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Abstract 

There is a growing market for Wind Energy, where Vertical Axis Wind Turbines 

(VAWT) are currently overshadowed by Horizontal Axis Wind Turbines (HAWT). 

While the efficiencies of VAWTs are currently lower than that of their horizontal 

counterparts, there are significant areas for growth in the VAWT market due to the wide 

variety of applications. The goal of this project is to investigate improvements on 

VAWTs by designing and developing articulating blades such as those found in 

Schneider Propellers. The prototype was designed with airfoils with the capability of both 

articulating and being fixed. In testing it was found that the fixed airfoil design did not 

start operating at the available wind speeds. At these same wind speeds, it was found that 

the articulating airfoil design had a maximum efficiency of approximately 10% and 

produced 7.4 W. 
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Chapter 1: Introduction 

The combustion of fossil fuels for energy has a negative effect on the globe as the 

emission of carbon dioxide and other greenhouse gasses contribute to the effects of 

global warming (United States Environmental Protection Agency , 2015).  To maintain 

the growth of civilization today, the need for energy is ever increasing and if the 

dependency on fossil fuels to provide this energy continues, the effects of global warming 

could be catastrophic (NASA, 2015).  One way to prevent this outcome is to decrease the 

dependency on fossil fuels and move towards more renewable sources of energy. One 

such growing source of energy is wind power (International Energy Agency, 2015).  

Wind turbines are categorized by their axis of rotation; Horizontal Axis Wind 

Turbines (HAWT) and Vertical Axis Wind Turbines (VAWT). The most common wind 

turbine is the HAWT, due to its superior efficiency (Muhammad Mahmood Aslam 

Bhutta, Renewable and Sustainable Energy Reviews, 2011). Since the goal of producing 

wind turbines is to harness as much of the available power in the wind as possible, the 

more efficient turbines have seen significantly higher use across the world. HAWTs are 

more costly to produce than VAWT’s due to expensive materials and relatively 

complicated designs (Sandra Eriksson, 2008). 

Even though the overall efficiency of HAWTs is higher than VAWTs, there are still 

several advantages of VAWT. For example, VAWTs have the possibility of functioning 

in areas where the horizontal turbines cannot. This is due to the functionality of the 

blades and the axis of rotation being independent of wind direction; therefore they can 

function in areas of turbulent wind flow (Muhammad Mahmood Aslam Bhutta, 

Renewable and Sustainable Energy Reviews, 2011). Due to VAWT’s blade geometry, 

they are also less restricted by their potential surroundings and are not limited to laminar 

flow.  

Due to some of these advantages of the vertical axis turbines, the team came with the 

goal of exploring ways to potentially improve upon the efficiency of VAWTs. If VAWTs 

were more efficient, there might be a potential market for them to be produced for a 

variety of applications. The more specific goal for the project was to build and test a 

vertical axis wind turbine with the intention to test potential improvements to the 

turbine’s performance. The team constructed a Schneider Propeller inspired wind turbine 

that has both articulating and non-articulating airfoils to test the difference in 

performance between the two. The conclusions drawn in this study shows the potentially 

improved VAWT performance by using articulating airfoils. 
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Chapter 2: Background 

At the beginning of the project, the team conducted a literature review of the material 

necessary to complete this project. The material investigated included the core ideas and 

mathematical concepts for each section. The main topics covered incorporated into this 

review are airfoils, wind turbine types and Schneider Propellers. 

2.1 Wind Power 

Wind power is the transformation of wind energy into a more useable form such as 

electrical or mechanical. The earliest known example of wind power being utilized to 

operate a machine is the wind-powered organ created by Heron of Alexandria, a Greek 

engineer from the first century. Heron’s design featured a wind wheel that could be 

turned into the wind for maximum power, as seen in Figure 1 below (Shuttleworth, 

2014). 

 
Figure 1: Wind Turbine 

Wind Power technology has seen many innovations since Heron’s work and 

continues to evolve to this day. There are many different windmills that have their own 

individual advantages due to facts such as their cost, manufacturability, and efficiency. 

New models continued to be theorized and tested in hopes of finding a better way to 

harness wind energy. 

2.2 Airfoils 

Airfoils are also utilized in wind turbines in order to generate higher torques and 

greater rotational velocities. An airfoil is a specialized structure with curved surfaces 

designed to give an optimal ratio of lift to drag for the purpose of flight, as applied to an 

aircraft. The parts of an airfoil are illustrated and described below in Figure 2. 
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Figure 2: Anatomy of an Airfoil 

 The leading edge is the point at the front of the airfoil with maximum curvature. 

 The trailing edge is the point of maximum curvature at the rear of the airfoil. 

 The chord line is the straight line connecting the leading and trailing edge. 

 The chord is the length of the chord line. 

 The mean camber line is the line of points equidistant between the upper and 

lower surfaces. 

 The thickness is the distance between the upper and lower surfaces. 

 The camber is the asymmetry between the top and bottom of the airfoil. 

 

2.2.1 Lift 

 Lift is caused when the wind is split by the leading edge of the airfoil.  The curved 

upper surface causes the air to accelerate and creates a pocket of low-pressure air as 

demonstrated in Figure 3. Air always moves towards lower pressure regions, so the 

relatively higher-pressure region under the wing pushes the wing up towards the lower 

pressure region. This phenomenon causes lift. 

 

 

Figure 3: Airfoil Schematic 
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Lift can be found using Equation 1: 

𝐹𝐿 =
1

2
𝜌𝑣2𝑠𝐶𝑙 

Equation 1: Lift Force 

Where: 

 𝐹𝐿 is the lift force.  

 𝜌 is the air density, which varies with altitude 

 v is the velocity of the air foil 

 s is the area of the airfoil 

 𝐶𝑙 is the lift coefficient, which is determined by the type of airfoil and the angle of attack 

and chord length.  The angle of attach is the angle between the chord line and the velocity 

vector of the air. 

 

2.2.2 Drag 

Drag is a force acting in the opposite direction of relative motion of the airfoil. Drag 

has two primary components: parasitic drag and lift-induced drag. Parasitic drag is the 

drag caused by the interaction between the surface of the airfoil and the fluid it moves 

through. Lift induced drag is the drag that is created due to lift acting on the airfoil.  

Drag can be found using Equation 2 

𝐹𝐷 =
1

2
𝜌𝑣2𝐴𝐶𝐷 

Equation 2: Drag Force 

 

 𝐹𝐷 is the drag force.  

 𝜌 is the air density, which varies with altitude 

 v is the velocity of the air foil 

 A is the cross sectional area of the airfoil 

 𝐶𝐷 is the drag coefficient, which is determined by the shape of the object 

and the Reynolds number. The Reynolds is the velocity times the 

characteristic diameter divided by the kinematic viscosity. 

 

2.2.3  NACA Airfoils 

The National Advisory Committee for Aeronautics (NACA) categorizes all airfoil 

shapes. In the four-digit airfoil series the first digit is the maximum camber as a 

percentage of the chord. The second digit is the location of the maximum camber in tens 
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of percent of the chord length from the leading edge. The last two digits describe the 

maximum thickness as a percentage of the chord. The lift coefficient and drag coefficient 

are values found through testing and have been tabulated for most of the four digit 

airfoils as classified by NACA.  

A benefit of the NACA classification system is that coefficient of lift and 

coefficient of drag information has already been tabulated. Those values are 

experimentally based and using a NACA airfoil means that that information has been 

tabulated and does not need to be experimentally found. 

2.3 Wind Turbine Types 

There are two main types of wind turbines, Horizontal Axis Wind Turbines (HAWT) 

and Vertical Axis Wind Turbines (VAWT). All turbines belong to one of these two 

categories depending on which axis the blades rotate about. HAWTs rotate about the 

horizontal axis, as seen in Figure 4 below. This type of turbine is the most commonly 

produced commercial wind turbine. 

 

Figure 4: Horizontal axis wind turbine 

VAWTs rotate about the vertical axis, as seen in Figure 5 below. VAWTs are a less 

common turbine design and are not as widely commercially available. 
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Figure 5: Darrieus Turbine 

Table 1 below shows a comparison of HAWT’s and VAWTs, including some of the 

key aspects of each category of turbine, such as the sway seen in the tower as well as the 

overall area and impact on the surroundings.  

  

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.brighthub.com/environment/renewable-energy/articles/92978.aspx&ei=V200Vbq8BYPBggTX4YGgCA&bvm=bv.91071109,d.eXY&psig=AFQjCNETU83tCsiZOAxxQwQOtNKIUasd6Q&ust=1429585613844567
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 Vertical axis wind turbine (VAWT) Horizontal axis wind turbine (HAWT) 

Tower sway Small Large 

Yaw mechanism No Yes 

Self-starting Yes No 

Overall formation Simple Complex 

Generator location On ground Not on ground 

Height from ground Small Large 

Blade's operation space Small Large 

Noise produced Less Relatively high 

Wind direction Independent Dependent 

Obstruction for birds Less High 

Ideal efficiency 23% 59.3% 

Table 1: Comparison of HAWT and VAWT  

(Muhammad Mahmood Aslam Bhutta, Renewable and Sustainable Energy Reviews, 

2011) 

HAWTs are commercially popular because of the potential for 59.3% efficiency, 

which is the highest of in both classes of turbines (Muhammad Mahmood Aslam Bhutta, 

Renewable and Sustainable Energy Reviews, 2011). Unfortunately, HAWTs are not 

omnidirectional, and require a mechanism to rotate the head of the turbine so it faces the 

wind direction (Sandra Eriksson, 2008). This yaw mechanism adds complications to the 

manufacturing and maintenance of the turbine. Additionally the blades of HAWTs are 

complicated to design and manufacture. The single connection point to the shaft of the 

turbine creates additional stresses in the blades that must be accounted for in design and 

material choices (Sandra Eriksson, 2008).  

VAWTs have a peak efficiency of 23%. Even though they are not as efficient as 

HAWTs, VAWTs do have several advantages. One of these advantages is that they are 

able to work in locations where the HAWT’s do not yield a profitable efficiency, such as 

mountainous areas with turbulent air flow (Muhammad Mahmood Aslam Bhutta, 

Renewable and Sustainable Energy Reviews, 2011). Another positive aspect of the 

VAWT turbines is that they function with wind coming from any direction without any 

assistance from the user or a motor. A third positive aspect is that the stresses seen in the 

HAWT blades are not seen in VAWTs since they do not extend far from the shaft without 

support.  

There are many different types of VAWTs, however the two that are most common 

are the Darrieus and the Savonius turbine. The Darrieus has a higher efficiency than 

many other VAWTs while the Savonius is favored because it has other features such as 

the ability to “self-start”. This feature is necessary for purposes such as smaller scale 

home-use applications.  
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The ideal efficiency of the VAWTs is lower than the HAWTs. This large discrepancy 

can be attributed to the large amount of research that has been done on horizontal axis 

wind turbines compared to the less amount of research that been done on vertical axis 

wind turbines (Sandra Eriksson, 2008). Therefore the horizontal turbines have a lot more 

data supporting the ideal efficiency, as calculated by the Betz limit. The Betz limit is the 

maximum power that a turbine is capable of producing. Figure 6 below is a chart of the 

power coefficients and tip speed ratios of different types of turbines, showing the ideal 

efficiency as determined by Betz’s law.   

 

Figure 6: Power coefficient and tip speed ratio of different turbines 

2.4 Schneider Propeller 

Turbines and propellers work similarly with the main difference being the medium of 

operation. Due to the similar functionality the same aerodynamic properties apply to both 

devices. Therefore the team looked into the Schenider Propeller for design inspiration.  

In 1927 Ernst Leo Schneider, a German mechanical engineer, created a new ship 

propeller called the Schneider Propeller. The propeller was designed to produce thrust in 

any direction, allowing ships to steer without having to change their heading. 

Schneider propeller designs consist of a large circular rotating base or set of arms 

consisting of 3-6 hydrofoils. Each hydrofoil is fixed about an axis off the base and is 

controlled using two servo motors and a kinematic transmission. As the base rotates, each 

hydrofoil is orientated to provide thrust as needed. An example of the design is shown 

below in Figure 7. 
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Figure 7: Schneider Propeller on Ferry 

Schneider propellers’ utilization of controlled articulating hydrofoils to create thrust 

is what sets them apart from other multidirectional propellers. In order to create the 

desired thrust, two different parameters must be met, steering angle (α) and phase angle 

(ϕ). This is done using the ships power controls system which is operated by a member of 

the crew. The ship operator rotates the hydrofoils to generate thrust in a direction. This 

individually changes the steering angle on each hydrofoil to generate the desired thrust. 

This steering of the blades is accompanied with a certain phase angle. These two 

parameters can be graphed to create a blade steering curve (BSC). The BSC is a method 

to evaluate the amplitude and direction of thrust generated by the propeller. An example 

of a BSC is shown below in Figure 8 (Jurgens). 

 

Figure 8: Blade Steering Curve Example (Jurgens) 
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With these two parameters satisfied, the operator is able to generate variable amounts 

of thrust in any direction. An example of the effects of steering angle is shown below in 

Figure 9. 

 

Figure 9: Directional Thrust Diagrams (Yamada) 

The image above shows four different thrust demands on the Schneider propeller and 

the same phase angle. The first image, image 1, shows the propeller with no thrust 

demand. In this instance, the steering angle on each blade is zero resulting in the blades 

being tangential to the turbine. The second image shows the propeller with a 39% thrust 

demand ahead. This means that the operator is requesting 39% of the propellers full 

engine power to propel the boat ahead. In this image, notice the change in steering angle 

of the top most and bottom most blades. With this change in steering angle, the blades are 

producing a thrust vector shown in blue. These vectors sum to the green resulting vector 

shown in green. Using the propeller’s ability to modify the steering angle of the blades, 

the turbine is able to produce directional specific thrust on command. This ability is the 

key reason Schneider propellers are effective propellers found in the tugboat industry as 

well as on many specialty vessels (Yamada). 
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Chapter 3: Design Process 

Once the appropriate background research had been done the team decided upon a 

final turbine design using the engineering design process. The original design intent was 

to investigate possible improvements on VAWTS to enhance their performance. Many 

different types and iterations of VAWTs were considered such as Darrieus and Savonius. 

From this investigation, the team concluded that there could be opportunity for 

improvement by modifying the pitch angle of the VAWT through articulating airfoils. To 

achieve this goal, the group drew inspirations and concepts from the Schneider propeller. 

The team used the Schneider propeller as a basic concept because the blades of a 

Schneider propeller articulate when spinning. 

3.1 Design Specifications 

The team developed a list of design specifications for the prototype in order to focus 

the design process. These design specifications were grouped by item and are listed 

below. 

 Base 

o Lateral dimensions must not exceed 0.812 m (32 inches) 

o Must support at least 222 N (50 pounds) on center 

o Must include a center hole for shaft to pass through without interference 

 Airfoils 

o Must provide appropriate lift to spin a VAWT of 0.457 m (18 inches) in 

diameter and maximum 89 N (20 pounds) in weight 

o Must include attachment holes on the top and bottom of airfoil to attach to 

the support plates 

 Shaft 

o Must support and transfer the Vertical Axis rotation of the turbine 

o Must translate the vertical axis motion to horizontal axis motion for data 

collection 

 Articulation System 

o Must allow for articulation of airfoil 

o Must prohibit the airfoils from striking any other components of the 

prototype 

 Support plates 

o Must be able to support at most 89 N on center 

o Must include attachment points for the shaft and the airfoils 

o Must be made of a clear and see through material 

 Measurement systems 

o Must be able to measure the force and torque of startup and steady state 

motion. 

o Must be able to measure the rotational speed of the device 
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o Must be able to measure the wind velocity at the time of testing 

 Overall Functionality 

o Must be able start to spin with the force of the wind with no external force 

o Must be able to start to spin with both the airfoils fixed and the airfoils 

articulating 

 Budget 

o Must have an overall cost of less than $750 dollars 

3.2 Design Selection 

After the design specifications were decided upon, the initial design was created and 

the design and manufacturing of the prototype began. The design would consist of three 

airfoils, with the ability to both articulate and stay fixed, one shaft, two support plates and 

other connecting materials such as ball bearings, attachment collars and bolts.  

The three airfoils would be placed at equal angles (120 degrees apart) to ensure a 

distributed and stable turbine. The airfoils were placed around the shaft of the turbine as 

close to the perimeter of the support plates as possible. By placing the airfoils as far away 

from the shaft as possible, the highest potential power output was found.   

The two support plates, one for the top and the other for the bottom of the turbine, 

were made out of acrylic. The acrylic plates were chosen since they are clear and 

therefore would allow good visibility of the turbine while it was operating. The acrylic 

plates also provided adequate stability for the turbine without adding excessive weight. 

The center shaft would be constrained to the support plates and to the base via a set of 

roller bearings. The shaft used was made of steel, originally the team had chosen an 

aluminum shaft since it has the desired stability and is significantly lighter than the steel 

counterpart. However, due to the size of the aluminum shaft and the size of the 

connection pieces, the aluminum shaft could not be used. The connection pieces were 

slightly smaller in diameter than the Aluminum shaft, so the pieces could not fit over the 

shaft. Therefore, the steel shaft was chosen for the final design. A computer aided design 

model (CAD) was created of the initial design in SolidWorks. The assembly of the design 

is shown below in Figure 14.  

3.3 Airfoil Selection 

For this project the team selected the NACA 2412, a non-symmetric airfoil. The non-

symmetric airfoil was selected because the zero lift angle of attack (alpha) is less than 

zero degrees, allowing for more lift to be generated as it makes a full rotation. Below in 

Figure 10 and Figure 11 are the lift and drag coefficients versus alpha graphs for the 

NACA 2412 airfoil. These graphs allow the designer to predict the lift and drag forces 

before testing the device. 
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Figure 10: NACA 2412 Coefficient of Lift versus Alpha 

 

 

Figure 11: NACA 2412 Coefficient of Drag versus Alpha 

An additional benefit of selecting the NACA 2412 airfoil is that it is one of the most 

common airfoils and would therefore be easy to purchase. If purchasing the airfoils were 

not an option, manufacturing would also be easier compared to other similar airfoils. One 

of the common problems with the manufacturing of airfoils is breaking the relatively thin 

trailing edge. With the NACA 2412 airfoils this is less likely due to their comparatively 

thicker trailing edge. The NACA 2412 profile is shown in Figure 12 below.  
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Figure 12: Profile Used to Cut Airfoils 

3.4 Articulating Airfoil Design 

The team made three iterations of the articulating system for the airfoils. The three 

iterations were designed so that all three could be tested once the turbine had been built 

and then the best design would be chosen for data collection.  

The initial design of the articulation included a string pulley system. This system used 

a series of eyehooks and strings to attach the trailing edges of the airfoils to each other. 

Eyehooks would be attached to the bottom of each airfoils at the trailing edge. The string 

was then attached to the eyehook, wrapped around the shaft and then connected to the 

next airfoil. This system would fix the airfoils to each other so that if one airfoil traveled 

outwards (away from the shaft) it would pull the other two airfoils in towards the shaft in 

a continuous motion. For this design the team tried to optimize lift and drag since as one 

airfoil moved away from the shaft, it experienced lift forcing the other two airfoils to 

experience drag as they were pulled in towards the shaft.  

The second design entailed the use of bungee cords, this design is shown in Figure 13 

below. These bungee cords were constrained at the bottom of the airfoil and the center of 

the turbine, similarly to the previous string design. The bungee cords allowed for slightly 

more independent motion between the airfoils due to their “springy” nature.  



15 

 

 

Figure 13: Articulating airfoil design using bungee cords 

The third and final design consisted of the use of springs. In this design the airfoils 

were not attached to each other and so their motion would not constrict each other. The 

springs would again be attached to the eyehooks at the base of the airfoils and the other 

end of the springs would be attached to an eyehook placed approximately two inches out 

from the base plate circumference. A detailed description of this design, with figures is 

shown in Chapter 5.  

Based on initial testing of the turbine it was found that the airfoils were striking the 

center shaft of the turbine. Since the first two design iterations for the articulating motion 

did not prevent this motion the third design was chosen for data collection. Since the 

springs were attached to the outer perimeter of the turbine as opposed to the shaft, the 

inwards motion of the airfoils were controlled by the stiffness of the springs.  

The SolidWorks drawing of the final design of the turbine, with the spring system in 

place is shown in Figure 14 below. The specific sizing of the turbine is justified through 

calculations in the following section.  
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Figure 14: CAD Model of design 

 

3.5 Initial Calculations 

Once the final design of the turbine had been selected, initial calculations were done 

in order to predict the performance of the turbine.  

When analyzing a wind powered turbine, a baseline wind speed area must be 

tabulated to use as an estimated wind speed for all calculations. To determine this value, 

the wind was sampled from Worcester over an entire year (2014) to obtain an average 

wind speed (weatherunderground.com). A distribution of the wind speed over the year 

can be shown in below in Figure 15. 
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Figure 15: Mean Wind Speeds Over a Year 

Weather Underground states that over an entire year, the average wind speed was 

calculated to be 10.20 miles/hour. The equivalent wind speed in meters per second is 

calculated below in Equation 3. The average wind speed in meters per second was 

calculated to be 4.50 meters/second. This wind speed value will be an approximate wind 

estimate to simulate the system in normal conditions.  

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (
𝑚

𝑠
) = 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑀𝑃𝐻) ∗ 0.447 

Equation 3: Velocity Conversion 

Once the wind velocity (U) was calculated, numerical analysis could be conducted. 

For the proposed turbine, a square swept area (A) of 1 m2 was assumed for the initial 

calculations. Based on Figure 6, a tip speed ratio (TSR) of 0.90 was assumed since the 

proposed design was closest in functionality to the Savonius wind turbine.   

 Equation 4 calculates angular velocity (ω) in radians/sec. 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑇𝑖𝑝 𝑆𝑝𝑒𝑒𝑑 𝑅𝑎𝑡𝑖𝑜 ∗ 𝑊𝑖𝑛𝑑 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑤𝑒𝑝𝑡 𝑎𝑟𝑒𝑎
 

Equation 4: Rotational Speed 

From this equation a rotational speed of 46 RPM was calculated using the assumed 

values for area, wind velocity and tip speed ratio mentioned above. Using sea level air 

conditions, an air density (ρ) was assumed to be 1.22 kg/m3. The coefficient of power 

(Cp) was assumed to be 0.15 for the team’s designed wind turbine based on the Savonius 

properties in Figure 6 above.  

Based on these assumptions, the ideal power that the turbine would be able to 

generate is calculated using Equation 5. 
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𝑃𝑜𝑤𝑒𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑏𝑦 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =
1

2
∗ 𝜌 ∗ 𝐶𝑝 ∗ 𝑈3 ∗ 𝐴 

Equation 5: Ideal Power Produced 

A power of 8.30 W was calculated based on the 1 m2 swept area. Using this power 

and the rotational speed, a torque produced can be calculated using Equation 6. 

𝑇𝑜𝑟𝑞𝑢𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 =
𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑
 

Equation 6: Torque Produced 

The calculated torque was found to be 1.029 N*m. 

The purpose of doing the calculations above was to find what the power and torque of 

the wind turbine would be based on the area. Therefore, the calculations discussed above 

were done for a range of swept areas from 0.10 m2 to 2.00 m2. Table 2 below shows a 

summary of the completed calculations.  
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Area  
(m2) 

Radius 
(m) 

TSR 
Wind 

Velocity 
(m/s) 

Omega 
(rad/sec) 

RPM 
Air 

Density 
(kg/m3) 

Cp 
Power 

(W) 
Torque 
(N*m) 

0.10 0.05 0.90 4.50 81.00 508.94 1.22 0.15 0.83 0.01 

0.20 0.10 0.90 4.50 40.50 254.47 1.22 0.15 1.67 0.04 

0.30 0.15 0.90 4.50 27.00 169.65 1.22 0.15 2.50 0.09 

0.40 0.20 0.90 4.50 20.25 127.23 1.22 0.15 3.34 0.16 

0.50 0.25 0.90 4.50 16.20 101.79 1.22 0.15 4.17 0.26 

0.60 0.30 0.90 4.50 13.50 84.82 1.22 0.15 5.00 0.37 

0.70 0.35 0.90 4.50 11.57 72.71 1.22 0.15 5.84 0.50 

0.80 0.40 0.90 4.50 10.13 63.62 1.22 0.15 6.67 0.66 

0.90 0.45 0.90 4.50 9.00 56.55 1.22 0.15 7.50 0.83 

1.00 0.50 0.90 4.50 8.10 50.89 1.22 0.15 8.34 1.03 

1.10 0.55 0.90 4.50 7.36 46.27 1.22 0.15 9.17 1.25 

1.20 0.60 0.90 4.50 6.75 42.41 1.22 0.15 10.01 1.48 

1.30 0.65 0.90 4.50 6.23 39.15 1.22 0.15 10.84 1.74 

1.40 0.70 0.90 4.50 5.79 36.35 1.22 0.15 11.67 2.02 

1.50 0.75 0.90 4.50 5.40 33.93 1.22 0.15 12.51 2.32 

1.60 0.80 0.90 4.50 5.06 31.81 1.22 0.15 13.34 2.64 

1.70 0.85 0.90 4.50 4.76 29.94 1.22 0.15 14.17 2.97 

1.80 0.90 0.90 4.50 4.50 28.27 1.22 0.15 15.01 3.34 

1.90 0.95 0.90 4.50 4.26 26.79 1.22 0.15 15.84 3.72 

2.00 1.0 0.90 4.50 4.05 25.45 1.22 0.15 16.68 4.12 

 

Table 2: Hypothetical Turbine Calculations 

Based on the results from Table 2 above it was found that the bigger the turbine area, 

the more power and higher torque the turbine could output. Therefore the ideal turbine 

would have a swept area of 2 m2. However, based on the limitations of the manufacturing 

lab available to the team, the base diameter was constricted to 0.45 m (17.75 inches) in 

diameter. The cross sectional area was assumed to be 0.23 m2. This is explained in further 

detail in the construction section below.  

Once the base plate circumference had been chosen the size of the airfoils were 

determined. The chord length of the airfoils were designed to be one sixth of the length of 

the circumference of the base plate in order to minimize flow interaction of the airfoils. 

The height of the airfoils were determined to be 0.457 m (18 inches) in order to maximize 

the swept area of the turbine without compromising the stability. Another reason for 

limiting the height of the airfoils would be to limit the inevitable imperfections occurring 

during manufacturing. Additionally, a height of 0.457 m allowed for the team to easily 

access the top of the turbine during testing and for the turbine to easily fit through doors. 
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Since the base plate diameter was selected to be 0.45 m in diameter, the table had to 

be larger than 0.45 m. One of the design specifications above also states that the turbine 

had to be portable i.e. fit through a standard door. Therefore the table had to be 

constructed to be larger than 0.45 m and less than 0.812 m.  
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Chapter 4: Predictive Calculations 

Once the sizing of the turbine had been determined the team made some predictive 

calculations in order to foresee how it would perform. 

In order to predict the efficiency of the designed turbine, the team calculated possible 

power outputs for the fixed wing turbine to establish a base line of experimental 

expectations. The tip speed ratio, λ, is the ratio between the tangential velocity at the tip 

of the blade and the wind speed. This relationship is shown below in Equation 7. The tip 

speed ratio can be calculate experimentally or can be defined based on previously 

published experimental data.   

𝜆 =
𝜔𝑅

𝑈
 

Equation 7: Tip Speed Ratio 

 Where ω is the rotational speed in radians per second 

 R is the turbine radius in meters 

 U is the wind speed in meters/second 

 

The tip speed ratio is used to show the relationship between the wind velocities and 

how fast the turbine is rotating and is an important factor used to classify turbines. 

The fluid velocity, in this case the wind velocity, acting on each blade varies at 

different points of the rotation. Theta, θ, is the location of the blade in its orbit around the 

axis. Maximum oncoming fluid velocity is at θ=0°, minimum oncoming fluid velocity is 

at θ=180°. Using theta and the tip speed ratio it is possible to determine resulting wind 

velocity and the angle of attack that the airfoil sees as it rotates. These relationships are 

diagramed in Figure 16 below. 
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Figure 16: Forces and Velocities Acting on a Vertical Axis Wind Turbine 

The resulting velocity, W, is the blade velocity relative to the turbine and can be 

found using Equation 8 below 

𝑊 = 𝑈√1 + 2𝜆𝑐𝑜𝑠𝜃 + 𝜆2 

Equation 8: Resulting Velocity 

The angle of attack 𝛼, can be found using Equation 9: 

𝛼 = tan−1 (
sin 𝜃

cos 𝜃 + 𝜆
) 

Equation 9: Angle of Attack 

The angle of attack is used to find the coefficient of lift and coefficient of drag from 

the experimental data seen in Chapter 3.3. The lift and drag coefficients are then used to 

calculate the power output of the turbine. Lift and drag can be found using Equation 1 

and Equation 2 found in chapters 2.2.1 and 2.2.2. The coefficient of lift and drag can be 

found from Figure 10 and Figure 11 in chapter 3.3. Once the lift and drag forces are 

found, the resultant force must be identified. The resultant force is based on the 

relationship between the lift and the drag. This is shown below in Equation 10.  

�⃑� = (𝐷𝑥 + 𝐿𝑥) 𝑖̂ + (𝐷𝑦 + 𝐿𝑦)𝑗̂ 

Equation 10: Resultant equation 

Where the sum of the x components of the lift and drag equals the x component of the 

resultant force. The resultant force is used to find the torque. The torque is equal to the 

perpendicular force applied across a lever arm. For this turbine the lever arm is the 
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distance from the attachment point to the axis of rotation (the radius). In this case it is 𝑅𝑥, 

the resultant force in the x direction. Torque is needed for the power equation derived 

from Equation 6 in chapter 3.5 shown below in Equation 11. 

𝑃𝑜𝑤𝑒𝑟 = 𝑇𝑜𝑟𝑞𝑢𝑒 ∗ 𝑂𝑚𝑒𝑔𝑎 

Equation 11: Power Equation 

Due to the fact that there are three blades, the total power includes the power 

generated by all three blades as they move around the axis. The three airfoils are placed 

equally around the axis, therefore θ=0, 120, 240 are the angle positions of each airfoil for 

phase one and θ=60, 180, 300 are the positions for phase two. Each phase references the 

location of the three blades. Phase two is a 60-degree rotation after phase one. Using the 

equations outlined above, and setting the variables at values in Table 3 below, predicted 

power values where calculated for the fixed wing turbine. The detailed calculations are 

shown in Appendix B. 

Variable Value Unit 

Omega 39.37 rad/sec 

Radius 0.23 meters 

Tip Speed Ratio 0.90 (unitless) 

Chord Length 0.24 meters 

Height 0.46 meters 

Area (Chord*Span) 0.11 m^2 

Density 1.23 kg/m^3 
Table 3: Predictive Power Calculation Variables for Fixed Turbine 

The velocity was iterated between 5 m/s and 10 m/s in 0.5 m/s increments to predict 

the power that the fixed blade turbine would produce. For these predictions, ideal, no 

friction, and constant wind velocity conditions were assumed. The results for the power 

calculations are summarized in Table 4 below.  
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Wind Speed 
(m/s) Power (W) 

5.00 3.07 

5.50 4.09 

6.00 5.31 

6.50 6.75 

7.00 8.43 

7.50 10.37 

8.00 12.59 

8.50 15.10 

9.00 17.93 

9.50 21.08 

10.00 24.59 
Table 4: Predicted Power at Different Wind Speeds 

The results from Table 4 are plotted in the power vs wind speed graph shown in 

Figure 17 below. 

 

Figure 17: Calculated Power vs Wind Speed graph 

The trend line shown in Figure 17 is what the team expected to see based on research 

in other turbines where the same curved line of best fit was observed. The data is a 

second order polynomial, and demonstrates an ideal prediction of the power the turbine is 

capable of producing in a fixed blade system.  
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Chapter 5: Construction 

Once the final design had been chosen and the dimensions were finalized, 

construction of the turbine commenced. Below is a detailed description of the team’s 

manufacturing process of each section of the turbine. The base was completed first, 

followed by the prony brake, airfoils and associated connecting hardware.  

5.1 Base 

The base of the turbine was constructed using easily accessible and cost effective 

materials: wood and nails. For the counter top, an old table top was cut into the desired 

dimensions. This reused table top was chosen for the group’s purposes since it was level, 

had adequate structural sturdiness, and the composite countertop material was easy to 

work within the construction phase. These features were of high importance in order to 

meet the MQP team’s design goals.  

The table was chosen to be approximately 31x31x31 inches. The height was chosen 

to allow sufficient access to the prony brake, which was located under the table. The 

width and depth of the table were required to be in the range of 18 to 32 inches. 

Therefore the width and depth of the table were arbitrarily chosen to be 31 inches since it 

allowed for the 18 inch diameter airfoil plate to fit on the table and it was small enough to 

easily fit through a standard door of 32 inches.  

Once the table top was cut to the appropriate dimensions, the center of the table top 

was found and a 1.5 inch diameter hole was made at this center point. The dimension for 

this hole was chosen to ensure that there would be no interference between the 0.9 inch 

diameter shaft and the table top.  

The table was constructed with four legs each made using two 2 x 4 x 30 inch pieces 

of wood. The two pieces were attached using six 2.5 inch long screws. Wooden 2 x 4 

pieces were used since they were economical; two of them were attached to make each 

leg in order to ensure structural stability. It was also important that the table was made to 

be as level as possible. Three screws were used on each side, spaced as shown in Figure 

18 below. The three screws on the opposite side of the leg were placed such that the 

screws alternated sides along the leg.  
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Figure 18: Screw placement for table leg 

A supporting frame was constructed to ensure structural stability of the table. This 

frame consisted of two 2 x 4 x 30.5 inch pieces of wood and two 2 x 4 x 27.5 inch pieces 

of wood. These pieces were attached to make a square shape around the outer perimeter 

of the table top as seen in Figure 19 below. This frame was attached to the table top using 

two screws in each corner and one screw along each length of the square perimeter; 3 

inch length screws were used.  

 

Figure 19: Supporting frame of table 

  



27 

 

Once the supporting frame was built and attached, the legs were attached to the table 

top. The legs were placed on the inside corners of the supporting frame as seen in Figure 

19 above. Each leg was attached to both the table top and the supporting frame using the 

2.5 inch screws. It was attached to the frame using two screws per leg, two on each 

corner. Two screws were also used to attach the plate to the legs. The placement of the 

screws was such that each screw attached to different 2 x 4 inch pieces of wood. The 

attachment of the legs is shown below in Figure 20. 

 

Figure 20: Leg attachment 

5.2 Prony Brake 

One of the main experimental measurements of this project is the torque produced by 

the system. In order to measure this, a prony brake was investigated. This system 

employs the use of a cantilever arm with length 𝐿 with a weight attached onto the end. 

This cantilever arm clamps onto the main drive shaft. Once the shaft starts to move, the 

clamp is tightened onto the main shaft until the cantilever beam is balanced in a 

horizontal position. The weight that is on the end of the cantilever has a specific 

force(𝐹). An example of this system is shown below in Figure 21. 
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Figure 21: Prony Brake 

Before constructing the prony brake, research was done to find examples which other 

people had already constructed and tested. Several examples were found of homeowners 

using them for various purposes. Figure 22 below shows one homeowner’s assembled 

prony brake onto an engine.  

 

Figure 22: Example prony brake 

The initial problem faced with the prony brake was that the motion which the turbine 

was outputting was vertical rotation. However for the prony brake to function, horizontal 

rotation was required.  This horizontal frame of motion was required since the prony 

brake uses the gravitational force to operate.  Therefore, a right angle translation piece 

was attached to the bottom of the turbine shaft. The prony brake would then be attached 

to the piece at the other end of the angle adjustment piece seen in Figure 23 below.  
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Figure 23: 90 degree angle motion adjustment 

The prony brake itself was constructed from a 0.75 x 2.5 x 30 inch piece of wood. 

The final product is seen in Figure 24 below. The length of the long arm was cut to be 21 

inches and the bottom piece was 5 inches. The hole seen at the center of the long arm and 

the bottom piece was cut to be 5/16 inches in diameter. This dimension was chosen due 

to the size of 90 degree angle adjustment piece which was 6/16 inches. The hole diameter 

was slightly smaller than the diameter of the angle adjustment piece so that the prony 

brake could clamp onto the attachment point. The wing nuts were chosen so that the 

tightness of the prony brake could be easily adjusted during testing without dependency 

on tools. The hook on the right end of the brake is in place to attach the prony brake to 

the Vernier force gauge.  The constructed prony brake is shown below in Figure 24, 

Figure 25, and Figure 26. 

 

Figure 24: Constructed prony brake 
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Figure 25: Loose prony brake head 

 

 

Figure 26: Tightened prony brake head 

5.3 Airfoil plates 

Once the base and the prony brake were constructed the team moved on to the head of 

the turbine. First the team constructed the two circular airfoil plates which were 17.7 

inches in diameter, made of plexiglass and were cut using a Versalaser VLS. Lasercutter.  

The laser cutter used DWG files and cut the plexiglass to the desired shape within an 18 

inch by 24 inch cutting frame. The hole at the center of the plate was laser cut to be 1 

inch in diameter, slightly larger than the shaft diameter to ensure some clearance space to 

minimize interference. Four holes of diameter 0.128 inches were made on the plate for 

the collar attachment piece. The collar attachment piece was used to connect and translate 

the motion from the airfoils to the shaft. The other six holes seen on the outer part of the 

plate are all 0.25 inches in diameter used for attaching the airfoils. The SolidWorks file 

used to laser cut the plates can be found in Appendix C. A cut airfoil plate is shown 

below in Figure 27.   



31 

 

 

Figure 27: Airfoil plate 

5.4 Ball bearings 

The ball bearings seen in Figure 28 below were used to allow the airfoil plate to rotate 

with minimal interference. Extra grease was used to minimize the friction on the ball 

bearings. The four ball bearings were spaced equally around the circumference of the 

plate. Four ball bearings were chosen to be used to maximize stability. They were 

attached to pieces of wood which were 2.5 inches in height, which were then attached to 

the table plate. These wooden blocks were used to create clearance space between the 

table plate and the airfoil plate. 

 

Figure 28: Ball Bearing 

5.5 Airfoil plate attached to the base 

Once all the individual parts were assembled, the airfoil plate could be attached to the 

shaft and the base. The collar seen in Figure 29 below was used to attach the shaft to the 
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top and bottom airfoil plates. Using electrical tape, the shaft, and collar were made flush 

with each other. Then a bolt was attached through the collar and shaft to limit movement 

relative to each other. This ensured that the motion would be translated between the 

airfoils and the plates with minimal efficiency loss. 

 

Figure 29: Shaft attachment collar 

5.6 Airfoil Construction 

Next the three NACA 2412 airfoils were made. The airfoils were built over a two 

month span with the main components being dense foam and plywood. Particular 

preparation and various adhesives allowed the airfoils to take their final shape and 

allowed for the turbine to output power. The concept behind the construction of the 

airfoils was to cut the foam into 2 inch thick profiles, stack those profiles to the desired 

height, and add plywood tops and bottoms. The plywood was added to allow strength 

where the airfoils are attached to the plexiglass. Glue, nails, and bolts were used as 

adhesives between the airfoils, wood, and plexiglass. 

All of the foam was cut using a Manix Hot Wire Cutter. The hot wire cutter allowed 

precise cutting of the foam with a medium temperature and a constant slow speed. All of 

the plywood was cut with the laser cutter. The foam was initially prepared by cutting it 

into 3 x 11 x 2 inch blocks so that the individual airfoils could be easily handled and cut 

to the desired approximately 2 x 9 inch profile as above in Figure 12.   

After several attempts, it was found that the best way to cut the airfoils was to use 

wooden profiles on the top and bottom of the foam and let the hot wire cutter run against 

the wood to get a precise cut. The profiles were made using 0.25 inch plywood. Three 

holes were drilled on each of the plywood profiles where screws would be placed later to 

hold the wooden profiles onto the foam in order to prevent unnecessary movement. A 

drill-bit was used to drill holes in the foam in order to allow ease of screw attachment to 

the foam at a later time. In order to attach the wooden profiles and the foam, screws were 

then driven through the profile, through the foam and through the second profile on the 

other side of the foam. The pictures seen in Figure 30 and Figure 31 below demonstrates 

the cutting technique and the plywood screw support respectively. 
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Figure 30: Cutting technique with the Manix Hot Wire Cutter 

 

 

Figure 31: Plywood and screw supports used to align the foam 

A total of four 2 inch profiles were cut and were then glued on top of one another 

using regular wood glue to create a total of 3 airfoils. In order to make sure the foam 

pieces did not move while the glue was drying, they were nailed together temporarily. 

After a day the nails were removed and the resulting holes were plastered over to make a 

smoother profile. 

Wooden profiles were attached at the top and bottom of each airfoil, which allowed 

for a firm surface to attach the airfoils to the base. These wooden profiles consisted of 

four 0.25 inch thick plywood profiles that had two 0.628 inch holes cut into them for 

attachment purposes and one 0.25 inch profile with no holes in it. The five profiles were 
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glued together using the same wooden glue which was used for the foam stacking. The 

holes in the pieces of wood were vertically aligned so that the airfoil could be attached to 

the plexiglass. The 0.25 inch profile with no holes would be placed between the other 

wooden profiles and the foam profiles. The alignment of the holes is shown below in 

Figure 32. 

 

Figure 32: Placement of the 5/8” holes on Airfoil 

The final placement of the wood end pieces are shown below in Figure 33. 

 

Figure 33: Wooden profile and the location of nails 

Three holes were then drilled into the completed profile; these holes were used to 

attach the profile and foam using nails. Wood glue was also used to attach the foam and 

profile, since using only one attachment method did not result in an adequately stiff 

attachment. Wood glue was applied to the nails as well as on the surfaces to fully 

constrain the airfoil. This process was repeated for the top and bottom of all 3 airfoils.  A 

completed airfoil is shown below in Figure 34. 
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Figure 34: Complete airfoil 

 

In order to limit friction between the bolts and the wood, plywood spacers were glued 

into the 0.628 inch holes of the wooden profiles.  The nylon and plywood spacers 

allowed the 0.25 inch bolt to sit in them and rotate freely while allowing limited 

translational movement.  The nylon spacers were 0.375 inches thick and were used in 

conjunction with 0.25 inch plywood spacers. This was done due to economic reasons, 

since plywood is cheaper and the spacers could be manufactured using the laser cutter 

and wood glue. The drawback to the wooden spacers, and the reason why both were used, 

is that the nylons spacers had less friction, however, they would not stay fixed to the 

airfoil. 

The bolts were then attached to the plexiglass plate in the holes seen in Figure 27 

above, which allowed the airfoils to sit on the bolts.  This allowed for complete rotational 

movement. 

5.7 Spring Attachment System 

The spring attachment system on this device allows for the articulation of the airfoils. 

On the trailing edge of each of the airfoils there is an eyehook that is screwed into the 

bottom of the airfoil as shown below in Figure 35.  
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Figure 35: Eyehook attachment 

Once these hooks were added, the spring attachment plates were laser cut out of 

acrylic. These plates included three holes for bolting the spring attachment plate on the 

base plate and a matrix of holes for the eyehook attachment. This matrix of holes allow 

for adjustable angles of the spring. Plates were attached behind the trailing edge of each 

airfoil and the three plates spaced 120 degrees apart from each other. The spring 

attachment piece is shown installed below in Figure 36. 

 

Figure 36: Spring Attachment Piece 

Finally, the springs were connected from the eyehooks on the bottom of the airfoil to 

the eyehooks screwed into the spring attachment plate. Key ring loops were used as an 

intermediary connection between the spring and the eyehooks. This configuration is 

shown below in Figure 37. 
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Figure 37: Final spring configuration 
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Chapter 6: Testing 

There were three key phases to the turbine testing: proof of concept, RPM, and torque 

testing.  Proof of concept testing was used to determine if the turbine could operate and to 

gain an understanding of what wind speeds were required for operation.  RPM testing 

was used to observe the relationship between the wind speed and RPMs while torque 

testing measured the wind speed and calculated the force generated using the prony 

brake.  The team conducted testing at two different locations over the course of a three 

week period. This was due to the variation of the wind in the form of wind gusts. The 

first location was done on the WPI Campus in the area between Higgins Laboratories and 

Alumni Gymnasium. This location was chosen due to the higher wind speed velocities 

compared to the rest of campus. The second testing location was Worcester Regional 

Airport which was located on a large flat hill in Worcester, MA. At this location, the 

team conducted the RPM and torque phases due to the lack of consistent wind velocities 

at the WPI Campus. Due to the inconsistency of the wind, the team was forced to conduct 

the different phases of testing non-sequentially.  

6.1 Phase I: Proof of Concept 

The first phase was the proof of concept testing. This testing was used to determine 

which designs worked. During this phase the team also confirmed the most appropriate 

testing locations.  All design tests were done without the prony brake and right angle 

transmission piece to lower the starting torque.  The test procedure was to setup the 

turbine, monitor the wind speeds, and observe if the turbine was able to operate.  If the 

turbine rotated the design moved onto the next phase of testing.  If the turbine did not 

rotate, one of two decisions were made.  If the location did not experience high enough 

wind speeds, determined to be 10 m/s (22.4 mph), then the turbine was moved to a 

different location or testing was suspended until a later time.  If the area did experience 

wind speeds of at least 10 m/s and the turbine did not spin then the turbine failed the 

proof of concept testing and did not advance to the next phase. The maximum wind speed 

observed during testing was recorded in order to understand the range of air speeds 

required for operation.  

6.2 Phase II: RPM Testing 

The second phase of testing measured the RPMs of the turbine and the observed 

correlating wind speed.  This testing was conducted in a location that had passed proof of 

concept testing. One individual recorded the turbine motion with a camera and a second 

individual measured the wind speed in the area. To record the RPMs, one of the airfoils 

was given a blue stripe to make it identifiable in the video and therefore easier to count 

the revolutions. The person recording the wind speed would state the observed wind 

speed every 5 seconds so that it could be recorded by the video.  The testing footage was 

then observed and later transcribed to evaluate the wind speed and RPMs.  During testing 
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the turbine would typically spin for 10 to 20 seconds; the average wind speed during that 

span was taken and the RPMs were counted on the turbine.  

6.3 Phase III: Torque 

The third phase of testing was focused on the collection of force data, which would 

then be used to calculate the torque of the turbine.  All force testing was done at 

Worcester Regional Airport due to more consistent wind speeds compared to WPI’s 

campus.  A Vernier force gauge was pinned onto the side of the base and used to measure 

the force produced by the turbine as the prony brake was attempted to rotate downward 

as seen in Figure 38 below.  Before each test, the Vernier was zeroed while the turbine 

was manually stopped with no force being applied to the gauge. Using Logger Pro 

software, the Vernier force gauge measured the observed force over a 120 second 

span.  During this time, the wind speeds were manually observed and recorded every 20 

seconds.  Using the time scale on the produced graph, the wind speed points were then 

matched up with the corresponding force to produce a plot that demonstrated the torque 

to wind speed relationship. This was done five times in order to obtain a large sample 

size between wind speeds and the torque produced by the turbine. 

  
Figure 38: Vernier Force Gauge Testing Set Up 
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Chapter 7: Results 

The team was successful in collecting data over a three-week period of time in 

separate testing sessions. Due to the behavior and variance of the wind, the team was 

unable to collect a consistent number of data points in each testing session.  This resulted 

in 9 points of data for RPM testing and 31 data points for torque testing. The difference is 

due in part to the fact that during the RPM testing, the team manually recorded data while 

the torque data was collected by a digital output. 

 

7.1 Phase I: Proof of Concept 

The initial proof of concept test determined whether or not the turbine rotated when 

the airfoils were articulating and not articulating. The articulating test was initially done 

with the leading bolt fixed and the trailing bolt unfixed, leaving the trailing edge of the 

airfoil to move freely.  This resulted in the turbine beginning to spin at an initial speeds 

ranging from 6 to 7m/s.  The non-articulating turbine had both bolts on all three airfoils 

fixed which constricted the airfoils movement.  The non-articulating turbine experienced 

wind speeds of at least 12 m/s (26.8 mph) and did not spin; therefore it failed the proof of 

concept testing as summarized in Table 5. 

Turbine Did it start spinning? Minimum Wind Speed to 

Start 

Articulating Yes 6 m/s 

Non-Articulating No 12 m/s (did not spin) 
Table 5: Phase I Table 

7.1.1 Starting Torque 

During phase I, the team noticed that there was a delay for the turbine to start 

rotating. Therefore the team calculated how much time of steady wind velocity was 

required for the turbine to start rotating. This was done by integrating the angular velocity 

with respect to the calculated angular acceleration; this integration is shown in Appendix 

D.  

The first step in finding the time required to start the turbine was to find the torque 

required to overcome the static friction. This was done by attaching the Vernier force 

gauge to the top plate of the turbine. The Vernier force gauge recorded the force the 

turbine overcame as it initially started to rotate. This initial force was found to be 1.12 N 

which translates to a starting torque of 0.25 N*m as explained by Equation 6.  

In addition to the initial torque of the turbine, the torque output at winds of 6 m/s was 

measured. This was done by attaching the force gauge to the prony brake on the turbine; 

this method is explained in detail in chapter 7.3. From the data collected it was found that 

at 6 m/s wind speeds the turbine was outputting 0.53 N*m of torque.  
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The next step was to find the moment of inertia of the turbine. This was done by 

making a SolidWorks model of the turbine, as seen in Appendix D. The moment of 

inertia was calculated to be 0.40 kg*m2.  

Once these values were found the team solved for the angular acceleration (a) of the 

turbine to reach observed RPM values at 6 m/s wind speeds. This was done using the 

relationship shown in Figure 12Equation 12 below. An angular acceleration of 0.70 rad/s2 

was found. 

𝑇𝑜𝑟𝑞𝑢𝑒 − 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 ∗ 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 
Equation 12: Torque, Inertia, and Angular Acceleration 

During testing, the team observed that sustained winds of 6 m/s, over a unit of time, 

was required for the turbine to start rotating. The turbine also had to rotate approximately 

120 degrees (𝜃) in order for two of the airfoils to catch the wind and begin to articulate, 

once this occurred the turbine would begin rotating from Equation 13 below, the team 

calculated the minimum time of constant wind speed required for the turbine to start. The 

calculation from Equation 13 showed that the turbine required 2.4 seconds of constant 

wind in order for the turbine to start rotating.  

𝜃 =  
1

2
∗  𝑎 ∗  𝑡2 

Equation 13: Rotation, time and acceleration 

7.2 Phase II: RPM Testing  

In the second phase of testing, the team looked at the correlation between wind speed 

and RPM.  The data summarized in Table 6 and Table 7 below was obtained from the 

RPM testing. The data was separated into two tables for ease of viewing. The rows 

represent the wind speed measured in m/s, the RPM, and the angular velocity of the 

turbine. The wind speed and RPMs were observed while the angular velocity was found 

using Equation 14 below. 

𝜔 =
𝑅𝑃𝑀 ×   2  𝜋

60 𝑠𝑒𝑐
 

Equation 14: Angular Velocity Calculation 
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 WPI 

Campus 1 

Airport 

Testing 1 

Airport 

Testing 2 

Airport 

Testing 3 

Wind Speed 

(m/s) 

8.4 5.5 6.5 6.8 

RPM 80.0 52.5 60.0 65.0 

Angular 

Velocity 

(Rad/s of 

turbine) 

8.3 5.5 6.2 6.8 

Table 6: Phase II RPM wind speed Table (1) 

 Airport 

Testing 4 

Airport 

Testing 5 

Airport 

Testing 6 

WPI 

Campus 2 

WPI 

Campus 3 

Wind Speed 

(m/s) 

9.5 9.0 8.5 12 10.7 

RPM 96.0 75.0 63.0 79.2 76.3 

Angular 

Velocity 

(Rad/s of 

turbine) 

10.0 7.8 6.5 8.3 7.9 

Table 7: Phase II RPM wind speed Table (2) 

As is seen from Table 6 and Table 7, the team found that the RPMs ranged from 52.5 

to 96.0 RPMs. The testing results above led to the following graph, Figure 39, which 

shows the relationship between wind speeds and RPM. 
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Figure 39: RPM to Wind Speed  

As expected, the team found the relationship between RPMs and Wind Speed to be 

positive and linear. This is due to the angular velocity’s relationship with linear velocity 

given a constant radius R. This relationship is shown in Equation 15. 

𝜔 =
𝑈

𝑅
 

Equation 15: Angular Velocity 

As was expected, the RPMs of the turbine increased as the wind speed increased 

because the tip speed ratio shows that the driving factor affecting the speed of the turbine 

is the speed of the wind. As is seen in the graph shown in Figure 39 above, an equation 

for the line of best fit shows the relationship between RPM and wind speed based on the 

nine data points, which is summarized in Equation 16. The team determined that 

Equation 16 below is only applicable for wind speeds of 5 to 12 m/s as the relationship 

cannot be extrapolated because the turbine does not start until 6 m/s wind speeds are 

observed. Given this observed information, the team expected a RPM value of zero for 

the wind speeds between 0 to 5 m/s. With this relationship the team determined that the 

RPM to wind speed relationship is best defined as a piecewise function where from 0 to 5 

m/s the turbine has no RPMs and from 6 to 12 m/s the relationship is best described by 

Equation 16: 

𝑅𝑃𝑀 = 4.51 × 𝑈 + 33.40 

Equation 16: RPM Correlation 

y = 4.5061x + 33.402

R² = 0.5053
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7.3 Phase III: Torque Testing  

The third and final phase of testing measured the approximate torque produced by the 

turbine. This was done using the Logger Pro Software. The team collected the force 

acting on the force gauge over an interval of 120 seconds which was then plotted against 

time. An example of the data collected is shown in Figure 40 below. Four torque test 

graphs similar to Figure 40 were also recorded and can be found in Appendix E.  

 

Figure 40: Torque Testing 

For the test conducted resulting in Figure 40 the wind speed was recorded at 20 

second intervals. As is seen in Figure 40 the force was continuously recorded by the 

Vernier force gauge. The team specifically recorded the force at each 20 second interval 

so that the torque could later be calculated and associated with a specific wind speed. 

This is summarized in Table 8 below. Appendix D shows similar tables of results for 

each of the four torque testing result graphs.  

Seconds 

Wind 
Speed 
(m/s) 

Force 
(Newton) 

20 7.2 1.275 

40 7.8 1.233 

60 7.0 0.969 

80 6.5 1.017 

100 6.8 1.131 

120 5.0 0.915 
Table 8: Lever Arm Calculation 



45 

 

Using the force data from the table above and the relationship between force and 

torque shown in Equation 17 below the team calculated the torque of the turbine. In 

Equation 14 Equation 17, the 0.469 meters is the length of the prony brake’s lever arm 

measured in meters. 

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝐹𝑜𝑟𝑐𝑒 × 0.469 

Equation 17: Prony Break Torque Calculation 

The team then plotted all data from the five tests to produce a torque to wind speed 

plot shown below in Figure 41. 

 

Figure 41: Torque vs Wind Speed 

In the figure above, the line of best-fit shows that the relationship between wind 

speed and torque to be a curve as expressed in Equation 18.  

𝑇𝑜𝑟𝑞𝑢𝑒 = 0.002𝑈2 + 0.0257𝑈 + 0.3 

Equation 18: Torque Wind Speed Relation 

While the R2 shows the equation being 25% correct, this trend line is promising as the 

relationship between torque and wind speed should be quadratic as is seen by the 

algebraic evaluation of the units. The results do not clearly show a quadratic relationship 

because of the small sample size of the data.   

The turbine was able to produce between 0.37 to 0.86 N*m of torque at wind speeds 

from 3.8 to 9.2 m/s. At higher velocities the quadratic nature of the data should become 

more apparent. From the uncertainty of the curve, the team does not believe the data can 

be extrapolated to predict the torque at winds speeds less than 3.8 m/s or more than 9.2 

m/s.  

y = 0.002x2 + 0.0257x + 0.3
R² = 0.2587
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Using the tests that were executed, the team was unable to observe the relationship 

between torque and RPMs directly. By analyzing the data collected the team was able to 

make the assumption that a RPM and torque collected at different times, but at the same 

wind speed are related.  

Using the assumption mentioned above, the team was able to find three concurrent 

wind speed points that possessed unique RPM and torque values. These points are shown 

below in Table 9.  

Wind 
Speed 
(m/s) Force (N) 

Torque 
(N*m) 

Wind 
Speed 
(m/s) RPM 

6.5 1.02 0.48 6.5 60 

6.8 1.13 0.53 6.8 65 

9.3 1.83 0.86 9.3 96 
Table 9: Wind Speed, RPM and Torque 

 The team then plotted the points from Table 9, on the torque versus RPMs graph 

shown in Figure 42 below. Using a line of best fit, the team determined the approximated 

relationship between torque produced and RPMs generated.  

 

Figure 42: Torque vs RPM 

From the line of best fit, the relationship between torque and RPM is summarized in 

Equation 19 below.  

𝑇𝑜𝑟𝑞𝑢𝑒 = 0.0105 ∗ 𝑅𝑃𝑀 − 0.1546 

Equation 19: Derived Torque vs RPM 

Using the relationship in Equation 19, the team then populated a graph of torque 

against RPMs using all of the recorded data points. From all collected RPM data, a torque 
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

To
rq

u
e

 (
N

e
w

to
n

 *
 M

e
te

rs
)

RPM

Torque vs RPM



47 

 

was found using Equation 19 and vice versa. The resultant plot is shown below in Figure 

43. 

 

Figure 43: Derived Torque vs RPM 

After observing the derived plot generated using the line of best fit, the team 

determined that the line is only applicable between the observed RPM range of 50 to 100 

RPMs, as there was no collected data outside this range to support any further 

extrapolation. 
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Chapter 8: Analysis 

The wind speed, RPM, torque, and other results are analyzed further in the next 

chapter which led to some key findings. Due to the variance in the wind speed during the 

team’s testing phases, the number of data points and relationships established in the 

results section, the analysis section uses the previously mentioned methods to further 

analyze the data. 

8.1 Power  

 The first step in the analysis of the data was to calculate the power produced by the 

turbine. This was done using Equation 5 and the RPM, torque, and wind speed data.  

To develop the relationship between power and wind speed, the team first used the 

nine wind speed data points observed during the RPM and wind speed testing. Using the 

data from the team’s torque vs wind speed testing in chapter 7.3, the team was able to 

observe and record a value of torque for one of the nine wind speeds. If a wind speed 

from the RPM testing did not match a wind speed in torque testing then the line of best fit 

for Torque vs Wind Speed in chapter 7.3 was used to determine the torque value. The 

torque value was then used to find the power output of the turbine.  

For some of the wind speeds observed the team was unable to find a torque based on 

the data collected alone. For these instances the team used Equation 18 to determine what 

the estimated torque would have been at that wind speed.  

Once the team established nine torque values that correlated with a set of nine wind 

speeds, the team used the RPM data that corresponded with the nine wind speed points.  

In doing this, the team was able to produce Table 10 below. 

Wind 
Speed 
(m/s) RPM 

Angular 
Velocity 
(rad/s) 

Torque 
(N*m) 

Power 
(W) 

5.5 52.5 5.5 0.5 2.8 

6.5 60.0 6.3 0.6 3.5 

6.8 65.0 6.8 0.6 3.9 

8.4 79.9 8.4 0.7 5.5 

8.5 63.0 6.6 0.7 4.4 

9 75.0 7.9 0.7 5.4 

9.5 96.0 10.0 0.7 7.3 

10.7 76.3 8.0 0.8 6.4 

12 79.2 8.3 0.9 7.4 
Table 10: Power to Wind Speed 
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From results complied in Table 10 above the team plotted a graph of power to wind 

speed, shown below in Figure 44. The power produced by the turbine ranged from 2.8 W 

to 7.4 W.   

 

Figure 44: Calculated Power vs Wind Speed 

The graph in Figure 44 above showed clear findings regarding the power data, 

including the relationship between the wind speed and how much power the turbine 

produced. The power generated by the turbine increased as the wind speed grew larger 

which was expected because the wind speed is the driving factor of the turbine power.   

The line of best fit is plotted using a second order polynomial because that is the 

relationship observed in other VAWTs. This happens due to the fact that as the wind 

increases the power starts to reach a maximum before the turbine eventually produces 

less power. The graph above shows the extrapolation of a maximum wind speed reached 

and is accurate based on the data indicated by the R2 correlation of 0.86. If the team had 

been able to test at wind speeds of up to 15 m/s the data suggests that the turbine could 

have produced a power output as high as 9 W.      

8.2 Efficiency 

Once the power and torque of the turbine were plotted, the team moved on to find the 

efficiency of the turbine. The efficiency is a relationship of the power coefficient and tip 

speed ratio of the turbine.  The power coefficient is a dimensionless parameter used to 
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easily compare different types of turbines. It is a ratio of the power produced by the 

turbine over the total power available from the wind as defined by Equation 20 below.  

𝑃𝑜𝑤𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑃𝑜𝑤𝑒𝑟

. 5 ∗ 𝜌 ∗ 𝐴 ∗ 𝑈3
 

Equation 20: Power Coefficient 

The tip speed ratio is another dimensionless parameter which relates the speed of the 

turbine rotation and the speed available in the wind. It is a relationship between the 

velocity of the wind and the angular velocity and radius of the turbine. The tip speed ratio 

was calculated using Equation 7 in chapter 4. 

The graph shown in Figure 45 below shows the efficiencies of the turbine as a 

relationship between the power calculated in Chapter 8.1 and the calculated tip speed 

ratio. The line of best fit is a second order polynomial because the relationship between 

the power coefficient and tip speed ratio simplifies to U2. On a fully realized graph for a 

turbine, the data tends to be a downward facing parabola; the team’s data currently covers 

the lowest end of the parabola.  

 

Figure 45: Turbine Efficiency 

The graph shows efficiencies ranging from 3 to 12% and tip speed ratios from 0.15 to 

0.25. The data was concentrated for values with a tip speed ratio between 0.15 and 0.20 

with efficiencies ranging from 3 to 6%. These values are concentrated because there is 
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not a large difference in power produced at these points. When the tip speed ratio became 

greater than 0.20 the efficiencies were more unpredictable as they had a larger range, 

from 6 to 12%. This large discrepancy was due to the difference in available power as the 

wind speeds vary between 5.5 and 9.5 m/s for tip speeds ratio greater than 0.20. This 

difference of 4 m/s was exposed when the wind speed is cubed in the power available 

equation demonstrated in Equation 20. This result means that as the wind speed 

increases, the efficiency of the turbine decreases.  

The maximum efficiency produced was calculated to be 12%; however the line of 

best fit indicates a value of 8 to 10%.  The variance in efficiencies as the tip speed ratio 

increased led to a R2 value of 0.57, as seen in the figure above, which led to 

unpredictability especially as the tip speed ratio increased.  The line was plotted based on 

the local sample size; however it does indicate that the efficiency is starting to level off at 

a value of 8% and that this is the maximum efficiency of the turbine.  If the team had 

been able to obtain more results particularly those at higher tip speed ratios, the 

efficiency may have continued to increase.  
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Chapter 9: Conclusions 

After collecting, plotting, and analyzing the team’s testing results, the team was able 

to draw several conclusions of the first generation prototype turbine. The first conclusion 

from testing was that the articulating airfoil design was able to start at a lower wind 

velocity than the fixed design. Due to the fact that the fixed design turbine did not start 

rotating, no conclusions can be drawn between the two designs in terms of which one 

rotated faster, produced more power, or was more efficient. The data collected for the 

articulating design was analyzed to conclude the speed, power, and efficiency of the 

turbine. 

The articulating design started rotating at a speed of 6 m/s and rotated at speeds of 50 

to 100 RPMs at wind speeds of 5 m/s to 12 m/s. The team was able to observe RPM data 

as low as 5 m/s because the turbine only needed 6 m/s to start but could operate at lower 

wind speeds. The turbine was able to start rotating after overcoming the static friction 

which was calculated at a force of 1.12 N which is a torque of 0.25 N*m. The 0.25 N*m 

was calculated by multiplying the force by the moment arm which in this case was the 

radius of the turbine, 0.22 m. This led to a torque generated between 0.3 and 0.9 N*m 

with a power production between 2.8 and 7.4 W while the team expected a range of 5.4 to 

24.6 W, as demonstrated in Chapter 4. The relationship between this power production 

and the speeds of the turbine led to efficiencies fluctuating between 3 to 12%. The 12% 

efficiency was the maximum efficiency observed; however this is believed to be an 

outlier and therefore the actual ideal efficiency was concluded to lie between 8% and 

10%.  The driving factor that affect the power and efficiency of the turbine was the wind 

speed as described in the analysis section. 
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Chapter 10: Recommendations 

During design, manufacturing and testing of the wind turbine, the team encountered 

several areas which could be improved in order to increase the efficiency of the turbine. 

Below are some of the recommendations the team has for any potential future work on a 

similar turbine. 

10.1 Friction 

One of the problems which was anticipated in the design portion of the project was 

the friction that would be encountered. The starting wind velocity for the turbine was 

found to be approximately 6 m/s and the starting velocity could have been decreased by 

lowering the areas of friction in the turbine. One area of high friction was the ball 

bearings supporting the base plate on the table. Another area of high friction is the right 

angle connection piece.  

For future experiments, there would be several possibilities for decreased friction in 

the system. The first possibility would be to source or manufacture high precision 

bearings in all current instances in the system and ensure that all bearing are properly 

greased and maintained. The second possibility would be to exchange the current bolt and 

spacer system for mounting the airfoils with a high precision bearing system that would 

be installed at the attachment point to the turbine plate. The third possibility for reducing 

friction would be to develop a system that would eliminate the right angle adjustment 

piece by recording all data from the vertical axis.  

10.2 Manufacturing 

In order to further improve the performance of the turbine, the manufacturing of the 

airfoils could also have been improved. With better experience in manufacturing and 

access to an industrial large scale foam cutter, the airfoils could have been made more 

uniform. The process of stacking the 2 inch foam pieces and gluing them together 

introduced several inconsistencies in the airfoils which made the three not similar to each 

other. If the airfoils had been made more similar in geometry, the performance could 

again improve.  

Another aspect of the airfoils that could have been improved upon was the material 

which they were made out of. One manufacturing consideration would be to construct the 

airfoils from a material that would be lightweight and have a smoother surface finish. 

Examples of potential materials to be looked into would be a 3D plastic airfoil or a rolled 

aluminum frame.  

Another limitation that the team found during the manufacturing process was the laser 

cutter which the team had access to. The laser cutter on campus has a maximum 

geometry of 18 inches. This meant that the acrylic plates could not be manufactured to a 

size larger than 18 inches in diameter. As was discussed in the design section above, a 
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larger diameter turbine would yield a higher power output. Therefore the team had 

originally looked into other methods of producing a larger diameter base plate, but it was 

determined that more problems would be encountered which would ultimately reduce the 

performance of the turbine. Some of the foreseen problems included manufacturing time 

and the ability to make a perfect circle while keeping the weight as low as possible.   

10.3 Testing 

During testing it was also found that the results gathered for both the fixed and the 

articulating airfoils were limited to the inconsistent and somewhat low wind velocities. 

Testing was done on campus and at the Worcester Regional Airport. These were the two 

accessible locations where the highest wind velocities were found. However, at these 

wind velocities, the team was still unable to reach a high enough wind velocity for the 

fixed airfoils to start spinning. Based on the calculations explained in previous sections, 

the team estimated that there was potential for the fixed airfoils to output power, but this 

was not observed at the wind velocities that were achieved during testing.  During the on 

campus testing it was also found that the wind came in bursts as opposed to a constant 

airflow. With more consistent airflow, more consistent data could have been collected.  

The team considered many possible alterations for the testing procedure, which could 

be implemented in future experiments. One major alteration for the testing procedure 

would be to develop a testing method that would record all three major data points 

concurrently. A process that could achieve this would be through data acquisition 

software with electronic input from sensors. This would further assist in the startup 

torque calculations and turbine efficiency calculations. 
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Appendix A: Predicted Lift and Drag Algebra 

Once the lift and drag forces are found, the resultant force must be identified. The 

resultant force is based on the relationship between the lift and the drag. This is shown 

below in Equation 21.  

�⃑� = (𝐷𝑥 + 𝐿𝑥) 𝑖̂ + (𝐷𝑦 + 𝐿𝑦)𝑗̂ 

Equation 21: Resultant equation 

Where the sum of the x components of the lift and drag equals the x component of the 

resultant force.  

The x and y components of the forces can be found using Equation 22, Equation 23, 

Equation 24, Equation 25 below. These equations assume a positive angle of attack. 

𝐿𝑥 = 𝐿 sin(𝛼) 

Equation 22: Lift force in X-Direction-Positive angle of attack 

𝐿𝑦 = 𝐿 cos(𝛼) 

Equation 23: Lift Force in Y-Direction-Positive angle of attack 

𝐷𝑥 = 𝐷 cos(𝛼) 

Equation 24: Drag Force in X-Direction-Positive angle of attack 

`𝐷𝑦 = 𝐷 sin(𝛼) 

Equation 25: Drag Force in Y-Direction-Positive angle of attack 

Using those components you can calculate the resultant force in Equation 26. 

�⃑� = (𝐷 cos(𝛼) − 𝐿 sin(𝛼)) 𝑖̂ + (𝐷 sin(𝛼) + 𝐿 cos(𝛼))𝑗 ̂

Equation 26: Resultant Force-Positive angle of attack 

If the angle of attack is negative, it requires a slightly different set of equations 

(Equation 27, Equation 28, Equation 29, Equation 30, Equation 31, Equation 32) 

𝐿𝑥 = 𝐿 sin(𝛼) 

Equation 27: Lift Force X-Direction-Negative angle of attack 

𝐿𝑦 = 𝐿 cos(𝛼) 

Equation 28: Lift Force Y-Direction-Negative angle of attack 

𝐷𝑥 = 𝐷 cos(𝛼) 

Equation 29: Drag Force X-Direction-Negative angle of attack 
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𝐷𝑦 = −𝐷 sin(𝛼) 

Equation 30: Drag Force Y-Direction-Negative angle of attack 

�⃑� = (𝐷𝑥 + 𝐿𝑥) 𝑖̂ + (𝐷𝑦 + 𝐿𝑦)𝑗̂ 

Equation 31: Resultant Force Equation 1-Negative angle of attack 

�⃑� = (𝐷 cos(𝛼) + 𝐿 sin(𝛼)) 𝑖̂ + (𝐿 cos(𝛼) − 𝐷 sin(𝛼))𝑗 ̂

Equation 32: Resultant Force Equation 2-Negative angle of attack 
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Appendix B: Detailed Predictive Calculations  

Blade Number 1.00 2.00 3.00 4.00 5.00 6.00 

Theta (Degrees) 0.00 60.00 120.00 180.00 240.00 300.00 

Theta (radians) 0.00 1.05 2.09 3.14 4.19 5.24 

Alpha (radians) 0.00 0.55 1.14 0.00 -1.14 -0.55 

Alpha (degrees) 0.00 31.74 65.21 0.00 -65.21 -31.74 

W (true speed) (m/s) 9.50 8.23 4.77 0.50 4.77 8.23 

       

Coefficient of Lift 0.25 1.50 1.83 0.25 -1.34 -1.01 

Lift (N) 1.52 6.80 2.79 0.00 -2.04 -4.58 

Coefficient of Drag 0.02 0.04 0.05 0.02 0.06 0.04 

Drag (N) 0.11 0.17 0.08 0.00 0.09 0.18 

       

Resultant Force (N) 0.11 -3.43 -2.50 0.00 1.89 2.56 

       

Torque (N*m) 0.02 -0.78 -0.57 0.00 0.43 0.59 

Power (W) 0.49 -15.44 -11.24 0.00 8.51 11.54 

       

Power Position 1 (W) -2.24   Average Power (W): -3.07  

Power Position 2 (W) -3.90      
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Appendix C: Computer Aided Design Drawings 

 

Figure 46: Airfoil Design 
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Figure 47: Attachment Piece Design 
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Figure 48: Acrylic Base Plate Design 
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Figure 49: Shaft Design 
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Appendix D: Turbine Starting Time Calculations 

Below are the equations used in order to find the starting time of the turbine.  

∑Torques = 𝑇𝑜𝑟𝑞𝑢𝑒𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 − 𝑇𝑜𝑟𝑞𝑢𝑒𝑠𝑡𝑎𝑡𝑖𝑐 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

Equation 33: Sum of Torques in operation 

∑𝑇𝑜𝑟𝑞𝑢𝑒 =  0.53 𝑁𝑚 − 0.25 𝑁𝑚 =0.23 𝑁𝑚 

Equation 34: Evaluated sum of torques  

𝑎 =
∑𝑇𝑜𝑟𝑞𝑢𝑒𝑠

𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎
 

Equation 35: Angular acceleration 

𝑎 =
0.28 𝑁𝑚

0.40 𝐾𝑔𝑚2
= 0.7 

𝑟𝑎𝑑

𝑠2
 

Equation 36: Evaluated angular acceleration  

𝜔 = 𝑎 ∗ 𝑡 

Equation 37: Angular velocity with regards to time 

∫𝜔 = ∫𝑎 ∗ 𝑡 

Equation 38: Angular velocity integral 

𝜃 =
1

2
𝑎𝑡2 

Equation 39: Angular position with regards to time 

2.09 𝑟𝑎𝑑 =
1

2
∗ 0.7

𝑟𝑎𝑑

𝑠2
∗ 𝑡2 

Equation 40: Evaluated angular position with regards to time 

𝑡 = 2.44 𝑠 

Using a model developed in SolidWorks, the team found that the moment of inertia of 

the system was 1381 lb*in2 (0.40 kg*m2). This is shown in Figure 50 below. 
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Figure 50: SolidWorks Inertia 
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Appendix E: Torque Testing Results 

 

Figure 51: Torque Testing Graph 1 

Seconds 
Wind Speed 

(m/s) Force (N) 

20 5.8 0.796 

40 6 0.921 

60 7 1.652 

80 7 0.939 

100 6.4 1.107 

105 9.2 1.826 

120 6.2 1.101 
Table 11: Torque Testing Analysis 1 
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Figure 52: Torque Testing Graph 2 

Seconds 

Wind 
Speed 
(m/s) Force (N) 

20 8 1.37 

40 5.8 1.149 

60 5 1.047 

80 4 1.035 

100 5 0.957 

120 6.6 0.945 
Table 12: Torque Testing Analysis 2 
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Figure 53: Torque Testing Graph 3 

Seconds 

Wind 
Speed 
(m/s) Force (N) 

20 6 1.284 

40 4.9 1.206 

60 3.8 1.2 

80 4.6 1.206 

100 4.9 1.182 

120 5 1.026 
Table 13: Torque Testing Analysis 3 
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Figure 54: Torque Testing Graph 4 

Seconds 

Wind 
Speed 
(m/s) Force (N) 

20 6 0.552 

40 6.8 0.541 

60 7 0.66 

80 6.5 0.63 

100 6 0.636 

120 7 0.606 
Table 14: Torque Testing Analysis 4 


