
1 

 

MQP-BC-DSA-9805 

 

 

 

THE ROLE OF INFLAMMTION IN TYPE II DIABETES 
 
 

A Major Qualifying Project Report 

Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Bachelor of Science  

in 

Biochemistry 

 

by 

 

_________________________ 

Nicholas Tsitsilianos 

 

 

April 28, 2011 

 

 

APPROVED: 

 

_________________________   _________________________ 

Jason Kim, Ph.D.     David Adams, Ph.D. 

Program in Molecular Medicine   Biology and Biotechnology 

UMASS Medical Center    WPI Project Advisor 

Major Advisor 



2 

 

ABSTRACT 

 
 

Insulin resistance is one of the main causes of Type II diabetes.  Recent studies have 

shown that inflammation plays a key role in the onset of insulin resistance.  A high fat diet and 

elevated levels of inflammatory cytokines have been found to interfere with insulin signaling.  In 

this study, we explored the effect of a high fat diet on insulin resistance in immunodeficient 

mice.  Following a high fat diet, these NOD-scidILrnull
 mice remained leaner and significantly 

more insulin-sensitive compared to their wild type counterparts. These data will aid our 

understanding of how inflammation promotes insulin resistance.  
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BACKGROUND 

 

Diabetes is a metabolic disorder affecting millions of individuals worldwide.  Diabetes is 

a disease in which the body becomes unable to use glucose as a source of energy, and this failure 

to utilize the body’s main source of energy has many severe ramifications.  Because the patient is 

unable to produce or respond to insulin (depending on the type of diabetes), this disease prevents 

glucose from being delivered inside cells in the body either for immediate use, or storage for 

later.  According to the American Diabetes Association (2010), 25.8 million people currently 

suffer from this disorder in the United States.  There does not seem to be any gender 

discrimination with diabetes, affecting about 11.8% of men under the age of 20, and 10.8% of 

women in the same age group (American Diabetes Association, 2010). 

 

Diabetes: Types I and II 

The two main types of diabetes are type I and type II.  Type I diabetes is an autoimmune 

disease that destroys the pancreatic islet beta cells and keeps them from creating and secreting 

insulin. In this type, the body’s own T-lymphocytes target the pancreatic beta cells leading to 

their destruction.  The lack of insulin prevents the body from maintaining homeostatic levels of 

carbohydrates and fats circulating throughout the body.  Type I diabetes commonly affects 

children (and is sometimes termed juvenile onset diabetes), but it also occasionally presents in 

the adult population.  Recent statistics show that nearly 1 in every 400 children and adolescents 

has type-1 diabetes (American Diabetes Association, 2010).  The more common type II diabetes, 

which mostly affects adult patients, is frequently associated with poor diet and obesity, and 

causes the body to become unresponsive to the insulin that is produced.   
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Diabetes Physiology: Mechanism and Role of Insulin Receptors 

Delivering the necessary energy to and from cells is performed by the body’s 

metabolism.  Two hormones essential for this process are insulin and glucagon. The homeostasis 

of the blood levels of glucose, fatty acids, triglycerols, and amino acids is maintained by these 

two hormones working in unison to take up and delivery energy to the body (Herrera, 2000).  

These two hormones are secreted by pancreatic cells known as the islets of Langerhans.  The 

islets are composed of alpha, beta, and gamma cells.  The alpha and beta cells are responsible for 

secreting glucagon and insulin, respectively, and the gamma cells secrete somatostatin, which 

helps regulates the secretion of growth hormone.  The body is extremely sensitive to the amounts 

of glucose in the circulatory system.  The body responds when glucose levels fluctuate from the 

normal range, between 5 to 8 mmol/l.  When glucose levels dip below 5 mmol/l, the body 

increases the amount of glucose in the blood by secreting glucagon, which signals the body to 

break down glycogen reserves into glucose for use, in a process known as gluconeogenesis.  The 

body frequently experiences low glucose levels in the morning hours after fasting overnight.  

Alternatively, when blood glucose levels rise above 8 mmol/l, such as after the ingestion of a 

meal, beta cells release insulin to signal the uptake of glucose into cells.   The glucose taken up 

by the cell is then used as an immediate energy source, or is converted to glycogen through a 

process known as glycogenesis.  This glucose homeostasis balancing act is shown in Figure 1. 
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Figure 1: Glucagon and Insulin Secretion.  The figure shows the two 

scenarios that occur during an imbalance in plasma glucose levels.  When the 

body is no longer in homeostatic levels of glucose in the blood, the secretion of 

insulin (the bottom half of figure 1) or glucagon (the top half of figure 1) is 

performed to re-establish homeostasis.  (Freudenrich, 2010) 

 

The pancreatic hormones are produced through a series of pathways in the endocrine 

system.  When plasma glucose levels are above or below the normal levels, signals are sent to 

the brain.  In normal insulin-sensitive individuals, the body will sense the increase in blood 

glucose levels and signal to the pancreas to secrete more insulin.  This newly secreted insulin 

travels through the blood stream and binds insulin receptor sites located on tissues such as liver 

and muscle.  The binding of insulin to its receptor triggers a cascade of intracellular signaling 

that allows the cells to take up more glucose via glucose transporters (Figure-2).  When insulin 

binds its receptor, the receptor is auto-phosphorylated which leads to a series of signaling events 

that culminate with the up-regulation of glucose transporters on the cell surface that bind glucose 

and transport it inside the cell (White, 1997).  
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Figure 2: Diagram of Insulin Signaling Pathway.  Figure illustrates the 

cascade of signaling events that occur when insulin molecules bind the insulin 

receptor (diagram upper center) resulting in auto-phosphorylation.  The end 

result is the migration of the glucose transporter GLUT storage vesicle to the 

cell surface to bind glucose and transport it into the cell.  (SABiosciences, 2010) 
 

 

Type II Diabetes: Insulin Resistance and its Various Mechanisms  

Although Type II diabetes is the more common type, less is known about its various 

causes.  All type II patients show one consistent phenotype, insulin resistance, a lack of response 

to secreted insulin.  This resistance is a notable characteristic of diseases such as high blood 

pressure and heart disease, and is primarily associated with type II diabetes.  Insulin resistance 

can be observed 10 to 20 years before the onset of Type II diabetes (Shulman, 2000).  In 

response to decreased insulin sensitivity, the pancreas secretes more insulin to compensate.   

Diabetes results when the increased levels of insulin are insufficient to compensate for the 

insulin resistance.  Insulin resistance can manifest in three types: 1) increased amounts of insulin 
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are required to elicit normal physiological responses; 2) the increased levels of insulin are 

insufficient to maintain glucose homeostasis; 3) a combination of the first two (Proietto et al., 

1982).  

 

Fatty Acid-Induced Insulin Resistance  

One mechanism that can induce insulin resistance is an increased level of plasma free 

fatty acids.  Since free fatty acids compete with glucose for substrate oxidation, one model 

proposes that increased fat oxidation associated with obesity causes insulin resistance (Shulman, 

2000).  The increased fatty acid levels directly affect insulin signaling and diminish glucose 

uptake (Figure-3).  Other factors such as adipokines secreted by adipose tissue may also lead to 

diminished glucose uptake (Mlinar et al., 2006). 

 

Figure 3: Two Proposed Mechanisms for Fatty Acid Induced Insulin 

Resistance.  The top diagram shows fatty acid-induced insulin resistance 

occurring in skeletal muscle, and focuses on the role of mitochondria and an 

inhibition of phosphofructokinase which would increase intra-cellular levels of 
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glucose-6-phosphate and inhibit the activity of hexokinase II, increasing 

intracellular glucose and decreasing the amount of glucose taken up by the 

muscle.   The bottom diagram is an alternative mechanism in which increased 

levels of fatty acid in the muscle leads to the activation of a serine/threonine 

kinase cascade, which initiates phosphorylation of serine/threonine sites on the 

insulin receptor substrates, causing insulin resistance.  (Shulman, 2000)  
 

 

ER Stress in Type II Diabetes 

The endoplasmic reticulum (ER) is a highly specialized organelle that functions with 

intracellular trafficking, and lipid and protein synthesis. The ER synthesizes transmembrane
 

proteins and lipids for most cells, and is responsible
 
for the synthesis of almost all secreted 

proteins. The ER also
 
has an important role in Ca

2+
 storage and signaling. Thus, the ER is a 

multi-functional organelle that functions in organogenesis, transcriptional activity, stress 

responses,
 
and apoptosis (Berridge, 2002).  With respect to diabetes, ER

 
stress plays a role in 

β-cell loss and insulin resistance.  In the presence of high glucose levels, insulin production in 

the ER as a secreted protein can exceed 10-fold normal levels which can stress the ER, 

increasing the chances of incorrect protein folding.  When the ER is stressed, it utilizes an 

unfolded protein response (UPR) (Berridge, 2002), which aims to halt protein translation to 

restore normal folding.  The response normally includes the production of molecular chaperones, 

which aid in the protein folding process.   However, prolonged exposure to ER stress can be 

detrimental to β-cell function (Eizirik et al., 2008).  Therefore, chronic levels of glucose and fatty 

acids which exceed the normal range inflict a great deal of stress on the ER, affect insulin folding 

and production, and ultimately lead Type II diabetes.  
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Mitochondrial Oxidative Stress in Type II Diabetes  

Another organelle whose impairment is related to diabetes is the mitochondrion.  Studies 

have shown that subjects with a history of diabetes in their family experience reduced rates of 

mitochondrial ATP synthesis in the mitochondria, before experiencing any diminished tolerance 

for glucose, providing evidence that mitochondrial dysfunction plays a significant role in the 

onset of diabetes (Petersen et al., 2004).  Within β-cells, an ATP/ADP ratio determines the 

opening and closing of the KATP channel that allows the secretion of insulin, thus mitochondrial 

dysfunction affects glucose-induced insulin secretion (Lowell and Shulman, 2005). As glucose is 

normally processed into pyruvate in the cytoplasm, the pyruvate enters the mitochondria, and the 

ratio of ATP/ADP increases. The increase in the ATP/ADP ratio eventually triggers the 

exocytosis of insulin secretory vesicles by the β-cells via a cascade of events including the 

closing of ATP-sensitive K+ channels, and the depolarization of voltage-sensitive Ca2+ channels 

(Rolo and Palmeira, 2006).  However, when this ATP/ADP ratio increases too high, hyper-

polarization of the mitochondrial membrane occurs.  The proton gradient’s high electrochemical 

potential difference, which is indicative of a high glucose state, eventually causes partial 

inhibition of the electron transport in complex III (Rolo and Palmeira, 2006).  Electron transport 

complex III is one of the four complexes responsible for transporting electrons along the inner 

mitochondrial membrane, and helps transfer H
+
 ions across the membrane to establish the proton 

gradient.  As a result of complex III’s inhibition, electrons accumulate at a molecule known as 

coenzyme Q, another member of the electron transport chain.  Free radical anions are then 

formed from the partial reduction of O2.  This accelerated reduction of coenzyme Q appears to be 

the fundamental cause of mitochondrial dysfunction leading to diabetes-related metabolic 

disorders (Rolo and Palmeira, 2006). 
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Type II Diabetes Mouse Models 

To better understand diabetes, scientists have developed several types of mouse models 

that mimic the disease.  The Akita mouse contains a C96Y mutation in the insulin-2 gene, which 

prevents disulfide bonds from connecting insulin A and B chains together.  This results in the 

accumulation of misfolded pro-insulin molecules in the ER, and eventually causes diabetes from 

β-cell loss induced by ER stress (Eizirik et al., 2008).   

Another model, known as the Munich mouse, has a C95S mutation in the insulin gene, 

resulting in a loss of the disulfide bond of the intra-A chain. The loss of this bond leads to 

insulinopenic glucose tolerance in mice that are heterozygous, and causes severe diabetes in mice 

that are homozygous (Eizirik et al., 2008).   

Tfam-mutant mice develop diabetes from having a knockout of the nuclear gene Tfam 

in pancreatic β-cells, which causes impaired insulin secretion and β-cell loss.  Tfam, a 

transcriptional activator imported into mitochondria, is essential for mtDNA expression and 

maintenance.  These mice can be used to investigate how mitochondrial dysfunction affects 

diabetes since they also show severe mtDNA depletion, deficient oxidative phosphorylation, and 

abnormal-appearing mitochondria (Rolo and Palmeira, 2006). 

 The non-obese diabetic-severe combined immunodeficient (NOD-SCID) mouse was 

reported in 1995 (Shultz et al., 1995) and was generated by crossing a NOD mouse with a SCID 

mouse.  In contrast to the NOD mouse, which is our best model to date for Type I diabetes, the 

NOD-SCID mouse lacks an immune system so lacks the autoreactive T cells which destroy the 

islet tissue in Type I diabetes. This mouse does not have the phenotype of type 1 diabetes which 

is a major characteristic of NOD mouse. Type-1 diabetes is an autoimmune disease in which 

insulin-producing -cells are destroyed by T cells (the T and B lymphocytes in this mouse fail to 
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properly rearrange their antigen-specific receptors and fail to generate functional T or B cells). 

The NOD-scidILrnull
 mouse has the targeted mutation in the IL2 receptor common  chain 

gene (IL2r).  The IL2r chain is required for high-affinity signaling through the IL2, 4, 7, 9, 15 

and 21 receptors. The receptor also directs the growth and maturation of lymphocyte subtypes: T 

cells, B cells, and natural killer cells so mutation of this gene in mice exhibits severe impairment 

in innate and adaptive immunity. Recent studies have shown that insulin resistance is related to 

inflammation and our previous study found the increase of various inflammatory markers in 

skeletal muscle characterized by insulin resistance. Based on these results, we selected this 

NOD-scidILrnull
 mouse model in order to identify the role of inflammation in type-2 diabetes. 

 

Kim Lab Interests in Immune System Involvement in Type II Diabetes 

Dr. Jason Kim, a Professor of Molecular Medicine at the University of Massachusetts 

Medical School, is involved in a variety of research projects involving Type II diabetes and 

metabolism in general.  One project is currently investigating the relationship between Type II 

diabetes and the immune system. Although Type II is not considered an autoimmune disease like 

Type I, there is evidence of a relationship between type II and the immune system.  One line of 

evidence is the link between inflammation and insulin resistance.  Although their role is 

complex, it is clear that immune molecules such as macrophages, lymphocytes, etc. are involved 

in atherosclerosis and obesity, which are associated with insulin resistance syndrome (Tracy and 

Lewis, 2002).  In 1993, the discovery of the overexpression of TNF-α in adipose tissue of obese 

individuals allowed Hotamisligil et al. to conclude there is a relationship between inflammatory 

cytokines and insulin activity in type II diabetes (Hotamisligil and Spiegelman, 1993).  

Cytokines are hormones involved with cellular signaling that are produced by the immune 
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system and nervous system.  When an individual becomes obese, macrophages penetrate adipose 

tissue and cause the adipose cells to secrete inflammatory cytokines such as TNF-α (Kim, 2010).   

TNFα is released from macrophages and lymphocytes after inflammatory stimulation, trauma, or 

as previously mentioned by obesity.  Among its multiple types of signal transductions, TNFα 

signals the activation of c-Jun NH2-terminal kinase-1 (JNK-1) which helps regulate energy 

balance, and glucose and lipid homeostasis in a variety of tissues (Aguirre et al., 2000) (Figure-

4). When bound to insulin receptor substrate-1 (IRS-1), JNK-1 is phosphorylated at a key serine 

residue (not tyrosine) which prevents insulin signaling, leading to insulin resistance (Aguirre et 

al., 2000). 

 

 

Figure 4: The Role of JNK in Insulin Resistance.  Each labeled number 

indicates observations made with mice deficient in JNK1 in adipose tissue, liver, 

skeletal muscle, or nervous system: 1) In adipose tissue, JNK1 promotes the 

secretion of interleukin-6 (IL-6) which causes hepatic insulin resistance in 

obesity, 2) In liver, JNK1 reduces lipid metabolism and insulin clearance, 

thereby preventing hepatic steatosis and decreasing insulin resistance, 3) In 

skeletal muscle, JNK1 mediates insulin resistance, adipose tissue inflammation, 

and suppresses muscle lipoprotein lipase thereby altering circulating triglyceride 

levels, and 4) In the nervous system, JNK1 mediates the negative feedback 

regulation of hypothalamic pituitary-thyroid axis and promotes negative energy 

balance by increasing food intake and reducing energy expenditure.  (Kim, 

2010) 
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PROJECT PURPOSE 

 

 Various factors induce insulin resistance in type-2 diabetes. Recently, many investigators 

found that insulin resistance is related to inflammation. In our lab’s previous data we established 

that inflammation was induced in skeletal muscle with insulin resistance after a short-term high-

fat diet. To further investigate this relationship between insulin resistance and inflammation, we 

assessed glucose metabolism and insulin resistance in diabetic immune-deficient mice. 
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METHODS 

 

Body Composition 

 The 
1
H-MRS instrument was used to measure the changes in the mouse’s total body 

weight, fat mass, and lean mass.  Body composition of the mice was measured weekly.  The 
1
H-

MRS machine allowed the measurements to be taken while the mice were fully awake.  

Metabolic Cage  

 

Metabolic cages were used in conscious mice to measure energy expenditure, physical 

activity, and food/water intake.  Energy expenditure was calculated by measuring O2 

consumption and CO2 production in individual mice. Physical activity was calculated by 

quantitative measurement of horizontal and vertical movement (XYZ-axis) for 3 days. Twelve 

mice were measured at a time (6 NOD-scidILrnull
 and 6 wild-type).  The metabolic cages were 

performed on both normal chow and 4 weeks of high-fat diet (55% fat). 

 

Hyperinsulinemic-Euglycemic Clamp 

A hyperinsulinemic-euglycemic clamp (Figure-5) was used to measure glucose 

metabolism in conscious mice.  The clamp was performed on normal chow and 4 weeks of high-

fat diet with the NOD-scidILrnull
 mice and wild type mice. Following the basal period, a 2-hr 

hyperinsulinemic-euglycemic clamp was conducted with a primed (150 mU/kg body weight) and 

continuous infusion of human insulin at a rate of 15 pmol/kg/min to raise plasma insulin within a 

physiological range. Blood samples were collected at 10~20 min intervals for the immediate 

measurement of plasma glucose, and 20% glucose was infused at variable rates to maintain basal 

glucose levels. Insulin-stimulated whole body glucose metabolism was estimated with a 
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continuous infusion of [
3
H]glucose throughout the clamps (0.1 µCi/min). To estimate insulin-

stimulated glucose uptake in individual organs, 2-[1-
14

C]deoxy-D-glucose (2-[
14

C]DG), which is 

a non-metabolizable glucose analogue, was administered as a bolus (10 µCi) at 75 min after the 

start of clamp. Blood samples were taken at 80, 85, 90, 100, 110, and 120 min of clamp for the 

measurement of plasma [
3
H]glucose, 

3
H2O, and 2-[

14
C]DG concentrations. An additional blood 

sample was taken at 120 min to measure plasma insulin concentrations (clamp parameters). At 

the end of clamp, mice were anesthetized, and tissue samples were taken for biochemical and 

molecular analyses. Both the 3H-glucose and 2-[1-
14

C]deoxy-D-glucose were purchased from 

PerkinElmer. 

 

 
 

Figure 5: The Hyperinsulinemic-Euglycemic Clamp. This 

figure shows conscious mice inside oversized restrainers.  The 

mouse’s tail is exposed from the back of the restrainer in order 

to take blood samples.  

 

 

 

Whole Body Assay 

 

 The Whole body assay was performed following each clamp to measure the radioactivity 

in each of the plasma samples taken during the clamp.  Barium hydroxide monohydrate (0.3 N) 

as well as Zinc sulfate heptahydrate (0.3 N), which were purchased from Sigma-Aldrich, were 

used to deproteinize plasma samples to measure whole body glucose metabolism.  A scintillation 
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cocktail and liquid scintillation counter, with dual channels for the separation of 
3
H and 

14
C, 

were used to measure radioactivity in plasma samples.  Basal whole body glucose turnover was 

determined as the ratio of the [
3
H]glucose infusion rate to the specific activity of plasma glucose 

at the end of basal period. Insulin-stimulated whole body glucose uptake was determined as the 

ratio of the [
3
H]glucose infusion rate to the specific activity of plasma glucose during the final 30 

min of clamps. Hepatic glucose production during insulin-stimulated state (clamp) was 

determined by subtracting the glucose infusion rate from the whole body glucose uptake. Whole 

body glycolysis was calculated from the rate of increase in plasma 
3
H2O concentration from 

90~120 min of clamps. Whole body glycogen plus lipid synthesis was estimated by subtracting 

whole body glycolysis from whole body glucose uptake.  
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RESULTS 

 

 
Four groups of mice were studied during the project: 1) C57BL/6J wild-type mice on a 

normal diet, 2) NOD-scidILrnull
 mice on a normal diet, 3) C57BL/6J mice on a high-fat diet for 

4 weeks, and 4) NOD-scidILrnull
 mice on a high-fat diet for 4 weeks. Body composition was 

measured weekly to observe the changes in fat mass and lean mass of both mice on both diet 

conditions (Figure-6). The fat mass of wild-type mice increased threefold on the high-fat diet 

compared to standard chow, but there was no significant change in fat masses of NOD-

scidILrnull
 mice between chow and the high-fat diet condition. The body weight of wild-type 

mice increased significantly after high-fat diet compared to chow diet in contrast to that of NOD-

scidILrnull
 mice. 
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Figure 6: Body composition data of wild-type and NOD-scidILrnull
 

mice (SCID) on normal chow diet and a high-fat diet. 

 

After 4 weeks of chow and high-fat diet, wild-type mice and NOD-scidILrnull
 mice 

were put in the metabolic cages and their food intake, physical activity, and energy expenditures 

were measured for 3 days (Figure-7).  Food intake and physical activity were significantly 

reduced in wild-type mice after high-fat diet, but there was no significant change in food intake 

and physical activity in NOD-scidILrnull
 mice. Interestingly, food intake was higher in NOD-

scidILrnull
 mice than wild-type mice on both chow and high-fat diet conditions. VO2 

consumption, VCO2 production, and energy expenditure significantly decreased in wild type 

mice after high-fat diet compared to NOD-scidILrnull
 mice.  
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Figure 7: Metabolic Cage Data. The graphs display comparisons of 

food intake, water intake, physical activity, VO2 consumption, VCO2 

production, respiratory exchange ratio, and energy expenditure in mice 

on a high fat diet versus mice on a normal diet.  The blue columns 

represent the normal chow diet and the red columns represent the high 

fat diet. NOD-scidILrnull
 (SCID) and wild-type (WT) columns are 

labeled. The asterisk indicates a significant difference in the compared 

groups.  
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Following a 4 weeks of normal chow and a high-fat diet, a hyperinsulinemic-euglycemic 

clamp was performed on each group of mice to assess glucose metabolism (Figure-8). NOD-

scidILrnull
 mice fed a chow diet were more insulin-sensitive than wild-type mice, as indicated 

by significant increases in steady-state glucose infusion rates and whole-body glucose turnover 

during clamp. Following high-fat diet, NOD-scidILrnull
 mice remained more insulin-sensitive 

and showed a ~ 40% increase in insulin-stimulated whole-body glucose turnover, and more than 

a twofold increase in while-body glycogen plus lipid synthesis compared with the high-fat diet 

wild-type mice. Hepatic insulin action in the NOD-scidILrnull
 mice was much higher than that 

in wild-type mice on both chow and high-fat diet conditions. 
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Figure 8: Hyperinsulinemic-Euglycemic Clamp Data. The graphs 

show the changes in glucose infusion rate, hepatic insulin action, whole 

body glycolysis, whole body glycogen synthesis and whole body 

glucose turnover in mice on a high fat diet versus on a normal diet.  

The black columns represent the normal wild-type (WT) mice and the 

red columns represent the NOD-scidILrnull mice. The asterisk 

indicates a significant difference in the compared groups.  
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DISCUSSION 

The focus of this project was to further assess the inflammation that is observed during 

diabetic insulin resistance.  During the project, wild-type and NOD-scidILrnull
 mice were 

placed on a high fat diet or a normal chow diet for 4 weeks.  A difference in adiposity was 

observed between the wild type mice and the immunodeficient mice.  Our initial hypothesis was 

that mice of the NOD-scidILrnull
 background, which lack an antigen specific immune system, 

and would be less prone to inflammation, would become less insulin-resistant than the normal 

wild type mice.  Following the analysis of the body composition data and the hyperinsulinemic-

euglycemic clamp data, it was clear that the NOD-scidILrnull
 mice were less obese and 

remained extremely insulin sensitive.  As expected, the wild type mice became obese and 

significantly insulin resistant. VO2 consumption and VCO2 production of wild-type mice were 

reduced after high-fat diet but not in the NOD-scidILrnull
 mice.  The NOD-scidILrnull

 mice 

ate more than the wild-type, performed the same amount of physical activity after the high-fat 

diet, and yet still remained leaner than the wild type mice.  Often, when a mouse gets older or is 

feeding on a high fat diet, their energy expenditure decreases significantly.  In the case of the 

NOD-scidILrnull
 mice, it was observed that even following a high fat diet for four weeks, their 

energy expenditure remained unchanged. 

During a 2h hyperinsulinemic-euglycemic clamp, the glucose infusion rates of the NOD-

scidILrnull
 mice were much higher than that of wild-type mice, a clear indication of insulin 

sensitivity.  A high glucose infusion rate indicates that insulin-stimulated glucose uptake is high 

in various tissues.  In order to keep the mice at a euglycemic level of between 100 and 150 mg/dl 

the glucose infusion rate was adjusted accordingly.  In normal insulin sensitive subjects, insulin 
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causes the inhibition of glucose production from the liver. Hepatic insulin action in NOD-

scidILrnull
 mice was shown to be much higher than that in wild-type mice on both chow and 

high-fat diet conditions. This result indicates that hepatic glucose production was more reduced 

in NOD-scidILrnull
 mice compared to wild-type mice during the clamp, which illustrates that 

the liver is insulin resistant in wild-type mice. As indicated by whole-body glucose turnover, 

glycolysis and glycogen synthesis, NOD-scidILrnull
 mice used and stored more glucose even 

though they were fed high-fat diet. These results indicate that NOD-scidILrnull
 mice remain 

more insulin sensitive following high-fat diet, which may have come from the lack of 

inflammatory responses.  

There is a proven relationship between the immune system, inflammation and insulin 

resistance.  A previous study performed by Kim et al. (2010) which collaborated with Dr. Roger 

Davis, demonstrated the relationship between inflammation and insulin resistance by observing 

the activity of JNK-1 in mice following high-fat diet.  Following the high fat diet in WT mice, 

JNK-1’s activation by the cytokine TNF- caused phosphorylation of serine residues as opposed 

to the normal tyrosine residues, thus inhibiting the normal phosphorylation cascade performed 

during normal insulin signaling.  Mice, which contained a selective deletion of JNK-1 in white 

and brown adipose tissue, remained insulin sensitive, whereas normal mice became insulin 

resistant following high-fat diet. The removal of JNK-1 prevented the inflammatory cytokine 

from causing an abnormal signaling pathway and rescued the mice from insulin resistance. 

Similarly in this project, the removal of an even larger component of the immune system in the 

NOD-SCID mice caused the same event.  Taken together, based on results of the previous JNK-1 

study and our data, inflammation is one of the major causes to induce insulin resistance. 
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Further studies will measure the inflammation-related mediators and targets (for example 

macrophages, TLR4, SOCS3, MCP-1, etc.), and will use immunoblots to measure the levels of 

insulin signaling proteins from muscle, white adipose tissue, brown adipose tissue, and liver.  

Future studies will also address whether the tissue-specific delivery of inflammation related 

proteins using an AAV expression system can re-induce insulin-resistance in NOD-scidILrnull
 

mice following a high-fat diet.  This study will further characterize the role of inflammation on 

insulin resistance in type 2 diabetes.  
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