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Introduction

Certain physical problems in electrostatics, magnetostatics, and heat transfer give rise to

elliptic boundary value problems with transmission conditions on a layer. We focus on a

particular problem with a second order transmission condition, representing an infinitely

conductive layer. This problem is unusual because it couples a second order problem

in a 2-dimensional space with a second order problem in a lower dimensional space.

An introduction to this and other types of transmission problems can be found in [14].

In more recent years, there has been a growing interest in studying irregular interfaces

that more realistically model certain physical structures, like those in many biological

systems. So, we introduce a new level of complexity in the problem by considering fractal

and prefractal geometries as model shapes for the interface. To our knowledge, this was

first studied analytically in [18], [20], [21].

The main focus of this thesis will be on forming numerical approximations to solu-

tions of this transmission problem on different domains. Once we begin searching for a

numerical solution, we can no longer consider a fractal interface because it cannot be

fully realized by the finite precision of a computer. However, the fractal curves we study

can be viewed as the limit of a suitable sequence of prefractal curves. So, for all of the

numerical work, we study the transmission problem with a prefractal interface. The

numerical solution of a special class of these prefractal problems was studied in [27] and

[4]. We will expand this work by allowing for a larger collection of prefractal curves.

We develop a method for creating a finite element discretization of the domain having

very different prefractal curves as interfaces. The main contribution of this thesis is

showing that this discretization produces a finite element scheme with a known bound

on the error between the true and computed solutions in a suitable norm. Results of

computations done using the discretizations will be shown.
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Outline of Thesis

The thesis is organized into three chapters following the introduction. In the first of these

chapters, we begin by describing the family of fractal von Koch curves and the prefrac-

tal curves that approximate them. After developing some notation and understanding

some important properties of these curves, the reader is introduced to the transmission

problem we plan to study having a fractal or prefractal interface. Since the primary

focus of this thesis is the numerical solution of the transmission problem on domains

with prefractal layers, the emphasis will be on the prefractal transmission problem. Af-

ter defining this problem, we will give some known results about the regularity of the

solution that will be essential in developing a finite element method that is appropriate

for the problem.

The second chapter is devoted to recalling some results about the convergence of the

finite element method in a general setting. The results are not new, and are repeated

here in some detail for those who are unfamiliar with them and to serve as a reference

for later sections. We begin by providing the proofs of the convergence of the finite

element method using piecewise affine functions when the solution to the problem is

H2−regular. As will be shown in the first chapter, the solutions to the transmission

problems we are interested in are not this regular. Reentrant corners occurring along

the prefractal interfaces are one reason for the lack of regularity. So, the second section

of this chapter explores convergence results for problems on nonconvex domains that are

directly applicable to the transmission problem under consideration.

The third chapter is where the original work of the thesis resides. In this chapter,

a scheme is developed to triangulate the domains of interest. Since the particular pre-

fractal curve forming the layer can vary greatly, this alone is a delicate task. Once this

triangulation method has been explained, we will use the theory that will be developed

in the second chapter to prove error estimates for solving the transmission problem us-

ing the finite element method. We will conclude the chapter with some examples of

computations done using the method developed in earlier sections of the chapter.
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Chapter 1

The Transmission Problem

This chapter is organized into several sections. In the first section, we introduce a

transmission problem with an unspecified interface and point out some of the interesting

aspects of this problem. In the following section, the von Koch curves that will serve as

an interface for the transmission problem are introduced. In the remaining sections of

the chapter, results about the solutions to the transmission problem with both a fractal

and prefractal layer are presented.

1.1 Introduction to the Transmission Problem

We begin by giving a description of the transmission problem we will consider. Let Ω

be the rectangle (0, 1) × (−1, 1) and let S be a curve from A = (0, 0) to B = (1, 0) that

divides Ω into two regions as illustrated in Figure 1.1. We use Ω1 and Ω2 to refer to the
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Figure 1.1: Example domain
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portions of Ω above and below S, respectively.

The problem is then described as follows. We seek functions u1, defined on Ω1, and

u2, defined on Ω2, solving

−∆ui = f in Ωi

ui = 0 on ∂Ω ∩ ∂Ωi

for i = 1, 2 with f ∈ L2(Ω). These functions are linked by the requirement that the

trace of the functions on S is the same. With ui|S denoting the trace of ui on S, we

write this condition as u1|S = u2|S. Since the functions ui must coincide on S, and

Ω = Ω1 ∪ Ω2 ∪ S, we may also think of a single function u defined on all of Ω as

u =







u1 in Ω1

u2 in Ω2

uS on S,

(1.1)

where uS is the common value of ui|S, i = 1, 2. With this thought in mind, we will also

represent the continuity condition as [u] = 0 across S.

What makes this problem interesting is the second order transmission condition that

further links u1 and u2. The condition is stated as:

−c∆tu
S =

∂u1

∂ν
− ∂u2

∂ν
,

where ν is the outward normal to Ω2, ∆t is the Laplacian along S, and c is a positive

constant. The notation ∆t is used because in many cases when the curve S is nice

enough, this will be the tangential Laplacian. Once again using the definition of u in

(1.1), we will also write this condition as −c∆tu =
[

∂u
∂ν

]
for brevity. We combine all of

this information in the following formal description of the problem:







−∆u = f in Ωi, i = 1, 2

−c∆tu =
[

∂u
∂ν

]
on S

[u] = 0 across S

u = 0 on ∂Ω

(P)
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It will also be useful at times to consider the weak formulation of this problem. For

this, we define the space

V (Ω, S) := {v ∈ H1
0 (Ω) : v|S ∈ H1

0 (S)}.

Depending on the curve S, some care must be given to properly defining the space

H1
0 (S), but for now, assume that a suitable definition can be made. Then, the weak

formulation of the problem is:







Find u ∈ V (Ω, S) such that:
∫∫

Ω
∇u∇v dx dy + c

∫

S
∇tu∇tv ds =

∫∫

Ω
fv dx dy

for every v ∈ V (Ω, S)

As was mentioned previously, what makes this problem especially interesting is the

transmission condition across the interface S. In the first place, it is not very common

to see a second order boundary condition associated with a second order problem in

the domain. Additionally, this term couples the 2-dimensional surface problem with a

lower dimensional boundary value problem on the layer. This is significant because if

we think of the problem in terms of electrostatics, for instance, where u is the electric

potential, this problem models a case where the layer S is highly conductive and can

itself support a charge. So the jump in the electrical field across the boundary between

the two subdomains is equal to the current flowing along the layer. Thus, we think of S

not just as a boundary between two regions, but as a separate body.

In many physical situations one might wish to model, the interface may not be

smooth. We investigate a layer that is either a fractal or prefractal curve as a model

case for these types of circumstances. Before remarking more about the transmission

problem with such a layer, we introduce the fractal and prefractal curves we will be

considering.

1.2 The Family of Fractal von Koch Curves

The family of von Koch curves belongs to the larger class of self-similar fractals explored

by J. E. Hutchinson in [15]. There, it is shown that given any finite set S = {S1, . . . , SN}
of contraction maps on a complete metric space, there exists a unique closed, bounded
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set K such that K = ∪N
i=1Si(K). Using this result, each curve in the family of von Koch

curves can be defined as the unique set fixed by four contraction maps.

Definition 1.2.1. Fix α ∈ (2, 4). Then the general von Koch curve with contraction

factor 1
α
, denoted by Σα, is the unique closed set in C (R2) fixed by the maps:

ψα
1 (z) =

z

α
ψα

2 (z) =
z

α
eiθ +

1

α

ψα
3 (z) =

z

α
e−iθ +

1

2
+ i

√

1

α
− 1

4
ψα

4 (z) =
z

α
+
α− 1

α

where θ = cos−1
(

α
2
− 1
)
.

This is only one of several ways of defining the von Koch curves. For the present

work, a constructive definition will be much more useful. We begin with a construction

from segments after first establishing some notation. Fix α ∈ (2, 4). Then, for any set

F ⊂ R
2, let

Ψα(F ) :=
4⋃

i=1

ψα
i (F ) (1.2)

and for each integer n, let

Ψn
α(F ) = Ψα ◦ · · · ◦ Ψα

︸ ︷︷ ︸

n times

(F ). (1.3)

A general result for self-similar fractals in [15] implies that beginning with any compact

set F ⊂ R
2, the iterates Ψn

α(F ) converge to the set Σα in the Hausdorff metric as n

increases to infinity. For each α ∈ (2, 4), let Σα
0 be the unit interval from the point

A = (0, 0) to the point B = (1, 0), and for n ≥ 1, let

Σα
n = Ψα(Σα

n−1). (1.4)

Since the limit of this sequence of sets is Σα, we refer to Σα
n as the nth-generation

prefractal von Koch curve with contraction factor α. The prefractal curves for

n = 1, 2, and 3 and α = 3 and α = 2.5 can be seen in Figures 1.2 and 1.3. Some

features of the maps ψα
i that generate the curves become more apparent when viewing

these pictures. We call a map S : R
D → R

D, D ≥ 1 a similitude if there exists a

constant l > 0 such that |S(x) − S(y)| = l|x− y| for every x, y ∈ R
D, and if l ∈ (0, 1),

S is called a contractive similitude. So, examining the maps ψα
i , we see that they
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Figure 1.2: First 3 prefractal von Koch curves for α = 3
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Figure 1.3: First 3 prefractal von Koch curves for α = 2.5

are contractive similitudes with a contraction factor of α−1. Thus, each segment of

the nth−generation prefractal curves has length α−n. Secondly, θ can be seen as the

angle the non-horizontal segments make with the x−axis when n = 1. Because the

maps are similitudes, these angles are repeated at every generation of the prefractal

curve wherever an inverted “V” (∧) meets another segment. This angle will become

very important in the future when we discuss the numerical treatment of the prefractal

transmission problem.

A second constructive definition of the curves that we will make use of is due to

Lindstrøm [22]. Once again, fix α ∈ (2, 4) and let A = (0, 0) and B = (1, 0). Then let

V 0
α = {A,B}, and for n ≥ 1, define

V n
α := Ψα

(
V n−1

α

)
. (1.5)

We call the set of points V n
α the vertices of the nth−generation prefractal von Koch
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curve. As we will see later when we are designing a triangulation scheme for the domain

of the problem, it is important to note that the von Koch curve belongs to the family of

nested fractals, and as such, has the property that V n
α ⊂ V n+1

α for every n. If we define

V ∞
α :=

⋃

n≥0 V
n
α , then Σα is the closure of V ∞

α in the Hausdorff metric on R
2.

With these equivalent definitions of Σα in mind, we now describe some of the prop-

erties of these curves. First, it can be shown that each curve in this family has infinite

length and Hausdorff dimension log 4
log α

> 1 (see Appendix A for a reminder of the defini-

tion of Hausdorff dimension). This means the prefractal curve Σα
n has length increasing

to ∞ as n→ ∞, which is especially interesting in our case because this curve serves as

the boundary between two domains in the transmission problem.
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Figure 1.4: von Koch curve for different α

As α → 4, the dimension tends to one, with the curve becoming flat. In fact, if we

were allow α = 4, Σ4
n would reproduce the interval [0, 1] as the union of 4n segments of

equal length, and Σ4 would not be a fractal curve at all. At the other extreme, as α → 2,

the curve begins to fill the space and if we were to allow α = 2, the limit would be the

triangle with vertices (0, 0), (1, 0),
(

1
2
, 1

2

)
. This contrast in the nature of the von Koch

family of curves for different values of α can be seen in Figure 1.4. The very irregular

curves that result from α near 2 will be the primary focus in this work since they present

a more interesting case mathematically and a more difficult challenge for the numerical

work, but the analytical results and numerical procedures we describe hold for α near 4

as well.
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1.3 Fractal Transmission Problem

Now that the family of fractal von Koch curves has been defined, for a fixed α ∈ (2, 4), we

have the following formal statement of the transmission problem with a fractal interface:







−∆u = f in Ωi
α, i = 1, 2

−c0∆Σu =
[

∂u
∂ν

]
on Σα \ {A,B}

[u] = 0 across Σα

u = 0 on ∂Ω

(Pα)

In (Pα), we have essentially replaced the undetermined curve S of (P) in Section 1.1

with the fractal curve Σα. We use α in the notation here and elsewhere to draw attention

to the problem’s dependence on this parameter that singles out the particular curve in

the family of von Koch curves we are considering. For instance, Ω1
α and Ω2

α, the portions

of Ω above and below the interface Σα, vary greatly depending on the choice of α.

Although (Pα) describes the transmission problem with a fractal interface, at this

point, this description is purely formal. To make the problem meaningful, we must

attach a meaning to ∆Σ, the Laplacian along the fractal curve, and ∂u
∂ν

across the curve.

This is not a trivial task since Σα is a non-differentiable curve. So, we now take an aside

to explain how the Laplacian is defined on the von Koch curves.

1.3.1 Energy form and Laplacian on von Koch curves

We begin by describing a measure µ defined on Σα that is invariant under the maps

generating the curve, meaning µ satsifies

∫

Σα

φ dµ =
1

4

4∑

i=1

∫

Σα

(φ ◦ ψα
i ) dµ (1.6)

for every φ ∈ C0(Σ
α), where ψα

i for i = 1, . . . , 4 are the contractive similitudes appearing

in definition 1.2.1 (see [15]). Letting HD⌊K denote the restriction of the D−dimensional

Hausdorff measure on R
2 to the set K, the measure µ coincides with (Hd(Σα))−1Hd⌊Σα

where d = log 4
log α

is the Hausdorff dimension of Σα. Additionally, µ has the property [15, 9]

9



that there exist constants c1, c2 > 0 such that

c1r
d ≤ µ(B(x, r) ∩ Σα) ≤ c2r

d (1.7)

for every x ∈ Σα and 0 < r < 1. Using the terminology of [16], this makes Σα a d−set.

With this definition, we may now construct the energy form on the von Koch curve

with contraction factor α−1. Since Σα is a non-differentiable curve, it is not possible

to classically define the energy
∫

K
|∇u|2 dx for u : K → R when K = Σα. So, we will

replace this integral with an energy form that comes as the limit of finite difference

schemes, following the construction given in [18].

The description will be facilitated by introducing some additional notation. Given

a family of N maps, φ = {φ1, . . . , φN}, and an n−tuple of indices (i1, i2, . . . , in) with

ij ∈ {1, 2, . . . , N} for each j, we write

φi1,...,in = φi1 ◦ · · · ◦ φin .

Alternatively, we may write i|n for the n−tuple (i1, i2, . . . , in) as above, and correspond-

ingly, write φi|n for φi1 ◦ · · · ◦ φin . Finally, we use W n to denote the set of all n−tuples

taken from the set {1, 2, . . . , N}. With this notation fixed, we can now proceed to the

construction of the energy form.

Begin by fixing α ∈ (2, 4) and recall V ∞
α defined in Section 1.2 is the set of points

∪n>0Ψ
n
α({A,B}), where A = (0, 0) and B = (1, 0). Then for any function u : V ∞

α → R,

define

E(0)
α (u, u) := [u(A) − u(B)]2 (1.8)

and for n > 0, let

E(n)
α (u, u) := 4n

∑

i|n∈W n

[u(ψα
i|n(A)) − u(ψα

i|n(B))]2. (1.9)

The coefficient 4n in the expression for E
(n)
α is a renormalization factor. A discussion of

how this coefficient must be chosen can be found in [23]. It can be shown that E
(n)
α (·, ·)

10



is an increasing sequence having a limit,

Eα[u] = Eα(u, u) := lim
n→∞

E(n)
α (u, u) (1.10)

which we call the energy form on Σα. Additionally, it can be shown that the set

{u : V ∞
α → R |Eα[u] < ∞} is nonempty and any function in this set can be extended

uniquely to a continuous function on Σα. So, if for u : Σα → R, we set

Eα(u, u) := Eα(u|V ∞
α
, u|V ∞

α
)

and let

D(Σα) = {u ∈ C(Σα) |Eα[u] <∞},

we see that D(Σα) ⊂ C(Σα) ⊂ L2(Σα, µ), where µ is the invariant measure on Σα

previously defined. Next, we extend D(Σα) to form a complete space and then extend

Eα(u, u) to the whole space in the natural way.

Definition 1.3.1. Let DE(Σα) be the completion of {u ∈ C(Σα) |Eα[u] < ∞} with

respect to the norm:

‖u‖DE(Σα) :=
{

Eα(u, u) + ‖u‖2
L2(Σα,µ)

}1/2

(1.11)

which we call the energy norm on Σα.

Using the polarization identity, we create the bilinear form Eα(·, ·)

Eα(u, v) =
1

2
{Eα(u+ v, u+ v) − Eα(u, u) − Eα(v, v)} (1.12)

Then the space DE(Σα) is a Hilbert space with respect to the scalar product

Eα(u, v) +

∫

Σα

uv dµ

and the form Eα[u] is a closed Dirichlet form which is regular and strongly local in

L2(Σα, µ). For completeness, we recall the definitions of these terms related to Dirichlet

forms.

Definition 1.3.2. Let X be a locally compact metric space. Let E be a symmetric

form on L2(X,µ) and let DE = Dom(E). Then E is called a Dirichlet form if for every

11



u ∈ DE , E(u, u) ≤ E(u, u) where

u(p) =







1 if u(p) ≥ 1

u(p) if 0 < u(p) < 1

0 if u(p) ≤ 0

A Dirchlet form is:

1. closed if DE is complete with respect to the metric d(·, ·) defined as d(u, v) =

E(u, v) +
∫

X
uv dµ,

2. regular if it possesses a core, C ⊂ DE ∩ C0(X), that is dense in DE with respect

to the norm induced by d(·, ·) and dense in C0(X) with respect to the supremum

norm,

3. local if E(u, v) = 0 for every u, v ∈ DE with supp(u) and supp(v) compact, and

supp(u) ∩ supp(v) = ∅.

It can be shown (see [18] and the references therein) that the space DE(Σα) is contin-

uously embedded in C0, d
2 (Σα), where C0,β(K) is the set of Hölder continuous functions

of order β on K, and d is the Hausdorff dimension of Σα. This result allows us to

unambiguously define the space

D0(Σ
α) := {u ∈ DE(Σα) |u = 0 on V 0

α } (1.13)

which will arise in the description of the transmission problem with a fractal layer.

We are now prepared to define a Laplacian (with homogeneous boundary conditions)

on each of the von Koch curves, which will also be necessary for properly defining the

transmission problem with one of these curves as a layer. Since Eα, considered with the

domain D0(Σ
α) is also a closed form on L2(Σα, µ), there exists a self-adjoint operator

∆Σ in L2(Σα, µ), with dense domain D∆Σ
∩D0(Σ

α) in L2(Σα, µ), such that

Eα(v, w) = −
∫

Σα

(∆Σv)w dµ (1.14)

for v ∈ D∆Σ
∩D0(Σ

α) and for all w ∈ D0(Σ
α).

We will also find it useful to have the Laplace operator on Σα as a variational operator.

So, letting (D0(Σ
α))′ denote the dual of D0(Σ

α), we define the variational operator from
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D0(Σ
α) → (D0(Σ

α))′ by

Eα(v, w) = − < ∆Σv, w >(D0(Σα))′,D0(Σα) (1.15)

for v ∈ D0(Σ
α) and for all w ∈ D0(Σ

α), where < ·, · >(D0(Σα))′,D0(Σα) is the duality

pairing between (D0(Σ
α))′ and D0(Σ

α).

Note that we will use the same notation for the Laplace operator in both cases, as

a self-adjoint operator and as a variational operator. Also, we remark that these two

Laplacians have analogs in the case of the classical Euclidean Laplacian. Specifically,

one can define the Laplacian with homogeneous Dirichlet boundary conditions as either

a self-adjoint operator with domain H2(·)∩H1
0 (·) or as a variational operator from H1

0 (·)
to H−1(·).

1.3.2 Solution to the Fractal Transmission Problem

With the Laplacian on the fractal curve Σα defined, we are now prepared to give a more

rigorous description of the transmission problem with a fractal layer. Begin by defining

V (Ω,Σα) := {u ∈ H1
0 (Ω) | u|Σα ∈ D0(Σ

α)}. (1.16)

Following the proof given in [18], we have the following lemma.

Lemma 1.3.3. V (Ω,Σα) is a Hilbert space equipped with the scalar product

(u, v)V (Ω,Σα) =

∫∫

Ω

∇u∇v dx dy + Eα(u|Σα , v|Σα) (1.17)

Using this result, it is easy to see that the bilinear form defined by

(u, v) ∈ V (Ω,Σα) × V (Ω,Σα) 7→
∫∫

Ω

∇u∇v dx dy + Eα(u|Σα , v|Σα)

is continuous and coercive. Thus, by Lax-Milgram (Theorem 2.1.5), the following theo-

rem holds.

Theorem 1.3.4. Fix α ∈ (2, 4), f ∈ L2(Ω), and let c0 be a positive constant. Then,

there exists a unique u ∈ V (Ω,Σα) such that for every v ∈ V (Ω,Σα):

∫∫

Ω

∇u∇v dx dy + c0Eα(u|Σα , v|Σα) =

∫∫

Ω

fv dx dy. (P̃α)
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(P̃α) is the weak formulation of the transmission problem with a fractal interface

Σα. In [18], the regularity of the solution to (P̃α) is proved when α = 3, and it is shown

in what sense the solution to (P̃α) is also a solution of (Pα). One item of particular

importance that is explained in [18] is that the normal derivative ∂ui

∂ν
appearing in (Pα)

exists in the dual of a particular Besov space. These regularity results can be extended to

allow for the consideration of other values of α ∈ (2, 4), but introducing the spaces and

other tools needed to extend the regularity result would require a substantial detour from

the primary focus of this thesis, which is numerically solving the transmission problem

with a prefractal interface.

At this point, the reader might wonder why we will only consider numerically solving

the transmission problem with a prefractal interface, and not the transmission problem

with a fractal interface. There are a couple of well-founded reasons for this. First, while

the energy form developed in Section 1.3.1 allows for a precise mathematical statement

of the transmission problem with a fractal interface, this energy form is found as the limit

of a sequence of calculations of the energy on prefractal curves. As seen in Section 1.2,

each member of the family of von Koch curves has detail at arbitrarily small scales and

is also the result of a limiting process, so the curve itself can never be represented fully

by the finite precision of a computer. Therefore an implementable numerical method for

directly solving (P̃α) cannot be created.

However, noticing that the energy form that is used to define the Laplacian on Σα

results from calculations on prefractal curves and the fractal curve is itself the limit

of prefractal curves, one sees the transmission problem with a prefractal interface as a

reasonable approximation to the problem with a fractal interface. More importantly,

it is shown in [21] that solutions of the prefractal transmission problem (P̃α
n ) converge

to the solution of the fractal transmission problem (P̃α) in the H1−norm when α = 3.

Although some of the techniques used to prove this result are not easily extended to

other values of α, this still motivates our focus on numerically solving the transmission

problem with a prefractal interface, which we will now define.

1.4 Prefractal Transmission Problem

To state and understand the transmission problem with a prefractal layer, we must make

use of Sobolev spaces on polygonal boundaries. We use the definitions in [7] because they

are best suited to our purposes. However, other definitions have been given for these
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spaces that are not always in agreement with the definitions used here. To avoid any

confusion, we take an aside now to introduce the definitions used in this thesis and to

quote some results that we will make use of. For more details about alternate definitions

for Sobolev spaces on polygonal boundaries, see Remark 4.1 in [21] and the references

therein.

1.4.1 Sobolev and Trace Spaces on Polygonal Domains

We begin by introducing the polygonal domain and defining some notation. In this

section, assume Q is an open polygon in R
2 with N vertices Pj, j = 1, . . . , N numbered

in counterclockwise order from P1. Let lj be the side from Pj to Pj+1 for j = 1, . . . , N−1,

and let lN be the side from PN to P1. We let Γ denote the entire boundary of Q, having

length L =
∑N

j=1 |lj|, where |lj| denotes the length of lj in the Euclidean norm. Γ0 will

denote any subset of the boundary going from a vertex Pi to another vertex Pj of Q

with a counterclockwise orientation and having length L0. For each vertex Pj, we have

a smooth function φj : [0, L] → Γ that is the parameterization of Γ by arc length having

the property that φj(0) = Pj. We then have the following definitions for the Sobolev

spaces on the boundary of Q (See Section 2.8 of [7]).

Definition 1.4.1 (Sobolev Spaces on Polygonal Curves). Let Hs(Γ) be defined accord-

ing to the value of s as follows.

1. For s ∈ [0, 1

2
):

Hs(Γ) = {v ∈ L2(Γ) | v ◦ φ1 ∈ Hs(0, L)} (1.18)

with the norm ‖v‖Hs(Γ) = ‖v ◦ φ1‖Hs(0,L).

2. For s = 1

2
:

H
1
2 (Γ) =

{

v ∈ L2(Γ) | v ◦ φj ∈ H
1
2 (0, |lj|) and

∫ δ

−δ

|v ◦ φj(|lj| + t) − v ◦ φj(|lj| − t)|
|t| dt <∞, for j = 1, . . . , N

}

(1.19)

with the norm

‖v‖2

H
1
2 (Γ)

=
N∑

j=1

(

‖v ◦ φj‖2

H
1
2 (0,|lj |)

+

∫ δ

−δ

|v ◦ φj(|lj| + t) − v ◦ φj(|lj| − t)|2
|t| dt

)
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where δ = minj=1...N |lj|.

3. For s > 1

2
:

Hs(Γ) =
{
v ∈ L2(Γ) | v ◦ φj ∈ Hs(0, |lj|) and

v ◦ φj is continuous at |lj|, for j = 1, . . . , N} (1.20)

with the norm

‖v‖Hs(Γ) =

(
N∑

j=1

‖v ◦ φj‖2
Hs(0,|lj |)

) 1
2

(1.21)

The next theorem gives some vital inclusions relating these Sobolev spaces. Before

stating the result, we introduce some notation that we will adhere to in the remainder

of the thesis. For normed spaces X and Y ,

X →֒ Y X ⊂ Y with a continuous injection

(i.e., there exists a constant C s.t. ‖·‖Y ≤ C ‖·‖X)

X →֒→֒ Y X ⊂ Y with a compact injection

(i.e., vn
w
⇀ v in X ⇒ ‖vn − v‖Y → 0)

Theorem 1.4.2. For the Sobolev spaces of definition 1.4.1, we have the inclusions

Hs(Γ) →֒ C(Γ) for s >
1

2
(1.22)

and

Hs2(Γ) →֒ Hs1(Γ) for s1 < s2. (1.23)

Remark: In light of the preceding theorem, we can characterize the space Hs(Γ) for

s > 1
2

as {v ∈ C(Γ) | v|lj ∈ Hs(lj) for j = 1, . . . , N}.
In what follows, we will also need to make use of the trace of an H1−function on

the boundary, so we supply the definition and a useful theorem here. The theorem

corresponds to Theorem 2.24 of [7].
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Definition 1.4.3 (Trace operator). Let D be an open set in R
2. Then for f ∈ Hs(D),

we put

γ0f = lim
r→0

1

|B(x, r) ∩D|

∫

B(x,r)∩D

f(y)dy (1.24)

at every point x ∈ D where the limit exists. We call γ0 the trace (or restriction)

operator on Hs(D).

Remark: In the case where f ∈ C(D), γ0f on ∂D coincides with f |∂D, so we will

preserve the notation f |∂D for γ0f on ∂D, even when f ∈ Hs(D).

Theorem 1.4.4. Let Q be a polygon in R
2 with boundary Γ and let s > 1

2
. Then

Hs− 1
2 (Γ), is the trace space to Γ of Hs(Q) in the following sense:

1. the restriction operator, γ0 is a continuous linear operator from Hs(Q) to Hs− 1
2 (Γ),

2. there is a continuous linear operator Ext from Hs− 1
2 (Γ) to Hs(Q) such that γ0◦Ext

is the identity operator in Hs− 1
2 (Γ).

Remark: The definitions for Sobolev spaces on polygonal boundaries given in definition

1.4.1 also hold with Γ replaced by Γ0 after making the appropriate modifications. So,

in [7], Theorems 1.4.2 and 1.4.4 are also given with Γ replaced by Γ0.

With these definitions completed, we may now proceed to the statement of the trans-

mission problem with a prefractal interface.

1.4.2 Introduction to the Prefractal Transmission Problem

Fix n ∈ N and α ∈ (2, 4). As before, let Ω = (0, 1) × (−1, 1) and denote by Ω1
α,n and

Ω2
α,n the portions of Ω above and below the prefractal curve Σα

n, respectively (see Figure

1.5 for an example with α = 2.5 and n = 3). Then the transmission problem we will

consider on this domain is stated as follows:







−∆un = f in Ωi
α,n, i = 1, 2

−cn∆tun =
[

∂un

∂ν

]
on Σα

n

[un] = 0 across Σα
n

un = 0 on ∂Ω

(Pα
n )

Unlike in the case of a fractal interface, it is not problematic to define derivatives on Σα
n,

because for any fixed n, this is a polygonal curve and ∆t is the tangential Laplacian,
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Figure 1.5: Domain with α = 2.5 and n = 3

defined piecewise on each segment of Σα
n. The constant cn equals c0α

(d−1)n, where c0 is

the constant appearing in (P̃α) and (Pα), and d = log 4
log α

is the Hausdorff dimension of Σα.

In the present context, it is enough to know that cn is a positive constant. Only when

the asymptotic convergence of solutions of (Pα
n ) to the solution of (Pα) is considered,

as mentioned in Section 1.3.2, is the exact value of this constant significant.

We will also make extensive use of the weak formulation of this problem, so we

introduce that now. Although definitions for Sobolev spaces on polygonal curves were

provided in Section 1.4.1, for concreteness, we supply a definition for the space H1
0 (Σα

n)

here.

Definition 1.4.5. The space H1
0 (Σα

n) is defined as

{v ∈ C0(Σ
α
n) : u|M ∈ H1(M), for every segment M ∈ Σα

n}

with the norm

‖v‖H1(Σα
n) =




∑

M∈Σα
n

‖u|M‖2
H1(M)





1
2

.

We now define the space on which the problem will be posed as

V (Ω,Σα
n) := {u ∈ H1

0 (Ω) | u|Σα
n
∈ H1

0 (Σα
n)} (1.25)

with the natural inner product

(u, v)V (Ω,Σα
n) :=

∫∫

Ω

∇u∇v dx dy + cn

∫

Σα
n

∇tu∇tv ds, (1.26)
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and corresponding norm

‖u‖V (Ω,Σα
n) :=

(

|u|2H1(Ω) + cn |u|2H1(Σα
n)

) 1
2
. (1.27)

Then, using this notation, the weak formulation of (Pα
n ) is:







Find un ∈ V (Ω,Σα
n) such that

∫∫

Ω
∇un∇v dx dy + cn

∫

Σα
n
∇tun∇tv ds =

∫∫

Ω
fv dx dy

for every v ∈ V (Ω,Σα
n)

(P̃α
n )

We will begin the analysis of this transmission problem with a prefractal interface by

showing that (P̃α
n ) has a unique solution. This will follow easily from the Lax-Milgram

Theorem (see Theorem 2.1.5 for reference) once we have shown that V (Ω,Σα
n) is a Hilbert

Space.

Lemma 1.4.6. V (Ω,Σα
n) is a Hilbert space with respect to the inner product (1.26).

Proof. It is easy to see that (1.26) is an inner product, so it remains to show that

V (Ω,Σα
n) is complete with respect to the induced norm. Let uk be a Cauchy sequence in

V (Ω,Σα
n). Then by definition of the norm on V (Ω,Σα

n), uk is a Cauchy sequence inH1
0 (Ω)

and uk|Σα
n

is a Cauchy sequence in H1
0 (Σα

n). Therefore, there exist functions u ∈ H1
0 (Ω)

with limk→∞ ‖uk − u‖H1(Ω) = 0, and û ∈ H1
0 (Σα

n) with limk→∞
∥
∥uk|Σα

n
− û
∥
∥

H1(Σα
n)

= 0.

By Theorem 1.4.4, the restriction operator from H1(Ω) → H
1
2 (Σα

n) is a continuous

linear operator, so uk|Σα
n
→ u|Σα

n
in H

1
2 (Σα

n). By Theorem 1.4.2, H1
0 (Σα

n) →֒ H
1
2 (Σα

n), so

û = u|Σα
n
, and hence, u ∈ V (Ω,Σα

n).

Theorem 1.4.7. Fix n ∈ N and α ∈ (2, 4). Then, for any f ∈ L2(Ω), there exists a

unique un ∈ V (Ω,Σα
n) satisfying (P̃α

n ). Additionally, there exists a constant C, indepen-

dent of n and α, such that

‖un‖V (Ω,Σα
n) ≤ C ‖f‖L2(Ω) (1.28)

Proof. Since (·, ·)V (Ω,Σα
n) is a symmetric, continuous, coercive bilinear form on the Hilbert

Space V (Ω,Σα
n), the existence of a unique solution to (P̃α

n ) follows immediately from the

Lax-Milgram Theorem.
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For the inequality, let un be the solution to (P̃α
n ). Then, we have:

‖un‖2
V (Ω,Σα

n) = (un, un)V (Ω,Σα
n) =

∫

Ω

fun dx dy.

Using the Hölder and the Poincaré Inequalities gives:

‖un‖2
V (Ω,Σα

n) ≤
(∫

Ω

|f |2 dx dy
) 1

2
(∫

Ω

|un|2 dx dy
) 1

2

≤ C ‖f‖L2(Ω) |un|H1(Ω)

≤ C ‖f‖L2(Ω) ‖un‖V (Ω,Σα
n)

where C, coming from Poincaré’s Inequality, depends only on Ω. Dividing both sides by

‖un‖V (Ω,Σα
n) yields (1.28).

In the next section, we will explore the regularity of the prefractal transmission

problem by stating more rigorously the sense in which the equalities in (Pα
n ) hold. We

will conclude the section with a result showing that the solution is in a weighted Sobolev

space. This last result will be essential for the numerical analysis in Chapter 3.

1.4.3 Regularity of the Prefractal Transmission Problem

In this section, we will present two main results. The first theorem describes in what

sense the solution to (P̃α
n ) is also a solution to (Pα

n ). The second theorem will give the

regularity of un in terms of fractional dimensional and weighted Sobolev spaces. Both

results can be found in [20] for the special case when α = 3, and the general result for

other values of α can be found in [19].

Theorem 1.4.8. For any fixed α ∈ (2, 4), n ∈ N, and f ∈ L2(Ω), let un ∈ V (Ω,Σα
n) be

the solution to (P̃α
n ) guaranteed by Theorem 1.4.7. Then, un is also a solution of (Pα

n )

in the following sense:







−∆un = f in L2(Ωi
α,n), i = 1, 2

−cn∆tun =
[

∂un

∂ν

]
in L2(Σα

n)

[un] = 0 in H2(Σα
n)

un = 0 in H
1
2 (∂Ω)

(1.29)
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Due to the discontinuity in the normal derivative across Σα
n, un /∈ H2(Ω). The

discontinuity in the derivative is not the only thing limiting the regularity of the solution

though. Additionally, the corners in the domain have a strong effect on the regularity

and will pose challenges in the numerical approximation.

The next theorem gives the regularity of un in terms of fractional dimensional Sobolev

spaces and weighted Sobolev spaces. In both cases, the definition of the space relies on

the angle θ first appearing in the definition of the maps that generate the Von Koch

curve in Section 1.2. This angle is important because the only reentrant corners in the

domain are at vertices of the prefractal curve. Reentrant corners occur wherever the

angle interior to the domain is greater than π. An example of these reentrant corners

and their relation to the angle θ can be seen in Figure 1.6. We see here that there are
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π + 2θ

π

θ

Figure 1.6: Typical reentrant corners

two type of reentrant corners in the domain. In the lower domain, angles at reentrant

corners have measure π + θ. In the upper portion of the domain, the reentrant corners

have an angle of 2π− (π−2θ) = π+2θ. Since the angles at reentrant corners are always

greater in the upper domain, we expect, and will see, that the solution is less regular in

this portion of the domain.

As mentioned before, the regularity results below are given in fractional Sobolev

spaces as well as in weighted Sobolev spaces. This is done because defining the regularity

of the solution using fractional Sobolev spaces is satisfactory for studying the problem

from an analytical viewpoint, but, for the numerical work we will pursue, it is more

convenient to consider the regularity in a weighted Sobolev space, which we now define.

Definition 1.4.9. Let Q be a polygonal domain in R
2 with vertices Pi, i = 1, 2, . . . , N

and θi denote the angle formed at the vertex Pi in the interior of Q. With

R := {1 ≤ j ≤ N | θj > π} and η :=
1

4
min

1≤i<j≤N
|Pi − Pj| ,
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define r(x) for x ∈ Q as

r(x) =







|x− Pj| if x ∈ B(Pj, η) for some j ∈ R

1−η
η

(|x− Pj| − η) + η if x ∈ B(Pj, 2η) \B(Pj, η) for some j ∈ R

1 if x /∈ ⋃j∈RB(Pj, 2η)

(1.30)

Then for 0 < µ < 1, let H2,µ(Q; r) be the space

{u ∈ H1(Q) | rµ∂βu ∈ L2(Q) ∀|β| = 2},

with the norm

‖v‖H2,µ(Q; r) :=



‖v‖2
H1(Q) +

∑

|β|=2

∥
∥rµ∂βv

∥
∥

2

L2(Q)





1
2

(1.31)

Remarks: First, notice that {Pj}j∈R is the set of vertices of Q that are reentrant to the

domain. Away from the reentrant corners, the weighting function r has a positive lower

bound. Therefore, if u ∈ H2,µ(Q; r), and D ⊂ Q \ ∪j∈RB(Pj, δ) for some δ > 0, then

u|D ∈ H2(D). This information will be used in Section 2.2 to prove an error estimate

for applying the finite element method to solve an elliptic problem on a domain with

reentrant corners.

Next, we note that this is not the most general definition that can be given for the

weighted Sobolev space H2,µ(Q; r). While we have chosen to specify the function r,

many results using these spaces require only that r : Q → R
+ is a function in C(Ω)

with the property that r(x) = |x − Pj| if x belongs to a small neighborhood of Pj for

some j ∈ R. Because of this flexibility, the function r appears in the notation for the

space. Additionally, while we have used the same weight µ at every reentrant corner

of the domain, when the angle is not the same at each corner, it is appropriate to use

a different weight depending on each angle. In the current work, we will seldom make

use of a more general definition of r, and we will never need to use different weights at

different corners. For more information about general weighted Sobolev spaces, see [17]

and the references therein.

Finally, noticing that the function r depends on the reentrant corners in the domain,

when we refer to a weighted Sobolev space on the domains Ω1
α,n and Ω2

α,n, we will
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adopt a notation intended to capture the idea that the function r varies with n, even

for a fixed α. Hereafter, we will use the Hµ(Ωi
α,n; ri

n) to refer to a weighted Sobolev

space on Ωi
α,n, using ri

n to refer to the weighting function described in Definition 1.4.9,

specialized to the case where Q is either Ωi
α,n for i = 1 or i = 2. In Chapter 3, when

implementation of the algorithm for numerically solving the problem is discussed, we

will give more consideration to properties of this weighting function. We now present

the main regularity result for the problem (Pα
n ), appearing in [19].

Theorem 1.4.10. Fix α ∈ (2, 4), n ∈ N, and f ∈ L2(Ω). Let un be as in Theorem

1.4.8. Then, letting ui
n denote un|Ωi

α,n
, we have:

u1
n ∈ Hs1(Ω1

α,n) where s1 <
2π+2θ
π+2θ

(1.32)

u2
n ∈ Hs2(Ω2

α,n) where s2 <
2π+θ
π+θ

(1.33)

with the property that

∥
∥ui

n

∥
∥

Hsi (Ωi
α,n)

≤ c(n) ‖f‖L2(Ω) for i = 1, 2. (1.34)

Additionally,

u1
n ∈ H2,µ1(Ω1

α,n; ri
n) for µ1 >

2θ
π+2θ

(1.35)

u2
n ∈ H2,µ2(Ω2

α,n; ri
n) for µ2 >

θ
π+θ

(1.36)

satisfying
∥
∥rµi

n ∂
βui

n

∥
∥

L2(Ωi
α,n)

≤ c(µi, n) ‖f‖L2(Ωi
α,n) ∀ |β| = 2,

where θ = cos−1
(

α
2
− 1
)

and ri
n is the distance function described above.
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Chapter 2

Finite Element Theory

This chapter will be divided into two sections. Both sections will provide important

results that are used to study the finite element method for a large class of problems. In

the first section, our goal will be to present some error estimates for the finite element

method applied to H2−regular problems. These results are well known and appear in

numerous books, for instance [6], [8] and [26]. As we have seen in Theorem 1.4.10, the

solution to (P̃α
n ) is not in H2(Ω), so the results of the first section will not be directly

applicable. However, they are included here because we will still make some use of them

and it will be useful to compare them to the results of the second section, in which

problems with solutions in weighted Sobolev spaces, like the prefractal transmission

problem, are considered. The results in the second section are not quite as widely

known, but they also appear in some books. In particular, we will generally follow the

presentation in [12]. Readers familiar with this theory may proceed directly to the next

chapter and refer back to this chapter only as needed when theorems or notation are

referenced. All results applying this pre-existing theory to our problem of interest, (P̃α
n ),

will be postponed until the next chapter.

2.1 Basic Error Estimates

In this section, and in other portions of the thesis, we will use the Sobolev Embedding

Theorem and the Rellich-Kondrashov Theorem. For ease of reference, the results are

repeated here. Proofs can be found in [1].

Theorem 2.1.1 (Sobolev Embedding Theorem). Let Ω ⊂ R
2 be an open set with
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Lipschitz-continuous boundary. Let 1 ≤ p ≤ q, m ≥ 1, and k ≤ m. Then

1. if k < 2
p
, Wm,p(Ω) →֒ Wm−k,q(Ω) for p ≤ q ≤ 2p

2−kp
.

2. if k = 2
p
, Wm,p(Ω) →֒ Wm−k,q(Ω) for p ≤ q <∞.

3. if k > 2
p
, Wm,p(Ω) →֒ Cm−k(Ω).

Theorem 2.1.2 (Rellich-Kondrashov Theorem). Let Ω ⊂ R
2 be an open set with

Lipschitz-continuous boundary. Let 1 ≤ p < ∞ and m ≥ 1. Fix 1 ≤ k ≤ m and

let ω ⊂ Ω be any open, bounded set. Then

1. if k < 2
p

and q < 2p
2−kp

, Wm,p(Ω) →֒→֒ Wm−k,q(ω).

2. if k = 2
p
, Wm,p(Ω) →֒→֒ Wm−k,q(Ω) for all q <∞.

3. if k > 2
p
, Wm,p(Ω) →֒→֒ Cm−k(Ω)

Theorem 2.1.3. Let Ω be a bounded open subset of R
n with Lipschitz boundary. Then,

for s2 > s1 ≥ 0, W s2,p(Ω) →֒→֒ W s1,p(Ω).

The first theorem we will present gives the existence and uniqueness of the solution

to an abstract variational problem. For concreteness, we introduce a model variational

problem that satisfies the assumptions of the theorem. The model problem we will

consider is: 





Find u in H1
0 (Ω) such that:

∫

Ω
∇u∇v dx =

∫

Ω
fv dx

for every v ∈ H1
0 (Ω).

(M)

Note that this is simply the variational formulation of the Poisson problem:

{

−∆u = f in Ω

u = 0 on ∂Ω

To be consistent with the formulation of the following theorem, if we let a(u, v) =
∫

Ω
∇u∇v dx and f(v) =

∫

Ω
fv dx, we may rewrite the problem in the form:







Find u in H1
0 (Ω) such that:

a(u, v) = f(v)

for every v ∈ H1
0 (Ω)

(2.1)

In order to prove that a solution to this problem exists, the bilinear form a must

have certain properties. We recall some terms that express these properties here.
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Definition 2.1.4. Let Y be a Hilbert space and let a : Y × Y → R be a bilinear form.

Then a(·, ·) is

1. continuous provided there exists M > 0 such that

|a(u, v)| ≤M ‖u‖Y ‖v‖Y , for all u, v ∈ Y

2. coercive if there exists m > 0 such that

a(v, v) ≥ m ‖v‖2
Y for all v ∈ Y.

It can easily be shown that the bilinear form a(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R, defined

above for the model problem, satisfies both of these properties. Then, the Lax-Milgram

theorem supplies us with the existence of a unique solution to the model problem.

Because this result is so well-known, we have omitted the proof and have only provided

a restatement of the theorem.

Theorem 2.1.5 (Lax-Milgram). Let Y be a Hilbert space, and let a(·, ·) : Y ×Y → R be

a symmetric, continuous, coercive bilinear form. Let f : Y → R be a continuous linear

form. Then the abstract variational problem:

Find u ∈ Y such that a(u, v) = f(v) ∀v ∈ Y (2.2)

has a unique solution u ∈ Y .

Although this first theorem gives us existence and uniqueness of the solution to the

model problem, it does not provide any means of actually calculating the solution u. The

finite element method is one of a larger class of methods, called Galerkin methods, in

which one seeks an approximate solution to the problem by solving the problem exactly

in a subspace Yh of Y , i.e. find uh ∈ Yh such that a(uh, vh) = f(vh)∀vh ∈ Yh. Since

this subspace will itself be a Hilbert space, the above theorem implies that there exists a

unique solution to the variational problem posed on Yh. We hope to choose a subspace

Yh in which it is much easier to find a solution than in the original space Y , but contains

enough functions that the actual solution can be adequately approximated by functions

in the subspace.

Our goal in this section is to determine bounds for the error introduced by solving on

a subspace instead of the entire space. What follows is the first approximation theorem
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on our way to that goal. Like the existence theorem above, it is rather abstract. Before

proceeding, we caution the reader that we will not always be concerned with the precise

values of constants appearing in the proofs, so the notation for a constant may not

change, even as the value of the constant changes over a sequence of steps.

Theorem 2.1.6 (Cea’s Lemma). Let Y be a Hilbert space, Yh a subspace of Y , a(·, ·) :

Y × Y → R a continuous, coercive bilinear form and f : Y → R a continuous linear

form. Let u and uh be the unique solutions, guaranteed by Lax-Milgram (Theorem 2.1.5),

of the variational problems:

a(u, v) = f(v) ∀v ∈ Y and

a(uh, vh) = f(vh) ∀vh ∈ Yh

respectively. Then there exists a constant C, independent of the subspace Yh, such that

‖u− uh‖Y ≤ C inf
vh∈Yh

‖u− vh‖Y . (2.3)

Proof. Since u is the solution of the variational problem in Y and Yh ⊂ Y , we have

a(u, vh) = f(vh) for each vh ∈ Yh.

Since uh solves the variational problem in Yh, we also have

a(uh, vh) = f(vh) for any vh ∈ Yh.

So, by subtraction, we have

a(u− uh, vh) = 0 for each vh ∈ Yh.

Now, since a(·, ·) is a continuous, coercive bilinear form, there exist constants m and

M > 0 such that m ‖v‖2
Y ≤ a(v, v) and |a(u, v)| ≤ M ‖u‖Y · ‖v‖Y for all u, v ∈ Y .
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Putting these together, we have for any vh ∈ Yh:

m ‖u− uh‖2
Y ≤ a(u− uh, u− uh)

= a(u− uh, u− uh) + a(u− uh, uh − vh)

= a(u− uh, u− vh)

≤M ‖u− uh‖Y · ‖u− vh‖Y

So, after dividing, we have ‖u− uh‖Y ≤ M
m
‖u− vh‖Y for each vh ∈ Yh, implying the

conclusion with C = M
m

.

Now that we have some understanding of the error incurred by solving on a subspace,

we must define a subspace on which we wish to solve our problem. In the finite element

method, the subspace is determined by a triangulation of the domain. Notice that up

until this point, the domain Ω on which the model problem (M) was posed did not

explicitly enter into any of the theorems. However, since the triangulation is highly

dependent on the particular domain Ω, properties of the domain will affect the finite

element error estimates.

In this section, we will make several assumptions about Ω and its triangulation. We

assume that Ω ⊂ R
2 is a convex polygon and denote the boundary of Ω by Γ. In order

to state the assumptions about the triangulation, we will need a few definitions. The

first definition will be used to assure that the triangulation of Ω is actually composed of

triangles.

Definition 2.1.7. Let K̂ and K be subsets of R
n. Then K̂ and K are called affine

equivalent if there exists an invertible affine mapping F : R
n → R

n defined by F (x̂) =

Bx̂+ b such that K = F (K̂).

By varying angles and side lengths, very dissimilar triangles can be produced. To

obtain error estimates, it is necessary to have some control over the variation among the

triangles. The next definitions are used to quantify the variation between triangles in

the mesh.

Definition 2.1.8. For any triangle, K, define

hK = diam(K) = sup
x,y∈K

|x− y|

ρK = 2 sup{r : B(x, r) ⊂ K}
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From the definitions, it is apparent that hK is equal to the longest side of K and ρK

is the diameter of the largest circle that can be inscribed in K. A triangle that is very

skinny will have ρK << hK . So, the ratio hK

ρK
, sometimes called the aspect ratio, is used

to describe how thin a triangle is, with this ratio increasing to infinity as the triangle

collapses to a segment. This is important because, as the error estimates will indicate,

triangles that are very “skinny” can result in a poor finite element approximation. With

this in mind, we formally define what we mean by a triangulation of the domain.

Definition 2.1.9. A (conformal) triangulation Th is a finite set of closed triangles,

with the following properties:

(T1) Ω =
⋃

K∈Th

K

(T2) For K1 6= K2 ∈ Th,
◦
K1 ∩

◦
K2 = ∅

(T3) Any edge of a triangle K1 ∈ Th is either a subset of Γ or the edge of

another triangle K2 ∈ Th.

(T4) h = max
K∈Th

hK

(T5) For any K ∈ Th, K is affine equivalent to the reference triangle K̂

formed by the vertices (0, 0), (0, 1), and (1, 0).

Remark: Although we have stated that the triangles K are closed and this is reinforced

by (T1), we will follow the convention in [8] and use the notation Hm(K) to refer to

the space which would more properly be denoted by Hm(
◦
K). This is done for simplicity

and to avoid confusing notation, especially when we consider the reference triangle K̂.

Once the domain has been triangulated in this way, it is time to create a subspace

Yh corresponding to the triangulation Th. Throughout the thesis, we will consider the

finite element space consisting of functions that are affine on each triangle K ∈ Th and

continuous on Ω. We will denote this space by P 1
h (Ω). A basis for this space can

easily be shown. Begin by labeling each vertex in the triangulation xi for some integer

i ∈ {1, 2, . . . , N}, where N is the number of triangle vertices in Th. Then define a set

of functions φi : Ω → R for 1 ≤ i ≤ N by making φi the unique function that is affine

on each K ∈ Th and has the property that φi(xj) = δij for any vertex xj ∈ Th. It

is easily verified that these functions form a basis for the space, and hence the space
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has dimension N . Now we define a linear interpolation operator taking functions from

H2(Ω) to this space of piecewise affine functions contained in H1(Ω).

Definition 2.1.10. Let K be a triangle with vertices z1, z2 and z3 that is affine equiva-

lent to the reference triangle K̂ and let P 1(K) denote the set of all polynomials of degree

one defined on K. Then we define the map ΠK : C(K) → P 1(K) by letting ΠK(v) be the

unique affine function v̄ ∈ P 1(K) such that v̄(zi) = v(zi) for i = 1, 2, 3. By the Sobolev

Embedding Theorem (Theorem 2.1.1), H2(K) →֒ C(K). Thus every v ∈ H2(K) has a

continuous representative ṽ, so we may define ΠK : H2(K) → P 1(K) by ΠK(v) = ΠK(ṽ).

If Th is a triangulation of Ω as above, then we define Πh : H2(Ω) → P 1
h (Ω) ⊂ H1(Ω) to

be the map satisfying Πh(v) = ΠK(v) for every v ∈ H2(Ω) and for every K ∈ Th.

With this linear interpolation operator defined, we are now prepared to give a bound

on the error in approximating a function u ∈ H2(Ω) with an affine function when Ω is

a very simple domain. We will then expand this result to more complex domains.

Lemma 2.1.11. Let K̂ be the reference triangle with vertices z1 = (0, 0), z2 = (0, 1)

and z3 = (1, 0). Let ΠK̂ : H2(K̂) → P 1(K̂) be the linear interpolation operator of

Definition 2.1.10. Then there exists a constant C such that

‖u− ΠK̂u‖H2(K̂) ≤ C |u|H2(K̂) ∀u ∈ H2(K̂). (2.4)

Proof. The idea of the proof is to first endow H2(K̂) with the norm

‖v‖∗ := |v|H2(K̂) +
3∑

i=1

|v(zi)|

and show that the norms ‖·‖∗ and ‖·‖H2(K̂) are equivalent. Then the result follows from:

‖u− ΠK̂u‖H2(K̂) ≤ C ‖u− ΠK̂u‖
∗

= C

[

|u− ΠK̂u|H2(K̂) +
3∑

i=1

|(u− ΠK̂u)(zi)|
]

= C|u− ΠK̂u|H2(K̂)

= C|u|H2(K̂)

where we have used the facts that (ΠK̂u)(zi) = u(zi) for i = 1, 2, 3 and |ΠK̂u|H2(K̂) = 0

since ΠK̂u ∈ P 1(K̂).
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We begin by showing that ‖·‖∗ ≤ C ‖·‖H2(K̂). By the Sobolev Embedding Theorem,

we have H2(K̂) →֒ C0(K̂). Thus, there exists C > 0 such that

max
i=1,2,3

|v(zi)| ≤ ‖v‖C0(K̂) ≤ C ‖v‖H2(K̂)

for every v ∈ H2(K̂). So, ‖v‖∗ ≤ (1 + 3C) ‖v‖H2(K̂).

Now, we will show that ‖·‖H2(K̂) ≤ C ‖·‖∗ by contradiction. Suppose such a C

does not exist. Then there exists a sequence {vk} ⊂ H2(K̂) with ‖vk‖H2(K̂) = 1 and

‖vk‖∗ ≤ 1
k

for each k. Since H2(K̂) →֒→֒ H1(K̂), by the Rellich-Kondrashov Theorem,

a subsequence of {vk} converges in H1(K̂). Now, using the definition of ‖·‖2
H2(K̂) as

‖·‖2
H1(K̂) + |·|2H2(K̂), we note that for each k, l ∈ N,

‖vk − vl‖2
H2(K̂) ≤ ‖vk − vl‖2

H1(K̂) + (|vk|H2(K̂) + |vl|H2(K̂))
2. (2.5)

Then, since {vk} is a Cauchy sequence in H1(K̂), the first term on the right hand side

goes to 0 as k, l → ∞. By design, ‖vk‖∗ → 0 as k → ∞, and since |·|H2(K̂) ≤ ‖·‖∗, the

second term on the right hand side of (2.5) also goes to 0 as k, l → ∞. Thus {vk} is also a

Cauchy sequence in H2(K̂). Since H2(K̂) is complete, there exists v∗ ∈ H2(K̂) such that

‖vk − v∗‖H2(K̂) → 0 as k → ∞. By continuity of norms, ‖v∗‖H2(K̂) = 1 and ‖v∗‖∗ = 0.

Since ‖v∗‖∗ = 0, we have that both |v∗|H2(K̂) = 0 and v∗(zi) = 0 for i = 1, 2, 3. Since

|v∗|H2(K̂) = 0 implies v∗ ∈ P1(K̂) we must have v∗ = 0, contradicting ‖v∗‖H2(K̂) = 1.

We wish to use the error estimate from the previous lemma to estimate the error

in approximating a function u ∈ H2(Ω) with its linear interpolant Πhu for a given

triangulation, Th of Ω. We will do so by making use of the assumption that for each

K ∈ Th, K is affine equivalent to K̂. The next lemma makes use of differentiation

and integration rules in R
2 to relate |v|Hm(K) and |v̂|Hm(K̂) where v ∈ Hm(K) and v̂ is

the corresponding function obtained by composing v with the affine map from K̂ to K.

When combined with the previous lemma, this result will allow us to obtain an error

estimate when the domain Ω is formed as a union of triangles that are affine-equivalent

to K̂. The proof follows the one given in [8].

Lemma 2.1.12. Let K and K̂ be affine equivalent and let FK(x̂) = BK x̂ + bK be the

affine map from K̂ → K. If v ∈ Hm(K) for some integer m, then v̂ := v◦FK ∈ Hm(K̂),
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and there exists a constant C, depending only on m, such that:

|v̂|Hm(K̂) ≤ C ‖BK‖m |detBK |− 1
2 |v|Hm(K) (2.6)

where ‖BK‖ = max
x∈R2

x 6=0

|BKx|
|x| .

Proof. We will first prove the statement when v ∈ Cm(K) and then extend our result

to all functions v ∈ Hm(K).

Suppose v ∈ Cm(K). Then, since FK is affine, we have that v̂ ∈ Cm(K̂). Now, for

any multi-index β with |β| = m, and eβi
a basis vector in R2 for each 1 ≤ i ≤ m, one

has:

∂β v̂(x̂) = Dmv̂(x̂)(eβ1 , eβ2 , . . . , eβm
).

Thus, letting ‖Dmv̂(x̂)‖ represent the usual operator norm, it follows that

∣
∣∂β v̂(x̂)

∣
∣ ≤ ‖Dmv̂(x̂)‖ .

Consequently,

|v̂|2Hm(K̂) =
∑

|β|=m

∫

K̂

∣
∣∂β v̂(x̂)

∣
∣
2
dx̂

≤ C1

∫

K̂

‖Dmv̂(x̂)‖2 dx̂ (2.7)

where C1 is the cardinality of the set {β ∈ N
m : |β| = m}. Now, using the differentiation

rule for composition of functions, we note that for any vectors ξi ∈ R
2, 1 ≤ i ≤ m,

Dmv̂(x̂)(ξ1, ξ2, . . . , ξm) = Dm(v ◦ FK)(x̂)(ξ1, ξ2, . . . , ξm)

= Dmv(x)(BKξ1, BKξ2, . . . , BKξm)

where x = FK(x̂). Thus, ‖Dmv̂(x̂)‖ ≤ ‖BK‖m ‖Dmv(x)‖, so

∫

K̂

‖Dmv̂(x̂)‖2 dx̂ ≤ ‖BK‖2m

∫

K̂

‖Dmv(x)‖2 dx̂. (2.8)
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Applying the change of variables on the right hand side yields:

∫

K̂

‖Dmv̂(x̂)‖2 dx̂ ≤ ‖BK‖2m
∣
∣det(B−1

K )
∣
∣

∫

K

‖Dmv(x)‖2 dx. (2.9)

Since there exists a constant C2 such that ‖Dmv(x)‖ ≤ C2 max|β|=m

∣
∣∂βv(x)

∣
∣, by putting

the previous inequalities together we have that

|v̂|2Hm(K̂) ≤ C1

∫

K̂

‖Dmv̂(x̂)‖2 dx̂

≤ C1 ‖BK‖2m |detBK |−1

∫

K

‖Dmv(x)‖2 dx

≤ C1 · C2
2 ‖BK‖2m |detBK |−1 |v|2Hm(K)

and our statement is proved for v ∈ Cm(K).

Now, we will extend this statement to all v ∈ Hm(K). From what we have just

shown, the operator i : Cm(K) → Cm(K̂) is in L(Hm(K);Hm(K̂)). Then, since

Cm(K) is dense in Hm(K), the map i can be extended (uniquely) to a continuous

mapping i : Hm(K) → Hm(K̂) which completes the proof.

While the previous two results provided for estimates of error on a single triangle, in

the following theorem, these results will be used to get an error estimate on the entire

triangulated domain. This requires one further assumption about the triangulation

which is defined below.

Definition 2.1.13. A triangulation Th is shape-regular if there exists a constant

σ > 0 such that hK

ρK
≤ σ for all K ∈ Th. A family of triangulations {Th}, indexed by

h := maxK∈Th
hK , is regular if Th is shape-regular with the same value of σ for each h,

and h→ 0.

Theorem 2.1.14. Let Ω be an open set in R
2 with Lipschitz-continuous boundary and

suppose Th is a shape-regular triangulation of Ω. Then there exists a constant C, de-

pending only on m, such that:

‖u− Πhu‖Hm(Ω) ≤ Cσmh2−m |u|H2(Ω) ∀u ∈ H2(Ω) and 0 ≤ m ≤ 2, (2.10)

where Πh is the linear interpolation operator of Definition 2.1.10, and σ is the regularity

constant of Definition 2.1.13.
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Proof. It suffices to establish the inequality for each K ∈ Th since

‖u− Πhu‖2
Hm(Ω) =

∑

K∈Th

‖u− Πhu‖2
Hm(K) .

So, let K ∈ Th be given. Then by assumption, K is affine equivalent to K̂, so there exists

a bijective affine map FK : K̂ → K defined by FK(x̂) = BK x̂ + bK . Then by Lemmas

2.1.12 and 2.1.11, and using the fact that (detB−1
K ) = (detBK)−1, we have:

|u− Πhu|Hm(K) ≤ C
∥
∥B−1

K

∥
∥

m ∣
∣detB−1

K

∣
∣
− 1

2 |û− Πhû|Hm(K̂)

≤ C
∥
∥B−1

K

∥
∥

m |detBK | 12 ‖û− Πhû‖H2(K̂)

≤ C
∥
∥B−1

K

∥
∥

m |detBK | 12 |û|H2(K̂)

≤ C
∥
∥B−1

K

∥
∥

m |detBK | 12 (‖BK‖2 |detBK |− 1
2 |u|H2(K))

= C(‖BK‖
∥
∥B−1

K

∥
∥)m ‖BK‖2−m |u|H2(K) .

Now, we look for bounds for ‖BK‖ and ‖BK‖
∥
∥B−1

K

∥
∥ that are independent of the triangle

K. By definitions of hK and ρK , given x ∈ R
2 with |x| = ρK̂ , there exist points y, z ∈ K̂

with x = y − z. Then, since |BKx| = |FK(y) − FK(z)|, and FK(y), FK(z) ∈ K, we have

‖BK‖ ≤ hK

ρ
K̂

. By the same argument,
∥
∥B−1

K

∥
∥ ≤ h

K̂

ρK
. So, using the assumption that Th is

shape-regular, we have ‖BK‖ ·
∥
∥B−1

K

∥
∥ ≤ hKh

K̂

ρKρ
K̂

≤ σ
h

K̂

ρ
K̂

. A simple calculation shows that

hK̂ =
√

2 and ρK̂ = 2
2+

√
2
. Using these facts, we have

|u− Πhu|Hm(K) ≤



C

(

1 +

√
2

2

)2−m

(1 +
√

2)m



σmh2−m |u|H2(K)

The result follows since the quantity in square brackets is a constant depending only on

m.

We are now ready to produce the first important estimate of the error between the

solution to the variational problem in the whole space and the solution of the variational

problem in the finite element space. In terms of the model problem, we plan to establish

the error in approximating the solution of the model problem (M) by the solution of the
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variational problem:







Find uh ∈ P 1
h (Ω) ∩H1

0 (Ω) such that:
∫

Ω
∇uh∇vh dx =

∫

Ω
fvh dx

for every vh ∈ P 1
h (Ω).

(Mh)

This result will show that the error, as measured in the H1−norm, is on the order of

h times the H2−norm of u and will require an additional assumption which we explain

now.

Definition 2.1.15. Let m ≥ 1, Hm
0 (Ω) ⊂ Y ⊂ Hm(Ω) and suppose a(·, ·) is a coercive

bilinear form. Then the variational problem

a(u, v) = (f, v)L2(Ω) ∀v ∈ Y

is called Hs-regular if there exists a constant C such that for every f ∈ Hs−2m there is

a solution u ∈ Hs(Ω) with

‖u‖Hs(Ω) ≤ C ‖f‖Hs−2m(Ω) .

Remark: If a is an H1
0 (Ω)-elliptic bilinear form with sufficiently smooth coefficient func-

tions, and Ω is a convex, polygonal domain then the Dirichlet problem is H2-regular.

So, the model problem is H2−regular if Ω is a convex polygon. We also remark that this

is the first place where the convexity of Ω has played a role. For more general results

about the regularity of second order elliptic problems, see [10].

Theorem 2.1.16. Suppose Ω is a convex, polygonal domain and suppose Th is a family

of regular triangulations of Ω satisfying. Let u and uh be the solutions of the abstract

variational problems

a(u, v) =

∫

Ω

fv dx dy ∀v ∈ H1
0 (Ω) (2.11)

and (2.12)

a(uh, vh) =

∫

Ω

fvh dx dy ∀vh ∈ P 1
h (Ω) (2.13)

respectively, where a(·, ·) is a continuous, coercive bilinear form on H1
0 (Ω), f ∈ L2(Ω),
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and P 1
h (Ω) is the space of piecewise linear functions on Ω defined previously (see Defi-

nition 2.1.10). Then if the variational problem (2.11) is H2-regular, the finite element

approximation uh ∈ P 1
h (Ω) ∩H1

0 (Ω) satisfies:

‖u− uh‖H1(Ω) ≤ Ch ‖u‖H2(Ω) (2.14)

≤ Ch ‖f‖L2(Ω) . (2.15)

Proof. A direct application of Cea’s Lemma (Theorem 2.1.6) yields:

‖u− uh‖H1(Ω) ≤ C inf
v∈H1

0 (Ω)
‖u− v‖H1(Ω) .

By Theorem 2.1.14, there exists vh := Πhu ∈ P 1
h (Ω) such that:

‖u− vh‖H1(Ω) ≤ Ch ‖u‖H2(Ω) .

Combining these two results gives (2.14). By definition of H2-regular, there exists a

constant C such that for every f ∈ L2(Ω), ‖u‖H2(Ω) ≤ C ‖f‖L2(Ω). Thus, (2.15) follows

from (2.14).

We now present another abstract result that will lead to a second estimate of the

error between the solution to the variational problem in the whole space and the solution

to the variational problem in the finite element space.

Lemma 2.1.17 (Aubin-Nitsche Lemma). Let a(·, ·) : Y × Y → R be a continuous,

coercive form, and let f : Y → R be a continuous linear form. Let u and uh be the

solutions of the variational problems:

a(u, v) = f(v) ∀v ∈ Y

and

a(uh, vh) = f(vh) ∀vh ∈ Yh

respectively, where Yh is a subspace of Y . Let H be a Hilbert space with norm | · |H and

inner product (·, ·) such that Y →֒ H. Denote the norm on Y (possibly different than

37



the norm on H) by ‖·‖Y . Then,

|u− uh|H ≤M ‖u− uh‖Y

(

sup
g∈H

{
1

|g|H
inf

φh∈Yh

‖ψg − φh‖Y

})

, (2.16)

where for any g ∈ H, ψg ∈ Y is the unique solution of the variational problem:

a(v, ψg) = (g, v) ∀v ∈ Y.

Proof. By Lax-Milgram, for each g ∈ H, there exists ψg ∈ Y such that ψg solves the

variational problem a(v, ψg) = (g, v) ∀v ∈ Y . Since u−uh ∈ Y , in particular, we have:

a(u− uh, ψg) = (g, u− uh),

and since u, uh solve the previously stated variational problems, we have

a(u− uh, φh) = 0 ∀φh ∈ Yh.

Thus, by subtraction, we have:

a(u− uh, ψg − φh) = (g, u− uh) ∀φh ∈ Yh.

Therefore, by continuity of a(·, ·), for each φh ∈ Yh,

|(g, u− uh)| = |a(u− uh, ψg − φh)|
≤M ‖u− uh‖Y · ‖ψg − φh‖Y

So,

|(g, u− uh)| ≤M ‖u− uh‖Y inf
φh∈Yh

‖ψg − φh‖Y .

Now, since H is a Hilbert space, F (g) = (g, u−uh) is a linear operator and has operator

norm |u− uh|H = sup
g∈H,g 6=0

|(g, u− uh)|
|g|H

. It follows that:

|u− uh|H ≤M ‖u− uh‖Y sup
g∈H,g 6=0

{
1

|g|H
inf

φh∈Yh

‖ψg − φh‖Y

}

.
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Corollary 2.1.18. Under the hypotheses of Theorem 2.1.16, if u ∈ H1(Ω) is the solution

of (2.11) and uh is the solution of (2.13), then

‖u− uh‖L2(Ω) ≤ Ch ‖u− uh‖H1(Ω) (2.17)

≤ Ch2 ‖f‖L2(Ω) (2.18)

Proof. Letting H = L2(Ω) = H0(Ω) and Y = H1
0 (Ω), we see that Y ⊂ H and since

‖·‖L2(Ω) ≤ ‖·‖H1(Ω), we have Y →֒ H. Letting Yh = P 1
h (Ω) ∩H1

0 (Ω), the Aubin-Nitsche

Lemma (Lemma 2.1.17) implies that

‖u− uh‖L2(Ω) ≤ C ‖u− uh‖H1(Ω) sup
g∈L2(Ω)

{

1

‖g‖L2(Ω)

inf
φh∈P 1

h
(Ω)∩H1

0 (Ω)
‖φg − φh‖H1(Ω)

}

.

Now due to Theorem 2.1.16, the quantity in curly brackets is less than or equal to Ch, and

the first result is immediate. Additionally, by (2.15) of Theorem 2.1.16, ‖u− uh‖H1(Ω) ≤
ch ‖f‖L2(Ω), implying the second inequality.

2.2 Error Estimates for Nonconvex Polygonal Do-

mains

In Section 2.1, we confined our study to problems where the solution was very regular.

In particular, the most important error estimates that we obtained, Theorem 2.1.16 and

Corollary 2.1.18, relied on the fact that the problem was H2−regular. In the case of the

model problem, this conclusion can be made by assuming that the domain is convex.

If we drop this assumption, we cannot guarantee that a solution to the model problem

(M) is in H2(Ω), and hence we will not achieve the same error estimate. Let us consider

an example to demonstrate this point. This example can be found in Section 2.2 of [6].

Let D be the domain {(x, y) ∈ R
2 | x2 + y2 < 1} \ {(x, y) ∈ R

2 | x > 0 and y < 0},
shown in figure 2.1. Identifying R

2 with C, D = {reiθ | r < 1, 0 < θ < 3π
2
}. Consider
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Ω

Figure 2.1: domain for (2.19)

solving the following problem on D:







−∆u = 0 in D

u(eiφ) = sin
(

2φ
3

)
for 0 ≤ φ ≤ 3π

2

u = 0 elsewhere on ∂D.

(2.19)

If we choose not to use the principal value for the argument of z, but instead take

0 < arg z ≤ 2π, one sees that that w(z) := z
2
3 is analytic in D, and thus its imaginary

part, which we denote by u is harmonic in D. One may easily verify that u satisfies the

boundary conditions, so u solves (2.19). Then, u ∈ H1(D), since

|u|2H1(D) =
4

9

∫ 3π
2

0

∫ 1

0

r−
2
3 r dr dθ =

π

2
,

but, u /∈ H2(D) since

|u|2H2(D) =
20

81

∫ 3π
2

0

∫ 1

0

r−
8
3 r dr dθ = ∞.

Our goal in this section will be to obtain error estimates for the finite element ap-

proximation that apply to the model problem when Ω is a nonconvex polygonal domain

in the plane. Throughout most of this section, we will follow the line of proof given in

Section 8.4 of [12], with some modifications made to allow more than one angle of Ω to

have measure greater than π. These results also appear in [3] under slightly different

assumptions. As we proceed, we will try to point out the analogues to the presentation

given in the previous section.
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We begin by formally describing the domain Ω. Throughout this section, we will

assume Ω ⊂ R
2 is a polygonal domain with boundary Γ composed of N sides. Starting

at any one vertex, we label the vertices Pi in counter clockwise fashion, with the interior

angle at vertex i having measure θi. If the angle at the vertex has measure greater than

π, we call this a reentrant corner of the domain. When we say that a point is at a

reentrant corner of the domain, we mean that this point is the vertex of an angle created

at the intersection of two edges of the boundary of the domain, and these edges form a

reentrant corner. For example, in Figure 2.1, there is a reentrant corner at the origin

since the measure of the angle interior to D at the origin has measure 3π
2

.

Recall that in section 1.4.3, we saw that the solution to the transmission problem

with a prefractal layer that we are interested in applying our numerical methods to lies

in a weighted Sobolev Space. So, our focus in this section will be to present convergence

results for the finite element method for a problem with a solution in one of these

weighted spaces. For a reminder of the definition of H2,µ(Ω), refer to definition 1.4.9.

Several proofs in the previous section relied on the inclusion of H2(Ω) in C(Ω) and

H1(Ω). These results are given by the Sobolev Embedding Theorem (Theorem 2.1.1)

and the Rellich-Kondrashev Theorem (Theorem 2.1.2). Similar results will be needed

for the weighted space H2,µ(Ω) and are provided by the next theorem.

Theorem 2.2.1. For µ < 1, the natural embedding of H2,µ(Ω) into H1(Ω) is compact

with respect to the norm ‖·‖H2,µ(Ω), and additionally, H2,µ(Ω) is continuously embedded

in C(Ω).

Proof. We begin by showing that H2,µ(Ω) →֒ W 2,p(Ω) for p such that 1 < p < 2
µ+1

. To

this end, let u ∈ H2,µ(Ω) and |β| = 2. Applying Hölder’s Inequality to

∫

Ω

|∂βu|p dx =

∫

Ω

|r−µ
(
rµ∂βu

)
|p dx

we have

∫

Ω

|r−µ
(
rµ∂βu

)
|p dx ≤

[∫

Ω

(r−pµ)
2

2−p dx

] 2−p
2
[∫

Ω

|rµ∂βu|2 dx
] p

2

.

Since Ω ⊂ R
2 is bounded, the first integral on the right hand side is bounded if −2pµ

2−p
>

−2, which is true as long as 1 < p < 2
µ+1

. Furthermore, since this integral does not
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depend on u, for a fixed p, the value is a constant depending only on Ω so we have

|u|pW 2,p(Ω) =

∫

Ω

|∂βu|p dx ≤ C

[∫

Ω

|rµ∂βu|2 dx
] p

2

.

Since Ω is bounded, H1(Ω) →֒ W 1,p(Ω) for p < 2. Thus, for µ < 1, we have ‖·‖W 1,p(Ω) ≤
C ‖·‖H1(Ω) for some constant C. Combined with the definition of ‖·‖2

W 2,p(Ω) as ‖·‖2
W 1,p(Ω)+

| · |2W 2,p(Ω), it follows that

‖u‖W 2,p(Ω) ≤ C ‖u‖H2,µ(Ω) .

Thus,H2,µ(Ω) →֒ W 2,p(Ω) for p ∈ (1, 2
µ+1

), where µ < 1. By Theorem 2.1.3,W 2,p(Ω) →֒→֒
W 1,p(Ω), and as already stated, H1(Ω) →֒ W 1,p(Ω), so H2,µ(Ω) →֒→֒ H1(Ω). Finally,

the Sobolev Embedding Theorem (Theorem 2.1.1) gives us H2,µ(Ω) →֒ W 2,p(Ω) →֒ C(Ω)

if µ < 1.

Remark: Note that in the above proof, the actual expression for r was not very im-

portant. It was only necessary that
[∫

Ω
(r−pµ)

2
2−p dx

] 2−p
2
< ∞ for 1 < p < 2

µ+1
. So, it is

clear that the inclusions hold for many choices of r besides the one made in Definition

1.4.9.

Now that we have shown that H2,µ(Ω) →֒ C(Ω), we may define a linear interpolation

operator on the space H2,µ(Ω), as was done before for the space H2(Ω) (see Defini-

tion 2.1.10). Although the definition is virtually identical in this case, the definition is

repeated here for the sake of completeness and clarity.

Definition 2.2.2. Let K be a triangle with vertices z1, z2 and z3 that is affine equivalent

to the reference triangle K̂. Then define the map ΠK : C(K) → P 1(K) by letting ΠK(v)

be the unique linear function v̄ ∈ P 1(K) such that v̄(zi) = v(zi) for i = 1, 2, 3. By Lemma

2.2.1, H2,µ(Ω) →֒ C(Ω). Thus every v ∈ H2,µ(Ω) has a continuous representative ṽ. If

Th is a triangulation of Ω, then define Πh : H2,µ(Ω) → P 1
h (Ω) ⊂ H1(Ω) to be the map

satisfying Πh(v) = ΠK(ṽ) for all v ∈ H2,µ(Ω) and for all K ∈ Th. Recall that P 1
h (Ω) is

the space of functions that are continuous on all of Ω and affine on each triangle K of

the triangulation Th.

The next goal is to establish a result similar to Lemma 2.1.11 that gives the error

in approximating a function u ∈ H2,µ(K̂) with a linear function on K̂. The following

lemma is so similar that an analogous proof can be used, so the proof is omitted here.
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By the remark following Theorem 2.2.1, even though the lemma uses |x| instead of the

function r specified in definition 1.4.9, the necessary inclusions still hold.

Lemma 2.2.3. Let K̂ be the reference triangle with vertices z1 = (0, 0), z2 = (0, 1) and

z3 = (1, 0). Let µ < 1 be given and let

W :=






v ∈ H1(K̂) :

∑

|β|=2

∫

K̂

|x̂|2µ
∣
∣∂βv

∣
∣
2
dx̂ <∞






.

Then the linear interpolation operator ΠK̂ : W → P 1(K̂) is well-defined and there exists

a constant C such that

‖u− ΠK̂u‖
2
H1(K̂) +

∑

β=2

∫

K̂

|x̂|2µ
∣
∣∂βu

∣
∣
2
dx̂ ≤ C

∑

β=2

∫

K̂

|x̂|2µ
∣
∣∂βu

∣
∣
2
dx̂ (2.20)

for every u ∈ V .

The error estimate of Lemma 2.2.3 applies only to the reference triangle. As was

the case in Section 2.1, in order to estimate the error in approximating a function

u ∈ H2,µ(Ω) with its piecewise affine interpolant Πhu for a given triangulation of Ω,

the estimate must be extended to other triangles. So, as in Lemma 2.1.12, we use the

relationship between a function v ∈ H2,µ(K) and the corresponding function v̂ = v ◦ F ,

where F is the affine mapping from K̂ → K. For this result, we require the following

two additional assumptions about the family of triangulations Th.

Let Th be a regular triangulation of Ω. For a fixed µ, we have the properties:

(T6) hK ≤ σh
1

1−µ for every K ∈ Th having a vertex at a reentrant corner of

the domain

(T7) hK ≤ Cσh infx∈K r(x)µ for every K ∈ Th with no vertices at reentrant

corners of the domain.

where σ is the regularity constant for the triangulation and C ≥ 1 is a positive constant,

independent of h.

Theorem 2.2.4. Let Th be a regular family of triangulations satisfying (T6) and (T7)
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for some µ < 1. Then there exists a constant C, independent of h, such that

‖u− Πhu‖H1(Ω) ≤ Ch




∑

|β|=2

∫

Ω

∣
∣rµ∂βu

∣
∣
2





1/2

(2.21)

for every h > 0 and every u ∈ H2,µ(Ω).

Proof. By definition of Πh,

‖u− Πhu‖2
H1(Ω) =

∑

K∈Th

‖u− Πhu‖2
H1(K) ,

so it suffices to establish the inequality

‖u− Πhu‖2
H1(K) ≤ Ch2

∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx

for every K ∈ Th and some constant C independent of K. To that end, let K ∈ Th and

consider two cases corresponding to the assumptions (T6) and (T7).

Case 1: None of the vertices of K is at a reentrant corner of the domain.

Then for every x ∈ K, r(x) > c0 > 0 and u|K ∈ H2(K). So by Theorem 2.1.14

and using (T6),

‖u− ΠKu‖2
H1(K) ≤ Cσ2h2

K |u|2H2(K)

= Cσ2h2
K

∑

|β|=2

∫

K

∣
∣r(x)−µr(x)µ∂βu

∣
∣
2
dx

≤ Cσ2h2
K

(

inf
x∈K

r(x)−2µ

)
∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx

≤ Cσ2h2
K

(
σh

hK

)2 ∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx

= Cσ4h2
∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx,

where C is independent of K.

Case 2: K has a vertex at a reentrant corner of the domain.

Let bK denote the coordinates of the vertex of K at a reentrant corner of the
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domain. Then by assumption (T5) on the triangulation Th, there exists a

bijective map FK : K̂ → K defined by FK(x̂) = BK x̂ + bK , that maps bK to

the origin. Let û = u ◦ FK . By Lemma 2.2.3,

∫

K̂

|∇(û− ΠK̂ û)|
2 dx̂ ≤ C

∑

|β|=2

∫

K̂

|x̂|2µ
∣
∣∂βû

∣
∣
2
dx̂. (2.22)

Using the chain rule, this yields

∫

K̂

∣
∣BT

K∇(u− ΠKu) ◦ FK

∣
∣
2
dx̂

≤ C
∑

|β|=2

∫

K̂

|x̂|2µ
∣
∣(BT

K)2∂βu ◦ FK

∣
∣
2
dx̂. (2.23)

Next, we perform a change of variables on each side of the inequality by

setting x = FK(x̂). We obtain on the left hand side of (2.23),

∫

K̂

∣
∣BT

K∇(u− ΠKu) ◦ FK

∣
∣
2
dx̂

=
∣
∣detB−1

K

∣
∣

∫

K

∣
∣BT

K∇(u− ΠKu)
∣
∣
2
dx

≥
∣
∣detB−1

K

∣
∣
∥
∥B−1

K

∥
∥
−2
∫

K

|∇(u− ΠKu)|2 dx. (2.24)

Applying the change of variables to the integral on the right hand side of

(2.23), we obtain for each |β| = 2,

∫

K̂

|x̂|2µ
∣
∣(BT

K)2Dβu ◦ FK

∣
∣
2
dx̂

≤
∣
∣detB−1

K

∣
∣ ‖BK‖4

∫

K

∣
∣B−1

K (x− bK)
∣
∣
2µ ∣
∣∂βu

∣
∣
2
dx

≤
∣
∣detB−1

K

∣
∣ ‖BK‖4

∥
∥B−1

K

∥
∥

2µ
∫

K

|x− bk|2µ
∣
∣∂βu

∣
∣
2
dx. (2.25)

By definition, r(x) ≥ |x− bK |, so we have after combining (2.23), (2.24) and

(2.25),

∫

K

|∇(u− ΠKu)|2 dx ≤ ‖BK‖4
∥
∥B−1

K

∥
∥

2+2µ
∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx (2.26)
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Using the estimates derived in the proof of Theorem 2.1.14 and making use

of assumption (T7), we have

‖BK‖4
∥
∥B−1

K

∥
∥

2+2µ
= (‖Bk‖

∥
∥B−1

K

∥
∥)2+2µ ‖BK‖2−2µ

≤
(

σ
hK̂

ρK̂

)2+2µ(
hK

ρK̂

)2−2µ

≤ (σhK̂)2+2µ ρ−4

K̂

(

σh
1

1−µ

)2−2µ

= σ4h2+2µ

K̂
ρ−4

K̂
h2

Using this estimate in (2.26) gives:

∫

K

|∇(u− ΠKu)|2 dx ≤ (σ2h1+µ

K̂
ρ−2

K̂
)2h2

∑

|β|=2

∫

K

∣
∣r(x)µ∂βu

∣
∣
2
dx (2.27)

which provides the desired result.

Corollary 2.2.5. Suppose Ω is a nonconvex polygon in R
2. Suppose Th is a regular

family of triangulations for each h > 0, and Th satisfies (T6) and (T7) as h→ 0. Let

u and uh be solutions of the abstract variational problems

a(u, v) =

∫

Ω

fv dx dy ∀v ∈ H1
0 (Ω)

and

a(uh, vh) =

∫

Ω

fvh dx dy ∀vh ∈ P 1
h (Ω)

respectively, where a(·, ·) is a continuous, elliptic bilinear form on H1
0 (Ω), f ∈ L2(Ω),

and u ∈ H2,µ(Ω). Then the finite element approximation uh ∈ P 1
h (Ω) ∩H1

0 (Ω) satisfies:

‖u− uh‖H1(Ω) ≤ Ch ‖u‖H2,µ(Ω) (2.28)

as h→ 0.

Proof. The assertion follows easily from (2.21) and Cea’s Lemma (Theorem 2.1.6).

Remark: This result is presented for comparison with Theorem 2.1.16. The above

result shows that if the mesh is refined appropriately near the reentrant corners of the
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domain, we can still achieve the same order of convergence in the H1−norm for the less

regular problem.
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Chapter 3

Numerical Treatment of the

Prefractal Transmission Problem

This chapter contains the original contributions of this thesis. In order to numerically

solve the transmission problem (Pα
n ) using the finite element method, we must first

have an algorithm to discretize the domain. The first section of this chapter will be

devoted to introducing an algorithm for producing triangulations of the domains for

each α ∈ (2, 4) and each n ∈ N. In the second section of the chapter, we will show that

the triangulations produced by implementing this method satisfy the assumptions of

Theorem 2.2.4, allowing us to give an estimate of the error made by numerically solving

the problem. Finally, we will show some results of finite element solutions to (Pα
n ).

Throughout this chapter, we will make use of a large amount of previously introduced

notation. Because some readers familiar with the results of Chapter 2 may have chosen

to bypass that chapter, we will recall all of the notation introduced there that will be

used in the present chapter. For ease of reference for all readers, we will also recall some

of the problem notation defined in Chapter 1 and preview some terminology related to

the mesh generation that will be described in Section 3.1. The notation is shown in

Table 3.1. Most of these terms, as well as some additional ones, can also be found in

the lists of notation preceding Appendix A.

3.1 Generating the Mesh

Before giving the details of the algorithm, we will explain some of the considerations

that shaped the algorithm. First of all, we must be able to reproduce the segments of
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Ω the rectangular region (0, 1) × (−1, 1) ⊂ R
2

Σα
n the nth−generation prefractal von Koch curve with contraction factor α−1

Ω1
α,n the portion of Ω above Σα

n

Ω2
α,n the portion of Ω below Σα

n

V n
α set of vertices of the nth−generation prefractal von Koch curve with

contraction factor α−1

Rα,n set of points that are at reentrant corners of either Ω1
α,n or Ω2

α,n;
Rα,n = V α

n \ {(0, 0), (1, 0)}
hK the length of the longest edge of a triangle K

ρK the diameter of the largest circle contained in K

σ the aspect ratio of a triangulation Th, i.e. maxK∈Th

hK

ρK

ri
n the weighting function given in definition 3.1.1

ηn the minimum distance between vertices of the domain Ωi
α,n for i = 1, 2;

ηn = α−n min(α− 2, 1)

F the fractal region shown in Figure 3.3 and described in the
surrounding text (F contains all points in Rα,n)

λ
(

1
3

)1/(1−µ)

Table 3.1: Relevant Notation
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Σα
n as the union of edges in the mesh. This is necessary, because in order to solve (Pα

n ),

we must be able solve the boundary value problem posed on Σα
n. So, we must have a

triangulation T of Ω such that T = T1 ∪ T2, where T1 is a triangulation of Ω1
α,n and T2

is a triangulation of Ω2
α,n.

Secondly, throughout this chapter, we will be considering the numerical solution

of the problem (Pα
n ), where both α and n are fixed. However, since α can be chosen

arbitrarily from the interval (2, 4), it is desirable to design an algorithm that can be used

for any value of α. In [27], a discretization and refinement scheme is developed for the

problem (Pα
n ) with α = 3. In this case, it is possible to create a mesh consisting entirely

of equilateral triangles which have the best possible aspect ratio. However, as the value

of α approaches 2, very small angles are necessarily introduced into the mesh by the

presence of the von Koch curve (see for example Figure 1.4). So, the discretization

developed in [27] will not be applicable and we must develop a more general algorithm

for creating a mesh for the problem.

Aside from letting α vary in the interval (2,4), any algorithm developed to create a

mesh of Ω1
α,n and Ω2

α,n must be able to handle any integer value of n. Although n will

also be fixed throughout this chapter when a particular problem is being considered,

recall that the prefractal transmission problem (Pα
n ) was introduced in Section 1.4 as an

approximation to the fractal transmission problem (Pα). One of our eventual goals is to

study what happens to the solution to (Pα
n ) as n→ ∞. Since the vertices of the prefractal

curve are always inherited from the previous iteration, we can take advantage of this

structure to design a more efficient approach to the meshing procedure. Specifically, we

will outline a procedure for triangulating the domains in such a way that a triangulation

that includes Σα
n as an interface also includes Σα

m for m ≤ n. Keeping in mind these

considerations, we proceed to the explanation of the procedure for generating a mesh

for the problem.

1. Define the domain.

Having already chosen α ∈ (2, 4) and n ∈ N, apply the maps that generate the

von Koch curve n times to produce the nth−generation prefractal curve Σα
n.

While the vertices of the prefractal curve are inherited from the previous gener-

ation, the segments linking the vertices are not maintained from one generation

to the next. This can be seen by comparing Figures 3.1a and 3.1b. So, if the

triangulation of the domain with interface Σα
n is also to be a triangulation of the
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Figure 3.1: Illustration of Sα
n with α = 2.5 and n = 2

domain with interface Σα
m for m ≤ n, we must ensure that the segments joining

vertices of the prefractal curve at previous generations are part of the mesh at this

generation. To achieve this, let Sα
0 be the segment along the x−axis from α−1 to

1 − α−1. Then for m ≥ 1, define

Sα
m =

4⋃

i=1

ψα
i (Sα

m−1).

Then Σα
m ⊂ Σα

n ∪ Sα
n for m ≤ n. Figures 3.1a and 3.1b show the domain with

interface Σα
m for m = 1 and m = 2, respectively. In Figure 3.1c, the domain is

shown with the interface Σα
2 in red and the segments comprising S2 shown in blue.

Considering the group of Figures 3.1a, 3.1b, and 3.1c one verifies that Σα
1 ⊂ Σα

2∪S2.

2. Produce a coarse mesh of the domain.

In this step, the goal is to produce a coarse mesh of the domain that includes

Σα
n ∪ Sn as edges in the mesh. Since the curve Σα

n varies significantly depending

on the value of α, a procedure that will triangulate the domain given any value of

α must be very general.

We use the Triangle program (a freely available 2-D mesh generator) to create a

coarse mesh. For details of the algorithms used in the implementation, see [24] and
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[25]. This program was chosen for a variety of reasons including its ease of use,

its adept handling of very general polygonal domains, and its ability to control

the quality of the mesh. The last feature, being able to control the quality of the

mesh, is especially useful for error estimation.

The quality of the mesh is ensured by specifying a minimum acceptable angle for

the triangulation. No triangles produced by the program will have a minimum

angle smaller than the specified angle. In Appendix B, a proof is provided to show

that enforcing a minimal angle constraint on the triangulation bounds the aspect

ratio for the triangulation. Since the finite element approximation deteriorates as

the regularity parameter of the triangulation increases, we wish to use as large an

angle as possible. However the angles that appear at the vertices of the prefractal

curve provide a bound on the minimum angle that we must be willing to accept

in our triangulation. Recalling that θ = cos−1(α
2
− 1) is the measure of the small

angles appearing where the blue and red segments in Figure 3.1c meet, one sees that

angles measuring θ and π − 2θ appear naturally. The algorithm in the Triangle

program requires that the minimum angle be no greater than π
3
, so we set the

minimum angle for the triangulation to be min{θ, π − 2θ, π
3
}.

An example of a mesh created by the Triangle program with this minimum angle

constraint can be seen in Figure 3.2. These figures demonstrate that the mesh

serves as a triangulation of the domain with either Σα
1 or Σα

2 serving as the layer.

3. Refine the mesh.

In order to apply the error estimate in Theorem 2.2.4, the mesh must be a shape-

regular triangulation of Ω (see definitions 2.1.9 and 2.1.13) such that for i = 1, 2,

the mesh restricted to Ωi
α,n is a triangulation of Ωi

α,n that satisfies

hK ≤ σh
1

1−µi if K has a vertex at a reentrant corner of Ωi
α,n (T6*)

hK ≤ Cσh inf
x∈K

[
ri
n(x)

]µi otherwise (T7*)

where µi is the weight given in Theorem 1.4.10 and C is a constant greater than 1.

While the mesh generated in the previous step is guaranteed to be a shape-regular

triangulation of Ω and its restriction to Ωi
α,n is a triangulation of Ωi

α,n, we will

perform at least one refinement of the mesh so that it also satisfies (T6*) and

(T7*).
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Figure 3.2: Coarse mesh of domain with interface (a)Σα
1 and (b)Σα

2 , α = 2.5

To explain the refinement procedure, we first notice that the above conditions

depend on the weighting function appearing in Definition 1.4.9 of weighted Sobolev

spaces on polygonal domains. Since the definition given there was for a general

polygon, to avoid any confusion, we will repeat the definition of the weighting

function for the case in which the polygon is Ωi
α,n for i = 1, 2. In this definition,

we make use of the minimum distance between vertices of the domain calculated

in Appendix B.2.

Definition 3.1.1. Let Q = Ωi
α,n for i = 1 or i = 2, α ∈ (2, 4) and n ∈ N. Let R

consist of the vertices of Q that are reentrant to Q and let

ηn =
1

4
α−n min{α− 2, 1}. (3.1)

Then for x ∈ Q, define

ri
n(x) =







|x− P | if x ∈ B(P, ηn) for some P ∈ R

1 if x /∈ ⋃P∈RB(P, 2ηn)

1−ηn

ηn
(|x− P | − ηn) + ηn otherwise

(3.2)
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Since reentrant corners of Ωi
α,n for i = 1, 2 only occur at vertices of the prefractal

von Koch curve, the definition for ri
n implies that if T is a triangle in the mesh

with infx∈T |x− V n
α | > 2ηn, then infx∈T r

i
n(x) = 1 for i = 1, 2. For such a triangle,

(T7*) only requires that

hT ≤ Cσh. (3.3)

Since Cσ > 1 and h = maxK∈T hK , (3.3) clearly holds for any triangle in the mesh,

so we only need to focus our refinement efforts on triangles that are very near to

reentrant corners of the domain.

It would be difficult and computationally expensive to exactly determine which

triangles of the mesh are within 2ηn of a reentrant corner of the domain. Because

one of our driving goals in designing the mesh is to generate a mesh that can

be used for solving the prefractal transmission problem with interface Σα
m for any

m ≤ n, we would also need to find all triangles within 2ηm of reentrant corners of

Ωi
α,m for i = 1, 2. So, we take a simpler approach in which we define a polygonal

subset of Ω that will include all such triangles, but it may contain some triangles

for which ri
m(x) = 1 for every m ≤ n.

We begin by defining a pentagon, which we will henceforth refer to as the fractal

region and denote simply by F , with vertices F1 = (0, 2η1), F2 = (0,−2η1), F3 =

(1,−2η1), F4 = (1, 2η1), and F5 = (1/2, y∗). The value of y∗ is chosen so that the

line from F1 to F5 and the line from F4 to F5 are tangent to the circle with radius

2η1 around the point C =
(

1
2
,
√

1
α
− 1

4

)

and so that the pentagon formed by these

points contains this circle around C. Since C is the point in V n
α for n ≥ 1 with

the largest y−value, choosing the pentagon in this way ensures that it contains

circles of radius 2ηm around each point in V m
α for m ≥ 1. In Figure 3.3, one sees

the coarse mesh of Figure 3.2 with the boundary of the fractal region marked by

heavy blue lines. Around each vertex of the prefractal curve, we see circles of

radius 2ηm where m is the smallest integer for which the point is in V m
α . The

shaded triangles are those with at least one vertex in the fractal region. Thus the

shaded region contains all triangles separated by a distance of less than 2ηm from

a vertex in V m
α for some m ≤ n. With these triangles identified, we are finally able

to describe the refinement process.

The process begins by refining all of the triangles with at least one vertex in

the fractal region. Recall that (T6*) and (T7*) specify that triangles closest to
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Figure 3.3: Fractal region, α = 2.5

any reentrant corner of the domain be smaller than those triangles that are some

distance away. Also notice that each point in V n
α , with the exception of A =

(0, 0) and B = (1, 0), is the vertex of a reentrant corner of either Ω1
α,n or Ω2

α,n.

Accordingly, the refinement will depend on the number of vertices each triangle

has in V n
α \{A,B}. Since this set will be used so frequently, we will use the notation

Rα,n to refer to it hereafter.

Figure 3.4 serves as a visual reference for the refinement of triangles with a vertex in

the fractal region. Vertices at reentrant corners are marked with a red star. These

subdivisions are easily explained in terms of barycentric coordinates. Let K be any

triangle in the coarse mesh generated at the previous step with vertices V1, V2, and

V3 having barycentric coordinates (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively. Then

a node with barycentric coordinates (c1, c2, c3) is given by c1V1 + c2V2 + c3V3. For

notational convenience in this explanation, let λ =
(

1
3

) 1
1−µ , where µ is chosen larger

than µ1 and µ2. Here, µ1 and µ2 are the weights used to describe the regularity

of the problem (Pα
n ) in Theorem 1.4.7. Then if K has at least one vertex in the
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Figure 3.4: Refinement of coarse mesh according to number of vertices in Rα,n

fractal region, K is refined in one of the following four ways.

3 vertices in Rα,n: The numbered nodes in Figure 3.4a are given by the following

sets of barycentric coordinates.

N1 = (1 − λ, 0, λ) N5 =

(
1

2
,
1

2
, 0

)

N9 = (λ, 1 − λ, 0)

N2 = (1 − λ, λ, 0) N6 = (λ, 0, 1 − λ) N10 = (0, λ, 1 − λ)

N3 =

(
1

2
, 0,

1

2

)

N7 =

(
1

4
,
1

4
,
1

2

)

N11 =

(

0,
1

2
,
1

2

)

N4 =

(
1

2
,
1

4
,
1

4

)

N8 =

(
1

4
,
1

2
,
1

4

)

N12 = (0, 1 − λ, λ)

2 vertices in Rα,n: Label the vertices of K so that V1 and V2 are the vertices of
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K that are also contained in Rα,n. Then the numbered nodes in Figure 3.4b

have the following barycentric coordinates.

N1 = (1 − λ, 0, λ) N6 =

(
1

4
,
1

4
,
1

2

)

N2 = (1 − λ, λ, 0) N7 =

(
1

4
,
1

2
,
1

4

)

N3 =

(
1

2
, 0,

1

2

)

N8 = (λ, 1 − λ, 0)

N4 =

(
1

2
,
1

4
,
1

4

)

N9 =

(

0,
1

2
,
1

2

)

N5 =

(
1

2
,
1

2
, 0

)

N10 = (0, 1 − λ, λ)

1 vertex in Rα,n: Let V1 be the vertex of K in Rα,n. Subdivide the triangle K

so that the numbered nodes in Figure 3.4c have the specified barycentric

coordinates.

N1 = (1 − λ, 0, λ) N4 =

(
1

2
,
1

4
,
1

4

)

N2 = (1 − λ, λ, 0) N5 =

(
1

2
,
1

2
, 0

)

N3 =

(
1

2
, 0,

1

2

)

N6 =

(

0,
1

2
,
1

2

)

0 vertices in Rα,n: The triangle K is subdivided into four congruent triangles by

dividing each side of K in half as seen in Figure 3.4d.

With this part of the refinement complete, we now turn our attention to the

triangles that do not intersect with the fractal region. As noted before, satisfying

(T7*) does not require any refinement of these triangles. However, the refinement

of triangles with at least one vertex in the fractal region may result in hanging

nodes, violating (T3), one of the requirements for a triangulation in definition 2.1.9.

To maintain a conformal triangulation, it may be necessary to refine some of the

triangles in the exterior of the fractal region, even though this is not necessitated

by (T7*).

The refinement procedure chosen for the remaining triangles is based on the obser-
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vation that if a triangle K1 with no vertices in F shares an edge with a triangle K2

with at least one vertex in F , then K1 will have a hanging node at the midpoint

of the shared edge. To see this, first note that any edge common to K1 and K2

cannot have an endpoint in Rα,n since this would contradict the fact that K1 has

no vertices in the fractal region. Thus K2 is refined as in Figure 3.4c or Figure

3.4d. Since K1 cannot share any edge of K2 with an endpoint in Rα,n, the only

new node on an edge shared by K1 and K2 occurs at the midpoint of the edge.

If nothing was done to K2, we would have a hanging node, violating assumption

(T3) about the mesh. So, to maintain a conformal triangulation, we extend the

refinement of the triangles in the fractal region to the entire domain by using an

adaptive mesh refinement procedure introduced in [5] that suits our purposes well

since hanging nodes are only created at the midpoints of edges. The procedure is

explained below.

(a) If K is a triangle in the mesh with two or more hanging nodes, subdivide K

into four congruent subtriangles as in Figure 3.4d. Repeat as necessary until

every triangle in the mesh has at most one hanging node.

(b) If K has a single hanging node, create an edge from the hanging node to the

vertex opposite it, bisecting K as shown in Figure 3.5. Edges created in this

way are referred to as green edges.

Figure 3.5: Subdivision by bisection

In Figure 3.6 one sees the result of applying the refinement procedure just outlined

to the coarse mesh of Figure 3.2.

4. Repeat Step 3 as necessary.

Knowing little about the coarse triangulation of the domain, it is not possible to

know that one refinement of the mesh will suffice to satisfy (T6*) and (T7*). If the

mesh produced by refining the coarse mesh once does not satisfy these assumptions,
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Figure 3.6: Refined mesh T α
h2

with interface (a)Σα
1 and (b)Σα

2 , α = 2.5

the refinement is repeated, with one small change. To avoid repeatedly bisecting

the same angle of a triangle, which could result in a mesh that fails to be regular

(see Definition 2.1.13), before refining any triangles in the exterior of the fractal

region, all green edges are removed. As proved in [5], no triangle in the resulting

mesh will have an angle that has been bisected more than once. In the next section

it will be shown that after a finite number of such refinements of the coarse mesh,

the resulting mesh satisfies (T6*) and (T7*). We refer to the mesh produced at

the conclusion of this step as T α
hn

.

Remark: In practice, it was never necessary to perform the refinement procedure

more than once.

We wish to emphasize that T α
hn

does not merely provide for a triangulation of Ω1
α,n

and Ω2
α,n, but it also provides a triangulation of Ω1

α,m and Ω2
α,m for every m ≤ n. We will

now demonstrate a way in which we can exploit this fact. We remind the reader first that

throughout this section α and n are fixed. Now suppose that we have solved the problem

(P̃α
n ) numerically using the finite element method on the mesh T α

hn
. When we are dealing

with the finite element solution to any problem, the initial mesh considered may not be

fine enough to give us a solution that is accurate enough for our specifications, so we may
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wish to solve the same problem on a finer mesh to get a more accurate approximation

to the solution. One way in which we could get a finer mesh would be to refine the mesh

T α
hn

. However, while at the moment we are focused on a fixed n, we must bear in mind

that we wish to solve the problem (P̃α
n ) for increasing values of n. So, if we instead use

the above procedure to produce T α
hn+1

, this new mesh will be a finer triangulation for

the domain with interface Σα
n and will also serve as a triangulation for the domain with

interface Σα
n+1. In this way, we can get more use out of each triangulation produced.

To emphasize this use of the same triangulation for domains with different generations

of the prefractal curve, we use the more explicit notation T α
m,hn

to refer to the mesh T α
hn

being used as a triangulation of the domain Ω with interface Σα
m. Herem is the generation

of the von Koch curve that is being considered as an interface in the transmission problem

and n is the maximum generation of the prefractal curve for which this triangulation

can be used to solve (P̃α
n ). Additionally, n can be thought of as the level of refinement of

the mesh. This interpretation for n is justified since hn, the length of the longest edge in

T α
hn

, is a decreasing sequence, so that T α
m,hk

is a finer mesh of the domain with interface

Σα
m than T α

m,hj
whenever m ≤ j < k.

3.2 Properties of the Mesh

The primary goal of this section is to derive an estimate of the error made by using

the finite element method to approximate the solution of (P̃α
n ). This result, stated in

Theorem3.2.6, will come fairly easily as a consequence of showing that the mesh created

by the process detailed in Section 3.1 for each α ∈ (2, 4) and each n ∈ N satisfies the

assumptions of Theorem 2.2.4.

Since most of the work will involve proving properties about the mesh, this section

will rely heavily on understanding the refinement procedure introduced in the previous

section. In particular, the refinements shown in Figures 3.4 and 3.5, and the accom-

panying explanations of these refinements in terms of barycentric coordinates will be

referenced frequently. We will also often refer to the fractal region F pictured in Figure

3.3.

Before arriving at the eventual goal of this section, we will prove a number of pre-

liminary results. The first result is a simple application of geometry that will be used in

subsequent theorems to estimate the distance from a given triangle in the mesh to the

nearest reentrant corner. For notational convenience in what follows, let the distance
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between two sets A and B be written as d(A,B) and be defined as

d(A,B) := inf
x∈A
y∈B

|x− y|.

Lemma 3.2.1. Let K be a triangle with vertices V1, V2 and V3 and aspect ratio hK

ρK
≤ σ.

Use si to denote the side of K opposite Vi for each i ∈ {1, 2, 3} and let |K| denote the

area of K. Then:

d({Vi}, si) > ρK (3.4)

and

|K| > h2
K

2σ
. (3.5)

Proof. By definition of ρK as the diameter of the largest circle that can be inscribed in

K, it is clear that (3.4) holds. From basic geometry, ρK can be calculated as 4|K|
|∂K| , where

|∂K| is the perimeter of K. Since hK

ρK
≤ σ by assumption,

|K| ≥ |∂K|hK

4σ
. (3.6)

Recalling that hK is the length of the longest side of K, the sides of K have lengths

l1 ≤ l2 ≤ l3 = hK . By the triangle inequality, we must have l1 + l2 > l3, so |∂K| > 2hK ,

and (3.5) follows easily from (3.6).

The next result quantifies the intuitive notion that refining a mesh by the algorithm

in Section 3.1 results in a mesh that has smaller triangles near reentrant corners and

larger triangles far away. This result will be critical to showing that the refinement

procedure produces a triangulation that satisfies (T6*) and (T7*).

Lemma 3.2.2. Let α ∈ (2, 4) and n ∈ N be given. Let T be a triangulation of Ω with

the following properties:

1. For each integer m ≤ n, T ∩ Ωi
α,m is a triangulation of Ωi

α,m for i = 1, 2,

2. T is shape-regular with aspect ratio σ, and

3. h0 := min
K∈T

hk <
1

2
− 1

α
min(α− 2, 1).
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Let T (j) denote the mesh produced by j refinements of T by the procedure in Section 3.1

and let A be the set

{K ∈ T | if K ′ ∈ T and K ′ ∩K 6= ∅ then K ′ ∩ F = ∅}. (3.7)

Then, A is nonempty, and for each j ∈ N:

max
K∈T (j)

K∩F 6=∅

hK ≤ 2−jh0 (3.8)

and

hj := max
K∈T (j)

hK ≥ 2−⌊j/2⌋ max
K∈A

hK . (3.9)

where F is the fractal region defined in Section 3.1 containing all reentrant corners of

Ωi
α,n for i = 1, 2.

Proof. To prove (3.8), suppose K ∈ T is a triangle with K∩F 6= ∅. Then, K has at least

one vertex in the fractal region, so K is refined according to one of the procedures shown

in Figure 3.4. The heavy lines in each triangle of the figure highlight the subdivision of

K into four congruent triangles by regular refinement. So, if K ′ is a triangle created in

the refinement of K, then K ′ is contained in one of the four triangles with edges half

the length of edges of K. It follows that hK′ ≤ 1
2
hK . Regardless of which one of these

refinements is used to refine K, every vertex of K is the vertex of some triangle in T (1)

created by refining K. Since K has at least one vertex in F , it follows that there exists

K ′ ∈ T (1) such that K ′ ⊂ K and K ′ has a vertex in F . By the same argument made

for K, any subtriangle created by refining K ′ has no edge longer than 1
2
hK′ ≤ 2−2hK .

Continuing this argument for an arbitrary number of refinements and making use of the

definition of h0, (3.8) follows.

The proof of (3.9) is considerably more involved. We begin by showing that A is

nonempty. Choose K ∈ T to be a triangle with at least one vertex on the line y = −1.

Such a triangle must exist since T is a triangulation of (0, 1)×(−1, 1). Since h0 represents

the length of the longest edge of any triangle in T , the triangle K must be contained in Ω

below the line y = −1+h0. So, if K ′ is a triangle in T sharing a vertex with K, then K ′

must be below the line y = −1+2h0. From the assumption that h0 <
1
2
− 1

α
min(α−2, 1),

we have K ′ below the line y = − 2
α

min(α− 2, 1). Noticing that 1
α

min(α− 2, 1) = η1 and
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by definition of F , the lower boundary of F is the line y = −2η1, we see that K ′∩F = ∅.
Thus, we have shown that A 6= ∅.

Now, to prove (3.9), choose K1 ∈ A and consider how K1 is refined. For this, it will

be helpful to have a picture in mind. So, in Figure 3.7a one finds an example of such a

triangle. Here, K1 is the triangle shaded gray and the triangles sharing a vertex with K1

are shown in yellow. For referencing purposes, let K1 be the set {K ∈ T | K ∩K1 6= ∅}.

(a) initial mesh (b) after 1 hypothetical refine-
ment

(c) after 2 hypothetical refine-
ments

Figure 3.7: Illustration of refinement outside of F

Then K1 forms a polygon in Ω with boundary Γ. For any T ∈ K1, T can have at most

one edge along Γ \ ∂Ω. Now, suppose that T is refined by the procedure of Section 3.1.

From the refinement procedure, we see that the only hanging node T can have is at the

midpoint an edge along Γ \ ∂Ω. In the scenario that will produce the most refinement

of K1, every triangle K ∈ K1 with an edge on Γ \ ∂Ω has a hanging node on this edge.

So by the refinement process of Section 3.1, each of these triangles will be refined by

adding an edge from the hanging node to the vertex opposite it, as in Figure 3.5. This

refinement does not create any new hanging nodes, so it does not cause any additional

triangles to be refined. In particular, K1 is not refined, so we have shown that h1 ≥ hK1 .

In Figure 3.7b, one sees the result of refining the mesh shown in Figure 3.7a under this

hypothetical situation.

Suppose another refinement is necessary, and again, we envision the scenario which

will result in the most refinement of triangles bordering K1. After the previous refine-

ment, every edge of a triangle T ∈ K1 along Γ\∂Ω was bisected forming two new edges.

In the worst case, each of these newly created edges will also have a hanging node. So,

from the refinement procedure of Section 3.1, the first step is to remove all of the so-

called green edges. Recall that green edges are the edges created by joining the vertex of

a triangle with the midpoint of the edge opposite it as in Figure 3.5. Once these green

edges are removed, the triangles in T with new hanging nodes will be divided into four

congruent subtriangles in the normal way, and new green edges will be added to keep
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the mesh conformal. Unlike the previous stage, this new refinement does create hanging

nodes, so other triangles, including K1, must be refined as in Figure 3.4d. This refine-

ment divides K1 into 4 triangles, each similar to K1 but with lengths half the length

of those in K1. Thus, h2 ≥ 1
2
hK1 . The result of this second hypothetical refinement is

shown in Figure 3.7c.

To continue this argument for more refinements, let K2 be the triangle in the center

of the refined K1 and let K2 = {K ∈ T (2) | K ∩ K1 6= ∅}. Repeating the arguments

made about refining K1, we now see that h3 ≥ hK2 = 1
2
hK1 and h4 ≥ 1

2
hK2 = 2−2hK1 .

Thus K1 and its subtriangles are refined at most every other iteration. Since K1 ∈ A
was arbitrary, (3.9) follows.

The next theorem is where the bulk of the effort required to prove that the refinement

procedure produces a mesh satisfying (T6*) and (T7*) is concentrated. As such, the

proof is lengthy, detailed, and will require the two previous results of this section and

a good understanding of the refinement procedure. In particular, Figure 3.4, and the

description of the refinement in terms of barycentric coordinates that accompanies it,

will be of great importance and will be referenced often.

Theorem 3.2.3. Let α ∈ (2, 4), n ∈ N, and µ ∈ (0, 1) be given. Let T be a triangulation

of Ω with the following properties:

1. For each m ≤ n, T ∩ Ωi
α,m is a triangulation of Ωi

α,m for i = 1, 2,

2. T is shape-regular with aspect ratio σ,

3. h0 := minK∈T hk <
1
2
− η1.

Let T (j) be the mesh produced by refining T by the procedure in Section 3.1 j times.

Then, there exists j∗ ∈ N such that each K ∈ T (j∗) satisfies the following properties:

hK ≤ σh1/(1−µ)
∗ if K ∩Rα,n 6= ∅, (3.10)

hK ≤ σh∗d(K,Rα,n)µ if K ∩Rα,n = ∅ and K ∩ F 6= ∅, (3.11)

and for any integer m < n,

hK ≤ 3µ/(1−µ)σh∗d(K,Rα,m)µ if K ∩Rα,m = ∅ and K ∩ F 6= ∅ (3.12)

where h∗ = minK∈T (j∗) hK.
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Proof. Begin by defining

ρ0 := min
K∈T

K∩Rα,n 6=∅
ρK (3.13)

and let C0 = h−1
0 maxK∈A hK . Then choose j∗ ∈ N such that:

2⌊j∗/2⌋3−j∗ ≤ σ1−µC0h
µ
0 (3.14)

and

2⌊j∗/2⌋2−j∗ ≤ σC0ρ
µ
0 . (3.15)

Since conditions (3.10), (3.11), and (3.12) naturally separate the statement of the theo-

rem into three cases, the proof will also follow this arrangement.

Case 1: K ∈ T (j∗) with K ∩Rα,n 6= ∅
Since T (j∗) is a refinement of T , there exists a triangle K0 ∈ T such that K is

created by refining K0. The assumption that K ∩ Rα,n 6= ∅ implies that K has a

vertex in Rα,n. Let us use P to denote this vertex. Using the fact that T ∩Ωi
α,n is

a triangulation of Ωi
α,n for i = 1, 2, every vertex of the prefractal curve Σα

n is the

vertex of a triangle in T . Recalling that V α
n denotes the vertices of Σα

n and that

Rα,n ⊂ V α
n , P must also be a vertex of K0.

Regardless of how many other vertices of K0 are in Rα,n, when K0 is refined as

specified in Section 3.1, exactly one subtriangle, K1, will be created with a vertex

at P . K1 will be similar to K0 and will have hK1 = λhK0 . If j∗ = 1, then K = K1,

but if j∗ > 1, then K1 will be refined, creating a triangle K2 similar to K1, with a

vertex at P , and having hK2 = λhK1 = λ2hK0 . Continuing this argument, K will

result from j∗ refinements of K0 and hK = λj∗hK0 . From Lemma 3.2.2, we know

that h∗ ≥ 2−⌊j∗/2⌋C0h0. Thus, using (3.14) and recalling that λ =
(

1
3

)1/(1−µ)
, we
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have

σh1/(1−µ)
∗ ≥ σ

(
2−⌊j∗/2⌋C0h0

)1/(1−µ)

≥ σ
[
(σ1−µC0h

µ
03j∗)−1C0h0

]1/(1−µ)

=

[(
1

3

)1/(1−µ)
]j∗

h0

= λj∗h0 ≥ hK .

So, (3.10) is satisfied.

Case 2: K ∈ T (j∗) with K ∩Rα,n = ∅ and K ∩ F 6= ∅
Since K ∩ F 6= ∅, K has at least one vertex in the fractal region. Moreover, since

K is an element of the refined mesh, K came from the refinement of a triangle

K0 ∈ T with at least one vertex in F . Although we know that K does not have a

vertex in Rα,n, from only this information, we cannot determine if K0 had a vertex

in Rα,n. This leads us to consider two separate subcases.

Case 2a: K ⊂ K0 ∈ T with K0 ∩Rα,n = ∅.
At the first stage of refinement, K0 is refined in the regular fashion by dividing

K0 into four congruent subtriangles. One of these subtriangles, which we

refer to as K1 must contain K, and hK1 = 1
2
hK0 . If j∗ = 1, then K = K1.

Otherwise, since K ∩ F 6= ∅ and K ⊂ K1, K1 ∩ F 6= ∅. So, at the next

refinement, K1 will be divided into four congruent subtriangles, one of which

will contain K. Continuing this line of reasoning, there exists a sequence

of triangles K0 ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kj∗−1 ⊃ K with hKj
= 2−jhK0 . So,

hK = 2−j∗hK0 .

To see that (3.11) is satisfied, we must estimate σh∗d(K,Rα,n)µ. From Lemma

3.2.1 and the definition of ρ0, the distance from any vertex in Rα,n to the edge

opposite it is greater than ρ0. Since K0 has no vertex at a reentrant corner,

the distance from K0 to a reentrant corner must be greater than ρ0. Then,

since K ⊂ K0, it follows that d(K,Rα,n) > ρ0. Thus, using (3.15) and
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Lemma 3.2.2, we have

σh∗d(K,Rα,n)µ > σ
(
2−⌊j∗/2⌋C0h0

)
ρµ

0

≥ σ
(
σC0ρ

µ
02j∗

)−1
C0h0ρ

µ
0

= 2−j∗h0.

Using this result along with the earlier conclusion that hK = 2−j∗hK0 , and

the fact, coming from the definition of h0, that h0 ≥ hK0 , (3.11) is satisfied.

Case 2b: K ⊂ K0 ∈ T with K0 ∩Rα,n 6= ∅.
Then, as in the previous case, there exists a sequence of triangles created by

the refinement of K0 such that for each j < j∗, Kj ∈ T (j) with Kj∩F 6= ∅ and

K0 ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kj∗−1 ⊃ K. By the assumption that K0 ∩ Rα,n 6= ∅,
but K ∩ Rα,n = ∅, there exists some integer j̃ ∈ [0, j∗) for which Kj has a

vertex in Rα,n if j ≤ j̃, and Kj does not have a vertex in Rα,n if j > j̃. From

the argument made in Case 1 of the proof of this theorem, we deduce that

hKj̃
= λj̃hK0 . (3.16)

Now, when Kj̃ is refined according to the algorithm in Section 3.1, since

Kj̃ ∩ Rα,n 6= ∅, Kj̃ is refined as in Figure 3.4a, Figure 3.4b or Figure 3.4c.

Using the same argument as in the proof of Lemma 3.2.2, the longest side of

any subtriangle of Kj̃, has length no greater than 1
2
hKj̃

. Thus, using (3.16),

hKj̃+1
≤ 1

2
λj̃hK0 . (3.17)

For j ≥ j̃ + 1, Kj has no vertices in Rα,n, but since Kj ∩ F 6= ∅, if Kj is

refined it will be refined as in Figure 3.4d, so that hKj+1
= 1

2
hKj

. Combining

this with (3.17), we have

hK ≤ 2−(j∗−j̃)λj̃hK0 . (3.18)

To verify (3.11), it is necessary to approximate d(K,Rα,n). Because of the

nested nature of the sequence of trianglesKj, for any j ∈ [1, j∗), d(Kj, Rα,n) ≥
d(Kj−1, Rα,n). By the definition of j̃, if j ≤ j̃, Kj has at least one vertex in
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Rα,n, meaning that d(Kj, Rα,n) = 0, while d(Kj, Rα,n) > 0 if j > j̃. Since the

refinement process ensures that Kj is similar to K0 with a proportionality

constant of λj if j ≤ j̃, for j > j̃, Kj is separated from any of the vertices

in K0 that are also in Rα,n by a triangle congruent to Kj̃. Thus, using

Lemma 3.2.1, d(K,Rα,n ∩ K0) is greater than λj̃ρK0 > λj̃ρ0. To estimate

d(K,Rα,n), we must also consider d(K,Rα,n \K0). In this case, Lemma 3.2.1

and the definition of ρ0 imply that d(K0, Rα,n \K0) > ρ0, and consequently,

d(K,Rα,n \K0) > ρ0. Thus, we conclude that d(K,Rα,n) > λj̃ρ0. Using this

result, (3.15), Lemma 3.2.2, and the definition of λ, we have:

σh∗d(K,Rα,n)µ ≥ σ(2−⌊j∗/2⌋C0h0)(λ
j̃ρ0)

µ

≥ σ
(
σC0ρ

µ
02j∗

)−1
C0h0(λ

j̃ρ0)
µ

= 2−j∗(λµ)j̃h0

= 2−(j∗−j̃)2−j̃λj̃(λµ−1)j̃h0

=

(
3

2

)j̃

2−(j∗−j̃)λj̃h0.

From, (3.18), we see that (3.11) holds in this case as well.

Case 3: K ∈ T (j∗) with K ∩Rα,m = ∅, K ∩ F 6= ∅ and m < n.

For the final case, we will make use of (3.10) and (3.11), which we have already

shown. However, both of these results depend on whether K has a vertex in Rα,n

and although we know K ∩ Rα,m = ∅, since Rα,m is a strict subset of Rα,n, we

cannot determine if K has any vertices in Rα,n. So, we consider two subcases.

Case 3a: K ∩Rα,n = ∅.
Using the fact that Rα,m ⊂ Rα,n, we have

d({x}, Rα,n) ≤ d({x}, Rα,m)

for every x ∈ Ω. Thus, (3.11) shows that (3.12) holds.

Case 3b: K ∩Rα,n 6= ∅.
Then K has a vertex, call it V , in Rα,n. From the argument presented in

Case 1 of this proof, there exists K0 ∈ T such that V is a vertex of K0, K is
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created by j∗ refinements of K0, and hK = λj∗hK0 . To determine if K satisfies

(3.12), we must also find a bound for d(K,Rα,m).

Even thoughK does not have a vertex in Rα,m, it is still possible thatK0 does.

If K0 does have a vertex P ∈ Rα,m, then K0 has at least two vertices in Rα,n,

so K0 is refined as in Figure 3.4a or Figure 3.4b. Regardless of which of the

two refinements is performed, there exist distinct trianglesKP andKQ created

by refining K0 such that KP has a vertex at P and KQ has a vertex at KQ.

From the description of the refinement in terms of barycentric coordinates,

both KP and KQ are similar to K0 with a proportionality constant of λ. So,

using Lemma 3.2.1, the distance from Q to a point in K \KQ is greater than

λρK0 > λρ0. It is evident that K ⊆ KP ⊂ (K0 \KQ), so

d(K,Rα,m ∩K0) > λρ0. (3.19)

In order to evaluate d(K,Rα,m), we must also consider d(K,Rα,m \K0). From

previous arguments, any point in Rα,m \K0 is the vertex of a triangle K1 6=
K0 ∈ T and by Lemma 3.2.1,

ρ0 < d(K0, Rα,m \K0) < d(K,Rα,m \K0). (3.20)

So, combining (3.19) and (3.20), and noticing that λ < 1 for any value of

µ ∈ (0, 1),

d(K,Rα,m) ≥ λρ0. (3.21)

Using (3.21), Lemma 3.2.2, (3.15), and the definition of λ,

σh∗d(K,Rα,m)µ ≥ σh∗(λρ0)
µ

≥ σ(2−⌊j∗/2⌋C0h0)(λρ0)
µ

≥ σ(σC0ρ
µ
02j∗)−1C0h0(λρ0)

µ

= λµ2−j∗h0.

Recalling that µ =
(

1
3

)1/(1−µ)
, 2−j∗ ≥ λj∗ and λ−µ = 3µ/(1−µ)

σh∗d(K,Rα,m)µ ≥ 3−µ/(1−µ)λj∗h0.
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From the earlier conclusion that hK ≤ λj∗hK0 , and the fact that h0 ≥ hK0 ,

(3.12) follows.

With all of the previous results established, we are finally ready to show that the

mesh created by refining a coarse mesh for the problem satisfies the assumptions of

Theorem 2.2.4.

Theorem 3.2.4. Let α ∈ (2, 4) and n ∈ N be given. Let θ = cos−1(α
2
− 1), and let

µ1 >
2θ

π+2θ
and µ2 >

θ
π+θ

be given. Suppose T is a triangulation of Ω satisfying:

1. For each m ≤ n, T ∩ Ωi
α,m is a triangulation of Ωi

α,m for i = 1, 2,

2. T is shape-regular with aspect ratio σ,

3. h0 := minK∈T hk <
1
2
− η1.

Then there exists j ∈ N such that T can be refined j times according to the procedure in

Section 3.1 to create a mesh T α
hn

of Ω with the following properties:

1. T α
hn

is shape-regular with aspect ratio σ′ ≤ 3
2
σmax

(
6, 31/(1−µ)

)
,

2. hn := minK∈T α
hn
hk.

3. For each m ≤ n ∈ N, and i = 1, 2,
(
T α

m,hn

)i
:= T α

hn
∩ Ωi

α,m is a triangulation of

Ωi
α,m satisfying:

hK ≤ σh1/(1−µi)
n if K has a vertex at a reentrant

corner of Ωi
α,m

(3.22)

hK ≤ 3µ/(1−µ)σhn

[

inf
x∈K

ri
m(x)

]µi

otherwise (3.23)

for every K ∈ T α
m,hn

, where µ = max
i=1,2

µi.

Proof. By Theorem 3.2.3, with µ = max{µ1, µ2}, there exists a j ∈ N such that j

refinements of T according to the procedure in Section 3.1 produces a mesh satisfying

(3.10)-(3.12). Call the resulting mesh T α
hn

. Since the initial mesh, T , provides a shape-

regular triangulation of Ωi
α,m for i = 1, 2, and each m ≤ n and T α

hn
is a conformal

refinement of T , T α
hn

also provides a triangulation of these domains.
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To prove that T α
hn

is shape-regular, we must show that there exists a constant σ′ such

that maxK∈T α
hn

hK

ρK
≤ σ′. In order to show this result, the refinement procedure must

be considered. According to the algorithm in Section 3.1, triangles in T are refined

in only one of five ways, represented in Figures 3.4 and 3.5, or they are not refined at

all. Clearly, if a triangle K is not refined, the ratio hK

ρK
cannot change, so this does not

affect the aspect ratio of the triangulation. Next, it is clear that if K1 is similar to K2,
hK1

ρK1
=

hK2

ρK2
, so it is enough to show that only a limited number of similarity classes of

triangles are created.

Let K have vertices V1, V2, and V3 and suppose K is refined by one of the methods

outlined in Section 3.1. The following figures reproduce the depiction of the refinements

shown in Section 3.1, with the similarity class of each triangle denoted by a number in

the center of the triangle. Shaded triangles with no label are similar to K. The similarity

class of a triangle can easily be determined by the description of the refinement in terms

of barycentric coordinates. From Figure 3.8, we see that only 13 similarity classes are

V1 V2

V3

1

2

3 4

5

6

7

8

9

(a) 3 vertices in Rα,n

V1 V2

V3

2

3

1

4

5

6

11 10

(b) 2 vertices in Rα,n

V1 V2

V3

1

2

3

12

13

(c) 1 vertex in Rα,n

V1 V2

V3

(d) Equal Subdivision

V1 V2

V3

11 10

(e) Subdivision by bisection

Figure 3.8: Refinement labeled according to similarity class

created. If only one refinement of T was necessary this would be sufficient to show that

the resulting mesh was shape regular.

Suppose instead that T must be refined again. From Figure 3.8, it is clear that if K ′
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is a triangle created by refining K ∈ T and K ′ has a vertex in Rα,n, then K ′ is similar to

K. Thus, if K ′ is refined again by the algorithm in Section 3.1, since K ′ has exactly one

vertex in Rα,n, K ′ will be refined as in Figure 3.4c, and no new similarity classes will be

introduced. Now suppose K ′ is a triangle created by refining K and K ′ has no vertices in

Rα,m. Then, if K ′ is part of the fractal region, K ′ will be refined in the regular fashion,

as in Figure 3.8e, and again no new similarity classes are introduced. If K ′ is not part

of the fractal region, then K ′ will be refined according to the algorithm set forth in [5],

where it is shown that even after repeated refinements, no angle will be bisected more

than once thus limiting the aspect ratio. This argument shows that regardless of the

number of iterations required, the aspect ratio satisfies maxK∈T α
hn

hK

ρK
≤ σ′. To see that

σ′ ≤ 3
2
σmax

(
6, 31/(1−µ)

)
, we refer the reader to Appendix B.3.

It remains to show that (3.22) and (3.23) hold. First, recall that Rα,m is the set of

all points that are at reentrant corners of Ω1
α,n ∪ Ω2

α,n, and Rα,m := V m
α \ {(0, 0), (1, 0)}

for each m ∈ N. The nested nature of the vertices of the von Koch curve described in

Section 1.2 implies that Rα,m ⊂ Rα,n for any m < n. Since the set of points that are at

reentrant corners of Ωi
α,m is a strict subset of Rα,m for i = 1 or i = 2, let us denote the

points at reentrant corners of Ωi
α,m by Ri

α,m.

Now, fix i ∈ {1, 2} and m ≤ n ∈ N. Suppose first that K ∈
(
T α

m,hn

)i
has a vertex in

Ri
α,m. Then, since µ > max{µ1, µ2}, (3.10) holds with µ replaced by either µ1 or µ2 and

(3.22) follows.

For (3.23), suppose K ∈
(
T α

m,hn

)i
does not have a vertex in Ri

α,m. Then, since Ri
α,m

is a strict subset of Rα,m, K may or may not have a vertex in Rα,m. If K does have a

vertex in Rα,m, then the argument that hK ≤ 3µ/(1−µ)σhnd(K,R
i
α,m)µ is essentially the

same as the one presented in Case 3b of Theorem 3.2.3, so it will not be repeated here.

From the definition of ri
m(x), ri

m(x) ≥ d({x}, Rα,m) for any x ∈ Ω, so using the fact that

µ ≥ µi, (3.23) holds. If K does not have a vertex in Rα,m, then K may or may not

have a vertex in the fractal region F . If K does have a vertex in F , then either (3.11)

or (3.12) holds, depending on whether m = n. Using again that ri
m(x) ≥ d({x}, Rα,m)

and µ ≥ µi, (3.23) follows. The final case remaining to consider is the one in which

K ∈
(
T α

m,hn

)i
and K does not have a vertex in the fractal region F . Recall that F was

defined in such a way that if K ∩ F = ∅, then infx∈K ri
m(x) = 1. So, in this case (3.23)

requires only that hK ≤ 3µ/(1−µ)σhn. This is easily verified since hn ≥ hK by definition,

3µ/(1−µ) ≥ 1 whenever µ ∈ (0, 1), and σ ≥
√

3.

The following short lemma essentially shows that given any α ∈ (2, 4) and n ∈ N,
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there exists a triangulation of Ω satisfying the assumptions of the previous theorem.

This result is a consequence of the fact that the algorithm implemented in the Triangle

program produces a triangulation of Ω with an aspect ratio that depends only on the

minimum angle allowed in the triangulation.

Lemma 3.2.5. Let α ∈ (2, 4) and n ∈ N be given. Suppose µ1 >
2θ

π+2θ
and µ2 >

θ
π+θ

are

given, with θ = cos−1(α
2
− 1). Letting θmin = min{θ, π − 2θ, π

3
}, there exists a sequence

{T α
hj
}j≥n of triangulations of Ω with {hj}j≥n decreasing to 0, each of which satisfies the

conclusion of Theorem 3.2.4 with σ ≤ 1+cos θmin

sin θmin
.

Proof. Let h̄j be a positive sequence of real numbers decreasing to zero with h̄n <
1
2
−

1
α

min(α − 2, 1). For each j ≥ n, the algorithm implemented by the Triangle program

(see [25] and [24]) can produce a triangulation Th̄j
of Ω such that maxK∈Th̄j

≤ h̄j, the

smallest angle of any triangle in Th̄j
is no less than θmin, and for i = 1, 2, Th̄j

∩ Ωi
α,n is

a triangulation of Ωi
α,n. By Lemma B.1.1, the aspect ratio of Th̄j

is less than or equal

to σ = 1+cos θmin

sin θmin
. Thus, by Theorem 3.2.4, for each j, there exists an integer N(j) such

that the mesh created by N(j) refinements of Th̄j
according to the algorithm in Section

3.1 satisfies the conclusion of Theorem 3.2.4. We call such a mesh T α
hj

. Since T α
hj

results

from refining a mesh with no edge longer than h̄j, it is clear that T α
hj

also has no edge

longer than h̄j and the result is proven.

All of the results in this section have led up to the following result, in which we give

an estimate of the error between the true solution to (P̃α
n ) and the solution to (P̃α

n ) in

the finite element space. The statement will require the definition of Sobolev spaces

on the boundaries of a polygonal domains, so we recall from Section 1.4.1 that we can

characterize the space Hs(Σα
n) for s > 1

2
as

{v ∈ C(Σα
n) | v|M ∈ Hs(M) for every segment M ∈ Σα

n}

with norm

‖v‖Hs(Σα
n) =




∑

M∈Σα
n

‖v|M‖2
Hs(M)





1/2

.

Also, recall from Section 1.4.2 the definition of V (Ω,Σα
n) as

V (Ω,Σα
n) := {u ∈ H1

0 (Ω) | u|Σα
n
∈ H1

0 (Σα
n)}.
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Theorem 3.2.6. Let α ∈ (2, 4) and n ∈ N be given. Suppose µ1 >
2θ

π+2θ
and µ2 >

θ
π+θ

are given, with θ = cos−1(α
2
− 1). Let {T α

hj
}j≥n be a sequence of triangulations of Ω

guaranteed by Lemma 3.2.5. For each integer j ≥ n, let P 1
hj

(Ω) denote the space of

functions in C(Ω) ∩ H1
0 (Ω) that are affine on each triangle of T α

hj
. Let un ∈ V (Ω,Σα

n)

be the solution of (P̃α
n ) and use ui

n to denote the restriction of un to Ωi
α,n for i = 1,

2. Let un,j ∈ P 1
hj

(Ω) be the solution to the finite element approximation of the problem,

satisfying

∫∫

Ω

∇un,j∇vj dx dy + cn

∫

Σα
n

∇tun,j∇tvj ds =

∫∫

Ω

fvj dx dy (3.24)

for every vj ∈ P 1
hj

(Ω). Then the following error estimate holds for every j ≥ n ∈ N:

‖un − un,j‖V (Ω,Σα
n) ≤ Chj







∑

i=1,2

∑

|β|=2

∥
∥(ri

n)µi∂βui
n

∥
∥

2

L2(Ωi
α,n)

+ cn |un|2H2(Σα
n)







1/2

(3.25)

where C is a constant independent of j.

Proof. From Cea’s Lemma (Theorem 2.1.6) with Y = V (Ω,Σα
n) and a(u, v) =

∫∫

Ω
∇u∇v dx dy+

cn
∫

Σα
n
∇tu∇tv ds, along with definition of the norm on V (Ω,Σα

n),

‖un − un,j‖V (Ω,Σα
n)

≤ C inf
vj∈P 1

hj

[

‖un − vj‖2
H1(Ω) + cn

∥
∥(un − vj)|Σα

n

∥
∥

2

H1(Σα
n)

]1/2

where C is a constant independent of j.

To estimate the right hand side of the above inequality, we first notice that Theo-

rem 1.4.10 states that ui
n ∈ H2,µi(Ωi

α,n) for i = 1, 2. So, by Theorem 2.2.1, ui
n for i = 1,

2 has a continuous representative ūi
n ∈ C(Ωi

α,n). Since u1
n|Σα

n
= u2

n|Σα
n
, un actually has a

continuous representative as well. Thus, we may define Πhj
un to be the unique element

of P 1
hj

(Ω) that coincides with un at each node of the mesh T α
hj

, as was done in definition

2.1.10. Thus,

‖un − un,j‖V (Ω,Σα
n)

≤ C
[∥
∥un − Πhj

un

∥
∥

2

H1(Ω)
+ cn

∥
∥(un − Πhj

un)|Σα
n

∥
∥

2

H1(Σα
n)

]1/2

(3.26)
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Using the fact that ‖v‖2
H1(Ω) =

∑

i=1,2

∥
∥
∥v|Ωi

α,n

∥
∥
∥

2

H1(Ω)
for any v ∈ H1(Ω), along with the

result of Thereom 2.2.4, we have

∥
∥un − Πhj

un

∥
∥

2

H1(Ω)
≤ C1h

2
j

∑

i=1,2

∑

|β|=2

∫∫

Ωi
α,n

∣
∣[ri

n(x, y)]µi∂βui
n(x, y)

∣
∣
2
dx dy

where C1 is independent of j.

For the second term on the right hand side of (3.26), we will use the information

provided by Theorem 1.4.8 that un|Σα
n
∈ H2(Σα

n). Although all of the results in Chapter 2

referred to a 2-dimensional domain, the results hold in the case of a 1-dimensional domain

as well, so applying Theorem 2.1.14 gives

∥
∥(un − Πhj

un)|Σα
n

∥
∥

2

H1(Σα
n)

≤ C2h
2
j

∣
∣un|Σα

n

∣
∣
2

H2(Σα
n)

where C2 is independent of j. Combining these three inequalities yields (3.25).

Remark: It is important to note that without refining the coarse mesh so that

it satisfies (T6*) and (T7*), we would not be able to obtain this linear convergence

rate. Using, for instance, Theorem 8.4.14 in [13] along with Theorem 1.4.10 giving the

regularity of the solution to (P̃α
n ), we would obtain the following error estimate

∥
∥un − un,hj

∥
∥

V (Ω,Σα
n)

≤ Chs1−1
j

{

‖un‖Hs1 (Ω1
α,n) + ‖un‖Hs2 (Ω1

α,n) + ‖un‖H2(Σα
n)

}

,

with s1 < 2π+2θ
π+2θ

and s2 < 2π+θ
π+θ

for θ = cos−1
(

α
2
− 1
)
. Since s1 ∈ (1, 2) for every

α ∈ (2, 4), it is clear that this convergence rate is slower than the one found in (3.25).

3.3 Implementation and Results

In this section, we will provide some details to make a practical implementation of the

finite element method applied to the prefractal transmission problem feasible. We will

conclude with some results of computations.

We begin by considering the algebraic formulation of the finite element approximation

to the problem (P̃α
n ). So, fix α ∈ (2, 4) and n ∈ N. Then, for a fixed j ≥ n, let T α

hj
be

a triangulation as in Theorem 3.2.6. Then, given this triangulation, the finite element

76



approximation to the solution un of (P̃α
n ) is the element un,j ∈ P 1

hj
(Ω) satisfying

∫∫

Ω

∇un,j∇vj dx dy + cn

∫

Σα
n

∇tun,j∇tvj ds =

∫∫

Ω

fvj dx dy (3.27)

for every vj ∈ P 1
hj

(Ω).

Recall that P 1
hj

(Ω) is the space of functions in C(Ω) that are affine on each triangle

in T α
hj

. As was mentioned in Section 2.1, there is a simple basis for this space. For each

node xi in the triangulation, let φi be the unique function in P 1(Ω) that is one at xi and

zero at every other node in the mesh. We refer to this basis as the nodal basis for T α
hj

.

We will now use this basis to transform the variational problem into an algebraic

one. Suppose T α
hj

has N nodes. Then, since {φi}N
i=1 is a basis for P 1

hj
(Ω), un,j ∈ P 1

hj
(Ω)

satisfies (3.27) if and only if un,j satisfies

∫∫

Ω

∇un,j∇φi dx dy + cn

∫

Σα
n

∇tun,j∇tφi ds =

∫∫

Ω

fφi dx dy (3.28)

for every i ∈ N with 1 ≤ i ≤ N . Because un,j ∈ P 1
hj

(Ω), there exist constants {βk}N
k=1

such that

un,j =
N∑

k=1

βkφk

Using this decomposition of un,j, (3.28) becomes

N∑

k=1

βk

[∫∫

Ω

∇φk∇φi dx dy + cn

∫

Σα
n

∇tφk∇tφi ds

]

=

∫∫

Ω

fφi dx dy,

and we can determine the solution un,j by finding the coefficients βk that satisfy this

equation. So, we have converted the variational problem of finding un,j ∈ P 1
hj

(Ω) satisfy-

ing (3.27) into a purely algebraic problem. To make it even more clear that this problem

is algebraic, for 1 ≤ i, k ≤ N , set

A(i, k) =

∫∫

Ω

∇φk∇φi dx dy + cn

∫

Σα
n

∇tφk∇tφi ds (3.29)
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and

b(i) =

∫∫

Ω

fφi dx dy. (3.30)

We will refer to A as the stiffness matrix and call b the load vector. Then with

β = [βi, β2, . . . , βN ]T , β is the solution to the linear system

Aβ = b.

Given the nature of the basis functions, φi is nonzero on a triangle T ∈ T α
hj

only if xi

is a vertex of T and ∇φk∇φi is nonzero only if xi and xk are both vertices of the same

triangle T ∈ T α
hj

. Thus, it is practical to calculate the integrals in the previous equations

as sums over the triangles in the mesh. Then, we have

A(i, k) =
∑

T∈T α
hj

∫∫

T

∇φk∇φi dx dy + cn
∑

M∈Σα
n

∫

M

∇tφk∇tφi ds (3.31)

and

b(i) =
∑

T∈T α
hj

∫∫

T

fφi dx dy (3.32)

where M ∈ Σα
n is one of the segments forming the prefractal curve. To actually calculate

the values of the entries in the stiffness matrix and the load vector, we essentially follow

[2]. There, a very detailed description of a simple MATLAB program implementing

the finite element method is given. We will not attempt to replicate the exceptional

instructional nature of this paper. Instead, we will only mention some of the aspects

most important to our application.

Let T be a triangle with vertices (x1, y1), (x2, y2), and (x3, y3). In [2], it is shown

that for (x, y) ∈ T , the gradient of the nodal basis function at the ith vertex of T for

i = 1, 2, 3, is given by

∇φi(x, y) =
1

2|T |

(

yi+1 − yi+2

xi+2 − xi+1

)

(3.33)
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where

2|T | = det

(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

(3.34)

and the indices in (3.33) are given modulo 3. Using this information,

∫∫

T

∇φi∇φk dx dy =
|T |

(2|T |)2

(

yi+1 − yi+2, xi+2 − xi+1

)
(

yk+1 − yk+2

xk+2 − xk+1

)

. (3.35)

To calculate A(i, k), we also need ∇tφi on a segment M of Σα
n. So, suppose in the

triangle T , the edge from (x1, y1) to (x2, y2) is a segment of Σα
n. Then, ∇tφi = ∇φi · v̄,

where v̄ is the unit vector in the direction of

v =
(

x2 − x1, y2 − y1

)

.

With M denoting the segment from (x1, y1) to (x2, y2),

∫

M

∇tφi∇tφk ds

=
‖v‖

(‖v‖)2(2|T |)2

[(

yi+1 − yi+2

xi+2 − xi+1

)

· v
][(

yk+1 − yk+2

xk+2 − xk+1

)

· v
]

, (3.36)

and A(i, k) is easily calculated from (3.35) and (3.36).

Next, we must calculate the entries in the load vector b. This is not quite as simple

as calculating the entries in the stiffness matrix. Looking back to (3.27), the integrals

on the left hand side only involve functions in P 1
hj

(Ω), but on the right hand side, we

have only required that f ∈ L2(Ω). Even assuming that f ∈ C(Ω), in most cases,

this integral would have to be approximated numerically. In [26], it is shown that if the

numerical approximation of the integral is such that the first derivatives of every function

in P 1
hj

(Ω) can be integrated exactly, we will be able to maintain the H1−convergence

of Section 3.2. So, letting (xC , yC) denote the barycenter of T , we have the following

simple approximation for the ith entry in the load vector,

b(i) =

∫∫

T

fφi dx dy ≈ 1

6
det

(

x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

f(xC , yC). (3.37)

This approximation is used in [2] and satisfies the properties in [26] that allow the linear
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convergence in the last section to be realized.

From the above formulas for the stiffness matrix and load vector, it is relatively easy

to write code to set up and solve the linear system. We have chosen to use MATLAB

for the implementation and have built our code from that in [2].

With these formulas, we are also able to see another benefit of our use of the mesh

T α
hj

to solve the problem (P̃α
n ) for any n ≤ j. If we write the (i, k) entry in the stiffness

matrix as B(i, k) + C(i, k) where

B(i, k) =
∑

T∈T α
hj

∫∫

T

∇φk∇φi dx dy (3.38)

and

C(i, k) = cn
∑

M∈Σα
n

∫

M

∇tφk∇tφi ds (3.39)

only C(i, k) is affected by a change in n. B(i, k) and the load vector b are completely

independent of n, so if we save this part of the stiffness matrix and the load vector,

they need not be calculated again for each new value of n, hopefully saving computation

time.

For the storage and management of the mesh data structure, we have followed the

model in [11], again with some necessary modifications for our specific problem. The

most important modification that must be made is providing a means for identifying

nodes that are at reentrant corners of the domain and edges that form the prefractal

curve. The bulk of the original code written to numerically solve (P̃α
n ) involves creating

the prefractal curves and implementing the refinement procedure. The prefractal curves

are created easily from the maps in Section 1.2 and implementing the refinement proce-

dure is a straightforward task using the barycentric coordinates provided in Section 3.1

to define new nodes and triangles.

Having provided these implementation notes, we are now prepared to show some

results of the computations. In all of the computations, we have chosen f ≡ 1. With

this choice of f , we have the following physical interpretation of the problem. We can

consider the domain Ω as a single elastic membrane being pushed upward with a constant

force throughout the domain. In this light, the transmission condition −cn∆tun =
[

∂un

∂ν

]

gives Σα
n the role of being a reinforcement of the material. One can think of this as a
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heavy thread woven through the more loosely woven fabric in the rest of the domain.

We begin by showing a sequence of solutions to (3.27) with both α and n fixed, and

the mesh size hj decreasing. For this example, we have chosen α = 3 and n = 1. In

Figures 3.9-3.12, one sees the mesh T 3
1,hi

for i = 1 . . . 4 and the corresponding solution to

the transmission problem using each discretization of the domain. It is evident from

0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) T α
1,h1

(b) u1,h1

Figure 3.9: Mesh and Solution with α = 3, n = 1, and h1

the figures that as hj decreases, the solution un,j to (3.27) becomes much more smooth,

better approximating the true solution un to (P̃α
n ).

In the next set of figures, we show how one mesh can be used to solve a series of

problems. In Figure 3.13, one finds the mesh T α
h4

for α = 2.5. This discretization of

the domain will be used to solve (3.27) with α = 2.5 and n = 1 . . . 4. The solutions to

these problems can be seen in Figure 3.14. These figures are important because they

emphasize how a single discretization of the domain Ω can be used to solve a number

of problems with different interfaces. From the figures, we can also visually inspect how

the increasing value of n affects the shape of the solution. It appears that as n increases,

causing the length of Σα
n to increase and intrude further into the upper portion of the

domain, the peak of the solution in this part of the domain decreases. This is consistent

with the interpretation of Σα
n serving as a reinforcement of the elastic material that forms

the rest of the domain.
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(a) T α
1,h2

(b) u1,h2

Figure 3.10: Mesh and Solution with α = 3, n = 1, and h2

In the final set of figures, we see the solutions to (P̃α
n ) with n fixed and α varying

in (2, 4). Notice that the value of α also has an affect on the maximum height of the

solution in Ω1
α,n. For values of α near 2, the prefractal curve intrudes much further into

the upper domain, limiting the extent to which the elastic material nearby is stretched

upward by the constant force being applied.

3.4 Future Work

With the conclusion of this thesis, we remark on some of the work that remains to be

done. In Section 3.3, we mentioned some ways in which the solution to the prefractal

transmission problem was affected by changing α and n. However, these observations

were based only on visualizing the solution. Additional work be done to make a more

systematic study of how this and other properties of the solution are affected by changing

these parameters.

A very important part of this problem that remains incomplete is understanding how

the solution to the prefractal transmission problem relates to the solution of the fractal

transmission problem. In Section 1.3, it was mentioned that in 1.3 it is shown that for

α = 3, the solutions un to the sequence of problems (P̃α
n ) converge in the H1−norm to
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(a) T α
1,h3

(b) u1,h3

Figure 3.11: Mesh and Solution with α = 3, n = 1, and h3

the solution of (P̃α) as n → ∞. While we expect that this is true for other values of

α ∈ (2, 4), it is important that this analytical result be extended.

Finally, while the technique developed here for discretizing the domain takes some

advantage of the nested nature of the prefractal curve, a more specialized technique

using the self-similarity of the curve may allow for more computational time savings

generating the mesh and solving the problem numerically. Work is currently underway

by Emily Evans to devise such an algorithm.
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(a) T α
1,h4

(b) u1,h4

Figure 3.12: Mesh and Solution with α = 3, n = 1, and h4
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Figure 3.13: Mesh T α
h4

for α = 2.5
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(a) u1,4 (b) u2,4

(c) u3,4 (d) u4,4

Figure 3.14: Solutions to (3.27) with α = 2.5 and n = 1 . . . 4 using the mesh in Figure
3.13

85



(a) u3,4 with α = 3.9 (b) u3,4 with α = 3.5

(c) u3,4 with α = 3 (d) u3,4 with α = 2.5

(e) u3,4 with α = 2.1

Figure 3.15: Solutions to (3.27) for fixed mesh size h4 with n = 3 and a selection of
values of α ∈ (2, 4)
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General Notation

Notation Description

A closure of the set A 26, 30
◦
A interior of the set A 30

B(x, r) {y : |x− y| < r} 17

C0,β(K) space of Hölder continuous functions of order

β

12

d(A,B) Euclidean distance between the sets A and B 61

diam(A) diameter of the set A, sup
x,y∈A

|x− y| 29

H2,µ(Ω; r) weighted Sobolev space 22

L(X;Y ) space of bounded linear functions from X to

Y

34

µ⌊A measure µ restricted to the set A 9

vn
w
⇀ v vn converges weakly to v 16

X →֒ Y X is continuously embedded in Y 16

X →֒→֒ Y X is compactly embedded in Y 16
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Finite Element Notation

Notation Description

h maxK∈Th
hK 34

hK length of the longest side of a triangle K 29

K̂ the reference triangle with vertices (0, 0),

(0, 1), and (1, 0)

30

P 1
h (Ω) subset of C(Ω) that is linear on each triangle

K of Th

30

Πh the linear interpolating operator from

H2(Ω) → P 1
h (Ω) or H2,µ(Ω) → P 1

h (Ω)

31, 42

ΠK the linear interpolating operator from

H2(K) → P1(K)

31, 42

ρK diameter of the largest circle that can be in-

scribed in a triangle K

29

Th triangulation of domain 30
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Problem Notation

Notation Description

DE domain of energy form on fractal von Koch

curve Σα

11

D0(Σ
α) {u ∈ DE | u = 0 on V 0

α } 12

Eα energy form on fractal von Koch curve Σα 10

Ω (0, 1) × (−1, 1) ⊂ R
2 17

Ω1
α,n the portion of Ω above Σα

n 17

Ω2
α,n the portion of Ω below Σα

n 17

ψα
i contraction maps that generate von Koch

curve with contraction factor 1
α

6

Ψα(F )
⋃4

i=1 ψ
α
i (F ) 6

Ψn
α(F ) Ψα ◦ · · · ◦ Ψα

︸ ︷︷ ︸

n times

(F ) 6

Rα,n reentrant corners of Ω1
α,n ∪ Ω2

α,n 55

ri
n weighting function for H2,µi(Ωi

α,n; ri
n) 54

Σα von Koch curve with contraction factor 1
α

6

Σα
n nth−generation prefractal von Koch curve

with contraction factor 1
α

6

V n
α vertices of nth−generation prefractal von Koch

curve with contraction factor 1
α

7
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Notation Description

V ∞
α

⋃

n≥0 V
n
α 7

V (Ω,Σα) {u ∈ H1
0 (Ω) : u|Σα ∈ D0(Σ

α)} 13

V (Ω,Σα
n) {u ∈ H1

0 (Ω) : u|Σα
n
∈ H1

0 (Σα
n)} 18
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Appendix A

Some Relevant Spaces and

Definitions

This appendix is a collection of definitions of spaces and other objects that are relevant

to the thesis. They are included here, and not in the main text of the thesis, as most of

them are already well-known. They are included here for reference.

Definition A.0.1 (Hausdorff measure). Let A ⊂ R
n, 0 ≤ s <∞, 0 < δ ≤ ∞. Define

Hs
δ(A) := inf

{ ∞∑

j=1

α(s)

(
diamCj

2

)s

|A ⊂
∞⋃

j=1

Cj, diamCj ≤ δ

}

,

where

α(s) :=
πs/2

Γ( s
2

+ 1)

and Γ(s) =
∫∞
0
e−xxs−1 dx, (0 < s <∞), is the usual gamma function. Then

Hs(A) := lim
δ→0

Hs
δ(A) = sup

δ>0
Hs

δ(A).

We call Hs the s−dimensional Hausdorff measure on R
n.

Definition A.0.2 (Hausdorff dimension). The Hausdorff dimension of a set A ⊂ R
n

is defined to be inf{0 ≤ s <∞|Hs(A) = 0}.

Definition A.0.3 (Hölder continuous). Let C0,β(K) denote the space of Hölder con-
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tinuous functions of order β on K, defined as

{u : K → R | |u(x) − u(y)| ≤M |x− y|β , ∀ (x, y) ∈ K}.

94



Appendix B

Miscellaneous Results

B.1 Controlling the Aspect Ratio with a Minimum

Angle

The following is a simple proof showing that controlling the minimum angle in a mesh

puts a limit on the aspect ratio for all triangles appearing in the mesh. The Trian-

gle program ([25], [24]) introduced in Section 3.1 controls the minimum angle in the

triangulation, thereby controlling the aspect ratio for the mesh.

Lemma B.1.1. The aspect ratio for any triangle having minimum angle θ1 is in the

interval [

1 + sin( θ1

2
)

sin θ1

,
1 + cos θ1

sin θ1

]

. (B.1)

Proof. Fix the value of θ1 and denote the other angles of the triangle by θ2 and θ3,

choosing in such a way that θ1 ≤ θ2 ≤ θ3. Denote the side of the triangle opposite θi by

si, as shown in Figure B.1. Since similar triangles have the same aspect ratio, without

s3

θ3

s2
s1

θ2θ1

Figure B.1: triangle diagram
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loss of generality, we may assume that the length of side s1 is 1. From the Law of Sines,

it follows that

s2 =
sin θ2

sin θ1

and s3 =
sin θ3

sin θ1

.

The area of the triangle, which is denoted by A, is thus sin θ2 sin θ3

2 sin θ1
. Since the longest

side of the triangle is opposite the largest angle, we have h = s3. We then calculate the

diameter of a circle inscribed in the triangle to be

ρ =
4A

s1 + s2 + s3

=
2 sin θ2 sin θ3

sin θ1 + sin θ2 + sin θ3

. (B.2)

Using the fact that θ3 = π − θ1 − θ2, the aspect ratio of the triangle is

h

ρ
=

sin θ1 + sin θ2 + sin(θ1 + θ2)

2 sin θ1 sin θ2

(B.3)

Since θ1 is fixed, we have assumed that θ1 ≤ θ2 ≤ θ3, and θ1 + θ2 + θ3 = π, θ2 must be in

the interval [θ1,
1
2
(π− θ1)]. So, the maximum value of the ratio (B.3) can be determined

by finding the value of θ2 in the interval that maximizes

f(θ2) =
sin θ1 + sin θ2 + sin(θ1 + θ2)

2 sin θ2

. (B.4)

Taking the derivative of f and simplifying using trigonometric identities yields

f ′(θ2) =
− sin θ1(1 + cos θ2)

2 sin2 θ2

. (B.5)

Since sin θ1, 1+cosθ2, and sin2 θ2 are positive for all values of θ1, θ2 ∈ (0, π), it follows that

f is decreasing on the interval [θ1,
1
2
(π−θ1)]. Thus, the aspect ratio achieves a maximum

at θ2 = θ1 and achieves a minimum at θ2 = 1
2
(π− θ1). The result follows by substituting

these values for θ2 into (B.3) and simplifying using trigonometric identities.

Remark: Note that in the case of an equilateral triangle, where θ1 = π
3
, we have

1+sin(
θ1
2

)

sin θ1
= 1+cos θ1

sin θ1
=

√
3. Since this is the best case for any triangle, we always have

σ ≥
√

3.
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A BV1

V2

V3

(a) Vertices of Σα
1

A BV1

V2

V3V4

V5

V6

V7

(b) Vertices of Σα
2

Figure B.2: Vertices of prefractal curves, α = 2.5

B.2 Distance Between Vertices of Domain

For the weighting function of Definition 3.1.1, the minimum distance between any two

vertices of the polygonal domains Ω1
α,n and Ω2

α,n must be known. Recall that Ω = (0, 1)×
(−1, 1) and Ω1

α,n and Ω2
α,n are the portions of Ω above and below the prefractal von Koch

curve, respectively.

Regardless of the values of α and n, the prefractal curve Σα
n is always contained in the

triangle with vertices (0, 0), (1, 0), and
(

1
2
, 1

2

)
. So, it is clear that the distance between

any vertex of the prefractal curve and a vertex of Ω is greater than 1
2
. So, we will focus

on finding the minimum distance between vertices of the prefractal von Koch curve.

Although the number of vertices in V α
n is increasing as n increases, self-similarity

makes it relatively easy to find the distance between any two points in the set. In

Figures B.2a and B.2b the first two generations of the prefractal von Koch curve with

α = 2.5 are shown. The value of α is insignificant in this context as all of the remarks

made here will hold for each value of α ∈ (2, 4). In the figures, each vertex of the curve

is represented by an open circle. Several of the vertices in each figure are labeled for

easy reference.

Looking only at Figure B.2a initially, it is evident that the distances we should be

concerned with are those between consecutive vertices of the curve (like A and V1), and

those between vertices that form the base of a triangle (like V1 and V3). The distance

between the peak of the triangle (vertex V2) and either of the endpoints A or B is
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necessarily greater than the two previously mentioned distances. As was noted in Section

1.2, any two consecutive points on the nth−generation prefractal curve are separated by

a distance of α−n. So, we have |A− V1| = |V1 − V2| = |V2 − V3| = |V3 −B| = α−1. The

length of the base of the triangle, |V1 − V3| is also easily calculated using this information.

It is simply |A−B| − |A− V1| − |V3 −B| = 1 − 2α−1 = α−1(α− 2).

Because of similarity, many of the distances between points in Figure B.2b can easily

be determined from the distance between points in Figure B.2a. The distance between

consecutive vertices along the curve is now α−2 and the length of the base of each of the

smaller triangles in the figure, like |V4 − V6|, is α−2(α − 2). However, with this second

iteration of the maps, triangles appear that neighbor one another and the vertices at

the peak of these neighboring triangles seem to be close. So. we must calculate the

distance between any two of these such points. We take the distance between V5 and V7

as representative.

To calculate the distance between V5 and V7, we use the coordinates of the points

given by the maps that generate these vertices. First, using the definitions of the maps

in Section 1.2, we see that V5 = ψα
1 (V2), V7 = ψα

2 (V2) and V2 = ψα
2 (B) = ψα

3 (A). This

gives us:

V5 =
1

α

(

1

2
,

√

1

α
− 1

4

)

and V7 =
α− 1

α

(

1

2
,

√

1

α
− 1

4

)

A simple calculation shows that |V5 − V7| = α− 3
2 (α − 2). However, regardless of the

choice of α ∈ (2, 4), α− 3
2 (α − 2) > α−2(α − 2), so the distance between the peaks of

neighboring triangles is not the minimum distance between vertices of the curve.

With continued iteration of the maps, these patterns repeat and there are no new dis-

tances between vertices that need to be checked. So, using similarity again, the minimum

distance between two vertices of the nth−generation prefractal curve is min{α−n, α−n(α−
2)}. This is clearly less than 1

2
for any α ∈ (2, 4) and n ≥ 1, so the minimum distance

between vertices of Ωi
α,n, for i = 1, 2, is







α−n(α− 2) if 2 < α < 3

α−n if 3 ≤ α ≤ 4.
(B.6)
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B.3 Finding the Aspect Ratio after Refinement

When K0 is refined according to one of the refinements expressed in Section 3.1, the

aspect ratio of a triangle produced by refining K0 may be greater than K0. Our goal

in this section is to find a limit for the aspect ratio of a triangle created by refining a

triangle K0 known to have aspect ratio less than or equal to σ.

So, let K0 be a triangle with vertices V1, V2 and V3, and suppose that the aspect

ratio for K0 is less than or equal to σ. Now, suppose K0 is refined according to one

of the refinements detailed in Section 3.1. Figure 3.8 shows all of the possible ways

in which K0 may be refined. Since similar triangles have the same aspect ratio, we

only need to find a bound for the aspect ratio for any triangle in a similarity class. In

Figure 3.8, shading is used to mark triangles that are similar to K0. The numbers in

the interior of the other triangles indicate the similarity class of the triangle. Since the

shaded triangles are similar to K0, they must have an aspect ratio less than or equal to

σ. In the remainder of this section, the goal is to calculate a bound for the aspect ratio

for the remaining 13 similarity classes in terms of σ.

Since we wish to express the aspect ratio for each subtriangle in terms of that of the

triangle K0, we must first calculate that ratio. Recall that the aspect ratio of a triangle

K is hK

ρK
, where hK is the length of the longest side of K and ρK is the diameter of

the largest circle that can be inscribed in K. Calculating hK0 requires simply finding

max
i,j∈{1,2,3}

|Vi − Vj|. Given any triangle K, ρK is given by

ρK =
|K|
|∂K| (B.7)

where |K| is the area ofK and |∂K| is the length of the boundary ofK, i.e. the perimeter

of K. The perimeter of K0 is easily found to be |V1 −V2|+ |V2 −V3|+ |V3 −V1|. Letting

θi represent the angle of K0 at the vertex Vi for i = 1, 2, or 3, the area of K0 is given by

the following expressions

|K0| =
1

2
|V3 − V1| · |V2 − V1| sin θ1

=
1

2
|V3 − V2| · |V1 − V2| sin θ2

=
1

2
|V1 − V3| · |V2 − V3| sin θ3.

(B.8)
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So, the value for ρK0 can easily be found by combining these results.

Now, we wish to compare these calculations with similar ones performed for subtri-

angles of K0 created by the refinement process. For this, it will be convenient to be able

to look at examples of refined triangles, so in Figure B.3 we have reproduced the figures

introduced in Section 3.1 to explain the refinement process. The outermost triangle in

each subfigure is the triangle K0 with vertices V1, V2, and V3. The vertices of the other

subtriangles are numbered since we will need to refer to them. We will use the notation

Ni to refer to a node labeled with i in one of the subfigures.

V1 V2

V3

1

2

3

4

5

6

7

8

9

10

11

12

(a) 3 vertices in Rα,n

V1 V2

V3

1

2

3

4

5

6

7

8

9

10

(b) 2 vertices in Rα,n

V1 V2

V3

1

2

3

4

5

6

(c) 1 vertex in Rα,n

V1 V2

V3

1

(d) Subdivision by bisection

Figure B.3: Refinement labeled according to similarity class

Let us begin by considering the white triangle in Figure B.3a with vertices N2, N5

and N4. For reference, call this triangle K1. First, using the barycentric coordinates
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that describe the refinement (found in Section 3.1),

N2 = (1 − λ)V1 + λV2,

N4 =
1

2
V1 +

1

4
V2 +

1

4
V3, and

N5 =
1

2
V1 +

1

2
V2,

where λ =
(

1
3

)1/(1−µ) ∈ (0, 1
3
) for some specified µ ∈ (0, 1). From this information, one

may easily verify that

|N5 −N2| =

(
1

2
− λ

)

|V2 − V1|, and |N4 −N5| =
1

4
|V3 − V2|.

Using Figure B.3a, it is clear that |N4 −N2| < |N4 −V1|, so using the expression for N4,

|N4 −N2| < |N4 − V1| =
1

4
|(V2 − V1) + (V3 − V1)| ≤

1

4
(|V2 − V1| + |V3 − V1|).

Thus, we have the following estimate of the perimeter of K1:

|∂K1| <
(

3

4
− λ

)

|V2 − V1| +
1

4
|V3 − V2| +

1

4
|V3 − V1|.

Using the definition of λ, λ ∈ (0, 1
3
) for any µ ∈ (0, 1), so |∂K1| < 3

4
|∂K0|.

To calculate the area of K1, we first determine the measure of the angle in K1 with

vertex N5. The barycentric coordinates defining N5 and N3 show that the triangle

with vertices N5, N3, and V1 is similar to K0 with sides half the length of those in K0.

Additionally, the segment from N3 to N5 is parallel to the segment from V2 to V3, so the

angle at N5 must be θ2. Using the above lengths of sides of K1, the area of K1 is

|K1| =
1

2

[(
1

2
− λ

)

|V2 − V1|
] [

1

4
|V3 − V2|

]

sin θ2 =
1

4

(
1

2
− λ

)

|K0| (B.9)

Again using the fact that λ ∈ (0, 1
3
), we have |K1| ≥ 1

24
|K0|. Thus,

ρK1 ≥
1
24

· 4|K0|
3
4
|∂K0|

=
1

18
ρK0 .

Finally, to calculate the aspect ratio of K1, we must know hK1 . Since K1 is contained
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in the triangle with vertices N5, N3, and V1, and we have already stated that the latter

triangle is similar to K0 with edges half the length of the corresponding edges of K0,

hK1 ≤ 1
2
hK0 . Combining this with the earlier estimate of ρK1 , we have the following

bound for the aspect ratio of K1

hK1

ρK1

≤
1
2
hK0

1
18
ρK0

≤ 9σ.

Furthermore, any triangles similar to K1 also have an aspect ratio that is less than or

equal to 9σ. Making only slight changes to the above argument, we can show that any

of the unshaded triangles in Figure B.3 have an aspect ratio that is less than or equal

to 9σ.

Now, let us consider the triangle shaded blue in Figure B.3a with vertices N1, N2,

and N4. We will refer to this triangle as K2. From the barycentric coordinates that

describe the points, we have

N1 = (1 − λ)V1 + λV3,

N2 = (1 − λ)V1 + λV2, and

N4 =
1

2
V1 +

1

4
V2 +

1

4
V3,

so one can easily verify that |N1 − N2| = λ|V3 − V2|. From above, we have that |N4 −
N2| < 1

4
(|V2−V1|+ |V3−V1|), and by a virtually identical argument, |N4−N1| < 1

4
(|V2−

V1| + |V3 − V1|). Thus,

|∂K2| <
1

2
|V2 − V1| +

1

2
|V3 − V1| + λ|V3 − V2|.

Since λ ∈ (0, 1
3
) and using the value of |∂K0|, it follows that |∂K2| < 1

2
|∂K0|.

To calculate the value of ρK2 , we also need |K2|. Recalling from an earlier argument

that the triangle with vertices V1, N5 and N3 is similar to K0 with a proportionality

constant of 1
2
, this triangle containing K3 must have area 1

4
|K0|. If the areas of all of

the other triangles contained in this large triangle are known, the area of K2 can be

found by subtracting the other areas from 1
4
|K0|. |K1| is given by (B.9) and a similar

argument shows that the triangle with vertices N1, N3 and N4 has the same area. It can

also easily be shown that the triangle with vertices V1, N2 and N1 is similar to K0 with

a proportionality constant of λ, so the area of this triangle is λ2|K0|. Therefore, using
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again that λ ∈ (0, 1
3
),

|K2| =
1

4
|K0| − λ2|K0| −

1

2

(
1

2
− λ

)

|K0| = λ

(
1

2
− λ

)

|K0| ≥
λ

6
|K0|. (B.10)

So, using the expressions for |K2| and |∂K2|, we have ρK2 ≥ λ
3
ρK0 . Finally, to calculate

a bound for the aspect ratio, we need an estimate of hK2 . Using the same logic as for

K1, hK2 ≤ 1
2
hK0 , and thus

hK2

ρK2

≤
1
2
hK0

λ
3
ρK0

≤ 3

2λ
σ (B.11)

Although all of the triangles shaded blue in Figure B.3 are not of the same similarity

class, they are created in a similar fashion. So with only minor changes to the argument

made for calculating the aspect ratio of K2, it can be shown that all of these triangles

have an aspect ratio that is no greater than 3
2λ
σ = σ

2
31+1/(1−µ).

Finally, let us consider the triangles shaded yellow in Figure B.3. These triangles

are all created by bisecting an edge of K0 or a triangle similar to K0. For a typical

example, let us consider the triangle in Figure B.3d with vertices V1, N1, and V3, which

we will refer to as K3. Since N1 = 1
2
(V1 + V2), this triangle has sides of length |V3 − V1|,

1
2
|V2 −V1|, and |V3 −N1| ≤ 1

2
(|V3 −V1|+ 1

2
|V3 −V2|). Thus, |∂K3| ≤ 3

2
|∂K0|. Since N1 is

at the midpoint of the edge between V1 and V2, it is clear that |K3| = 1
2
|K0|. Therefore,

ρK2 ≥ 1
3
ρK0 . Since K2 contains an edge of K0, hK2 ≤ hK0 , and therefore the aspect ratio

of K2 is less than or equal to 3σ. This same bound can be found for all of the other

triangles shaded yellow in Figure B.3 by an analogous argument.

So, if K0 is a triangle with aspect ratio less than or equal to σ, and K is a triangle

produced by the refinement of K0 according to the refinement scheme in Section 3.1,

then the aspect ratio of K satisfies

hK

ρK

≤ 3

2
σmin

(
6, 31/(1−µ)

)
, (B.12)

where µ ∈ (0, 1) is specified prior to refinement.
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309, 1974.

[15] John E. Hutchinson. Fractals and self-similarity. Indiana Univ. Math. J., 30(5):713–

747, 1981.

[16] Alf Jonsson and Hans Wallin. Function spaces on subsets of Rn. Math. Rep.,

2(1):xiv+221, 1984.

[17] Alois Kufner. Weighted Sobolev spaces. A Wiley-Interscience Publication. John

Wiley & Sons Inc., New York, 1985. Translated from the Czech.

[18] Maria R. Lancia. A transmission problem with a fractal interface. Z. Anal. Anwen-

dungen, 21(1):113–133, 2002.

[19] Maria R. Lancia, Umberto Mosco, and Maria A. Vivaldi. Homogenization for thin

layers of pre-fractal type. Preprint, 2007.

[20] Maria R. Lancia and Maria A. Vivaldi. On the regularity of the solutions for

transmission problems. Adv. Math. Sci. Appl., 12(1):455–466, 2002.

106



[21] Maria R. Lancia and Maria A. Vivaldi. Asymptotic convergence of transmission

energy forms. Adv. Math. Sci. Appl., 13(1):315–341, 2003.

[22] Tom Lindstrøm. Brownian motion on nested fractals. Mem. Amer. Math. Soc.,

83(420):iv+128, 1990.

[23] Umberto Mosco. An elementary introduction to fractal analysis. In Nonlinear

analysis and applications to physical sciences, pages 51–90. Springer Italia, Milan,

2004.

[24] Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator

and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied

Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture

Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996. From the

First ACM Workshop on Applied Computational Geometry.

[25] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh

generation. Comput. Geom., 22(1-3):21–74, 2002. 16th ACM Symposium on Com-

putational Geometry (Hong Kong, 2000).

[26] Gilbert Strang and George Fix. An Analysis of the Finite Element Method.

Wellesley-Cambridge Press, Wellesley, MA, 1988.

[27] Elisa Vacca. Galerkin Approximation for Highly Conductive Layers. PhD thesis,
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