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Abstract

Human activity recognition (HAR) is the process of determining physical activities

performed by individuals using mobile sensor data. HAR is the backbone of many

mobile healthcare applications, such as passive health monitoring systems, early di-

agnosing systems, and fall detection systems. Effective HAR models rely on deep

learning technologies in order to accurately classify what activity was being performed

in a data instance. In turn, HAR models require large collections of labeled real-world

human activity data. Unfortunately, HAR datasets are expensive to collect, are often

mislabeled, and have large class imbalances. State-of-the-art approaches to address

these challenges utilize Generative Adversarial Networks (GANs) for generating addi-

tional synthetic data along with their labels. Problematically, these HAR GANs only

synthesize continuous features — features that are represented with real numbers —

recorded from gyroscopes, accelerometers, GPS systems, and other sensors that pro-

duce continuous data. This is limiting since mobile sensor data commonly has discrete

features that provide additional context, such as Bluetooth state, sensor location (pri-

oception), and time-of-day. It has been shown that the availability of these discrete

features can substantially improve HAR classification. Within the healthcare domain,

misclassifications can have damaging or even fatal impacts on the individuals that rely

on these models. Hence, we studied Conditional Tabular Generative Adversarial Net-

works (CTGANs) for data generation to synthesize mobile sensor data containing both

continuous and discrete features, a task never been done by state-of-the-art approaches.

We show HAR-CTGANs generate data with greater realism resulting in allowing better

downstream performance in HAR models. Synthesized data from HAR-CTGAN when

used in HAR model training resulted in a 63% greater improvement in F1 performance

than using synthesized data from state-of-the-art. When state-of-the-art models were

modified with HAR-CTGAN characteristics downstream F1 performed increased by

18%.
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1 Introduction

Background. Human Activity Recognition (HAR) is the process of classifying the physical

activities performed by individuals using sensor data. These physical activities are typically

day-to-day low-level tasks, such as walking, standing, and sitting [1–4]. The sensors used

for capturing data come from a variety of sensor components in mobile devices, namely

gyroscopes, accelerometers, GPS trackers, altimeters, and microphones. Advancements in

high-precision sensors along with the heightened ubiquity of wearable technology [5], such

as smartphones and smartwatches, have led to rapidly greater access to high volumes of

accurate sensor data. HAR classifiers have been applied to a wide range of domains, such as

security [6] and urban development [7]. In particular, HAR classifiers are the backbone of

many mobile healthcare applications [8]. HAR methods are important for mobile healthcare

as they are able to detect a variety of illnesses, such as depression [9], Parkinson’s disease [10],

autism [11], and Covid-19 [12,13]. Additionally, HAR classifiers have been used for assisted

living systems [14–17] as they can detect adverse events, such as falling [17, 18] and early

stroke diagnosis [19].

In the real world, there is a huge diversity in people’s behavior and the manner in which

they perform activities [4]. To create HAR models that perform well on real-world data,

state-of-the-art approaches train models on in-the-wild datasets [20]. In-the-wild datasets

are collected passively as study participants go about their daily lives [5]. However, HAR

models often require labels for each activity that is being performed at any given instance

[21]. For this reason, study participants are asked to provide annotations for the activities

they perform throughout their day [20]. Unfortunately, due to the imperfect nature of human

annotators and the huge time cost required to annotate every activity at every minute of the

day, HAR data sets are often riddled with incorrect or missing labels [21]. Additionally, in-

the-wild datasets often have egregious class imbalances with some activities rarely performed

by specific individuals [22]. This phenomenon can be largely attributed to subjects simply

choosing not to perform certain activities, imprecisely labeling their activities retroactively,
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Figure 1: Plot of the model performances of 20 HAR classifiers trained to distinguish
between 7 unique activities found in ExtraSensory [20]. If the discrete features were mean-
ingless or added ambiguous context to the sensor data, the models trained with these fea-
tures would add no effect or confuse the models, causing equivalent or worse performance
than models trained only with continuous features. However, this figure demonstrates that
classifiers that used discrete features yielded higher performance than classifiers that only
accepted continuous features. 10 classifiers were trained using exclusively continuous fea-
tures, whereas the other 10 classifiers were trained with the same continuous features along
with also discrete features.

or completely forgetting to label. For example biking, swimming, walking, and sleeping are

common HAR activities researchers record mobile sensor data. In an average week, most

people will 6-8 hours a day sleeping and do occasional walking, and exercise only a few

days a week for only an hour or two on those days. In these cases, exercising activities like

swimming and biking are rarely ever seen.

Furthermore, in the healthcare field specifically, HAR has been used to develop early

warning systems or detect falling or tripping, which are useful for the elderly and individu-

als with disabilities [14–19] However, the data to train these systems are typically collected

from young, able-bodied people due to the high risks of having physically vulnerable in-

dividuals repeatedly fall – just so that sample data could be collected. This means the
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data collected doesn’t accurately represent the demographic using these downstream mod-

els. Misclassifications due to user-specific movement patterns can have serious life-or-death

implications for individuals that rely on these passive monitoring systems to automatically

contact first responders.

Approaches to remedy these problems can range from dedicated staff that validate these

labels with additional monitoring systems, all the way to collecting additional data from

individuals that will hopefully perform a diverse set of activities [20]. Intuitive solutions such

as having subjects perform specifically desired activities are not fruitful, as recent studies

show that HAR datasets collected in controlled lab environments do not effectively mimic

activities from in-the-wild studies [21]. Thus, these existing simple solutions to address these

data issues can be expensive, laborious, or infeasible.

With the multiple issues laid out above plaguing downstream HAR models, there is

a high demand for reliable techniques to consistently have clean, realistic, high quality

mobile sensor datasets without suffering the potential down-sides of disregarding financial

limitations, or time-constraints.

State-of-the-Art.

State-of-the-art solutions employ Generative Adversarial Networks (GANs) to upsample

real datasets with synthesized realistic-looking data that mimics users performing activities

that are commonly recorded in HAR studies [2, 23–25]. GANs are a machine learning

framework in which two deep networks, a generator and a discriminator, train against each

other in an adversarial environment in order to synthesize data that is indistinguishable

from a given dataset. The generator is tasked with learning to map random noise into fake

data that matches patterns in real data, while a discriminator, also known as a judge or

critic, tasked with deciphering which data is real and fake when blindly given mixed batches

of sample from an original dataset and from the generator.

Under ideal training conditions, the generator learns to effectively synthesize data that

the discriminator incorrectly recognizes as real data. It is important to note that the gen-

erator doesn’t learn to synthesize data that are blatant copies of the real data, as it would
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Figure 2: When HAR models only use continuous sensor features due to the upsampling
limitations of GANs, it can be difficult to distinguish similar activities. But, when contextual
discrete features are also leveraged, refined classifications can be made from previously
ambiguous data. In this example, sensor data when sleeping can look similar to sensor data
when sitting or standing, leading to easily classifying the ground truth incorrectly. But,
when sensor data when sleeping is coupled with a discrete feature indicating its night time,
then a HAR model can classify the data as sleeping with high confidence.

not yield a meaningful impact for downstream models. GANs are particularly powerful in

their capability of near limitlessly sampling of new data for constructing arbitrarily large,

enriched datasets.

While many GAN approaches proposed for HAR have mended data specific issues [2,

23–25], these HAR-GANs are only tasked with generating the continuous features of mobile

sensor data. This is a major limitation, as HAR data sets commonly have a significant

volume of discrete features that provide contextual details to the continuous features and

improve HAR classification, as seen in figure 1. State-of-the-art GANs for HAR don’t incor-

porate discrete features in their generation as GANs originally were designed to synthesize

images and other continuous forms of data [26], and historically fail at synthesizing discrete

data.

Problem Definition. In this work, we address the problem of generating realistic

HAR sensor data. In particular, we aim to generate both continuous features as well as

realistic discrete features. This to-date is an open unstudied problem in the HAR domain.
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A successful generative model will produce discrete sensor data that is not only realistic

in isolation, but is also realistic when paired with the continuous features that are being

simultaneously generated. For instance, if a discrete feature indicates that the mobile sensor

is at rest on a table, then the corresponding generated continuous accelerometer data should

not indicate significant movement.

Challenges. First, the application of GANs on multimodal datasets is a challenging

task, as GANs are notorious for their unstable training process and sensitivity to mode

collapses [27]. Second, modeling discrete features is difficult as this involves making a discrete

choice, for which backpropagating through is not straightforward [28]. Additionally, there

is a large diversity in HAR datasets, as no two individuals perform the same activity in the

same way [2]. The context in which an activity is performed also affects the corresponding

sensor data. For instance, walking over a hardwood floor will yield a different sensor stream

than walking over uneven terrain while hiking.

Proposed Solution. To the best of our knowledge, there is no current technique in

the literature that has been proposed for upscaling mobile sensor datasets with discrete

or nominal feature data. We believe this is the first approach to be applied for HAR

applications. Thus, we propose the explore if the new state-of-the-art conditional tabular

generative adversarial network (CTGAN) could be adopted and then adapted to be utilized

for unsupervised data generation in the HAR domain. We refer to the resulting model

henceforth as HAR-CTGAN. We hypothesize that the model when applied to HAR data will

succeed to synthesize realistic mobile sensor data containing both continuous and discrete

features.

Contributions. Our contributions include:

• Applying Conditional Tabular GANs to the HAR domain to generate mobile sensor

data with both continuous and discrete data features.

• Demonstrating a need for generating discrete features for use in downstream HAR

models.
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• Synthesizing data from HAR-CTGAN model outperforms the generation quality of

the state-of-the-art GANs on a real HAR dataset.

• Demonstrating when state-of-the-art GANs are modified to have attributes from HAR-

CTGAN the state-of-the-art model’s generation qualities improve.

2 Related Work

2.1 Non-GAN Solutions for HAR Class Imbalances

Before the proliferation of neural-network-based generative modeling, novel data generation

was achieved through a variety of other machine learning techniques. k-Nearest Neighbor

interpolation techniques such as SMOTE: Synthetic Minority Oversampling Technique [29].

SMOTE derivatives such as BLL-SMOTE [22] have shown to generate more realistic syn-

thesized data across non-convex feature spaces, and SMOTE-SVM [30] uses a SMOTE-like

approach directly when training the HAR classifier. Other proposed ways to deal with class

imbalanced data directly have used Weighted SVMs [31], Cost-Sensitive SVMs [32], Random

Forest classifiers [33], and dual-ensembles [34].

The authors of these papers commonly ignore and drop any of the nominal and ordinal

features in the datasets their methods are applied to, as their methods typically cannot

handle these types of data well.

2.2 GAN-Based Data Generation

Due to HAR becoming a growing area of research over the past decade [1, 3, 5, 14], there is

a greater demand for better techniques for handling HAR class imbalances. For multiple

years now, GAN frameworks have been implemented as a method of generating realistic

data suitable for upsampling real image datasets [26, 28, 35, 36]. More recently, they have

been seamlessly and successfully applied to the HAR domain. Due to the unique highly-

dimensional and tabular nature of mobile sensor data, developments in generating activity-
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specific data to ensure the generated data can follow patterns in the minority HAR classes

[23–25]. GANs can be further tailored to handle modeling the different styles in which

multiple users can perform the same activity [2]. However, all of the techniques mentioned

fail to recognize the utility of generating the discrete features in sensor data.

3 Problem Definition

Suppose we are given a dataset X = {(xc, xd, y)i}Ni=1, where xc ∈ C corresponds to the

continuous features (e.g. accelerometer features), xd ∈ D the discrete features (prioception,

device locked/unlocked, bluetooth on/off, etc.), y ∈ Y is the activity being performed for

that instance, and N is the number of instances in the dataset.

Our task is to obtain a generative model G, such that G(y) ∼ PR((C,D)|Y = y); in

order for our generative model to follow the distribution of continuous and discrete features

according to the specific human activity the mobile sensor data is meant to be representative

of. As indicated in Tanielian et al. [37], the following proposition holds, the generator

architecture that is utilized in start-of-the-art HAR GAN models is unable to learn to

perfectly generate discrete features from latent noise and requires additional complexity to

approximate a discrete image. The table of notation used in this work is given in Table 1.

Proposition 1. Let G be a multi-layer perceptron whose domain Z is a latent space in Rn

that is sampled to get random noise z according to a Gaussian distribution, such that G

yields an image H lying in Rm. If so, then G(z) cannot yield a discrete image.

Proof.

1. Let ϕ be an isomorphism that relates every multi-layer perceptron to a vector-valued

function f and vice-versa. Since a multi-layer perceptron consists of a finite se-

quence of layers in which there is a linear transformation W and then a non-linear

transformation V that is lipschitz continuous, then f can be constructed as f(v⃗)=
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v⃗W1V1W2V2 . . .WkVk where k is the number of layers in the multi-layer perceptron.

Since f is a product of transformations that all of which are continuous, then we can

assert f is continuous and that every multi-layer perceptron can be thought of as a

continuous vector-valued function.

2. Since Z lies in Rn it is a connected space. Therefore, since f is a continuous function

acting on a connected space, the image of f must be connected.

3. Let H be the finite set of points desired for G to yield as its image. As G can only yield

a connected space when randomly sampling from a connected domain, then there

always exists some sub-region of this domain that maps outside the desired image.

More formally: H ⊂ Z, |H| = n, |Z| = ℵ0, n ∈ N =⇒ ∃M ⊂ Z : G(m) /∈ H ∀m ∈ M ,.

4. In conclusion, we show by contradiction that a multi-layer perceptron cannot produce

a perfectly finite or solely discrete image when its domain is a connected space.

Symbol Meaning
A Set of activities
X Set of all features
C Set of continuous features
D Set of discrete features

Dtr Training set
Dte Test set
G Generator
D Discriminator

PR
Probability distribution of
real data

PG
Probability distribution of
generated data.

P(C,D)|A=a
Probability distribution of continuous features X
given that the activity is a.

Nm(µ, σ)
An m-dimensional Gaussian distribution with
mean µ and covariance σ.

Table 1: Table of notation.
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4 Background

To understand the generative models we will directly compare to HAR-CTGAN in our

experiments, we have prepared a background that explains the architecture of them and

their key qualities. We also analyze the key novelties of CTGANs and the attributes we will

be using from CTGANs to modify state-of-the-art models.

4.1 Vanilla Generative Adversarial Networks

First proposed by Goodfellow et al. [26], generative adversarial networks consist of two neural

networks, a generator G and discriminator D, that compete in a zero-sum game according

to the following loss function min
G

max
D

f(G,D),

Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (1)

in which G minimizes the loss of f by learning to map noise z to the continuous feature space

Rm that the real data x lives in from a corpus D. By drawing noise from random samples

of a latent space Z according to some distribution, commonly Gaussian or uniform, G

effectively learns to sample the unknown distribution D using a known distribution: Z. The

discriminatorD on the other hand maximizes f by being tasked with learning to discriminate

between real data x and the synthetically generated data G(z) when blindly given a batch

mixed with both types of data. This tandem learns in an iterative and alternating fashion

where only one of the two machines train for several epochs, and then its adversary trains

for several epochs, and so on. This process continues until the end of training where, ideally,

G finds a mapping that transforms random noise into synthetic that can consistently and

effectively fool D. This results in G producing such realistic data that D can’t effectively

distinguish real from fake data, and its decision-making ability is analogous to randomly

guessing.
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4.2 Conditional Generative Adversarial Networks

One of the first improvements to the GAN architecture was the conditional GAN [35]. This

new type of GAN modifies the structure of G and D to include additional class-specific

information as input into each model, commonly coming in the form of class labels y ∈ Y .

For the generator, this modification means G accepts both noise and a class label. This

additional label conditions the generation to be compliant with the patterns of that specific

class. For the discriminator, the real and synthetic data are passed in along with their

associated class labels (the real label for real data, and the conditioned label for synthetic

data). These architecture adjustments result in a new loss function min
G

max
D

f(G,D) which

can be written as

Ex∼pdata(x),y∼py(y)[log(D(x|y))]+

Ez∼pz(z),y∼py(y)[log(1−D(G(z|y)|y))]
(2)

The task of D has consequently changed, causing D not just to distinguish real from fake

data, but additionally to learn whether a given datum is realistic and of the correct class

according to its label y. This additional complexity allows for a class-tunable architecture

in which data generation can be tuned to the desired class by the model practitioner when

used post-training.

4.3 Controllable Generative Adversarial Networks

Controllable GANs are another class-tunable architecture [36] that builds upon conditional

GANs with the inclusion of an additional pre-trained neural-net classifier, C. This classifier

is tasked with identifying whether the synthesized, conditional data G(z|y) best matches the

class it was conditioned on during generation. Before training the generator or discriminator,

C is fully trained exclusively on real data. For multi-class problems with k independent

classes, C learns to minimize the categorical cross-entropy function f(C)
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min
C

f(C) = −
K∑
i

kilog(C(x)i) (3)

C effectively offloads work from the discriminator with the sole task of identifying intra-

class patterns and inter-class differences on realistic, correctly labeled data. Similar to the

landmark simple GAN, the discriminator D only needs to distinguish between real and

fake blindly regardless of its associated class label. The generator G learns to synthesize

conditional data G(x|y) that still effectively fools the discriminator, but also agrees with the

classifier as to what class the data was conditioned on. The loss min
G

max
D

f(G,D,C) can be

written as

Ex∼pdata,(y)∼p(y)[log(D(x)] +

Ez∼pz,(y)∼p(y)[log(1−D(G(z|y)))] −

Ez∼pz,(y)∼p(y)[log(C(G(z|y)|y))]

(4)

It is important to note that the classifier at no point sees real data during the GAN’s

training nor does it ever communicate with D since its job is to maintain the discriminator’s

simplicity while leveraging the class-tuning capabilities of conditional GAN architectures.

4.4 Conditional Tabular GAN

Proposed by Xu et al. [28] conditional GANs can be modified with several key attributes

in order to effectively synthesize discrete data for tabular data sets to form Conditional

Tabular GANs (CTGAN). The generator takes in random noise along with a random one-

hot representation from a randomly chosen discrete feature. In this context, class labels

and nominal features are both considered discrete features. When the generator synthesizes

data, it generates synthetic that includes the condition the generation was conditioned on,

as well as applies a Gumbel-Softmax activation function [38] to the discrete features in the

synthetic data. When the discriminator trains, the discriminator receives a mixed batch
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of synthetic data and carefully selected real data that also follows the condition that the

synthetic data was conditioned with.

The two following subsections lay out the attributes of CTGANs that will be incorporated

into the state-of-the-art models to modify their behavior. By utilizing these attributes we

will demonstrate how CTGAN components can be used to improve the generation quality

of other GANs for HAR data synthesis as well.

4.4.1 Gumbel-SoftMax

Gumbel-SoftMax allows the one-hot vectorization of categorical distributions. In the context

of deep generative modeling, this is helpful for generating exact one-hot vectors rather than

normalized probability distributions. This is done by annealing (smoothing out) a discrete

distribution into a continuous one. By doing so, a discrete distribution can be sampled from

using a continuous distribution, which is especially impactful for machine learning models

for the sake of backpropagation during training. Since techniques like ArgMax can only

generate a one-hot vector in a way that can’t be backpropagated, or SoftMax with can be

backpropagated but only normalize a vector, Gumbel-SoftMax has the unique capability of

both attributes.

A major driver of Gumbel-SoftMax depends on the tuning of its only hyperparameter

τ , which can be set to any positive real-valued number [0, inf]. When τ → 0, there isn’t

any annealing of the categorical distribution, and the probability distribution matches the

expectation. When τ approaches larger values tending towards infinity, the categorical dis-

tribution is annealed so much so that the distribution transforms into a uniform distribution.

In the context of using Gumbel-SoftMax for one-hot generation, low temperatures are used.

4.4.2 Wasserstein Loss

In this architecture, the discriminator is still tasked with discerning between real or fake

data, but uniquely does not use a conventional log-loss activation function in its final layer.

Instead, the discriminator leverages Wasserstein Divergence as the loss function [39] such as
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Figure 3: HAR-CTGAN schema with a dramatized mobile sensor dataset.

max
w∈W

Ex∼Pr
[fw(x)]− Ez∼pz

[fw(gθ(z)] (5)

in order to train the two machines according to the distance probability density function of

the real data evaluated by the discriminator is away from the probability density function

of the discriminator’s evaluation of synthetic data.

5 Methodology

5.1 Dataset

To validate our framework, we employ the ExtraSensory dataset [20], a HAR dataset of over

300,000 instances of featured sensor data from in-the-wild recording on mobile devices from

60 users. The dataset covers a wide diversity in user ethnicities, user heights, user ages,

types of activities performed, and mobile sensors employed.
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Table 2: Breakdown of features in the ExtraSensory dataset.

Feature Type No. of Features

Activities 7
Discrete 78

Continuous 192

5.1.1 Continuous Features

The data captured for the continuous features comes from raw data captured by accelerome-

ter, gyroscope, magnetometer, compass, GPS, and microphone sensors which are then broken

up into 1-minute intervals (also known as chunking). To distill these 1-minute chunks into

a single data instance, the raw chunks are feature engineered and aggregated by using a

series of transformations. This in turn yields a variety of features to consider for synthetic

generation and input into downstream HAR models. The multitude of methods to engineer

these features are described in Table 3.

mean() Mean value
std() Standard deviation

mad() Median absolute deviation
max() Largest value in array
min() Smallest value in array
sma() Signal magnitude area

energy()
Energy measure. Sum of the squares
divided by the number of values.

iqr() Interquartile range
entropy() Signal entropy

arCoeff()
Autorregresion coefficients with
Burg order equal to 4

correlation() Correlation coefficient between two signals

maxInds()
Index of the frequency component
with largest magnitude

meanFreq()
Weighted average of the frequency
components to obtain a mean frequency

skewness() Skewness of the frequency domain signal
kurtosis() Kurtosis of the frequency domain signal

bandsEnergy()
Energy of a frequency interval within the
64 bins of the FFT of each window.

angle() Angle between to vectors.

Table 3: Statistical functions we compute on the accelerometer and gyroscope data
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5.1.2 Discrete Features

A portion of discrete features come from device states recorded from the device’s operating

system such as battery status, wifi availability, time-of-day, BlueTooth status, and screen

status. The other portion of discrete features comes from contextual aspects that pertain

to the conditions the sensor data was collected. For example, the location of the device

on the user’s body (ie. prioception) or the type of environment the user is in (indoors or

outdoors) provides additional context to the data that allows for the continuous data to

have different representations of the same activity is being performed. Consider when an

individual is riding their bike outside on a path or side of the street versus when that same

user rides a stationary bike at the gym. While the sensor data may look different in these

two different environments, additional context allows HAR models to classify these tasks as

identical. Additionally, these contextual features resolve a different issue in which the same

continuous sensor data can be ambiguous to a variety of classes, such as in Figure 2.

5.2 Feature Engineering

Since the ExtraSensory mobile sensor data set consists of such a wide and diverse set of

continuous and discrete features, it is important to properly extract the most meaningful

features for a downstream HAR classification. Do so will guide our experiments as to what

features are the most valuable for up-sampling with more instances of. In order to find these

important features, we use random forest (RF) feature importance [40]. When utilized in

the context of RF, the feature importance algorithm first quantifies how much each feature

contributes to the final prediction of a tree, and then determines the average values of

these contributions across the forest. More specifically, the RF feature importance [41] is

computed by measuring the degree to which each feature reduces the Gini Index, defined as:

Gini(w) =

K∑
k=1

wk (1− wk) = 1−
K∑

k=1

w2
k (6)

where K refers to the total number of features considered, and wk represents sample weights.
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Moreover, within a single tree’s internal node m, the feature importance γ of x is

γ
(Gini)
jm = GIm −GIl −GIr (7)

where GIl and GIr are the Gini Index of the two child nodes after a split respectively. Given

that a feature x appears in a decision tree i in nodes M , γ of x in the i-th tree is defined

γ
(Gini)
ij =

∑
m∈M

γ
(Gini)
jm (8)

Furthermore, given that there are n trees in the forest

γ
(Gini)
j =

n∑
i=1

γ
(Gini)
ij (9)

Finally, we normalize the values of γ by dividing a feature’s importance by the total sum of

all feature importance values.

γj =
γj∑c
i=1 γi

(10)

To find the most important continuous and discrete features separately, we ran a set of strat-

ified random forest feature importances where, for each of the 7 HAR activities, the feature

importances for the continuous features and discrete features were evaluated separately, and

given a score based on the positive modular additive inverse of its rank. These scores for the

top discrete and continuous features were then aggregated respectively across the 7 activities

and given their final rankings for their feature importance. From there, we perform stepwise

feature selection to determine how many of the top-k most important discrete features and

the top-j most important continuous features to consider for our final baseline feature input

for a hypothetical downstream HAR model. In doing so, as seen in Figure 4, we choose to

consider 35 discrete features and 18 continuous features for synthetic generation as well as

input to our HAR classifier.
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Figure 4:
Plots a-c. From left to right: accuracy, macro-f1, and weighted-f1. HAR model performance
when employing stepwise selection of discrete features. When using 35 discrete features,
macro-f1 begins to converge to just under 0.6, while accuracy and weighted oscillate just
above 0.4 when incorporating additional features.
Plots d-f. From left to right: accuracy, macro-f1, and weighted-f1. HAR model performance
when employing stepwise selection of continuous features. When using 18 continuous fea-
tures, macro-f1 peaks and converges above 0.2, while accuracy and weighted oscillate with
little change.
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6 Experiments

6.1 Experimental Setup and Methodology

Comparative Models. To illustrate the performance of HAR-CTGAN, we compare

our approach to a variety of models that fall into three primary classes of GANs: vanilla

(simple), conditional, and controllable GANs. Within each of these architectures, we train

a batch of 5 models with modifications spanning 3 varying degrees:

1. None. The generator has no additional post-processing to its output and functions

in its standard run-of-the-mill fashion.

2. SoftMax. An additional SoftMax activation function is applied across each discrete

one-hot vector separately when synthesized by the Generator before being passed to

the Discriminator (and independent classifier for the controllable GANs).

3. Gumbel-SoftMax. An additional Gumbel-SoftMax [38] activation function (τ =

0.2) is applied across each discrete one-hot vector separately when synthesized by the

Generator before being passed to the Discriminator (and independent classifier for the

controllable GANs). This technique is utilized in CTGAN frameworks.

We modify the generator’s in these 3 degrees to progressively shift these models closer

to a CTGAN architecture than their original architecture. This is done to show the positive

effect CTGAN attributes have even when applied to architectures that weren’t originally

proposed for supporting them.

6.2 Metrics Used for Evaluation.

We evaluate GAN performance via the weighted average F1 score of a classifier trained

on real data and evaluated on the GANs synthetic data. This metric require is found by

computing the F1 score for each class,

F1(c) =
precision(c) · recall(c)
precision(c) + recall(c)

.
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Table 4: Machine evaluation study for comparing the synthetic data generated from each of the
models. When using the model performances using each synthetic corpus as a proxy for evaluating
the quality of each corpus, HAR-CTGAN’s generation produced the most realistic corpus with
respect to the original dataset.

Training Data Post-Processing
Weighted Average F1

Continuous Discrete Features All Features

Original Corpus N/A 0.794 (±0.003) 0.873 (±0.002) 0.958 (±0.002)

Vanilla GAN
None 0.386 (±0.121) 0.405 (±0.093) 0.454 (±0.116)
SoftMax 0.496 (±0.040) 0.456 (±0.035) 0.536 (±0.020)
Gumbel-Softmax 0.438 (±0.031) 0.421 (±0.068) 0.490 (±0.055)

Conditional GAN
None 0.266 (±0.100) 0.284 (±0.135) 0.311 (±0.141)
SoftMax 0.249 (±0.067) 0.335 (±0.117) 0.338 (±0.131)
Gumbel-Softmax 0.135 (±0.070) 0.244 (±0.148) 0.176 (±0.090)

Controllable GAN
None 0.222 (±0.032) 0.176 (±0.096) 0.238 (±0.068)
SoftMax 0.294 (±0.033) 0.368 (±0.088) 0.405 (±0.052)
Gumbel-Softmax 0.346 (±0.062) 0.325 (±0.092) 0.423 (±0.075)

HAR-CTGAN Gumbel-Softmax 0.629 (±0.005) 0.725 (±0.013) 0.742 (±0.004)

By doing so, the Weighted Average F1 score is then calculated by

F1 avg weighted =
1

|A|

|A|∑
c=1

c′

|Dtr|
F1(c),

where c′ is the number of instances of class c, where c is a specific user-activity pair. The delta

metric is thus F1 avg weighted(real)−F1 avg weighted(G), where F1 avg weighted(real)

is the Weighted Average F1 of the real data and F1 avg weighted(G) is the Weighted Av-

erage F1 of the generated data from generative model G.

6.3 Machine Evaluation

To validate our framework, we employ the HAR dataset from UCSD, ExtraSensory [20],

which has an extensive amount of data that is diverse in the types of activities performed

by individuals and the mobile sensors used. Diversity looks into how closely the generated

data matches the patterns of real data. If the generated data is very realistic, it will match

the pattern. However, we do not want to match the pattern exactly, as the generated data

will be not meaningful and will not improve model performance.
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In order to quantify how realistic the synthetic data from each of the GANs we use

a common generative model evaluation technique [42] by utilizing additional classifiers in-

dependent of the generative model post-training. Firstly, partition our dataset into two

subsets: a training set, and a test set. We then train 3 different hypothetical downstream

HAR models with exact same architecture each time from scratch exclusively on real data

from the training set, where each HAR model either only continuous features, only discrete,

or both sets of features as input. After training these models, they are each evaluated on

their performance using the test set, using weighted-average-f1 as the fitness metric. These

three weighted-average-f1 scores serve as a baseline for comparing all of our GANS. Then,

we train all 12 GAN variations including HAR-CTGAN using exclusively the same training

set the baseline HAR models used. Each model is trained for 1,000 epochs with a learning

rate of 2e-5 and a batch size of 500. Post GAN training, for every GAN trained we take a

sample of 40,000 synthetic instances and train a HAR model with the same architecture as

the baseline models this time using exclusively the fake data sample from its own generator.

From there, we evaluate the weighted-average-f1 scores from each of these models using the

same fixed test set that both the GAN and the respective HAR models have never seen

during training.

Models that achieved fitnesses closest to the fitness of the benchmark mean the synthetic

data is most realistic and ergo the machine it was synthesized from has the best generation

quality. Fitness scores closer to 0 or that surpass the benchmark towards 1 correspond to

poor, unrealistic generation quality. While its unintuitive that having a high fitness score

can be an undesired trait, this means that the generator’s synthesis is oversimplifying the

patterns in the real data and does not exhibit a synthesis that will lie in the same distribution

as real data. Ultimately, this leads to meaningless data when used to upsample the dataset.

The results in Table 4 that HAR-CTGAN’s generator, which has never seen real data, was

able to build the classifier closest to training on real data than any other GANs. This shows

that the generated data from HAR-CTGAN is more realistic than the generated data from

other models.
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7 Discussion

7.1 Limitations

Despite the success of HAR-CTGAN in the continuous and discrete synthesis of mobile sen-

sor data, there are several points of failure in which this approach can become sub-optimal

or, in extreme scenarios, fail completely. Since HAR-CTGAN is rooted in a generative

adversarial framework, it is no less susceptible to unstable training than other GAN archi-

tectures mentioned. GANs are notoriously susceptible to oscillating converge or failure to

learn in training due to mode collapse or overfitted discriminators.

7.2 Future Work

Generative adversarial paradigms require large corpora in order to effectively have its gener-

ator machine synthesize realistic data. With more and more limited examples in tje corpora,

generative models commonly begin to fail as their task of generating new meaningful data

that interpolates potentially non-linear patterns becomes harder and harder. In the case of

the ExtraSensory dataset, there are adequate volumes of mobile sensor instances despite the

stark class imbalances present. Burgeoning techniques in generative modeling have explored

avenues to learn disentangled representations of real data to extract greater meaning from

each instance to distinguish underlying global patterns from extraneous ones. One avenue of

future work would be to explore ways to apply HAR-CTGAN concepts for realistic discrete

feature generation on sparse mobile sensor datasets.

8 Conclusion

In this paper, we have identified and shown the efficacy of a new tool to remedy an open

problem that heavily impacts HAR applications across the domain. Up-sampling tools that

counteract class imbalances in mobile sensor datasets lead to HAR models that can fully uti-

lize their cleaned data without having to jeopardize poor multi-class performance nor discard
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expensive-to-collect data in order to down-sample for uniform class distributions. We iden-

tify state-of-the-art approaches that perform synthetic up-samplings of class-tailored HAR

data still lack the ability to generate discrete contextual HAR features that are realistic.

We propose our approach, HAR-CTGAN, which is a Conditional Tabular GAN that learns

to generate synthetic data of the continuous and discrete features in HAR data. We evalu-

ated our performance against multiple state-of-the-art architectures on a publicly available

benchmark HAR dataset. Our results show that HAR-CTGAN consistently outperforms

the state-of-the-art models.

When state-of-the-art models are modified to have properties of HAR-CTGAN, the mod-

ified model’s generation qualities improve. This further emphasizes how impactful the char-

acteristics of HAR-CTGAN are for improving GAN generation quality and GAN training

stability. In short, HAR-CTGAN provides greater flexibility for training high-quality down-

stream classification models with the best features, whether they are continuous or discrete,

for passive healthcare monitoring via mobile devices.
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