

of the randomized 3D distance. Then the value generated from the selection model

as indicated by line 8 in Function 7.6 is changed. The changes in distribution of

selection can potentially change players hit timestamp in an in-sight window from

Function 7.8 and in a game from Function 7.9.

3D target size can be derived from 3D distance and 2D target size. If we change

3D target size, 2D target size changes proportionally. To simulate target size, we

integrated 2D target size into our selection model. We use the 3D target size ratio

(the ratio to the 3D target size used in selection study) as an input for the selection

model. A change in the 3D target size changes the 3D target size ratio, as well

as the distribution of the selection. Then the value generated from the selection

model as indicated by 8 in Function 7.6 is changed. The changes in distribution of

selection can potentially change players hit timestamp in an in-sight window from

Function 7.8 and in a game from Function 7.9.

The bottom up procedure of how the parameters are presented are shown in

Table 7.3.

7.6.2 Change Parameters - Top Down

To change local latency and network latency, we change latency values included

in gameInfo as indicated in Listing 7.1. In Function 7.11, the gameInfo is passed

into the function at line 7. Then Function 7.10 pass different latency values to

Function 7.9 at line 4 and 5. Finally Function 7.9 pass different latency values to

Function 7.4 and 7.6, changing the distribution of the in-sight window and selection

which can potentially change simulation results.

To change latency compensation techniques or player skill, we change the pa-

109

Table 7.3: Change parameters - bottom up

Parameters How represented

Local/network latency In-sight window distribution, selection distribution →
values of in-sight window length, selection time from Function 7.7 and 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Latency compensation In-sight window model, selection model at line 5 in Function 7.7 and 7.6 →
values of in-sight window length, selection time from Function 7.7 and 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Firing rate Selection distribution → values of selection time from Function 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Number of hits Variable nhits required in Listing 7.1 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Map size Selection distribution → values of selection time from Function 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Target size Selection distribution → values of selection time from Function 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

Player skill In-sight window model, selection model at line 5 in Function 7.7 and 7.6 →
values of in-sight window length, selection time from Function 7.7 and 7.6 →
hit timestamps from Function 7.8 and 7.9 → winner from Function 7.10

simulation results from Function 7.11

110

rameter condition condition included in gameInfo as indicated in Listing 7.1. In

Function 7.11, the gameInfo is passed into Function 7.10 at line 7. Function 7.10

pass different latency compensation techniques or player skill conditions to Func-

tion 7.9 at line 4 and 5. Then Function 7.9 asks Function 7.4 and Function 7.6 to

pick the corresponding models at line 5. The difference in models can changes the

distribution of selection and in-sight window which can potentially change simula-

tion results.

To change weapon firing rate, map size, or 3D target size, we change the parame-

ters included in gameInfo as indicated in Listing 7.1. In Function 7.11, the gameInfo

is passed into the function at line 7. Then Function 7.10 pass playerInfo with dif-

ferent parameter values to Function 7.9 at lines 4 and 5. Finally Function 7.9 pass

different parameter values to Function 7.6, changing the distribution of selection

which can potentially change simulation results.

To change number of hits required, we will change number of hits required in-

cluded in gameInfo as indicated in Listing 7.1. In Function 7.11, the gameInfo is

passed into Function 7.10 at line 7. Then Function 7.10 pass gameInfo to Func-

tion 7.9 at line 4 and 5. Finally Function 7.9 changes the variable nhits required in

Function 7.8.

The top down procedure of how parameter are represented are shown in Ta-

ble 7.4.

111

Table 7.4: Change parameters - top down

Parameters How represented

Local/network latency gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 9, 16 in Function 7.9 →
playerInfo at line 7 in Function 7.7 and line 8 in Function 7.8 →
playerInfo at line 5 in Function 7.4 and line 5 in Function 7.6

Latency compensation gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 9, 16 in Function 7.9 →
playerInfo at line 7 in Function 7.7 and line 8 in Function 7.8 →
latency compensation at line 5 in Function 7.4, line 5 in Function 7.6,

playerInfo at line 5 in Function 7.4 and line 5 in Function 7.6

Firing rate gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 16 in Function 7.9 →
playerInfo at line 8 in Function 7.8 →
playerInfo at line 5 in Function 7.6

Number of hits gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
Variable nhits required in Function 7.9

Map size gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 16 in Function 7.9 →
playerInfo at line 8 in Function 7.8 →
playerInfo at line 5 in Function 7.6

Target size gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 16 in Function 7.9 →
playerInfo at line 8 in Function 7.8 →
playerInfo at line 5 in Function 7.6

Player skill gameInfo at line 7 in Function 7.11 →
player0Info and/or player1Info at line 4, 5 in Function 7.10 →
playerInfo at line 9, 16 in Function 7.9 →
playerInfo at line 7 in Function 7.7 and line 8 in Function 7.8 →
player skill at line 5 in Function 7.4, line 5 in Function 7.6,

playerInfo at line 5 in Function 7.4 and line 5 in Function 7.6

112

Chapter 8

Validation: Commercial

First-person Shooter Game

We select Counter-strike Global Offensive (CS:GO) (Valve, 2012) for validation of

the simulation in Chapter 7 as it is: a) used for esports, and b) has a large player

base, but c) allows options for single-player play in stand-alone mode without an

Internet connection so as to remove the confounding effect of uncontrollable network

latencies from the study.

8.1 The Effects of Local Latency on CS:GO Game

Players

This section presents results from a 43-person user study that evaluates the impact

of local latency on Counter-strike: Global Offensive (CS:GO) players. Analysis of

the results show pronounced benefits to CS:GO player performance (accuracy and

score) for even small reductions in latency, with subjective opinions on Quality of

Experience following suit. We compare the user study results to our simulation

113

results and find that the trends of player performance versus latency hold.

8.1.1 CSGO (Local Latency) Study Methodology

To investigate how low amounts of system latency affect first-person shooter (FPS)

gamers, we deploy the following methodology: 1) Find an FPS game that provides

gameplay data in the form of log files and allows for customization of game settings;

2) Measure base system latency for our game system to get the minimum latency

values; 3) Design and conduct a user study with the customized game and added

delays to evaluate the impact of system latency on FPS gamers; and 4) Analyze

the user study results in terms of player performance and quality of experience with

latency.

A high-end gaming laptop and low latency gaming mouse were selected and

benchmarked together in order to assess “best case” latency conditions while allow-

ing room for emulating slightly higher latencies by adding delay to user input. The

selected laptop was the Gigabyte Aero 15, accompanied by a Logitech G502 mouse.

The Aero has an 8-core i7 9750H / 2.6 GHz processor, 16 GB RAM, an NVidia

GF RTX 2070 graphics card, and a screen resolution of 1920x1080 pixels at 240 Hz.

The G502 is a laser mouse with 12k DPI, 300 IPS, and a polling rate of 1 kHz.

The laptop was configured with Ubuntu 20.04 LTS, with Linux kernel version 5.4.

For this study, we assembled a set of 11 identical laptops and mice, all configured

exactly the same way.

The local latency was measured with a 1000 frame/s camera (a Casio EX-ZR100)

setup to capture the moment a user presses the mouse button and the resulting

screen output, as indicated in Section 5.1.2. The average base latency is measured

to be 25.2 milliseconds, with a standard deviation of 2.8 milliseconds.

In order to test the effects of latencies above the baseline 25 ms, additional

114

Figure 8.1: User study CS:GO map – Mirage

latency was added to all keyboard and mouse user input with EvLag, as described

in Section 5.1.2. The added latencies for EvLag in our user study were 0, 25, 50,

75, 100 ms. So, with the 25 ms base latency, the resulting total system latencies

experienced by our users are shown in Table 8.1.

Table 8.1: Total latencies for the user study.

Latency values (ms)

25 50 75 100 125

Table 8.2: Weapon attributes

Weapon Firing mode Firing rate Clip size Reload time Damage Accuracy range

AK-47 Automatic 600 per min 30 2.43 s 36 21.74 m

AWP Sniper 41 per min 1 3.7 s 115 69 m

While CS:GO matches often include team strategy, the focus of this study is on

the effects of latency on individual player tactics. As such, a death match free-for-all

game mode (no teams) was chosen. Thus, each round had open combat for the user

115

Table 8.3: Subjective questions per round

Question Source

Q1 I was frustrated by the round GEQ [IdKP13]

Q2 The delayed reactions of the round annoyed me TLX [GE88]

Q3 How well I did was completely due to me Attribution [DM17]

Q4 Rate the responsiveness of the round Survey [ERC18]

and 20 AI-controlled bots, where everyone fights everyone and the goal was to kill

as many opponents as possible. CSGO has 4 bot options: 0 - easy, 1 - normal, 2 -

hard, and 3 - expert. The bots in our study are at the third (of four) difficulty level,

2 - hard. While it is likely that the absolute scores would indeed differ for users

pitted against human players, the relative effects should be similar since the latency

affects the ability to aim and shoot (thus, score and accuracy). The AI-controlled

avatars move with the same game physics as do human-controlled avatars, with the

primary difference aiming accuracy and firing speed, impacting player deaths only,

not player accuracy nor score (kills, assists).

There was no upper limit on player score – the game terminated after a fixed 4

minutes of time.

The size of CS:GO game maps range from the smallest map “Train” (5.4 kHu2)

to the largest map “Subzero” (9.7 kHu2), where 1 kHu2 equals about 0.02 km2. A

small map was desired to limit the need for the player to explore and wander and to

maximize combat. The map chosen, “Mirage”, depicted in Figure 8.1, is the most

popular [HLT20a] and third smallest map (5.9 kHu2) [u/k19]. The user and the

bots spawned at random locations on the map that were not currently in view of

anyone else.

The selected CS:GO options were invoked via configuration files launched from

the command line – this meant when starting CS:GO in the study, users immediately

116

launched into the game, bypassing normal game lobbies and weapon selection phases.

The laptops were configured to start up and launch the user study sessions

with minimal instructions so as to reduce user error. The laptops automatically

booted to the test user account upon powering on and, effectively, double-clicking

a custom test harness script labeled “Play” on the desktop launched each session.

Once launched, the test harness: 1) started EvLag with the appropriate latency,

2) started CS:GO with the pre-determined map, weapon, bots and game mode, 3)

allowed the game to run for 4 minutes, 4) stopped the game, 5) launched a quality

of experience survey, 6) gathered and archived all game logs, input logs and survey

results, and 7) repeated the process for each weapon and latency condition. The

script provided for robust error checking in the event of user error (e.g., closing the

game early) or system malfunction (e.g., software crashing).

The software configuration was replicated across 11 identical laptops. These

laptops were hand-delivered to each user in a contact-less fashion, enabling users

to participate in the study from their homes. A pickup time was arranged a few

days after drop-off. Upon pickup, each laptop and mouse was carefully sanitized,

the study data extracted, and the laptop reset for the next participant.

A user study proctor was available (by messaging and phone) for questions and

trouble-shooting at all hours of the day during the study.

Before any sessions started, users first completed a reaction-time test as described

in Section 5.1.3.

Users then played 5 sessions of CS:GO, each session being 5 rounds, each round

having a different total latency selected from Table 8.1, randomly shuffled.

In order to assess the effects of latency for weapons with different skill require-

ments (e.g., high precision versus low precision), users were equipped with only one

of two weapons at a time: A) the AK-47 (the most popular automatic rifle), or B)

117

the AWP (the most popular sniper rifle) [HLT20b]. Detailed specifications on the

two weapons are shown in Table 8.2. Both weapons had unlimited ammunition, but

still needed to be reloaded when their magazine clips were empty (after 30 bullets

for the automatic rifle and after each bullet for the sniper rifle). Since the firing rate

for the sniper rifle is lower than that of the automatic rifle, we had 3 sniper sessions

as opposed to the 2 automatic rifle sessions to get more action data (shots fired) for

the sniper. The first 2 sessions were with the automatic rifle as the only weapon

and the final 3 sessions were with the sniper rifle as the only weapon.

After each round, users were presented with a subjective survey consisting of

four questions on a 5-point, discrete Likert scale about the game experience in the

preceding round. The questions are shown in Table 8.3.

After completing the survey, the next round would commence. However, users

could take as much time as they desired before starting the following round, and

users were encouraged to take at least an hour break between sessions to avoid

fatigue.

To allow users to get familiar with the map and the weapon, the first session

with each weapon started with an additional practice round without any induced

latency. Data from the practice round was discarded.

Before the launch of the formal user study, two pilot studies were conducted with

volunteers (first 3 and then 4 friends/family, with 4 of them experienced CS:GO

players) in order to test the viability of the procedure and tune the study settings.

The pilot study results helped adjust weapon choices, latency values, number of

rounds, number of sessions, system settings and user instructions.

Study participants were solicited via University email lists. Interested partici-

pants first filled out a screener questionnaire to provide basic demographic informa-

tion (e.g., age and gender), but also for screening for appropriate CS:GO experience.

118

Qualification criteria included: 1) extensive experience playing games on a PC, 2)

prior experience playing CS:GO, 3) at least 100 hours playing CS:GO and/or a high

self-rating in FPS games, and 4) residence within 40 miles (65 km) of our university

(to allow us to hand-deliver a laptop). Users were rewarded with a $75 USD Visa

gift card upon completion of the study.

Forty-three (43) users were selected to participate in the user study out of 248

initial responses.

After returning the laptops, users were given a demographics questionnaire with

additional questions about average time spent playing games and self-rated expertise

with different CS:GO weapons.

In summary, the procedure each user followed was:

1. Fill out the screener questionnaire to ensure sufficient CS:GO experience.

2. Receive a pre-configured laptop and instructions regarding setup and game

controls.

3. When ready to start, setup the laptop on a desk, plug in the power supply,

connect the external mouse and place it on the included mouse pad for use

by whichever hand is preferred. Plug in external headphones, if those are

preferred over the laptop speakers.

4. Adjust the computer chair height and laptop angle/tilt so as to be comfortably

looking at the center of the screen.

5. After powering on the computer, start the study by double-clicking on the

“Play” icon on the desktop.

6. Complete the reaction-time test (takes about 30 seconds).

119

Table 8.4: Demographic information

FPS CS:GO CS:GO Reaction-
Users Age (yrs) Gender Self-rating Self-rating Hours time (ms)

43 21.1 (5.0) 42 ♂1 ♀ 4.5 (0.7) 4.2 (0.8) 664 (827) 217.2 (59.5)

7. Complete the first session (1 practice round and 5 rounds with shuffled laten-

cies), including the QoE surveys after each round (each session takes about 25

minutes).

8. After a break of at least an hour, repeat the previous step for the remaining

4 sessions.

9. Return the laptop and receive remuneration.

10. Complete final demographics questionnaire online.

8.1.2 CSGO (Local Latency) Study Analysis

This section first summarizes participant demographics (Section 8.1.2) then presents

the core results – user performance (Section 8.1.2) and Quality of Experience (Sec-

tion 8.2.2) in the presence of local latency. Additional analysis examines user actions

by weapon type in the presence of local latency (Section 8.1.2) and comparative per-

formance by weapon type (Section 8.1.2).

Demographics

Table 8.4 summarizes the demographic information for the user study participants.

FPS self-rating and CS:GO self-rating are on a five-point scale, 1-low to 5-high. For

age, FPS self-rating, CS:GO self-rating, CS:GO hours played, and reaction times,

the mean values are given with standard deviations in parentheses. Our user study

120

Figure 8.2: CS:GO hours played Figure 8.3: Reaction times

had 43 participants, ranging from 12-45 years old but with the large majority of

typical college-age. Gender breakdown is predominantly male (42 males versus 1

female). We were slightly disappointed by the low number of female participants, but

it should be noted that this is not atypical of esports players (about 5% are women)

and reflects the gender breakdown of FPS game players, specifically [Sta20]. User

self-rating as FPS and CS:GO gamers both skew towards “high” (mean 4.5 and 4.2

out of 5, respectively). Half of the users played 10 or more hours of computer games

per week and most users majored in Robotics Engineering, Computer Science, or

Game Development (not shown in the table).

Figure 8.2 depicts the distribution of users’ hours playing CS:GO, and Figure 8.3

depicts the distribution of users’ reaction times as boxplots. Each box depicts quar-

tiles and median for the distribution. Points higher or lower than 1.4 × the inter-

quartile range are outliers, shown by red pluses. The whiskers span from the min-

imum non-outlier to the maximum non-outlier. The black pluses shows the mean

values. Users played from 70-5000 hours of CS:GO, with a mean of 664 hours and a

large standard deviation of 827. Reaction times are mostly fast (just over 200 ms),

typical of experienced computer game players [DGB09].

121

Data Cleaning

For the reaction times, out of the 430 reaction time trials, 3 were extremely long –

over 700 milliseconds – perhaps because the user’s attention wandered. These three

trials are removed from the reaction time analysis (and from Figure 8.3).

For the game data, out of 1075 rounds, 17 had mouse or keyboard log files that

were considerably shorter than the 4 minute round time, possibly because the user

stopped playing or a program crashed. The game data and the QoE data from these

17 rounds are removed for analysis.

Player Performance

We measure user performance by effectiveness with each weapon: accuracy (shots

hit divided by shots fired) and score (CS:GO computes score as score = 2× kills+

assists). The CS:GO log files are mined to determine number of hits, kills and

assists by each user for each round, and the EvLag log files are used to determine

the number of shots fired based on the number of left mouse-button clicks.

Table 8.5 shows performance results averaged over all users and all game rounds,

broken down by rifle type: automatic and sniper. The table has mean values, with

standard deviations in parentheses.

Table 8.5: Performance summary

Weapon Shots fired Accuracy (%) Score

Automatic (AK-47) 385.0 (86.4) 17.8 (4.8) 45.8 (12.6)

Sniper (AWP) 50.8 (13.0) 56.9 (11.8) 55.9 (14.9)

Below we analyze weapon accuracy versus latency and player score versus la-

tency.

Figure 8.4 depicts weapon accuracy versus latency for the automatic rifle (the

122

Figure 8.4: Accuracy – Automatic Figure 8.5: Accuracy – Sniper

Figure 8.6: Score – Automatic Figure 8.7: Score – Sniper

Figure 8.8: Accuracy – Combined Figure 8.9: Score – Combined

123

AK-47). The x axis is total system latency in milliseconds. The right y axis is the

weapon accuracy (percent) and the left y axis is the percent increase from the 125

ms latency condition. For example, an accuracy of 20 percent at 25 ms of latency

compared to an accuracy of 15 percent at 125 ms of latency would be a 5 percent

improvement on the left y axis. The circles are the means for all users for that

weapon and latency condition, bounded by 95% confidence intervals. The dashed

line shows a linear regression for the mean values. The regression fits the mean

values well, with an R2 of 0.98 and p = 0.001. As a take-away, for an automatic

rifle, a decrease in latency by 10 ms improves accuracy by 0.6 percent on average.

Figure 8.5 depicts the same data as in Figure 8.4, but for the sniper rifle. The

linear regression also fits the mean values well with an R2 of 0.87 and p = 0.02. As

a take-away, for a sniper rifle, a decrease in latency by 10 ms improves accuracy

by 0.9 percent. However, from the figure, the sniper rifle accuracy trend may not

follow this same linear trend from 50 ms to 25 ms latency and from 125 ms to 100

ms latency.

Considering the slopes of the regression lines in both Figure 8.4 and Figure 8.5,

latency has a slightly larger effect on accuracy for sniper rifles than for automatic

rifles.

Figure 8.6 depicts player score versus latency for the automatic rifle. The axes

and points are as in Figure 8.4, but the data is the CS:GO score (2×kills+assists)

instead of accuracy. The liner regression fits the mean values well, with an R2 of

0.99 and p < .001. As a take-away, a decrease in latency by 10 ms improves player

score by 1.1 points per 4 minutes of gameplay. For reference, often less than a single

point separates the scores of top CS:GO players.

Figure 8.7 depicts the same data as Figure 8.6, but for the sniper rifle. The linear

regression fits the mean values well, here, too, with an R2 of 0.95 and p = 0.005. As

124

Figure 8.10: QoE – separate questions

125

a take-away, a decrease in latency by 10 ms improves player score by 1.2 points per

4 minutes of game play.

Considering the regression lines in both Figure 8.6 and Figure 8.7, latency has

a similar impact on score for both sniper rifles and automatic rifles, with slightly

more impact on the former.

To study how latency affects performance overall, the combined automatic rifle

and sniper rifle data was analyzed. Figure 8.8 depicts the results for accuracy, with

axes and data as for Figures 8.4 and 8.5. The linear regression fits the mean values

for the combined data well with an R2 of 0.95 and p = 0.005. As a take-away, a

decrease in latency by 10 ms improves overall accuracy by 0.8 percent. Figure 8.9

depicts the results for score, with axes and data as for Figures 8.6 and 8.7. The

linear regression fits the mean combined score values well with an R2 of 0.98 and

p = 0.001. As a take-away, a decrease in latency by 10 ms improves score by 1.2

points per 4 minutes of gameplay.

Tables 8.6 and 8.7 summarize the results in tabular form, providing the slope,

y-intercept, adjusted coefficient of determination (R2) and statistical significance

(pvalue).

Table 8.6: Analysis Summary – Accuracy

Weapon Slope y-intercept R2 P value

Automatic -0.06 22.23 0.98 0.001

Sniper -0.09 63.49 0.87 0.02

Combined -0.08 46.32 0.95 0.005

Quality of Experience

Quality of Experience (QoE) was assessed from user responses to 4 survey questions

filled out at the end of each round. Responses are on a 5 point scale, from 1-low to

126

Table 8.7: Analysis Summary – Score

Weapon Slope y-intercept R2 P value

Automatic -0.11 54.09 0.99 < 0.001

Sniper -0.12 65.20 0.95 0.005

Combined -0.12 60.57 0.98 0.001

Figure 8.11: QoE – combined questions
Figure 8.12: QoE – combined questions
and weapons

5-high.

Figure 8.10 depicts ratings for each question versus latency. The x axis is total

system latency in milliseconds and the y axis is the rating. The circles are the means

for all users for that weapon and latency condition, bounded by 95% confidence

intervals. The blue circles, bars and lines are for the automatic rifle and the red

triangles, bars and lines are for the sniper rifle. The top left graph is for question 1:

“I was frustrated by the round”, the top right graph is for question 2: “The delayed

reactions of the round annoyed me”, the bottom left graph is for question 3: “How

well I did was completely due to me”, and the bottom right graph is for question

4: “Please rate the responsiveness of the round.” For questions 1 and 2, lower is

better and for questions 3 and 4, higher is better. In general, mean user perceptions

get worse with latency, roughly the same for both weapons. Mean values for user

127

perceptions when using the automatic rifle are slightly worse than those for the

sniper rifle, but most confidence intervals overlap for the same latency values.

For an overall measure of QoE, we flip the ratings of question 1 and 2 (for

example, a rating at 5 would be converted to 1, a 4 would be a 2, etc.), and compute

an overall average (i.e., all questions are weighted equally) – here, higher is better.

Figure 8.11 depicts the results, with axes as for the graphs in Figure 8.9. The

circles are mean values for all users across all latency conditions, shown with 95%

confidence intervals. The dashed lines are linear regression fits through the auto-

matic rifle (blue) and sniper rifle (red), separately. Figure 8.12 shows the same data,

but combines the automatic and rifle data. The linear regressions fit the means well

in all cases, with R2 values of 0.97, 0.93 and 0.96 for automatic, sniper and com-

bined, respectively. All values are statistically significant (p = 0.002, p = 0.008, and

p = 0.004). However, the sniper rifle QoE values may not follow the same linear

trend from 25 to 50 ms latency, similar to sniper accuracy values (Figure 8.5). As a

take-away, a decrease in latency by 10 ms improves QoE by 0.15 points out of 5.

Play Style

In addition to performance and perception, latency may impact how a player in-

teracts with the game. For CS:GO, this may manifest in a different firing rate or

different ratio of avatar movement to shooting.

Figure 8.13 and Figure 8.14 depict shots fired per minute versus latency for the

automatic rifle and the sniper rifle, respectively. The x axes are the total latency and

the y axes are shots per minute – the right y axis is the number of shots per minute

and the left y axis is the shot per minute increase over the 125 ms condition. Points

are mean values across all users for that latency condition and weapon, shown with

95% confidence intervals. From Figure 8.13, users generally fire automatic rifles

128

Figure 8.13: Shots fired – Automatic Figure 8.14: Shots fired – Sniper

more often for higher latencies, possibly trying to compensate for the decreased

responsiveness. However, from Figure 8.14, the reverse is true for sniper rifles as

users fire less often for higher latencies, possible because it is more difficult to align

the gun reticle with the target before pulling the trigger.

Figure 8.15 and Figure 8.16 depict avatar movement per minute versus latency

for the automatic rifle and sniper rifle, respectively. Movement is computed from

the number of times the ‘w’, ‘a’, ‘s’, and ‘d’ keys on the keyboard are pressed,

divided by the length of the round (4 minutes). The axes are as for the graph in

Figure 8.13. In the case of movement, users with both types of rifles move less

often with higher latencies, possibly because the lower responsiveness requires more

deliberate movement actions by the players.

Comparative Rifle Performance

Lastly, this section provides a brief analysis of user performance with each weapon

type to asses whether good players are skilled with both weapons or if, instead,

players tend to specialize and be better at one weapon versus the other. In order to

compare performance across latency conditions and weapons, we normalize the data

by computing the overall mean for each weapon across all conditions and dividing a

129

Figure 8.15: Movement – Automatic Figure 8.16: Movement – Sniper

user’s mean by this total. So, a user with a value of 1.2 is 20% better than average

with that weapon and a user with a 0.5 is 50% worse than average.

Figure 8.17 and Figure 8.18 depict scatter plots of the results – sniper rifle versus

automatic rifle – for accuracy and score, respectively. Each point is the normalized

mean value for one user across all latency conditions. From Figure 8.17, there are few

visual patterns for accuracy with the sniper rifle and accuracy with the automatic

rifle (R = 0.21). However, from Figure 8.18, there is a visual correlation in score for

sniper rifles versus score for automatic rifles (R = 0.86), with a lack of points in the

second and fourth quadrants. These graphs suggest specialization may show up in

differences in accuracy, but when it comes to score, players that are good with one

weapon are good with another, and vice-versa, regardless of specialization.

8.1.3 CSGO (Local Latency) Study Limitations

While our methodology described in Section 8.1.1 is designed to minimize the dif-

ferences in the test conditions across participants (e.g., identical laptops, no net-

work connection), the home environment where each user played was not controlled.

Users were asked to choose a place with a desk where they could play each session

undistributed for the time required for one session (30 minutes), but whether those

130

Figure 8.17: Accuracy – Sniper versus
Automatic

Figure 8.18: Score – Sniper versus Au-
tomatic

guidelines were adhered to could not be determined. As such, differences in seating,

lighting and noise levels across test locations may have added unknown confounding

effects.

Our user study intentionally focused on the effects of latency on individual player

actions. However, as noted in Section 8.1.1, CS:GO is often a team game, where

groups of players (typically 5 per team in esports) must work together to defeat the

opposing team. The impact of latency on CS:GO team efforts, perhaps even team

strategies, was not assessed.

As noted in Section 8.1.2, our study is considerably skewed towards males (only 1

female participated). While this may reflect the gender breakdown present in First-

Person Shooter games and esports today, the results reported may not be indicative

of female performance.

Serious game players often customize the software settings on their computers

and games to suit their personal play preferences. For example, players may alter

the mouse sensitivity or change the graphics resolution from the system defaults.

These custom changes presumably improve the specific player’s experience and may

improve the player’s performance. However, since customizations that deviated from

131

our settings create a difference in test conditions between users, we did not allow

any changes to the computer or game settings.

8.1.4 CSGO (Local Latency) Study Summary

This section (Section 8.1) presents results from a user study designed to provide

for controlled latency conditions with limited confounding effects. Identical game

systems were configured and distributed to qualified users in order for them to

provide comparable game data for five levels of local system latency (25, 50, 75,

100 and 125 milliseconds), representing high-end through mid-range game systems.

Forty-three people participated in the study, all highly experienced with the game

under test: Counter-strike: Global Offensive (CS:GO) (Valve, 2012), a popular

First-Person Shooter game used in esports. These users each played CS:GO for 25

rounds across 5 different latency conditions with two different weapons (100 total

minutes of gameplay), providing objective player performance data (accuracy and

score) via logs and subjective opinion data (Quality of Experience, QoE) via surveys.

Analysis of the results shows that across the range of local latencies studied,

player performance and quality of experience both improve linearly as latencies de-

crease from 125 ms to 25 ms. Specifically, player scores at 25 ms average 20% higher

than player scores at 125 ms, an equivalent of 5 additional kills or 10 additional as-

sists in a 4 minute game. Over this same range, Quality of Experience (QoE)

increases by about the same amount (20%), with the QoE at 125 ms being about

3 (out of 5) and the QoE at 25 ms being about a point better at 4. These same

latency reductions impact play with sniper rifles more than automatic rifles, the

former weapon requiring more precision than the latter. Latency differences result

in different impacts on play characteristics, too, with sniper rifle players shooting

less at higher latencies and automatic rifle players shooting more. The results ap-

132

ply to local latencies, typical of high-end to mid-range personal computers. They

also pertain to cloud-based game streaming systems with low latencies (e.g., due to

edge-clustering), an increasingly important area for commercial game systems and

game development.

8.1.5 Simulation Validation (CSGO (Local Latency) Study)

We validate our simulations by comparing the results from our simulations.

We simulate a two player FPS game with same size of map as Mirage and a

weapon AWP with the same settings as an AWP: 41 shots per minute and 1 hit kill.

There are 9 parameters in our simulation - local latency, network latency, latency

compensation techniques, firing rate, number of hits required, target size, map size

and player skill. For the simulation, some parameters have exactly the same values

as in the user study; Some are not exactly the same but approximately the same;

and some factors are different or we not accounted for in the simulation. The three

categories of simulation parameters is as below:

A Parameters that have the same values as in our CS:GO local latency study:

– Local latency values: 25, 50, 75, 100, 125 ms.

– Network latency: 0 ms.

– Latency compensation: No compensation

– Target size: 180 cm.

– Firing rate: 41 shots per minute

– Map size: 34.4 x 34.4 m.

B Parameters that have approximately the same values:

133

– Number of hits: 1. AWP can kill the enemy with one shot but may needs

two shots depends on hit groups (where the hits land on the opponent)

and armors.

– Player skill: high. The skill level in our simulation may not exactly match

the CS:GO user study participants.

C Factors that are different or we do not account for:

– The shape of the map is different. Our map is a square while Mirage has

multiple rooms connected by hallways.

– The distribution of obstacle/terrain is different. Mirage has multiple

slopes and different shapes of obstacles while our simulation has a room

with flat ground and uniform obstacles.

– There are 20 bots in CS:GO user study game which fight with the player

avatar and kill each other.

The simulation parameters are included in Table 8.8.

Table 8.8: Parameters values for the CS:GO local latency simulation.

Parameter Values

Network latency 0 (ms)

Latency compensation none

Firing rate 41 (shots/min)

Number of hits required 1

Target size 180 cm

Map size 34.4 x 34.4 m (1180 m2)

Player skill High

Test player local latency 25, 50, 75, 100, 125 (ms)

Control player local latency 25 (ms)

134

Figure 8.19: CS:GO simulation
Figure 8.20: CS:GO user study

Figure 8.20 depicts how a reduction in latency improves player performance. The

graph is as Figure 8.7 but the y axis on the left is score improvement percent. From

this graph, when local latency reduces from 125 ms to 25 ms, player performance

improves about 25%.

Figure 8.19 depicts the result of the simulation. The x axis is total system latency

in milliseconds. The y axis on the left is the win rate improvement percent and the y

axis on the right is the win rate. The circles are the means for the latency condition

on the x axis. The dashed line shows a linear regression for the mean values. The

regression fits the mean values well, with an R2 of 0.99 and p < 0.001. The slope of

the red line is -0.12 and the intercept on y axis is 50.7. From this graph, when local

latency reduces from 125 ms to 25 ms, player performance improves about 34%.

Similar to Figure 8.20 from our CS:GO study on local latency, player performance

degrades linearly in the range of 25 - 125 ms. With local latency decreases from 125

ms to 25 ms, player performance improves about 34% in our simulation and 25% in

our CS:GO study. Local latency helps player performance in the simulation more,

perhaps because CS:GO game has 20 bots which makes the game more difficult and

135

leads to more deaths by the player. With each death, players have to respawn and

walk to find the next fight. As a result, players spend less time engaged in fights.

In our simulation, players never take time to respawn and reset.

8.2 The Effects of Network Latency on CS:GO

Game Players

This section presents results from a 25-person user study that evaluates the impact of

network latency on experienced Counter-strike: Global Offensive players. Analysis

of the results shows pronounced benefits to player performance (accuracy and score)

for even small reductions in network latency, with subjective opinions on Quality

of Experience (QoE) following suit. Latency compensation significantly improves

player performance and QoE. We compare the results to our simulation and find

that the trends of player performance versus latency hold.

8.2.1 CSGO (Network Latency) Study Methodology

To investigate how network latency affects CS:GO players, we configured a client-

server system with CS:GO, added controlled amounts of network latency, recruited

players for a user study, and measured player performance and quality of experience.

Our user study was conducted in a dedicated, on-campus computer lab using a

client-server architecture shown in Figure 8.21. The server hosts the game and is

connected via high-speed LAN to the client. The client and server are Alienware

PCs with Intel i7-4790K CPUs @4 GHz with 16 GB RAM and an Intel(R) HD

4600 graphics card. The client is equipped with a gaming mouse and high-refresh

rate monitor so as to minimize local system latency. The client has a 24.5” Lenovo

LCD monitor with 1920x1080 pixels at 240 Hz and a G502 laser mouse with 12k

136

Figure 8.21: CS:GO computer configuration

DPI, 300 IPS, and a 1 KHz polling rate. The client runs Ubuntu 20.04 LTS, with

Linux kernel version 5.4 and the server runs Windows 10. Both server and client

run Counter-strike Global Offensive (CS:GO) (version 10.15.2020). Users were given

wired Apple airpods for audio. The base system latency was measured the same

way as indicated in Section 5.1.2. This measurement method was done 10 times on

our client, yielding an average base latency of 24.6 milliseconds, with a standard

deviation of 3.4 milliseconds.

We added network latency to the server uplink and downlink equally using Linux

tc with Netem1 – a network control tool The network latency added to the client was

one of 25, 50, 100, or 150 milliseconds. The added network latency is in addition

to the base system latency. Thus, the user always experiences 24.6 milliseconds

of base system latency from the client computer and actions sent to the server

have the additional network latency added to them. For example, the minimum

network condition we test is 25 milliseconds. With this condition, the player has a

base latency of 24.6 milliseconds at the client and an additional 25 milliseconds of

network latency for messages sent to the server. We do not have results with 0 ms

network latency – such a condition is only for LAN games, not a typical network

game over the Internet.

During our experiments, we gathered ping times from the client collected 5 times

every second for every player for every round of game play. The network latency

1https://wiki.linuxfoundation.org/networking/netem

137

Table 8.9: Subjective questions per round

Rate: Source
Q1 The quality of the round Stadia [Goo20]
Q2 The responsiveness of the round Long [LG19]
Q3 Your annoyance with the unresponsiveness GEQ [PdI07]
Q4 The inconsistency of the round Custom
Q5 Your annoyance with the inconsistency GEQ [PdI07]
Q6 How capable and effective you felt PENS [RRP06]
Q7 How fun the round was GEQ [PdI07]
Q8 Your frustration in the round iGEQ [PdI07]
Q9 How much your performance was due to you Attribution [DM17]

observed by these ping values closely matches the intended added latency (over 99%

of values are within 1 millisecond of what is intended). Variations to this are within

normal system variations observed by ping with no added network latency and are

indistinguishable from the latency variation caused by the LAN itself. The LAN

latency was less than 1 ms.

The game has the same map, game and game settings as in Section 8.1.1.

CS:GO includes a server configuration option for the time warp latency com-

pensation technique [LXC21]. With time warp, the server resolves a shot based on

the timestamp when the player fires instead of when the server receives the event.

Time warp is enabled by default, but can be disabled. CS:GO has another latency

compensation technique called interpolation – where the player position is smoothed

out based on past positions – that cannot be disabled.

The CS:GO settings were pre-configured at the server with the experiment con-

trolled by scripts on the client – this meant when starting the study, users immedi-

ately joined and launched into the game, bypassing normal game lobbies and weapon

selection phases.

The IRB-approved user study was conducted during the COVID pandemic, so

138

everyone wore masks and respected social distancing requirements. Upon completion

of each user’s study, we carefully sanitized the keyboard, mouse and earphones.

A user study proctor was available for questions and trouble-shooting during the

experiment.

Users first did a custom reaction-time test 10 times as described in Section 5.1.2

on page 37.

Users played a practice round without any added network latency to get familiar

with the map and game mode. This data was not analyzed. Users then played

additional 3.5 minute rounds of CS:GO, each round with a different network latency

(25, 50, 100, or 150 milliseconds) and with latency compensation either on or off,

randomly shuffled.

After each round, users filled out a subjective survey consisting of nine questions

on a discrete 5-point Likert scale about the game experience in the preceding round.

The abbreviated questions are shown in Table 8.9. The complete questions and

answers are available on our website.2

After completing the survey, the next round commenced when the user was

ready.

After completing all the game rounds, users were given a questionnaire with

additional demographics questions.

Study participants were solicited via University email lists. Interested partici-

pants first filled out a screener questionnaire to ensure appropriate CS:GO experi-

ence (at least 100 hours). Users were rewarded with a $10 USD Amazon gift card

upon completion of the study.

2https://web.cs.wpi.edu/~claypool/papers/csgo-net-21/

139

Table 8.10: Demographics

Users Age (yrs) Gender

25 20.8 (3.0) 25 male, 0 female

FPS CS:GO FPS CS:GO Reaction-

Self-rating Self-rating Hours Hours time (ms)

4.4 (0.7) 4.6 (0.5) 2436 (3866) 832 (703) 205 (24)

8.2.2 CSGO (Network Latency) Study Analysis

This section first summarizes participant demographics, then the effects of network

latency on player performance, with and without latency compensation, and Quality

of Experience.

Demographics

Twenty-Five (25) users were screened to participate in the user study out of 128

initial responses. Table 8.10 summarizes the participant demographics. FPS self-

rating and CS:GO self-rating are on a five-point scale, 1 (low) to 5 (high). For age,

FPS self-rating, CS:GO self-rating, CS:GO hours played, and reaction times, the

mean values are given with standard deviations in parentheses. Ages ranged from

17-29 years old, typical of a University subject pool. All participants were male –

while disappointed there were no female participants, we note esports players are

mostly males, especially for FPS games [Sta20]. User self-ratings as FPS and CS:GO

gamers both skewed towards “high” (mean 4.4 and 4.6 out of 5, respectively). Half

of the users played 10 or more hours of computer games per week.

Figures 8.22, 8.23 and 8.24 depict boxplot distributions for FPS hours played,

CS:GO hours played and reaction times, respectively. Each box depicts quartiles

and median for the distribution. The whiskers span from the minimum to the

140

Figure 8.22: FPS hours Figure 8.23: CS:GO hours Figure 8.24: Reaction time

Figure 8.25: Accuracy (means with 95%
confidence intervals)

Figure 8.26: Score (means with 95%
confidence intervals)

maximum. The black pluses shows the mean values. Most users played from 500-

2250 hours of FPS games and from 100-1100 hours of CS:GO. Reaction times were

mostly fast – most between 195 and 220 ms – typical of experienced computer game

players [DGB09] and about 80 ms faster than the average reaction time collected

by the human benchmark site [Hum].

Player Performance

Figure 8.25 depicts weapon accuracy versus network latency on the x axis (the 25 ms

system latency is not included). The right y axis is the weapon accuracy (percent)

and the left y axis is the percent increase from the 150 ms latency condition. For

example, an accuracy of 15 percent at 150 ms of latency compared to an accuracy

of 20 percent at 25 ms of latency would be a 5 percent improvement on the left y

141

axis. The circles are the means for all users for that latency condition, bounded by

95% confidence intervals. The dashed line shows a linear regression for the mean

values. The regression fits the mean values well, with an R2 of 0.93 and p = .04.

As a take-away, a decrease in network latency by 100 ms improves accuracy by an

average of about 2 percent.

Figure 8.26 depicts player score versus latency. The axes and points are as in

Figure 8.25, but the data is the score (2 × kills + assists) per minute instead of

accuracy. The linear regression fits the mean values well, with an R2 of 0.96 and

p = .002. As a take-away, a decrease in latency by 100 ms improves player score by

2 points per minute of gameplay. For reference, often less than a single point in a

game separates the scores of top CS:GO players.

An effect size provides a measure of the magnitude of difference – in our case, the

difference when reducing network latency to the 25 ms base condition. We compare

performance with latency to this base condition by independent, 2-tailed t tests

(α = 0.05) with a Bonferroni correction and compute the Cohen’s d effect sizes.

The Cohen’s d effect size assesses the differences in means in relation to the pooled

standard deviation. Generally small effect sizes are anything under 0.2, medium

is 0.2 to 0.5, large 0.5 to 0.8, and very large above 0.8. The results are shown in

Table 8.11. From the table, while only the 150 ms condition is significant, this is

likely due to the sample size and player variation. For both accuracy and score,

there is a small effect when reducing latency from 50 ms to 25 ms, a medium effect

for 100 ms to 25 ms and a large effect for 150 ms to 25 ms.

Latency Compensation

CS:GO by default has latency compensation on (time warp [LXC21]), but it can

be explicitly turned off. Figure 8.27 and Figure 8.28 depict accuracy and score,

142

Table 8.11: Significance and Cohen’s D Effect Size (compared to 25 ms)

Accuracy Score

Latency (ms) t(22) p Effect t(22) p Effect

50 0.750 .460 0.15 0.515 .611 0.10

100 1.196 .244 0.24 2.353 .027 0.47

150 4.623 <.001 0.92 3.142 .004 0.63

Figure 8.27: Accuracy – latency com-
pensation (means with 95% ci)

Figure 8.28: Score – latency compensa-
tion (means with 95% ci)

Table 8.12: Linear regression for performance

Metric Compensation y-intercept Slope R2 p

Accuracy On 21.45 -0.022 0.93 .011

Accuracy Off 19.42 -0.037 0.98 .037

Score On 15.92 -0.018 0.96 .023

Score Off 14.59 -0.020 0.95 .024

143

Table 8.13: Linear regression for QoE questions

Question y-intercept Slope R2 p

Q1 4.66 -0.008 0.997 .001

Q2 4.71 -0.009 0.997 .001

Q3 4.27 -0.007 0.987 .006

Q4 4.36 -0.006 0.996 .002

Q5 4.40 -0.009 0.999 .004

Q6 4.29 -0.005 0.901 .051

Q7 4.31 -0.006 0.993 .004

Q8 4.00 -0.006 0.955 .023

Q9 4.21 -0.005 0.905 .049

Combined 4.36 -0.007 0.994 .003

respectively, comparing latency compensation on and off. The axes and points are

as in Figures 8.25 and 8.26, with the blue lines denoting latency compensation

on and the red off. The results of the linear regressions are provided in Table 8.12,

with slope units of percent per millisecond for accuracy and point per millisecond for

score. The p values all indicate statistical significance. From the table and figures,

there is an observable benefit to using latency compensation for both score and

accuracy. As take-aways, 1) accuracy degrades slightly faster with network latency

for compensation off than for compensation on, 2) latency compensation improves

accuracy by about 19 percent, and 3) latency compensation improves score by about

1.5 points per minute.

Quality of Experience

Quality of Experience (QoE) was assessed from user responses to 9 survey questions

filled out at the end of each round. Responses are on a discrete 5-point scale. For the

analysis, we rearranged the answers for question 3, 5 and 8 so for all questions, 1 is

144

Figure 8.29: QoE – combined questions (means with 95% ci)

low (worse) and a 5 is high (better). Table 8.13 shows linear regression parameters

fitting the means for each question. From the table, QoE degrades with latency

for all questions – the linear regressions fit the mean ratings well for all questions,

with R2 values from 0.901 to 0.999. All values are statistically significant except for

question 6 (capable and effective).

For an overall measure of QoE, we compute the overall mean rating (i.e., weight-

ing all questions equally). Figure 8.29 depicts the results. The x axis is the network

latency in milliseconds and the y axis is the rating. The circles are the means for all

users for that latency condition, bounded by 95% confidence intervals. The dashed

line is a linear regression fit through the mean values. The linear regression fits the

means well, with R2 0.99 and p = .003. A one-way between subjects ANOVA shows

a significant effect of latency on combined QoE rating at the 0.05 significance level

for the four conditions, F(3, 96) = 5.85, p < .001. As a take-away, a decrease in

latency by 100 ms improves QoE by 0.7 points on a 5-point scale.

145

8.2.3 CSGO (Network Latency) Study Limitations

Our user study intentionally focuses on the effects of latency on individual player

performance. However, as noted in Section 8.1.1, CS:GO is often a team game,

where groups of players (typically 5 per team in esports) work together to defeat

the opposing team.

As noted in Section 8.2.2, our study is skewed towards males (no females par-

ticipated). While this may reflect the gender breakdown of FPS games today, the

results may not be indicative of female performance in competitive FPS games.

Our study intentionally isolated CS:GO play to a single weapon type only –

the most popular [HLT20b] AK-47 rifle – whereas players typically can choose from

a variety of weapons with different firing rates, magazine capacities and damages

inflicted.

Most CS:GO games use only human players and not AI-controlled bots, as in our

study. However, the relative effects should be similar since latency affects aiming

and shooting.

8.2.4 CSGO (Network Latency) Study Summary

We study the effects of latency on competitive First-Person Shooter (FPS) game

players. We setup a testbed for CS:GO with four levels of network latency (25, 50,

100 and 150 milliseconds). Twenty-five (25) experienced CS:GO players participated

in a user study, each playing 8 rounds of CS:GO with 4 different latency conditions

both with and without latency compensation. In total, the study provides over 10

hours of gameplay with objective player performance data (accuracy and score) via

logs and subjective opinion data (Quality of Experience – QoE) via surveys.

Analysis of the results shows that across the range of network latencies studied,

146

player performance and quality of experience both improve linearly as latencies

decrease from 150 ms to 25 ms. Specifically, player accuracy at 25 ms is about 3%

higher than player accuracy at 150 ms, and scores are 17% higher over the same

range, an equivalent of about 1 additional kill or 2 additional assists per minute of

gameplay. Over this same range, latency compensation improves player accuracy

by about 3-4% and score per minute by about 1.5 points. From 150 ms to 25 ms,

Quality of Experience (QoE) increases by about 25%, with the QoE at 150 ms being

about 3.3 (on a 5 point scale) and the QoE at 25 ms being about a point better at

4.2.

8.2.5 Simulation Comparison (CSGO (Network Latency) Study)

With simulations, we are able to simulate first-person shooter scenarios. For exam-

ple, a CS:GO game with the AK-47 automatic rifle - the same setting as our CS:GO

study with network latency. This section presents comparison of the results from

the simulation and the CS:GO network latency study.

We simulate a two-player FPS game with same size of map as Mirage and a

weapon AK-47 with the same settings as an AK: 600 shots per minute. There are 9

parameters in our simulation - local latency, network latency, latency compensation

techniques, firing rate, number of hits required, target size, map size and player

skill. For the simulation, some parameters have exactly the same values as in the

user study; some are not exactly the same but approximately the same; and some

factors are different or we not accounted for. The three categories of simulation

parameters is as below:

A Parameters that have the same values as in our CS:GO local latency study:

– Local latency values: 0 ms.

147

– Network latency: 25, 50, 75, 100, 125 ms.

– Firing rate: 600 shots/minute

– Target size: 180 cm.

– Map size: 34.4 x 34.4 m.

B Parameters that have approximately the same values:

– Latency compensation: since self-prediction in CS:GO cannot be turned

off, there are two latency compensation techniques condition in our sim-

ulation - 1) self-prediction only, 2) both self-prediction and time warp.

However, CS:GO also has interpolation [LXC21] as one of the built-in

compensation techniques which cannot be turned off.

– Number of hits: We set number of hits require to be 4 - it can take 1 -

4 hits to kill the opponent with weapon AK-47 depends on whether the

target is armored and the hit groups (e.g., headshots).

– Player skill: high. The skill level in our simulation may not exactly match

the CS:GO user study participants.

C Factors that are different or we do not account for:

– The shape of the map is different. Our map is a square while Mirage has

multiple rooms connected by hallways.

– The distribution of obstacle/terrain is different. Mirage has multiple

slopes and different shapes of obstacles while our simulation has a room

with flat ground and uniform obstacles.

– There are 20 bots in CS:GO user study game which fight with the player

avatar and kill each other.

148

Table 8.14: Parameters values for the CS:GO network latency simulation.

Parameters Values

Latency compensation self-prediction only, both self-prediction and time warp

Firing rate 600 (shots/min)

Number of hits required 4

Target size 180 cm

Map size 34.4 x 34.4 m (1180 m2)

Player skill high

Local latency 25 (ms)

Test player network latency 25, 50, 100, 150 (ms)

Control player network latency 0 (ms)

The simulation parameters are included in Table 8.14.

Figure 8.31 depicts how a reduction in latency improves player performance

with different latency compensation conditions in the CS:GO study. The graph is

as Figure 8.28 but the y axis on the left is score improvement percent. From this

graph, when latency reduces from 150 ms to 25 ms, player performance improves

about 20% with compensation off and 15% with compensation on. Since CS:GO

has built in self-prediction which cannot be turned off, compensation off is “self-

prediction only” and compensation on is “both self-prediction and time warp on”

from our simulation.

Figure 8.30 depicts the result of the simulation. The x axis is total network

latency in milliseconds. The y axis on the left is the win rate improvement percent

and the y axis on the right is the win rate. The circles are the means for the latency

condition on the x axis. The dashed line shows a linear regression for the mean

values. Red is for time warp off and self-prediction on, and blue is for time warp

on and self-prediction on. The latency compensation conditions are as Figure 8.31.

The regression fits the mean values well for both of the compensation condition,

with an R2 of 1 and p < 0.001 for the red line, and an R2 of 0.99 and p < 0.001 for

149

Figure 8.30: CS:GO simulation
Figure 8.31: CS:GO user study

the blue line. The slope of the red line is -0.13 and the intercept on the y axis is 50.7.

The slope of the blue line is -0.005 and the intercept on the y axis is 49.9. From this

graph, when latency reduces from 150 ms to 25 ms, player performance improves

about 50% with compensation off. Moreover, with both compensation techniques

on, player win rate almost does not change with latency.

Similar to Figure 8.31 from our CS:GO study on network latency, with time warp

off, player performance degrades linearly in the range of 25 - 125 ms. With compen-

sation off and latency decreases from 150 ms to 25 ms, player performance improves

about 50% in our simulation and 20% in our CS:GO study. The reason of the lower

impact for CS:GO might due to the shorter proportion of time actively engaging

in fights as mentioned in Section 8.1.5 and that CS:GO has built-in interpolation

and our simulation does not. Although there are game parameters in CS:GO death-

match that we cannot simulate (e.g., number of bots, shape of map, distribution of

obstacles), the trend of performance with latency holds with self-prediction on and

time warp off. Moreover, from both of the study and the simulation, players perform

better with self-prediction and time warp on. With time warp and self-prediction

150

both on, player performance still degrades with latency in our CS:GO study but

does not change in our simulation. The reason might be that even with compensa-

tion on, players can possibly be killed before their shot information reaches to the

server due to the high latency. However, in our simulations, the game ends when

one of the players is killed.

8.3 Validation with CS:GO Summary

Table 8.15 summarizes the results from the simulation of the CS:GO game, provid-

ing the slope, y-intercept, adjusted coefficient of determination (R2) and statistical

significance (p value). Statistical significance is indicated in bold. Overall, as in our

CS:GO user studies, player performance degrades linearly with latency. Reductions

in latency help player performance in CS:GO studies less than in our simulation

possibly because players spend less proportion of their time actively engaging in

fights, or because CS:GO has built in interpolation which adds delay to all player

actions. In both the CS:GO study and the simulation, time warp helps mitigate the

impact of latency on players.

Table 8.15: Validation with CS:GO Summary

metric Compensation Data slope y-intercept R2 p value

local latency NA
Simulation -0.12 50.7 0.99 <.001

User study -0.12 65.2 0.95 0.005

network latency on
Simulation -0.005 49.9 0.99 <.001

User study -0.018 15.92 0.96 0.023

network latency off
Simulation -0.13 50.7 1 <.001

User study -0.020 14.59 0.95 0.024

151

Chapter 9

Validation: Custom First-person

Shooter Game

This chapter presents validation of the simulations with a custom first-person shooter

game. We design and conduct a user study with a custom game, analyze the results,

then compare the measured results to the same game with simulation using the code

from Chapter 7.

9.1 Methodology for Validation with the Custom

Game

In order to assess the effects of latency on player performance in a first-person game

and validate the simulations of first-person shooter game scenarios, we built a cus-

tom first-person shooter game based on the navigation hide-and-seek game and the

selection game, implemented two latency compensation techniques commonly used

in FPS games (self-prediction and time warp), added controlled amounts of local

and network latency, varied game parameters (firing rate, number of hits required

152

to kill the opponent, target size, target speed and map size), recruited participants

for a user study, and measured player performance and quality of experience.

9.1.1 A Custom First-Person Shooter Game

We designed and implemented a custom game in Unity with first-person shooter

specific settings. Our game is a two-player first-person shooter game, shown via

screen shot in Figure 9.2. The goal for each player is to kill the opponent - the other

player - as fast as possible. A game round is over after one of the two players is

killed or after 40 seconds, whichever comes first. The game has one map, depicted in

Figure 9.1. The map is a single, square room, default size of 36 meters in length and

width, with multiple obstacles to mimic maps in typical first-person shooter games

where terrain can play a role in the combat. The player avatars spawn randomly

at one of several fixed spawn locations on the map but not in view of the opposing

player. Upon spawning, the game provides a countdown for each player until the

round starts. Each player has a pistol type of weapon with unlimited ammo with a

default maximum firing rate of one shot every 250 milliseconds. Figure 9.2 shows a

screenshot of the game where the player is aiming at the target. The player health,

score, and timer are shown at the top of the screen.

The update rate for the game engine is fixed at 50 frames per second. Each frame,

the game logs the running score for the players, the 3D position of the players, the

2D position of the opponent (the position of opponent on the screen), whether the

opponent is in sight, the fraction of the opponent avatar that is in sight and the

keyboard and mouse actions. Moreover, the game logs every shot as a hit or miss

with corresponding timestamps.

The game has a client-server architecture typical of most network games where an

authoritative server keeps the master world state and communicates state updates

153

Figure 9.1: The custom FPS game map.

Figure 9.2: The custom FPS game screenshot.

154

Figure 9.3: First-person shooter game computer configuration.

to the clients. In the default state, without latency compensation, all player input

is sent to the server, the server applies the input to the game world and sends the

new world state to the client which renders the state for the player.

9.1.2 Testbed Setup for Validation with the Custom Game

We setup the game for our user study in a dedicated, on-campus computer lab. The

testbed setup is depicted in Figure 9.3. The server hosts the game and is connected

via high-speed LAN to the clients. The clients and server are Dell PCs with Intel

i7-8700K CPUs @3.70 GHz 6 cores with 64 GB RAM and an NVIDIA GeForce GTX

1080 graphics card. The clients are equipped with a gaming mouse and monitor so

as to minimize local system latency and maintain consistency. The clients have a

25” Lenovo Legion monitor running at 1920x1080 pixels displayed at 16:9 and 240

Hz, with AMD FreeSync and a 1 ms response time. The mouse is a Logitech G502

12k DPI with a 1000 Hz polling rate. The clients and the server run Ubuntu 20.04

LTS, with Linux kernel version 5.4.

The local latency was measured as described in Section 5.1.3 on page 41. This

measurement method was done 10 times on our client, yielding an average base

latency of 25 milliseconds, with a standard deviation of 5 milliseconds.

Local latency delays all input until resulting rendered output, whereas network

latency delays receipt of the player’s action at the server and subsequent server

155

response to the client. Since the game server is authoritative, the client cannot

update the position of an avatar until the server response has arrived. Thus, for

the games without latency compensation techniques (as for all client-server games

without latency compensation), local latency manifests similarly to network latency.

Player orientation input until resulting avatar orientation change seen on the screen

is delayed by at least the sum of the local latency and the network latency.

Our intent is to assess local latencies over ranges that might typically be found

in personal computers, which range from about 25 milliseconds for a fast gaming

system, are around 100 milliseconds for a typical computer system [ISGS15]. We

added latency to all mouse and keyboard input using EvLag [LC21a] – an open-

source tool for Linux described in Section 5.1.2 on page 39.

Similarly, our intent is to assess network latencies over ranges typically experi-

enced by PC network game players, which can be near 0 milliseconds for a local

area network (LAN) game, 100 milliseconds for a reasonable Internet connection,

and 200 milliseconds for a slower Internet connection [opt20]. We added network

latency to the server uplink and downlink equally using Linux tc with Netem1 – a

network control tool. The total network latency added to the client was either 0 or

150 milliseconds.

Latency compensation techniques can mitigate the effects of network latency

on game players. While there are many different types of latency compensation

techniques, time warp and self-prediction are among the most commonly used in

first-person shooter games [LXC22]. To better understand and quantify how much

the compensation techniques help users in first-person shooter games with network

latency, we investigated two different latency compensation conditions: none and

both time warp and self-prediction together. We implemented the different latency

1https://wiki.linuxfoundation.org/networking/netem

156

compensation conditions in our custom selection game.

Game parameters, such as target size and speed, can change the game difficulty

and affect player performance and experience. To better understand the effects of

game parameters, we studied six game parameters common to first-person shooter -

firing rate, how fast the gun can be fired to shoot at the opponent; number of hits,

how many shots are required to eliminate the opponent; target size, the size of the

player avatar; movement speed, how fast the player avatar can move in the game;

and map size, how large the game map is.

Table 9.1 summarizes the latency values in the user study for both of the players.

For the test player, we vary both local latency and network latency. For the control

player, there is no extra latency added - the local latency is fixed at 25 ms and the

network latency is fixed at 0 ms across all games. Table 9.2 summarizes the game

parameters for the user study. The game parameters values are the same for both

players at all times. The default values of the game parameters are highlighted in

bold.

Table 9.1: Latency values for the user study.

Parameters Test player values Control player values

Local latency 25, 100 (ms) 25 (ms)

Network latency 0, 150 (ms) 0 (ms)

Before the launch of the formal user study, a pilot study with 3 volunteers was

conducted in order to test the viability of the procedure and tune the study settings.

The pilot study results helped adjust round length, map size and layout, number of

rounds, latency values, game parameter values and user instructions.

157

Table 9.2: Game parameter values for the user study.

Parameters Values (same for both players)

Latency compensation none, both time warp and self-prediction

Firing rate 250, 1000 (ms)

Number of hits required 1, 4

Target size 50, 200 (cm)

Movement speed 5, 10

Map size 18 x 18 m, 36 x 36 m

9.1.3 User Study Procedure for Validation with the Custom

Game

The study was approved by our Institute Review Board (IRB). Interested partici-

pants first filled out a screener questionnaire with questions on first-person shooter

game-related experience to help select participants with some prior familiarity with

FPS games. Selected users were invited to the lab at a pre-set time, one time slot

for two users to play against each other. Users then signed a consent form and

positioned themselves at the test computer.

Users first did a custom reaction-time test 10 times as described in Section 5.1.2

on page 37. The average of the 10 values provides a measure of reaction time.

Users started by playing a practice round without any added latency to get

familiar with the game. This data was not analyzed. Users next played additional

rounds, each with options for local latency, network latency, latency compensation

techniques, and the game parameters, randomly shuffled. The control player always

had local latency and network latency as in Table 9.1. The conditions tested include:

A Best condition: There is 1 condition with both players having local latency of

25 ms, network latency of 0 ms, no latency compensation and default game

parameters values.

158

B Varying latency conditions: There are 3 conditions investigating latency con-

ditions - local latency, network latency and latency compensation. We change

the values for the latency conditions one at a time. All the other game param-

eters - firing rate, number of hits required, target size, movement speed and

map size - are at their default values. Note that with latency compensation

on, network latency is at 150 ms.

C 0 ms network latency and no compensation: There are 5 conditions assessing

game parameters - firing rate, number of hits required, target size, movement

speed and map size - without any network latency and latency compensation

techniques. The 5 conditions are with fixed local latency of 25 ms, network

latency of 0 ms and no compensation techniques. We then vary one of the 5

game parameters in each of the 5 conditions.

D 150 ms network latency and no compensation: There are 5 conditions assess-

ing the game parameters - firing rate, number of hits required, target size,

movement speed and map size - in presence of network latency without la-

tency compensation techniques. The 5 conditions are with fixed local latency

of 25 ms, network latency of 150 ms and no compensation techniques. We

then vary one of the 5 game parameters in each of the 5 conditions.

E 150 ms network latency and compensation on: There are 5 conditions assessing

game parameters - firing rate, number of hits required, target size, movement

speed and map size - in presence of network latency with latency compensation

techniques on. The 5 conditions are with a fixed local latency of 25 ms, and

network latency of 150 ms and both self-prediction and time warp. We then

vary one of the 5 game parameters in each of the 5 conditions.

The best condition (A) is repeated 3 times and all other conditions (B - E) are

159

repeated 2 times, for a total 3 + (3 + 5 + 5 + 5)× 2 = 39 rounds plus two practice

rounds. The 3 rounds with the base condition are uniformly distributed between all

rounds to ensure the consistency of player performance and test if there is fatigue

giving the large number of game rounds. The analysis of the 3 rounds is included

in Section 9.2. In total, each player played 39 + 2 = 41 rounds.

After each round, both users provided a subjective Mean Opinion Score (MOS)

rating on a discrete 5-point Likert scale about their experience: “Rate the quality

of the previous game round”. Players chose from 5 options: Excellent, Good, Fair,

Poor or Bad. After completing the survey, the next round would commence when

both user were ready, but users could take as much time as needed before starting

the subsequent round.

It took each pair of users about half an hour to complete all the tasks in the

study. A user study proctor was available for questions and trouble-shooting for the

duration.

After completing all the game rounds, users were given a questionnaire with

additional demographics questions about gamer experience – average time spent

playing games and self-rated expertise with computer games.

In summary, the procedure each user followed was:

1. Fill out the screener questionnaire to ensure interest in participation and help

understand player game familiarity.

2. Come to the dedicated lab at a pre-set time.

3. Adjust the computer chair height and monitor angle and height so as to be

comfortably looking at the center of the screen.

4. Read the instructions regarding setup and game controls on the desktop.

160

Table 9.3: Demographic information for test players

Gaming per Gamer FPS Reaction-
Group Users Age (yrs) Gender week (hours) Self-rating Self-rating time (ms)

Test 46 19.3 (3.0) 37♂ 6♀ 3 Other 13.6 3.4 (1.1) 2.8 (1.2) 183.3 (29.5)
Control 38 20.7 (3.9) 29♂ 8♀ 1 Other 12.8 3.5 (1.2) 3.1 (1.2) 196.1 (32.4)

5. Complete the reaction-time test. (Takes about 30 seconds.)

6. Complete the first-person shooter game rounds (2 practice round and 39

rounds with shuffled testing conditions), including the QoE surveys after each

round. Take breaks between rounds if needed. (Takes a bit less than one hour,

total.)

7. Complete the final demographics questionnaire.

Study participants were solicited via university email lists. All users were eligible

for a raffle to win a $25 USD Amazon gift card upon completion of the study,

and many users received playtesting credit for relevant classes in which they were

enrolled.

9.2 Results

9.2.1 Demographic Information

Eighty-four (84) users were recruited and participated in total, with 46 in the test

group and 38 in the control group. For 8 sessions, Shengmei played as the control

player. This section provides summary demographics for the participants.

Table 9.3 summarizes the demographic information for the user study partic-

ipants. The first row is for the test group and the second row is for the control

group. Gamer and first-person shooter (FPS) self-rating are on a five-point scale,

161

Figure 9.4: Reaction time (ms)

1-low to 5-high. For age, gamer self-rating, FPS self-rating, and reaction times,

the mean values are given with standard deviations in parentheses. For the test

group of 46 players, ages ranged from 18-27 years old but with the large majority

of typical college age. Gender breakdown is predominantly male (37 males), but

does reflect the gender breakdown of first-person shooter game players (about 7%

of first-person shooter gamers are women [Lee17]) and our sample pool of students

at our university. Half of the participants played 10 or more hours of computer

games per week. User self-ratings in general computer games slightly skews towards

above the mid-point (mean 3.4), with self-rating in FPS games slightly lower (mean

2.8). For the control group of 38 player, ages ranged from 18-34 years old but with

the large majority of typical college age. Gender breakdown is also predominantly

male (29 males). Half of the participants played 10 or more hours of computer

games per week. Average gamer self-rating is slightly higher that the test group

(mean 3.5), with self-rating in FPS games following suit (mean 3.1). For both of

the test group and test group, most participants majored in Robotics Engineering,

Computer Science, or Game Development.

Among the 46 players in the test group, 38 played against another player in

the control group and 8 played against me. Statistical analysis shows that there is

no significant difference between the performance of the group of test player who

played against the control players and the group of test player who played against

Shengmei with a p value at 0.69. In the following sections, the data from the 46

162

test players are analyzed together.

Figure 9.4 depicts the distribution of users’ reaction times from the test group

as a boxplot. The base local latency (25 ms) was subtracted from all reaction time

trials and the resulting reaction times averaged for each user. The box depicts

quartiles and median for the distribution. The whiskers span from the minimum

non-outlier to the maximum non-outlier. The black plus shows the mean value.

From the graph, reaction times are mostly fast (with an average about 183 ms),

faster than average computer game players [DGB09].

9.2.2 Fatigue Analysis

As mentioned in Section 9.1.3, to test consistency of player performance across,

there are 3 best conditions uniformly spread out during the study. Figure 9.5 depicts

player win rate of the 3 rounds. The average win rate decreases with the game rounds

but an ANOVA test suggests no significant difference between player performance

across the 3 game rounds with a p value at 0.17 and f value at 1.84.

9.2.3 Inconsistency Analysis

As mentioned in Chapter 2, latency compensation technique often trade off consis-

tency and responsiveness. Time warp improves the responsiveness of first-person

shooter games, but can cause inconsistency between players. There are mainly two

types of inconsistency - the client hits an opponent but the server disagrees; and

client misses (e.g., players intentionally aim ahead) but the server registers the hit.

Out of the 92 rounds in total with latency compensation on, the first type of

inconsistency (client hits an opponent but the server disagrees) happened 22 times

to the test player and the second type of inconsistency (client misses but the server

disagrees) happened 8 times to the test player.

163

Figure 9.5: Win rate of “best” rounds

9.3 Comparison of the Seeker and Hider Intervals

This section compares the length of seeker and hider intervals from the custom FPS

game study with the navigation study from Chapter 5. For each frame, we logged

if the opponent is in-sight and the fraction of in-sight.

Figure 9.6 depicts the fraction visible while the opponent is in sight. From the

graph, the visible factor does not vary with latency. When the opponent is in-sight,

more than 70% of time the avatar is fully visible. For the seeker interval, if any part

of the opponent was visible, the opponent is considered in sight.

Figure 9.7 depicts the cumulative distribution function (CDF) of seeker intervals

from the navigation study (Chapter 5). From the graph, the vast majority of the

seeker intervals are below 2.5 seconds and the medians are less than 200 ms regardless

of the latency. The custom FPS game study confirms that there is some visual

separation of the lines based on latency, with lower latencies having slightly longer

164

Figure 9.6: Fraction visible

intervals (the lines are shifted down and to the right).

Figure 9.8 depicts the cumulative distribution function (CDF) of the seeker in-

tervals from the custom FPS game study. The graph is as Figure 9.7 but the data

is from the custom FPS study and there are only two latency values - 25 (25 local

latency and 0 network latency) and 175 ms (25 local latency and 150 network la-

tency) without any latency compensation. Similar to Figure 9.7, the vast majority

of the seeker intervals are below 2.5 seconds. There is some visual separation of the

lines based on latency, with 0 ms latency having slightly longer intervals than 150

ms latency (the lines are shifted down and to the right). CDF lines in Figure 9.8

and Figure 9.7 have similar shape but seeker intervals from the hide and seek game

are shorter in general.

Figure 9.9 depicts the same data as Figure 9.7 but for the hider intervals. From

the graph, visually, the hider interval distributions do not separate based on latency.

165

Figure 9.7: Seeker interval distribution
from the navigation study

Figure 9.8: Seeker interval distribution
from the custom FPS game study

Figure 9.9: Hider interval distribution
from the navigation study

Figure 9.10: Hider interval distribution
from the custom FPS game study

166

The FPS game study confirms the distribution of time durations where a hider

cannot be seen is about the same regardless of the latency.

Figure 9.10 depicts the cumulative distribution function (CDF) of the hider

intervals from the custom FPS study. The graph is as Figure 9.9 but the data is

from the custom FPS study and there is only two latency values - 25 and 175 ms.

The hider interval distributions do not separate based on latency. About 90% of

hider intervals are below 4 seconds. However, both of the lines have heavy tails

- there are some values that are longer than 8 seconds. The reason might be that

players occasionally lose track of the opponent for large stretches of time. CDF lines

in Figure 9.10 and Figure 9.9 have similar shape but hider intervals from the hide

and seek game are shorter in general.

9.4 Comparison with Simulations

We simulate a two-player game with the same settings as in our custom first-person

shooter games. There are 8 parameters varied in our simulation - local latency, net-

work latency, latency compensation techniques, firing rate, number of hits required,

target size, map size and player skill.

Figure 9.11 depicts the comparison of the study data and the simulations. In

this graph, the x axis is the simulation parameters. The y axis on the left is the

win rate percent improvement over the base conditions and the y axis on the right

is the win rate percent. The circles are the mean values of the user study data and

the bars are the 95% confidence intervals bars through the mean values. The order

of the x axis parameters are sorted by the mean values. The green bar is the “base”

condition - 25 ms of local latency, 150 ms of network latency, all other parameters

are the default (compensation off, firing rate at 4 shots/s, number of hits at 1, map

167

size at 36 x 36 m, target size at 2 m and player skill at “all”) as indicated by the bold

values in Table 9.1 and Table 9.2. With the “best” condition, there is no latency

and latency compensation, and all other parameters are at default values. For all

other conditions, we have 25 ms local latency and 150 network latency and vary one

of the parameters to the other none bold value in Table 9.2 based on the “base”

condition. The red plus is the simulated mean values for the condition. Varying

the parameters on the right side of dashed green line improves player performance

while varying the parameters on the left side of dashed green line degrades player

performance.

In the graph, compared to the base condition, number of hits, latency compensa-

tion, no latency, and player skill make significant differences on player performance.

Latency has significant impact on player performance. By comparing the “base”

condition and “best” condition, reducing network latency by 150 ms improves win

rate by 98%. More hits make it harder for players with network latency to win

- number of hits increases from 1 to 4, the win rate for the player with latency

decreases by 60%. Latency compensation can significantly mitigate the effects of

latency on player. With latency compensation on, player win rate improves by

96%. With latency, higher skill players are 37% more likely to win against “all” skill

players and lower skill players are 39% less likely to win against “all” skill players on

average, but both with a large confidence interval size probably due to lower sample

size. Moreover, target size reductions from 200 cm to 50 cm improves the win rate

of players with latency by 37%.

Room size and firing rate do not have significant impact on player win rates.

Room sizes shrinking from 36 x 36 m to 18 x 18 m improves win rate for the player

with network latency by 22%. Firing rate dropping from 250 ms to 1000 ms improves

win rate for the player with network latency by 25%. The effects of these parameters

168

Figure 9.11: Win rate for test player

are low perhaps because the game parameters are the same across the two players.

9.5 Simulations Accuracy

From Figure 9.11, all the red pluses are within the bar range on its left - all the

simulated values fall in the corresponding 95% confidence intervals. Our simulation

predicts the scenarios from the custom first-person shooter game accurately and can

be used for exploration.

Figure 9.12 depicts the accuracy of the simulation for the parameters. The

x axis is the 9 parameters - same as in Figure 9.11. The y axis is the absolute

difference between the simulated values and the experimental means. The simulation

conditions for each parameter are the same as in Section 9.4. For each of the

parameters, we vary the parameter value and run 10,000 iterations for 10 trials. For

each of the trial, we have a mean win rate value from the iterations. The absolute

value of the delta between the mean win rate and mean experimental value (the

circles in Figure 9.11) is an absolute difference. We then have 10 absolute difference

values for the 10 trials in total. Finally we calculate the mean and confidence

169

Figure 9.12: Simulation accuracy

intervals of the 10 resulting absolute difference values. The circles are the mean

absolute difference and the bars are 95% confidence intervals across the mean values.

From this graph, our simulation predicts the win rate percent for the best and the

base condition well with mean absolute difference at only about 1.5 percent. The

absolute difference between the mean simulated value and the experimental value

is about 2.4 percent for number of hits required. The simulation predicts win rate

for higher skill and lower skill less well with mean absolute different at about 4

and 5 percent. Latency compensation on has larger difference at about 7 percent

probably because players are killed before the hits reach to the server. Small room,

small target and low firing rate conditions are the least accurate in our simulation

with an absolute different of 7 - 8 percent. In all cases, our simulation values are

within 10% of the measured user study values.

170

Chapter 10

Exploration

With validated simulations from Section 7, we are able to explore the space of

first-person shooter games by varying the game parameters - latency, latency com-

pensation techniques, number of hits, firing rate, map size, target size and player

skill. This chapter describes how different game parameters change the impact of

latency on player performance in first-person shooter games.

We first simulate a two-player first-person shooter game with parameters as in

Table 10.1. This is the “base” exploration. We then vary the parameters one at a

time from Section 10.2 to 10.8 and observe the trends in player performance versus

latency.

10.1 Performance and Latency

We vary the network latency for the first player using the base settings. Figure 10.1

depicts the win rate of the test player (the lagged player) versus total latency. The

x axis is network latency and the y axis is the win rate. From this graph, player

win rate degrades with latency. The trend appears mostly linear over the simulated

range. At 275 ms of latency, the win rate is only about 4%. Win rate percent drops

171

Table 10.1: Two-player FPS Game parameters values for the “base” exploration.

Parameter Test player Control player

Network latency 0 - 150 (ms) 0 (ms)

Local latency 25 (ms) 25 (ms)

Player skill all all

Latency compensation none

Firing rate 250 (ms) (4 shots per sec)

Number of hits required 1

Target size 200 cm

Map size 36 x 36 m

about 17 for each 100 ms of latency.

10.2 Latency Compensation Techniques

We analyze latency compensation using the base setting with four conditions: no

compensation, self-prediction only, time warp only, both self-prediction and time

warp.

Figure 10.2 depicts win rate with latency under different latency compensation

conditions. The trendlines are separated out by the four latency conditions: blue

is without latency compensation (the same line as in Figure 10.1), orange is for

self-prediction, green is for time warp, and red is for both self-prediction and time

warp. In the graph, the blue line has the steepest slope, showing that latency has

the most impact on player performance when there is no latency compensation. The

green line and the orange lines have shallower slopes and are comparable, indicating

that each technique individually has about the same ability to mitigate network

latency. The red line is almost flat, indicating that both techniques together can

nearly completely overcome the effects of network latency on player performance.

172

‘

Figure 10.1: Simulated win rate for test player

Figure 10.2: Simulated win rate for test player - compensation

173

Figure 10.3: Simulated win rate for test
player - local latency and no latency
compensation

Figure 10.4: Simulated win rate for test
player - with local latency both time
warp and self-prediction

10.3 Local latency

We vary local latency for the test player from the base setting with two values: 25

and 100 ms.

Figure 10.3 depicts win rate versus network latency with the two different local

latencies and no latency compensation. The trendlines are separated out by the

two local latency values: blue is for local latency at 25 ms (the same line as in

Figure 10.1) and orange is for local latency at 100 ms. In the graph, the orange

line is above the blue line, showing that with the same amount of network latency,

players perform worse with higher local latency. Both of the lines degrade similarly

with network latency.

Figure 10.4 is as Figure 10.3 but the simulation is with both time warp and

self-prediction on. In the graph, the slope of the two lines are almost flat, showing

that with latency compensation on, player performance is not affected by network

latency and equalizes at the local latency. The blue line is on top of the orange

line, showing that player performance still degrades with local latency - latency

compensation cannot mitigate the effects of local latency on player performance.

174

Figure 10.5: Simulated win rate for test player - number of hits required

10.4 Number of Hits

We vary number of hits required for a kill for both players from the base setting

with three values: 1, 10 and 20.

Figure 10.5 depicts win rate versus latency with the different numbers of hits

required. The trendlines are separated out by the three values: blue is for 1 hit (the

same line as in Figure 10.1); orange is for 10 hits; and green is for 20 hits. In the

graph, the green line has the steepest slope, the orange line has a shallower slope

and the blue line the shallowest. Player performance is more impacted by latency

the greater the number of hits required for a kill.

10.5 Firing Rate

We vary the weapon firing rate for both players from the base setting for three

values: 250 ms (4 shots/sec), 500 ms (2 shots/sec) and 750 ms (1.33 shots/sec).

175

Figure 10.6: Win rate with firing rate
(number of hits required to kill is 1)

Figure 10.7: Win rate with firing rate
(number of hits required to kill is 10)

Figure 10.6 depicts win rate versus latency with different firing rates when num-

ber of hits required to kill is 1. The trendlines are separated out by the three firing

rate values: blue is for 250 ms (4 shots/sec) (the same line as in Figure 10.1); orange

is for 500 ms (2 shots/sec); and green is for 750 ms(1.33 shots/sec). In the graph,

the three line largely overlap with each other, showing that firing rate does not have

a significant effect on the impact of latency on player performance when there is

only one hit required to kill the enemy.

Figure 10.7 is as Figure 10.6 but the number required to kill is 10. This graph

shows that the firing rate does affect how latency impacts player performance when

more slots are required for a kill. In this case, high firing rates are significantly more

affected by latency than low firing rates.

10.6 Map Size

We then vary map size from the base setting with three values - 9 x 9 m, 36 x 36 m

and 50 x 50 m.

Figure 10.8 depicts win rate versus latency with different map size values. The

trendlines are separated out by the three map size values: orange is for 9 x 9, blue

176

Figure 10.8: Simulated win rate for test player - map size

is for 36 x 36 (the same line as in Figure 10.1) and green is for 144 x 144 m. In the

graph, the three line largely overlap, showing that map size does not have significant

effect on the impact of latency to player performance.

10.7 Target Size

We vary target size for both players from the base setting with three values: 50 cm,

200 cm and 300 cm.

Figure 10.9 depicts win rate versus latency under different target size values.

The trendlines are separated out by the three target size values: orange is for 50

cm, blue is for 200 cm (the same line as in Figure 10.1), and green is for 300 cm. In

the graph, the three line largely overlap with each other, showing that target size

does not have significant effect on the impact of latency to player performance.

177

Figure 10.9: Simulated win rate for test player - target size

10.8 Player Skill

We vary player skill for both players from the base setting with two values - lower

skill and higher skill.

Figure 10.10 depicts win rate versus latency with different player skills. The

trendlines are separated out by the two player skills: green is for lower skill and

orange is for higher skill. In the graph, both of the lines decrease with latency with

orange line on the top. Although higher skill can help players performance better,

player performance degrades with latency regardless of player skill. At the base

condition, higher skill players are about 15% more likely to win. At about 300 ms

of latency, lower skill players have almost no chance of winning comparing to about

450 ms of latency for higher skill players.

178

Figure 10.10: Simulated win rate for test player - skill

10.9 Comparison of Parameter Effects

To compare the relative effects of the parameters on player performance with latency,

we update the parameter values an order of magnitude more than the base values

(if applicable) one at a time, and observe the difference between the simulation

results. To get the new values for the parameters, we multiply network latency,

local latency, firing rate, number of hits and map size in the base condition by 10.

For target size, we divide the value by 10 instead - in first-person shooter shooter

games, this might represent a head as a target. For player skill, the updated value

is high. Since number of hits matter for the effects of firing rate, we explored firing

rate with 1 and 10 as the number of hits required to kill respectively. For latency

compensation, the updated value is time warp and self-prediction both on.

Table 10.2 depicts the simulation results. In the table the first column includes

the simulation parameter, the second column is the default value of the parameter

- the same as the base condition - the third column is the simulation results with

179

the default values of the parameters, the forth column is updated value for the

parameter, the fifth column is the simulation results with the updated value of the

parameter, and the last column is the absolute difference between simulation results

with different values of the parameter - the absolute different between column 3 and

column 5. The rows are sorted by the last column from high to low - the absolute

difference. The rows with absolute difference over 20 are marked red, 10 - 20 are

marked yellow and 0 - 10 are green.

By comparing the absolute difference caused by the parameters (column 6),

network latency, local latency, latency compensation and number of hits have the

largest impact on the effects of latency on player performance with absolute differ-

ence above 20. Player skill has lower impact with absolute difference at about 15.

Firing rate, target size and map size have minimal impact.

Table 10.2: Simulation results for test player with default values and 10 x values of
parameters

Default Updated Updated Absolute

Parameters values Win rate % values win rate % difference

Network latency 150 ms 24.98 1500 (ms) 0 24.98

Local latency 25 (ms) 24.98 250 (ms) 0 24.98

Latency compensation none 24.98 both 49.5 24.52

Number of hits 1 24.98 10 4.64 20.34

Player skill all 24.98 high 40.86 15.88

Firing rate (w/ 10 hits) 4 (shots/sec) 4.62 40 (shots/sec) 8.99 4.37

Map size 36 x 36 m 24.98 360 x 360 m 24.41 0.57

Target size 200 cm 24.98 20 cm 25.24 0.26

Firing rate (w/ 1 hit) 4 (shots/sec) 24.98 40 (shots/sec) 24.84 0.14

180

10.10 Exploration Summary

This chapter uses the simulations from Chapter 7 to explore the space of first-person

shooter games by varying the parameters values. Self-prediction and time warp can

help player performance and when applied together, players perform as if there is no

latency. Player performance is impacted by latency the more number of hits required

for a kill. Firing rate, map size and target size do not have significant impact on

the effects of latency on player performance. Higher skill players are more resistant

to network latency. Comparison of the parameters shows that network latency,

local latency, number of hits, firing rate (when number of hits is high) and latency

compensation have the largest effects to the impact of latency on player performance

and player skill has slightly lower effects. Firing rate (when number of hits is low),

target size and map size have minimal effects.

181

Chapter 11

Conclusion

People are increasingly turning to games for entertainment evidenced by the growth

of the game industry. Many multi-player computer games connect players via a

network meaning network latency can delay player actions from input to viewing

the corresponding output, this delay coming in addition to any local latency from

the end system. While previous studies have assessed the impact of latency on

computer games, in general, and first-person shooter games specifically, such studies

often evaluate games with built-in latency compensation techniques, thus the results

might not be accurate for other games. Moreover, theses studies has focused on

a specific game task or a specific game with pre-set conditions. There has been

no good answer as to how latency degrades performance for first-person shooter

gamers across different games and game configurations (e.g., weapons, avatar size

and map size), latency types, latency values and latency compensation techniques.

Understanding the effects of latency on first-person selection can help inform game

design and development techniques to mitigate latency’s effects.

This thesis presents an approach for exploring first-person shooter scenarios with

simulations instead of expensive user studies. We first study the “building blocks”

182

of player actions in first-person shooter games: navigation - getting in position to

shoot or avoid being shot; and selection - shoot at and hit the enemy avatar on the

screen. For each of the actions, we conduct user studies with a custom game that

isolated the action, analyze the data and build models. For navigation, we build

models for the in-sight time window length where players can see the opponent and

out-of-sight time window length where players cannot be seen by an opponent. For

selection, we build models for elapsed time which is the time to select the target.

We use these models to simulate first-person shooter games. We simulate first-

person shooter game scenarios across different latency and game configurations. We

then collect data from user studies for a custom first-person shooter game study

and two commercial games to validate our simulations. Finally, we explore various

first-person shooter scenarios with the validated simulations.

The main contributions of this thesis are summarized as below:

• Comparison of local latency and network latency. Without latency compensa-

tion, local latency and network latency have about the same effects on player

performance. In commercial network first-person shooter games, network la-

tency is often mitigated with built-in latency compensation whereas local la-

tency is hard to mitigate with latency compensation.

• Understanding the impact of latency on the navigation action on first-person

shooter game players. Analysis of the results from the navigation user study

indicates local latency and network latency have similar effects on navigation

in the absence of latency compensation. Both subjective quality of experience

(QoE) and objective player performance degrade linearly with total latency,

where 100 ms increase in latency results in about an 8 percent decrease in

player score and a 20 percent decrease in QoE. The impact of latency depends

183

upon the navigation goal, however, with latency hindering seeking for an op-

ponent far more than hiding from an opponent. Both latency compensation

techniques investigated – time warp and self-prediction – can improve player

performance and QoE and, when applied together, can nearly completely over-

come the effects of latency on performance and QoE.

• Models for in-sight and out-of-sight time windows. With the navigation data,

we derive analytic models to describe the time intervals for generalizing navi-

gation with latency and latency compensation using these models in our first-

person shooter simulations.

• Understanding the impact of latency on the selection action on first-person

shooter game players. Analysis of the results from the selection user study

indicates both subjective quality of experience (QoE) and objective player

performance degrade linearly with total latency. A 100 ms decrease in latency

results in about 30 percent improvement in time to select (shoot a target)

and a 12 percent decrease in QoE. Both time warp and self-prediction can

improve player performance and QoE and, when applied together, can nearly

completely overcome the effects of latency on performance and QoE.

• A model of elapsed time (time to select). With the selection data, we derive

analytic models of the time to select that generalize target selection with

latency and latency compensation.

• Validated simulations. We use the models for navigation and selection in

simulations of first-person shooters scenarios. We validate our simulations

with two studies of a commercial game and one with a custom first-person

shooter game. Although there is bias between CS:GO data and simulated

data due to difference in game mode and built-in compensation techniques,

184

the trend of latency and performance holds. The validated simulation can

provide rich explorations in first-person shooter scenarios.

• Explorations with the simulation. With the explorations, we find that player

performance degrades with latency and that with 275 ms of latency, players

playing against an opponent without latency may find it nearly impossible

to win one-shot duels. For latency compensation techniques, both time warp

and self-prediction can mitigate the effect of latency on player performance.

When applied together, players can play as if there is no latency. Moreover,

latency compensation, number of hits required to kill and player skill have

large effect on player performance for players with latency, while target size,

map size and firing rate have lower impact. Game designers can take use of

the exploration findings to better design first-person shooter games. Latency

values experienced by players may not be predictable at the game design phase

but the game can be designed to better mitigate the effects of latency. For

example, game designers can use creativity on target size, map size and firing

rate since these parameters do not effect the impact of latency, but if total

latency are expected to be significant, the game should use a lower number

of hits required for a kill. Moreover, for any network latency, game designers

should consider using time warp and self-prediction.

185

Chapter 12

Future work

Future work can further enrich our models and simulations. For example, we logged

whether the opponent is in sight and if so, the fraction in sight. Since fraction

changes target size in sight, we can add in sight fraction to our models the combine

it with target size in the simulations. Moreover, we can include number and time

length of deaths into our simulation and simulate games where players might respawn

and reset. Future work can also do hierarchical modeling. This could start with

models of individual users, combining them into certain groups users (e.g., based on

skills/behaviors) before moving to aggregate, top-level models.

In-depth exploration can be conducted on why users may perform more poorly

under latency. For example, in the hider/seeker actions, seeking users do worse

(have shorter time windows) with latency, whereas hiders do not. Also, during a

game, some actions might be more difficult for players to accomplish with latency.

For example, a user study could run the Hide and Seek game again and study how

far off player paths deviate with the optimal path under different amounts of latency.

Future work can validate our simulation with more first-person shooter elements.

For example, other types of weapons, maps with different terrains, games with differ-

186

ent game mode and team work. Other future work could explore how to accurately

access player skill data without the need of collecting player performance data in

a first-person shooter game. Other future work could explore how would preferred

player settings (e.g. mouse sensitivity) improve player performance in first-person

shooter games.

Moreover, future work could apply the same methodology used in our paper

to gaming actions in other games genres, e.g., Multiplayer Online Battle Arena

(MOBA) games like DOTA 2 (Valve, 2013) and League of Legends (Riot Games,

2019), and Real-Time Strategy (RTS) games like Starcraft (Blizzard, 1998). In such

a case, individual game actions would need to be isolated for the game and then

evaluated, such as navigation for moving an avatar from a third-person perspective.

187

Bibliography

[AGC+18] Maha Abdallah, Carsten Griwodz, Kuan-Ta Chen, Gwendal Simon, Pin-

Chun Wang, and Cheng-Hsin Hsu. Delay-Sensitive Video Computing

in the Cloud: A Survey. ACM Trans. Multimedia Comput. Commun.

Appl., 14(3s), June 2018.

[AJG+13] Rahul Amin, France Jackson, Juan E. Gilbert, Jim Martin, and Terry

Shaw. Assessing the Impact of Latency and Jitter on the Perceived

Quality of Call of Duty Modern Warfare 2. In Proceedings of HCI –

Users and Contexts of Use, Berlin, Heidelberg, 2013. Springer-Verlag.

[AMC18] Axel Antoine, Sylvain Malacria, and Géry Casiez. Using High Frequency

Accelerometer and Mouse to Compensate for End-to-End Latency in

Indirect Interaction. In Proceedings of the ACM Conference on Hu-

man Factors in Computing Systems (CHI), page 1–11, Montreal, QC,

Canada, 2018. Association for Computing Machinery.

[Arm03] Grenville Armitage. An Experimental Estimation of Latency Sensitiv-

ity in Multiplayer Quake 3. In Proceedings of IEEE ICON, Sydney,

Australia, September 2003.

[AZ97] Johnny Accot and Shumin Zhai. Beyond Fitts’ Law: Models for

Trajectory-based HCI Tasks. In Proceedings of the ACM SIGCHI Con-

ference on Human factors in Computing Systems, pages 295–302, 1997.

[AZ99] Johnny Accot and Shumin Zhai. Performance Evaluation of Input De-

vices in Trajectory-Based Tasks: An Application of the Steering Law. In

Proceedings of the SIGCHI Conference on Human Factors in Comput-

ing Systems, CHI, page 466–472, Pittsburgh, Pennsylvania, USA, 1999.

Association for Computing Machinery.

188

[AZ01] Johnny Accot and Shumin Zhai. Scale Effects in Steering Law Tasks. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI, page 1–8, Seattle, Washington, USA, 2001. Association

for Computing Machinery.

[BCL+04] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Em-

manuel Agu, and Mark Claypool. The Effects of Loss and Latency on

User Performance in Unreal Tournament 2003. In Proceedings of ACM

NetGames, Portland, OG, USA, September 2004.

[Ben] Human Benchmark. Human Benchmark - Reaction Time Statistics.

https://humanbenchmark.com/tests/reactiontime/statistics.

(Accessed on June 15, 2021).

[BK06] Shayne Burgess and Michael Katchabaw. Design and Implementation of

Optimistic Constructs for Latency Masking in Online Video Games. In

The 2nd annual North American Game-On Conference (GameOn’NA).

Monterey, CA, USA. Citeseer, 2006.

[BM14] Justus Beyer and Sebastian Möller. Assessing the Impact of Game Type,

Display Size and Network Delay on Mobile Gaming QoE. PIK - Praxis

der Informationsverarbeitung und Kommunikation, 37:287 – 295, 2014.

[BS99] David A Balota and Daniel H Spieler. Word Frequency, Repetition,

and Lexicality Effects in Word Recognition Tasks: Beyond Measures

of Central Tendency. Journal of Experimental Psychology: General,

128(1):32, 1999.

[BSB06] Jeremy Brun, Farzad Safaei, and Paul Boustead. Managing Latency

and Fairness in Networked Games. Communications of the ACM,

49(11):46–51, November 2006.

[CC06] Mark Claypool and Kajal Claypool. Latency and Player Actions in

Online Games. Communications of the ACM, 49(11):40–45, 2006.

[CC07] Kajal Claypool and Mark Claypool. On Frame Rate and Player Perfor-

mance in First Person Shooter Games. Springer Multimedia Systems,

13(1):3–17, 2007.

189

[CC10] Mark Claypool and Kajal Claypool. Latency Can Kill: Precision and

Deadline in Online Games. In Proceedings of the ACM MMSys, Scotts-

dale, AZ, USA, February 2010.

[CCC+07] Ling Chen, Gen-Cai Chen, Hong Chen, Jack March, Steve Benford,

and Zhi-Geng Pan. An HCI Method to Improve the Human Perfor-

mance Reduced by Local-Lag Mechanism. Interacting with Computers,

19(2):215–224, March 2007.

[CCD06] Mark Claypool, Kajal Claypool, and Feissal Damaa. The Effects of

Frame Rate and Resolution on Users Playing First Person Shooter

Games. In Proceedings of the ACM/SPIE Multimedia Computing and

Networking Conference (MMCN), volume 6071, San Jose, CA, USA, 01

2006. Association for Computing Machinery/Society of Photo-optical

Instrumentation Engineers.

[CCG20] Mark Claypool, Andy Cockburn, and Carl Gutwin. The Impact of Mo-

tion and Delay on Selecting Game Targets with a Mouse. ACM Trans-

actions on Multimedia, Computing, Communication and Applications

(TOMM), 16(2), May 2020.

[CER17] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. Modeling User Perfor-

mance for Moving Target Selection with a Delayed Mouse. In Proceed-

ings of Springer MMM, Reykjavik, Iceland, January 2017.

[Cla18] Mark Claypool. Game Input with Delay - Moving Target Selection

with a Game Controller Thumbstick. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM) - Special Sec-

tion on Delay-Sensitive Video Computing in the Cloud, 14(3s), August

2018.

[DGB09] Matthew Dye, C Green, and Daphne Bavelier. Increasing Speed of Pro-

cessing with Action Video Games. Current Directions in Psychological

Science, 18(6):321–326, December 2009.

[DM17] A. Depping and R. Mandryk. Why is This Happening to Me?: How

Player Attribution Can Broaden Our Understanding of Player Experi-

190

ence. In Proceedings of the ACM SIGCHI Conference on Human factors

in Computing Systems, Denver, CO, USA, May 2017.

[Dru71] Colin G. Drury. Movements with Lateral Constraint. Ergonomics, 14

2:293–305, 1971.

[DWW05] Matthias Dick, Oliver Wellnitz, and Lars Wolf. Analysis of Factors

Affecting Players’ Performance and Perception in Multiplayer Games.

In Proceedings of ACM NetGames, Hawthorn, NY, USA, 2005.

[DZC+21] Wouter Durnez, Aleksandra Zheleva, Mark Claypool, Klaas Bombeke,

Mathias Maes, Jan Van Looy, and Lieven De Marez. Spaz! The Effects

of Local Latency on Player Actions in an Desktop-Based Exergame.

IEEE Transactions on Games, pages 1–1, 2021.

[ERC18] Ragnhild Eg, Kjetil Raaen, and Mark Claypool. Playing with Delay:

With Poor Timing Comes Poor Performance, and Experience Follows

Suit. In Proceedings of the 10th International Conference on Quality of

Multimedia Experience (QoMEX), Sardinia, Italy, June 2018. IEEE.

[FKS16] Sebastian Friston, Per Karlström, and Anthony Steed. The Effects of

Low Latency on Pointing and Steering Tasks. IEEE Transactions on

Visualization and Computer Graphics, 22(5):1605–1615, 2016.

[FRS05] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller. The Effect of La-

tency and Network Limitations on MMORPGs: a Field Study of Ev-

erquest 2. In Proceedings of ACM NetGames, Hawthorne, NY, USA,

October 2005.

[gam20] gamersdecide.com. The Most Popular FPS Games in The

World (2020). https://www.gamersdecide.com/articles/

most-popular-fps-games, Apr 2020. (Accessed August 16, 2021).

[GE88] Sandra G.Hart and Lowell E.Staveland. Development of NASA-TLX

(Task Load Index): Results of Empirical and Theoretical Research.

Human Mental Workload (Editors Peter A Hancock and Najmedin

Meshkati), 52:139–183, 1988.

191

[gee21] geekygamingstuff.com. Is It Better to Play FPS Games with a Con-

troller or Keyboard and Mouse? https://geekygamingstuff.com/

is-it-better-to-play-fps-games-with-a-controller-or-keyboard-and-mouse,

May 2021. (Accessed August 16, 2021).

[Goo20] Google. Google Stadia Post-game Survey. stadia, 2020. (Accessed Oct

15, 2021).

[HCW+14] Eben Howard, Clint Cooper, Mike Wittie, Steven Swinford, and Qing

Yang. Cascading Impact of Lag on Quality of Experience in Coopera-

tive Multiplayer Games. In Proceedings of the 13th Annual Workshop

on Network and Systems Support for Games (NetGames), pages 1–6,

Nagoya, Japan, 2014. IEEE Press.

[HFPG16] Oliver Hohlfeld, Hannes Fiedler, Enric Pujol, and Dennis Guse. In-

sensitivity to Network Delay: Minecraft Gaming Experience of Casual

Gamers. In Proceedings of the International Teletraffic Congress (ITC),

Würzburg, Germany, September 2016. IEEE.

[HHS21] David Halbhuber, Niels Henze, and Valentin Schwind. Increasing Player

Performance and Game Experience in High Latency Systems. Proc.

ACM Hum.-Comput. Interact., 5(CHI PLAY), oct 2021.

[HKS+22] David Halbhuber, Annika Köhler, Markus Schmidbauer, Jannik Wiese,

and Niels Henze. The Effects of Auditory Latency on Experienced First-

Person Shooter Players. In Proceedings of Mensch und Computer 2022,

pages 286–296. 2022.

[HLT20a] HLTV. CS:GO Statistics Database – Distribution of Maps Played.

hltv.org, 2020. (Accessed September 17, 2020).

[HLT20b] HLTV. CS:GO Statistics Database – Top Weapons. hltv.org, 2020.

(Accessed September 17, 2020).

[HPM91] Andrew Heathcote, Stephen J Popiel, and DJ Mewhort. Analysis of

Response Time Distributions: An Example Using the Stroop Task. Psy-

chological bulletin, 109(2):340, 1991.

[Hum] Human Benchmark. Reaction Time Test. (Accessed April 13, 2021).

192

[IdKP13] W. Ijsselsteijn, Y. de Kort, and K. Poels. The Game Experience Ques-

tionnaire. Technical report, Technische Universiteit Eindhoven, 2013.

[ISGS15] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. Quanti-

fying and Mitigating the Negative Effects of Local Latencies on Aiming

in 3d Shooter Games. In Proceedings of the ACM SIGCHI Conference

on Human factors in Computing Systems, Seoul, Republic of Korea,

April 2015.

[Jef85] David R. Jefferson. Virtual Time. ACM Transsactions on Programming

Language and Systems, 7(3):404–425, July 1985.

[JSB05] Xinbo Jiang, Farzad Safaei, and Paul Boustead. Latency and Scalability:

a Survey of Issues and Techniques for Supporting Networked Games.

In 13th IEEE International Conference on Networks Jointly held with

the IEEE 7th Malaysia International Conference on Communications,

volume 1, pages 6 pp.–, 2005.

[JT07] Jeroen Jansz and Martin Tanis. Appeal of Playing Online First Person

Shooter Games. Cyberpsychology & Behavior, 10(1):133–136, 2007.

[JT14] Benjamin F. Janzen and Robert J. Teather. Is 60 FPS Better than 30?

The Impact of Frame Rate and Latency on Moving Target Selection.

In Extended Abstracts on Human Factors in Computing Systems, CHI

EA, page 1477–1482, Toronto, Ontario, Canada, 2014. Association for

Computing Machinery.

[KGS07] Raghavendra S. Kattinakere, Tovi Grossman, and Sriram Subrama-

nian. Modeling Steering within Above-the-Surface Interaction Layers,

page 317–326. Association for Computing Machinery, San Jose, Califor-

nia, USA, 2007.

[Kos08] Robert J Kosinski. A Literature Review on Reaction Time. Clemson

University, 10(1), 2008.

[LC15] Wai-Kiu Lee and Rocky K. C. Chang. Evaluation of Lag-Related Con-

figurations in First-Person Shooter Games. In International Workshop

on Network and Systems Support for Games (NetGames), pages 1–3,

2015.

193

[LC17] Steven Lee and Rocky Chang. On ‘Shot Around a Corner’ in First-

Person Shooter Games. In Proceedings of the 15th Annual Workshop

on Network and Systems Support for Games (NetGames), pages 1–6,

Taipei, Taiwan, June 2017. IEEE.

[LC18] Steven W. K. Lee and Rocky K. C. Chang. Enhancing the Experience of

Multiplayer Shooter Games via Advanced Lag Compensation. In Pro-

ceedings of the 9th ACM Multimedia Systems Conference, MMSys, page

284–293, Amsterdam, Netherlands, 2018. Association for Computing

Machinery.

[LC21a] Shengmei Liu and Mark Claypool. EvLag: A Tool for Monitoring and

Lagging Linux Input Devices. In Proceedings of the 12th ACM Multi-

media Systems Conference, pages 281–286, 06 2021.

[LC21b] Shengmei Liu and Mark Claypool. Game Input with Delay - A Model

of the Time Distribution for Selecting a Moving Target with a Mouse.

In Proceedings of Springer MMM, Prague, Czech Republic, June 22-24

2021.

[LCD+20] Shengmei Liu, Mark Claypool, Bhuvana Devigere, Atsuo Kuwahara,

and Jamie Sherman. ’Git Gud!’ - Evaluation of Self-Rated Player Skill

Compared to Actual Player Performance. In Proceedings of ACM CHI

Play, Online (Virtual Conference), November 2020.

[Lee17] Nick Lee. Beyond 50/50: Breaking Down the Percentage of Female

Gamers by Genre. Online: https://quanticfoundry.com/2017/01/

19/female-gamers-by-genre/, Jan 2017. (Accessed September 5,

2021).

[LG18] Michael Long and Carl Gutwin. Characterizing and Modeling the Effects

of Local Latency on Game Performance and Experience. In Proceedings

of the ACM SIGCHI Conference on Human factors in Computing Sys-

tems, Montréal, Canada, 2018.

[LG19] Michael Long and Carl Gutwin. Effects of Local Latency on Game

Pointing Devices and Game Pointing Tasks. In Proceedings of the ACM

194

SIGCHI Conference on Human factors in Computing Systems, Glasgow,

Scotland, UK, 2019.

[LKS+21a] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, and

Mark Claypool. Comparing the Effects of Network Latency versus Lo-

cal Latency on Competitive First Person Shooter Game Players. In

EHPHCI’ 21, Yokohama, Japan, Apr 2021. OSF Preprints.

[LKS+21b] Shengmei Liu, Atsuo Kuwahara, James Scovell, Jamie Sherman, and

Mark Claypool. Lower is Better? The Effects of Local Latencies on

Competitive First-Person Shooter Game Players. In Proceedings of the

ACM SIGCHI Conference on Human factors in Computing Systems,

Yokohama, Japan, 2021.

[LSGH17] Huy Viet Le, Valentin Schwind, Philipp Göttlich, and Niels Henze. Pre-

dicTouch: A System to Reduce Touchscreen Latency Using Neural Net-

works and Inertial Measurement Units. In Proceedings of the ACM In-

ternational Conference on Interactive Surfaces and Spaces, ISS ’17, page

230–239, Brighton, United Kingdom, 2017. Association for Computing

Machinery.

[Luc86] Duncan Luce. Response Times: Their Role in Inferring Elementary

Mental Organization. Number 8. Oxford University Press on Demand,

1986.

[LXC21] Shengmei Liu, Xiaokun Xu, and Mark Claypool. Online Games and

Network Latency Compensation Techniques. Technical Report WPI-

CS-TR-20-01, Computer Science Department at Worcester Polytechnic

Institute, May 2021.

[LXC22] Shengmei Liu, Xiaokun Xu, and Mark Claypool. A Survey and Tax-

onomy of Latency Compensation Techniques for Network Computer

Games. ACM Computing Surveys, 1(1), February 2022.

[Mau00a] Martin Mauve. Consistency in Replicated Continuous Interactive Me-

dia. In Proceedings of the ACM Conference on Computer Supported Co-

operative Work (CSCW), page 181–190, Philadelphia, PA, USA, 2000.

Association for Computing Machinery.

195

[Mau00b] Martin Mauve. How to Keep a Dead Man from Shooting. In Interactive

Distributed Multimedia Systems and Telecommunication Services, pages

199–204, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[Mur21] Trent Murray. Top 10 Esports Games of 2020 by Total Win-

nings – The Esports Observer. https://esportsobserver.com/

top10-games-2020-total-winnings/, Jan 2021. (Accessed Septem-

ber 2, 2021).

[MVHE04] Martin Mauve, Jürgen Vogel, Volker Hilt, and Wolfgang Effelsberg.

Local-lag and Timewarp: Providing Consistency for Replicated Con-

tinuous Applications. IEEE transactions on Multimedia, 6(1):47–57,

2004.

[opt20] optimum.com. What Is Latency? Online: https://www.optimum.com/

internet/what-latency, feb 2020. (Accessed Nov 15, 2021).

[PdI07] K. Poels, Y.A.W. de Kort, and W.A. IJsselsteijn. D3.3 : Game Ex-

perience Questionnaire: Development of a Self-report Measure to As-

sess the Psychological Impact of Digital Games. Technische Universiteit

Eindhoven, 2007.

[PW02] Lothar Pantel and Lars C. Wolf. On the Impact of Delay on Real-Time

Multiplayer Games. In Proceedings of the Workshop on Network and

Operating Systems Support for Digital Audio and Video (NOSSDAV),

pages 23–29, Miami, FL, USA, May 2002. Association for Computing

Machinery.

[QBV+13] Peter Quax, Anastasiia Beznosyk, Wouter Vanmontfort, Robin Marx,

and Wim Lamotte. An Evaluation of the Impact of Game Genre on User

Experience in Cloud Gaming. In IEEE International Games Innovation

Conference (IGIC), pages 216–221, 2013.

[QML+04] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer,

and Natalie Degrande. Objective and Subjective Evaluation of the In-

fluence of Small Amounts of Delay and Jitter on a Recent First Person

Shooter Game. In Proceedings of ACM NetGames, Portland, OG, USA,

2004.

196

[rai21] raiseyourskillz.com. Why Are First Person Shoot-

ers So Popular? https://raiseyourskillz.com/

why-are-first-person-shooters-so-popular-11-reasons/, jun

2021. (Accessed August 16, 2021).

[Ric14] Benjamin Richardson. Reaction Time Differences in Video Game and

Non-Video Game Players. https://digitalcommons.cwu.edu/cgi/

viewcontent.cgi?article=1689&context=source, 2014. (Accessed

on 07/15/2021).

[RRP06] Richard Ryan, Scott Rigby, and Andrew Przybylski. The Motivational

Pull of Video Games: A Self-determination Theory Approach. Motiva-

tion and Emotion, 30(4):344–360, 2006.

[SBB+19] Josef Spjut, Ben Boudaoud, Kamran Binaee, Jonghyun Kim, Alexander

Majercik, Morgan McGuire, David Luebke, and Joohwan Kim. Latency

of 30 ms Benefits First Person Targeting Tasks More Than Refresh Rate

Above 60 Hz. In SIGGRAPH Asia Technical Briefs, pages 110–113.

ACM, Brisbane, QLD, Australia, 2019.

[SC19] Jiawei Sun and Mark Claypool. Evaluating Streaming and Latency

Compensation in a Cloud-based Game. In Proceedings of the 15th IARIA

Advanced International Conference on Telecommunications (AICT),

Nice, France, June 2019.

[SG13] Cheryl Savery and T. C. Graham. Timelines: Simplifying the Pro-

gramming of Lag Compensation for the Next Generation of Networked

Games. Multimedia Systems, 19(3):271–287, June 2013.

[SGG10] Cheryl Savery, T. C. Nicholas Graham, and Carl Gutwin. The Human

Factors of Consistency Maintenance in Multiplayer Computer Games.

In Proceedings of the 16th ACM International Conference on Supporting

Group Work, page 187–196, Sanibel Island, FL, USA, 2010. Association

for Computing Machinery.

[Sha21] Steven Shaw. Valorant vs CSGO Player Count: Which FPS Game

Has More Players in 2021? https://stealthoptional.com/how-to/

197

valorant-csgo-player-count-which-fps-has-more-players-2021/,

july 2021. (Accessed August 16, 2021).

[SK05] Gabriel Shelley and Michael Katchabaw. Patterns of Optimism for Re-

ducing the Effects of Latency in Networked Multiplayer Games. In

Proceedings of FuturePlay, East Lansing, Michigan, USA, 2005.

[SKH02] Jouni Smed, Timo Kaukoranta, and Harri Hakonen. Aspects of Network-

ing in Multiplayer Computer Games. The Electronic Library, 20(2):87–

97, 2002.

[SSSZ+18] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj, Carsten

Griwodz, and Sebastian Moller. Towards Applying Game Adaptation

to Decrease the Impact of Delay on Quality of Experience. In IEEE In-

ternational Symposium on Multimedia (ISM), pages 114–121, Taichung,

Taiwan, 2018.

[SSZ+20] Saeed Shafiee Sabet, Steven Schmidt, Saman Zadtootaghaj, Carsten

Griwodz, and Sebastian Möller. Delay Sensitivity Classification of Cloud

Gaming Content. In Proceedings of the 12th ACM Workshop on Immer-

sive Mixed and Virtual Environment Systems (MMVE), pages 25–30,

Istanbul, Turkey, 2020. Association for Computing Machinery.

[Sta20] Statista. Distribution of Gamers Playing Selected Game Genres World-

wide as of January 2017, by Gender. Online: https://tinyurl.com/

yytrbj4d, 2020. (Accessed September 17, 2020).

[SZM17] Steven Schmidt, Saman Zadtootaghaj, and Sebastian Möller. Towards

the Delay Sensitivity of Games: There is More than Genres. In Ninth In-

ternational Conference on Quality of Multimedia Experience (QoMEX),

pages 1–6, 2017.

[TAS07] Alexey Tumanov, Robert Allison, and Wolfgang Stuerzlinger.

Variability-aware Latency Amelioration in Distributed Environments.

pages 123–130, 01 2007.

[TG05] Thomas L Thornton and David L Gilden. Provenance of Correlations

in Psychological Data. Psychonomic Bulletin & Review, 12(3):409–441,

2005.

198

[u/k19] u/khaniage. Counter-strike: Global Offensive – Map Sizes. Reddit,

2019. (Accessed September 17, 2020).

[wep22] wepc.com. Video Game Industry Statistics, Trends and Data In 2022.

Online: https://www.wepc.com/news/video-game-statistics/, Jan

2022. (Accessed October 26, 2022).

[Whe08] Robert Whelan. Effective Analysis of Reaction Time Data. The Psy-

chological Record, 58(3):475–482, 2008.

[WO00] Jiann-Rong Wu and Ming Ouhyoung. On Latency Compensation and

Its Effects for Head Motion Trajectories in Virtual Environments. The

Visual Computer, 16:79–90, 03 2000.

[ZAW04] Shumin Zhai, Johnny Accot, and Rogier Woltjer. Human Action Laws

in Electronic Virtual Worlds: An Empirical Study of Path Steering Per-

formance in VR. Presence, 13:113–127, 04 2004.

199

