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Abstract 
 

The goal of this IQP is to investigate the problems of physics that led to the birth of 

quantum physics, the scientists that were involved in its development, and the impact quantum 

physics has had on society through some of its applications.  
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1 Introduction 

 
 Quantum theory is a theory on which most of our understanding of the material universe 

is based. It is a relatively new theory which was begun in the early 20
th

 century. By the end of 

the 19th century, physics consisted mainly of Newton’s classical laws of motion and Maxwell’s 

electromagnetic theory. Newton’s law of mechanics was used to describe the dynamics of 

macroscopic objects and Maxwell’s theory of electromagnetism was used to describe radiation. 

Light was believed to be an electromagnetic wave that obeyed Maxwell’s law of electromagnetic 

radiation.  At that time the overwhelming success of classical mechanics made physicists believe 

that the ultimate description of nature had been established. However, as soon as new 

experimental techniques were developed that allowed physicists to observe matter at the atomic 

and subatomic level, classical physics failed miserably in providing an explanation for the newly 

discovered phenomena. This showed that classical mechanics which worked well at the 

macroscopic level was inadequate in describing the material universe at the microscopic level 

and new concepts were needed to describe this microscopic world.  

In 1905, through the photoelectric effect, Einstein showed that light had properties that 

were proper to particles. This was followed by Bohr’s model of the atom in 1913 which was 

developed as an improvement on Rutherford’s planetary model and which showed that the 

dynamics of microscopic particles like electrons were governed by laws different from the 

classical laws of Newton. Then Louis De Broglie made the bold suggestion that all particles have 

waves like characteristics. In 1926 Heisenberg and Schrödinger gave a precise formulation of De 
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Broglie’s ideas through the theory of quantum mechanics. This theory brought about a complete 

resolution to the problems by showing the wave aspect of quantum mechanics. 

 Since its birth, quantum mechanics has proved to be a very successful theory of physics. 

It is believed to be the most fundamental theory of physics; many physicists believe that all 

physical and chemical phenomena are derivable from its postulates and laws. Its validity has 

been checked against the operation of nature and found to be correct. Quantum physics has 

helped physicists gain a great insight into physical phenomena and to make remarkable 

predictions about the outcome of experiments. However, quantum theory is still a model of the 

universe and as such is just an approximation (although a very accurate one so far) of physical 

reality which will be revised as our experience grows. 

 Since its birth, quantum physics has had a huge impact on society through its numerous 

applications in electronics, medicine, military, etc.... Much of today’s technology operates at a 

scale were quantum effects are important. Some popular applications of quantum physics include 

Lasers, X-rays, holograms, semi-conductors, transistors, MRI (magnetic image resonance), and 

quantum computers. 

 In this paper we will first revise the physical ideas and experimental facts observed at the 

end of the 19
th

 century and the beginning of the 20
th

 century that defied classical physics and led 

to the birth of quantum physics. We will then consider a couple of applications of quantum 

physics that are critical to the operation of today’s society. 
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2 Origins of quantum physics 
 

2.1 BLACKBODY RADIATION 

 
Early in the 1900s, physicists became interested in the study of blackbodies to know how 

they emit and absorb radiation. Radiation is energy in the form of waves of moving subatomic 

particles emitted by an atom or another body as it changes from a high to a low energy state. A 

blackbody is a material that absorbs all incoming radiation and does not reflect any.  

Around 1860, the German physicist, Robert Kirchhoff, proposed the idea of blackbody 

radiation. He noticed that the energy emitted by the body is independent of its geometry and 

chemical composition but was only dependent on its temperature. Then came along the Austrian 

physicist Josef Stefan who suggested in the year 1879 that heat radiated from Kirchhoff’s 

blackbody varied with the fourth power of the blackbody’s absolute temperature. Five years 

later, another Austrian physicist, Ludwig Boltzmann, proved this suggestion by combining 

Maxwell’s electrodynamics with the second law of thermodynamics. He obtained the following 

relation:  

. 

 Here  is the total energy density of the blackbody,  its absolute temperature, and  is the 

Stefan-Boltzmann constant.  

With the establishment of the Stefan-Boltzmann law, more and more physicists became 

interested with the development of the theoretical and experimental results related to the 

blackbody. It did not take long for physicists to be interested in resolving the spectral distribution 

of the blackbody. The spectral distribution of a blackbody describes how the body radiates heat 

at different wavelengths and at a fixed temperature. Physicists knew that hot objects radiate heat 

at different wavelengths of light depending on the temperature.  
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The English physicist, Lord Rayleigh, was one of the first to derive an explicit formula to 

describe the spectral distribution of a blackbody. That formula, known as the Rayleigh-Jeans 

law, predicted that the blackbody will emit radiation with infinite power as the wavelength goes  

to zero. This behavior disagreed with experimental results obtained at the time, which showed 

that the radiation power remained bounded at short wavelengths. Rayleigh-Jean’s law agreed 

with experimental data at large wavelengths but did not fit it at short wavelengths. This  

disagreement became known as the ultraviolet catastrophe.  

1
 

An important step toward the solution was provided by Wilhelm Wien who in 1984 

showed that if the spectral distribution of the blackbody is known at one temperature then it is 

known at other temperatures. This showed that the distribution function did not depend 

separately on the temperature  and the wavelength ; instead it depended on the product  

through some function . Wien’s displacement law – so called because it 

implies that the peak of the  function will be displaced toward smaller wavelengths when 

 increases – was found to agree excellently with experiments. The importance of the function 

Figure 2-1: Ultraviolet catastrophe. 
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 was recognized universally, even though there was no theoretical justification for its 

form. In the year 1896, Wien became the first physicist to guess a possible form of the 

function ; According to him the function  was of the form , with  a 

universal constant. Wien’s radiation law was commonly accepted among physicists due to its 

agreement with a series of experiments carried out in Berlin between 1897 and 1899.   

Even though Wien’s law appeared to be correct, it still lacked a theoretical foundation. 

Wien’s had justified his law using arguments of an unsatisfactory nature; hence a more rigorous 

derivation was needed. The German physicist Ludwig Planck, who was Kirchhoff   successor at 

the time as professor of physics at the University of Berlin, was the first to provide a derivation 

of Wien’s law from first principles.  

Planck was both a specialist of physics and thermodynamics. He was interested in the 

application of the second law of thermodynamics to problems in physics and chemistry. In his 

work the concepts of entropy and irreversibility were central. Planck, unlike many physicists at 

the time who believed that the concept of irreversibility was probabilistic in nature, firmly 

believed that it could entirely be explained on a thermodynamics basis.  

However, his thermodynamics approach proved to be unsuccessful in the derivation of 

the spectrum of the blackbody; hence Planck had to reconsider a new approach. His renewed 

effort resulted in the publication of a series of six papers published in Annalen der Physik, 

between the years 1897 and 1900, on the topic of irreversible radiation processes. In one of these 

papers, he had found an expression of the entropy of an oscillator from which he could derive 

Wien’s radiation law. Planck had reached his goal and was it not for experiments he might have 

stopped there.  
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A series of experiments carried out the same year Planck derived Wien’s law showed that 

Wien’s law was not completely correct as many physicists had assumed at the time. It is 

important to note that at the time the determination of the precise spectrum of the blackbody was 

a matter of more than academic interest. It was believed at the time that the analysis of the 

spectrum of the blackbody would produce physical knowledge that would be useful to the 

German heating and lighting companies, which were amongst the biggest costumer of some of 

Germany’s largest experimental laboratories such as the Physikalisch-Technische Reichsanstalt 

(Imperial Institute of Physics and Technology).  

Detailed experimental work by Lummer and Pringsheim (1899) and Rubens and 

Kurlbaum (1900) had given definite proof that Wien law was incorrect for long wavelengths and 

was only approximately true for other ranges of the wavelength. Wien’s law had predicted that 

the radiation energy density would tend to zero at large wavelengths while the experiment had 

shown otherwise. This inconsistency between experiments and Wien’s law was followed by the 

proposal of many new empirically based laws.  

However the theorists were still interested in a law derived from first principles. Planck 

was forced to reconsider his work. He needed to first understand what went wrong in the 

derivation of the Wien’s law. In his attempt to fit the experimental data, Planck guessed, without 

theoretical justification, a new expression for the entropy of an oscillator.  His assumption was in 

complete agreement with the experiment. About this expression it has been remarked, “Never in 

the history of physics was there such an inconspicuous mathematical interpolation with such far 

reaching physical and philosophical consequence” (Jammer 1966). With his new expression for 

entropy, Planck was able to derive an improved version of Wien’s law which was in agreement 

with the experiment over the whole spectrum.  
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According to the new law, the spectral energy density varied as ν
3 

divided by the quantity 

exp (βν/T)-1. The success of the new formula which was based on an inspired guess of the 

entropy expression was not too satisfactory for Planck; He wanted a theoretical explanation as to 

why the new law worked. This led Planck to reconsider Boltzmann’s probabilistic view of 

entropy as an expression of molecular chaos, and to interpret it in his own non probabilistic way. 

Starting from Boltzmann’s equation, Planck assumed that the energy of the oscillator of the 

blackbody was subdivided into finite portions ε, called energy elements (energy quanta). Each 

energy quanta had an energy equal to , where h=6.55*10
-27

 is the universal constant which 

later became known as Planck’s constant, and ν the frequency of the oscillator. This assumption 

that the energy of the oscillator was divided into discrete packages marked the birth of the 

quantum hypothesis.   

Planck presented his result at the Berlin academy on December the 14
th

, 1900. This date 

is considered by many to be the birthday of quantum physics. In what followed, Planck law 

became widely used due to its perfect agreement with experiment. Planck himself did not fully 

understand why the energy of the oscillator was divided into discrete packages. The discreteness 

assumption was simply a mathematical hypothesis with no real physical reality behind it, and at 

first Planck and his contemporaries did not pay serious attention to the law nor did they 

recognize that it necessitated a break from classical physics. What mattered was rather the 

impressive accuracy of the new radiation law, confirmed by many experiments.  
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2
 

Figure 2-2: Max Planck 

 

It is important to note that Planck went on to win the Nobel Prize in physics in the year 

1918, for his work on blackbody radiation. He is regarded by many as the father of quantum 

physics. 
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2.2 Photoelectric and Compton Effect 

 
The photoelectric effect is a phenomenon that was discovered by the German physicist 

Heinrich Hertz in 1887. At the time it was an observation that could not be explained by the 

classical theory of radiation (Maxwell’s theory of radiation). Light shun on a metal was observe 

to eject electrons only above a certain threshold frequency that was proper to the metal, and 

when light with frequency above the threshold value was shun on the metal, electrons were 

ejected instantly regardless of the magnitude of the intensity of the light. In addition, the number 

of electrons ejected from the metal was observed to depend on the intensity of the light and not 

its frequency. Furthermore, the kinetic energy of the ejected electrons increased linearly with 

respect to the frequency of the light and did not depend on the intensity of the light. According to 

the classical electromagnetic theory of radiation established at the time, electromagnetic waves 

like light could exchange any amount of energy with matter and since the energy of an 

electromagnetic wave monotonically depends on its intensity, light of any frequency with a high 

enough intensity would provide the energy necessary to free the electron from the metal.  
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Figure 2-3: Photoelectric Effect 

3
 

Also, the classical electromagnetic theory predicted that light of a very low intensity would take 

some time to free electrons from the metal, regardless of its frequency. All these predictions of 

the classical electromagnetic theory were in direct opposition to the observations of the 

photoelectric effect. These experimental facts showed that the classical concept of gradual 

absorption of energy by the electrons as predicted by quantum physics was wrong.  

 In 1905, inspired by the ideas of Planck, the German physicist Albert Einstein was able to 

give a theoretical explanation of the photoelectric effect. His point of departure was the radical 

assumption that light is composed of particles called photons each having an energy E 

proportional to the frequency of light  and  given by  

 

Where h denotes Planck’s constant introduced in the previous section. When a beam of light is 

incident on the surface of a metal, a photon of energy  will be absorbed by an electron and in 

the process will transmit all its energy to the electron. This suggested that electrons could only 

absorb the energy of light in discrete energy quanta regardless of the intensity of the incident 
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radiation. The minimum energy W required to free an electron from a specific metal is called its 

work function and the condition for photoelectric emission is . This condition 

determines a threshold frequency  and the kinetic energy of the escaping electron is then 

given by the equation 

. 

This equation clearly shows the linear dependence of the kinetic energy with respect to the 

frequency and shows why no electron can be ejected from the metal if   

 In 1916, the American physicist Robert Andrews Millikan gave a systematic 

confirmation of Einstein’s photoelectric effect. Using various metals for his experiment, he was 

able to show that the energy of the photoelectron increases linearly with increasing frequency of 

the incident light, and is independent of the intensity of the incident light. From his experimental 

work he was also able to determine Planck’s constant within an accuracy of 5%. 

 In summary, the photoelectric effect gave evidence to the corpuscular nature of 

electromagnetic radiation. Einstein went on to receive the Nobel Prize in 1921 for his work on 

the photoelectric effect. 
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Figure 2-4: Albert Einstein, 1921 

4
 

Further convincing evidence of the particle like nature of electromagnetic radiation was provided 

by the Compton Effect. The Compton Effect was observed in 1923 by the American physicist 

Arthur Holly Compton by scattering X-rays off free electrons. He found that the wavelength of 

the scattered X-ray was smaller than that of the incident X-ray, indicating an inelastic interaction 

between the X-ray and the electron. The classical theory of electromagnetic radiation predicted 

that the incident and scattered wave should have the same wavelength.  To explain his 

experimental results, Compton treated the incident X-ray as being composed of a stream of 

photons interacting elastically with individual electrons. 
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Figure 2-5: Compton Effect  

5
 

In summary the Compton Effect gave further evidence that photons behave like particles. 

Compton went on to receive the Nobel Prize for his work on the Compton Effect in 1927.  

Another phenomenon like the photoelectric and Compton Effect that gives evidence of 

the corpuscular nature of electromagnetic radiation is the process of pair production. This 

process is a relativistic process and can be explained by relativistic quantum mechanics (a 

combination of Einstein theory of relativity with Schrodinger quantum mechanics). It is a 

process through which a photon is a process through which an electron is annihilated to produce 

a particle and an antiparticle pair. When photons from a high energy electromagnetic radiation 

interact with the electrons of a metal, they disappear producing an electron and a positron. A 

positron is an antiparticle to an electron that has the same mass as an electron but an equal but 

opposite charge. The existence of positrons was conjectured by the British physicist Paul Dirac, 

and they were first discovered experimentally by Anderson. 
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Figure 2-6: Arthur Holly Compton  

6
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2.3 Bohr Model of the atom 

 

The “nuclear atom” is a term that refers to the model of the atom in which an atom is 

composed of a small (radius ≈ 10
-15

m) positively charged nucleus which is surrounded at 

relatively large distances (radius ≈ 10
-10

m) by orbiting electrons as depicted in Fig. 2-7. This 

model of the atom is the most universally accepted one and it is quite recent. The nuclear atom 

was proposed by the New Zealander physicist Ernest Rutherford as an improvement on the 

“plum-pudding” model of the British physicist J.J. Thomson. 

 

 

Figure 2-7: Rutherford's Atom  

7
 

 

 In the plum-pudding model of J.J Thomson an atom had no nucleus at its core. The 

positive charge was assumed to be spread throughout the atom forming a kind of “pudding” in 

which negative electrons where suspended like “plums” as shown in Fig 2-8.  
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Figure 2-8: Plum-Pudding model  

 

To discredit the plum-pudding model, Rutherford carried out an experiment (now known as 

Rutherford experiment) in which atoms were observed to scatter alpha particles (nuclei of helium 

atoms) at relatively large angles which could not be explained by the plum-pudding model. The 

plum-pudding model by assuming a uniformly distributed positive charge throughout the atom 

would have predicted no deflection of the alpha particles by the atom. The fact that deflections 

were observed could only mean that the positive charge was concentrated in a very small region 

of the atom. In order to counteract the electrostatic attraction between the positive nucleus and 

the negative electrons, Rutherford determined that electrons must be moving around the nucleus 

like planets revolving around the sun. This is why the nuclear model is often referred to as the 

planetary model.  

The planetary model of the atom despite being successes was faced with one major 

obstacle: it predicted that even light atoms like hydrogen were unstable. According to classical 

electromagnetic theory, an electron revolving around a nucleus will radiate off electromagnetic 

waves which will deplete the electrons energy and cause it to spiral inward toward the nucleus 

(see Fig. 2-9). As a conclusion, all atoms will be unstable which is contrary to the observed 

stability of light atoms. 
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Figure: 2-9: An electron falling into the nucleus as it radiates off its energy. 

9
 

 

In addition, the classical theory predicted that as the electron fell into the nucleus, it 

would radiate at higher frequencies as the orbit of the electron got smaller and faster. This 

predicted a continuous emission spectrum for the hydrogen atom contrary to the empirically 

observed discrete one. Three empirical formulas were developed at the time which reproduced 

the values of the observed wavelengths of the line spectrum of hydrogen in three mutually 

exclusive regions of its spectrum. These empirical formulas were known as the Balmer series, 

the Lyman series and the Paschen series 

In 1913, the Danish physicist Neil Bohr presented a model that allowed him to reproduce 

the equations in the Balmer, Lyman and Paschen series.  His point of departure was Rutherford’s 

model of the atom. In addition he made assumptions that incorporated the newly successful 

quantum ideas of Einstein and Planck.  

In order to obtain a discrete set of stable orbits, Bohr postulated, without any explanation 

that electrons are confined to certain stationary states (orbitals), each having a circular orbit and 
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electrons could only radiate energy while transiting from one stationary state to another (this 

requires electrons to preserve their energy while in orbitals which violates the classical laws of 

physics).  To incorporate Einstein’s photon’s concept, Bohr theorized that electrons would emit a 

photon while transiting from a higher energy level to a lower one. The energy of the emitted 

photon will then be equal to the absolute value of the difference of the energies of the two 

stationary orbits. Note that this is similar to Planck assumption of energy being absorbed or 

emitted by a harmonic oscillator in integer multiples of  . Electrons could also be excited into 

higher energy levels by introducing a high voltage.  

To derive the equation for the values of the energy of stationary states, Bohr made one 

more assumption: he quantized the angular momentum of the electron. Only discrete values of 

the angular momentum where allowed, mainly the ones that where integer multiples of Plank’s 

constant divided by 2π: 

 

Where n is an integer. De Broglie was later able to give a justification for this assumption using 

ideas from his own theory on the wavelength of moving particles. With this assumption Bohr 

was able to derive the values of all possible orbitals radiuses and then the energy of all orbitals: 
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10
 

Figure 2-10: Bohr’s model of the hydrogen atom. 

 

 

These values of the orbital energies where then combined with the formula for the energy of 

emitted photons 

 

To reproduce the wavelengths observed on the line spectrum of hydrogen. The agreement 

between the theoretical and experimental values of the Rydberg constant appearing in the 

Lyman, Balmer and Paschen series was a major accomplishment of Bohr’s theory. Bohr’s theory 

could also be used to accurately predict the ionization energy of atoms - this is the minimum 

energy that is needed to remove an outer electron form the atom - and ions having one single 

electron. 
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These transitions between energy states were considered by Bohr as occurring 

instantaneously.  They are referred to as quantum jumps or quantum leaps. The timing of these 

jumps and the direction of emitted electrons cannot be predicted; only their probability of 

occurrence can be computed. An analysis similar to the one carried out by Bohr was developed 

by Sommerfeld and Wilson in which the circular orbits of Bohr were replaced by elliptical ones. 
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Figure: 2-11: Energy level diagram for the hydrogen atom. 

 

Overall, even though the Bohr model was successful in reproducing the line spectrum of the 

hydrogen atom, it had its shortcomings. One major restriction on the model is that it can only be 

applied to single electron atoms (hydrogen) or ions. Also the model is not correct as it violates 

Eisenberg uncertainty principal by assigning a fixed position and momentum to the electron 

simultaneously. Furthermore it fails to explain why some spectral lines are brighter than others. 

Despite these shortcomings, Bohr’s theory can still be used in more complex settings to make 

accurate predictions about the output of experiments. For his work on the hydrogen atom Niels 

Bohr was awarded the Nobel Prize of physics in 1922. 
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Figure 2-12: Niels Bohr  
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2.4 WAVE-PARTICLE DUALITY 

The Wave-Particle Duality principle of quantum physics states that all matter and energy 

in nature can behave both as a wave or a particle depending on the conditions of the experiment. 

By the end of the 19th century, physics consisted mainly of Newton’s classical laws of motion 

and Maxwell’s electromagnetic theory. Newton’s law of mechanics was used to describe the 

dynamics of macroscopic objects and Maxwell’s theory of electromagnetism was used to 

describe radiation. In this classical context, waves and particles were mutually exclusive entities: 

particle could be completely specified by their position vector and waves by their phase and 

amplitude.  

The concept of duality emerged out of the debate on the nature of light. Was light made 

of waves or particles? During the 1600, the English physicist Sir Isaac Newton proposed a 

corpuscular theory of light which could explain phenomena such as reflection, refraction and the 

splitting of light by a prism. During the same period, the Dutch physicist Christian Huygens 

proposed a new theory of light which treated light as a wave instead of a particle. However they 

were many observations made at the time that Huygens theory, still in its infancy, could not 

solve. This inability of Huygens theory to explain fundamental observations, coupled with 

Newton’s fame, led the scientific community to adopt Newton’s corpuscular theory of light, 

which remained dominant in the following century. However, the belief in the validity of 

Newton’s theory all changed around the 18
th

 century.  The first observation that invalidated 

Newton’s theory came in the form of an experiment carried out by the English physicist Thomas 

Young and the French physicist Augustin-Jean Fresnel, now known as the “double slit 

experiment”,  which showed that light shun through a small slit displayed interference pattern 
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proper to waves (see Fig 2-13). From the experiment they were able to determine the wavelength 

of light. Their theory also allowed them to explain phenomena such as polarization that the 

corpuscular theory of Newton could not. Such evidence lent strong support for the wave theory 

of light, which became dominant throughout the 1800’s.  The popularity of the theory even grew 

further as the Scottish physicist James Clerk Maxwell developed a set of equations - now known 

as Maxwell’s equations - which explained the propagation of light as that of electromagnetic 

waves.  

 

Figure: 2-13: Double slit experiment 
13

 

The ability of the wave theory to explain recent experimental observations made it quite 

popular among physicists during the 19
th

 century. However, by the turn of the 20
th

 century, new 

observations were being made that were at odd with the theory.  One such observation was the 

phenomena of blackbody radiation, which showed that the spectrum of electromagnetic radiation 

emitted by a blackbody was not continuous but discrete. The German physicist Planck solved the 

problem of blackbody radiation by assuming that the energy of the atoms of the blackbody had a 

discrete spectrum. This was in opposition with the wave theory of the time which predicted a 

continuous spectrum for the atoms of the blackbody. Around the same time period experiments 
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carried out by the German Physicist Albert Einstein showed that light had particle like 

properties. Einstein’s experiment (see Fig 2-14) -now known as the Photoelectric effect - showed 

that by shining light on a metal, the energy carried by light could knock off electrons in the metal 

and generate an electric current. The wave theory of light predicted that a brighter light source 

would generate a higher current – due to its higher intensity - than a dimmer one. However the 

experiment showed that dim blue light generated a higher current than the stronger red light, 

which released no electrons at all. Einstein was able to resolve the conundrum by postulating a 

quantification of the electromagnetic radiation: Electromagnetic radiations (light) carried energy 

in discrete packages called photons (light was not a continuous wave as assumed by Maxwell’s 

theory), and the energy of a photon was directly proportional to its frequency, the constant of 

proportionality being Planck’s constant 

 

Where h=6.626 × 10
-34

 J seconds.  Hence blue light due to its high frequency (above the 

threshold frequency of the experimental metal) carried photons with high enough energy to 

knock off electrons while red light with its low frequency (below the threshold frequency) 

carried photons of low energy. 
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Figure: 2-14: Photoelectric effect 

 All these observations led the scientific community during the early years of the 20
th

 

century, to reconsider Maxwell’s theory of light which was standard at the time.  A dual theory 

of light seemed more appropriate than a corpuscular or wave theory alone.  

Inspired by the wave-particle picture of light and by the success of the success of the 

Bohr model (the Bohr model will be described in the next chapter) the French physicist Louis 

Victor De Broglie made a radical proposal. If light waves with energy under certain 

circumstances behaved like particles of energy E, then by symmetry a massive particle of energy 

E=pc (as given by Einstein theory of relativity) should, under some circumstances, behave like a 

wave with energy E. By equating the formulas for the energy, De Broglie was able to derive an 

expression for the frequency of a particle of energy E and momentum p: 

 

And a similar expression for its wavelength: 
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Where h is Planck’s constant and p the momentum of the particle. This was an extension of 

Einstein’s equation, since it reduced to the equation for the energy of a photon upon substitution 

of the momentum of an electromagnetic radiation.  The validity of De Broglie’s formula for 

electrons was confirmed in the following years by two experiments during which electron 

diffraction was observed. One of these experiments was carried out by the English physicists Sir 

George Paget Thomson (Son of the Nobel Laureate J.J. Thomson) and Clinton Joseph Davisson. 

The experiment showed that by passing an electron beam through a thin metal film an 

interference pattern proper to waves could be observed on the screen (see Fig. 2-15).  Similar 

successful experiments were carried out much later for heavier sub particles like protons and 

neutrons. 

 The hypothesis of De Broglie was later used by the Dutch physicist Ernest Schrodinger to 

derive the Schrodinger wave equation and subsequently lead to the development of quantum 

mechanics as a theory describing the atomic world. 
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Figure 2-15: Electron diffraction pattern 

 The wave-particle duality principle, even though a very difficult concept to grasp, is a 

well-accepted concept amongst physicists nowadays. It allows physicists to explain the behavior 

of light and matter through differential equations of the Schrödinger type. Through its use 

physicists have been able to make very accurate and non intuitive predictions to the outcome of 

experiments. Even though many interpretations of the concept exist among physicists, the 

meaning of the concept itself is still a question of debate among quantum physicists. 

 De Broglie was awarded the Nobel Prize of physics in 1929 for his theoretical work on 

De Broglie’s hypothesis and Thomson and Davidson were awarded the 1937 Nobel Prize in 

physics for their experimental work on electron diffraction. 
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Figure 2-16: Louis De Broglie  
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2.5 Pauli Exclusion Principle 

 
 

There was a need among physicists at the beginning of the 20
th

 century for a theory that 

could explain how sub-particles – protons, neutrons, and electrons – combine to form atoms. 

Such a theory would explain the structure of the periodic table. Around the same time, some 

observations on the stability of certain atoms were being made that physicists at the time could 

not explain: atoms with an even number of electrons were observed to be more stable than those 

with an odd number of electrons 

 In 1925 the Austrian physicist Wolfgang Pauli formulated the Pauli Exclusion Principle 

which gave a rule for determining the electronic configuration of an atom in its ground state. The 

ground state is the state of the atom at which it attains its lowest energy. The electrons of an atom 

at room temperature spend most of their time at the ground state. He first introduced four 

parameters – quantum numbers – that could be combined to describe the configuration of an 

electron in an atom. These four quantum numbers were: 

 The principal quantum number n determines the total energy of the electron in the 

atom and is only allowed to take integer values  

 

 The orbital quantum number l, which is allowed to take the values  

 

The magnitude L of the angular momentum of the electron is  
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 The magnetic quantum number ml describes the effect of an externally applied 

magnetic field on the energy (its value is zero when no external magnetic field is 

present) and is allowed to take the values  

 

The component Lz of the angular momentum in the direction of the applied magnetic 

field is directly proportional to the magnetic number 

 

 The spin quantum number ms , which gives a direction to the angular momentum of the 

electron and can only take the values  

 

 

The state of all electrons in an atom can be determined by an admissible combination of 

four quantum numbers. Electrons that have the same principal quantum number n are 

said to be in the same shell and those that have the same principal quantum number n 

and orbital quantum number l are said to be in the same subshell. The energy level of 

each state of a multi electron atom depends both on its principal quantum number n 

and its orbital quantum number l and increases as both n and l increase. Pauli’s 

Exclusion Principle states that in an atom no two electrons can have the same set of 

values for the quantum numbers n, l, ml, and ms. Pauli Exclusion Principle explained the 

structure of the periodic table and hence the chemical behavior of atoms. 

Wolfgang Pauli was awarded the Nobel Prize in physics in 1945 for his discovery of the 

Exclusion Principle. 
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Figure 2-17: Wolfgang Pauli  
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2.6 Quantum mechanics 

 

Building on the work of Planck, Einstein, Bohr, De Broglie, and many others, the 

German physicist Werner Heisenberg in 1925 and the Austrian physicist Erwin Schrodinger in 

1926 developed the theory of quantum mechanics in an attempt to reconcile the wave and 

particle aspect of matter. In the new theory, two new objects were of central importance: 

operators and wave functions. Operators were used to describe the measurable properties of 

matter – position, momentum, energy, etc – and the wave function was used to describe the 

quantum state of microscopic systems taking into account both their particle and wave 

characteristics. In the Heisenberg formulation of quantum mechanics, vectors were used to 

describe the state of microscopic systems and matrices were used to describe measurable 

properties. It became known as matrix mechanics for its use of the mathematical theory of 

matrices that was not very popular at the time among physicists. Heisenberg’s formulation on the 

other hand used waves which were familiar to physicists at the time. Schrodinger’s formulation 

became known as wave mechanics. The British physicist Paul Dirac later showed that the two 

formulations were equivalent and developed a third abstract mathematical formulation of 

quantum physics. 
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Figure 2-18: Werner Heisenberg  

In classical physics, the concept of wave and particle preclude each other but in quantum 

physics they do not contradict or preclude one another but as suggested by Bohr they are 

complementary. The fact that waves are used to describe microscopic particles implies that they 

cannot be localized in space, since waves are spread out over some region in space. The classical 

concepts of exact position, exact momentum and exact energy therefore make no sense at the 

microscopic scale and a probabilistic description of quantum systems should be used. This 

indeterministic nature of the microphysical world is the essence of Heisenberg’s uncertainty 

principle. To observe with precision the position of a microscopic particle like an electron, one 

needs to use radiation of very short wavelength (about the size of an electron). Such radiation 

due to its short wavelength carries a lot of energy and changes considerably the momentum of 

the electron – enough that it can even knock it out of its orbit - upon incidence thus disturbing its 

quantum state.  



39 

 

 

Figure 2-19: Erwin Schrodinger  
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In its original form, the Heisenberg uncertainty principle states that if the x-component of 

momentum is known within an accuracy of the x-component of position cannot be known 

with accuracy greater than   . In three dimensions, Heisenberg’s uncertainty principle 

for position and momentum take the form 

 

This principle indicates that it is not possible to simultaneously measure the position and 

momentum of a microscopic particle at an arbitrary accuracy. Its most general form applies to 

any pair of complementary variables like energy and time for example and in this context takes 

the form: 
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This equation is very useful in the study of decay processes since it gives the relationship 

between the mean lifetime  and the energy width of the excited state . It explains the fact 

that when an observation is made on a microscopic particle, the observation process modifies the 

energy of the observed particle and some time is needed before the particle can return to its 

initial state.  

In his formulation of quantum mechanics, Heisenberg derived a differential equation – 

now known as Schrodinger’s equation - that could be used to solve for the wave function of a 

quantum system. Despite the success of his approach, Heisenberg himself tried restlessly to find 

the right interpretation of the wave function. The correct interpretation of the wave function– the 

most widely accepted one among physicists nowadays – was later formulated by the German 

physicist Max Born: In the case of a one-particle system, the square of the modulus of the wave 

function evaluated at a point in the space-time domain, gives the probability of locating the 

particle at that point (here we have assumed that the integral of the square of the modulus of the 

wave function at any time over the whole space is equal to one).  

The success of quantum mechanics cannot be overstated. It served as an extension of 

Bohr’s model to atoms having many electrons and was used to reproduce the results of Planck in 

the Blackbody radiation and Einstein in the Photoelectric effect. Erwin Schrodinger, Paul Dirac, 

and Werner Heisenberg were awarded the Nobel Prize in physics in 1932, 1933, and 1933 

respectively for their work in quantum mechanics. 
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Figure 2-20: Paul Dirac  
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 3 Modern applications of quantum physics 

 

3.1 X-Rays 

Often referred to as Rontgen Radiation, X-rays are a form of electromagnetic radiation 

(in the invisible part of the spectrum) with short wavelength (shorter than UV radiation, about 

10-.01 nanometers) and high energy (120ev-120kev). They were discovered by the Dutch 

physicist Wilhelm K. Roentgen. They are produced in evacuated glass tubes during the collision 

of high velocity electrons (accelerated by creating a large potential difference within the tube) 

with a metal target metal made of molybdenum, tungsten or platinum for example.  During the 

collision, the accelerated electrons knock out of the atoms of the targeted metal, electrons from 

the inner shell (K shell). An electron from an outer shell then moves to fill in the vacancy in the 

K shell, emitting an X-ray photon in the process as depicted in Fig. 3-1. The process produces a 

discrete spectrum of X-ray frequencies called spectral lines. The spectral lines produced depend 

on the metal used and are thus called characteristic lines or characteristic X-rays. X-rays can be 

detected through the use of photographic plates, scintillators, Geiger counters etc… 

20
 

Figure 3-1: Production of X-rays 
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Nowadays, X-rays are widely used in medicine for diagnostic radiography and in 

crystallography. They are mainly used in medicine to detect pathology of the skeletal system 

and to detect some disease processes in soft tissues (chest X-ray to identify lung diseases such 

as lung cancer or pneumonia, and abdominal X-rays). To develop a conventional medical X-ray, 

the patient is put on a film and a single burst of radiation is directed through the patient and 

onto the film as shown in Fig. 3-2. Since different parts of the body absorb X-rays differently 

(dense bones absorb more X-rays than soft tissues) a shadow like picture is formed.  Even 

though X-rays are very useful, they have an inherent limitation: The picture that is obtained is a 

superposition of all the shadows that result from the radiation through layers of the body. 

Hence to determine which part of the X-ray corresponds to which layer of the body is difficult. 

This makes X-rays useless in the imaging of soft tissues such as brain and muscles. 

 

Figure 3-2: Ordinary X-ray system 
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This inability of X-rays to image soft tissues has been improved through the use of 

techniques such as CAT (Computerized Axial Tomography) scan and CT (Computerized 

Tomography) scan, which make it possible to produces images of specific tissues of the body, 

which are not obscured by the other organs. In each one of these techniques a series of fanned 

out beam of X-rays are passed through the patient simultaneously and are collected on the 

other side by a detector which records the intensity of the beam. Different intensities 

correspond to different body tissues. In a CAT scan (see Fig. 3-3), the X-ray source is rotated to 

different orientation, and the data collected by the detectors are inverted by computers using 

mathematical formulas to produce a high resolution image of the cross sectional slice of the 

body (one that is perpendicular to the body’s long axis hence the “axial” in CAT). CAT scans 

have helped to revolutionize the field of radiology, neurology and nuclear medicine. 

22
 

Figure 3-3: Schematic of a CAT scan. 

 

Despite their usefulness, X-rays are a form of ionizing radiation and as such can be dangerous. 

They are classified by the U.S governments as Carcinogens. The measure of an X-ray ionizing 

ability is called the exposure (measured in coulomb per kilogram c/kg) and the effect of X-ray 
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ionizing radiation on matter is called the absorbed dose (measured in Joules per kilogram). Their 

ability to ionize body tissues is what makes them useful in the medical treatment known as 

radiotherapy used to manage the development of cancer. The dose of radiation applied in these 

treatments is usually higher than the one used for imaging.  Lead can be used as a shield against 

X-ray radiation due to its high density, low cost and easy installation. The thickness of the 

required lead shield increases with the frequency of the X-ray radiation. 

 X-rays are also used for X-ray crystallography, X-ray astronomy, X-ray microscopic 

analysis, X-ray fluorescence and industrial radiography. X-ray crystallography is a method in 

which scattered X-rays are used to determine the arrangement of atoms within a crystal (see Fig. 

3-4).Since a lot of materials can form crystals: minerals, salt, metals organic and inorganic 

biological molecules… X-ray crystallography is very useful in various fields of science. Using 

the mathematical theory of Fourier transforms, a crystallographer can reconstruct a three 

dimensional picture of the density distribution of electrons within the crystal using diffracted X-

ray beams produced at different angles. The electron density distribution can then be used to 

determine the structure of the crystal, the type of bond within its atoms and many other 

properties. In its early days it was used to determine the size of atoms and the nature and length 

of the chemical bonds between them. It has also been used in biology to reveal the structure of 

nucleic acid such as DNA, RNA and to explain the functioning of biological molecules such as 

drugs, proteins and vitamins.  

X-ray astronomy is the branch of astronomy which deals with the X-ray emissions of celestial 

objects. Since the earth’s atmosphere absorbs most of the X-rays that are incident on the earth 

from outer space, X-rays measurements must be carried out at high altitudes. The celestial bodies 

producing cosmic X-rays usually contain very hot gases (in the magnitude of millions of Kelvin) 
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and are usually compact stars such as black holes and neutral stars.  These X-rays are formed as 

hot gases are accelerated during their fall into celestial body having very high gravitational field. 

An X-ray microscope is a device that uses X-rays to generate images of very small objects. 

Unlike conventional microscopes where the image can be seen directly by an observer, X-rays 

produce images by reconstructing the data collected on an exposed film. This is due to the fact 

that X-rays have short wavelengths compared to visible light and cannot be easily reflected or 

refracted.  
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Figure 1: X-ray crystallography. 

 

X-Ray fluorescence is the emission of secondary X-rays by a material that has been 

bombarded with high energy X-rays or gamma rays. The process occurs when a metal is exposed 

to X-rays with energy higher than its ionizing energy. X-rays knock off electrons from the inner 

shell making the atom unstable. An electron from an outer shell then falls into the inner shell to 

occupy the vacancy, emitting a photon with energy equal to the difference of energy of the two 
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orbitals involved.  The material thus emits X-ray radiation with characteristic proper to that of 

the atoms used. It is this process that is used in Geiger counters to detect X-ray radiation. 
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3.2 LASERS 

 

Lasers (Light amplification by the stimulated emission of radiation) are a device that emits light 

through a process called stimulated emission. Lasers are one of the most useful inventions of the 

20
th

 century. The principle behind their operation is based on the quantum mechanical picture of 

the atom. When an electron moves from a higher energy orbital to a lower one, a photon is 

emitted in the process. The emission process can be one of two types: stimulated emission or 

spontaneous emission. In a spontaneous emission, the photon is emitted spontaneously in a 

random direction without any outside excitation. In a stimulated emission, an incoming photon is 

used to stimulate the transition in energy levels. To do this the incoming photon must have the 

energy that matches the difference between the two energy levels (Ephoton = Ei-Ef). The process is 

depicted in Fig. 2-5. One of the important features of stimulated emission is that every emission 

doubles the population of photons (hence the “amplified” in laser), and the emitted photon 

travels in the same direction as the incident photon. Furthermore the electromagnetic waves for 

the emitted and incident photons are coherent (same phase). To start a laser, an external source of 

energy is applied to excite the electrons of the atoms of a gas in a low pressure tube into higher 

energy levels (this is usually done by intense flashes of high voltage light and by high voltage 

discharges). When the voltage gradient is high enough, more electrons move from inner shell to 

higher energy orbitals. This process is called population inversion. In lasers the population 

inversion is used to create a metastable atom (an atom having a longer lifespan than ordinary 

excited electrons). 
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Figure 3-5: a) spontaneous emission, b) stimulated emission, c) controlled emission. 

The requirement for a metastable higher energy state is important to give enough time to the 

process to maintain population inversion and produce a continuous laser beam (as opposed to a 

pulsed one). 

In an ordinary helium/neon laser, a high voltage is discharged through a low pressure gas tube 

composed of 85% neon and 15% helium to sustain the necessary population inversion. The 

process begins when an atom through simultaneous emission emits a photon in the direction 

parallel to the axis of the gas tube. This photon through stimulated emission will excite the 

electrons of another atom, producing two photons. The process then repeats itself and is 

sustained by using silvered mirrors at either end of the gas tube to reflect incident photons.  The 

silvered mirrors are arranged to be perpendicular to the axis of the gas tube and one end is made 

partially silvered to allow some photons to escape from the gas tube and to form the laser beam 

(see Fig. 3-6). When all the photons have a single frequency, the laser beam is said to be 

monochromatic. By reducing the escape area of the emitted photons, a very narrow laser beam 

can be produced.  Such a beam can be produced with very high intensity (power per unit area) by 
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confining the laser beam to a very narrow region.  This ability to produce confined high intensity 

electromagnetic radiation is what makes them useful in a variety of applications. There are many 

other types of laser such as the ruby lasers, the argon-ion lasers, the dye lasers, carbon dioxide 

lasers etc… 
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Figure 3-6: a schematic diagram of a helium/neon laser 

One of the most interesting applications of lasers is in holography. Holography is a 

technique in which light scattered by an object is recorded and use to reconstruct a three 

dimensional image of the object. A hologram refers to the film on which the holographic image 

is recorded. To generate a hologram, a laser beam is shunned through a half-silvered mirror 

which reflects part and transmits part of the laser beam. The transmitted part is called the 

reference beam and the reflected part the object beam. The object beam is then reflected by the 

incident object and projected on a film (see Fig. 3-7). Since laser beams are coherent, an 

interference pattern (similar to the one observed in the double slit experiment) can be observed 

on the film, which is mainly composed of bright and dark fringes. The holographic image can 

then be produced by shining a laser on the interference pattern produced on the film as shown in 

Fig. 3-8.  
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Figure 3-7: An arrangement used to produce a hologram 

 

In fiber optic communication, lasers traveling within an optical wire are used to transmit 

information from one location to another. Lasers are also used to retrieve the data saved in 

optical storage devices such as DVDs and CDs by scanning their surface.  In the metal industry 

lasers are used for welding, marking (by inscribing a certain pattern on a material’s surface), 

cutting and bending. They are used in medicine with light activated drugs, in photodynamic 

therapy, in the treatment of cancer. In this procedure a drug is administered to the patient, and 

after absorption by the blood stream, is activated by a laser light in the region located near the 

cancer cell, creating a localized chemical reaction that disintegrates the cancer cells. Lasers are 

also used in medicine in the treatment of congenital capillary malformations (also known as port-

wine stains) which affect 0.3% of children at birth. In this procedure, pulsed dye lasers are 

focused on the port-wine stain and their energy is absorbed by the oxyhemoglobin in the 

malformed capillaries which are destroyed in the process without damaging adjacent tissues. 

Lasers are also used in medicine, in ophthalmology, to correct nearsightedness and 

farsightedness. The procedure is known as photorefractive keratectomy (PRK). The conditions of 

near and farsightedness are due to the inability of the eye to properly refract light; hence 

producing images either in front or behind the retina. In PRK procedures this is corrected by 
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using lasers to burn and remove small amounts of tissues from the cornea of the eye with the 

intention to obtain a desired curvature. Lasers are used in the military for range determination, 

target designation and as direct-energy weapons (weapon that radiates a laser beam in an aimed 

direction).  
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Figure 3-8: Holography reconstruction process 

 

Despite their usefulness, lasers can be harmful. The exposure of a human eye to a laser 

that emits a wavelength that the cornea and lens can focus well, can be damaging as it can burn 

the retina by focusing a very intense light on a small spot which can cause permanent damage in 

a matter of seconds. 

 

 

 

 

 

 

  



53 

 

4 Conclusion 

 
Although some people think of quantum physics as an abstract and purely academic 

subject, it has had a great impact on society through its applications. Without quantum physics, 

the great electronic revolution of the 20
th

 and 21
st
 century would not be possible. Quantum 

physics was able to solve the problems that classical physics faced at the beginning of the 20
th

 

century and with it we can explain the structure of atoms and molecules and how they interact 

with light. It is one of the most counter-intuitive theories of physics and is the product of the 

confluence of some of the greatest minds of our time.  
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