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Executive Summary 

Human-robot teams have proved themselves to be useful in a wide variety of situations. 

One particularly useful application is in disaster zones and battlefields. Robots are able to reach 

areas that are inaccessible by humans and perform dangerous tasks by providing a mechanical 

proxy for their operators. Presently, search-and-rescue robots are just that – proxies. Their 

operation requires the complete attention of a human. In many dangerous situations where such 

robots are deployed, this distraction can put the robot’s operator in danger. As a result, reducing 

operator workload is a major goal in search-and-rescue robot development. To do this, 

researchers endeavor to make robots more capable of completing tasks with little or no user 

input. Currently, autonomous navigation is a well-developed concept and some capabilities are 

commercially available. But autonomous manipulation is only beginning to be incorporated into 

field robots. We demonstrate how some of these capabilities could be integrated into iRobot’s 

PackBot. 

 Our project aims to demonstrate intelligent motion-planning for the manipulator on 

iRobot’s PackBot. Because controlling the arm is one of the more difficult aspects of 

teleoperating the robot, motion and grasp planning are a particularly useful part of the system to 

automate. To do this, we developed an interface between PackBot and The Open Robotics 

Automation Virtual Environment (OpenRAVE). With our work, we hope to provide a foundation 

for the development of autonomous manipulation behavior. We will demonstrate the capabilities 

of our system by enabling users to command the robot to grasp objects recognized by a sensor 

with a single click. 
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To accomplish this objective, we needed to complete several preliminary objectives. 

First, we modeled the robot within OpenRAVE. In order to do any motion-planning at all, 

OpenRAVE needed an accurate model of the robot. Next, we implemented an inverse kinematics 

solver for the PackBot’s arm. To send trajectories to the robot, we developed a communication 

protocol and wrote a trajectory-executing controller that ran on the PackBot. After that was 

finished and tested, we integrated a PrimeSense 3D sensor with the PackBot by designing a 

secure hardware mount and writing a plug-in for OpenRAVE that received and interpreted data 

from the sensor. Using this 3D sensor and Point Cloud Library, we next incorporated object-

recognition into our system, choosing to focus on recognizing cylinders (for grasping) and 

obstacles (for collision avoidance). Finally, we incorporated our system into a user interface that 

displayed settings for our software, camera feeds from the robot, and a view of the OpenRAVE 

simulator. Through this user interface, users could instruct the robot to attempt to grasp objects 

recognized by the sensor. 

With our work, we demonstrate an approach to traded-control autonomy for iRobot’s 

PackBot. Our system will require further work to incorporate into commercially available 

PackBots, but we believe we have demonstrated a compelling proof-of-concept. Our system is 

modular, expandable, and reasonably robust. With additional tuning and some improvements to 

our algorithms, our work could lead to a valuable addition to PackBot’s operating system. 
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Introduction 

iRobot’s PackBot is the most successful defense-and-security robot in the world. 

PackBots have helped search-and-rescue efforts at Ground Zero after 9/11, disarmed improvised 

explosive devices in Iraq and Afghanistan, inspected suspicious packages at the scene of the 

Boston Bombing, and aided in clean-up efforts after the meltdown at Fukushima. PackBot keeps 

humans safely removed from dangerous situations by serving as a robotic proxy for its operator. 

Presently, PackBot is a fully teleoperated robot – a human controls its every motion using a 

laptop and a gamepad. Picking up objects with teleoperated control requires training, time, and 

attention. In many situations, it would be beneficial for the robot to act on its own, perhaps only 

supervised by a human. If some functionality could be automated, PackBot operator workload 

would be reduced and PackBots would become more capable assistants in a wider variety of 

situations. Reduced workload would also allow operators to dedicate more attention to their 

situation and surroundings rather than their PackBot. Because PackBots are often deployed in 

chaotic, dangerous environments, this could be very beneficial for the safety of PackBot 

operators. 

Our project set out to make PackBot smarter by integrating an open source motion-

planning and simulation library with PackBot’s Aware2 operating system. This library, Open 

Robotics Automation Virtual Environment (OpenRAVE), was primarily developed at Carnegie 

Mellon University by Rosen Diankov and James Kuffner (Diankov & Kuffner, 2005). It provides 

motion-planning, grasp planning, and simulation functionality in an expandable platform. Its 

built-in libraries and expandability through plug-ins facilitate the process of implementing robot 

motion-planning and autonomous behavior for a wide variety of robots. 
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By integrating PackBot with OpenRAVE, we hope to provide a foundation for further 

autonomous manipulation research. We hope to demonstrate the capabilities, expandability, and 

ease-of-development of our OpenRAVE-PackBot system. To showcase our work, we integrate a 

3D sensor, perform simple object and obstacle recognition, and enable click-to-grasp 

functionality within OpenRAVE. This serves as proof that OpenRAVE can reduce the workload 

and attention required to operate PackBot. If developed further, we believe this functionality 

could be implemented on commercial PackBots to lower PackBot’s learning curve, reduce 

operator workload, and make PackBot a more capable field assistant. 
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Background 

In this section, we will introduce the tools and research that made our project possible 

and inspired our work. 

iRobot PackBot 

 

Figure 1 - iRobot PackBot with Explosive Ordnance Disposal (EOD) Arm 

iRobot’s PackBot, shown above in [Figure 1], is the most successful military ground 

robot ever developed (Yamauchi, 2012). Over 4,500 PackBots have been deployed to explosive 

ordnance disposal teams, police forces, infantry regiments, and disaster relief/search-and-rescue 

organizations all around the world. It has saved hundreds of lives by inspecting and disarming 

improvised explosive devices in Iraq and Afghanistan (Yamauchi, 2013). PackBot is an 

extremely rugged robot. Its chassis is able to withstand up to 400Gs, or about a six foot drop. It is 

also waterproof up to 3 meters (Yamauchi, 2004).  
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Our PackBot was equipped with a 3-link arm – the Explosive Ordnance Disposal (EOD) 

manipulator. This 5-DOF arm is capable of lifting up to 30 pounds. Presently, except for 

functionality for driving the arm to a few predetermined “poses” in iRobot’s user interface, the 

arm is entirely teleoperated. Operating the robot requires the careful attention of a human 

operator who uses an Xbox-like gamepad to control the robot over a radio connection. 

PackBot’s battle-proven hardware provides an intriguing platform for robotics research. 

In addition to such projects as PackBot Griffon, which enabled flight with a gas-powered motor 

and steerable parafoil (Yamauchi & Rudakevych, 2004), chemical/radiation sensors (Scott et al., 

2003), automatic sniper-fire detection and location (Deligeorges et al., 2008), and a project to 

retrieve injured soldiers from the battlefield (Gilbert et al., 2006), iRobot has invested 

significantly into developing autonomous behavior. Most of these studies relate to autonomous 

navigation and robot-assisted driving (Yamauchi, 2005; Yamauchi, 2006; Yamauchi, 2012; 

Yamauchi & Massey, 2008). A similar project to ours was PackBot LABRADOR, which 

involved searching for, recognizing, and retrieving small objects in complex environments. But 

grasp-planning was beyond the scope of the project (Yamauchi et al., 2013).  Besides a 

currently-ongoing project at iRobot to enable autonomous door-opening, we could not find any 

information on autonomous motion-planning or grasping research. We believe there is a need for 

this, and many researchers agree that autonomous or semi-autonomous grasping is a valuable 

feature for field robots (Kemp et al., 2007; Casper & Murphy, 2003; Burke et al., 2004). 

OpenRAVE 

The Open Robotics and Automation Virtual Environment (OpenRAVE) was developed 

by Rosen Diankov and James Kuffner at Carnegie Mellon University’s Robotics Institute. The 

project’s ongoing goal is to provide a standard platform for “3-D simulation, visualization, 
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planning, scripting and control” (Diankov & Kuffner, 2008). With this functionality, OpenRAVE 

facilitates the development of autonomous manipulation behavior. Its plugin functionality 

enables roboticists to focus on coding new functionality for robots without needing to “reinvent 

the wheel” by re-implementing motion planning, simulation, sensor integration, and control for 

every new project. With OpenRAVE, moving autonomous manipulation projects from 

simulation to real robots should take “only a few weeks rather than several months” (Diankov & 

Kuffner, 2008). Below, in [Figure 2], are a few screenshots of the OpenRAVE simulator as it 

plans grasps. 

 

Figure 2 - A few views of grasp-planning in the OpenRAVE simulator 

One of OpenRAVE’s most useful features is its expandability through plug-ins and 

scripts. The diagram below, in [Figure 3] shows where plug-ins fit in the OpenRAVE 

architecture. The visual interface can be added onto, callbacks can be programmed to respond to 
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user interactions with the environment, additional sensors can be integrated, and new robots can 

be interfaced with OpenRAVE with custom robot controllers.   

 

Figure 3 - OpenRAVE Architecture (Diankov & Kuffner, 2008) 

Human-Robot Interaction with Disaster Relief Robots 

 A human-robot team can be an effective asset in the field. By combining the hardiness 

and capabilities of a robot with a human’s perception and guidance, human-robot teams can be 

more capable than humans or autonomous robots working alone. The benefits of deploying 

search-and-rescue and explosive ordnance disposal robots are multifold and have been 

established through extensive research on robots in the field (Burke et al., 2004; Qian et al., 

2006; Khatib et al., 1999; Yamauchi, 2004; Yamauchi, 2013). But there are several factors that 

can impede the performance of such a robot. A study analyzing human-robot interaction in 

disaster-relief teams operating at the World Trade Center site after September 11th elucidated 

several of these factors. This research is particularly relevant because PackBot was deployed at 
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Ground Zero. Researchers found that effective robot utilization was significantly hindered by 

several human and robotic factors (Casper & Murphy, 2003): 

On the human side of the equation, sleep deprivation, lack of training, and a lack of 

situational awareness made operating the robots difficult. For example, a team from Foster-

Miller worked for 56 hours without sleep while operating their robot at the site. The resultant 

cognitive errors resulted in misjudgments and mistakes while controlling robots. Faults and 

oversights in the design of robots and their interfaces compounded these mistakes. A lack of 

robot state awareness led operators to waste 54% of deployment time figuring out the arm 

configuration, error state, and the mobility state of their robots (Casper & Murphy, 2003). The 

robots’ lack of mapping capabilities led to further confusion and lost robots. Communication 

dropouts further compounded the errors and significantly reduced operator confidence in the 

robots’ abilities. Finally, the author argued that a lack of sensors decreased the utility of robots in 

this situation. The author noted that 3D information about the robot’s surroundings would have 

been particularly helpful, citing as an example a robot that drove straight through a meter-long 

metal rod, severely impaling itself and compromising its mobility. The author noted that this 

incident would have been entirely avoidable with 3D perception. 

The authors ended their paper with recommendations for increasing the effectiveness of 

disaster relief robots. Of their eleven recommendations, our project addresses six. We outline 

these six recommendations below: 

1) Human-computer interfaces and robot systems need to support people working 

without sleep and in an environment worse than the WTC disaster – Increased 

autonomy leads to less reliance upon human operators. If the robot’s 
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performance is less affected by its operator’s deficiencies, the human-robot 

team will be more effective. 

2) Never allow a robot without proprioceptive sensors (sensors that provide 

measurement of movements relative to an initial frame of measurement) and 

image processing to be rated for unmanned search and rescue – Casper 

observed that operators wasted a significant amount of time figuring out the 

orientation and configuration of their robots. He also suggests that low-

resolution traditional cameras are inadequate for search-and-rescue situations 

and suggests some form of three-dimensional sensing. A lack of sensor 

information reduces the confidence and effectiveness of operators. 

Proprioceptive sensing has been incorporated into the autonomous navigation 

packages available for PackBot, but 3D image processing has not (Yamauchi, 

2005). By incorporating a 3D sensor and displaying our robot in a simulator, 

operators will more easily understand the state of a PackBot controlled by 

OpenRAVE. 

3) Perform studies on ideal unmanned search and rescue specific user interfaces 

and robotic systems – Casper observed that operators without any training were 

often called upon to control robots. Confusing interfaces led to steep learning 

curves and wasted operators’ time. Frustration with interfaces made some 

operators abandon their robots and revert to traditional search-and-rescue 

methods that unnecessarily put humans in danger. Casper suggested that rescue 

workers would be more willing to use unfamiliar robots if their interfaces were 

more straightforward. 
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4) More research is needed in perceptual user interfaces – The robots observed 

for this study only transmitted video and audio to their operators. The positions 

of manipulators and treads were only represented within the camera stream. 

iRobot’s Operator Control Unit’s interface has made significant progress since 

this study’s publication and incorporates many of Casper’s suggestions. But we 

will demonstrate three additional improvements by displaying the robot’s 

grasping capabilities, incorporating 3D sensor data, and representing the 

robot’s camera’s field of view within the simulator. 

5) Concentrate on researching how to extract and represent state of the robot and 

state of what has been seen – Casper identified mapping and localization as the 

primary answers to this suggestion. But he also recommended that robot state 

cannot be overlooked. By this, he meant the configuration of the arm and the 

robot’s capabilities. Since 2001, PackBot’s user interface has been updated to 

display the arm’s current configuration, but no indicators of robot capabilities 

have been added. Our project answers this requirement by displaying both the 

graspability of objects recognized by our 3D sensor and the camera’s field of 

view. 

6) Investigate the user confidence in remote robots with intermittent 

communications – Our project will respond to this by reducing the robot’s 

dependency upon a network connection to its operator. By planning motions 

autonomously and only requiring user input in the form of grasp targets, 

intermittent communication will become less of a problem. 



 16 

Throughout their paper, Casper and Murphy compare human-robot disaster relief teams 

to traditional human-canine partnerships. Human-robot teams were novel in 2001 but human-

canine teams were a proven strategy in search-and-rescue long before 9/11. Although a robot 

might seem more capable when comparing straight statistics – the PackBot’s ruggedness, 

floodlights, camera streams, and brawny arm and manipulator suggest it should be more 

effective than even the burliest German Shepherd – human-canine teams consistently provided 

more utility at Ground Zero. The authors suggested that this is due to completely different 

relationship dynamics. In a canine unit, the dog takes input from its handler but largely works 

independently, reporting back when necessary. In contrast, robots acted as the remote arms, ears, 

and eyes of their operators. If the operator became distracted, the robot would simply lie idle. To 

improve the effectiveness of human-robot teams, Casper and Murphy suggested conducting 

research that would turn the human-robot team into more of a collaborative relationship than an 

authoritarian one (2003). 

Human-Robot Collaboration/Traded-Control Autonomy 

Much has been written about semi-autonomous behavior in which control is traded 

between the robot and a human operator (Kortenkamp et al., 1997; Hayati & Venkataraman, 

1989; Inagaki, 2003). Kortenkamp and his team defined a scale of control which ranged from 

complete teleoperation to team control (Kortenkamp et al., 1997). This scale is outlined below: 

Teaming: Robots and humans both have full autonomy, but work together as a team. The 

 human commands the robot by defining goals. 

Supervisory: Robots work nearly autonomously, but the human watches and stops the 

 robot when necessary. Commands are given to the robot as task sequences. 
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Traded: Robots perform most tasks autonomously, but the human takes control of the 

 robot for more complex tasks. The human can command the robot through task sequences 

 or through skills. 

Guided: A human always guides the robot through a task but the robot has some 

 autonomous capabilities. The authors offered obstacle avoidance and grasping as 

 examples of these capabilities. 

Teleoperation: The human controls the robot directly, controlling all motions. 

 The results of our project will be a guided-autonomy interface. With additional system 

design, our project could transition to supervisory control. This could be demonstrated by 

implementing commands such as “collect all of the objects in this area and bring them to this 

area,” and incorporating the autonomous navigation capabilities developed by iRobot. The 

benefits of mixed-initiative control models such as these are multifold. 

 User interfaces were mentioned as an essential consideration in semi-autonomous control 

by several authors (Kortenkamp et al., 1997; Hayati & Venkataraman, 1989; Inagaki, 2003; 

Ferguson et al., 1996; Ferguson & Miller, 2007). The essential requirements of a traded-control 

interface were defined as: the ability to represent information on the machine’s status, goals, 

beliefs, and intentions (Kortenkamp et al., 1997; Inagaki, 2003), non-rigid management of the 

exchange of control (Ferguson & Miller, 2007), clear representation of faults in autonomous 

control (Inagaki, 2003), and allowance for the user to change the robot’s intentions and goals and 

alter the robot’s beliefs of its perceived situation (Kortenkamp et al., 1997).  
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Inverse Kinematics 

Inverse kinematics involves solving for the joint angles required to reach a desired end-

effector position and orientation (Sicilliano & Khatib, 2008; Spong & Vidyasagar, 2008; 

Sciavicco & Sicilliano, 2000). Solving inverse kinematics solutions for a five degree-of-freedom 

arm such as PackBot’s requires a more nuanced approach than 6DOF arm solutions. Although 

the arm can reach every position within its configuration space, it cannot attain each position 

with any orientation (Sicilliano & Khatib, 2008). Because of this, there is a trade-off between 

reaching a desired end-effector position and orientation and one must be weighted above the 

other. 

Iterative IK, used in our project, involves computing a set of gripper poses, finding the 

one that brings the gripper closer to its desired pose, then iterates from that position. Once it 

reaches within some tolerance damply squares prevents guessing a position at a singularity 

(Wampler, 1986).  

Grasp Planning 

 Many researchers have described methodology for grasp optimization for autonomous 

robots (Berenson et al., 2007;  Markenscoff et al., 1990; Bicchi & Kumar, 2000). Their efforts 

primarily center around scoring grasps based on certain factors. Although much of the work in 

this field is beyond the scope of this project, two papers are of particular relevance. First, 

Automatic grasp planning using shape primitives describes an approach for optimal grasps for 

geometric solids like the cylinders our project endeavored to grasp (Miller et al., 2003). The 

second paper describes grasp verification without tactile sensor feedback (Jang et al., 2012). This 
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is relevant because the end effector on PackBot does not have tactile sensing. 

 

Grasp Planning for Geometric Solids 

 The authors approached grasp planning by pre-determining a grasping strategy for 

several simple shapes. When grasping cylinders, their approach preferred to grasp from the side 

rather than the top (though they also specified a grasp strategy for the latter). When planning a 

grasp, their algorithm attempts to find a gripper approach that would be perpendicular to the 

central axis of the cylinder, or “in the plane containing both the approach direction and the 

central axis of the cylinder, in order to pinch it at both ends” (Miller et al., 2003). Although our 

PackBot’s gripper is quite different from the one used in their research, we used a similar method 

in our grasp-planning algorithm. 

Grasping without Tactile Sensing 

 In this paper, the authors describe a novel approach for detecting a valid grasp without 

tactile sensors. The researchers estimated the validity of a grasp by measuring differences in joint 

torque (Jang et al., 2012). The authors were able to reliably detect when the robot made contact 

with objects and when an object had slipped out of the robot’s grasp. Although this work is very 

relevant to grasp-planning for PackBot, the lack of joint torque feedback makes it unusable for 

our efforts. 
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Objectives 

Our project seeks to reduce the control requirements for PackBot by enabling users to 

command the robot to grasp objects by selecting an object. We identified six intermediate tasks 

that would be necessary to implement this functionality. This section will briefly outline each 

task. Project components are listed in descending priority.  

1 - Accurately simulate PackBot  

Before we could implement any motion-planning, we needed a realistic kinematic 

simulation of the robot. This would be done within OpenRAVE’s simulator. This model would 

include information about the arm’s kinematics which would be used for inverse kinematics 

solving and generating trajectories. 

2 - Plan trajectories for PackBot’s arm 

Before we could drive the robot, we needed to implement a trajectory planner within 

OpenRAVE. Thankfully, OpenRAVE has functionality for generating a trajectory when supplied 

with a desired end-effector pose. So this task was significantly simplified. But we would still 

need to implement an inverse kinematics solver to generate our desired end-effector poses. 

3 - Execute trajectories generated by OpenRAVE on PackBot 

Once a trajectory is generated in OpenRAVE, it is necessary to send it to the robot for 

execution. To do this, we needed a communication protocol connecting OpenRAVE with 

PackBot. We also needed a program that would control the execution of trajectories from the 

robot and ensure accuracy in execution. 
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4 - Integrate a 3D sensor with OpenRAVE and the robot 

Once we had a way to control the robot, we wanted to be able to sense the area around 

the robot. This would be useful for planning grasps and avoiding collisions with the environment 

around the robot. We chose to focus on three things: first, we needed to create a secure mount for 

our 3D sensor. Any slack in the sensor’s position in relation to the robot would adversely affect 

the reliability of sensor readings. Next, we endeavored to recognize cylindrical objects. We 

planned to use these as grasping targets. Finally, we set out to import obstacles around the robot 

into OpenRAVE so they could be avoided in motion-planning. 

5 - Grasp cylinders recognized by the 3D sensor 

We planned to incorporate all of these elements into a single system that could plan a 

trajectory to a targeted object and grasp it. This would require calibration of data from the 3D 

sensor and verification of the accuracy of trajectory execution. 

6 - Enable control through a user interface 

 Finally, we planned to incorporate all of these elements into a user interface that would 

enable users to select options within our system and define grasp targets. 
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Methodology 

Accurately simulate PackBot within OpenRAVE 

 To control and display the robot within OpenRAVE, we needed an accurate model of the 

robot in a compatible file format. iRobot supplied us with a full SolidWorks assembly of the 

robot chassis and manipulator, but finding a method to convert this model into an OpenRAVE-

accepted format was not straightforward. OpenRAVE uses an XML-based modeling format. 

Collada formats can be included from OpenRAVE XML. No straightforward SolidWorks-

Collada export existed, we sought another method. We started by converting the SolidWorks 

assembly to Blender’s format, then saving to Collada from there. But this was unsuccessful 

because OpenRAVE and Blender used different versions of the Collada format. 

 We discovered that SolidWorks could export VRML. The VRML files could be included 

from the OpenRAVE XML. These exported versions were not perfect. First of all, the coordinate 

frame used for robot commands in OpenRAVE and the coordinate frame of the SolidWorks 

model were different. We accounted for this by rotating the entire PackBot in the XML file. Our 

efforts were further complicated by a misrepresentation of joint angles. These were adjusted 

based off of the real joint angles found from the Solidworks assembly. 

 We quickly discovered that using the detailed SolidWorks-exported assembly for 

collision checking with OpenRAVE’s physics engine was processor-intensive because the model 

was too complex. To simplify the calculations OpenRAVE needed to make, we created a 

collision model with much simpler geometry than the “true” PackBot chassis. Instead of a 

detailed VRML file, this base uses a simple box with the same dimensions as the chassis. 
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 To model the current state of the robot, we needed to send joint data from the robot to 

OpenRAVE. To do this, we included functionality for the transmission of joint state values from 

the robot to OpenRAVE within our communication protocol. This communication protocol will 

be outlined in the trajectory execution section which follows. 

Plan trajectories for PackBot’s arm 

 To plan trajectories, we needed to first implement an inverse kinematics (IK) solver. Our 

system first uses Fast Library for Approximate Nearest Neighbor to search a database of gripper 

poses and their corresponding arm configurations for the nearest neighbor to the desired pose. 

Next, we improve upon this pose by using an iterative IK Jacobian solver. Once an IK solution is 

found, we pass this to OpenRAVE’s default trajectory planner, BiRRT (bi-directional rapidly 

exploring random tree), to generate a path.  

Execute trajectories generated by OpenRAVE on PackBot 

To send trajectories to the robot for execution, we drafted a custom communication 

protocol between OpenRAVE and PackBot. We decided early on that commands would be sent 

as packets which contained the type of command being sent (Send Trajectory, Disengage Brake 

and Execute Trajectory, Pause Trajectory/Engage Brake, Clear Trajectory, Open Gripper, Close 

Gripper) and any relevant data needed for that control. These packets, containing the five joint 

values needed to model the arm, are time-stamped and transmitted at 10Hz. We learned early on 

that using time-stamped values was necessary. Without the timestamps, it was harder to plot the 

timing of actual and desired joint values. Without plots, we had a harder time verifying the 

robustness of our system.  Trajectory commands, for example, contain 5 values: one for each 

degree of freedom of the arm. To execute commands on the robot, we wrote a Python module 
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that receives trajectories and stores these sets of joint angles in a queue and waits for the 

execution command. 

A separate thread running on the robot checks the desired joint angles against the values 

reported by the PackBot operating system. Our PackBot originally sent these updates at 10Hz, 

but we increased this to 30Hz based on results from trajectory testing. Our trajectory follower 

uses proportional control to calculate joint velocities based on error. When the error threshold is 

low enough, the next set of desired joint values are processed.  

 A system diagram of our code can be found in [Appendix A - System Diagram]. This 

shows how a trajectory is planned, transmitted, and finally executed on the PackBot. A 

simplified model of our system is included below, in [Figure 4]. 

 

Figure 4 - System model displaying how IK solutions are turned into trajectories and 
executed on the robot 

Integrate a 3D Sensor with OpenRAVE and the PackBot 

Incorporating our PrimeSense-based ASUS Xtion sensor was a four-step process. First, 

we needed to design a secure mount to affix the sensor to the robot. Next, we needed to create a 

socket to bring data from the sensor into OpenRAVE. Finally, we interpreted data from the 

sensor. First, we wanted to recognize cylindrical objects to target them for grasping. Next, we 

incorporated obstacle detection, to inform OpenRAVE’s motion-planning to avoid collisions 

with the environment. 
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i. Mounting the sensor 

The first step in integrating our 3D sensor was designing secure a mount for it on the 

robot. The rapid prototyping capability of a 3D printer was invaluable in its design process. For 

less than ten dollars of plastic, we were able to prototype four different designs over the course 

of two weeks. We decided to mount the sensor on the camera head of the robot to enable users to 

move the sensor like the camera. We endeavored to make the mount as stable as possible. 

Stability is absolutely essential when using a 3D sensor because accurately importing sensor data 

to the simulator position requires knowing the sensor’s exact position and orientation in relation 

to the robot.  Our initial approach used the payload mount next to PackBot’s camera. The final 

design used 3M Command Strips to adhere to the top of the PackBot’s camera. We decided upon 

this design because its orientation kept it away from the arm and it was more stable when 

compared to our initial solution which used the standard payload mount. 

ii. Importing Sensor Data into OpenRAVE 

 To handle the data from the sensor, we captured its point cloud using Open Natural 

Interaction (OpenNI). OpenNI is an open source framework for 3D sensors. It supports 

PrimeSense-based sensors like the Microsoft Xbox Kinect, Asus Xtion, and a wide variety of 

laser, infrared, and stereo vision sensors. By taking care of driver support and making depth data 

accessible to other applications, OpenNI significantly eases development requirements for 3D 

sensors. For additional functionality, we integrated Point Cloud Library (PCL). PCL was 

developed by researchers at Willow Garage with the goal of providing the common building 

blocks of 3D perception that are needed for more complex applications. The library contains 

algorithms that support filtering, feature estimation, surface reconstruction, registration, model 

fitting, and segmentation (Rusu, 2011). 
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 Using these two libraries, we developed two additional OpenRAVE plugins to parse data 

from the sensor. One plugin imported the point cloud data into OpenRAVE. The second plugin 

handled cylinder detection. These plugins are detailed in the following subsections. 

iii. Cylinder Recognition 

Next, we implemented simple object detection to enable grasping of objects in the 

environment. We decided to detect cylinders because of the straightforwardness of grasping 

cylindrical objects with PackBot’s gripper. To do this, we wrote an OpenRAVE plugin. PCL 

allows the user to grab a point cloud from OpenNI. A PCL clustering algorithm is used to return 

several different point clouds. Clustering entails grouping neighboring points from the full point 

cloud (Rusu, 2011). Several point clouds representing different regions in space allow for 

multiple cylinders to be recognized from the same scene. A PCL segmentation algorithm is then 

applied to each point cloud returned from the previous step. The segmentation algorithm 

segments a cylinder from the rest of the cloud. The function returns the x,y,z axis direction, and 

radius, as well as a set of points belonging to the cylinder. The cylinder point cloud is rotated 

based on the transformation matrix found from the cylinder axis direction. From this, the 

cylinder height can be found by finding the extremal points of the cloud. The height is found by 

finding the mid z-point between the minimum and maximum z-points. The xyz position of the 

cylinder is computed by finding the midpoint and transforming the point back using the cylinder 

axis direction. The OpenRAVE plugin imports the x,y,z position, x,y,z rotation, radius and 

height of all cylinders in the environment. 

In order to convert the cylinder information into an actual cylinder, the euler angles of the 

cylinder axis direction are first found. A transformation matrix is then applied which relates the 

pose of the scene in PCL to the pose of the scene in OpenRAVE. Another transformation is 
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applied which moves the cylinder depending on the position of the 3D sensor in the OpenRAVE 

environment. This information is then used to add a kinematic body to the OpenRAVE 

environment. 

iv. Obstacle Detection 

A second plugin was created in order to implement obstacle detection. This plugin 

imports unprocessed point-cloud data from the Xtion using the openNI grabber function in PCL. 

A coordinate transformation on each point is then performed. The transform is obtained from 

current position and orientation of the sensor as determined by OpenRAVE. A box occupancy 

grid is created using a multi-dimensional array. If a box is occupied a check is run to see if any 

of the cylinders collide with vectors along the box’s vertices. If cylinders collide with these 

bodies, the box is not added to the list of occupied boxes. Boxes are then added to the 

OpenRAVE environment as filled voxels. These objects are considered in motion-planning by 

OpenRAVE’s collision-avoidance algorithm.  

Grasp cylinders recognized by the 3D sensor 

 Our approach for grasping cylinders was inspired by Automatic Grasp Planning Using 

Shape Primitives which was introduced in the background section (Miller et al., 2003). Our 

algorithm generates grasps that approach the target cylinder at an orientation perpendicular to the 

vertical axis of the cylinder. To do this, the grasping script used the IK solver to generate a list of 

poses that approach the cylinder.For each solution, the script then verified that the target was 

within a graspable area of the gripper. This was done by checking for collisions between the 

target and two small vectors located in the center of the gripper as shown below on the left side 

of [Figure 5]. If both of these vectors were in collision with the target, then the solution was kept. 

For each solution left, the dot product of the unit z-vector coming out of the gripper and the unit 
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axis vector of the cylinder was taken. These can be shown on the right side of [Figure 5] where 

the grey line represents the axis of the cylinder and the blue represents the z-axis of the gripper. 

The dot product was taken because a grasp with an associated dot product of one meant that the 

gripper would be perpendicular to the cylinder. The script then ordered all valid solutions thus 

far by their associated dot product. From here, the script then used OpenRAVE’s trajectory 

planner to verify that a path to the desired solution was viable based on the obstacles in the 

environment. As soon as a valid trajectory was found it was stored and the target cylinder was 

considered graspable. 

  

Figure 5 - A visualization of our grasp optimization algorithm 

 

Enable control of our system in a user interface 

Once grasping functionality had been added to the PackBotIKSolver plugin, displaying 

whether objects could be grasped proved to be straightforward. OpenRAVE allows developers to 

color objects in the environment. For each cylinder in the environment that wasn’t colliding with 
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the PackBot itself, our OpenRAVE script searched for a valid grasp. If no grasp was found, the 

object was colored red. If there was at least one possible grasp, the object was colored green. 

 OpenRAVE allows for click callbacks to be added to its user interface. Our project used 

this feature to allow users to click on cylinders that were loaded into the environment. If the 

cylinder the user clicked on had a valid grasp, the user was shown the expected trajectory to 

execute the desired grasp in the simulator. To execute the grasp on the robot, users clicked an 

“Execute” button in our options UI which is shown below in [Figure 6].

 

Figure 6 - Configuration interface for our system 

 In order to save time while loading obstacle data into the OpenRAVE environment, we 

decided to use a fairly large default voxel size. This not only sped up the obstacle importation 

process, but also increased the speed at which trajectories were generated. We realized that this 

would not be ideal in situations that require higher resolution obstacle detection, so we added the 

ability to specify the resolution of the x, y, and z directions in the voxel grid. 

 Since the user will be operating the robot remotely, we thought a useful feature to add to 

the user interface would be the ability to see the areas of the environment that the PackBot’s 

camera and the Xtion could see. In other words, their field of views. To do this we added 
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functionality for drawing the corresponding fields of view in the OpenRAVE interface. We then 

added checkboxes to the user interface that allowed the user to turn these features on and off. 

With the display of the robot’s and Xtion’s field of view, we hoped that operators would more 

easily understand the video coming from the camera.  
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Results and Discussion 

Simulation 

Because we were able to import Solidworks files into OpenRAVE as VRML files, the 

model was very accurate. After some fine-tuning of the joint limits, the model precisely captured 

the capabilities of PackBot’s arm. A screenshot of the model within OpenRAVE is included 

below in [Figure 7]. The model was less than ideal in its representation of the Asus Xtion. The 

only way to determine the location of the sensor was by measuring the location of the robot’s 

camera head. But the joint affixing PackBot’s camera head has to the arm is not perfect. Some of 

the errors in cylinder recognition and obstacle detection can be attributed to joint slop and the 

resulting error in the model’s representation of the sensor’s location. This could be improved 

upon by adding calibration functionality for the sensor. We suggest adding a calibration target to 

the chassis of the robot in a location that is easily seen by the Xtion. 

 

Figure 7 - Visual and collision models of PackBot within OpenRAVE 
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One change that became necessary during the project was a simplification of the collision 

model within OpenRAVE. The collision model, shown above on the right side of [Figure 7] was 

changed to include simply a rectangle for the base. The visual and collision model for the arm 

remained the complex model. This change allowed for faster self collision checking for the base 

of the PackBot during trajectory planning, while still keeping accurate self collision checking for 

the arm. 

IK Solver 

With tuning, the iterative IK solver turned out to be fairly good at finding solutions 

within a reasonable amount of time. The results of our testing can be seen in the table at the top 

of the next page. The database size is the number of poses and arm configuration stored in the 

database. Lambda indicates the weighting given to position versus orientation (a higher lambda 

correlates to more emphasis on position). Success was defined by whether the gripper could 

reach within .05 meters of the desired position. As the table indicates, we significantly improved 

upon our system by starting the Jacobian-based solver from multiple starting configurations.  
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Database Size Lambda Jacobian Success Rate 

2,000 .95 Multi 3% 

2,000,000 .90 Single 16% 

2,000,000 .95 Single 27% 

2,000,000 .95 Multi 34% 

2,000,000 .99 Single 50% 

3,000,000 .95 Multi with optimization 84% 

3,000,000 .99 Multi with optimization 97% 

 

While we tested trajectory planning, we noticed that OpenRAVE would often generate 

unreasonable trajectories. The paths were often very indirect, nonsensically driving the arm or 

gripper in circles before approaching the target. We used OpenRAVE’s built-in trajectory 

generation functionality which is reliable for reaching the desired pose but could use some 

improvement in the paths it takes. We started to look into trajectory smoothing but unfortunately 

ran out of time and chose to prioritize other aspects of the project. 

Trajectory Execution 

By the end of the fourth week of our project, we were able to demonstrate trajectory-

following on the robot. An OpenRAVE plugin sent a series of joint positions to the robot which 

were executed at 10Hz (the default refresh rate of the PackBot OS’s robot controller). At this 

point, we were still using the built in positional controller on the PackBot -- we drove the arm by 



 34 

sending desired joint angles to iRobot’s robot controller and it determined and set joint velocities 

accordingly. This worked well enough to demonstrate basic trajectory following. Unfortunately 

these were not accurate enough during the length of execution to use as the final product.  

The inaccuracy of our system at this stage is shown below in [Figure 8]. The discrepancy 

between desired and actual positions was due to many factors. These included a positional 

update rate of only 10Hz from PackBot and no joint position checking during trajectory 

execution to ensure the arm made it to each pose in the trajectory. The low update rate was 

insufficient for accurate trajectory following because 10Hz allows for a lot of time between joint 

velocity updates. This means that the arm’s joints can more easily overshoot their desired angles, 

adding error during execution. The lack of positional checking during trajectory execution meant 

there was no guarantee that the PackBot’s arm would reasonably follow the expected trajectory. 

 

Figure 8 - Trajectory execution testing data 

In order to correct for the low update rate, iRobot sent us a software update for PackBot 

that allowed us to change the update rate. We chose to set the rate to the maximum update rate 

that was recommended by iRobot, 30Hz. This would allow the trajectory following code to 

execute more often and accurately correct for any errors in the execution of a trajectory. 
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Unfortunately, this update made the onboard positional controller no longer functional, meaning 

we needed to implement our own controller to define joint velocities instead. 

Since PackBot was only able to accept velocity commands after the update, we needed to 

implement a velocity controller that would run on the robot. We decided to start out with just a 

proportional controller that took the difference between the desired and the actual angles in order 

to set the velocities of each joint. These joint velocities were then sent to iRobot’s PackBot 

controller via localhost. The proportional controller proved to work well enough for the goals of 

our project, so we did not need to implement a more complicated PID controller. A graph of the 

accuracy of our system at this point is included below, in [Figure 9]. 

 

Figure 9 - Trajectory-following test data after implementing proportional control 

In order to guarantee that the PackBot’s arm was following our desired trajectories, we 

needed to make sure that it reached each of the poses in the trajectory. To ensure the PackBot is 

able to reach a particular pose during a trajectory, it repeatedly makes calls to its velocity 

controller for the particular pose until the arm’s joints are within specified tolerances. These 

tolerances can be found in the table at the top of the next page, along with their associated error 
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rate. The maximum error is calculated as the error as a portion of that joint’s full range. The total 

error is the maximum, compounded error. 

Joint Tolerance (rad) Maximum Error (%) Total Error (%) 

Turret 0.05 0.796 0.796 

Shoulder 0.05 0.796 1.60 

Elbow1 0.075 1.19 2.81 

Elbow2 0.075 1.19 4.04 

Wrist 0.05 0.796 4.87 

Sensing 

The first step in adding a sensor to the robot was designing a suitable mount. This mount 

can be seen below on the left side of [Figure 10]. It was intended to fit in the expansion bay on 

the camera head of PackBot. Once it was mounted, we realized that the sensor was very likely to 

collide with the arm. Although OpenRAVE could account for it in motion-planning, its position 

had the potential to constrain arm motions. So we chose to mount the sensor on top of the camera 

instead, where it had no chance of colliding with the arm. This final iteration is included below, 

on the right hand side of [Figure 10]. A SolidWorks drawing for the mount is included in 

[Appendix B – Sensor Mount SolidWorks Drawing]. 
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Figure 10 - Initial and final sensor mounts 

By week nine of the project, we had already drafted an OpenRAVE plug-in that opened a 

socket between the Xtion depth sensor and the OpenRAVE interface. A representation of our 

progress at this stage can be seen below in [Figure 11]. The figure shows the work we still 

needed to do, as PackBot’s model was not the right size in relation to data from the sensor. 

Initially, we tried compiling the OpenNI library as an OpenRAVE plug-in, but this proved 

difficult. Instead, we opened a socket between openNI and OpenRAVE that allowed openNI to 

send its point cloud data along. This was later scrapped when we started using PCL. When PCL 

was used we simply used the OpenNI grabber functionality included in PCL. Though our sensor 

had a documented range of .8-3.5 meters, it sometimes returned points outside of this range. 

Since these were not accurate readings, these points were discarded. 
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Figure 11 - Point cloud data within OpenRAVE before system calibration 

  

The pictures in [Figure 12] below represent how a scene is interpreted by our sensor and 

imported into OpenRAVE. The first image is a camera representation of a scene. The next 

picture displays a point cloud representation within OpenRAVE of the same scene. The third 

picture is the same scene after it has been converted into voxels. This is how obstacles in the 

scene are represented for our trajectory planner. 

 

Figure 12 - A complex scene represented by a picture, unprocessed point cloud data 
imported into OpenRAVE, and voxels within OpenRAVE 
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  One issue that was encountered was missing data. This can happen for several reasons. 

First of all, we noticed that reflective surfaces can sometimes result in erroneous sensor readings. 

Because the Xtion relies upon reflected infrared light, this issue is inherent to the sensor. Missing 

data can also be attributed to the position of obstacles in relation to one another. An obstacle 

might obstruct the sensor’s line-of-sight to an item in the environment that is necessary for grasp 

planning. This obstacle will be left out of the simulation therefore causing errors. We 

recommend improving this by enabling multiple sensor snapshots to be taken of the same scene 

from multiple angles. 

Grasping 

Planning a trajectory to grasp a target involved incorporating all previous aspects of our 

project. This meant that it was fairly difficult to tune and perfect, as there were many pieces that 

needed to work together. Although we were able to successfully grasp objects during some 

attempts, there were many details that prevented us from achieving 100% accuracy. 

One of the most glaring issues was that the robot often missed the can. This is due to 

sensor miscalibration and joint slop which resulted in inaccuracy in OpenRAVE’s location of the 

sensor. As mentioned in a previous section, we recommend improving this by adding a 

calibration target for the sensor to the robot’s chassis or arm. 

Grasping also highlighted how computationally expensive much of our system was. 

Importing cylinder took several seconds and calculating grasps took five to ten seconds per 

cylinder. Optimizing the system for computational efficiency was beyond the scope of our 

project but will be a necessary task if our work is to be incorporated into PackBot’s operating 

system.  
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User Interface 

The results of our interface design can be seen below. Coloring the cylinders was 

straightforward but took a few seconds because computing the graspability of each cylinder was 

processor-intensive. A view of the OpenRAVE simulator including colored cylinders is below on 

the left side of [Figure 13]. This could have been mitigated by calculating the graspability of 

objects as they were imported, but this would simply slow down computation at another step of 

our process. Drawing fields of view was also straightforward, and our results can be seen below 

on the right side of [Figure 13]. Initially, we simply used green shading, but this was hard to 

understand. So we decided to trace the vertices of the shaded region with blue lines. 

 

Figure 13 – Left: A representation of graspability in the OpenRAVE viewer. Green 
cylinders are graspable and red are not. Right: A visualization of the camera's field  of 
view 

The options in the PackBot control window which is shown below in [Figure 14] were 

selected to improve usability. The field of views are explained above. “Use Voxel Obstacles” 

enables or disables obstacle avoidance with the voxels when generating trajectories. “Show Point 

Cloud” displays the raw data from the Kinect. “Update” allows users to redraw the UI according 

to the numbers input into the text boxes at the right. “Execute” sends a planned trajectory to the 

robot and is colored green when a trajectory is available. “Quit” cleanly exits OpenRAVE. “Set 
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Voxel Resolutions” opens three text boxes to configure the resolutions of voxels for each 

dimension. 

 

Figure 14 - Camera streams from the robot alongside our configuration window 

 

Conclusions 

 With our project, we have demonstrated how OpenRAVE can control a robot, facilitate 

the development of autonomous behavior, and incorporate sensor data into a useful system. Our 

work is not intended to be incorporated into the PackBots iRobot sells to customers. If iRobot 

wishes to incorporate our efforts into PackBot’s operating system, significant work is still 

required. But our project should serve as a demonstration of how OpenRAVE can improve 

usability and reduce the effort required to control PackBot. 

Limitations and Recommendations for Future Work 

 If we had more time, there are three areas where we would like to improve our system: 

object recognition, user interface, and trajectory generation. 
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Object Recognition 

We would suggest working to improve cylinder detection. Our current cylinder detection 

algorithm has a few flaws. False-positive cylinders are recognized, the locations and orientations 

of cylinders are occasionally incorrect and cylinders are sometimes not recognized. The 

segmentation of the cylinder might be improved on if we could have an additional sensor 

mounted in a different location on the robot. This could also be done by capturing multiple sets 

of point cloud data from the same sensor. The direction coordinates could be better defined by 

writing our own algorithm which parses the point clouds obtained from cylinder segmentation. 

We would also suggest improving object recognition to support more shapes. Our 

recognition of cylinders was an effective demo, but has limited applications in the field. It would 

be helpful to recognize more complex shapes than simple geometric solids like cylinders. 

Performing object detection through surface matching or spin images, instead of our feature-

extraction and segmentation-based approach would be one way to improve our system (Johnson 

& Hebert, 1998; Johnson, 1999).  If the sensor could import more complex shapes into 

OpenRAVE's environment, this feature could be very useful in the field. Thanks to OpenRAVE's 

robust code base and grasp planners, grasping complex shapes should be relatively 

straightforward. 

User Interface 

 If our project is to be incorporated into commercially-available PackBots, our user 

interface will need improvements. Clicking to grasp objects was useful as a demonstration of our 

system, but this functionality would require a different interface for field robots. Using a mouse 

for input is not a suitable interface for field robots. So our code includes a callback for grasping 

specific items which could be called by any piece of code. Touch input or voice commands could 
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be useful ways to call this functionality. If users could command the robot by saying something 

like “pick up the object in front of you and move it 500 feet northwest,” our work could become 

a very useful aspect of PackBot.  

Trajectory Generation 

 OpenRAVE is always able to generate a path that reaches the desired pose. But many of 

the trajectories generated by OpenRAVE took unreasonable paths to reach this pose. We suggest 

improving OpenRAVE’s trajectory planner or implementing a custom planner. We began 

looking into this, but decided to prioritize other aspects of our system. 

PackBot Upgrades 

We also identified three key upgrades to the PackBot that would enhance the 

functionality of our system.  

Manipulator 

First, the PackBot needs a manipulator that is more suited for autonomous grasping. The 

current manipulator does not have force feedback, so teleoperated grasping requires visual 

feedback from the gripper camera. During autonomous grasping, the lack of feedback when the 

gripper makes contact with its target could lead to failed or damaging grasps as the PackBot’s 

manipulator can squeeze with quite a bit of force. With a force-sensing gripper, OpenRAVE’s 

OpenGRASP plug-in would be able to account for feedback from the gripper when executing a 

grasp. Torque feedback from the gripper could be a viable alternative to true tactile sensing (Jang 

et al., 2012). 
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Embedded Computer 

To implement autonomy in field situations, the PackBot’s internal computer will need an 

upgrade. Because robots in the field might not always be within communication range of a more 

capable computer, OpenRAVE should run on the robot itself. Our PackBot’s Pentium 3 

processor and limited hard disk space seriously hindered our efforts to get OpenRAVE running 

on the robot. Adding more sensors and complex software puts strain on its computer. Processor, 

hard disk, and memory upgrades will be necessary if iRobot wants to integrate the sensors and 

software required for onboard motion-planning,  

Sensing 

 Though our 3D-printed mount firmly affixed our depth sensor to the robot in a lab 

setting, field PackBots would require a more rugged configuration. We recommend mounting the 

3D camera alongside the PackBot’s default camera, as we did, because of its maneuverability 

and the high vantage points it enables. 3D data from PackBot Wayfarer’s sensor head could be 

imported into OpenRAVE to eliminate the need for more hardware development (Yamauchi, 

2005). 
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Appendices 

Appendix A - System Diagram 
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Appendix B – Sensor Mount SolidWorks Drawing  
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