

SOFTVIZ: A RUNTIME SOFTWARE VISUALIZATION ENVIRONMENT

by

Benjamin Kurtz

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

APPROVED:

Computer Science Department
Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609
{bk2@alum.wpi.edu}

__
Professor George T. Heineman, Advisor

__
Professor Matthew Ward, Advisor

__
Professor David Brown, Department Reader

__
Professor Micha Hofri, Head of Department

i

Abstract

As software systems become more complex, so does the task of understanding them. To

modify even a simple component of a complex system, at least a rudimentary

understanding of the structure and behavior of the whole system is necessary. Although

currently available development tools can provide a static representation of a complex

system, these utilities are limited and prohibitively expensive. As a result, most

programmers working on large software systems today resort to classic debuggers and

time-consuming plain-text searches through hundreds or thousands of source files. This

thesis describes a software development environment that uses static representations of

hierarchically structured source code side by side with dynamic visualizations of software

systems as they run. This environment provides an intuit ive, visual means of easily

comprehending complex systems, and has been provided as an open-source development

tool for both professionals and students of software engineering.

ii

Table of Contents

1 Introduction ...1

1.1 Motivation.. 1

1.2 What is Visualization? .. 2

1.3 What is a Probe?... 3

1.4 What is AIDE? .. 4

1.5 What is SIENA? .. 4

1.6 Goals ... 4

1.7 What is SoftViz? .. 5

1.8 Outline .. 5

2 Background ...7

2.1 Existing Software Visualization Systems .. 7
2.1.1 BALSA and Balsa-II ... 9
2.1.2 Zeus ... 9
2.1.3 TANGO and POLKA.. 10
2.1.4 ANIM.. 11
2.1.5 PV.. 11
2.1.6 Jinsight .. 12

2.2 A Taxonomy of Software Visualization .. 13

2.3 Taxonomical Analysis of the SoftViz Environment 24
2.3.1 Scope... 24
2.3.2 Content .. 25
2.3.3 Form.. 26
2.3.4 Method .. 26
2.3.5 Interaction ... 27
2.3.6 Effectiveness ... 27

2.4 Design Considerations for Software Visualization 28
2.4.1 Extraction.. 28
2.4.2 Post-Mortem Extraction vs. Runtime Extraction.. 28
2.4.3 Code Intrusive ... 29
2.4.4 Data Intrusive .. 29
2.4.5 Non-Invasive Methods .. 30

iii

2.4.6 Instrumentation Methods .. 30

2.5 Summary.. 31

3 Design of the SoftViz Environment...32

3.1 Global Design Considerations .. 32
3.1.1 Scalability.. 32
3.1.2 Portability.. 33
3.1.3 Flexibility.. 34
3.1.4 Extensibility .. 34
3.1.5 Openness ... 35
3.1.6 Adaptability... 35

3.2 Software Visualization Design Considerations .. 35

3.3 Architecture Overview... 40
3.3.1 Event Substrate Layer ... 41
3.3.2 Laboratory Engine Layer .. 42
3.3.3 Visualization Layer... 43

3.4 Visualization Modules .. 44

3.5 Summary.. 44

4 Implementation of the SoftViz Environment...45

4.1 Programming Language Selection .. 45

4.2 Protocol and Format Selection .. 45
4.2.1 Protocol... 45
4.2.2 Event Format... 46
4.2.3 File Formats .. 46
4.2.4 Structure and Color Maps ... 47

4.3 The Three-Layer Model Implemented.. 49
4.3.1 Event-Substrate Layer... 49
4.3.2 Laboratory Engine ... 50
4.3.3 Visualization Layer... 51

4.4 Visualization Modules .. 55
4.4.1 The Sunburst Visualization... 56

4.4.1.1 Principles... 56
4.4.1.2 Implementation ... 56

4.4.2 TimeLine ... 59
4.4.2.1 Principles... 59
4.4.2.2 Implementation ... 59

iv

4.4.3 Structure .. 61
4.4.3.1 Principles... 61
4.4.3.2 Implementation ... 61

4.4.4 Node-Link ... 63
4.4.4.1 Principles... 63

4.4.5 Thread Table ... 65
4.4.5.1 Principles... 66

4.5 Summary.. 67

5 Results ..68

5.1 Evaluation.. 68

5.2 Future Work .. 69

5.3 Conclusions .. 71

A Programmer's Guide to SoftViz Module Development73

A.1 Getting Started.. 73

A.2 Graphics ... 75

A.3 Stream-Based Event Handling ... 76

A.4 Visualization Message Passing ... 76

A.5 Deployment .. 77

References...79

v

List of Figures

Figure 1.1 – Minard’s Visualization of Napoleon’s 1812 Russian Campaign [50]............ 2
Figure 2.1 – A Nassi-Shneiderman Chart [42] .. 8
Figure 2.2 – A POLKA Screenshot ft. a Kiviat diagram and a Feynman diagram [20] ... 10
Figure 2.3 – Screenshot of PV [27] .. 12
Figure 2.4 – Screenshot of Jinsight [26] ... 13
Figure 2.5 – The Scope of a Software Visualization System ... 15
Figure 2.6 – The Content of a Software Visualization System... 16
Figure 2.7 – The Form of a Software Visualization System... 19
Figure 2.8 – The Method of a Software Visualization System... 21
Figure 2.9 – The Interaction of a Software Visualization System.................................... 22
Figure 2.10 – The Effectiveness of a Software Visualization System.............................. 23
Figure 3.1 – The Three Layer Model.. 40
Figure 3.2 – The Three Layer Model with Instrumented Programs 41
Figure 4.1 – UML Diagram of the Structure Map Data Structure 48
Figure 4.2 – Screenshot of a Prototype of SoftViz in Action .. 51
Figure 4.3 – UML Diagram of the Visualization Module API ... 52
Figure 4.4 – UML Diagram of the Sunburst Visualization Module 53
Figure 4.5 – Screenshot of an Early Prototype of SoftViz Demonstrating Visualization

Events.. 54
Figure 4.6 – UML Diagram of the Visualization Event Data Structure 55
Figure 4.7 – Sunburst Visualization Example from SoftViz ... 57
Figure 4.8 – Screenshot of a Prototype of SoftViz using Elision 58
Figure 4.9 – The Timeline Visualization.. 60
Figure 4.10 – The Structure Visualization.. 62
Figure 4.11 – The Node-Link Visualization... 64
Figure 4.12 – Thread Tables Visualization... 66
Figure A.13 – UML Diagram of the Sunburst Visualization Module 73

vi

Acknowledgments

I would like to thank Dr. George Heineman, whose guidance and contagious enthusiasm
made this thesis possible.

I would also like to thank Dr. Matthew Ward and Dr. David Brown for their vital input
and feedback.

Special thanks to Jing Yang for showing me her implementation of the Sunburst
visualization.

I would be remiss if I did not acknowledge the support of my friends Paul Calnan,
Charles McAuley, and Leonard Frank, who have given me so much and asked for so little
in return.

1

1 Introduction

1.1 Motivation

Modern software engineers working on large software systems are faced with the

daunting task of understanding enough about the structure and behavior of the system to

correctly modify the system. Software systems involving thousands of source files and

millions of lines of code are becoming commonplace, and system documentation is

almost always a poor reflection of the actual system implementation, since it is not

always properly updated when changes occur.

Armed only with debugger stack traces and a plain-text searching tool such as

grep, a newly hired developer may need several frustrating and unproductive months to

begin to comprehend how the system functions as a whole. Developers experienced with

the structure of the system may find it difficult and time-consuming to trace its behavior

adequately for debugging and optimization purposes. By minimizing the man-hours

required for a developer to understand the structure and behavior of a system, the

development cost may be substantially reduced.

Although many tools are available for the static analysis of object-oriented

hierarchies, modern component-based software systems have additional properties that

make useful static analysis difficult or impossible. First, complex component based

systems may be dynamically reconfigured using components unknown to the designers of

the system. This dynamic assembly and reassembly does not lend itself easily to static

analysis. Additionally, the actual runtime behavior of a system may differ considerably

from what might be reasonably deduced from a static hierarchical representation.

In addition to the challenges faced in debugging and optimizing, systems which

can be dynamically reassembled present additional difficulties in maintenance. In these

systems, certain runtime events generated by the system trigger architectural changes,

such as the replacement of a particular component. In some situations, where there is a

clear causal relationship between certain system events and particular architectural

changes, these changes may be automated. In situations where there may be mitigating

2

factors or relevant external conditions unknown to the system, decisions regarding

architectural changes must be made by a human being.

To provide them with the necessary information, these decision-makers require a

tool that shows a user-configurable map of the system that tells the user “You are here.”

1.2 What is Visualization?

WordNet [40] defines visualization as “a mental image that is similar to a visual

perception”. Visualization, perhaps counter- intuitively, is not the creation of visual

images, but of mental images in the mind of the viewer. The goal is the creation of visual

representations of large amounts of data that can be easily understood, even by viewers

with limited technical knowledge. In visualizations, various attributes of the data set are

mapped to visual attributes such as size, color, texture, or shape. Common examples of

visualizations are bar charts, line graphs, maps, and organizational charts. The idea of

visualization of numerical data is not new, as the following figure illustrates.

Figure 1.1 – Minard’s Visualization of Napoleon’s 1812 Russian Campaign [50]

 This graph done by a French engineer in 1861 represents Napoleon’s attempt to

invade Russia in 1812 [50]. The width of the band measures the size of the French army,

with beige representing attacking forces and black representing retreating forces. The line

graph on the bottom records the temperature at each location the army passed through

3

during the retreat. With no other knowledge of the underlying data, the viewer can almost

feel the horror of the French as their massive advancing beige band is reduced to a thin

black line.

 The example in Figure 1.1 demonstrates two desirable properties of

visualizations: incorporate a large amount of information into a relatively small space,

and use color, size, and spatial relationships effectively to convey information.

 We can envision using the same type of visualization for any military campaign,

or for any data set with similar properties. The same type of visualization may be

appropriate for a stock portfolio’s catastrophic performance in 1929, mapping the width

of the band to monetary value, and the color beige to the time period preceding Black

Tuesday.

We can envision an entire class of data sets for which Minard’s graph would be

appropriate. Each of these data sets has a corresponding Minard visualization, creating a

class of visualizations defined by the mapping of data attributes to visual attributes.

These mappings describe a visualization template, which can be instantiated with a

suitable data set to create new instances of Minard’s visualization. The concept of

general-purpose visualization templates is central to our discussion of software

visualization environments.

1.3 What is a Probe?

Probes are information gathering code segments inserted into strategic locations within

the source code of the software system targeted for visualization. The target source code

can be instrumented with probes manually, or the task can be automated. For our

purposes, we are relying on probes that were developed for the Defense Advanced

Research Projects Agency’s (DARPA) Dynamic Assembly for Systems Adaptability,

Dependability, and Assurance (DASADA) program [14]. Although these probes can be

customized to extract meaningful information from the target system, we used the

standard probes supported by the Active Interface Development Environment (AIDE).

 When a probe is activated, it generates an event that will be used by our software

visualization system to create and animate run-time visualizations. In Chapter 2 we will

4

discuss probes in more depth, including an evaluation of alternative methods of

extracting program data.

1.4 What is AIDE?

AIDE [24] is a modified pre-processor for Java source code developed by George

Heineman at the Worcester Polytechnic Institute. The AIDE pre-processor can

automatically instrument Java source code with probes that determine when a method is

invoked and when it is completed, greatly reducing the time required for source code

instrumentation. One can envision numerous other types of probes, for example, a probe

that determines when an exception is generated or when an assertion is checked. We

have used the available probes while remaining open to including new types of probes

into the visualization environment.

1.5 What is SIENA?

SIENA (Scalable Internet Event Notification Architectures) is a middleware event

notification package developed at the Software Engineering Laboratory at the University

of Colorado [43]. Using SIENA allows our visualization environment to be decoupled

from the underlying probe infrastructure; in addition, the visualization can execute on a

separate machine from the software systems being visualized. SIENA, combined with

the AIDE compiler, and the probe monitoring infrastructure encapsulated by the APIs

developed for this project form the core of the environment’s infrastructure.

1.6 Goals

By combining run-time monitoring with software visualization, we hope to create a

development environment capable of delivering meaningful visual representations of the

structure and behavior of multiple software systems to the user.

We have adhered to several design principles in developing our system, including:

• Scalability – the target system may range from simple programs to complex

systems with millions of lines of code.

5

• Portability – the environment must run on many platforms and allow for

multi- language software systems.

• Flexibility – users should be able to perform a wide variety of tasks, including

debugging and optimization.

• Extensibility – the environment should allow for integration with existing

software tools and for the addition of new user-defined visualizations.

• Openness – the environment should work alongside source control systems

and integrated development environments.

• Adaptability – the environment must adapt to changing architectures and

behaviors and provide for task-specific configuration.

We discuss these design principles in greater detail in Section 3.1.

1.7 What is SoftViz?

The SoftViz environment, designed and implemented for this thesis, provides a

framework for the static visualization of the abstract structures of object-oriented

software systems, as well as the dynamic visualization of the system’s behavior. SoftViz

uses a probe-based approach for the extraction of interesting runtime events, and then

publishes these events using the SIENA wide-area event distribution bus. This

configuration allows for the visualization system to be run remotely from the systems it is

observing.

SoftViz can aide several target audiences, including the new developer trying to

become familiar with a complex system, the experienced developer working on

debugging and optimization, and the maintainer of a complex component-based system

allowing dynamic assembly. These users all need a tool allowing them to easily analyze

the runtime behavior as well as the static structure of their software systems. SoftViz

meets these needs through the use of both static and dynamic visualizations.

1.8 Outline

This thesis is divided into six chapters. In Chapter 2 we examine other software

visualization packages and the existing DASADA technologies that comprise the

6

infrastructure of SoftViz, as well as their underlying principles. In Chapter 3, we

incorporate the principles of software engineering and visualization with DASADA

technology into a high level design for a software visualization environment. In Chapter

4, we discuss the design and implementation of the SoftViz environment. In Chapter 5, we

apply this environment to several case studies, and in Chapter 6 we discuss our final

conclusions and recommendations.

7

2 Background

This chapter describes the history of software visualization, and presents a discussion of

previous software visualization systems and general design considerations for a software

visualization system.

Software Visualization refers to the formulation of a mental image of the structure or

behavior of software. Visualizations of software can convey information about structure,

memory allocation, processor utilization, algorithm efficiency, or many other aspects of

software systems.

2.1 Existing Software Visualization Systems

The idea of achieving greater understanding of software through the use of visualization

began more than 50 years ago, with the use of flowcharts to represent the behavior of

programs [22]. In the 1950’s and early 1960’s, Knuth and others made advances in the

automatic generation of flowcharts from program source code [23][33].

Interest in the static visualization of source code continued in the 1970’s with the

development of pretty printing [34] of source code, and Nassi-Shneiderman charts [38].

Pretty printing makes source code easier to read with the standardizing of spacing and

indentation, and sometimes the use of colors or different fonts for keywords. Nassi-

Shneiderman charts are more space-efficient than traditiona l flow-charts and can be

easily understood. An example of a simple Nassi-Shneiderman diagram appears in Figure

2.1.

8

Figure 2.1 – A Nassi-Shneiderman Chart [42]

The first example of dynamic visualizations of a program running appeared in a

series of films by Knowlton in 1966 [30][31][32], showing operations on lists in Bell

Laboratories’ Low-Level Linked-List Language (a.k.a. L[6]). These films were also the

first to attempt the visualization of data structures, rather than just charting the control

flow of the program. A 1981 film by Baecker, Sorting Out Sorting [1], showed dynamic

visual representations of 9 different sorting algorithms individually, and then racing with

each other to sort a large data set. All of these films visualize the behavior of algorithms,

and not that of any particular implementation.

 The traditional uses of software visualization are teaching, debugging, and

presentation. The early algorithm animation tools, such as BALSA from Brown

University [11][12], were used to demonstrate the relative efficiency of algorithms to

classes of 50 students. Modern software visualization tools, such as Jinsight from IBM

[26], allow software developers to locate memory leaks and perform other debugging and

optimization tasks. Both the teaching tools and the debugging tools can be used to create

easy-to-understand visualizations for presentations to conferences or managers. The

9

ANIM tool, developed at Bell Laboratories [2][3], provides the option of generating a still

image from an animated visua lization for use in presentations.

Since the beginning of the 1980’s, many software visualization systems have been

developed. To motivate our discussion of the SoftViz visualization system, we will now

discuss several of the most historical or relevant software visualization systems.

2.1.1 BALSA and Balsa-II

Brown and Sedgewick developed the first fully interactive software visualization system,

the Brown University Algorithm Simulator and Animator (BALSA), in 1983 [11][12].

BALSA could display multiple algorithms executing at the same time, and also supported

multiple simultaneous viewing of their data structures. The system primarily visualized

programs written in Pascal, and provided a pretty-printed display of the source code, with

an indication of the currently running line of code.

BALSA accepted regular Pascal source code that was instrumented to notify the

BALSA event manager of interesting events, like the entry into a function or the access

of a particular data structure. The system was successfully used as a teaching aid in

Computer Science classes at Brown for a number of years, until it was replaced by later

versions.

 In 1988, Brown released Balsa-II [4][5], which provided additional scripting

facilities. In addition, it was in color and allowed the use of sound in addition to visual

representations.

2.1.2 Zeus

Zeus, also developed by Brown, is another descendant of BALSA [6][7]. Released as a

prototype in 1991, Zeus provides the user of the system the ability to alter the visual

representation of data at runtime. Additional support for sound was added using MIDI,

allowing sounds to be incorporated into the visualizations. Zeus was implemented with

multi-processor, multi- threaded platforms in mind, and offers greater capabilities for

visualizing parallel programs.

10

2.1.3 TANGO and POLKA

Stasko produced another software visualization system at Brown University in the late

1980’s called TANGO [44]. TANGO was built on a new architecture for algorithm

animation he called a path transition paradigm. This architecture allowed for smoother

animations and less overhead for the visualization designer.

 The path transition paradigm’s supporting architecture consists of three parts:

defining the interesting events in a program that drive the animation, the design of the

animations, and the mapping of the interesting events to their corresponding animations.

To define the interesting events, special calls are inserted into the target C source code

manually. Animations are created by defining transitions, rather than every step in the

animation. This is the central advantage of the path transition paradigm. These transitions

are defined in terms of trajectory, size, visibility, and color. The mappings between

events and animation components in TANGO are also performed manually.

 Unlike BALSA, an animation could receive events from several different program

sources, and a program source could supply events to several different animations. When

the visualization is running, the user is given control over the view, such as pan and

zoom, as well as temporal controls such as pause.

Figure 2.2 – A POLKA Screenshot ft. a Kiviat diagram and a Feynman diagram [20]

 TANGO and its many descendants are widely used and freely available, along

with a wide variety of pre-made visualizations. Among TANGO’s descendants are

11

XTANGO, the X windows version, and POLKA with its graphical front-end Samba [20].

A sample screenshot of Polka featuring a Feynman diagram, a Kiviat diagram and a bar

chart is shown in Figure 2.2.

2.1.4 ANIM

Developed at Bell Laboratories in the early 90’s, ANIM takes an interesting “post

mortem” approach to software visualization [2][3]. ANIM involves a scripting language of

just eight commands (line, text, box , circle, view, click, erase, and clear). To instrument a

program for visualization, a user must simply add file output commands, using this

scripting language, to interesting parts of the program source. When the program runs, it

generates a script file, which can later be compiled into an animation or a static

representation.

 This approach provides a couple of unique advantages. First, the user can have

arbitrary control over the speed and direction of animation playback, as no new

information comes into the animation once it is compiled. Second, programs in any

language can be instrumented by simply using that language’s file output procedures.

2.1.5 PV

PV (Program Visualization) [27] is an extensible visualization tool that uses trace

capabilities in the AIX kernel to provide visual displays of information ranging from

hardware latencies and operating system overhead to higher-level application- level

issues. Although PV can be attached to software systems running several languages,

including C, FORTRAN, Ada, and High-Performance Fortran (HPF), it is limited to the

AIX operating system. PV is capable of handling large, distributed applications and

provides support for plug- ins.

12

Figure 2.3 – Screenshot of PV [27]

 The above figure shows several visualizations in PV, including a representation of

the control flow of the program, a list of processes, and a display of system statistics.

2.1.6 Jinsight

Like PV, Jinsight [26] also makes use of trace data for visualizations. Jinsight can run on

AIX or Windows platforms, but can only be attached to Java software systems. Jinsight

provides capabilities for the filtering of unimportant events and special tools for common

debugging issues, such as memory leaks.

13

Figure 2.4 – Screenshot of Jinsight [26]

Additionally, Jinsight can create visualizations for common patterns of method

calls. PV and Jinsight both allow for the display of both static structural visualizations

and dynamic event-driven visualizations, and each makes use of color to show

correlations between dynamic visualizations and hierarchal source code representations.

Figure 2.4 demonstrates Jinsight’s pattern-visualization capabilities and its use of color.

2.2 A Taxonomy of Software Visualization

Several taxonomies of software visualization systems have been derived in the past two

decades, beginning with that of Myers [35]. In this taxonomy and its subsequent updates

[36][37], Myers categorized software visualization tools along two main axes. The first

14

axis is the level of abstraction of what is being visualized, ranging from an abstract look

at the behavior of an algorithm to a concrete in-depth look at a particular implementation.

The second axis measures the amount of animation in the visualization, or whether it is

static or dynamic.

As new software visualization systems emerge with a wider variety of capabilities

and features, taxonomies of the field of software visualization have become more

complex and detailed. The taxonomy of Price, Baecker, and Small (PBS) [39] again

divides the broad category of Software Visualization into algorithm visualization, which

concentrates on the abstract logic of a program, and program visualization, which

concentrates on a particular implementation. BALSA is an example of an algorithm

visualization system, while PV and Jinsight are program visualization tools. By

examining this detailed taxonomy in the context of the previously described software

visualization systems, we will now reveal common design patterns of modern SV

systems.

In the PBS taxonomy, visualizations of software are classified by six major traits:

A. Scope – the range of programs that can be visualized and the generality of the

visualizations.

B. Content – the aspects of the software that are visualized.

C. Form – the style and granularity of the visualizations.

D. Method – how visualizations are specified in the visualization system.

E. Interaction – how the user interacts with the visualizations.

F. Effectiveness – how well the visualizations communicate information.

Each of these categories is broken down into sub-categories, shown below:

15

A: Scope

A.1 Generality

A.2 Scalability

A.1.1 Hardware

A.1.2 Operating
System

A.1.3 Language A.1.3.1
Concurrency

A.1.4 Appl icat ions A.1.4.1 Speciality

A.2.1 Program

A.2.2 Data Sets

Figure 2.5 – The Scope of a Software Visualization System

A: Scope

 This category describes the requirements of a visualization system and the
restrictions on the programs it can visualize. This branch of the taxonomy is shown in
Figure 2.5.

A.1. Generality - Will the system work on any program, or only one?
A.1.1. Hardware - What hardware will it run on?
A.1.2. Operating System - What Operating System is required?
A.1.3. Language - The languages that visualized programs must be written in.
A.1.3.1. Concurrency - Does the system allow the use of concurrency?

 Can it visualize concurrent behavior?
A.1.4. Applications - Are there any restrictions imposed on programs to be visualized?
A.1.4.1. Specialty - What types of programs are visualized particularly well?

A generalized system can run on any platform or operating system, and can accept

programs in any language and of any type as input. Most of the programs we have

examined above are restricted to a particular operating system. ANIM is restricted to

UNIX environments, while PV can only run on AIX. Additionally, all of these systems

are restricted by what types of programs they can visualize. ANIM is unique in that it can

visualize programs in any language, where BALSA can only accept programs written in

Pascal.

16

Support for concurrency, or multi-threaded target programs, is another important

design consideration for software visualization systems. Although a visualization system

may accept programs written in languages that support concurrency, the system itself

may have no capacity for visualizing concurrent behavior. Of the systems we have

surveyed, only PV and Jinsight offer sophisticated visualizations of concurrency.

A.2. Scalability What is the largest example the system can visualize?
A.2.1. Program What is the largest program that the system can handle?
A.2.2. Data Sets What is the largest data set it can handle?

Scalability is a measurement of the size of the largest program that a visualization

system can handle. Many of the tools reviewed above, including BALSA and TANGO,

have not been formally tested or used in a production environment. ANIM is run post-

mortem on a generated script file, so it may not be as limited by system memory and

processor speed in the same way as a runtime visualization system. PV and Jinsight, both

used in production environments, have been tested on reasonably large programs and data

sets.

Figure 2.6 – The Content of a Software Visualization System

17

B: Content

This category describes the important differences between algorithm visualization

systems and program visualization systems, and is shown above in Figure 2.6.

B.1. Program How does the system visualize the implementation of a program?
B.1.1. Code How does the system visualize the source code instructions of a program?
B.1.1.1. Control Flow How does the system visualize the flow of control in a program?
B.1.2. Data Can the system visualize the data structures in a program?
B.1.2.1. Data Flow How does the system visualize the data flow in a program?

The ability to visualize the implementation-specific details of a program is the

defining characteristic of a program visualization system. This includes the ability to

visualize the control flow of the program through the source code as well as the concrete

data structures used in the implementation. PV is an example of a program visualization

system that features all of these capabilities.

B.2. Algorithm How is the abstract logic behind a program visualized?
B.2.1. Instructions Are the instructions in an algorithm visualized?
B.2.1.1. Control Flow Is the control flow of an algorithm visualized?
B.2.2. Data Are the algorithm’s high-level data structures visualized?
B.2.2.1. Data Flow Can the data flow of the algorithm be visualized?

Algorithm visualization systems provide the user with a more abstract view of the

behavior of an algorithm. The instructions of an algorithm are an abstraction of the

source code of a program. Similarly, abstractions can be made on concrete data

structures. BALSA and the video Sorting Out Sorting are examples of abstract algorithm

visualization systems.

B.3. Fidelity and Completeness The degree to which the visualizations represent the accurate

and complete behavior of the program.
B.3.1. Invasiveness Does the visualization of a program disrupt its behavior?

With any abstraction a certain amount of detail is lost. The more abstract

algorithm visualization systems may not provide as accurate an image of the targeted

program as a system more closely tied to the actual implementation’s execution.

18

It is in the area of invasiveness that some of the most important design

distinctions in our surveyed visualization systems are revealed. Many of the systems

require the instrumentation of the target program’s source code with additional code that

provides information to power the visualizations. While this method is effective, the act

of altering a program’s source code may itself alter the program’s behavior. Obviously,

the amount of code added to a program and its runtime cost should be minimized when

this method is employed.

B.4. Data Gathering Time When is the data for the visualization gathered?
B.4.1. Temporal Control Mapping What is the relationship between program time and the time of

the visualization system?
B.4.2. Visualization Generation Time Is the visualization performed before, during, or after program

execution?

The time the program data is gathered is tied closely to the invasiveness of the

software visualization system. Program information is gathered either at compile-time, at

run-time, or both. While compile-time methods are less invasive, they cannot gather

information about the dynamic behavior of a program. Therefore, systems which use only

compile-time data extraction are limited to static visualizations.

In the run-time methods, we see an additional distinction in the generation time of

the visualization. Post-mortem systems such as ANIM collect information at run-time,

but do not generate the visualization until execution has halted. Run-time visualization

systems such as Jinsight, generate visualizations while the program runs.

19

Figure 2.7 – The Form of a Software Visualization System

C: Form

 This category describes the characteristics of the presentation of the generated

visualizations to the user. This branch of the taxonomy is shown above in Figure 2.7.

C.1. Medium What is the target medium of the visualization?

While ANIM supports the generation of still images for printing, the rest of our

surveyed systems are designed for output to a monitor.

C.2. Presentation Style What is the general appearance of the system’s visualizations?
C.2.1. Graphical Vocabulary What graphical elements are used?
C.2.1.1. Color How does the system use color?
C.2.1.2. Dimensions How does the system use additional dimensions?
C.2.2. Animation How does the system use animation?
C.2.3. Sound How does the system use sound?

Graphical vocabulary refers to the number of shapes, textures, and other graphical

elements available for use in a visualization. The use of color and additional dimensions

are also considered in this category. Most of the systems we surveyed originated in the

80’s and do not support color, three-dimensional visualizations, or sound. The only

20

system reviewed that supports sound is Zeus, although POLKA and Zeus both have three

dimensional successors [10][48].

In all the run-time visualization systems surveyed, animation is used to represent

the dynamic behavior of the program as time passes. Of the systems that use color, PV

and Jinsight show the connection between different visualization windows by assigning

the same color to the common elements. Other systems use color for emphasis or simply

to make it easier to dis tinguish visualization elements.

C.3. Granularity Does the system allow for coarse and fine granularities?
C.3.1. Elision Does the system allow for the hiding of irrelevant data?

Granularity refers to a system’s ability to “zoom out” and filter out unnecessary

details. Elision refers to the ability to hide information that has been deemed as irrelevant.

While these features are recognized as valuable in the field of visualization, the only

surveyed software visualization system that allows for any degree of granularity or

elision is Jinsight.

C.4. Multiple Views Can the system provide multiple synchronized views of the
program?

C.5. Program Synchronization Can the system visualize multiple programs simultaneously?

Multiple views refers to the capability of showing different views of the same

program simultaneously. Zeus, Jinsight, PV, and ANIM to a lesser extent, allow the user

multiple views of the same program as it runs. This feature can provide the user with

more information about the inner workings of the target program.

Program synchronization is the ability to show views of multiple programs

simultaneously. This allows the user to race two different programs, or two show client

and server programs interact.

21

D: Method

D.1.2 Tailorability

D.2.1 Code
Ignorance
Allowance

D.1 Visualization
Specification Style

D.2 Connection
Technique

D.1.1 Intelligence

D.2.2 System-Code
Coupling

D.1.2.1
Customization

Language

Figure 2.8 – The Method of a Software Visualization System

D: Method

 This category describes the way in which new visualizations are specified, and

how the visualizations get information from the target program, and is shown above in

Figure 2.8.

D.1. Visualization Specification Style How are visualizations defined? (library, hand-coded)
D.1.1. Intelligence Is the visualization automatic? How advanced is the AI?
D.1.2. Tailorability How customizable are the visualizations?
D.1.2.1. Customization Language How are visualizations customized?

Software visualization systems differ only slightly in the method in which

visualizations are defined. Some systems, like BALSA and TANGO, provide the

visualization programmer with a library of pre-built visualizations from which to

construct a new visualization. Other systems, such as ANIM, require hand-coded

visualizations. Another option, which is not widely used in software visualization, is the

automatic generation of visualizations.

Another aspect of SV systems is tailorability, or the degree to which the user can

alter the appearance of a visualization. Zeus, for example, gives the user the ability to

alter the view, and this alteration propagates through the other visualization windows.

D.2. Connection Technique How does the visualization system get information from the
program?

D.2.1. Code Ignorance Allowance How much knowledge of the program is required to make a
visualization?

D.2.2. System-Code Coupling How closely tied are the program and visualization?

22

The evaluation of a visualization system’s connection method again brings into

focus the idea of invasiveness. The most common method of extracting information from

a running program is the instrumentation of the program’s source code with additional

code that exports program data. This instrumentation can be performed automatically,

which allows the visualization designer an additional degree of code ignorance. Both run-

time and post-mortem systems use this method to extract program data.

Any instrumentation of source code is considered an invasive technique, and may

result in undesirable consequences to the performance or behavior of the target program

at runtime. Some systems use a non-invasive technique, in that it does not modify the

source code, called probing to get information about the execution of the program from

the operating system or from the program interpreter, if one is being used. Although this

method does not require alterations to the executable, it cannot produce the same detailed

information as invasive techniques.

E: Interaction

E.2.2 Temporal
Control

E.2 Navigation

E.3 Scripting
Facilities

E.2.1 Elision
Control

E.2.2.2 Speed

E.2.2.1 Direction

E.1 Style

Figure 2.9 – The Interaction of a Software Visualization System

E: Interaction

 This category describes how the user can interact with a software visualization

system. This branch of the taxonomy is shown in Figure 2.9.

E.1. Style How does the user give commands to the system?
E.2. Navigation Does the system support navigation through a visualization?
E.2.1. Elision Control How can the user hide irrelevant portions of the visualization?
E.2.2. Temporal Control How does the user control the temporal elements of the system?
E.2.2.1. Direction Can the user reverse the temporal direction of the visualization?
E.2.2.2. Speed Can the user control the speed of the vis ualization?

23

E.3. Scripting Facilities Does the system allow for the recording of interactions with
visualizations?

The visualization systems surveyed made only a limited usage of the interaction

methods described above. While most of the systems allowed interaction with a mouse,

navigation and elision controls were non-existent or severely limited. TANGO, for

example, allows navigation through a visualization, but only through resizing or zooming

a window. All systems allow some degree of temporal control, the most basic being the

ability to start and stop the system. Many systems, including BALSA and Zeus, allow the

user total control over the speed of the visualization playback, as well as the ability to

record the user’s interaction with the system.

F: Effectiveness
F.3 Empirical

Evaluation

F.4 Production Use

F.1 Purpose

F.2
Appropriateness &

Clarity

Figure 2.10 – The Effectiveness of a Software Visualization System

F: Effectiveness

 This category describes how the system has been tested and used, as well as a

general measure of its effectiveness, and is shown in Figure 2.10.

F.1. Purpose What purpose does the system serve?
F.2. Appropriateness and Clarity How effective and accurate are the visualizations?
F.3. Empirical Evaluation Has the system been subjected to a serious evaluation?
F.4. Production Use Has the system been used in a production setting?

Of the systems surveyed, only PV and Jinsight were subjected to a true empirical

evaluation and were used in production [26][27]. The other tools, like BALSA, were never

formally evaluated, but were successfully used as teaching aides [11][12].

24

2.3 Taxonomical Analysis of the SoftViz Environment

In this section, we employ the PBS taxonomy of software visualization to better describe

and categorize the SoftViz environment.

2.3.1 Scope

The SoftViz environment involves two main elements: a "back-end" which is responsible

for data gathering and a “front-end which uses this data to generate and animate

visualizations. These two components are decoupled through a common interface, so the

implementation of each side is not dependant on the implementation of the other. The

environment also allows the front-end and the back-end to be run on separate computers

connected across a network. In addition, several different back-ends, on different

networked computers, can provide data to a single front-end. These propertie s of the

environment are important when considering the scope of the visualization system. The

hardware and operating system requirements, for example, must be considered for each

component, rather than for the system as a whole. To simplify this situation somewhat,

the current implementation of the SoftViz environment uses the Java programming

language, which is somewhat platform-independent. Both the front-end and back-end

will operate on any platform which supports an implementation of the Java Virtua l

Machine.

The decoupling of the visualization component from the data gathering

component also allows the environment a degree of flexibility with regard to what

programming language the visualized programs must be written in. The design of the

environment would support any number of back-end implementations capable of

gathering data from programs written in any Object-Oriented language. Current

implementations of the data-gathering components support only the instrumentation of

programs written in Java. However, nothing in the current implementation of the front-

end requires the use of instrumented Java code.

SoftViz does not place many restrictions on the programs that are visualized. The

environment allows the use of concurrency and the visualization of concurrent behavior,

but the specifics of how concurrent behavior is visualized are left to the visualization

25

module developer. The restrictions on programs that can be visualized come from the

availability, or lack of availability, of back-end components that provide support for a

particular programming language.

While the scalability of the SoftViz environment was a primary design goal, the

current implementation has not yet been empirically evaluated with regard to scalability.

As this is a continuing project, it is hoped that future work with this environment will

determine the maximum number of probes and maximum rate of events that the system

can handle.

2.3.2 Content

The SoftViz environment relies on data extracted by source code intrusive methods. The

source code of the target program is instrumented with probes, which produce the data

used in visualization. This method produces a stream of probe data which is intrinsically

tied to both the source code and the control flow of the instrumented program. In the

language of the taxonomy, this environment is a program visualization system, in that it

creates visualizations based on the source code instructions of a program rather than on

the abstract algorithms the program is based on.

The environment currently instruments only method calls, which allows it to

follow only the control flow of the instrumented program. The control flow of a program

is the primary focus of the SoftViz environment. Data flow of an instrumented program

can be approximated by examining the arguments passed to calls to the accessors of

abstract data structures. This ability can be extended to primitives through the use of

instrumented wrappers.

While the SoftViz environment relies on source code invasive methods of

extracting program data, the extent of the effect of this invasiveness on the performance

of the program being visualized has not yet been analyzed. It is expected that the

performance of the instrumented program will be inversely related to the number of

active probes in the program. In programs which are time-sensitive, the act of

instrumenting and visualizing the program may actually alter its behavior.

26

Structural data about the target program is gathered at the time the program is

instrumented. This structural data is combined with dynamic data gathered from the

instrumented probes at execution time to generate and animate visualizations. The

environment marks each probe-generated event with a timestamp. This gives the front-

end the ability to determine the correct order and relative temporal positioning of events,

as they occurred on their system of origin. These timestamps allow the front-end to

compensate for any variations in network latency that may otherwise result in inaccurate

or incomplete visualizations.

The accuracy and completeness of the visualizations themselves is dependant on

the developers of the visualization modules themselves.

2.3.3 Form

The visualizations generated by SoftViz are intended solely for output to a computer

monitor. The actual visual style of a visualization, including the use of animation, 3D

graphics, and sound, is left to the discretion of the visualization module developer.

Support for elision and the allowance of coarser and finer granularities is also provided at

the visualization module level. The current Sunburst visualization module

implementation demonstrates the use of animation, elision, and various levels of

granularity.

The environment does control the use of color by a visualization, ensuring that all

visualizations which target the same program use the same associations between color

and structural elements. This provides a degree of visual consistency between

visualizations of the same program.

In addition to the capacity of the SoftViz environment to provide multiple views of

the same program, it also allows the visualization of multiple different programs

simultaneously.

2.3.4 Method

The visualization system receives events from instrumented programs across a network

connection. Both the instrumentation of the source code and the extraction of the

structure of the program are performed by automated tools. For basic operation of these

27

tools, no changes are required to the default configuration. Visualization modules

themselves are written to an interface which generalizes the nature of events and program

structure. As a result, absolutely no specific knowledge of the instrumented program is

required to write a visualization for it. In fact, the design of the environment allows the

creation of a generalized set of visualization modules which may be usefully applied to a

wide variety of programs. These features guarantee a large degree of code ignorance

allowance and a low degree of system-code coupling.

2.3.5 Interaction

The specifics of how a user interacts with a visualization, including navigation and

elision control, are left to the discretion of the visualization developer. It is expected that

the primary method of interaction will be the mouse, but nothing in the design of the

environment precludes the use of another input device.

The environment does handle the temporal control of a visualization. A tool

resembling the buttons of a VCR allows the user to control the speed and direction of

playback of previously recorded events. When events are being received from a program

during program execution, this tool only allows the user to stop and resume the reception

of events.

Although no scripting facilities are provided, the environment does allow for

saving the result of previous user interactions with a visualization by allowing the user to

save and restore the state of the GUI workbench.

2.3.6 Effectiveness

The SoftViz environment has not been evaluated for use as a development tool. Future

work on the environment will incorporate qualitative analysis of the effectiveness of

various visualization modules as well as a quantitative analysis of the performance of the

system as a whole.

28

2.4 Design Considerations for Software Visualization

In this section, we will discuss the design concepts that have been revealed in our

examination of previous software visualization systems and their features.

2.4.1 Extraction

Software visualization systems vary greatly in their methods of extracting information

from target systems. Some visualizations require runtime information, and some are run

after the target program’s execution has ended. The visualization systems that require

runtime information can gather it by altering the source code, by over-riding data

structures, by using non-invasive techniques, or a combination of these methods. In this

section, we discuss these methods and their impact on the design of a software

visualization system.

2.4.2 Post-Mortem Extraction vs. Runtime Extraction

As we have seen in the review of software visualization systems, there are two main

approaches to the extraction of dynamic program information: Post-Mortem Extraction

and Runtime Extraction.

The “post-mortem” approach collects information about a program while it runs

and deposits it in a script file. Later, this script file is compiled into a visualization. This

approach has the advantage of knowing all events that will occur during program

execution in advance, so it allows the user the ability to move backwards and forwards in

the event stream arbitrarily. This method also allows fo r analysis of the event data and the

calculation of an optimal layout for the visualizations. Post-mortem extraction can also

make it easier to generate and view visualizations using a single screen.

The “runtime” approach attempts to create and animate a visualization while the

target program is running. This approach allows the user the ability to interact with the

program while the visualization is running, a feature which could be invaluable to the

user in performing any debugging or optimization task.

29

2.4.3 Code Intrusive

Both the post-mortem method and the run-time method of extraction are what Henry

referred to as “code- intrusive” [25]. A code-intrusive extraction method requires that the

source code or byte code of the targeted program is instrumented with special code that

provides information to the visualization system. In the case of post-mortem systems like

ANIM, this special code dumps script instructions to a file on disk. For runtime systems,

the inserted code must somehow deliver the program information to the visualization

system. The obvious solution to this is to use sockets, as this approach accommodates

both local and remote visualization systems.

 There is some inherent danger in using code- intrusive extraction methods. The

inserted code may cause the instrumented program to alter its behavior or performance in

unexpected ways. It is expected that an instrumented program will run slower than its

non- instrumented counterpart. If the instrumented program is time-sensitive, this may

cause aberrant behavior during execution. In an extreme case, automatically inserted

code could loop infinitely, causing the instrumented program to freeze. The inserted

code will be compiled and run as if it were part of the program, so the inserted code

segments must be carefully tested. If remote source code instrumentation is allowed,

security precautions must be taken to ensure that no malicious code is added by

compromising the instrumentation mechanism.

2.4.4 Data Intrusive

Data- intrusive extraction methods [25] are similar to code-intrusive methods in that they

require the insertion of special instructions into the source code of the targeted program.

This approach, however, focuses on instrumenting the entry points of the abstract data

types characteristic of Object-Oriented programming languages, such as the “get” and

“set” methods of an Object-Oriented data type. This instrumentation is accomplished by

creating sub-classes of data types and over-riding class methods to serve the needs of the

visualization system. Data- intrusive extraction provides another method of providing

program information for data-driven visualizations.

30

2.4.5 Non-Invasive Methods

Non-invasive extraction methods do not affect the source code or byte code of a program,

instead relying on querying the operating system or interpreter running the program. On

operating systems like AIX, which provide additional kernel- level debugging facilities,

this approach can yield large amounts of information. A software visualization system

can also extract useful information about programs written in interpreted languages, like

Java or BASIC, by querying the interpreter or virtual machine while the program is

running.

 The obvious advantage to this approach is the ability to visualize programs

without having access to the source code. Another advantage to non- invasive methods is

the fact that the source code remains unchanged from its normal state. The GNU

debugger gdb is an example of a system that uses a non- invasive extraction method.

There are several disadvantages to this approach, however. First, non- invasive

methods are usually reliant on a particular implementation of a virtual machine or an

operating system as debugging methods are rarely standardized. Second, non-invasive

techniques usually yield less information than their invasive counterparts. Although gdb

provides stack traces and can be a helpful debugging tool, sometimes you still have to

litter your code with print statements. Finally, the additional overhead for the extraction

of program data from the operating system, interpreter, or hardware platform may mean

that the program has fewer resources available to it, and may execute more slowly.

Although this method is non- invasive in that it does not change the source code, it may

still affect program performance.

2.4.6 Instrumentation Methods

Visualization systems that use intrusive methods can either require the programmer to

instrument the program by hand, or provide a tool for the automatic instrumentation of

source code. Algorithm visualization systems, which concentrate on the more abstract

elements of structure and behavior, tend to rely on the programmer to instrument the

source code, as automatic systems cannot yet perform conceptual abstraction.

31

2.5 Summary

In this chapter, we discussed the history of software visualization, including a survey of

previous software visualization systems and a taxonomy of these systems. We discovered

that at each branch of the taxonomy there are trade-offs to be made in the system design,

and discussed the most relevant of these design considerations. In the next chapter, we

apply this taxonomy and the revealed design considerations to our desired system, and

devise a design accordingly.

32

3 Design of the SoftViz Environment

This chapter describes the design of the SoftViz environment, including a summary of the

goals and design considerations of the project and brief descriptions of relevant design

patterns.

3.1 Global Design Considerations

The general design goals outlined in the introduction provided a basis for subsequent

application-specific design decisions. Each of these goals contributed to many aspects of

the final system design, and are discussed in detail below.

Our general goals were:

• Scalability • Extensibility

• Portability • Openness

• Flexibility • Adaptability

3.1.1 Scalability

Scalability in a Software Visualization system refers to the maximum size and scope of

target systems. The code- intrusive method of data acquisition raises a variety of concerns

with regard to scalability. First, the size and complexity of the probe itself should be

limited to minimize overhead. If each probe executes slowly, even a small number of

inserted probes could significantly degrade performance. In addition to the execution

time of a single probe, the number of inserted probes is another factor influencing

scalability.

Consider a visualization system that uses an automatic tool to instrument the

source of target programs. The user of the tool can choose to instrument many or few

aspects of the source code as desired, including methods and data accesses. For a

complex program of several hundred thousand lines, the user could choose to instrument

only the methods and data elements that are interesting for their purposes. These

33

instrumented elements generate events which are sent to the visualization system. Even

though the target program may be huge, not all of its methods have been instrumented, so

the number of events may be relatively small.

 This approach of selective instrumentation can be used to allow a visualization

system to target systems that would be too large for it to handle otherwise. Ideally, we

would like our system to be able to handle many thousands, or hundreds of thousands, of

events per second. The total number of events that can be handled every second is limited

by bottlenecks in the event transport software, in the probe monitoring infrastructure, and

in the visualization system itself. Additional limitations on the events that can be

realistically handled in a second are imposed by the network infrastructure and the

hardware that the target and visualization systems run on.

 To maximize the scalability of our environment, we concentrated both on

minimizing the bottlenecks imposed by our software and on the use of selective

instrumentation.

3.1.2 Portability

The Portability of a system is a measure of its ability to run in many different hardware

and software environments. Portability is especially important to a software visualization

system, as it is likely to be used in many diverse development environments.

Additionally, the visualization system and the targeted system should be able to run on

separate network-connected computers. Considering this ability, extra measures should

be taken for portability, especially for the visualization system code that goes on the

target machine. The portability of the visualization system limits the scope of the

programs that it can visualize, and thus its own usefulness.

 An additional design concern for the portability of a software visualization system

is the kinds of languages that target systems can be written in. Although the system may

be intended for use with only one programming language initially, the system design

should be sufficiently general to allow the addition of support for more programming

languages. Limiting the number of supported programming languages again limits the

usefulness of a software visualization system to the general public.

34

3.1.3 Flexibility

The third general design consideration is Flexibility, a trait which accommodates the

users’ need to perform a variety of different tasks and operations. Not all of these tasks

may be known at the time of the design of the system, so it is important to consider the

future addition of new features to allow the user to perform new tasks.

For a software visualization system, users will have certain expectations of tasks

they should be able to perform, like debugging and optimization. The system should also

allow for other common software visualization tasks related to teaching and presentation.

These tasks have radically different goals, and the environment must be flexible enough

to accommodate them.

3.1.4 Extensibility

Extensibility is a measure of the system’s ability to integrate with existing software

development tools and to expand to meet user needs. The first aspect of extensibility

describes the use of a software visualization tool as an extension to a previous

development environment. The actual usefulness of a development tool such as a

software visualization system is greatly impacted by its ability to work alongside

integrated development environments and other common tools. The design of a software

visualization system, especially a code-intrusive system which modifies source code,

must take into account its effect on other development tools being used on the same

program as well as differences in presentation style.

 The second aspect of extensibility describes the ease of extending the

visualization system itself to meet new needs and allow new tasks. The design of the

system must take the addition of new features into account. In a software visualization

system, extensibility is most often concerned with the ability to add new types of

visualizations, but it could also involve adding support for new programming languages

or integration with other tools.

35

3.1.5 Openness

Openness is another attribute that allows integration with integrated development

environments and source control systems. The system design should allow for the import

of information generated by other software visualization systems, including maps of the

target system’s structure or making use of another visualization system’s probes.

Additionally, our desired system design should allow for the export of similar

information for the use of other development tools.

3.1.6 Adaptability

Adaptability is a measure of how well the system can be applied to a new task through

user-configuration. An adaptable software visualization system must manage changing

architecture and program behavior, as well as provide pathways for the user to further

configure the system for specific tasks. This differs from the aforementioned goal of

Extensibility in that it is the user, and not the implementer of the visualization system,

who must be able to adapt the visualization system for new tasks. For a visualization

system to be adaptable, it should provide a set of basic but powerful tools which can be

recombined and adjusted to suit a wide variety of tasks.

3.2 Software Visualization Design Considerations

Our examinations of previous software visualization systems and a detailed taxonomy of

software visualization in Chapter 2 have revealed many design considerations specific to

software visualization. We will now revisit that taxonomy briefly to better illuminate the

design decisions of the SoftViz environment.

A: Scope

 The scope of a software visualization system refers to the restrictions imposed on

the target software system by the visualization system. One of our primary design goals

is portability, so our desired system should run on many different platforms and accept a

36

wide variety of different types of programs. We should avoid requiring a particular

platform, operating system, or programming language in the design of the system. As

shown in Chapter 2, all currently existing software visualization systems are limited to a

particular platform, operating system, or programming language, which limits their

usefulness to the development community.

Additional considerations should be made for multi- threaded systems, and the

visualization system should accommodate and be able to visualize multi- threaded

programs. Although there should be no specific restrictions on the types of programs to

be visualized, the visualization system will concentrate on the visualization of object-

oriented programs and provide special facilities to take advantage of the varied

granularity allowed by the different levels of abstraction of object-oriented software.

 Another primary design goal of the SoftViz environment is scalability. In

addition to handling the visualization of systems on various platforms and operating

systems, SoftViz should be able to visualize programs ranging from only a few lines of

code to thousands or millions of lines of code, as it is the largest and most complex

programs that developers have the most trouble understanding unaided.

B: Content

 The content of a visualization sys tem refers to what aspects of a system are being

visualized, and how this information is gathered. Many of the systems described in

Chapter 2 are algorithm visualization systems, which concentrate on the abstract behavior

of algorithms rather than the details of a specific implementation. Although algorithm

visualization is useful for teaching and demonstration, it is of limited use for problems of

debugging or optimization, which are largely implementation-specific problems. SoftViz

will concentrate on the visualization of a specific implementation, and can be categorized

as a program visualization tool.

However, the SoftViz environment will not necessarily visualize the line-by- line

behavior of a program. Prudent use of the AIDE compiler to selective ly instrument the

method calls of classes may allow the user to visualize the behavior of the target system

at a higher level of abstraction than provided by source-code level visualization systems.

For example, a user of SoftViz interested in algorithm visualization could write and

37

instrument a program demonstrating the abstract logic of an algorithm and SoftViz could

function equally well as an algorithm visualization tool.

The SoftViz environment must be able to accommodate the visualization of the

control flow of a program. Visualization of object-oriented data structures and data flow

should also be possible, although SoftViz will not provide for the visualizations of low-

level data structures, as these vary from system to system.

SoftViz will employ an invasive data-gathering technique, which may affect the

behavior of the target system. First, the target system is instrumented with event-

generating segments of source code, called probes, by the AIDE compiler. Using AIDE,

probes can be selectively inserted. While it would be possible to insert probes at every

line of code, this would result in a serious negative impact to performance when running

the instrumented program. This effect can be minimized by inserting probes in only the

interesting parts of the source, such as the beginning and end of method calls.

Even with selective probing, the impact on the performance of the target system

may be quite severe. The SoftViz environment incorporates another technology which

may help reduce the impact of probes on system performance. The KX probe monitoring

infrastructure, developed by Peter Gill at WPI [21], allows for probes to be dynamically

activated and deactivated remotely at runtime, allowing the user to deactivate all inserted

probes except the probes of immediate interest. Although KX must be running as a

background process, and therefore using system resources, it is expected that the

performance gained through selective probing will outweigh the costs in most cases.

Visualizations in SoftViz will be created by combining visualization templates,

deployed as dynamically loaded modules, with a map of the static structure of the target

system, which will be gathered at the time the system is instrumented. These

visualizations will then be animated at runtime with data generated by probes in the target

system. This probe data can also be saved for playback and analysis at a later date.

C: Form

 Form describes the presentation of the visualization to the user. Although the

SoftViz environment will focus on the monitor as a medium, printer support is not ruled

out by the design. The use of most elements of the visual language, such as size, shape,

38

and animation are left to the discretion of the visualization designer, as are the use of 3D

graphics or sound. Color, however, is reserved by SoftViz to show the relationship

between identical structural elements across all visualizations of the same system. Each

discrete structural element is assigned a unique hue by the visualization system, although

the visualization modules may alter the saturation or brightness for purposes of animation

or user selection.

 Developers of visualization modules for SoftViz are encouraged to support

methods of hiding irrelevant data. This includes support for elision, or data hiding, as

well as coarser and finer granularities. Support for these methods is left entirely up to the

visualization designer.

 The SoftViz environment requires the simultaneous viewing of multiple

visualizations by using a multi-document interface design. Additionally, these

visualizations can all be viewing the same system or they can be viewing different

systems. All visualizations targeting the same system share a common color scheme, and

share user-generated events like selection operations.

D: Method

 The method of a software visualization system describes how visualizations are

specified. The SoftViz environment relies on a modular system for the specification of

visualization templates, and visualizations must be written and compiled in a

programming language that the implementation of the environment can understand. The

visualization module API provides for the interaction between a SoftViz module and the

environment. All tha t is necessary for a visualization developer to complete a module is

to write the specific graphics and initialization code.

Visualization modules will be dynamically loaded by the environment, and

instantiated with a map of the structure of the target system and each element’s associated

color. Once instantiated, the visualization will begin to receive events from the target

system as well as user-generated events, such as selection operations, from the other

visualizations in its user-defined visualization group.

39

Events generated by the instrumented system are published to the SIENA wide-

area event notification bus, where they are received by the visualization environment,

which in turn routes them to the visualizations targeting that system.

This decoupled design allows the visualization designer an extremely high level

of ignorance of the target system’s source code and an extremely low level of coupling

between the target system and the visualization. In fact, visualization modules are

actually generalized visualization templates which deal with only static structure maps

and dynamic event data. Once written, a visualization module can be re-used on any

instrumented system, although the use of certain visualizations for a problem may make

more sense than others. The versatility of this design ensures that the primary goals of

adaptability and flexibility are met by the SoftViz environment.

E: Interaction

 Interaction describes how the user interacts with the visualization system. In

SoftViz, the specifics of how a user interacts with and navigates through a visualization

are left up to the visualization designer. If the visualization module provides elision or

control over granularity, such as zooming, these interactions must be handled by the

visualization itself.

Each visualization is responsible for user-generated events that happen while the

focus is on that visualization’s window. The environment does provide a temporal

control similar to the buttons on a VCR, allowing the user to control the speed and

direction of playback of a stored stream, and to play and pause live streams.

The visualization module API provides for the saving of state for a visualization,

but does not provide any sort of scripting language for interacting with visualizations.

F: Effectiveness

 Effectiveness is a description of the purpose of a visualization system and a

measurement of its success at achieving that purpose. SoftViz is intended as a

development tool to aid in the understanding and debugging of complex software

systems, which will reduce the amount of time required by these tasks. At this time, no

40

empirical evaluation of SoftViz has been performed, and its use in a production

environment has not been assessed.

3.3 Architecture Overview

The SoftViz software visualization environment has three layers, with a clear separation

of responsibilities. This model allows for extensibility and compatibility with other

visualization systems. The bottom layer, called the Event Substrate Layer, extracts events

from the software systems being analyzed. The Laboratory Engine Layer provides for

filtering and aggregation of event streams as well as the storage of events from live

streams for later playback. The Visualization Layer combines live and virtual event

streams with visualization plug- ins and structural information about the instrumented

program to produce the final visualizations. The relationship between the three layers,

the visualization modules, and persistent storage is shown in Figure 3.1.

Visualization Layer Visualization
Plug-Ins

Laboratory Engine Layer

Event Substrate Layer

Live Event Stream Virtual Event Stream

Event Stream

Event Stream

Figure 3.1 – The Three Layer Model

41

3.3.1 Event Substrate Layer

The Event Substrate Layer provides the laboratory engine layer with the stream of events

generated by each target software system as it runs. First, the source files are

instrumented with probes. These probes generate events, containing information about

what time the method was called, when it returned, how deep the call was in the stack,

which thread called it, and the method’s parameters and return values. These generated

events are then collected by the probe-monitoring infrastructure [21] and transmitted

across the event transport bus, creating an event stream.

Figure 3.2 – The Three Layer Model with Instrumented Programs

42

 The Event Substrate Layer connects the environment to the instrumented systems,

as shown in Figure 3.2. This diagram traces the path of events generated by the probes in

the instrumented software. These probes inserted into the source code of the target

system are actually callbacks to the probe monitoring infrastructure, which is capable of

dynamically changing the way these callbacks are handled. Since the inserted code is

nothing but a callback, the actual behavior of a probe can be changed during program

execution by interacting with the probe monitoring infrastructure.

 The event transport bus is responsible for the transport of probe-generated events

as well as for the communication between the probe monitoring infrastructure and the

user interface. As described in Chapter 1, the SoftViz environment incorporates the KX

probe-monitoring infrastructure with the SIENA event-transport bus. The SIENA bus

provides a unique identifier for each client and server on the bus, and servers only

propagate events to those clients who are subscribed to them. Clients can choose to

subscribe to events from certain sources or of certain types. It is this capacity of the

SIENA bus that allows the SoftViz environment to separate incoming events by source.

3.3.2 Laboratory Engine Layer

The Laboratory Engine Layer manages the multiple event streams provided by the event

substrate layer, and has the capability for filtering and aggregation of these events. This

layer can pass the virtual event streams created by the filtration and aggregation of event

streams as well as unmodified live event streams to the visualization layer. The

Laboratory Engine Layer also has the capability to store event streams to disk for later

playback.

Although the events contain information about where in the source code they

occurred, the actual structure of the source code must be extracted by the Laboratory

Engine Layer at the time the source code is instrumented and saved as a structure map.

The structure map of a software system contains hierarchical information regarding

packages, files, interfaces, and class inheritance. This layer also provides for the

extraction and persistent storage of these structure maps from the instrumented software

systems.

43

 When a new event stream or virtual event stream is created, the user can

associate the new stream with the structure map of the system that is generating that

stream’s events. In order to ensure consistent coloring of corresponding elements across

multiple visualizations, the Laboratory Engine Layer also generates a color map of each

element in the structure map to a unique hue. The structure map and the color map are

both provided to the Visualization Layer for use in instantiating visualization modules,

and to provide context for the dynamic event data.

3.3.3 Visualization Layer

The Visualization Layer unifies the event streams and structure maps from the lower

layers with visualization templates, or plug- ins, to create the final visualizations.

Visualizations in this environment can make use of a structure map, an event stream, or

both. This allows for static representations of structure, dynamic representations of

stream events over the structure or dynamic interpretations of events without using the

associated structure map. The Laboratory Engine Layer can provide event streams and

structure maps for several different instrumented systems simultaneously, and the

Visualization Layer can show visualizations for separate instrumented systems side-by-

side, in a Multi-Document Interface (MDI). This feature would allow for the

simultaneous and dynamic visualization of multiple clients and a server, with all of the

instrumented systems running on separate machines. The MDI interface allows the user

to move the visualizations around on the screen and to hide visualizations that are not of

immediate interest.

This layer is comprised primarily of a GUI which allows the user to initiate new

event streams, to load and instantiate visualization modules to receive events from a

particular stream, and to allow for the grouping of visualizations by the user.

Visualizations which are grouped together can communicate with each other and share

user-generated events such as selection or elision of a particular structural element.

When a structural element in a visualization is selected by the user, for instance, that

selection event is propagated to all of the other visualizations that the user has grouped

together.

44

3.4 Visualization Modules

Although different visualization modules, or combinations of visualization modules, will

certainly be better suited for different problems or tasks, the visualization modules used

by SoftViz must be general-purpose. Although a developer may write a visualization

module for a specific targeted system, the module should be able to be re-used for all

future instrumented programs, at least as far as the environment itself is concerned. For

this reason, the specification of a visualization module enumerates all data that can be

provided to a module by the environment but allows for any type of output.

 When a visualization module is instantiated by the Visualization Layer, the

module is provided with the structure map of the target system and the color map,

containing the hues for each structure element. The module is also subscribed to the

appropriate event stream. Additionally, the grouping mechanism of the Visualization

Layer allows modules that are grouped together to communicate with each other.

Each individual module has access to a colored structure map of a software system,

dynamically generated events from that system, and the ability to receive and transmit

events to other visualizations. What the module does with these capabilities is left

entirely to the discretion of the visualization designer.

3.5 Summary

In this chapter we discussed the major design goals of the SoftViz environment and

applied these goals to the taxonomy of software visualization introduced in Chapter 2 to

produce a set of design decisions. Next, we described the overall architecture of the

resulting design, including the three- layer model and the idea of a generalized

visualization module representing a class of visualizations.

45

4 Implementation of the SoftViz Environment

This chapter describes an implementation of the SoftViz environment.

4.1 Programming Language Selection

This implementation was written in pure Java using SDK 1.3.1. The primary design

goals of the environment included portability and extensibility. Writing source code that

can be easily maintained and extended is made easier by using any object-oriented

language, but very few languages provide out-of-the-box portability as well as Java. A

Java program compiled on any machine can run on any other machine that supports a

Java Virtual Machine, from Alphas to Palms.

 The design of the environment also called for a GUI and for the dynamic loading

of packaged visualization modules. Java provides extensive API’s for GUI development

as well as capabilities for the packaging, deployment, and dynamic loading of compiled

code. Additionally, Java provides API’s for sound and 3D graphics programming, which

may be of interest to visualization module developers.

4.2 Protocol and Format Selection

The design of the environment calls for an event notification protocol, a standardized

event format, a file format for storing event data, and a means of saving state for

visualizations.

4.2.1 Protocol

As the SIENA event notification bus is another technology under the DASADA program,

we chose to incorporate it in this implementation. Several implementations of SIENA

exist, and we chose the Java version for ease of integration. Future implementers should

be aware that the Java version of SIENA exhibits very poor performance compared to

more recent versions in C. This may not be a difference in the relative speed of the

46

languages so much as an inefficient Java implementation. To maximize the scalability of

the environment, a more efficient version of SIENA should be used or a more efficient

event notification bus should be adopted.

4.2.2 Event Format

The standard event format developed for this implementation contains five fields:

timestamp, classname , methodsignature , interfacename , and threadid. The

timestamp field is a long integer containing the number of milliseconds since January

1, 1970, 00:00:00 GMT. The classname field is a String of the fully qualified Java class

name of the class which produced the event. The methodsignature field contains a

String representation of the current method’s name and arguments at the time the event

was generated, formatted as the access modifier followed by the return type followed by

a fully qualified Java class name followed by a period, the method name, and a comma-

seperated list of arguments enclosed in parentheses.

The interfacename field contains a String, a comma-separated list of the

interfaces that the class which produced the event implements, i.e. “java.io.Serializable ,

java.lang.Comparable, java.lang.Clonable”. The threadid field contains a unique

String identifier of the originating thread. This allows the visualization system to handle

targeting a multi- threaded software system.

4.2.3 File Formats

The file format used for storing event data is a simple indexing scheme, which uses two

files. The first file has an .idx extension and contains a list of colon separated pairs, the

left side of each pair is a timestamp for an event and the right side an offset. The second

file has a .dat extension and contains the list of all stored events. The offset in the first

file is used to quickly find the location of the full event data in the data file. Although

this works extremely well for this implementation, future implementers may consider

using a full- fledged database, such as MySQL, which may improve speed and offer

increased capabilities.

 Saving the state of the environment is achieved by having all key classes used by

the GUI, including the visualization modules themselves, implement Java’s Serializable

47

interface. This allows the use of ObjectOutputStreams and ObjectInputStreams for

the saving and recovery of the environment’s state. Although this greatly simplifies some

of the internal workings of the implementation, developers of visualization modules

should be aware that this has two major ramifications for them. First, all classes used by

a visualization module must extend the provided tvs.api.VizElement class, which

ensures that they will implement the Serializable interface. Second, if a visualization

module makes use of any class that does not implement the Serializable interface, such

as java.util.Hashtable , they must declare the field volatile and override the default

constructor, which is the constructor with no arguments, of the module’s main class.

When the visualization is deserialized from disk, the default constructor will be called

and must re-instantiate all volatile fields.

4.2.4 Structure and Color Maps

The structure map used in this implementation of the SoftViz environment is defined by

the provided classes tvs.jah.PackageTree and tvs.jah.PackageTreeNode. A

PackageTree is comprised of a linked tree of PackageTreeNodes. A

PackageTreeNode represents an object in the Java package hierarchy. In Java, fully

qualified names of classes and interfaces include the name of the package, i.e.

“java.lang.String” is in the java.lang package. Each PackageTreeNode contains a

Vector of its child nodes and a link to its parent node in the package tree.

48

Figure 4.1 – UML Diagram of the Structure Map Data Structure

As shown above, PackageTreeNode has two subclasses: PackageTreeCNode and

PackageTreeINode . PackageTreeINodes represent interfaces in the structure map. In

addition to the parent and children provided by its superclass, PackageTreeINode

contains a Vector of PackageTreeINodes which represent the interfaces that it extends.

PackageTreeCNodes represent classes in the structure map. In addition to their

parent and children in the package tree, these nodes contain a link to the

PackageTreeCNode representing their superclass and a Vector of the

PackageTreeCNodes representing their subclasses. Additionally, PackageTreeCNodes

contain a Vector of PackageTreeINodes representing all of the interfaces that the class

implements.

This data structure comprises three trees: the package hierarchy, the class

hierarchy, and the interface hierarchy, merged into one. The structure map is created in

three steps by the Java Hierarchy Extractor (JAH), a modified Java parser created for this

project. In the first step, all of the Java source files are parsed and the package hierarchy

is created, stored as a tree containing packages, classes, and interfaces. Then a second

49

pass is made over the package tree to link the interface nodes together by inheritance.

The third pass links the class nodes together by inheritance, and also links the class nodes

to the interface nodes. The result of this is a web of linked nodes that contains all

information about the relationships of packages, classes, and interfaces.

The color map used in this implementation of SoftViz is a simple hash table

associating each element of a structure map to a particular color. The color map is

created from the package hierarchy using the following algorithm. First, the number of

leaf nodes in the package hierarchy is counted, and the color space is partitioned. Next,

each leaf node in the package hierarchy is assigned a unique color based on the total

number of leaf nodes. Finally, each parent node in the package tree is assigned the

average color of its children. The implementation of this color map is provided in the

class tvs.api.TVSColor.

4.3 The Three-Layer Model Implemented

This section describes the key interfaces involved in this implementation and the

communication between the three layers of the model and the visualization modules.

4.3.1 Event-Substrate Layer

The most important interfaces for the Event-Substrate Layer in this implementation are

EventStream, StreamSubscriber, and ITVSEvent.

The EventStream interface defines the basic operations allowed on all event

streams, such as play() and stop(), and is a contract for communication between all three

layers. This interface provides methods which publish information to the Visualization

Layer about what operations are allowed on this stream, which the Visualization Layer

uses to allow or disallow stream controls to the user.

The EventStream interface is implemented by the class SienaEventStream in

the Event-Substrate Layer. This class provides all of the specific functionality involved

in connecting to a SIENA server and receiving events.

50

The EventStream interface also provides the subscribe(StreamSubscriber)

and unsubscribe(StreamSubscriber) methods, which is how visualization modules

connect to a particular EventStream to receive events.

Visualization modules are required by the API to implement the

StreamSubscriber interface, which handles the other side of these transactions by

providing the handleEvent(ITVSEvent) method, which is how EventStreams notify

Visualization modules of a new event.

The ITVSEvent interface describes the methods that every layer will be expecting

an event to implement. This interface exists to allow for the later addition of different

implementations. In this implementation, ITVSEvent has only one implementing class,

TVSEvent, which is the common event representation used throughout the entire

environment. Only TVSEvent is responsible for the translation of SIENA events or

stored events into TVSEvents.

4.3.2 Laboratory Engine

The Laboratory Engine Layer consists of a sub- interface of the EventStream interface

called AugmentedEventStream, which describes the additional controls available to the

Visualization Layer when dealing with stored event data instead of live data. This

interface and its implementing class StoredEventStream allow for playback of event

data at various speeds and stepping through events backwards and forwards.

StoredEventStream makes use of the classes EventStoreReader and

EventStoreWriter, which handle the reading and writing of the event data to disk.

 An additional component of the Laboratory Engine Layer, the Java Hierarchy

Extractor (JAH), resides in its own package. This package contains a modified Java

parser, created specifically for this project, which is the tool used for the extraction and

creation of the structure maps which are passed into each visualization module.

51

4.3.3 Visualization Layer

The Visualization Layer is a GUI involving more than 20 classes. It provides dialogs for

the creation of new streams, for the storage of event data to disk, and for the loading of a

visualization module. Additional facilities are provided for the saving and recovery of

state information, including the state of visualizations.

Figure 4.2 – Screenshot of a Prototype of SoftViz in Action

 This layer also provides a widget resembling a VCR control. This widget, shown

in the upper- left of Figure 4.2, provides the user the ability to control the flow of event

data. Another widget, the Stream Selector, allows the user to select which stream the

VCR controller is affecting. The Stream Selector is in the lower left of Figure 4.2. If a

live stream is selected, the only options available on the VCR control are play and stop,

due to communication with the Event-Substrate Layer via the EventStream interface. If

52

a stored stream is selected, the VCR control will allow additional options provided by the

AugmentedEventStream interface in the Laboratory Engine Layer.

 The Visualization Layer also presents the user with a list of registered

visualization modules, shown in below the VCR controller in Figure 4.2. These

visualization modules can be developed using the provided API which allows

connectivity with the SoftViz environment. A diagram describing the class structure of

the visualization module API is shown below.

Figure 4.3 – UML Diagram of the Visualization Module API

 The above diagram shows various elements of the API and their relationship to

the rest of the environment. The key classes in the visualization module API are

AbstractVizPanel and TVSEventHandler, both of which are abstract base classes. To

create a custom visualization module, all that is required is the implementation of both

these abstract classes. AbstractVizPanel is a subclass of the Java Swing class JPanel,

and provides the drawing surface for the visualization and handles user input.

TVSEventHandler implements the StreamSubscriber interface, which provides

53

connectivity to the Laboratory Engine Layer. The TVSEventHandler is responsible for

handling incoming events from the instrumented software program that the visualization

is targeting.

Figure 4.4 – UML Diagram of the Sunburst Visualization Module

 Figure 4.4 shows the classes of an actual visualization module and their

interaction with the API. The Sunburst class provides an implementation of

AbstractVizPanel, and SunburstEventHandler implements TVSEventHandler. The

Sunburst module makes use of two more classes: SunburstNodeTable and

SunburstNode . These classes are required to implement the VizElement interface,

which ensures that they will be properly serialized when the user saves the state of the

environment.

54

 An additional facility provided by the Visualization Layer is the grouping and

communication of visualizations. The Group Selector widget allows the user to group

visualizations together. Once these visualizations are grouped, user-generated events

from one of the grouped visualizations propagate to all the members of the group.

Figure 4.5 – Screenshot of an Early Prototype of SoftViz Demonstrating Visualization Events

 The above screenshot of the SoftViz environment shows two separate groups of

visualizations. One group occupies the upper region of the screen, and the second

occupies the lower region. A user-generated selection on each Structure visualization has

propagated to the other member of its visualization group, the associated Sunburst

visualization. Selection is denoted on the Sunburst with a black outline, and on the

Structure visualization with a box of inverted coloring.

55

This screenshot also provides an example of how the SoftViz environment

maintains color consistency across different visualizations. As shown in Figure 4.5, the

selected elements in each visualization group are decorated with an identical hue.

 When a user-generated event, such as selection, occurs in a grouped visualization,

a Visualization Event is propagated to the other visualizations in the group. Grouped

visualization modules may use different data attributes to generate their visualizations.

Some may use just structural elements and some may use only thread information. As a

result, not all visualizations will be able to make use of a selection event generated by

another.

Figure 4.6 – UML Diagram of the Visualization Event Data Structure

 TVSEventNode , shown in Figure 4.6, provides the common superclass that

allows different visualization modules to communicate with each other. Its subclasses

represent the different types of data a visualization may allow a user to select by,

including time, thread id, and structural element.

4.4 Visualization Modules

Each visualization module defines a class of visualizations that can be constructed

with the data provided by the structure map and the event stream. Provided with this

implementation of SoftViz are three implemented visualization modules: Sunburst,

Timeline, and Structure. Additional design has been performed on two additional

56

modules: Node-Link and Thread Tables. In the following sections, we discuss the

principles and implementation of each module.

4.4.1 The Sunburst Visualization

The Sunburst visualization [49] represents a class of visualizations capable of representing

a hierarchical data set in an intuitive and space-efficient manner.

4.4.1.1 Principles

For this module, we used the Sunburst visualization to convey the layered, hierarchal

aspects of object-oriented source code through spatial representations. By using

animation, the Sunburst module provides the user with dynamic information about what

elements are currently executing, and allows for user interaction, including elision and

selection operations.

 The goal of the Sunburst module is to provide the user with a way of

understanding both the static, hierarchal structure of a software system and the dynamic,

control- flow of the system as it runs. Once the static hierarchy of the system is

represented with a Sunburst, the flow of control between these elements is shown by

raising the brightness and saturation of the element which is currently executing. The

varying of brightness and saturation happens gradually across several seconds, creating a

pulse effect. This allows the viewer of the visualization to follow the flow of the

program.

To prevent confusion caused by screen clutter, the module should provide for the

elision of sections of the hierarchy. This capacity for elision can also provide the user

with a more abstract view of the hierarchy and control- flow of the target system.

4.4.1.2 Implementation

Sunburst is a radial display of segments of concentric circles, with the innermost circle

representing the root node of the hierarchy. This implementation of the Sunburst

visualization is based directly off the InterRing implementation developed by Jing Yang

57

at WPI [52]. An example Sunburst visualization taken from the SoftViz environment is

shown below.

Figure 4.7 – Sunburst Visualization Example from SoftViz

 The example shown in Figure 4.7 demonstrates a hierarchical set of 18 elements.

The center circle represents the root node, and the surrounding 8 segments represent its

children. The children of a node are initially given an equal portion of the radial space

occupied by their parent. Although SoftViz uses the Sunburst visualization to represent

the inheritance and packages hierarchies of object-oriented software, this class of

visualization could be equally useful for any hierarchical data set.

As with all SoftViz visualization modules, the color for each structural element is

calculated and preserved by the visualization environment, in order to ensure color

consistency of corresponding elements across multiple visualizations. To maintain this

consistency, visualization modules are not allowed to change the hue of a structure

element. Sunburst avoids changing the hue of an element by the use of outlining,

shading, and varying levels of brightness and saturation.

58

User interaction with the Sunburst module is performed with the mouse. Users

can click on a particular structural element to select it. When an element is selected, it is

outlined in black on screen.

Figure 4.8 – Screenshot of a Prototype of SoftViz using Elision

The Sunburst visualization module provides four internal buttons, which allow the

user to zoom in and out and to collapse and expand direct children of the root node that

have no siblings. For example, the above figure is the same visualization as Figure 4.2,

but with its central nodes, which have no siblings, collapsed.

Additional elision is allowed through a double-click on a parent node in the

Sunburst. This feature allows for both the hiding of unnecessary data and for “zooming

out” and getting a more abstract view of the behavior of a system. When this happens, all

children of that node are hidden and the parent node is shaded. While a parent node is

compressed, its brightness and saturation are pulsed instead of those of its children. For

example, a user could collapse all leafs of a Sunburst and see how the control flows

59

between packages, super-classes, or interfaces. As part of the design of the SoftViz

environment, the selection and elision operations are propagated to all other

visualizations that are grouped together by the user.

4.4.2 TimeLine

The TimeLine visualization shows dynamic events on a timeline, colored according to

the associated structural element.

4.4.2.1 Principles

The TimeLine module conveys the relationship of events along a temporal axis and

contains additional information about the source of each event in the source code. As

each event occurs, it will appear on the timeline as a colored bar. The color of the bar

corresponds to the structural element from which the event originated.

This visualization module provides no information about the static structure of the

system in itself, but provides a dynamic insight into temporal relationships of events,

including the time between events and their ordering.

4.4.2.2 Implementation

A screenshot of the TimeLine visualization is shown below in Figure 4.9.

60

Figure 4.9 – The Timeline Visualization

 This visualization module provides the user with a sense of the order in which

events occur. The horizontal positioning of the bars indicates when they happened in

time. The vertical height and the width of the bars are not used to convey information in

this implementation. The color of the bars indicates which structural element is the

source of the event. The above example shows three sources of events, represented by

green, blue, and pink. This visualization provides no information about the control flow,

however. In the above example, the first event is green, the second blue, and the third

pink. The user cannot be certain if blue called pink or if blue returned and green called

pink.

This module provides for the selection of a single event or a group of events on

the timeline with a mouse drag. Selected regions are represented by inverting all of the

colors in the selected region. To invert colors, the RGB values of the colors inside the

selected region are XOR’ed with the RGB value for the color white. This selection event

is propagated to all other visualizations that are in the same group.

Elision is provided by “zoom in” and “zoom out” buttons which can increase or

reduce the scale of the timeline. The “zoom in” button, labeled “-10x” in Figure 4.9,

decreases the scale of the timeline by a factor of ten. Correspondingly, the “zoom out”

button, labeled “+10x”, increases the scale of the timeline by a factor of 10. When this

happens, the module moves all past events to their appropriate locations on the newly

61

resized timeline. The current level of time magnification is displayed onscreen as

“Units:” and is measured in milliseconds. The timeline scales from units of 1 ms to units

of millions of seconds.

4.4.3 Structure

The Structure visualization shows the name of each structural unit alongside its

associated color.

4.4.3.1 Principles

The Structure module is a display of an expandable tree containing all of the structural

units of a software system associated with their assigned color. This module is intended

to allow the user to inspect the Object-Oriented structure of the target system and to

provide a method of quickly locating the name of a particular structural element based on

its assigned color.

4.4.3.2 Implementation

A screenshot of the Structure visualization in use is shown below in Figure 4.10.

62

Figure 4.10 – The Structure Visualization

 The above instance of the Structure visualization shows the package hie rarchy of

the instrumented program. Structure visualizations can also display the hierarchy of

classes or interfaces. This module provides for elision by allowing every parent node to

be collapsed or expanded.

As in the other modules, user selection operations are propagated to all other

grouped visualizations. This is a particularly useful feature of this module, because it

shows the mapping between the name of a structural element and its color. If another

visualization module uses color to identify structural elements and does not provide the

associated name of each element, the user can simply create a new instance of a Structure

visualization and add it to the same group. When a structural element is selected from

the Structure visualization, it will also become selected on the other visualization, and

vice versa. Grouping any visualization with a Structure visualization adds the capacity to

locate the name of a structure element with a selection operation on any visualization in

the group.

63

 This module also provides an onscreen legend for aid in identifying structural

elements in other visualizations.

4.4.4 Node-Link

The Node-Link visualization provides information about the number and frequency of

method calls between selected classes.

4.4.4.1 Principles

This visualization shows a user-selected set of interesting classes from the targeted

software system. The visualization must be limited to only a set of interesting classes for

screen space considerations. Each class is shown as a colored rectangle, or node,

bordered by colored regions representing its superclass and all the interfaces that the class

implements, as shown in Figure 4.11. The colors for the classes, superclasses, and

interfaces are assigned by the visualization environment for consistency.

When the visualization is started, each node of the visualization is disconnected.

When an event is received indicating that a class method has called a method of a

different class, a colored arrow, or link, is drawn, connecting the two nodes of the

visualization. If the method being called was provided by the superclass or an interface,

the link points to the outer region of the node representing that superclass or interface.

Additionally, if the calling method was provided by a superclass or interface, the link

originates from the corresponding region of the source node.

The links themselves are colored according to the frequency of method calls. The

color of a link can range from blue, representing infrequent calls, to red, representing

very frequent calls. The width of a link corresponds to the total number of method calls.

64

Figure 4.11 – The Node-Link Visualization

 In this example, three classes are being visualized: String, MyStringBuffer, and

MyStringTokenizer. The String class has a superclass, Object, which is represented by

the upper half of the outer shell of the node. String also implements two interfaces:

Serializable and Comparable , which are assigned regions of the lower half of the outer

shell.

 In the above example, four links are visible. The first link, from MyStringBuffer

to String, indicates method calls made by class methods of MyStringBuffer to a method

of the class String which was provided by it’s superclass, Object. MyStringBuffer

could be calling the toString() method, for example. This link is wide, indicating that

many of these calls have been made, and blue, indicating that these calls have not been

made frequently in the recent past.

 The next link, from MyStringBuffer to String, indicates that several calls have

been made relatively recently from class methods of MyStringBuffer to a class method

of String, such as substring(). Another link, from MyStringTokenizer to

65

MyStringBuffer, indicates a number of recent method calls. Finally, the link from

MyStringTokenizer to the Comparable interface of the String class indicates a small

number of very recent calls to the compareTo() method, which is provided to the String

class by the Comparable interface.

 This visualization provides the user with information about class inheritance,

interfaces, and the traffic between nodes. Due to the large amount of screen space

required for each node, the Node-Link visualization requires sophisticated elision

support. The first method of elision requires the used to choose which classes will be

included in this visualization. Limiting the visualization to only interesting classes will

avoid screen clutter.

The second method of elision is allowing the user the capacity to collapse and

expand nodes in the visualization with a double-click. When a node is expanded, all of

its interfaces and its superclass are visible. Links to the expanded node will target the

superclass region, an interface region, or the class itself. The String node in Figure 4.11

is an example of an expanded node. When a node is collapsed, its superclass and

interfaces will not be visible and all links targeting these regions will be aggregated into

one link targeting the node. The MyStringTokenizer node in Figure 4.11 is an example

of a collapsed node, as its superclass Object is not visible. This method of aggregation

provides the user with the ability to choose whether or not to view a particular class in the

context of its superclass and interfaces.

Although this visualization provides an interesting view of the structure and

behavior of a target system, the implementation involves a constraint-solving engine

capable of artificially intelligent layout for the automated handling of node and link

placement.

4.4.5 Thread Table

The Thread Table visualization provides information about the activity level of the

various threads running in a concurrent software system.

66

4.4.5.1 Principles

An example of the Thread Table visualization is shown below in Figure 4.12.

Figure 4.12 – Thread Tables Visualization

 This visualization is a table representing each thread of the targeted software

system and the number of events each thread has generated. In this example, color is

used only to distinguish each bar from each other. In future implementations, it might be

desirable to color each segment of the bar according to the assigned color of the structure

element generating the event.

67

4.5 Summary

In this chapter, we described an implementation of the SoftViz environment, including the

key classes in each layer and developed visualization modules.

68

5 Results

SoftViz provides an interactive environment combining visualizations of both the static

structure and the dynamic behavior of complex systems, while fulfilling the design

requirements.

5.1 Evaluation

As a part of the DARPA DASADA (Dynamic Assembly for System Adaptability,

Dependability, and Assurance) program, SoftViz focuses on issues arising from the

complexity of dynamically configurable architectures and incorporation with other

DASADA technologies. A proof of concept demonstration of the SoftViz environment

running on a dynamically reconfigurable client and server was performed at DARPA

DASADA Demo Days in Baltimore, Maryland in July 2002. Additionally, the further

development and evaluation of the SoftViz environment has evolved into an ongoing

project at the Worcester Polytechnic Institute.

 For serious consideration as a production software development tool, SoftViz

requires both empirical evaluation as well as user studies. The invasive data-gathering

technique used by SoftViz actually changes the source code of the system it is visualizing,

and therefore has some effect on the behavior of the system it is visualizing. The extent

of this effect can be examined by comparing the performance of otherwise identical

systems instrumented with varying numbers of probes.

In addition to studying the performance cost of various numbers of probes, the

scalability of the visualization system could be tested by finding the largest systems and

largest number of probes that the visualization system can reasonably handle. This could

be additionally tested by running the visualization system on several benchmark

platforms and finding the maximum number of events that can be reasonably handled per

second. None of the visualization systems that use invasive probing surveyed herein,

including SoftViz, have been subjected to an empirical evaluation.

69

During the development and debugging of this implementation of the SoftViz, the

environment was tested on several programs ranging in size from 200 to 2000 lines of

code with no noticeable loss of performance. The number of probes inserted and

activated during this testing was relatively small, however. The execution time of the

probes was minimal, and it is expected that at least two hundred probes could be inserted

and activated before the degradation of performance becomes noticeable on a Pentium

III/400 Mhz. It is expected that the exact number of probes that can be inserted before

the loss of performance becomes noticeable will vary with the computational power of

the hardware. When running the environment on the same computer as the target system,

performance of both programs can be degraded due to page faults if the computer does

not have enough available resources.

 Since the SoftViz environment is intended to help developers understand the

software they work with, user studies of the environment and its visualization plug- ins

are necessary. The ease of constructing new visualization modules, of using the pre-

constructed visualizations, of instrumenting source code, and of using the environment

itself should be evaluated. Several groups of developers, with varying levels of

experience with the visualization system, could be given an unknown complex software

system and asked to derive as much information from using the visualization system as

possible, or to attempt several tasks of varying complexity. An additional control group

with no access to the visualization system should be asked to perform the same tasks, to

see if the system can actually reduce the amount of time it takes a user to comprehend a

complex software system.

5.2 Future Work

The extensible nature of the SoftViz environment lends itself easily to future work, both

on the environment itself and on its supporting technologies.

First, many additional visualization plug- ins can be developed to create a larger

library of pre-built plug- ins. Providing a large set of general-purpose visualization

modules will go a long way towards making SoftViz a useful development tool. Some of

these visualization modules could incorporate three-dimensional graphics and sound,

70

using the Java 3D and the Java Sound API’s. Although use of the Java 3D API has

already been provided for, additional support for sound could be included in the Plug- in

API, making it easier to use sound in a plug- in.

Additional facilities for the aggregation of event data and its compilation into

“meta-events” could be developed. Currently, the aggregation of event data is performed

by each visualization independently. There may be some advantage to more facilities in

the laboratory engine layer for the pre-processing and compilation of events. The

creation of new types of events, such as meta-events, would require additions to the

Visualization Module API for the specification of what types of events each visualization

module can handle.

At the moment, we assume that our event-generating probes are imbedded in a

software system. We can remove that assumption with the creation of a system for

codifying types of events by the data types of their fields, and a way of generalizing

visualization modules to accept a variety of different types of events, or to accept event

data by the type of data provided. Visualizations would be required to provide additional

meta-data specifying what types of event data they require and additional, optional data

types that the visualization can handle. The environment could keep track of a registry of

visualization modules and what types of events they can visualize. When an event stream

is created, the environment could provide the user with a list of available visualization

modules that can accept the type of events produced by the stream.

In some cases, the environment may be able to automatically match the data fields

of an event of arbitrary type to a published expected input of the visualization module.

Timestamps, for example, would be a very common event data type that could be

matched automatically. If an event contains several data fields of the same type, the user

may be called upon to specify which event data field will be paired with a certain

expected input of a visualization module. Consider a visualization module which draws a

3-dimensional bar graph based on incoming events. This module can only handle events

which have at least three data fields: one of type <TimeStamp> and two of type

<Integer>. The module may assume automatically that it will always use the value of

<TimeStamp> for the position on the X axis, but will not be able to decide automatically

which <Integer> corresponds to height and which to depth.

71

Generalization of event data and visualizations would allow SoftViz to use its set

of visualizations to visualize the static structure and dynamic behavior of any system of

remote probes. With the creation of probes for different types of systems, SoftViz could

be used as a tool for the visualization of the structure and behavior of networks, file

systems, or even events generated by computer-controlled monitoring of an external

system such as a rat brain instrumented with electrodes or the stock market.

To better augment the SoftViz environment’s usefulness to software developers,

versions of the AIDE compiler could be developed for the instrumentation of programs

written in other languages, such as C++ or C#. This would allow the visualization of

programs written in these languages without making any changes to SoftViz.

Another possibility would be a new version of AIDE that could instrument

compiled Java byte code with probes. This would allow the visualization of Java

programs to which the source code was not available and the development of a complete

back-end solution for the SoftViz environment. This package would combine the Java

byte-code instrumenting program with the probe-monitoring infrastructure and a SIENA

server. Once installed on a machine, a remote operator could connect to this machine

using SoftViz, instrument already compiled programs on the machine with a variety of

probes, activate or inactivate any of these probes at will, and collect the events generated

by this system for runtime remote visualization. The back-end package’s design should

allow for the possibility of future uses of this environment for visualization of systems

other than software.

Simpler optimizations can be made to the SoftViz environment by adding support

for the JDBC to the Laboratory Engine Layer. The use of this Java API would allow the

use of commercial databases, such as Oracle or SQL, for persistent storage of event data.

Additionally, the Event Transport Bus can be furthe r optimized by using binary XML

instead of plain text, and by switching to a C implementation.

5.3 Conclusions

By combining streams of event data with extracted structural information with

generalized visualization templates, this environment provides a powerful tool for both

72

professionals and students of software engineering. Such a system should provide a

means for identifying performance problems, illuminating incorrect behaviors, and

revealing flawed designs that is not provided by today’s development tools.

73

Appendix A

A Programmer's Guide to SoftViz Module Development

This implementation features an API which is provided as a toolkit for the developer of

new visualization modules. This section describes in detail the process of creating a new

visualization module by using the provided API.

A.1 Getting Started

A visualization module for SoftViz requires the implementation of two abstract classes,

which are provided in the tvs.api package: TVSEventHandler and AbstractVizPanel.

Figure A.13 – UML Diagram of the Sunburst Visualization Module

74

The above figure shows a UML class diagram of the Sunburst visualization

module. The main class of a visualization module, which implements

tvs.api.AbstractVizPanel, is responsible for drawing the visualization to the screen. The

other required class, which implements tvs.api.TVSEventHandler, is a the Thread which

is responsible for periodically redrawing the visualization and receiving events generated

from the target program. All other classes used by the module must also implement the

tvs.api.VizElement interface, which insures that they will be serializable by the system

when the user saves state.

The main class of the module is required to have at least two constructors. The

first constructor is called by SoftViz when the module is loaded, and is responsible for the

initial setup of the visualization. This constructor has the following signature:

public Sunburst(String name, javax.swing.tree.TreeNode root, tvs.api.TVSColor colors)

The constructor receives three arguments: a String which is the name of this instance of

the visualization, a TreeNode which is the root of a tree describing the hierarchical

structure of the target program, and a TVSColor object which provides a lookup table

containing the color of every structural object.

The following pseudo-code provides the basic behavior of this constructor:

public Sunburst(String name, javax.swing.tree.TreeNode root, tvs.api.TVSColor colors) {

 super(name, root, colors);

 processTree(root); // Converts the tree to a usable form

 colorSchema = colors; // Saves a handle to the color table locally

 // Any other setup required

 eventhandler = new SunburstEventHandler(this);

 eventhandler.start();

}

The last two lines of this constructor create a new TVSEventHandler and start its thread.

This is important if you plan on your visualization module receiving dynamic events. If

your visualization is static, this is not necessary.

75

Next, a second constructor is required, which has the following signature:

public Sunburst()

In Java, this is usually referred to as the "default constructor". This constructor must be

overloaded if your module uses any objects which do not implement the Serializable

interface. You will know if this is the case if you are required to use the "transient"

keyword on a field in order to get the module to compile. If you have declared any fields

transient, you must overload the default constructor and include code that restores these

non-transient fields to their original state, as it is this constructor which will be called

when SoftViz loads a module whose state has been saved by the user. For example, you

may have to create a new TVSEventHandler and start it up again.

A.2 Graphics

The routine which is primarily responsible for drawing to the graphics context is the

paintComponent method in the class which extends AbstractVizPanel. By overriding the

behavior of this class, you can utilize the standard Java Graphics routines. It is also

possible to use the Java2D and Java3D libraries as follows:

public void paintComponent(java.awt.Graphics g) {

 this.paintComponent((java.awt.Graphics3D) g);

}

public void paintComponent(java.awt.Graphics3D g) {

 // insert 3D Graphics code here

}

Throughout the rest of your module code, calling repaint() will result in the execution of

paintComponent() as soon as possible.

76

When writing your graphics code, remember that you are essentially drawing to a JPanel

(a standard Java Swing type) and not a Frame. The Frame your module's panel will be

placed in is owned by the SoftViz program.

A.3 Stream-Based Event Handling

Incoming events from the instrumented program will be handled by the following method

in your class which extends TVSEventHandler:

 public void handleEvent(tvs.stream.ITVSEvent n) {

 String className = n.getClassName(); // Gets name of structure element

 // insert Event handling code

}

The methods that provide access to the event data are described in tvs.stream.ITVSEvent,

including getClassName().

A.4 Visualization Message Passing

Visualization modules can also pass messages to each other, including user-generated

selection events. These messages are passed only between visualizations that have been

grouped together by the user. If you wanted to send a SELECT event when the user

clicked on an on-screen structure object, add the following code to your mousePressed

method:

 // generate SELECT event (as well as de-select events).

 TVSVizEvent ve = new TVSVizEvent(TVSVizEvent.SELECT);

 // keyname is the String description of the structural element selected

 ve.addNode(new TVSStructureVizEventNode(node.keyname));

 // Add as many nodes to this event as you like!

 notify(ve);

77

The notify() method is fully implemented by AbstractVizPanel, and will publish your

event to all other visualizations in the same group.

To respond to events generated by other visualizations, you must implement the

following method, found in the class of your module which extends AbstractVizPanel:

public void handleVizEvent(tvs.api.TVSVizEvent event) {

 switch (event.getType()) {

 case tvs.api.TVSVizEvent.SELECT :

 {

 java.util.Iterator iter = event.nodes();

 while (iter.hasNe xt()) {

 TVSVizEventNode en = (TVSVizEventNode) iter.next();

 if (!(en instanceof TVSStructureVizEventNode))

 continue;

 // Insert code to handle a single node of a SELECT event here

 }

 }

}

Visualization events are explained in more detail in the file tvs.api.TVSVizEvent.java.

A.5 Deployment

The SoftViz program requires that visualization modules be packaged as JAR files and

that they have a special entry in the JAR Manifest file. In a standard deployment, this

Manifest file is located in a subdirectory of the main package directory called META-

INF. The JAR utility can be found in the bin/ directory of your Java SDK installation.

To package your visualization module for deployment, create a directory called META-

INF off of the base directory of your module code. For the Sunburst visualization, the

base directory listing looks like:

78

drwxr-xr-x 2 root root 4096 Apr 17 14:30 META-INF
drwxr-xr-x 3 root root 4096 Apr 17 14:30 tvs

Now, create a file called Manifest.mf in the META-INF directory. At a minimum, this

file should contain the following two lines:

Manifest-Version: 1.0

Main-Class: tvs.sunburst.Sunburst

The Main-Class attribute of the Manifest file tells SoftViz where to begin the execution of

the visualization module. For your visualization, change tvs.sunburst.Sunburst to the

location of the class of your visualization module that extends tvs.api.AbstractVizPanel.

Notice that the Manifest file uses package notation rather than directory notation, and that

there is no ".class" extension.

Finally, return to the base directory of your visualization module code. Make sure that

everything is compiled, and run the JAR utility:

jar cvfm sunburst.jar META-INF/Manifest.mf tvs

This will create a JAR file called sunburst.jar which incorporates the Manifest file in

META-INF and the classes found in the tvs directory.

Now, load the SoftViz program, load your new module, and try it out!

79

References

[1] Baecker, R. M. (1981). Sorting Out Sorting. Narrated color videotape, 30 minutes, presented at

ACMSIGGRAPH ‘81 and excerpted in ACM SIGGRAPH Video Review #7, 1983. Los Altos,
CA: Morgan Kaufmann.

[2] Bentley, J. L. & Kernighan, B. W. (1991a). “A System for Algorithm Animation.” Computing
Systems,4(1): 5-30.

[3] Bentley, J. L. & Kernighan, B. W. (1991b). A System for Algorithm Animation (Tutorial and User
Manual) (Computing Science Technical Report No. 132). AT&T Bell Laboratories, Murray Hill,
New Jersey 07974.

[4] Brown, M. H. (1988a). Algorithm Animation. New York: MIT Press.

[5] Brown, M. H. (1988b). “Exploring Algorithms Using Balsa II.” IEEE Computer, 21(5): 14-36.

[6] Brown, M. H. (1991). “Zeus: A System for Algorithm Animation and Multi-View Editing.

“Proceedings of IEEE Workshop on Visual Languages, New York: IEEE Computer Society Press:
4-9.

[7] Brown, M. H. (1992). Zeus: A System for Algorithm Animation and Multi-view Editing (Research

Report No. 75). DEC Systems Research Center, Palo Alto, CA.

[8] Brown, M. H. & Hershberger, J. (1991). “Color and Sound in Algorithm Animation.” Computer,

25(12):52-63.

[9] Brown, M. H., Myrowitz, N., & van Dam, A. (1983). “Personal Computer Networks and

Graphical Animation: Rationale and Practice for Education.” ACM SIGCSE Bulletin, 15(1): 296-
307.

[10] Brown, M. H. & Najork, M. A. (1993). Algorithm Animations Using 3D Interactive Graphics

(Technical Report). DEC Systems Research Center, Palo Alto, CA.

[11] Brown, M. H. & Sedgewick, R. (1984a). “Progress Report: Brown University Instructional

Computing Laboratory.” ACM SIGCSE Bulletin, 16(1): 91-101.

[12] Brown, M. H. & Sedgewick, R. (1984b). “A System for Algorithm Animation.” Proceedings of

ACM SIGGRAPH ‘84. New York, ACM Press: 177-186.

[13] Brown, M. H. & Sedgewick, R. (1985). “Techniques for Algorithm Animation.” IEEE Software,

2(1):28-39.

[14] DARPA, (2002). “Dynamic Assembly for Systems Adaptability, Dependability, and Assurance”

(DASADA) http://www.rl.af.mil/tech/programs/dasada.

[15] De Pauw, W., Mitchell, N., Robillard, M., Sevitsky, G., and Srinivasan, H. (2001). “Drive-by

Analysis of Running Programs,” Proceedings for Workshop on Software Visualization,
International Conference on Software Engineering, Toronto.

[16] De Pauw, W., Helm, R., Kimelman, D., and Vlissides, J. (1993). “Visualizing the Behavior of

Object-Oriented Systems”, OOPSLA '93 Conference Proceedings, Washington, D.C.: 326-337.

80

[17] Eagan, J., Harrold, M., Jones, J., and Stasko, J. (2001). “Visually encoding program test
information to find faults in software,” Georgia Institute of Technology Technical Report No.
GIT-GVU-01-09.

[18] Fua, Y., Ward, M.O., and Rundensteiner, E.A. (1999). “Navigating hierarchies with structure-

based brushes,” Proc. Information Visualization: 58-64.

[19] Fua, Y., Ward, M.O., and Rundensteiner, E.A. (2000). “Structure-based brushes: A mechanis m for

navigating hierarchically organized data and information spaces,” IEEE Trans. Visualization and
Computer Graphics, Vol. 6, No. 2: 150-159.

[20] Georgia Institute of Technology, (2002). Polka, Samba and XTANGO,

http://www.cc.gatech.edu/gvu/softviz/.

[21] Gill, P.W. (2001). ”Probing for a Continual Validation Prototype,” Master’s Thesis, Computer

Science Department, Worcester Polytechnic Institute.

[22] Goldstein, H. H. & von Neumann, J. (1947). “Planning and Coding Problems of an Electronic

Computing Instrument.” A. H. Taub (Eds.), von Neumann, J., Collected Works. New York:
McMillan: 80-151.

[23] Haibt, L. M. (1959). “A Program to Draw Multi-Level Flow Charts.” Proceedings of the Western

Joint Computer Conference, 15. San Francisco, CA: 131-137.

[24] Heineman, G. (2002). “Coping with Complexity: A standards-based kinesthetic approach to

monitoring non-standard component-based systems,”
http://www.cs.wpi.edu/~heineman/dasada/.

[25] Henry, R. R., Whaley, K. M., and Forstall, B. (1990). "The University of Washington Program
Illustrator (UWPI)." ACM SIGPLAN '90 Conference on Programming Language Design and
Implementation: 223-233.

[26] IBM Corporation, (2002). Jinsight, http://www.research.ibm.com/jinsight/ .

[27] IBM Corporation, (2002). PV , http://www.research.ibm.com/pv/ .

[28] Jerding, D., and Stasko, J. (1998). “The information mural: a technique for displaying and

navigating large information spaces,” IEEE Trans. Visualization and Computer Graphics, Vol. 4,
No. 3: 257-271.

[29] Kimelman, D., Rosenburg, B., and Roth, T. (1994). “Strata-Various: multi-layer visualizations of

dynamics in software system behavior,” Proc. Visualization ’94: 172-178.

[30] Knowlton, K. C. (1966a). L [6]: Bell Telephone Laboratories Low-Level Linked List Language.

16 mm black and white sound film, 16 minutes. Murray Hill, NJ: Technical Information Libraries,
Bell Laboratories, Inc.

[31] Knowlton, K. C. (1966b). L [6]: Part II. An Example of L [6] Programming. 16 mm black and

white sound film, 30 minutes. Murray Hill, NJ: Technical Information Libraries, Bell
Laboratories, Inc.

[32] Knowlton, K. C. (1966c). “A Programmer’s Description of L [6].” Communications of the ACM,

9(8):616-625.

[33] Knuth, D. E. (1963). “Computer-Drawn Flowcharts.” Communications of the ACM, 6(9): 555-563.

81

[34] Ledgard, H. F. (1975). Programming Proverbs. Rochell Park, NJ: Hayden.

[35] Myers, B. A. (1986). “Visual Programming, Programming by Example, and Program

Visualization: A Taxonomy.” M. Mantei & P. Orbeton (Ed.), Proceedings of Human Factors in
Computing Systems (CHI ‘86). New York: ACM Press: 59-66.

[36] Myers, B. A. (1988). The State of the Art in Visual Programming and Program Visualization

(Technical Report No. CMU-CS-88-114). Computer Science Dept., Carnegie -Mellon University,
Pittsburgh, PA.

[37] Myers, B. A. (1990). “Taxonomies of Visual Programming and Program Visualization.” Journal

of Visual Languages and Computing, 1(1): 97-123.

[38] Nassi, I. & Shneiderman, B. (1973). “Flowchart Technique for Structured Programming.” ACM

SIGPLAN Notices, 8(8): 12-26.

[39] Price, B., Baecker, R., and Small, I. (1993). “A principled taxonomy of software visualization,”

Journal of Visual Languages and Computing, Vol. 4: 211-266.

[40] Princeton University, (2002). WordNet, http://www.cogsci.princeton.edu/~wn/ .

[41] Sevitsky, G., De Pauw, W., Konuru, R. (2001). “An Information Exploration Tool for

Performance Analysis of Java Programs”, TOOLS Europe 2001, Zurich, Switzerland.

[42] SmartDraw.com, (2002). SmartDraw,

http://www.smartdraw.com/resources/centers/software/nassi.htm.

[43] Software Engineering Research Laboratory, University of Colorado, (2002). Siena,

http://www.cs.colorado.edu/serl/siena/ .

[44] Stasko, J. (1990). “TANGO: A framework and system for algorithm animation.” IEEE Computer,
23(9): 27-39.

[45] Stasko, J. (1997). “Using student-built algorithm animations as learning aids.” Proceedings of the
SIGCSE Technical Symposium on Computer Science Education. New York, NY: ACM Press: 25-
29.

[46] Stasko, J., Badre, A., & Lewis, C. (1993). “Do algorithm animations assist learning? An empirical
study and analysis.” Proceedings of the INTERCHI'93 Conference. New York, NY: ACM Press:
61-66.

[47] Stasko, J., and Patterson, C. (1992). “Understanding and characterizing software visualization
systems,” Proc. IEEE Workshop on Visual Languages: 3-10.

[48] Stasko, J. T. & Whrli, J. F. (1992). Three-Dimensional Computation Visualization (Technical
Report No. GIT-GVU-92-20). Graphics, Visualization, and Usability Center, College of
Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280.

[49] Stasko, J., and Zhang, E. (2000). “Focus and context display and navigation techniques for

enhancing radial, space-filling hierarchy visualizations,” Proc. Information Visualization: 57-65.

[50] Tufte, Edward R. (1983). The Visual Display of Quantitative Information. Graphics Press.

[51] Ward, M.O., and Heineman, G. (2001). “A Framework for Visualizing the Behavior of

Component-Based Software Systems,” Software Visualization Workshop at OOPSLA 2001,
Tampa, Florida.

82

[52] Yang, J., Ward, M.O., and Rundensteiner, E.A. (2002). "InterRing: an interactive tool for visually

navigating and manipulating hierarchical structures," Proc. IEEE Symposium on Information
Visualization : 77-84

83

