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Abstract

Audio classification is a vital technique in environmental monitoring, facilitating
the automatic categorization of audio data into predefined classes based on acoustic fea-
tures. From identifying wildlife vocalizations to assessing urban noise pollution levels, its
applications are diverse and pivotal in understanding and managing ecosystems and urban
environments.

The conventional audio classification method often utilizes Mel Frequency Cepstral
Coefficients (MFCC) extracted from audio files as input to a Deep Neural Network (DNN)
classifier. However, its effectiveness is limited by a fixed filterbank structure, designed for
the human audio range but lacking optimization and adaptability to diverse datasets. To
address this, we propose a customized MFCC approach (Pertinant Spectral Characteristic
MFCC), aligning the filterbank with dataset-specific frequency power distribution peaks,
thus enhancing classification accuracy and adaptability.

Through a comparative analysis across various environmental datasets, including
ESC50, UrbanSound8K, and Gunshot our study demonstrates the superiority of the Per-
tinant Spectral Characteristic MFCC (PSC-MFCC) approach. Specifically, we observed a
notable 4.5% increase in classification accuracy and a 1.47% decrease in standard deviation
compared to the traditional MFCC method, showcasing its potential to significantly enhance
audio classification accuracy and precision.

These findings underscore the practical utility and efficacy of the proposed method-
ology in environmental audio classification tasks. By accurately capturing and distinguishing
features within diverse frequency ranges across classes, the PSC-MFCC approach offers a
promising avenue for advancing audio classification techniques in environmental monitoring
and conservation efforts.
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1 Introduction

Audio classification plays a significant role in analyzing sound data, categorizing it

into predefined classes based on extracted features from the audio signal. Environmental au-

dio classification is particularly important as it facilitates the monitoring and understanding

of ecosystem health, human impacts on natural habitats, and the development of effective

conservation strategies.

Environmental sounds encompass a diverse range of auditory signals found in natu-

ral and urban environments, such as animal calls, traffic noise, wind patterns, and water flow.

Studying these sounds is crucial for understanding ecosystem health, assessing biodiversity,

and monitoring human impacts on habitats. Through audio classification techniques, re-

searchers can gain deeper insights into ecological processes, inform conservation efforts, and

mitigate human-induced disturbances to ecosystems.

To classify environmental sounds, diverse recordings from natural or urban environ-

ments are collected, enabling classifiers to discern distinct features such as bird calls, traffic

noise, or water flow patterns. Leveraging machine learning algorithms, these classifiers con-

tribute to various applications including wildlife monitoring, urban soundscape analysis, and

environmental impact assessments.

A common approach to audio classification involves utilizing Mel-Frequency Cep-

stral Coefficients (MFCC) to extract spectral features from audio signals. These features

serve as inputs to machine learning models, particularly Deep Neural Networks (DNN),

which excel at learning complex patterns in data. Trained on labeled datasets, DNNs can ef-

fectively classify audio signals, enabling tasks like wildlife monitoring and urban soundscape

analysis with high accuracy and efficiency.

However, traditional methods for audio classification, such as the use of MFCC,

have limitations in adaptability to diverse datasets such as environmental sounds. To ad-
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dress this, we customize the MFCC filterbank to align with dataset-specific frequency power

distribution peaks (rather than following the standard Mel-scale approach) in order to en-

hance classification accuracy and adaptability.

We present three significant contributions to the field. First, we introduce a novel

filterbank optimization algorithm designed to enhance the extraction of spectral features from

audio datasets. This algorithm generates a tailored filterbank by analyzing a uniform sample

of the dataset, effectively highlighting the most pertinent spectral characteristics. Second,

we introduce a customized Mel-Frequency Cepstral Coefficients (MFCC) function capable of

incorporating the optimized filterbank as an input. This Pertinent Spectral Characteristic

MFCC (PSC-MFCC) function facilitates more precise feature extraction, thereby improving

the overall classification process. Finally, we demonstrate a notable 4.5% enhancement in

classification accuracy when compared to conventional MFCC approaches, underscoring the

practical utility and efficacy of the proposed methodology (Pertinent Spectral Characteristic

MFCC). These contributions are summarized below.

• Filterbank optimization algorithm that enhances the extraction of key spectral features

from audio.

• A customized MFCC function capable of incorporating the optimized filterbank.

• The custom MFCC (PSC-MFCC) increases classification accuracy by 4.5% compared

to the traditional MFCC approach.
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2 Literature Review and Background Study

This section discuses background information related to environmental sounds and

audio classification.

2.1 Environmental sounds

Environmental sounds include a broad array of auditory elements found in both

natural and urban settings. These sounds form an integral part of our daily surroundings,

influencing our perceptions and interactions with the environment. Specialized datasets such

as ESC50 and UrbanSound8k are used to facilitate the study and analysis of environmental

sounds. ESC50 consists of 50 classes, each comprising 40 five-second audio clips captur-

ing various environmental sounds, such as waves, frogs, wind, rain, thunder, insects, and

helicopters[11]. Meanwhile, UrbanSound8k, with its 8,732 audio files across 10 classes, offers

insights into urban auditory landscapes, featuring sounds like air conditioners, street music,

dog barks, and sirens. These datasets reflect the diverse nature of environmental sounds,

spanning a wide spectrum of frequencies and sources[12]. Classifiers are made to distinguish

between the large range of sounds, leading to meaningful insights[4].

The analysis and classification of environmental sounds can provide a wealth of in-

formation. For instance, through the identification of bird sounds, we can better understand

the avian population in a given area[2]. This knowledge can then be used to aid conservation

efforts, by locating endangered bird species, and even provide information about migration

patterns, enriching our understanding of these phenomena. Moreover, gunshot sound detec-

tion can help surveillance efforts[17]. By pinpointing the source of gunfire, this technology

enables authorities to ascertain whether firearms are being discharged, identify the specific

type of firearm involved, and assess its legality. Such information is invaluable for combating

activities like poaching and ensuring public safety through vigilant monitoring. Similarly,
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noise pollution classification serves to quantify and identify the sources of excessive noise[4].

This information helps in recognizing when noise levels exceed acceptable limits and devising

strategies for noise pollution reduction. Furthermore, acoustic natural disaster classification

utilizes audio to detect events like tsunami, volcanoes, hurricanes, and earthquakes[5]. Classi-

fying these events before they occur can save countless lives. Finally, rainfall audio detection

estimates rain intensity in real time, determining the severity of rainfall, and guiding the

decisions that must be made to keep people safe. Although classifying audio signals provides

many benefits it is a complicated task.

2.2 Audio classification

Audio classification involves categorizing audio signals into predefined classes, typ-

ically accomplished using machine learning algorithms. Deep Neural Networks, a subset of

machine learning, are commonly employed for this task. Deep Neural Networks emulate the

structure of the human brain, with nodes and layers, enabling them to recognize patterns

and perform classification. The general structure of Deep Neural Networks comprises three

types of layers: input, hidden, and output. The input layer receives input features, while

the hidden layers learn patterns in the data through weighted connections between neurons.

Finally, the output layer produces the classification. Before Deep Neural Networks perform

classification, they must undergo training on labeled data. During training, the network ad-

justs its parameters based on input-output pairs, optimizing its ability to accurately classify

audio signals. After training, the Deep Neural Network’s performance is evaluated through

testing, where its ability to classify unseen data is accessed[6].

2.3 Acoustic feature: Mel-Frequency Cepstral Coefficients (MFCC)

The classifiers input plays a significant role in the training and testing process.

Large datasets may slow down classification and require extensive computational resources,
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but blindly reducing data size can remove crucial distinguishing features resulting in lower

accuracy. Preprocessing is vital to balance efficiency and accuracy. Preprocessing steps are

used to strike this balance. A combination of high efficiency and accuracy are an indication of

successful preprocessing steps. One of the most popular audio classifier preprocessing steps

is Mel-Frequency Cepstral Coefficients (MFCC). These coefficients are able to capture the

spectral envelope of an audio signal and express it in a compact way. The spectral envelope

ensures that key features are not lost and the compact output leads to high efficiency[9].

The Mel-Frequency Cepstral Coefficients are calculated following a six step process.

The first step involves segmenting the audio signal into time-domain windows. This requires

reading and analyzing the audio file, where each data point denotes an amplitude at a

distinct moment. The duration between these data points is dictated by the audio file’s

sampling frequency, measured in samples per second (Hz). The time domain representation

of the signal is segmented into different windows. The windows must be of a consistent

structure. This structure has parameters such as shape, length, and overlap that describe

the windowing approach. Some common windowing shapes include rectangular window,

triangular window, Welch window, Hann window, and Hamming window. Once windowing

is applied and the data is segmented, each segment can be individually analyzed, offering

insights into the signal’s characteristics across various time intervals.

After windowing the signal in the time domain, the frequency response is deter-

mined. This is achieved by computing the Discrete Fourier Transform (DFT) within each

individual window. By doing so valuable information about both frequency and time is ob-

tained. The outcome is a depiction of the frequency response across various time intervals.

X[k] =
N−1∑
n=0

x[n] · e−j2π kn
N (1)

This operation is computed in each frame.

X[k] represents the frequency component of the DFT output sequence.
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x[n] represents the input windowed time sequence.

N represents the total number of samples in the input sequence.

e is the base of the natural logarithm.

j is the imaginary unit.

The subsequent step involves computing the power, achieved by squaring the mag-

nitude of the windowed frequency response. This operation simplifies the data by discarding

phase information while serving as a quantitative measure of signal strength. The outcome of

this process is a representation of signal power across various frequencies and time intervals.

|X[k]|2 = PowerofX[k] (2)

The third step involves applying the Mel-filterbank to the spectrogram. The pur-

pose of the Mel-filterbank is to mimic the non-linear frequency perception of the human

auditory system, emphasizing important frequencies while subordinating spectral noise. The

Mel-filterbank typically consists of 20 to 40 overlapping triangular filters spaced according

to the Mel-scale, with denser spacing at lower frequencies gradually transitioning to sparser

spacing at higher frequencies. In general, the filterbank covers the frequency range of human

auditory perception, approximately 20 Hz to 20 KHz. The Mel-filterbank is illustrated in

Figure 1.
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Figure 1: Mel-filterbank

The fourth step involves transforming the spectrogram onto a logarithmic scale,

using a base ten logarithm. This logarithmic transformation serves to compress the dynamic

range of features within the spectrogram. By doing so, the spectrogram becomes more

interpretable, facilitating classification and analysis tasks.

After the logarithmic transformation, the final step involves the application of the

Discrete Cosine Transform (DCT) to each row of the transformed spectrogram. This pro-

cess, conducted along the frequency axis, computes the Mel-Frequency Cepstral Coefficients

(MFCCs) for individual time windows. Each row of the spectrogram, corresponding to a

distinct time window, undergoes an independent DCT calculation. The resulting DCT co-

efficients represent the MFCCs, offering a concise depiction of the spectral characteristics.

Typically, 13 of these coefficients are preserved, facilitating dimensionality reduction while

retaining crucial spectral features. The DCT output forms a matrix where one dimension

signifies time frames, while the other represents cepstral coefficients, encompassing overall

energy and spectral shape. These MFCCs function as the ultimate feature representation,
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apt for tasks like speech recognition or audio classification.

X[k] =
N−1∑
n=0

x[n] · cos
(
π(2n+ 1)k

2N

)
(3)

Operation computed in every frame.

X[k] represents the DCT coefficient.

x[n] represents the input log scaled power sequence.

N is the length of the input sequence.

2.4 Limitations of MFCC

While the conventional approach of employing Mel-Frequency Cepstral Coefficients

(MFCC) and Neural Networks for classification generally yields satisfactory results, there

are certain limitations worth noting, particularly in the design of the Mel-filterbank used in

MFCC computation. As mentioned earlier, the Mel-filterbank comprises triangular filters,

densely positioned at lower frequencies and sparsely distributed at higher frequencies follow-

ing the Mel-scale. Consequently, this setup yields higher resolution at lower frequencies but

diminishes resolution at higher frequencies. Although this configuration may suffice for cer-

tain datasets it lacks adaptability and robustness. This is particularly evident when working

with diverse datasets, such as environmental sound datasets, consisting of varying frequency

ranges and sound sources. In such cases, the MFCC often falls short in adequately capturing

vital spectral information. This deficiency arises due to the uncertainty surrounding the

optimal positioning of triangular filters to amplify resolution around critical spectral points

while efficiently suppressing spectral noise. For instance if a dataset has a high quantity of

information at both high and low frequencies the Mel-filterbank would fail to capture the

information at the high frequencies. In this case a filterbank such as the one in Figure 2

would be desirable, as it provides high resolution at both high and low frequencies while

8



attenuating the middle frequency range.

To address this challenge, the adoption of a tailored filterbank customized to the

dataset emerges as a viable solution. By tailoring the filterbank to suit the specific character-

istics of the dataset this approach enhances adaptability, bolsters robustness, and ultimately

augments accuracy in audio classification tasks.

Designing a custom filterbank presents a formidable challenge. The primary reason

it is difficult is that the best filterbank for each dataset is unknown. A Deep Neural Network

approach would rely on a dataset of optimal filterbanks for different datasets to serve as

training data, which is unavailable. For this reason digital signal processing techniques are

explored.

Figure 2: Custom filterbank
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3 Methodology

This section discusses the methods used to create a Pertinent Spectral Character-

istic (PSC-MFCC) audio classification approach. To develop and assess the PSC-MFCC

function effectively, several key elements must be in place: a filterbank optimization algo-

rithm, a PSC-MFCC function, and a Deep Neural Network audio classifier. These three

components are shown in Figure 3. The optimization algorithm plays a pivotal role in deter-

mining the optimal placement of triangular filters within the custom filterbank, ensuring it

aligns precisely with the spectral characteristics of the dataset. Meanwhile, the PSC-MFCC

function utilizes the tailored filterbank to perform MFCC calculations. Once these compo-

nents are developed, they can be used as an input to a Deep Neural Network classifier to

evaluate the performance across a diverse set of environmental datasets. The performance

of the classifier is evaluated by comparing the test accuracy of the traditional MFCC to the

PSC-MFCC.

Audio
Files

Optimization
Algorithm

PSC-MFCC
Function

Deep Neural 
Network
Classifier

Classification

Figure 3: PSC-MFCC components

3.1 Filterbank optimization algorithm

The filterbank optimization algorithm crafts a filterbank specifically suited for the

dataset’s spectral characteristics. Next, the PSC-MFCC function uses this optimized filter-

bank to compute MFCC features. Finally, the audio classifier evaluates the performance of

the PSC-MFCC function, ensuring its efficacy in diverse environmental sound audio classi-
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fication tasks.

The filterbank optimization algorithm is tasked with identifying the optimal loca-

tions for the triangular filters. Due to the variability of these locations across datasets, it

requires a uniform representative sample of the dataset as an input. This sample typically

comprises around 30% of the dataset, with approximately 30% of the audio files from each

class included. By analyzing this sample, the algorithm must determine the predominant

frequencies of the dataset, which in turn guides the placement of the triangular filters within

the custom filterbank.

The predominant frequencies serve as the basis for constructing bandpass triangu-

lar filters. Each set of three predominant frequencies delineates a single triangular filter.

Consequently, the count of triangular filters usually falls two units short of the number of

predominant frequencies. Since 20 triangular filters are commonly used in the Mel-filterbank,

we require 22 predominant frequencies to form our filterbank. These filters’ width mirrors

the gap between the first and third predominant frequencies, while their apex aligns with

the midpoint predominant frequency at an amplitude of 1. This implies that the triangular

filters rise from the first predominant frequency till the second predominant frequency, then

fall from the second predominant frequency till the third predominant frequency. The rising

and falling frequency ranges are attenuated, by a factor between 0 and 1, while the peak

center frequency is kept untouched.

There are many ways to determine the predominant frequencies used in the custom

filterbank. The method used to determine the predominant frequencies has a drastic impact

on the triangular filter placement and therefore the classification accuracy. We explore two

separate approaches to determine the predominant frequencies.

• Approach 1: Incremental Power Distribution Peaks

• Approach 2: Power Distribution Peaks
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3.1.1 Approach 1: Incremental Power Distribution Peaks

Approach one begins with a uniform sample of the dataset. The uniform sample is

found by randomly taking 30% of the audio files in each class of the dataset. This ensures

that each class is fairly represented. Next, each audio file is analyzed individually.

Initially, each audio file is read in the time domain. Audio files comprise a predefined

number of samples, where each sample corresponds to a specific amplitude. Additionally,

the audio file maintains a fixed sampling rate, denoted in samples per second. To determine

the time associated with each sample, the sample number is multiplied by the inverse of

the sampling rate. This calculation yields the temporal information for each sample. The

combination of time data and corresponding amplitudes constitutes the fundamental time

domain representation of the audio file.

Upon obtaining the time domain representation of each audio file, they undergo a

transformation into the frequency domain. Analyzing audio files in the frequency domain

reveals information about the amplitude and phase of frequencies inherent within the signal.

Such analysis facilitates the extraction of spectral characteristics, thereby highlighting the

components comprising the signal. This transformation is accomplished using the discrete

Fourier transform (DFT). The discrete Fourier transform is calculated using a summation.

The summation spans the number of samples in the audio file. The result of the summation

is a function in terms of k, where k denotes the frequencies present in the signal. The

frequencies range from 0 to half of the sample rate due to the Nyquist theorem. After

computing the Fourier transform of each audio file information about frequency, amplitude,

and phase is obtained. The next step is to find the power of each audio signal.

The computation of power relies on the output of the discrete Fourier transform

(DFT), where power represents the signal’s strength across various frequencies. This com-

putation combines both amplitude and phase information, emphasizing the power of the

frequency response while disregarding individual phase and amplitude details. As a result,
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this process condenses the information, offering a concise metric of strength across different

frequencies. The power is found by squaring the magnitude of the frequency response. In

some instances, this computation undergoes scaling by factors such as frequency or total

power, a technique known as power normalization. This normalization practice ensures a

fair comparison among different audio signals by facilitating the evaluation of their relative

power distributions, rather than fixating on specific power amplitudes. After the power is

found in each audio file information about frequency and power is obtained. The subsequent

step is to apply a summation across the power of each audio file.

The summation is computed by adding the power of each audio file together. As

a result of the audio files sharing the same sampling rate and length, their periodograms

exhibit identical structures. Consequently, the power representation (periodogram) of each

audio file will possess the same length and comprise powers at identical frequencies. This

alignment of periodograms allows for straightforward point-by-point addition. Thus, addi-

tion is completed by adding the corresponding elements in the power array of each audio file.

After the summation is calculated the result is the accumulated power at each frequency.

The accumulated periodogram represents the frequency and power of the entirety of the

uniform dataset sample. The next step is to segment the periodogram.

The periodogram is split into two intervals of equal length, thereby providing two

segments, each spanning a different frequency range. The length of each segment is de-

termined by dividing the maximum frequency present in the signal (derived from half the

sampling rate) by two. This is done to ensure an adequate representation in each of the

two frequency ranges. The next step is to use the segmented periodogram to determine the

highest peaks.

Each segment of the periodogram is analyzed independently. Within each segment,

the frequencies associated with the highest powers are identified and placed in ascending

order. As these frequencies carry the most power, they encapsulate important information
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about the distinctive characteristics of an audio signal. These frequencies are designated as

predominant frequencies. As previously mentioned, 20 triangular bandpass filters require

22 predominant frequencies. Therefore to establish 20 triangular bandpass filters in the

filterbank, 11 periodogram peaks are detected within each segmented periodogram. This

approach provides comprehensive resolution of the important frequencies regardless of if

they are in high or low frequency ranges.

3.1.1.1 Limitations

While this approach effectively aligns the filterbank with the dataset, it comes

with certain limitations. The primary concern lies in its imposition of equal resolution at

both high and low frequencies. Although the triangular filters are strategically positioned to

capture significant frequencies within each periodogram segment, it’s important to note that

one segment might contain more information than another. In such cases, the distribution

of filters across segmented periodograms should not be uniform. The solution to this is

to not limit the distribution of triangular filters to certain frequency ranges. This can be

implemented by not setting a requirement for how many periodogram peaks must be present

in a certain range of frequencies. The second approach aims to fix this limitation.

3.1.2 Approach 2: Power Distribution Peaks

The second approach begins in a similar manner to the first approach. First, a

uniform sample of the dataset is taken. The uniform sample of the dataset captures around

30% of each class in the dataset. Next, each audio file in the uniform sample is read in

the time domain. The time domain representation of each signal is transformed into the

frequency domain. In doing so information about frequency, amplitude, and phase is gained.

After this, the power of each of the frequency responses is found and summed together. This

results in the summed periodogram, similar to that of approach one.
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Once the summed periodogram is computed, a divergence between approach one

and approach two emerges. In approach one, the summed response is segmented, result-

ing in a sub optimal distribution of triangular filters. Conversely, in approach two, the

periodogram remains unsegmented, with peaks directly identified from the accumulated pe-

riodogram. Upon completion, frequencies corresponding to these peaks are stored in an

array, representing the predominant frequencies.

However, interpreting this array at face value is not viable due to certain frequency

intervals having an excessive number of predominant frequencies. This surplus of predomi-

nant frequencies within narrow frequency bands yields redundant information. This issue is

exacerbated by the constraint of limiting the total number of predominant frequencies to 22.

Consequently, an overabundance of predominant frequencies within specific frequency ranges

not only increases redundancy but also compromises resolution (the number of predominant

frequencies) in other critical frequency domains. The solution to this issue is to implement

a filter.

The array of predominant frequencies undergoes a filtering algorithm aimed at

eliminating redundancies, thereby optimizing the distribution of bandpass filters. This algo-

rithm is designed to maintain adequate spacing between predominant frequencies, needed for

achieving proper spectral resolution. By preventing predominant frequencies from clustering

too closely, the filtering algorithm ensures that the corrected array maintains sufficient spac-

ing. Specifically, it enforces a constraint where no more than two predominant frequencies

are allowed within a 50Hz interval. This approach facilitates the proper distribution of trian-

gular filters throughout the frequency spectrum. Ultimately, the filtering algorithm prevents

redundancy and contributes to enhanced spectral resolution. The resulting filtered predomi-

nant frequency array guides the placement of triangular filters in the filterbank, determining

the frequencies with the highest resolution.
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3.2 PSC-MFCC function

After computing the custom filterbank, the following step involves integrating it

into the Mel-Frequency Cepstral Coefficients (MFCC) calculations. This integration is ac-

complished by developing a PSC-MFCC function. The PSC-MFCC function is designed to

accept the custom filter bank and apply it in a manner similar to the traditional MFCC’s

utilization of the Mel-filterbank. Implemented like the traditional MFCC, the PSC-MFCC

function sticks to a consistent 6-step process. Throughout these steps, specific parameters

are employed to maintain alignment with the traditional Librosa MFCC methodology. The

only difference lies in the filterbank utilized. By following this approach, the PSC-MFCC

function guarantees a seamless transition from traditional to PSC-MFCC calculations while

leveraging the improved capabilities of the custom filterbank.

The PSC-MFCC function begins by analyzing the audio files in the time domain.

This is done using the Librosa load audio file function. While using this function the sampling

rate parameter is properly set to the sampling rate in the audio files description.The output

of the load function is a floating point time series representation of the signal, where each

value represents the audio signals amplitude at a different time index.

The initial step in computing MFCC involves applying a windowing process to the

time domain representation of the signal. This windowing operation serves two primary

purposes: tracking time intervals and mitigating spectral leakage. Time tracking involves

segmenting the signal into discrete time frames, while spectral leakage reduction aims to

minimize unwanted abruptness in the time domain. To complete this goal a Hann window

is employed. A Hann window is used because it is the default window type utilized by the

MFCC function in the Librosa library, thus maintaining maximum similarity between our

PSC-MFCC function and the traditional Librosa MFCC function. Hann windows comprise

a certain length and overlap. The length describes how many samples a window lasts and

the overlap describes how many samples one window intersects with another. Following
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the default Librosa MFCC parameters, a 2048 sample length and a 512 sample hop length

(length of non overlapping samples) are used in the PSC-MFCC function. This implies that

each window lasts for 2048 samples and has an overlap of 1536 samples.

Upon applying windowing to the signal, the frequency response within each window

is determined through the Fourier transform. Utilizing a Fourier transform with 2048 terms,

matching the length of the Hamming window, facilitates this computation. In each window,

the Short Time Fourier Transform (STFT) function from Librosa conducts both the win-

dowing and Fourier transform operations, yielding essential information on time, frequency,

amplitude, and phase. Furthermore, using this function exactly matches the computations

done in the traditional MFCC Librosa function.

The third step is to find the power of the frequency response in each window. This

is done to combine the phase and amplitude into a metric of strength at each frequency. In

each window, the magnitude squared of the frequency response is taken, resulting in power.

After the power computations are performed, information about time, frequency, and power

remain. The power computations are done using the numpy abs function and the square

operator.

After obtaining the power, the custom filterbank is applied to it. The goal of this

step is to emphasize the power at key frequencies while attenuation the others. This involves

multiplying each triangular filter in the filterbank with the frequency domain power response

and summing the results within each time frame (window). The numpy dot function aids

this process. As a result of this step, we gain insights into time (derived from windowing),

frequency (from the Fourier transform), and scaled power (obtained through the magnitude

squared and the custom filterbank).

The fifth step involves applying a logarithmic scale to the power spectrum. This

process is executed similarly to the default behavior in the Librosa MFCC function, utilizing

the power to dB function from Librosa. Consistency is preserved between the PSC-MFCC
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and the traditional Librosa MFCC by keeping the default parameters when applying the

power to dB function.

In the final step, step 6, the Discrete Cosine Transform (DCT) is applied to the

data. This transformation is computed separately for each time frame. Within each time

frame, the scaled power (frequency domain) is weighted by various terms defined by the

DCT equation, and these weighted terms are then summed together. The outcome of this

process is a summation within each time frame, dictated by a variable k. In the summation, k

denotes the coefficient in the MFCC. Thirteen coefficients are computed for each time frame,

ensuring that there is a distinct value corresponding to each coefficient at every time frame.

This computation is carried out using the Scipy fft pack DCT function in both the PSC-

MFCC and traditional Librosa MFCC. The Scipy DCT function has certain parameters.

These parameters include axis, type, and norm. In both the traditional Librosa MFCC and

the PSC-MFCC function these parameters are kept consistent. In doing so, axis is set to -2,

type is set to 2, norm is set to norm, and only the first 13 coefficients are kept.

After completing the sixth step, the MFCC function is finished. Since the pa-

rameters in the PSC-MFCC function are set identically to the ones used in the traditional

Librosa MFCC, the only difference between the functions is the application of the custom

filterbank. This is essential as it permits a fair comparison between the traditional Librosa

MFCC and the PSC-MFCC. The comparison between the traditional Librosa MFCC and

the PSC-MFCC is done through the results of a DNN classifier.

3.3 PSC-MFCC Deep Neural Network

The classifier is built upon a hybrid architecture known as Convolutional Neural

Network - Long Short-Term Memory (CNN-LSTM), consisting of a total of ten layers. The

network is structured with five layers dedicated to the Convolutional Neural Network (CNN)

segment and the remaining five to the Long Short-Term Memory (LSTM) segment. This de-
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sign combines the spatial feature extraction capabilities of CNNs with the temporal modeling

prowess of LSTMs, resulting in robust analysis of sequential data.

The CNN consists of two convolutional layers responsible for extracting intricate

spatial features from the input data (MFCC). These convolutional layers are augmented by

two batch normalization layers, positioned after each convolutional stage. Batch normal-

ization is used to stabilize and accelerate the training process by normalizing activations,

thereby mitigating issues such as internal covariate shift and ensuring smoother gradient

propagation. After each convolutional layer, a max-pooling layer is introduced to down-

sample the feature maps, effectively reducing their spatial dimensions while retaining key

information. This operation helps in alleviating computational expense and preventing over-

fitting by focusing on the most critical features.

The network adeptly captures temporal relationships within input sequences through

its utilization of LSTM layers. Consisting of five LSTM layers, this segment specializes in

modeling long-range dependencies and sequential patterns within the data. Each LSTM

unit within this set operates as a memory cell, adept at selectively retaining and updating

information over time. By assembling multiple LSTM layers, the network acquires the ca-

pability to learn temporal representations, facilitating the extraction of temporal dynamics

embedded within the input sequences.

The combination of CNN and LSTM within this classifier represents a fusion of

spatial and temporal modeling capabilities. By leveraging the feature extraction proficiency

of CNNs alongside the sequential modeling abilities of LSTMs, the network can excel across

a spectrum of audio classification tasks. The accuracy of this audio classifier architecture

is used to determine the performance of the PSC-MFCC and traditional Librosa MFCC

across a variety of diverse environmental sound datasets. These datasets include unique

environmental sound sources that are collected in distinct settings.
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4 Experimental setup

This section discusses the datasets used to evaluate the Pertinent Spectral Characteristic

(PSC-MFCC) approach.

4.1 Dataset overview

Three different environmental sound datasets are explored. While using these

datasets, 80% of the data is used for training the NN and 20% of the data is used for testing

the NN. These datasets are ESC50, UrbanSound8k, and Gunshot. The three datasets have

distinct sound sources and a different number of classes. Finding the classification accuracy

of each of the three datasets using the PSC-MFCC method and traditional Librosa MFCC

method yields perspective on the advantages of the PSC-MFCC over the traditional Librosa

MFCC.

4.1.1 ESC50 dataset

The first dataset that is implemented is ESC50. ESC50 is an environmental sound

dataset with 50 classes. Each of these classes refers to a different sound source. Thus, there

are 50 different sound sources in the dataset. Having 50 different classes contributes to

the diversity of the dataset, making it a tough challenge for classification. Each of the 50

classes has 40 audio files. These audio files are WAV files and have a duration of 5 seconds.

Therefore there are a total of 2,000 audio files holding 10,000s of data. The 50 different

classes in the dataset include animal sounds, vehicle sounds, and weather sounds[11].
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4.1.2 UrbanSound8k dataset

The second dataset used is UrbanSound8k. This dataset has 8,732 audio files and

ten different classes. The sounds in this dataset stem from sources that are often found in

urban environments. The ten classes present in the dataset are air conditioner, car horn,

children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street

music. Together these WAV files encompass the diverse audio heard in urban settings[12].

4.1.3 Gunshot dataset

The concluding dataset under analysis is the Gunshot dataset, comprising 2s long

sounds of gunfire encountered both in wilderness and urban settings. This dataset encom-

passes 9 distinct classes, each representing the unique sound produced by a different model

of firearm upon discharge. The sound sources in the dataset are AK-12, AK-47, IMI Desert

Eagle, M16, M249, M4, MG-42, MP5, and Zastava M92. Between all of the classes their

are 851 audio files. These classes offer a comprehensive exploration of firearm sounds across

diverse environments[13].

4.2 Programming languages and Libraries

Python is used to develop the components and algorithms used in this project.

Python is a high-level, general-purpose programming language. There are many Python

libraries that are utilized in this project. Some of the key libraries used in this project are

NumPy, PyTorch, Librosa, Matplotlib, SciPy, and spafe. In addition to Python, MATLAB

is used to calculate metrics such as accuracy and standard deviation which are listed in the

results section.
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4.3 Evaluation paramaters

In order to evaluate the performance of the traditional Librosa MFCC function

and the PSC-MFCC function on different datasets an audio classifier is required. The audio

classifier takes in the MFCC of an audio signal and uses them to determine which predefined

class best suits the signal. The accuracy of the classifier serves as a metric of performance.

Comparing the accuracy of the audio classifier using the PSC-MFCC to the accuracy of

the classifier using the traditional Librosa MFCC provides insights into the benefits of the

custom filterbank. This classification is performed through a Deep Neural Network (DNN).

When using the DNN certain parameters are used. The ESC50 and Gunshot dataset are run

for 300 epochs, while the UrbanSound8k is only run for 40 epochs. For each of the datasets,

the batch size is set to 64. The results found using these paramaters are outlined in the next

section.
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5 Results

This section discusses the results of the Pertinent Spectral Characteristic (PSC-MFCC)

approach.

5.1 Results overview

Once the methods are completed, they yield a specialized MFCC audio classifier.

This classifier is crafted using a dataset-specific filterbank tailored by the filterbank optimiza-

tion algorithm. Employing this custom filterbank, the PSC-MFCC function computes the

features. Subsequently, the audio classifier leverages these custom MFCC features to classify

a dataset, facilitating an evaluation of the customized MFCC approach’s performance.The

traditional Librosa MFCC undergoes assessment using the same DNN and datasets as the

PSC-MFCC approach. This comparative analysis identifies any performance disparities be-

tween the PSC-MFCC and the traditional Librosa MFCC approaches.

For each dataset, both the PSC-MFCC approach and the traditional Librosa MFCC

approach undergo training and testing iteratively for 5 runs. The reported overall accuracy

for each dataset is derived from the average test accuracy across these five runs. This iterative

process of testing and training five times serves to mitigate outliers and enhance the precision

of the results. The precision of the results is represented by the standard deviation of the 5

runs.

5.2 ESC50

In the initial dataset, ESC50, the PSC-MFCC approach achieved an accuracy of

46%, surpassing the traditional Librosa MFCC approach, which attained 44% accuracy (Fig-

ure 4). Additionally, the PSC-MFCC method exhibited a lower standard deviation of 2.7%
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compared to 6.9% for the traditional Librosa MFCC approach. The enhanced efficacy of

the PSC-MFCC approach over the traditional Librosa MFCC approach can be attributed to

the dataset’s diversity. With ESC50 encompassing 50 distinct sound sources, each with its

unique frequency range, employing a filterbank tailored specifically to this dataset enables

comprehensive coverage of important frequency ranges. This tailored approach significantly

boosts the classifier’s performance by ensuring the capture of all pertinent acoustic features.

Figure 4: ESC50 accuracy

5.3 UrbanSound8k

Moving on to the UrbanSound8k dataset, the PSC-MFCC technique demonstrated

a significant performance improvement with an accuracy of 78.4%, in contrast to the 69.2%
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accuracy of the traditional Librosa MFCC method (Figure 5). The custom approach also

showcased a slightly higher standard deviating of 4.8% compared to 4.0% for the traditional

Librosa MFCC approach. While the precision of the PSC-MFCC approach may exhibit a

slight decline compared to the traditional Librosa MFCC approach, the overall accuracy

significantly surpasses it. This discrepancy arises from the substantial variations in fre-

quency ranges across different classes. Despite the minor reduction in precision, the notable

enhancement in accuracy underscores the effectiveness of the PSC-MFCC method in accu-

rately capturing and distinguishing features within diverse frequency ranges across classes.

Figure 5: UrbanSound8k accuracy

5.4 Gunshot

Lastly, in the Gunshot dataset, the PSC-MFCC approach achieved a respectable

accuracy of 63.8%, slightly trailing behind the 65% accuracy of the traditional Librosa MFCC
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approach (Figure 6). However, the PSC-MFCC approach had a lower standard deviation

of 0.4% compared to 1.4% for the traditional Librosa MFCC method. There is a minor

decrease in accuracy but a marked improvement in precision when comparing the PSC-MFCC

approach to the traditional Librosa MFCC approach. This distinction can be attributed to

the fact that the Gunshot dataset has lower frequencies that are adequately captured by the

standard Mel-filterbank used in the traditional method.

Figure 6: Gunshot accuracy

5.5 Simplified classifier

In addition to running the results on the classifier described earlier, a simplified

model is also implemented. The simplified model follows the same structure as the original

model, however the LSTM portion is removed. This is done to understand the impact of the

PSC-MFCC on a less complicated classifier. The results of the simplified model are displayed
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in Figure 7. When using a simplified model, the PSC-MFCC demonstrates a significant

improvement in performance over the traditional Librosa MFCC. Across the three datasets,

the PSC-MFCC offers an average accuracy increase of 5.67% compared to the traditional

Librosa MFCC.

Figure 7: Accuracy difference between PSC-MFCC and MFCC on less complex classifier

5.6 Results summary

In general, the PSC-MFCC approach outperformed the traditional Librosa MFCC

approach, showcasing an average increase of 4.5% in accuracy and a smaller average standard

deviation of 1.47%. This indicates a significant enhancement in both accuracy and precision

of classification tasks when employing the PSC-MFCC approach compared to the traditional

Librosa MFCC approach on environmental datasets.
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6 Limitations and Future Work

This section discusses the limitations of the PSC-MFCC approach as well as future areas

of research. While the PSC-MFCC approach enhances classification accuracy and precision,

it is not without its limitations. These drawbacks encompass susceptibility to low Signal

Noise Ratio (SNR), balancing performance and cost, consistency in performance, additional

computational demands, and extended processing times.

6.1 Low SNR

One constraint associated with the PSC-MFCC method is its susceptibility to the

Signal Noise Ratio (SNR). In scenarios where an audio signal exhibits a low SNR, the noise

power may overshadow the signal power. Given that the PSC-MFCC approach positions

bandpass filters at frequencies with high power, in low SNR conditions, these filters may in-

advertently capture spectral noise while overlooking the actual signal. To address this chal-

lenge, it becomes imperative to establish predominant frequencies based on criteria beyond

merely identifying peaks in the frequency power response. One potential strategy involves

comparing the periodograms of distinct classes within the dataset to pinpoint frequencies

where the power response exhibits the greatest disparity. Subsequently, these identified fre-

quencies can serve as the predominant frequencies guiding the placement of triangular band

pass filters within the custom filterbank.

6.2 Balancing performance and cost

Another limitation concerns striking a balance between performance and cost.

While the PSC-MFCC approach has superior accuracy and precision compared to the tradi-

tional Librosa MFCC method, it necessitates additional computations and longer processing
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times. Therefore, while the PSC-MFCC approach offers enhanced performance, it also de-

mands a greater allocation of resources, presenting a trade-off between performance gains

and resource consumption.

6.3 Performance consistency

A third limitation pertains to performance consistency. While, on average, the PSC-

MFCC approach outperformed the traditional Librosa MFCC method, there are instances

where its performance deviates. For instance, in the Gunshot dataset, the PSC-MFCC ap-

proach exhibited slightly lower accuracy compared to the traditional method. Additionally,

when assessed on the Urbansound8k dataset, the PSC-MFCC approach displayed a higher

standard deviation than its traditional counterpart. Despite generally yielding superior re-

sults, the PSC-MFCC approach does not consistently outperform the traditional method

across all datasets and scenarios.

6.4 Additional resources

When employing the PSC-MFCC approach, additional computations are necessary

to derive the custom filterbank. In contrast, traditional Librosa MFCC utilizes a predefined

filter bank following the Mel-scale, independent of the dataset. The heightened computa-

tional demand of the PSC-MFCC approach translates to longer processing times compared

to the traditional method. Consequently, the PSC-MFCC approach necessitates greater

resource allocation compared to the traditional Librosa MFCC approach.
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7 Conclusion

Audio classification plays a crucial role in environmental monitoring, enabling au-

tomated categorization of audio data for various applications such as wildlife monitoring

and urban noise assessment. The conventional audio classification method relies on a fixed

filterbank structure which leads to limitations in adaptability. We propose a PSC-MFCC ap-

proach that aligns the filerbank with dataset-specific characteristics. In doing so we achieve

an 4.5% increase in accuracy across various environmental sound datasets compared to the

traditional method. This highlights its potential to enhance audio classification.
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