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Abstract

We will begin with a review of key financial topics and outline many of the crucial ideas
utilized in the latter half of the paper. Formal notation for important variables will also be
established. Then, a derivation of the Black-Scholes equation will lead to a discussion of its
shortcomings, and the introduction of stochastic volatility models. Chapter 2 will focus on a
variation of the CIR Model using stock price in the volatility driving process, and its behavior to
a greater degree. The key area of discussion will be to approximate a hedging function for
European call option prices by Taylor Expansion. We will apply this estimation to real data, and
analyze the behavior of the price correction. Then make conclusions about whether stock price

has any positive effects on the model.
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Introduction:

With the ever present need to provide a more accurate derivative pricing model,
methods both old and new have to be tested in conjunction based on historical data. The
biggest challenge is to find a model that holds with updated segments of historical data while
maintaining a given set of parameters. Due to these complications, the projection model has to

remain relatively uncomplicated and flexible in order to accommodate new information.

The Black Scholes Model has provided a fairly accurate account of derivative pricing for
the last several decades. However, its accuracy is based upon occasions where the volatility
remains relatively constant. The BS Model does not capture several key figures such as smile
volatility, skew, and Kurtosis. Therefore we will explore these areas in order to present a
tractable formula which can be used efficiently. The main focus is upon a variation of the Black
Scholes that incorporates a stochastic volatility. As volatility clustering has just recently been
introduced to simplify basic pricing and estimation problems by French mathematician Jean-
Pierre Fouque, the main area of exploration will be to build upon some of his works. Later
application of our model will be performed on historical values from indices such as S&P 500

and NASDAQ.

Background

Black Monday, October 19, 1987 was marked the largest one-day percentage decline in
stock market history when stock markets around the world crashed. Beginning in Hong Kong
and spreading through the rest of the world, such a high scale disaster carried an air of mystery
as many could only conjecture as to the cause of such a fatal event. Many stock market
hypothesis and assumptions of the economy were put into question but no definite conclusions
were ever reached. It is peculiar that information surrounding this event seems to contradict

the standard Black Scholes equation for option pricing® which follows the geometric Brownian

'C+ %azszxx +r(xCy — C) = 0 where X; = x



motion 0X; = uX,0t + o(t, X;)X.0W, where u is drift, W;is a Weiner process and a(t, X;) is

constant.

It is after this event that Stochastic Volatility models became popular for hedging and
derivative pricing. However, any new model built on Black Scholes can only be changed in key
places that can be refined. Therefore the main focus will be to change the volatility factor and
to manipulate several assumptions. As Black Scholes is based upon historical data, this
procedure will utilize the fact that the market is incomplete and will select a unique derivative

pricing measure which reflects concerns of the economy from a sequence of measures.



Chapter 1: Stochastic Integrals

Wiener process

In order to model asset pricing on financial markets, calculations have to be made in
continuous time. Therefore, stochastic differential equations have to be used in order to
understand the theory behind market risk. In order to construct a Stochastic Integral, we will

also introduce the diffusion process and define Brownian motion.

A stochastic Process X is diffusion if its local dynamics can be approximated by a

stochastic difference equation of the type
X(t+A0) — X() = p(t,X(0)At + o(t, X(£))AZ(L)
(1.1)

. ,u(t, X(t)) is the drift term which determines the movement or velocity of the
function
o a(t,X(t)) is the volatility or a disturbance factor

e Z(t)is a Wiener Process
A stochastic process W is called a Wiener process given that:

1. W(0)=0

2. W hasindependent increments. Let t,, be a time sequence with n=1, 2,... such that
0 <t; <--<ty,therandom variables (W, , W,, — W, , W, —W, )areall
independent

3. Forany0 < s < t the interval W(t) — W(s) is a mean-zero Gaussian distributed
random variable with expectation zero and variance E[(W, — W,)?] = t —s . W, is

N(O,t) -distributed



4. W almost surely has a continuous trajectory.

Figure 1-Wiener Process’

Martingales:

We will introduce the concept of martingales by loosely touching upon measure theory.

Definition: Given a measurable space (Q, F), a filtration is a sequence of o-algebras
{F:}iso such that F, ¢ F Vtin[0,) and for eachn,m € t such thatn < m, we

have that F, € F,.
We can describe a filtration F; as information generated by a variable on the interval [0, t].
Proposition:
i If X and Y are stochastic variables, such that X is F; — measurable:
E[X -Y|F] =X -E[Y|F:]
fi. For X a stochastic variable and s, t in [0, ) such that s < t:

E[E[X|F]IF] = E[X|F]

A single realization of a one-dimensional Wiener process, Wikipedia



Proof:

i The first proof is very straight forward. Since X is F; — measurable, we know the
exact value of X given the information F,. Therefore we can move X out of the
expectation because it can be treated as a constant.

ii. The second proposition comes from the law of total expectation. However,
intuitively we can say that if we take the expectation of X, we would integrate it over
the entire probability space, but with a conditional expectation, we would only
integrate over the filtration period F;.

It naturally follows that since s<t, if we integrate twice, over the larger filtration and
then the smaller filtration periods, it would equal taking just the integral over the

smaller filtration since the entire space F; € F;.

Definition: A stochastic process X is called an F; — martingale if the following conditions

hold:

e Xis adapted to the filtration {F;}:s¢
* V¢, E[IX(D)]] <
o Vs&twiths <t E[X(t)|F]=X(s)

Definition:

® aprocess that satisfies: Vs & t with s < t, [X(t)| F] < X(s) iscalled a

Supermartingale

o If[X(t)| F] = X(s) then Xis a Submartingale.

Proposition: For any process g € L?[s, t], the following holds,

E U gw)ow (u)

g:sz:o:o



(1.2)

It follows that for any process g € L?

t

X() = f 9()oW (s)
0

(1.3)
is a F¥ — martingale
Proof: Let s,t € [0,00) and s < t, then
EIX(O)IF] = E[ | gwowe v-;W]
—F [ [ oo fsW] +E [ [ g@wowa fsW]
0 S
= fsg(u)BW(u) +0=X(s)
0

(1.4)

Assuming integrability, the inverse of the above proposition is shown below.

Martingale representation theorem: If a stochastic process X is a martingale with respect to

the filtration generated by a Brownian motion, then
0X(t) = g(®)ow (¢)

(1.5)

Stochastic Integrals
In order to define and construct stochastic integrals, we will use the conditions applied to £2

space, the space of Lebesgue integrable functions defined on R?.



Definition: Let (X;)o<c<r be a stochastic process adapted to the (F;)o<¢<r) filtration

for finite T, we say that (X;)o<¢<r is in L2[0,T] if

T
j E[X.?]0t < o
0

(1.6)
For any general process f € L2[0, T], there exists a sequence f, of simple functions that
convergetofsothatVe >0andT =0
T
| Bt - py0s <
0
(1.7)

Then, if Vn, f: f(s)OW (s) is well defined and convergent tof:f(s)GW(s) asn — oo, we

can define a stochastic integral

b n b
[ r©owe = tim > fuwy - w,,) = lim | fusow(s)

(1.8)
Proposition: If X; is defined as above to be finite then the following relations hold:
T
0
T 2 T
E (f X, 6Wt> = f E[x.*] ot
0 0
T
f X; OW; is Fr measurable
0
(1.9)



We will create a partition P = {t, =0<t; <t, < - <t, =T} where each t; has equal
length. We can then define a wiener process on this partition. Using the property of
independent increments of Brownian motion, we have that

n
Z (Xfi—1 (Wti - Wfi—1))2
i=1

E =E

Z(Xti—l)z(ti - ti—l)] fOT' t<T
i=1

(1.10)

where the right side is equal to £ {fOTXtZ at} which is finite. Thus if we take the limit as n

approaches infinity, the partition becomes infinitesimal and we can approximate the stochastic

integral of X, with respect to the Brownian motion W, in £L2((Q).

n
t
Ai_l;lgoZXti—l(Wti - Wfi—1) = LXSaVVS
i=1

(1.11)

Ito’s Formula

Ito’s formula was created to address the differentiation of stochastic processes. Normally, we
can apply the chain rule to differentiation, however in the case of Wiener processes; these are
not differentiable in the normal sense. Therefore, the Ito’s formula is used to correct this

discrepancy.

We will begin with the standard stochastic differential equation % = udt + adW;. If we
t
integrate both sides of the equation for t > 0 we get:

t t
Xsas+aj X oW

0

Xt=X0+‘Ll.]-

0

(1.12)



Where X, is a constant initial condition, assumed to be independent of the Brownian motion

and square integrable. In the more general case, we will define u(s,X;) = ux and a(t,x) =
ox; both independent of t, and x differentiable.

Ito’s formula: If X has the stochastic differential 0X(t) = u(t, X))ot + o(t, X;)oW (¢t),

with p and o as adapted processes, then the process Z(t) = f(t, X;) has a stochastic
differential given by

Jat + af(?Wt
o IW®

0 5] 1 0%
of(t,X,) = {a—{+u%+§az ax];}

(1.13)
Where in the more general case, it can then be shown that the stochastic differential df is
equal to
of (6, X)) = %(% + %ax + %327 (0X)?
(1.14)
with the conditions
(00)% =0,
atow =0,
(0W)? = ot
(1.15)

Proof: We will begin by creating the partition P = {t, =0 < t; <t, < - < t, = t} with

intervals of uniform length. Then integrate the differential df (W, ), this is equivalent to

f(Wy) — f(W,), and apply Taylor’s theorem. As each interval is of uniform length we have:

FOW) = FWo) = Y (F(We,) = FWe-p))
i=1



n n
1
= D Wl W = We ) 45D f7 (WY (We, = We )" + -
i=1 i=1

As all the higher order terms converge to zero, we will only focus on the first two terms. Asn

approaches infinity, the Brownian motion intervals approaches zero.

Fw) - f) = [ fomaws +3 [ ios

(1.16)

The first equality comes directly from the stochastic integral of X;. The second term is an

application of the quadratic variation (Y;) where Y; = fot X oW,

n
t
. 2
(Y,) =AEEOZ(YQ—YQ_1) =f0X52 ds
i=1

(1.17)

Once we differentiate both sides we arrive at the simple form:
! 1 n
Of W) = f' (W)W, + 5 f" (W)at

(1.18)

Now if we apply the more general formula dependent on t and X; to the standard Brownian
motion 0X; = u(t,X,)ot + a(t, X;)dW;, we get
af f 1 0°

0
_ 2
of (t, X;) = <—+ “(t’Xt)_ax + >0 (t, X:) 922

of
2
5% ) ot + o= (t, Xt)_ax oW,

(1.19)

* Note this is different from the notation for centering condition for Poisson process later in the paper

10



Multidimensional Ito’s Formula

In the case where f: R, X R™ - R becomes a multidimensional continuous mapping, where
Z(t) = f(t,X(t)), the dynamics for X becomes a vector process. Let X = (X4, X5, ..., X,) and
W =Wy, Wy, ...,W,)

m

0X,(5) = (D3t + ) 0y (HOW;(©)
i=1
(1.20)
We will define i, W, and o as vector processes
[ U1
‘u = .
| Un
W,
w| ]
| Wi
011 O1d
o= :
On1 Ond
Thus X-dynamics remains of the form
0X(t) = u(t)ot + a(t)oW(t)
(1.21)

N dimensional Ito’s formula: If X is an n-dimensional process with the dynamics given above,

then the following hold

The process f(t,X(t)) has a stochastic differential given by

n

of(t.X(®) = % Z - +%Ziclj aiizaij ia_f

11



(1.22)

Where g; = [0}4, ..., Oi] and C = gaT

It can then be shown that the differential itself is given by

n n n
of of o 1 0%f
af(t'X(t)):EaHZax '+§ZZa o O Xi0%i
i=1

i=1 j=1
(1.23)
where
(00)% =0,
atow =0,
(OW;)? = ot,

OW;0W; =0 fori #j

Geometric Brownian Motion

Next we will introduce the standard building block for the rest of the section. The Geometric
Brownian Motion is one of the two generalizations of the simplest ODE that is used in finance.
This formula, in its simplest form was introduced earlier and consists of a standard wiener

process with drift and velocity u, and o.
0X; = uX;0t + o X, 0W;
(1.24)
Where X, is the initial price. We have more generally,

0X; = u(t,x)dt + o(t,x)oW;

12



(1.25)

Infinitesimal Operator
We will follow the time-homogeneous process that solves the GBM model given above in the
previous section. We will define the differential operator £ acting on a twice differentiable

function g such that

1
Lg(t,x) =ug'(t,x) + > o%(x)g" (t,x)
(1.26)

Similarly, in the case of a multidimensional equation, differential operator £ of X is defined for a

function g(x) € R™ by

n n
ag 1 g
Lg(t,X,) = Z“i(t'xf)a_xi 2 Z %1% 9x,0x;
1=

ij=1

(1.27)

In terms of the Infinitesimal Operator L, Ito’s formula gives, in the single case
dg(Xs) = Lg(Xp)ot + g' (X )a(X)oW,

(1.28)

And in the multiple dimensional case we have
ag(t, X;) = {3—‘? + Lg} ot +V,g(Xp)a(X,)ow,

(1.29)

Where V, g =(,ja—9‘cql+(,j6792+---+667€1

13



Black-Scholes PDE

In 1973, Robert Merton published a paper that expanded the world of option pricing. Based on

the work of Fischer Black and Myron Scholes, the Black-Scholes analysis of European options is

able to calculate a unique trading strategy to replicate the payoff h(X;) of an option at

maturity. This replicating strategy is a dynamic strategy that eliminates risk by creating a

balanced portfolio where a loss on one portion is covered by a gain in another.

The Black-Scholes Model operates on the following assumptions:

The price of the underlying stock follows a geometric Brownian motion with
constant drift and velocity

There is no arbitrage

There are no taxes or transaction costs

The underlying stock is not a dividend stock

Borrowing/lending operates on a constant risk-free rate r

Trading is continuous

Short-selling is allowed

Securities are perfectly divisible

The price process for a derivative asset is of the form I1(t, x) = F(t,X(t))

We will begin with a given market with two assets who’s dynamics are given by

dB(t) =r B(t)ot
0X; = Xeu(t, X))ot + X,o(t, X;)OW;

(1.30)

Since we have assumed that there exists no arbitrage, we can require that

P(t,X;) = a X, +be™ for0O<t<T

(1.31)

14



After a direct application of I1to’s formula to both sides, we have

oP oP 1 , ,0%P oP .
E + Mxta + EO— Xt W at + O'Xtaawt = (at[lXt + th'e )at + atO-Xt

(1.32)

where we equate like terms to calculate a; and b;. The first is accomplished by simply equating

the dW, terms and the second utilizes the initial definition

opP

“ = 9x

by = (P — atXt)e_Tt

(1.33)
Equating the dt terms gives
(P OP) _op 1 232 d%P
r Lox ot 27 't g2
6P+1 2X262P Xap b
ot 27 M oxr T T T
(1.34)

When P(t, x) is the solution of the Black-Scholes PDE, the equation above is satisfied for any

stock price. We will pull P(t, x) from the equation and denote the rest of the equation by Lgs.

(1.35)

15



Black-Scholes Equation: If we have a market with two assets as given in (1.30) and the no
arbitrage assumptions in (1.31) then P(t, x) is a pricing function that is a unique solution of the

boundary value problem on the domain [0,T] X R,

0P, 1,0 0P
ot T2 Mg TG T T

with the final condition that P(T, x) = h(x).

The rate of return u does not enter into the equation of this portfolio. For example, let

(my, m,) be two different portfolios, with returns (u,, it,) respectively 4. However, as long as

the historical volatility prevails, both portfolios will reach the same P.

Given a European derivative, we define a call option and a put option to be the solution of the

Black-Scholes partial differential equation with the following final conditions
he(x) = (x —K)*
By () = (K — x)*
(1.36)

Black-Scholes Formula: given the above final conditions, the price of a European option at time

t with asset price X; = x has a closed form solution
C(t,x) = xPg1(dy) — Ke "T"Dd 1 (dy)
(1.37)

P(t,x) = Ke_r(T_t)(DO,l(_dz) — xPg1(—d;)

(1.38)

where @ ; is the standard normal distribution

YUy # Uy
16



1 z _ 2/2
q)O,l(Z):\/T—T[f e Y /40y

with d; and d, defined as:

0 log(%) + (r+%02) (T—1t)
e oVT —t

. log(%) + (r—%az) (T —1t)
2 oVT —t

The put-call parity relation is

C(t,X,) —P(t,X,) =X, — Ke 7TD

(1.39)

(1.40)

(1.41)

(1.42)

17



Chapter 2

Volatility

One of the major problems with the Black Scholes model is that some of the assumptions are
made to be idealistic and therefore, sometimes not compliant with real-world situations.
Amongst several inconsistencies, one such example is the ability to hedge without transaction
costs. Another is the assumption for constant volatility 0. When compared with historical
volatility, o fluctuations often resemble a smile shaped convex curve, rather than a straight
line. This occurs more often in at-the-money options that have lower implied volatility rates

than other options. We will discuss in this section, several approaches on using volatility.

Historic Volatility

The simplest and most intuitive way of using volatility is to use historical stock price data in
order to estimate o. We will begin with a standard Black-Scholes GBM and observe a discrete

set S of stock prices at equidistant points with respect to t.
S =1{5,,5,5, ...,5.}
t ={ty, ty, ...t}
(2.1)

Let us assume that the stock prices follow a log normal distribution and define a new variable R

for the rate of return, such that each R is independent and normally distributed.

Si
SEWET
i-1

(2.2)

Thus, with by general statistic formulas, we have the expected value and variance
1 2
E[R;] = (H -5 )(ti —ti—1)

18



Var[R;] = o%(t; — t;—y)

(2.3)
We can estimate ¢ with the sample variance s
n
— 1 Z R 2
S_n—ll(i )
i=1
(2.4)
and therefore estimate g by
- R;
0= —
ti —ti—q
(2.5)
The standard deviation of G is then
o
std(6) ~ —
V2an
(2.6)

Implied Volatility

Implied volatility is the value of o that the market has implicitly used in order to value a
benchmark option. It is most frequently used to show the difference between the Black-Scholes
prices for European call options and the market option Prices. In fact, given an observed
European Call option C°PSe7e@ with Strike K and expiration date T, the implied volatility o; is
calculated by matching the value of the price of the observed option with the Black-Scholes

formula.
C(t, x;K,T; gI) = CObserved

(2.7)

19



In other words, we find the value of g that will provide the current market price of a given
stock. The process for asymptotic estimation discussed later in this paper also relies on this
format of estimation for implied volatility as it is both simple and provides an accurate
representation of realistic data. It is here that we begin to see the limitations of the standard
Black-Scholes model. If the implied volatility was plotted as a function of the ‘exercise’ price,
what should be a horizontal straight line is in reality a convex curve. Options that are in the
extremities (either too far out of the money or deep in the money) are traded at higher implied

volatilities than those whose prices are close to the strike price.

Stochastic Volatility Models

In order to capture the smile effect, two Brownian motions are constructed, one to map
the fluctuations in the data, and the other to drive its movement. In this process, several
features of volatility are maintained. That is, volatility will remain positive, and its behavior can
be assumed to be a mean-reverting process. In particular, changes in stock price inversely affect
the volatility of the stock, which partially accounts for a skewed distribution for stock prices.
This is also known as the leverage effect, which agrees with empirical data. We begin with the

standard GBM model in (1.25)
0X; = u(t,x)dt + o(t, x)oW;

where a(t, x);s0 is the volatility process. In this case, volatility will be modeled to have an
independent random component of in order to accurately represent a volatility process that is
not completely correlated with the Wiener process W. In the following sections we will explore
the Feller (CIR)® process for mean-reverting volatility that incorporates a second stochastic

differential dY; of the form

(2.8)

5
Feller or Cox-Ingersoll-Ross Model
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where Z, is a Brownian Motion that is correlated with W,. Z, is independent of W,

Zt = th + \ 1 _pZZt
(2.9)

We have that a is the rate of mean reversion and m is a long-term mean of Y, such that a drift

term pulls Y towards the mean with respect to the long-run distribution of y.

Mean Reversion

Typically, a stock has both high and low prices but the principle of mean reversion refers to the idea that
extremes for a stock price are temporary and will eventually ‘revert’ back to an average price. This
process can be modeled by a linear coefficient in the drift term of the volatility process, or in the drift of

an underlying process.

In the CIR Model, the coefficient for mean reversion is the first part of the volatility driving process

aYt == (lT'l(m— Yt)at-}_"'azt

We have here that m is the long term mean of Y and ar; is the rate of mean reversion.

CIR Model

There are two major models for stochastic volatility, the Vasicek Model and the Cox-Ingersoll-
Ross Model. The reason for their popularity is because they provide clean-cut closed form
solutions for interest rate derivatives that are tractable. Therefore many variations of these

models are available today.

Also known as the Feller Model, the CIR model we will be utilizing, follows the mean-reverting

stochastic differential equation as the driving process.

oY, = ary(m — Y,)ot + B\[ridZ,

Zy = pW; + Y1 —p?Z,
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(2.10)

In this model, a, m, 8 are positive constants and r; represents another process which introduces
another dimension to the problem. For our case, we have that r; = x because we believe that
having the stock price as a driving process of Y; will provide more accuracy. Z, is a wiener
process that is correlated to W;but Z; and W; are independent. « is the rate of mean reversion

and m is the long term mean of Y;

CIR approximation:

Here we have the mean-reverting CIR process where W and Z are independent Brownian
motions and p is the correlation between price and volatility shocks. |p| < 1 We will begin with
a derivation of the derivation of the PDE given below in order to calculate the Pricing function

of the CIR Model.
0X; = uX. 0t + o X.0W,
o =eY
oY, = ar;(m— Y,)ot + p\[ri0Z,
Zy = pW, + Wzt
(2.11)

With application of multi-Dimensional Ito’s formula on P, which is the price of a European

derivative with expiration date T;, we have

dapP apP apP a%p 102%pP 19%f
_at‘l' _aXt‘l' _aYt + —aXtaYt‘l'__aXz + __ayzt

0P(t, X, Y;) =
(& X o) ot dx dy dxdy 2 0x? £ 20y2

(2.12)
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_op 162P(2y Zat)+1az
- ot 20x2 ¢ % 2 9xdy

192p oP oP
+55,7 (B0 + —(axt) + 55,00

(uxdt + e?xdW,) (ax(m — y)at + f\xdZ,)

(2 e O pperssre e O Y pay oy Py,
=\t ze g PR 5y T2 5y ax et gy 0t
(2.13)

We will make the assumption that the P can be hedged by a process (a, b;, ¢;) based upon the
underlying stock, risk free asset, and a second derivative with expiration date T,. There is

equality because of the assumption that the market is arbitrage free.
P(Ty, X, Y:) = ar,Xr, + befr, + cr,dP?(Ty, X7, Yr,)
= a;X; + bee™ + ¢, PP(t, X, Y,)
(2.14)

P! has the same payoff function as P however a different expiration date T, > T; > t. The

portfolio is also self-financing so
OP(t, X, Y,) = a,0X, + b,re™ + c,dPRl(t, X,,Y,)
(2.15)
We then apply the multi-Dimensional Ito formula to the right side of figure (2.14),

" P!l ap2l 1, 9*pH
=bt7"€ ot + at+ctW aXt+ct76Yt+ct§,8 X 9x2

Jt

_ 92pl2]
+ ¢, (uX,0t + e¥xdW,) (ax(m — y)dt + f\/x0Z,) 533

Jd 1 02 1 02 02
rt Z,2Y2 4 2. eV 3/2 [2]
[btre +ct(at+ze x? 92 ﬂ X3 3y2 >+ pBedx 6x6y>P lat

pl2] g pl2]
+ <at + Ct W) aXt + CtTaYt
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(2.16)

Thus we have that

6+1 2y 52 0* + Y y3/2 o _|_1 2 o Pdt+aP6X +aP6Y
T2 g PR e T2 5y ax Ot T gy Ot

0 1 0% 1 GE 92
= lbﬂ'ert + Ct <a + Eezyxz ﬁ + EBZxa_yZ + pﬁeyxs/z axay)P[z]l at

pl2] [2]
+ (at + Ct W) aXt + Ct at aYt

(2.17)

The next step was to equate the terms from both sides to solve for the hedging process. We

calculated a; by equating the dX; terms from equation (2.17)

P aPpLl
_aXt = at+CtW aXt

0x
apPl2l  ap
de=C oy ox
(2.18)
c; was calculated by equating the dY; terms.
aP apl?
@aYt = ctTGYt

_ 0P/dy

= 9P ot
(2.19)

Substitute for a; and c¢; in figure 2.14 at time t solves for b;.

P(t, X, Y,) = a X, + bee™ + ¢, PR(t, X,, Y})
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(2.20)

By equating the dt terms from both sides of the equation (1.6) and substituting for the process

(ay, by, c;) we can find a direct relation between P and P21,
An abbreviation w will be used from here on

1 % 1 ik 1 ik
— 52,2~ 4 V.3/2_~ 4 Q2.
W= 6x2+2pﬂe x 6x6y+2ﬂ xayz

(2.21)

ot ert

9, +(a 1>P— 9, +<a 1>P[2]
ot T T\ " ox “ ol T T M ox

Then, replace c; with the equation in (2.19). <% +w+r (x% —. )) is a Black-Scholes

9 P —a.X, — cP? d
<—+a))P=<( td¢t — Ct )re”+ct(—+w>P[2]>

differential operator with volatility parameter e¥.°

O (Zowr(r 2 1)) o = () (Lt (2o 1) )i
ay) \ac @7 Mok ~\Tay ot YT\ Mok

(2.22)

As both sides of the equation depend on different expiration dates T, and T,, we equate (2.21)

and (2.22) to a function which does rely on an expiration date. This function is denoted by

ax(m—y) — px (p% +y (X, YOV 1 - pz)

(2.23)

®In the equation The period . within the parenthesis is the indicator function with value 1.
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Where y(t, X;, Y;) is an arbitrary function. Here we introduce P*(t, x, y) whose dependence on

the expiration date is suppressed.

(%+ w+r (xaa—x - 1)>P* + [ax(m —y) — BVx (p#e—_yr +y(t, X¢, Yt)M)

where (2.25) is the Black-Scholes operator with volatility e

6+1 2y262+ ( 0 1)
ot T 2% Y a2 T T Mo

(2.26) is the correlation coefficient.

(2.27) represents the infinitesimal generator of the OU process Y;

1, 02 0
E'B xa—y2+ ax(m—y)a

Lastly, is the combined market price of volatility risk, or the premium

0
BVx A(t, x,y) 3y

where A(t,x,y) = p 57+ (6 Xe, YY1 = p?

P
dy B

0

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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We conclude the section by stating that P*(t, x, y) must satisfy the PDE in (2.24) with the

terminal condition P*(T, x,y) = h(x) on the domain (—oo, ).

Asymptotic Approximation
In the previous section we calculated the pricing function P*(t, x, ). We will continue by using

asymptotic approximation in order to estimate the pricing function and the
There are three parameters that affect the rate of mean reversion in Figure 2.3

1. The volatility defined by e¥t=Yat time t
2. The correlation time of (Y;) denoted by € = iwhere € > 0. This is used to model

volatility clustering.
3. B?is used to model the variance of the distribution of Y. It controls the long term

fluctuations in the volatility.

We will then take the previous Black Scholes PDE in (2.3) and split it into 3 separate parts in

regard to the order of their iterms. We define L, L4, L, as

d 0?2
‘CO =x[(m_)/)@+vzﬁl

62
Ly = pvV2eYx3/? pwe

d
— V2 x2A(t, x, y) —
y Y3y

(2.29)
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e L,is the Black-Scholes operator at the volatility level f(y) = e”. L, will also be
denoted as Lgs(f(y)) which will be used later.
e [, contains a mix of partial derivatives

e aL,is the infinitesimal generator of the process Y divided by the stock price x.

The pricing PDE then becomes

1 1
—xLy+—=L +L)Pt,X,Y=O
(Geto + 2L+ £2) PLX D)

(2.30)

We will make an assumption that P can be written in the form below, since its closed form is a

sum of infinite length,
P(t,X,Y) = Py(t,X,Y) + VeP (£, X,Y) + eP,(t, X,Y) + eVeP; (£, X, V) + ...
(2.31)

P is a martingale by the Risk Neutral Valuation formula P(t,X,Y) = E[C/F]. There is a PDE
that P satisfies but in order to produce a relatively simple formula, all consecutive terms will be

dropped aside from the first 4. Thus, the infinite expansion can be grouped in orders of &

1 1
ExLOPO * ?(Lopl + Ly Po) + (LoPy + L1Py + L3Pg) +Ve(LoPs + L1Py + LoP) + - =0
€
(2.32)
Separating terms

We begin by ordering the like terms by multiples of 1/+/€ and then equating each term to 0.
Starting with the first two divergent terms’, we must have %xLOPO = 0 in order for the entire

expansion to equal zero. Since Ljhas derivatives with respect to y, P, must be a function of t

7
Sincee » 0
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and x only. Both derivative terms become zero once we take the derivative of P, with respect

toy.
dP, d%P,
LoPy = x (m_Y)a_y-l_ﬂza_yz
dP, _ 0%P, —0
dy  dy*
(2.33)
In order to eliminate the 1/+/€ term we must have that
1
— xLoyPy + L1Py) =0
\/E( 0f1 1Po)
(2.34)

The second term £, P, = 0 because L;is also a function with derivatives with respect to y and
we already mentioned that P, is a function of t and x only. Similarly P; must also be a function
of t and x only in order to satisfy the condition LyP; = 0. Thus neither P, nor P; depend on the

volatility y.

Poisson Equation on £

The next term in the sequence to eliminate is of the order 1.
(xLoP, + LyP; + L,P)) =0
(2.35)
From before, we have that £, P; = 0 since P; = P;(t, x) so the first order term is reduced to
xLoyPy + L,Py =0

(2.36)
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If we fix the variable x as a constant, and only view the equation as a function of y, the equation

becomes of the form

62P2+ ) =0
ayz gy—

Py

0
Lox+g=m—y)—+p?
oXt+g N5, tA

(2.37)

Which is known as the Poisson equation for y(y) with respect to L. This equation only has a

solution if g(y) follows a centering condition with respect to L.

(g) = fg(y)<1>(y)6y =0

(2.38)

where ®(y) is the invariant or Gaussian distribution with standard deviation v and expected

value m.

1 2 2
d(v) = e~ (y-m)*/2v
0) ="

(2.39)

Thus we will apply the centering condition on £, P,. Since P, does not depend on y, we can

simply state that

(szo) == szq)(y)Pan - (L2>PO == 0
which, from (2.29), becomes

(Ly) = Lps(0)
(2.40)

where G2 = (f?) is the effective volatility. Therefore the zero order term P, (¢, x) is the

solution to the Black-Scholes Equation
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Lps(a)Py =0
(2.41)

with the terminating condition P,(T, x) = h(x). Therefore we have that the term P, (t,x) =
C(t, x) given by the Black-Scholes formula in (1.37).

Py(t,x) = C(t,x) = xPy4,(dy) — Ke_r(T_t)cDm(dz)

(2.42)
with the centering condition satisfied, we now have that
Ly Py = LyPy — (LyPy) = Po(Ly — (L))
=P, g +lezyxza—2+r(xi— 1)
at d0x? ox
- j laat * ; ex’ g T <xaa_x N 1)l v 12ne_(y_m)2/2v2 %
(2.43)

Since the integral of the Gaussian Distribution from (—o0, ) is 1, the terms of (£,) that do not

depend on y cancel out the terms from £,

1
= e—O-m?/2v? 54| p
I axz fl axz w21 y

2P,

1
_ D102V _ 72 142
[e g° |x 922

2

(2.44)

Therefore, since xL,P, must equal £,P,, we must have that
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=160 + el ) T
(2.45)
where cis a constant and ¢ (y) is the solution of another Poisson equation
Lop(y) = fF()? = (f?)
(2.46)

Ve term

Having solved for Py (t, x) and P,(t, x), we move on to the v/¢ order term in (2.32) which must

equal 0 which gives us another Poisson equation with respect to £,
LOP3 +,«C1P2 +,«C2P1 = 0
where g = L; P, + L,P,. We apply the centering condition to get the equation for (L, P;)

(L1Py + LyPy) = (L1Py) +(L,P1) =0

1
(L1Py) = Ly _Efp()’)x?’

2P,
0x?

(Lo2P1) = (L2)P; = (Lps)Py = —(L1P,)

e .
2 0x?
(2.47)
As L;is dependent on y, we will compute the centering condition on £, ¢ (y).
£100) = PV P 2 -~ I XA %) D))
(2.48)
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Finally we conclude that

3

2
Lps(0)Py = g pvie?p')x®? %xp;’ + (\/E pv{e?¢’) — gv <A¢')> w72 2 ho

0x?2

(2.49)
where P;(T,x) =0

We will now modify P; slightly and introduce a new variable in order to produce some cleaner

results.

Pl(tlx) = \/Epl(trx)

Lps(@)P; = H(t,x)

(2.50)

such that, the source term H and the small coefficients are given by:

H(t, x) = Vyx/? %120 + V,x7/? 662:20
Vs = = (")
V= —==(2 p(e?d") — (A"))
V2a

(2.51)

We will now introduce the identity

Lgs(@)(—(T —t)H) = H — (T — t)Lgs(G)H

(2.52)

With this result it can be shown that the correction for the v/ term satisfies the Black-Scholes

equation with a zero terminal condition given above. This is given by
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p 0°Py d%P,
Pi(t,x)=—(T—1) <V3x9/2 F) + V,x7/? Jdx2

x3

We can deduce that the last term is zero since we have the equality

o PN 0
Lps(a) (x ax”) =X WLBS(U)PO =0

Therefore we have that the corrected price is given by

Py + P;(t, x)
Where P, is the Black-Scholes price with constant volatility 7.

Put-Call Parity

)

(2.53)

(2.54)

(2.55)

We will now show that Put-Call Parity is preserved with the small correction that is introduced

in the last section. As we know that put-call parity defines a relation between the price of a call

option and a put option with identical strike price and Expiration date. We have that:

Co(t,x) + KB(t,T) = Py(t,x) — x

Co(t,x) — Py(t,x) = x — Ke 7(T~0

where B(t,T) is a price of a bond with expiration date Tand B(t,T) = e

(2.56)

—T(T-t) 3t time t.

Similarly we can apply this to the corrections C; (t, x) and P; (t, x) and we have that Put-Call

Parity is preserved:

34



Co(t, x) + C~1(t, x) - (Po(t, x) + Pl(tl x)) =X — Ke_r(T—t)

(2.57)
Since we have the relation that,
~ - 03P, 02P,
Ci(tx) = Pi(tx) = =(T = 1) (sz"/z 557 F v/ f’) (Co = Po)
03P, 0°P,
=—(T—-1t) <V2x9/2 ax30 + Vox7/2 ax2°> (x — Ke 7T-D)
=0

(2.58)

Derivation of the Greek terms
We will now compute the corrected price P, + P; (t, x) that was calculated earlier in (2.55).

Using Call options, we have from (1.37) that Cg is equal to the leading term P,

Cps(t,x) = xPgy1(dy) — Ke_r(T_t)cDo,l(dz)

1 z _ 2/2
q)O,l(Z):\/T—T[f e Y /%0y

log (%) + (r + %02) (T—1t)
G2 = T =

From here, we will derive the first, second and third order derivative of Cys with respect to x.

Let us first introduce several relations between d;and d,

(T-0)
e_d%/z = <%> e_d%/z

1
D 1(2) = —=e2/?

V2m
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ox  xaVT —t
(2.59)
In the case of Delta, we have from the chain rule and change of variables:
0P, e_d%/z e_dg/z
—— = 1 (dy) + — Ke™7(™™0
0x x0+/2n(T —t) x0+/2n(T —t)
xer(T—t) 2
) e—d3/2 _— ( k )e wr
= ®y,(dy) + — Ke ™"V~
S G 2 (T = D) xG\[2r(T — )
= (D0,1(d1)
(2.60)
Then we compute Gamma,
9%pP, e—di/2
a2 d1¢6,1(d1) = < )
ox xG+\[2m(T — t)
(2.61)

Lastly, we will calculate the third order derivative which is needed in order to compute H(t, x).

By the chain rule, we have

d%p, 1 e—d1/2 ( 1 > ed1/2
=(-= +
dx3 ( xz)a./Zn(T—t) XO'\/ZTI.'(T—t) xaVT —t

—_e—d1/2 d,
- (1+—=)
o

x5 2n(T—0\  aVT —¢

(2.62)
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We will now use the results of (2.61) and (2.62) to calculate H from (2.51)

d%P,
J0x?

9°P,

Py + V,x7/?

H(t,x) = Vax°/?

—e—di/2

d, e~di/2
<1 +— ) + V,x7/2 < )
x26./2n(T —t) oVT —t x0/2n(T —t)

V3x9/2

xs/ze—d';’/z y V(1 d, )
o ——— — 4+ —
a2nT -\ - -\ &T—¢

(2.63)
The small correction P, (¢, x) is then given by
B 5/24-di/2 d,
Bi(t,x) = —(T = O)H(t,x) = W(vg St vy~ VT )
(2.64)

Implied volatilities
We will now use implied volatilities to estimate our two small parameters V, and V5. Let us

recall the implied volatility o; given in (2.7)
Cps(t,x; K, T; 0;) = COP5eTe4(K,T)

We can expand o; with a Taylor series on the left 6, = & + V€0, + --- Then match the right side

term-by-term with our approximated price

aC

BS =
aO' + .= Po(t,x) + Pl(t,x)

Cps(t,x; K, T; a;) +eo,
(2.65)

CBs(t,x; K, T, O-l‘) = Po(t, x)
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-1

Veoay = Py(t,x) (aCBS)

do
(2.66)
Then, up to an error of O(¢), the implied volatility is given by
o, =6+ P (t,x) (666'035)_1 + 0(¢)
(2.67)
Where the derivative of Cgzs with respect to the volatility parameter is
0Cys xe /2T —¢
dc 2
(2.68)
When combined with the correction in (2.64), this yields
_ x3/2V3d1 xB/Z(Vs —V3)
Gi=0+52m+ - + 0(¢)
(2.69)
L YA P T L) T
g3 2 7 a3 T—t
(2.70)

which is an affine function of the log-moneyness-to-maturity ratio up to order O(¢). Thus we

have the LMMR as:

+b+0(e)
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b=6+——(r+ > =
(2.71)
Once we estimate a and b from data, the group parameters I/, and V; are then given by
V, = gx~3/? (5 —b— a(r +%52>>
Vs = —ag3x~3/?
(2.72)

Data Results

In order to calculate the LMMR, we will test the accuracy of the estimates and the behavior of
its volatility on real data. The contracts used were at least two months from expiration and
were within 3% of the money to provide sufficient liquidity. The trading days used were

4/1/2004 to 6/29/2004 and 6 options with sufficient liquidity were chosen
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Stock Option Least Squares Standard Dev.  Data points
ACDO DZU-HI 63
a= 0.3444 0.0337

b= 0.1603

ATK ATK-HN 61
a= 0.1177 0.0209
b= 0.1857

BKST BEQ-HD 53
a= -0.2870 0.0208
b= 0.0846

AEP AEP-HG 56
a= -0.1128 0.0170
b= 0.1222

CA CA-HY 56
a= 0.2866 0.0245
b= 0.1879

CYN CYN-HN 58
a= 0.5038 0.0318
b= 0.1631

Figure 2- LMMR Calculations

A full explanation of how the data was calculated is available in the Appendix, along with

scatter plots for each option. The daily prices for both options are also available.

Next, both historical and the effective volatility were calculated in order to solve for V,, V5 and
P,. Based on the CIR model, f(y) = e”, we have that the effective volatility 72 = e?. A
complete derivation is available in the appendix. Historical volatility was used in equation
(2.73), along with the calculations above, to solve for V, and V5. The effective volatility was

used to calculate the option price modifier P, in equation (2.64).
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Stock Option
ACDO  DZU-HI
V2 0.0870834  x~3/2
V3 -0.0235547  x~3/2
ATK ATK-HN
V2 0.6158615  x~3/2
V3 -0.0893741  x73/2
BKST BEQ-HD
V2 0.0341941 x~3/2
V3 0.0032338 x~3/2
AEP AEP-HG
V2 0.2093617  x~3/2
V3 0.0152406  x~3/2
CA CA-HY
V2 0.0556682  x~3/2
V3 -0.0139617  x~3/2
CYN CYN-HN
V2 0.4608161  x~3/2
V3 -0.3556294  x~3/2

For simplicity, V, and V; were calculated without the daily returns. This value was then

Figure 3- V,, V3 Calculations

substituted into (2.64). With V,and V5, we solved for P; in equation (2.64). The modified prices

are included in the appendix.
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Conclusions
The CIR Model for option prices is a variation of the Ornstein-Uhlenbeck (OU) Model. We chose

this model because although it is very complicated, it allows for flexibility and the freedom to
explore from a learning perspective. We decided to use a variation of this model and test
whether introducing the stock price in the volatility driving process would make the equation
more sensitive and accurate. Once we solved for P;, we observed that the correction was
reasonable and surprisingly, equivalent to the pricing process of the OU model. The calibration
of the variable 7; = x which we had introduced provides the same error P, as the OU Model

wherer; = 1.

Effects of different r;
We then analyzed P, by re-calibrating r; and re-applying the same steps to calculate P;. In order

to calculate the effects r; have on the correction price, we focused mainly on specific changes in
the formula caused by changing the powers of x. Thus we will outline the changes in our

equation to the general case 1;

® |n equation (2.29):
o The multiplier for L is 1;
o The x valuesin £L; are x\/z- and \/Z respectively

e Due to changes in the multiplier for £, the x value in (2.45) for P, is x%r;

/2 respectively

/

e The xvalues in (2.49) for Lgs(G)P; are x3ris/2 and x2ri3

e This causes the x values in the correction P; to change to xrl-3 %in equation (2.64)

3/

e Lastly, the multipliers for V/, and V3 become ri_ %in equation (2.72)

Here we listed the powers of x from zero to two in the table below.?

8 The first row, with x to the power 0 is the OU Model result while the x to the power 1 is our result. Columns two
and three represent the equation for 131 in (2.64). They were separated to show the differences in the exponential
on the outside and the values of V,and V; inside the parentheses.
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P1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11
1.2
1.3
14
15
1.6
1.7
1.8
1.9

2.38711182
4.21434713
7.44025543

13.135463
23.1901163
40.9411906
72.2799776
127.607309
225.285423

397.73209
702.179543
1239.66892
2188.58418
3863.85478

6821.4757

12043.033
21261.4764
37536.2566
66268.7075

116994.66
206549.231

-0.0824098
-0.046679
-0.0264401
-0.0149764
-0.008483
-0.004805
-0.0027217
-0.0015416
-0.0008732
-0.0004946
-0.0002802
-0.0001587
-8.989E-05
-5.091E-05
-2.884E-05
-1.633E-05
-9.252E-06
-5.241E-06
-2.969E-06
-1.681E-06
-9.524E-07

-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215
-0.1967215

Figure 4-R values

Since this result is fairly surprising, we went back and reviewed the changes made to the equation. If we

pay attention to equations (2.64) and (2.72) which becomes

P(t,x) = —(T —t)H(t,x) =

3/2 _42
r,/edl/z

L

oV2m

<V3 % + (Vs — Vz)\/ﬁ)

(2.73)
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We see that the 1; coefficients in V,, V5 and P; (¢, x) cancel each other out. With this result, we
conclude that the stock price has no effect on the volatility driving formula dY; in the CIR
Model, as all powers of x lead to the same result for the small correction price P;.
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Appendix

Data collecting

After obtaining 4 years of daily option prices, we are able to apply the formulas to real data.
However, with such a large data set, there are many problems pulling together the relevant
data needed to calculate the LMMR (log-moneyness-to-maturity-ratio). The data was separated
into folders for months, with a data file for each day, containing over 150,000 rows of stock

option data.

Each file was encoded as a .csv file (comma separated variables) and after exploring different
methods, such as Matlab and Database organizing software, excel was chosen because it was

the most convenient software for analyzing such large data sets.

AL - A

A B c D E F G H 1 J K L M N 0 P Q R s
1a ] 2207+ A DD call 4/15/2005  4/1/2005 16:00 20 25 21 2.2 15 105 0.393106 0.912401 9.598019 0
2 A 22.07 A D put 4/15/2005  4/1/2005 16:00 20 0.05 0 0.1 0 90 0.362779 -0.07174 8.54086 0
3 |a 22.07 A DX call 4/15/2005  4/1/2005 16:00 25 0.5 0.3 0.35 5 1908 029831 0381967 30.30621 0
4|a 207 A PX put 4/15/2005  4/1/2005 16:00 25 0.65 0.7 0.8 13 1842 0.30288% -0.61597 29.89626 0
s |a 207 A DE call 4/15/2005  4/1/2005 16:00 25 0.05 0.05 0.1 50 1752 0.461361 0.036679 8.103298 0
5 |a 22.07 = A PE put 4/15/2005  4/1/2005 16:00 25 2.85 2.85 3 0 743 0.436021 -0.92614 7.607423 0
7 |a 22.07 A DF call 4/15/2005  4/1/2005 16:00 30 0.05 0 0.05 0 100 0.767518 0021923 1.61635 0
8 |A 22.07 A PF put 4/15/2005  4/1/2005 16:00 30 5.6 7.9 8 0 29 0.813294 -0.97086 1.935953 0
3 A 207 A DG call 4/15/2005  4/1/2005 16:00 35 0 0 0.05 0 0 1077272 0.016421 0.300682 0
10(a 207 A PG put 4/15/2005  4/1/2005 16:00 35 103 129 13 0 3 1147462 -0.97673 1.136389 0
11a 207 A W call 5/20/2005  4/1/2005 16:00 17.5 43 47 48 0 277 0431988 0322468 2750478 0
12|a 22.07 A aw put 5/20/2005  4/1/2005 16:00 175 0.1 0.1 0.15 40 520 0.464059 -0.07076 3.632685 0
13a 22.07 A S call 5/20/2005  4/1/2005 16:00 20 2.75 245 2.55 10 238 0.377656 0.788091 9.552668 0
14 A 22,07 * A ap put 5/20/2005  4/1/2005 16:00 20 0.3 0.3 0.4 2 1509 0.360108 -0.20264 9.756493 0
15|a 207 A X call 5/20/2005  4/1/2005 16:00 25 0.95 0.8 0.8 72 5750 0.313291 0.463792 15.49352 0
16 |A 22.07* A ax put 5/20/2005 4/1/2005 16:00 25 1.05 115 12 12 3108 0.300313 -0.54132 16.45201 0

Figure 5-Data

Here are the columns that are relevant to our analysis

e Column A: Underlying Symbol

e Column B: The price of the underlying option or X

e Column D: The option root

e Column E: Option Extension

e Column F: Option type (We are looking at Call options)
e Column G: The expiration date of the option, T

e Column H: The current date

e Column I: The strike price, K

46

OO0 o0ooo0oo0o0o00 00000 oo



Column J: The last price this option was sold at. C°Pserved

After looking through the data and making sure all the formats were the same, an approximate

60 day period from 4/01/2004 to 6/30/2004 was chosen to focus on. In order to focus on

relevant behavioral trends, simple macros in Visual Basic were used to filter out most of the

irrelevant information and leave a small data set to work with. The first step was to design a

macro to filter out all the unnecessary data and copy-paste my preferences all into one

spreadsheet. Here is the code below

'Filter section code
'Filter options

Windows (sName) .Activate

Range ("T1"™) .S5elect

BctiveCell.FormulaR1Cl = "=ROUND(RC[-13]-RC[-12],0)"
Range ("T1") .5elect

Selection.futoFill Destination:=Range ("T1:T155000™)

Range ("Ul"™} .S5elect

BetiveCell.FormulaR1Cl = "=ABS (RC[-12]1/RC[-19]-1)"
Range ("UO1") .5elect

Selection.AutoFill Destinatiun:=Range("Ul:UlEEOOO"H

Range ("Al1"™) .Select

Selection.fAutoFilter

betiveSheet.Range ("SAS1:5US155000") .AutoFilter Field:=6, Criterial:="call"™

AotiveSheet.Range ("$A$1:5US155000") .AutoFilter Field:=7, Operator:= _
¥1FilterValues, CriteriaZ:=4rrav(l, "8/13/2005™)

AotiveSheet.Range ("SA$1:5U£155000") .AutoFilter Field:=21, Criterial:=">=0" _
, Operator:=xlind, Criteria2:="<=.03"

Figure 6- Filter Code

First two new columns were created; one to check the time to expiration (T-t), and one to

calcu

expir

late at-the-money options. It was decided to filter out options that were too close to the

ation date and too far in or out of the money. Then, each spreadsheet was filtered based

on the following criteria:

P w N

Call options only
Each option was within 3% of the money
Time to maturity was greater than 3 weeks

Expiration dates were the same
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With these criterion filtered, roughly 400 data points for each day was copied onto a separate

file.

Next, an add-on was made to open each of the 60 files and apply the data-gathering process to

each of them.

Sub Cpenfile()
Dim =Path As S5tring, sHName As String
Dim WEBE As Workbook

sPath = "C:\Users\Eshen\Desktop\thesis\Options datal’"™
sName Dir(sPath & "options_*.csv")

While sName <> "7
S5et WE = Workbooks.Open(sPath & sHName)

'Filter option=s go here

Windows (sHame) .Activate
LoctiveWorkbook.Close (False)

sHame = Dir{()
Wend

End Sub

Figure 7-Data Gathering Code

This code was used to combine, opening and closing each file in the options data directory, and
apply the filtering process then closing the files without altering the originals. However, the
new table still contained over 25,000 rows. A pivot table was used to organize the Option root
and Option extension rows to find out how many options had data-points throughout the 60-

day period.
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Here is a small portion of the pivot table. Through this filter, six different options that

maintained 3%-within-the-money throughout most of the 60 day period were chosen and the

Row Labels | * | Count of Root

=JuUL
HC
-INOV
HH
HiI
ISUN
HA
HB
HS
HT
A
HD
HE
HX
- AA
HY
- AAF
HQ
- AAI
HB

Figure 8-Table of Options

implied volatilities per day were calculated.

Here is a macro that utilizes excel solver to calculate the Implied volatility of a call option. By

17
17
12

7

3
4
10

19

25

13
10

[ = S R T T

utilizing the formula to calculate the C°?5¢"¢2 and matching that to the observed option price

by changing the volatility
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Sub Solwve ()

' Macro3 Macro

Dim Row A= Double

Row = 2

Do While Row < 66

SolverReset
SolverQOk SetCell:="SWE" & Row, MaxMinVal:=2, ByChange:="SVE" & Row
Solverhdd CellRef:="SW:E" & Row, BRelation:=2, FormulaText:="5J5" & Row

SolverSave Savelrea:="SAFS5:SAFEE™
SolverCOptions MaxTime:=120, Iterations:=200, Precision:=0.00001, Assumelinear:= _
False, StepThru:=False, Estimates:=1, Deriwvatiwves:=1l, SearchOption:=1,

IntTolerance:=100, Scaling:=False, Convergence:=0.,0001, RssumeNnnNeg:=T;ue
SolverSolve (True)

Row = Row + 1
Range ("V" & Row) .Select
Loop

End Sub

Figure 9- Implied Volatility Solver Code

With the daily implied volatility calculated, the least squares method is applied to calculate the

slope, a, and the intercept, b, in the LMMR.

CE0EY) - nXxy)
a= 2
02 —n(Xx%)

p o E0Qxy) — ENEx?)
Ex)?* —n(Xx?)

Where n is the total number of data points, y is the implied volatility, and x is the day number.

Here are the scatter plots with the least square estimators,
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AEP-HG
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Figure 15-Graph of Option CYN-HN
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Effective Volatility Calculation
We have that:

52 = (f2) = (e?)

This is an application of the centering condition on e?Y

[oe]

o) 1 5
ey =f e?Yd(y)d =—f e2VeV/2 9
(e“Y) » (»y)ay Nz y

— 00

We will apply the change of variables u = e?Y,0u = 2e%Y

Zye_yz/z ay =

1 (o)
—_— e
V2w -f_oo 2\ 2w

(o0}
f e_yz/z any
—00

1 2
; ) = ——_ Y2 = §e2V
Apply Integration by parts: u Nerhe ,0v = de

= 1 e_y2/2e2y 1

N 22T

f e /2(—y)dy

The first equation is zero because e V/2 goes to O faster than e?Y approaches infinity.

1 *® 2
e Y /2+2ya
2V27T f_oo(y) Y

1 0
= 8_1/2(y2_4y)a
= f 2 y
1
2\2m
eZ

2\ 2w

Apply change of variablesu =y —2,0u =1

J (y)e—1/2(y—2)2+2 dy

f (y)e—l/z(y—Z)zay

2

f (u+2) e /29y

2\ 2w
e? @ 2 e? @ 2
=— e W /29y + J u) e ¥ /29u
VZHJ_OO 2V2m —oo( )

The first equation is equal to e? [ ®(u) du = 1 * e?



82

2V2m

=e?+

J (w) e~ %" /29y

Apply another change of variables v = u?,0v = 2u

Thus we have that 6% = e?
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Data

Option DZU-HI

Underlying

symbol X
ACDO 44.23
ACDO 44.27
ACDO 44.87
ACDO 45.07
ACDO 45,5
ACDO 45.31
ACDO 45.18
ACDO 45.36
ACDO 45.36
ACDO 45.1
ACDO 44.45
ACDO 44.55
ACDO 45.39
ACDO 44.93
ACDO 45.31
ACDO 45.36
ACDO 45.74
ACDO 44.55
ACDO 45.11
ACDO 44.85
ACDO 45.3
ACDO 45.27
ACDO 45.24
ACDO 45.48
ACDO 45.17
ACDO 45.24
ACDO 45.63
ACDO 45.46
ACDO 45.23
ACDO 45.23
ACDO 4473
ACDO 44.98
ACDO 45.22
ACDO 45.29
ACDO 45.45
ACDO 45.28
ACDO 45.67

T
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/1/2005 16:00
4/4/2005 16:00
4/5/2005 16:00
4/6/2005 16:00
4/7/2005 16:00
4/8/2005 16:00
4/11/2005 16:00
4/12/2005 16:00
4/13/2005 16:00
4/14/2005 16:00
4/15/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/20/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00
5/2/2005 16:00
5/3/2005 16:00
5/4/2005 16:00
5/5/2005 16:00
5/6/2005 16:00
5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/13/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/18/2005 16:00
5/19/2005 16:00
5/20/2005 16:00
5/23/2005 16:00

K
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45

Last
1.4
1.4
1.4
1.4
1.4
1.4

2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2.25
2
1.9
1.9
1.9
2

2
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15
2.15

T-t
139
136
135
134
133
132
129
128
127
126
125
122
121
120
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
97
94
93
92
91
90
87

IT™
0.017409
0.01649
0.002897
0.001553
0.010989
0.006842
0.003984
0.007937
0.007937
0.002217
0.012373
0.010101
0.008592
0.001558
0.006842
0.007937
0.016178
0.010101
0.002438
0.003344
0.006623
0.005964
0.005305
0.010554
0.003764
0.005305
0.013807
0.010119
0.005085
0.005085
0.006036
0.000445
0.004865
0.006403
0.009901
0.006184
0.01467

Vol.
0.116143
0.116284
0.09276
0.084347
0.062707
0.073599
0.148794
0.141233
0.141944
0.154628
0.183404
0.18184
0.144936
0.167051
0.150327
0.148712
0.131696
0.168378
0.135508
0.148395
0.127727
0.140127
0.142449
0.144058
0.160661
0.158112
0.140326
0.150465
0.163417
0.164418
0.19018
0.181352
0.170176
0.167567
0.15996
0.170314
0.151624
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ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO
ACDO

45.6
45.36
45.44
45.35
44.82
45.16
44.92
44.76
44.94
45.08
44.96
44.75
43.96

44.1
44.28
44.57
4491
44.93
45.07
45.08
44.99
44.82
44.65
44.25
4451
45.45

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

5/24/2005 16:00
5/25/2005 16:00
5/26/2005 16:00
5/27/2005 16:00
5/31/2005 16:00

6/1/2005 16:00

6/2/2005 16:00

6/3/2005 16:00

6/6/2005 16:00

6/7/2005 16:00

6/8/2005 16:00

6/9/2005 16:00
6/10/2005 16:00
6/13/2005 16:00
6/14/2005 16:00
6/15/2005 16:00
6/16/2005 16:00
6/17/2005 16:00
6/20/2005 16:00
6/21/2005 16:00
6/22/2005 16:00
6/23/2005 16:00
6/24/2005 16:00
6/27/2005 16:00
6/28/2005 16:00
6/29/2005 16:00

45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45

2.15
2.15
2.15

1.75
1.75
1.75
1.75
1.75
1.75
1.75

1.4

14
1.25
1.25
1.25
1.75
1.75
1.75
1.75
1.75
1.75
1.55
1.55
2.45

86
85
84
83
79
78
77
76
73
72
71
70
69
66
65
64
63
62
59
58
57
56
55
52
51
50

0.013158
0.007937
0.009683
0.007718
0.004016
0.003543
0.001781
0.005362
0.001335
0.001775

0.00089
0.005587
0.023658
0.020408

0.01626
0.009648
0.002004
0.001558
0.001553
0.001775
0.000222
0.004016
0.007839
0.016949
0.011009
0.009901

0.156849
0.171731
0.168406
0.160055
0.194106
0.151821
0.166324
0.176211
0.170449
0.163856
0.172078
0.185257

0.19026
0.187954
0.163524
0.149506
0.131492
0.187762
0.184399

0.18556
0.193107
0.205669
0.218181
0.224447
0.211192
0.263463
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Option ATK-HN

Underlying

symbol X

ATK 70.44
ATK 71.69
ATK 71.67
ATK 71.9
ATK 71.9
ATK 71.9
ATK 71.44
ATK 71.19
ATK 70.85
ATK 70.01
ATK 69.97
ATK 70.37
ATK 69.936
ATK 69.54
ATK 70.67
ATK 70.49
ATK 70.15
ATK 70.1
ATK 69.96
ATK 69.51
ATK 69.18
ATK 69.69
ATK 68.85
ATK 69.86
ATK 68.18
ATK 69.18
ATK 68.9
ATK 68.5
ATK 70
ATK 69.11
ATK 69.19
ATK 69.6
ATK 70.2
ATK 69.64
ATK 69.69
ATK 69.8
ATK 70.2
ATK 69.35
ATK 70.2

T
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/1/2005 16:00
4/4/2005 16:00
4/5/2005 16:00
4/6/2005 16:00
4/7/2005 16:00
4/8/2005 16:00
4/11/2005 16:00
4/12/2005 16:00
4/13/2005 16:00
4/14/2005 16:00
4/15/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/20/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00
5/2/2005 16:00
5/3/2005 16:00
5/4/2005 16:00
5/5/2005 16:00
5/6/2005 16:00
5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/18/2005 16:00
5/19/2005 16:00
5/20/2005 16:00
5/23/2005 16:00
5/24/2005 16:00
5/25/2005 16:00
5/26/2005 16:00

K
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

Last
4.7
4.7
4.7
5.5
5.5
5.3
53
5.3
4.6
4.2
4.5
4.4
4.4

4
4
4
4.5
4
4
3.8
34
3.7
3.7
3.9
3
3.5
3
3
3
3.2
24
24
24
3.1
3.1
3.2
3.2
3.2
3.2

T-t
139
136
135
134
133
132
129
128
127
126
125
122
121
120
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
94
93
92
91
90
87
86
85
84

™
0.006246
0.023574
0.023301
0.026426
0.026426
0.026426
0.020157
0.016716
0.011997
0.000143
0.000429
0.005258
0.000915
0.006615
0.009481
0.006951
0.002138
0.001427
0.000572
0.007049
0.011853
0.004448
0.016703
0.002004
0.026694
0.011853
0.015965
0.021898
0
0.012878
0.011707
0.005747
0.002849
0.005169
0.004448
0.002865
0.002849
0.009373
0.002849

Vol.
0.19582
0.160922
0.162327
0.19616
0.197057
0.187808
0.205088
0.213749
0.189374
0.194477
0.211878
0.198071
0.211703
0.203105
0.17088
0.177297
0.217022
0.192858
0.198035
0.201439
0.190153
0.194921
0.220267
0.203035
0.201612
0.203085
0.186054
0.198421
0.155167
0.194798
0.149825
0.138338
0.119733
0.180785
0.180353
0.186458
0.174253
0.203619
0.176673

57



ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK
ATK

71.15

71.7
71.48
71.01

714

715
71.03
70.65
70.91
70.99
70.61
70.34
70.32
70.53
70.34
70.81

70.4
70.27
69.39

68.5
69.17
69.65

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

5/27/2005 16:00
5/31/2005 16:00
6/1/2005 16:00
6/2/2005 16:00
6/3/2005 16:00
6/6/2005 16:00
6/7/2005 16:00
6/8/2005 16:00
6/9/2005 16:00
6/10/2005 16:00
6/13/2005 16:00
6/14/2005 16:00
6/15/2005 16:00
6/16/2005 16:00
6/17/2005 16:00
6/20/2005 16:00
6/21/2005 16:00
6/22/2005 16:00
6/23/2005 16:00
6/27/2005 16:00
6/28/2005 16:00
6/29/2005 16:00

70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

3.7
3.7

3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
2.6
2.6
2.7
2.7

2.8
2.35
1.8
1.9

83
79
78
77
76
73
72
71
70
69
66
65
64
63
62
59
58
57
56
52
51
50

0.016163
0.02371
0.020705
0.014223
0.019608
0.020979
0.014501
0.0092
0.012833
0.013946
0.008639
0.004834
0.004551
0.007515
0.004834
0.011439
0.005682
0.003842
0.008791
0.021898
0.011999
0.005025

0.174497
0.156892
0.187412
0.17483
0.160135
0.159704
0.181047
0.197775
0.188976
0.187257
0.207791
0.220382
0.158974
0.151789
0.168379
0.152887
0.194905
0.187217
0.190146
0.1874
0.172795
0.163724
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Option BEQ-HD

Underlying

symbol X

BKST 19.86
BKST 19.86
BKST 19.87
BKST 19.88
BKST 19.86
BKST 19.82
BKST 19.9
BKST 19.88
BKST 19.9
BKST 19.82
BKST 19.77
BKST 19.78
BKST 19.75
BKST 19.8
BKST 19.81
BKST 19.75
BKST 19.78
BKST 19.51
BKST 19.51
BKST 19.48
BKST 19.55
BKST 19.64
BKST 19.71
BKST 19.74
BKST 19.7
BKST 19.69
BKST 19.775
BKST 19.8
BKST 20.18
BKST 20.11
BKST 20.14
BKST 20.14
BKST 20.2
BKST 20.21
BKST 20.15
BKST 20.21
BKST 20.23
BKST 20.16
BKST 20.18

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/15/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/20/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00
5/2/2005 16:00
5/3/2005 16:00
5/4/2005 16:00
5/5/2005 16:00
5/6/2005 16:00
5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/13/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/18/2005 16:00
5/19/2005 16:00
5/20/2005 16:00
5/23/2005 16:00
5/24/2005 16:00
5/25/2005 16:00
5/26/2005 16:00
5/27/2005 16:00
5/31/2005 16:00
6/1/2005 16:00
6/2/2005 16:00
6/3/2005 16:00
6/6/2005 16:00
6/7/2005 16:00
6/8/2005 16:00
6/9/2005 16:00

K

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

Last
0.5
0.5
0.5
0.5
0.6
0.4
0.4
0.6
0.6
0.6
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.4
0.4
0.4
0.4
0.4

0.25
0.25
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6
0.6

T-t
125
122
121
120
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
97
94
93
92
91
90
87
86
85
84
83
79
78
77
76
73
72
71
70

™
0.007049
0.007049
0.006543
0.006036
0.007049
0.009082
0.005025
0.006036
0.005025
0.009082
0.011634
0.011122
0.012658
0.010101
0.009591
0.012658
0.011122
0.025115
0.025115
0.026694
0.023018
0.01833
0.014713
0.013171
0.015228
0.015744
0.011378
0.010101
0.00892
0.00547
0.006951
0.006951
0.009901
0.010391
0.007444
0.010391
0.011369
0.007937
0.00892

Vol
0.084014
0.085477
0.085009
0.084534
0.105329
0.072925
0.066424
0.106372
0.104983
0.113544
0.04287
0.042975
0.046013
0.041808
0.041205
0.047087
0.045453
0.068506
0.068969
0.071771
0.066743
0.103129
0.097136
0.094863
0.099471
0.101147
0.062419
0.060412
0.090975
0.101253
0.098049
0.101351
0.093607
0.092942
0.102568
0.096407
0.094182
0.105776
0.103773
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BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST
BKST

20.18
20.16
20.23
20.24
20.22
20.16
20.17
20.17
20.15
20.07

20.1
20.09
20.08

20.1

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

6/10/2005 16:00
6/13/2005 16:00
6/14/2005 16:00
6/15/2005 16:00
6/16/2005 16:00
6/17/2005 16:00
6/20/2005 16:00
6/21/2005 16:00
6/22/2005 16:00
6/23/2005 16:00
6/24/2005 16:00
6/27/2005 16:00
6/28/2005 16:00
6/29/2005 16:00

20
20
20
20
20
20
20
20
20
20
20
20
20
20

0.6
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.5
0.4
0.4
0.35
0.35
0.35

69
66
65
64
63
62
59
58
57
56
55
52
51
50

0.00892
0.007937
0.011369
0.011858

0.01088
0.007937
0.008428
0.008428
0.007444
0.003488
0.004975

0.00448
0.003984
0.004975

0.104755
0.110872
0.100913

0.10029
0.104668
0.089372
0.090717
0.091759
0.096192
0.083165
0.079258
0.069839
0.072539
0.069988
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Option AEP-HG

Underlying
symbol

AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP

X
34.13
34.36
34.28
34.46
34.53
34.89
35.1
34.92
34.72
34.19
34.57
34.76
34.57
34.88
34.97
35.13
34.89
35.31
35
35.22
35.37
35.61
355
35.52
35.21
35.16
35.17
35.29
35.05
34.51
34.88
35.43
35.45
35.7
35.55
35.61
35.55
35.45
35.43

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/1/2005 16:00

4/5/2005 16:00

4/6/2005 16:00

4/7/2005 16:00

4/8/2005 16:00
4/11/2005 16:00
4/12/2005 16:00
4/13/2005 16:00
4/14/2005 16:00
4/15/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/20/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00

5/2/2005 16:00

5/3/2005 16:00

5/4/2005 16:00

5/5/2005 16:00

5/6/2005 16:00

5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/13/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/18/2005 16:00
5/19/2005 16:00
5/20/2005 16:00
5/23/2005 16:00
5/24/2005 16:00
5/25/2005 16:00
5/26/2005 16:00

K

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

Last
1.05
0.85

1.1
1.15
1.15

1.2
1.35
1.25
1.25
1.15
1.15
1.15

1.1

1.1
1.25
1.25
1.45
1.45

14

1.4
1.55
1.45
1.45
1.45
1.45
1.45
1.45
1.45
1.05
1.05
1.55

1.7
1.65

1.6
1.55

1.5
1.35
1.35

T-t
139
135
134
133
132
129
128
127
126
125
122
121
120
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
97
94
93
92
91
90
87
86
85
84

IT™M
0.025491
0.018626
0.021004
0.01567
0.013611
0.003153
0.002849
0.002291
0.008065
0.023691
0.012439
0.006904
0.012439
0.00344
0.000858
0.003701
0.003153
0.008779
0
0.006246
0.010461
0.01713
0.014085
0.01464
0.005964
0.004551
0.004834
0.008218
0.001427
0.014199
0.00344
0.012137
0.012694
0.019608
0.015471
0.01713
0.015471
0.012694
0.012137

Vol
0.124939
0.096576
0.115827
0.117711
0.119791
0.102453
0.095895
0.122196
0.123638
0.151398
0.123861
0.114286
0.125162
0.103519
0.098833
0.106836
0.122016
0.118245
0.138471
0.120066
0.112134
0.112606
0.109957
0.109192
0.131577
0.137346
0.137544
0.130295
0.14715
0.13446
0.114789
0.137468
0.155071
0.130778
0.137387
0.129261
0.128709
0.11854
0.121049
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AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP
AEP

3541
35.69
35.91
35.82

35.8
35.92

35.8
35.82
35.94
35.73
35.81
35.88
35.72
35.77
35.71
35.78
36.07

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

5/27/2005 16:00
5/31/2005 16:00
6/1/2005 16:00
6/2/2005 16:00
6/3/2005 16:00
6/6/2005 16:00
6/7/2005 16:00
6/8/2005 16:00
6/9/2005 16:00
6/10/2005 16:00
6/13/2005 16:00
6/15/2005 16:00
6/16/2005 16:00
6/17/2005 16:00
6/20/2005 16:00
6/21/2005 16:00
6/24/2005 16:00

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

1.35
1.5
1.5

1.75

1.75

1.75

1.85

1.65

1.45

1.45

1.45

1.65
1.2

1.45

1.45
1.5

1.75

83
79
78
77
76
73
72
71
70
69
66
64
63
62
59
58
55

0.011579
0.019333
0.025341
0.022892
0.022346
0.025612
0.022346
0.022892
0.026155
0.020431
0.022619
0.024526
0.020157
0.021526
0.019882

0.0218
0.029665

0.123573
0.123809
0.1035
0.148439
0.151437
0.144072
0.170509
0.141812
0.100379
0.123903
0.11929
0.145186
0.093042
0.128504
0.138878
0.140947
0.154377
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Option CA-HY

Underlying

symbol X

CA 27.26
CA 27.54
CA 27.51
CA 27.44
CA 27.86
CA 27.36
CA 27.23
CA 27.65
CA 28
CA 27.95
CA 27.2
CA 27.26
CA 27.1
CA 26.9
CA 27.3
CA 27.07
CA 27.45
CA 27.05
CA 27.08
CA 26.8
CA 26.9
CA 27.08
CA 27.38
CA 27.82
CA 27.66
CA 27.82
CA 28.01
CA 27.81
CA 27.81
CA 27.75
CA 27.8
CA 28.13
CA 28.21
CA 27.3
CA 27.27
CA 27.35
CA 27.4
CA 27
CA 26.87
CA 27

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/1/2005 16:00
4/4/2005 16:00
4/5/2005 16:00
4/6/2005 16:00
4/7/2005 16:00
4/8/2005 16:00
4/11/2005 16:00
4/12/2005 16:00
4/13/2005 16:00
4/14/2005 16:00
4/15/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/20/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00
5/2/2005 16:00
5/3/2005 16:00
5/4/2005 16:00
5/5/2005 16:00
5/6/2005 16:00
5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/13/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/27/2005 16:00
5/31/2005 16:00
6/1/2005 16:00
6/2/2005 16:00
6/3/2005 16:00
6/6/2005 16:00
6/7/2005 16:00

K

27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5

Last
1.6
1.55
1.75
1.8
1.8
1.8
1.8
1.8
1.8
2.05
1.7
1.65
1.7
1.6
1.7
1.7
1.7
1.7
15
15
15
1.45
1.65
1.75
1.6
1.85
1.7
1.65
1.45
1.45
1.45
1.7
1.7
1.15

1.1
1.1
1.1
0.95
0.95

T-t
139
136
135
134
133
132
129
128
127
126
125
122
121
120
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
97
94
93
83
79
78
77
76
73
72

IT™M
0.008804
0.001452
0.000364
0.002187
0.012922
0.005117
0.009916
0.005425
0.017857
0.0161
0.011029
0.008804
0.01476
0.022305
0.007326
0.015885
0.001821
0.016636
0.01551
0.026119
0.022305
0.01551
0.004383
0.011503
0.005785
0.011503
0.018208
0.011147
0.011147
0.009009
0.010791
0.022396
0.025168
0.007326
0.008434
0.005484
0.00365
0.018519
0.023446
0.018519

Vol
0.193726
0.170794
0.19876
0.210827
0.18128
0.218258
0.230192
0.201362
0.17541
0.212922
0.223395
0.215712
0.234567
0.235976
0.222654
0.24003
0.216012
0.246162
0.217693
0.238279
0.232569
0.216327
0.223467
0.203824
0.196777
0.220399
0.185828
0.197139
0.168931
0.175171
0.171898
0.182627
0.175958
0.184712
0.168003
0.178898
0.17588
0.210918
0.200327
0.19136
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CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA
CA

27
27.01
26.94
27.12
27.05
27.39
27.71
27.42
27.46
27.65
27.92
27.83
27.58
27.34
27.91
27.85

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

6/8/2005 16:00

6/9/2005 16:00
6/10/2005 16:00
6/13/2005 16:00
6/14/2005 16:00
6/15/2005 16:00
6/16/2005 16:00
6/17/2005 16:00
6/20/2005 16:00
6/21/2005 16:00
6/22/2005 16:00
6/23/2005 16:00
6/24/2005 16:00
6/27/2005 16:00
6/28/2005 16:00
6/29/2005 16:00

27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5

0.95
0.85
0.8
0.9
0.9

1.05
1.05
1.05
1.15
1.25
1.05
0.95
0.95

1.2

71
70
69
66
65
64
63
62
59
58
57
56
55
52
51
50

0.018519
0.018141
0.020787
0.014012
0.016636
0.004016
0.007578
0.002918
0.001457
0.005425
0.015043
0.011858
0.002901
0.005852

0.01469
0.012567

0.192867
0.175985
0.174245

0.18155
0.189187
0.178268
0.147654
0.187816
0.189146
0.171164
0.161395
0.193354
0.184081
0.195452
0.131747
0.193358
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Option CYN-HN

Underlying
symbol
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN

X
69.34
69.99
70.21
70.9
70.8
70.14
69.74
70.39
70.16
69.04
68.55
68.68
68.15
68.35
70
69.4
70
69.61
70.5
71
70.85
71.21
70.87
70.36
70.64
70.39
70.77
69.83
69.6
70.16
70.58
71.25
70.78
70.93
71.18
70.63
69.87
70.28
70.9

T
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

4/1/2005 16:00
4/4/2005 16:00
4/5/2005 16:00
4/6/2005 16:00
4/7/2005 16:00
4/8/2005 16:00
4/11/2005 16:00
4/12/2005 16:00
4/13/2005 16:00
4/14/2005 16:00
4/18/2005 16:00
4/19/2005 16:00
4/21/2005 16:00
4/22/2005 16:00
4/25/2005 16:00
4/26/2005 16:00
4/27/2005 16:00
4/28/2005 16:00
4/29/2005 16:00
5/2/2005 16:00
5/3/2005 16:00
5/4/2005 16:00
5/5/2005 16:00
5/6/2005 16:00
5/9/2005 16:00
5/10/2005 16:00
5/11/2005 16:00
5/12/2005 16:00
5/13/2005 16:00
5/16/2005 16:00
5/17/2005 16:00
5/18/2005 16:00
5/19/2005 16:00
5/20/2005 16:00
5/23/2005 16:00
5/24/2005 16:00
5/25/2005 16:00
5/26/2005 16:00
5/27/2005 16:00

K

70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

Last
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5

2.35
2.35
2.35
2.8
2.8
2.8
2.8
2.8
2.8

T-t
139
136
135
134
133
132
129
128
127
126
122
121
119
118
115
114
113
112
111
108
107
106
105
104
101
100

99
98
97
94
93
92
91
90
87
86
85
84
83

™
0.009518
0.000143
0.002991
0.012694
0.011299
0.001996
0.003728
0.005541
0.002281
0.013905
0.021152
0.01922
0.027146
0.02414
0.00
0.008646
0.000
0.005603
0.007092
0.014085
0.011997
0.016992
0.012276
0.005117
0.00906
0.005541
0.01088
0.002434
0.005747
0.002281
0.008218
0.017544
0.01102
0.013112
0.016578
0.00892
0.001861
0.003984
0.012694

Vol
0.167148
0.152002
0.146561
0.126793
0.130534
0.150645
0.164029
0.146301
0.153743
0.185304
0.201761
0.199319
0.215088
0.210923
0.168186
0.186424
0.169971
0.182344
0.156396
0.142469
0.148434
0.136754
0.149514
0.167274
0.161007
0.170278
0.158539
0.190298
0.198586
0.184296
0.102473
0.075157
0.096314
0.119205
0.111718
0.13425
0.161917
0.148949
0.126823
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CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN
CYN

71.03
71.89
71.86
71
71.35
70.8
70.76
71.06
71.3
70.52
70.34
70.8
71.2
71.55
71.7
71.99
71.89
71.78
71.52

8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005
8/19/2005

5/31/2005 16:00
6/1/2005 16:00
6/2/2005 16:00
6/3/2005 16:00
6/6/2005 16:00
6/7/2005 16:00
6/8/2005 16:00
6/9/2005 16:00

6/10/2005 16:00

6/13/2005 16:00

6/14/2005 16:00

6/15/2005 16:00

6/16/2005 16:00

6/17/2005 16:00

6/20/2005 16:00

6/21/2005 16:00

6/23/2005 16:00

6/24/2005 16:00

6/27/2005 16:00

70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70
70

2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
2.8
3.4
3.4
3.4

79
78
77
76
73
72
71
70
69
66
65
64
63
62
59
58
56
55
52

0.014501

0.02629
0.025884
0.014085
0.018921
0.011299
0.010741
0.014917
0.018233
0.007374
0.004834
0.011299
0.016854
0.021663

0.02371
0.027643

0.02629
0.024798
0.021253

0.125509
0.084097
0.086823
0.129909
0.117538
0.142801
0.145673
0.134128
0.124329
0.162172
0.170898
0.153304
0.136546
0.120138
0.115537
0.098186
0.158578
0.166313
0.185791
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Modified Price & P,

DZU-HI ATK-HN BEQ-HD AEP-HG CA-HY CYN-HN

151 Py — P, 131 P, — P, 131 P, — P, 131 Py — P, 131 P, — P, 131 Py — P,
-0.197 1597 | -1.972 6.672 | -0.023 0.523 | -0.266 1.316| -0.076 1.676 | -2.286 5.786
-0.195 1.595| -1.908 6.608 | -0.023 0.523 | -0.264 1.114 | -0.076 1.626 | -2.277 5.777
-0.196 1596 | -1.903 6.603 | -0.023 0.523 | -0.263 1.263 | -0.076 1.826 | -2.270 5.770
-0.194 1594 | -1911 7.411| -0.023 0.523 | -0.263 1.363 | -0.075 1.875| -2.241 5.741
-0.179 1579 | -1.904 7.404 | -0.023 0.623 | -0.263 1.413 | -0.075 1.875| -2.239 5.739
-0.187 1.587 | -1.892 7.192 | -0.023 0.423 | -0.260 1.410| -0.075 1.875| -2.245 5.745
-0.192 2442 | -1.890 7.190| -0.022 0.422 | -0.256 1.456 | -0.074 1.874 | -2.214 5.714
-0.191 2441 | -1.890 7.190| -0.022 0.622 | -0.258 1.608 | -0.074 1.874 | -2.211 5.711
-0.190 2.440| -1.882 6.482 | -0.022 0.622 | -0.257 1.507 | -0.073 1.873 | -2.204 5.704
-0.190 2.440| -1.880 6.080 | -0.022 0.622 | -0.253 1.503 | -0.073 2.123 | -2.166 5.666
-0.188 2.438 | -1.872 6.372 | -0.022 0.222 | -0.253 1.403 | -0.072 1.772 | -2.109 5.609
-0.186 2.436 | -1.850 6.250| -0.022 0.222 | -0.252 1.402 | -0.072 1.722 | -2.107 5.607
-0.185 2.435| -1.842 6.242 | -0.022 0.222 | -0.251 1.401)| -0.071 1.771| -2.063 5.563
-0.185 2.435| -1.831 5.831| -0.022 0.222| -0.250 1.350| -0.070 1.670| -2.064 5.564
-0.184 2434 | -1.822 5.822| -0.021 0.221 | -0.248 1.348 | -0.071 1.771| -2.098 5.598
-0.183 2.433 | -1.818 5.818 | -0.021 0.221| -0.243 1.493 | -0.070 1.770| -2.073 5.573
-0.178 2.428 | -1.798 6.298 | -0.021 0.221 | -0.245 1.495| -0.070 1.770| -2.080 5.580
-0.180 2.180 | -1.790 5.790| -0.019 0.219| -0.239 1.689 | -0.069 1.769 | -2.062 5.562
-0.180 2.080 | -1.782 5.782 | -0.019 0.219| -0.242 1.692 | -0.068 1.568 | -2.064 5.564
-0.179 2.079 | -1.769 5.569 | -0.019 0.219| -0.239 1.639| -0.067 1.567 | -2.023 5.523
-0.178 2.078 | -1.756 5.156 | -0.019 0.219| -0.232 1.632 | -0.067 1.567 | -2.021 5.521
-0.176 2.176 | -1.740 5.440| -0.020 0.420| -0.225 1.775| -0.067 1.517 | -1.992 5.492
-0.175 2.175| -1.716 5.416 | -0.020 0.420| -0.226 1.676 | -0.067 1.717 | -2.003 5.503
-0.173 2.323 | -1.726 5.626 | -0.020 0.420| -0.225 1.675| -0.067 1.817| -2.001 5.501
-0.174 2324 | -1.675 4.675| -0.020 0.420| -0.232 1.682 | -0.067 1.667 | -1.972 5.472
-0.173 2.323 | -1.699 5.199 | -0.020 0.420| -0.229 1.679| -0.067 1.917| -1.963 5.463
-0.168 2.318 | -1.667 4.667 | -0.019 0.269 | -0.228 1.678 | -0.065 1.765| -1.951 5.451
-0.169 2.319| -1.646 4.646| -0.019 0.269| -0.225 1.675| -0.065 1.715| -1.936 5.436
-0.169 2.319| -1.669 4.669 | -0.019 0.619| -0.227 1.677 | -0.065 1.515| -1.919 5.419
-0.168 2.318 | -1.648 4.848 | -0.019 0.619| -0.225 1.275| -0.064 1.514 | -1.903 5.403
-0.167 2.317 | -1.615 4.015| -0.019 0.619| -0.223 1.273 | -0.064 1.514 | -1.873 4.223
-0.165 2.315| -1.616 4.016 | -0.018 0.618 | -0.217 1.767 | -0.062 1.762 | -1.707 4.057
-0.164 2314 | -1.604 4.004 | -0.018 0.618 | -0.217 1917 | -0.062 1.762 | -1.833 4.183
-0.163 2.313 | -1.599 4.699 | -0.017 0.617| -0.208 1.858 | -0.059 1.209 | -1.838 4.638
-0.161 2.311| -1.591 4.691| -0.018 0.618 | -0.211 1.811| -0.058 1.058 | -1.781 4.581
-0.161 2.311| -1.565 4.765| -0.017 0.617| -0.205 1.755| -0.057 1.157 | -1.817 4.617
-0.157 2.307 | -1.558 4.758 | -0.017 0.617 | -0.205 1.705| -0.057 1.157| -1.805 4.605
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-0.156
-0.156
-0.155
-0.154
-0.151
-0.150
-0.149
-0.148
-0.145
-0.144
-0.143
-0.142
-0.136
-0.134
-0.134
-0.135
-0.135
-0.134
-0.131
-0.130
-0.128
-0.127
-0.125
-0.120
-0.120
-0.121

2.306
2.306
2.305
2.154
2.151
1.900
1.899
1.898
1.895
1.894
1.893
1.892
1.536
1.534
1.384
1.385
1.385
1.884
1.881
1.880
1.878
1.877
1.875
1.670
1.670
2.571

-1.540
-1.540
-1.514
-1.440
-1.462
-1.462
-1.431
-1.396
-1.415
-1.416
-1.400
-1.388
-1.367
-1.358
-1.345
-1.330
-1.324
-1.279
-1.282
-1.272
-1.250
-1.167
-1.185
-1.187

4.740
4.740
5.214
5.140
5.462
4.962
4.931
4.896
4.915
4.916
4.900
4.888
4.867
4.858
3.945
3.930
4.024
3.979
4.282
4.072
3.600
2.967
3.085
3.187

-0.017
-0.017
-0.017
-0.017
-0.016
-0.016
-0.016
-0.016
-0.015
-0.015
-0.015
-0.015
-0.015
-0.015
-0.015
-0.014

0.617
0.617
0.617
0.617
0.616
0.616
0.616
0.516
0.515
0.515
0.515
0.415
0.415
0.365
0.365
0.364

-0.205
-0.204
-0.204
-0.192
-0.176
-0.191
-0.191
-0.182
-0.188
-0.182
-0.161
-0.177
-0.169
-0.171
-0.158
-0.167
-0.166
-0.163
-0.154

1.555
1.554
1.554
1.692
1.676
1.941
1.941
1.932
2.038
1.832
1.611
1.627
1.619
1.821
1.358
1.617
1.616
1.663
1.904

-0.056
-0.054
-0.054
-0.054
-0.053
-0.053
-0.052
-0.052
-0.052
-0.052
-0.051
-0.050
-0.050
-0.049
-0.049
-0.049
-0.047
-0.046
-0.046

1.156
1.004
1.004
1.004
0.903
0.853
0.952
0.952
1.052
1.052
1.101
1.100
1.100
1.199
1.299
1.099
0.997
0.996
1.246

-1.801
-1.774
-1.724
-1.467
-1.482
-1.696
-1.625
-1.665
-1.655
-1.629
-1.593
-1.602
-1.590
-1.575
-1.541
-1.480
-1.414
-1.288
-1.430
-1.432
-1.415

4.601
4.574
4.524
4.267
4.282
4.496
4.425
4.465
4.455
4.429
4.393
4.402
4.390
4.375
4.341
4.280
4.214
4.088
4.830
4.832
4.815
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