
Exploratory Visualization of Data Pattern Changes in Multivariate
Data Streams

by

Zaixian Xie

A Dissertation

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Ph.D. in

Computer Science

by

September 2011

Dr. Matthew Ward, Professor, Dissertation Advisor

Dr. Elke Rundensteiner, Professor, Dissertation Co-advisor

Dr. Robert Lindeman, Associate Professor, Committee Member

Dr. Martin Wattenberg, Google, External Committee Member

Professor Craig Wills, Head of Department

Abstract

More and more researchers are focusing on the management, querying and pattern

mining of streaming data. The visualization of streaming data, however, is still a very

new topic. Streaming data is very similar to time-series data since each datapoint has

a time dimension. Although the latter has been well studied in the area of information

visualization, a key characteristic of streaming data, unbounded and large-scale input, is

rarely investigated. Moreover, most techniques for visualizing time-series data focus on

univariate data and seldom convey multidimensional relationships, which is an important

requirement in many application areas. Therefore, it is necessary to develop appropri-

ate techniques for streaming data instead of directly applying time-series visualization

techniques to it.

As one of the main contributions of this dissertation, I introduce a user-driven ap-

proach for the visual analytics of multivariate data streams based on effective visualiza-

tions via a combination of windowing and sampling strategies. To help users identify and

track how data patterns change over time, not only the current sliding window content

but also abstractions of past data in which users are interested are displayed. Sampling is

applied within each single time window to help reduce visualclutter as well as preserve

data patterns. Sampling ratios scheduled for different windows reflect the degree of user

interest in the content. A degree of interest (DOI) functionis used to represent a user’s

interest in different windows of the data. Users can apply two types of pre-defined DOI

functions, namely RC (recent change) and PP (periodic phenomena) functions. The de-

veloped tool also allows users to interactively adjust DOI functions, in a manner similar

to transfer functions in volume visualization, to enable a trial-and-error exploration pro-

cess. In order to visually convey the change of multidimensional correlations, four layout

strategies were designed. User studies showed that three ofthese are effective techniques

for conveying data pattern changes compared to traditionaltime-series data visualization

techniques. Based on this evaluation, a guide for the selection of appropriate layout strate-

gies was derived, considering the characteristics of the targeted datasets and data analysis

tasks. Case studies were used to show the effectiveness of DOI functions and the various

visualization techniques.

A second contribution of this dissertation is a data-drivenframework to merge and

thus condense time windows having small or no changes and distort the time axis. Only

significant changes are shown to users. Pattern vectors are introduced as a compact format

for representing the discovered data model. Three views, juxtaposed views, pattern vector

views, and pattern change views, were developed for conveying data pattern changes. The

first shows more details of the data but needs more canvas space; the last two need much

less canvas space via conveying only the pattern parameters, but lose many data details.

The experiments showed that the proposed merge algorithms preserves more change in-

formation than an intuitive pattern-blind averaging. A user study was also conducted to

confirm that the proposed techniques can help users find pattern changes more quickly

than via a non-distorted time axis.

A third contribution of this dissertation is the history views with related interaction

techniques were developed to work under two modes: non-merge and merge. In the

former mode, the framework can use natural hierarchical time units or one defined by

domain experts to represent timelines. This can help users navigate across long time peri-

ods. Grid or virtual calendar views were designed to providea compact overview for the

history data. In addition, MDS pattern starfields, distancemaps, and pattern brushes were

developed to enable users to quickly investigate the degreeof pattern similarity among

different time periods. For the merge mode, merge algorithms were applied to selected

time windows to generate a merge-based hierarchy. The contiguous time windows having

2

similar patterns are merged first. Users can choose different levels of merging with the

tradeoff between more details in the data and less visual clutter in the visualizations. The

usability evaluation demonstrated that most participantscould understand the concepts of

the history views correctly and finished assigned tasks witha high accuracy and relatively

fast response time.

3

Acknowledgements

This dissertation and the growth in my knowledge over the last few years owe a great

deal to many professors, colleagues, and friends.

First among them is my advisor, Prof. Matthew O. Ward, and my co-advisor, Prof.

Elke A. Rundensteiner. They inspired my interest in information visualization research

and gave me direction by suggesting interesting problems. It has been my luck to have

them as my advisors. Their technical and editorial advice were essential to the completion

of this dissertation. I express my sincere thanks for their support, advice, patience, and

encouragement throughout my graduate studies. Their persistence in tackling problems,

confidence, and great teaching will always be an inspiration.

My thank goes to the members of my Ph.D. committee, Prof. Robert W. Lindeman and

Dr. Martin Wattenberg, who provided valuable feedback and suggestions to my disser-

tation proposal talk and dissertation drafts. All these helped to improve the presentation

and content of this dissertation.

I would like to thank all previous and current members in Xmdvgroup during my stay

at WPI for their valuable discussions on my research work. The friendship of all the other

pervious and current ISRG members is much appreciated. Theyhave contributed to many

interesting and good-spirited discussions related to thisresearch. I thank the wonderful

professors in the Computer Science department for both their serious lectures and casual

chats. I thank the system support staff in our department forproviding a well-maintained

computing environment and utilities for my research needs.

Finally, I would like to thank my wife, Dr. Mingzhu Wei for herunderstanding and

love in my life. Her support and encouragement was in the end what made this dissertation

possible. My parents receive my deepest gratitude and love for their dedication and the

many years of support during my studies. My sincere gratitude goes to my parents-in-law

because they provided selfless help on taking care of my son when he is very young. The

i

final but not the least thanks go to my son, Hansen. His smile and crying were always

mixed with the writing of this dissertation, but were a big support.

This work was funded by the NSF under grants IIS-0119276, IIS-0414380, IIS-0812027,

and CCF-0811510.

ii

Publications

Aspects of the work describe in this dissertation feature inthe following publications:

• Z. Xie, S. Huang, M. O. Ward, and E. A. Rundensteiner. Exploratory visualiza-
tion of multivariate data with variable quality.Proc. IEEE Symposium on Visual
Analytics Science and Technology, pages 183–190, 2006.

• Z. Xie, M. O. Ward, E. A. Rundensteiner, and S. Huang. Integrating data and
quality space interactions in exploratory visualizations. Proc. 5rd Intl Conf on
Coordinated & Multiple Views in Exploratory Visualization, pages 47–60, 2007.

• Z. Xie, M. O. Ward, and E. A. Rundensteiner. Exploring multivariate data streams
using windowing and sampling strategies.Interacting with temporal data work-
shop, CHI, 2009.

• Z. Xie, M. O. Ward, and E. A. Rundensteiner. Visual analysis of multivariate data
streams based on DOI functions. Technical Report TR-10-06,Worcester Polytech-
nic Institute, Computer Science Department, 2010.

• Z. Xie, M. O. Ward, and E. A. Rundensteiner. Visual exploration of stream pattern
changes using a data-driven framework.Proc. 6th International Symposium on
Visual Computing, 6454:522–532, 2010.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Sketch of Proposed Solutions .. 3

1.2.1 A User-driven Approach Based on DOI Function 5

1.2.2 A Data-driven Approach Using Compression 8

1.2.3 History Views with Nested Hierarchical Timelines 11

1.3 Major Contributions of the Dissertation 14

2 Related Work 16

2.1 Representation of Univariate Data 17

2.2 Layout Strategies for Time-series Data 20

2.3 Conveying Multi-dimensional Patterns 24

2.4 Handling Large Scale and Real Time Data in Time-Series Data Visualization 28

3 Data Model and Example Datasets 32

3.1 Data Model . 32

3.2 Example Streaming Datasets .33

4 A User-driven Approach Based on DOI Functions 35

iv

4.1 The User-driven Framework Based on Windowing, Samplingand DOI

Functions . 35

4.1.1 Basic Concepts . 35

4.1.2 User-driven framework . 36

4.2 DOI Functions . 40

4.3 Visualization Techniques .. 42

4.3.1 Layout Strategies . 44

4.3.2 Extension of Layout Strategies to Type PP DOI Functions 50

4.3.3 Integrating Time-series and Multivariate Data Visualizations . . . 51

4.4 DOI Function Interaction Tool .. 53

4.5 Evaluation 1: User Studies on Layout Strategies 54

4.5.1 Experimental Design . 55

4.5.2 Experimental Settings . 62

4.5.3 Experimental Results . 62

4.5.4 Evaluation Summary and Implications 65

4.6 Evaluation 2: Case Studies on Interaction Techniques and Other Multi-

variate Visualizations . 66

5 A Data-driven Approach to Merging Windows 72

5.1 The Data-driven Framework . 72

5.2 Merge Algorithm . 74

5.2.1 The State of The Art in Data Compression75

5.2.2 The Quality Measure for The Merge Algorithm 76

5.2.3 Brute Force . 79

5.2.4 Heuristic Merge . 81

5.2.5 Stream-based Merge . 85

v

5.3 Visualization of Patterns and Their Changes 88

5.3.1 Juxtaposed Views . 88

5.3.2 Pattern Vector and Pattern Change Views 91

5.3.3 A Guide to Choose Visualization Techniques 95

5.4 Evaluation . 96

5.4.1 Comparisons among Two Merge Algorithms 97

5.4.2 Comparing Proposed Techniques with Uniform Time Axis. . . . 100

6 History Views for History Data Using Nested Hierarchical Timelines 103

6.1 A Framework to Visualize History Data Using Nested Hierarchical Time-

lines . 103

6.2 Visualization Techniques for Merged Mode 109

6.3 Visualization Techniques for Non-merged Mode 111

6.3.1 Virtual Calendar View . 112

6.3.2 Explicitly Conveying Pattern Changes 114

6.4 Usability Evaluation . 120

7 Conclusions and Future Work 125

7.1 Conclusions . 125

7.2 Future Works . 127

Appendices 129

.1 Pattern Vectors for Linear Models .. 130

.2 Pattern Vectors for Data Range .131

vi

List of Figures

1.1 A motivating example for the user-driven framwork 7

1.2 Showing how DOI functions help reduce visual clutter 7

1.3 A step juxtaposition visualization to show 13 windows 9

1.4 A motivating example for merging time windows 9

1.5 A motivating example of history views. 13

2.1 A candlestick chart . 17

2.2 Two kinds of candlesticks .18

2.3 TheSpreadsto represent data uncertainty [46] 18

2.4 Coded timelines by Bade et al. [3] .. 19

2.5 Visualizations inWikiReactive[9] . 19

2.6 Timeboxby Hochheiser and Shneiderman [29] 20

2.7 NameVoyagerby Wattenberg [62] . 21

2.8 The visualization of DNS traffic by Ren [52] 21

2.9 Spiral layout by Ward and Lipchak [60] 22

2.10 Calendar view by Wijk et al. [64] .. 23

2.11 Time-series bitmaps [36] .. 23

2.12 The importance-driven layout by Hao et al. [25] 24

2.13 An example of IVQuery [24] . 25

2.14 A TimeWheel by Tominski et al. [58] 26

vii

2.15 Using heatmap to convey multivariate data patterns [69] 27

2.16 A multi-resolution display using DOI function [26] 28

2.17 Distorted timeline by Bade et al. [3] 29

2.18 Thetimelinein SIMILE project developed by Huynh [31]. 30

2.19 WireVisby Chang et al. [13] . 31

4.1 The user-driven framework .37

4.2 The screenshot of the implemented system under user-driven framework 39

4.3 Two types of DOI functions . 41

4.4 A motivating example for the user-driven framwork 43

4.5 A step juxtaposition output using a type PP DOI function 46

4.6 A juxtaposition output for 25 time windows 48

4.7 A step juxtaposition output for 25 time windows 49

4.8 Two grouping approaches in visualizations for type PP DOI functions . . 51

4.9 The embedded views for the sleep data stream 52

4.10 Showing how DOI functions help reduce visual clutter 54

4.11 An example for constructing experimental datasets 57

4.12 The methodology to construct experimental datasets 58

4.13 How to split the whole canvas into multiple cells 60

4.14 A question used in user studies for user-driven framework 61

4.15 The experimental results of the user study for all questions 62

4.16 The response accuracy for datasets having only 3 time windows 63

4.17 Applying step juxtaposition to parallel coordinates 71

5.1 The data-driven framework by merging windows 74

5.2 An example to show how to measure result quality of merge algorithms . 78

5.3 An example to show the result of brute force merge 79

viii

5.4 An example to show heuristic merge algorithm in three passes 81

5.5 An example to show pattern-blind averaging 84

5.6 An example to show stream-based heuristic merge 86

5.7 A motivating example for merging time windows 89

5.8 A pattern outline view . 89

5.9 A pattern outline view in grid layout 91

5.10 Three approaches to choosing an even or uneven time axis. 92

5.11 A pattern vector view . 94

5.12 The experiment result 1 for comparing merge algorithms. 98

5.13 The experiment result 2 for comparing merge algorithms. 98

5.14 Comparing two brute force algorithms (regular and stream) 99

5.15 Comparing two heuristic algorithms (regular and stream) 99

5.16 A question used in user studies for data-driven framework 101

5.17 The response time for five techniques in data-driven approach 102

6.1 The framework for generating history views 104

6.2 A snapshot of history views in merged mode. 106

6.3 A motivating example of history views. 108

6.4 Merged mode with less levels in merge-based hierarchy. 110

6.5 Merged mode with two levels selected. 111

6.6 Extended 2D grid view . 113

6.7 Added a grid level to history view framework 113

6.8 The non-merged mode views generated by MDS algorithm 114

6.9 Removing two days from the original MDS algorithm 116

6.10 The non-merged mode views with a distance map 117

6.11 The pattern brush on the distance map withδ = 0.4 119

6.12 The pattern brush on the distance map withδ = 0.5 120

ix

List of Tables

4.1 A guideline in the user-driven framework 65

6.1 RT and RA of the usability experiment for history views 123

x

Chapter 1

Introduction

1.1 Motivation

Advances in hardware enable people to record data at rapid rates, e.g., kilobytes or mega-

bytes per second or even higher speeds. Some real application areas require data analysis

at the same speed as the data being collected, such as monitoring the health of a collec-

tion of people, investments, or computer systems. Moreover, in many cases, the volume

of data precludes storage for later analysis. For example, network traffic monitoring in-

volves tracking each packet to identify features of interest, such as bottlenecks and poten-

tial intrusions. It is insufficient to detect potential network attack with significant delay;

immediately revealing an intrusion will increase the network administrator’s effective-

ness in handling the hacking. In the areas of database and knowledge discovery, the term

data streamsor streaming datahas been used to refer to such data that keeps growing

and needs to be processed on the fly. Researchers have developed many techniques to

manage, query and analyze data streams in real-time [22].

In recent years, people have agreed that visualization can play a critical role in the

processes of data analysis and decision-making, since it can help analysts use visual per-

1

ception to uncover different patterns, such as clusters, associations, relationships, and

trends. Moreover, visual analytics can provide an interactive environment that combines

human visual cognitive capabilities with high performancecomputations, thus improving

the speed and accuracy at which analysts discover data patterns. However, there has been

little work to date on stream visualization.

Streaming data is similar totime-seriesdata, which has been identified as one of basic

data types [55] in the area of information visualization. Inboth data types, each datapoint

has a time attribute, i.e., a timestamp. One can find a rich setof visualization techniques

for time-series data in the literature. As the first step, onethus should consider the direct

application of such existing time-series data visualization techniques to streaming data.

Hence, the problem of visually exploring data streams can bepartially addressed. For

example, a continuously expanding line chart can convey thetrend of a univariate data

stream. However, an important characteristic of streamingdata,unbounded input, makes

this simple approach ineffective and incomplete, as existing visualization techniques for

time-series data generally regard the whole dataset as static and assume that all of the

data is available before rendering. This is inappropriate for streaming data. Instead, it is

necessary to design techniques capable of processing streaming data in a continuous and

unbounded fashion.

Two other challenges arise in the visual exploration of bothtime-series and streaming

data that must be addressed in order to help users perform common data analysis tasks:

(1)Temporal Visual Mining : Many data mining tasks can be targeted on time-series

data, including the discovery of temporal association rules and pattern evolution

[53]. Existing time-series data visualization techniquesonly support a small frac-

tion of these tasks. In this dissertation, I focus on one important type of temporal

mining: how data patterns change over time.

2

(2) Multivariate Correlations : Although a few existing visualization techniques for

time-series data try to present the relationships among multiple dimensions, their

usefulness is often limited. For example, Hao et al. computeand display the degree

of importance for dimensions [25] , and present some pre-specified statistical values

among dimensions [24]. However, dimensions often have complex interrelations

that these methods do not convey. In this dissertation, I aimto combine multivariate

and time-series data visualization techniques for streaming data to fill this gap.

The main goal of this dissertation is to present a framework for visually exploring

unbounded multivariate data streams online and afterwards. In other words, this goal

can be split to two parts: (1) visualize streaming data without too much delay when new

data arrives, and (2) provide a history view to help users identify recurring or changing

patterns over history. Although different patterns exist in many application areas, this

dissertation will focus on how multivariate data patterns change over time. Two examples

to be discussed are: (1) the change of the regression line slope; and (2) The movement of

a cluster from one time window to the next

1.2 The Sketch of Proposed Solutions

To achieve the goal mentioned in the previous section, I proposed solutions based on the

following three aspects:

• Data Definition and Preprocessing: A fact is that streaming data is dynamic, since

the new data keeps arriving at data processing centers. But most existing visualiza-

tion techniques are designed for static data. It is true thatone possible solution is

to update the existing techniques a little bit to adapt them to the dynamic data. For

example, shifting a line chart can leave space for new data. However, this design is

awkward because it lacks extensibility. For example, if theapplication requirement

3

is to convey complex multivariate data patterns, it might beunavoidable to use scat-

terplots or other visualization techniques that are difficult to shift. In addition, some

tasks require the visualization systems to retrieve data patterns using data mining

algorithms before generating the final output. To solve these problems, I propose

to separate the data preprocessing from the visualizations. In this dissertation, a

data preprocessing unit was designed that can retrieve datapatterns and detect pat-

tern changes in the streaming data, and wrap a part of the streaming data in a static

dataset before sending it to the visualization unit.

• Visualizations for Current Data : Although I mainly use existing visualization

techniques for static data, the visualization itself stillcan change when a new time

window arrives. Since data changes might be very quick, or there are too many

changes in one figure, under certain circumstances, it is possible that the visualiza-

tions have changed to the next frame before users fully extract the pattern changes

of interest. Thus the design of visualization techniques should reduce users’ re-

sponse time as much as possible.

• Visualizations for Historical Data: As well as monitoring the live stream, users

might want to explore the past data over a long period, e.g, within the past year.

Some common data analysis tasks include: What is the trend for the data patterns

within the past year? Are there any cycles or rules for the data pattern changes? Do

some time periods have similar data patterns to a specific time window? To help

users answer these types of question, data preprocessing algorithms and visualiza-

tion techniques are needed for history data. For the data preprocessing, I made use

of the algorithms for current data but with some adaptations. For example, users

might want to observe the data in a hierarchical time structure, so the data model

must be modified to accommodate this goal. When designing thevisualizations and

4

interactions, the data can be regarded as static and the restrictions for current data

can be ignored. In other words, the historical data can be regarded as regular time

series data.

In the remaining part of this section, I will briefly describethe three developed ap-

proaches. The first two aim to visualize dynamic streaming data, while the last focuses

on history data.

1.2.1 A User-driven Approach Based on DOI Function

This approach aims to visualize the dynamic data as follows.The data in the current

window is mixed with those in the past windows and displayed in an interactive view.

Datapoints from different time windows mixed within the view are distinguished using

different visual attributes, or the data is juxtaposed in anordered set of views. A degree

of interest (DOI) function [21] is introduced to describe the degree of user interest in a

particular window. A lower DOI value results in a smaller sampling ratio. This approach

works in two ways: (1) Users can choose which windows to show,normally those con-

taining data patterns that users want to compare; and (2) Users can reduce visual clutter

by assigning lower DOI values to selected windows. A specialconsideration during the

design of the DOI function was to adapt it to a dynamic context. For example, in highway

traffic monitoring, one time window could be 30 minutes, and users want to compare the

data patterns between the current window and the previous one. When it is 6:00AM, the

two most recent windows are 5:00AM-5:30AM and 5:30AM-6:00AM. After one hour,

the two recent windows will be 6:00AM-6:30AM and 6:30AM-7:00AM. Thus, a reason-

able way is to refer to the time window using the distance between a given window and

the current window in the DOI function.

Figure 1.1 shows examples of visualization layouts. This figure uses a small slice

(5:00AM-6:30AM on Feb. 16, 2009) of a traffic data stream provided by Mn/DOT (Min-

5

nesota Department of Transportation) [48]. In this slice, each datapoint includes three

measured values during a 30 second period from sensor D722. Ionly choose two dimen-

sions to investigate their correlations here. One dimension is the average vehicle speed

(Speed), and the other is the percentage of time that the detector sensed a vehicle (Oc-

cupancy). A traditional time-series data visualization technique, a line chart, is shown

in Figure 1.1(a). Figure 1.1(b) shows a naı̈ve solution thattreats all datapoints in these

1.5 hours as a static dataset. One can neither identify any strong relationship between

SpeedandOccupancy, nor learn how patterns changed over time. Figure 1.1(c) splits the

data stream into three time windows and uses colors to denotethe age of the windows.

One can draw a conclusion thatOccupancydoes not correlate with the change ofSpeed

in the early period, but an obvious negative relationship exists between these two dimen-

sions later. In Figure 1.1(d), each time window is visualized by a scatterplot and three of

them are juxtaposed in the order of the time attribute. One can easily confirm the pattern

changes that were found in Figure 1.1(c), but the last visualization technique relieves the

visual clutter found in Figure 1.1(c). In Figure 1.2, One cansee how DOI functions work

to reduce visual clutter. After the DOI function is adjustedto reduce sampling ratios of

the three windows, visual clutter is reduced, and users can more clearly see how a single

cluster moves over time.

Although the above approach can be applied to regular statictime-series data, the

following issues are some considerations to make it efficient for streaming data:

• As mentioned above, the definition of the DOI function is based on the dynamic

context of the data stream.

• When designing the visualization techniques to convey the data pattern changes,

users’ response time is the first priority, since the visual output will get refreshed at

regular intervals and users have limited time to observe each figure.

6

(a) (b)

(c)

0500 0530 0600
Line A Line B

(d)

Figure 1.1: This figure shows some of the main ideas of the user-driven approach based
on DOI functions using traffic data collected from a highway entrance. (a) A traditional
time-series data visualization; (b) All datapoints are shown together in a traditional scat-
terplot; (c) The ages of data are denoted by colors; (d) Juxtaposition of data in the order of
timestamps. Figures (c) and (d) can convey how the fit line slope (I added lines A and B
to Figure (d) to make this obvious) changes from one window tothe next, but it is difficult
to see this change in (a) and (b).

(a) (b)

Figure 1.2: Using DOI functions to reduce visual clutter on asleep data stream. (a) All
datapoints are displayed; (b) Sampling is applied to each time window based on the DOI
function after user adjustment.

7

1.2.2 A Data-driven Approach Using Compression

The solution based on DOI functions is effective to visualize the data pattern changes

across several time windows. However, if the number of time windows is very big, say

20, this approach does not work well. Figure 1.3 uses step juxtaposition to visualize

a slice of traffic data having 13 windows. In this figure, the focus is still the changes

of the regression line slope for the linear trend betweenOccupancyand Speed. One

interesting phenomena is that the regression line in the first subfigure is horizontal, and it

becomes almost vertical in the last subfigure. So, one data analysis task is to find where

the regression line changed. This might take 20 or 30 secondsto find the change in the

subfigures with label “big change”. Under some circumstances, this is not an acceptable

response time for urgent tasks. The reason is that the subfigures having “big change”

are buried by other ones. In conclusion, when the number of time windows chosen by

the DOI function is too big, the disadvantages of the proposed solution include: (1) it

might result in a slow response rate, which is not acceptablefor some applications, e.g.,

intensive care units; (2) the display canvas is wasted by a lot of subfigures with small or

no changes.

One intuitive solution is using a distorted time axis via assigning more space to sub-

figures with big pattern changes and merging those with smalland no changes. This is a

commonly-used technique in many time-series data visualizations [3, 26, 46]. However,

all of these techniques are user-driven, which means users decide which slice of the data

gets more screen space. For data streams, this is not acceptable, because many applica-

tions need a quick response. Thus, the basic idea is to designalgorithms to automatically

merge windows with small or no changes and assign more screenspace to periods having

large pattern changes. Figure 1.4 shows a motivating example, where 48 original win-

dows (24 hours) are merged to 3 windows and then visualized by2 subfigures. Note that

each subfigure contains the data in two adjacent time windows, and is linked to the time

8

Figure 1.3: A juxtaposed output using the traffic data of 6.5 hours from a specific sensor.
13 windows are shown in this figure. Each subfigure shows two contiguous windows.
Data for the current time period is black, and for the previous is yellow. Significant
changes are buried in a lot of subfigures with few or no changes.

Figure 1.4: 48 windows, containing the data in Figure 1.3, are merged to 3 windows and
then shown with 2 scatterplots. Each scatterplot contains two windows, and is linked to
the time axis via three lines to delimit the time range for these two windows.

9

axis via three lines (two thick and one narrow) to delimit thetime ranges for these two

windows. Obviously, Figure 1.4 reduces users’ response time significantly, and merging

maintains most of the information about recognizable changes of the fit line slope: the

increasing at 6AM, and the decreasing at 8PM.

After merging windows, the next problem is to visualize the data pattern changes.

In this dissertation, I describe three types of views to achieve this goal: (1)juxtaposed

views: laying out all windows using small multiples to enable users to detect the pattern

changes; (2)pattern vector views: representing the data pattern in each window via a

vector, and then visualizing these vectors using traditional time-series data visualizations,

e.g., line charts; (3)pattern change views: calculating the distance (change) between

pattern vectors and visualizing these changes directly.

For some applications, a pattern vector contains only several variables, and users are

interested in how each variable changes across time windows. For example, in the prior

examples about traffic data, the pattern of interest is the slope change of the regression

line. This is equal to tracking a univariate variable. Thus it is reasonable to use traditional

time series data visualization techniques, such as line charts or bar charts, to represent

the trend. For the proposed three views in the prior paragraph, pattern vector and pattern

change views are suitable for this type of case, even across arelatively long time period,

e.g, the changes of traffic patterns across one week.

In the algorithm to merge windows, the number of original windows in the current

view shown to users is fixed. If one new window arrives, the oldest window in the final

view must be removed. This expired window cannot be discard,because users may want

to study the change of data patterns over a long time range, e.g., the traffic change within

one month. Thus another important issue that needs to be addressed is about storage.

Policies have been designed to choose whether to store all tuples or only a vector to

describe the data patterns (the pattern vector), for a specific time window. The latter

10

solution can save memory space at the cost of losing data details and requiring that the

pattern vector of a merged window must be computed from the vectors of its associated

original windows. This assumption is true for most statistical values, such as average,

standard deviation, minimum and maximum. Chen et al. indicate that this is possible for

regression analysis on data cubes [15].

1.2.3 History Views with Nested Hierarchical Timelines

In the prior section, I proposed pattern vector and pattern change views with traditional

time series data visualization techniques for streaming data across a relatively long time

period. This is a possible solution for the visualization ofhistory data. However, if the

duration for the whole dataset is very long, e.g., one year, this solution might fail. It is

true that the merge algorithm can be applied to the whole dataset, but this cannot satisfy

users’ requirements. Reasons are as below:

• It is not practical to apply the merge algorithm to the whole dataset because it is

very possible to lose some important details. For example, if the traffic data of

one year is compressed to less than 365 time windows, nobody can see the traffic

pattern changes in some days.

• Only showing line or bar charts cannot solve some more practical data analysis

tasks, such as discovering the similarity among different time periods.

• Many temporal datasets have hierarchical time structure and their patterns change

in a cyclic way. A traditional line chart or bar chart, as mentioned in Sections 1.2.1

and 1.2.2, cannot effectively convey this phenomena.

In the recent literature, distorted timelines are commonlyused in the visualizations

for large scale time series data [3, 26, 46, 62]. For example,Bade et al. [3] used three

11

timelines at different resolutions to represent a time series dataset across 9 years. Users

can easily navigate to any time period. Borrowing from this idea, I have developed a

hierarchical structure to represent timelines. This structure is defined by users. It can be

based on natural time units, such as years, quarters, weeks,and days, or from an arbitrary

definition. Figure 1.5 shows an example of hierarchical timelines having five levels. Users

have specified a perspective level on quarters and a pattern level on days. It means that

users wanted to investigate how the traffic patterns change across days within a selected

quarter. Figure 1.5 also shows a history view composed of glyphs in a grid. Each glyph

corresponds to one day in the selected quarter and conveys the slope change of regression

line (OccupancyagainstSpeed) via a curve.

Although this is a natural extension ofpattern vector viewsdescribed in Section 1.2.3.

this solution has some obvious advantages:

• This solution makes it easy for users to discover cyclic pattern change phenomena

on the streaming datasets having hierarchical time structure.

• The goal to investigate the similarity among time windows cannot be achieved by

applying more visualization and interaction techniques tothe above proposed solu-

tion. For example, distance measures can be used to represent the difference among

glyphs and map them to colors.

When users explore the traffic data, they might want to observe the detailed informa-

tion within one day instead of pattern abstractions. That isto say, they want to observe

the datapoints themselves instead of pattern vectors. Thiswill bring the same problem

as that in Section 1.2.2, long response time caused by too many time windows (Figure

1.3). Therefore, I use the merge algorithm mentioned in Figure 1.2.2 to reduce the num-

ber of visualized windows in each day. Different from the solution described in Section

1.2.2, this generates multiple merge results, each of whichhas a different number of time

12

Figure 1.5: This figure shows a history view (top) with hierarchical time structure (bot-
tom) defined by users. I focus on the changes across contiguous windows on the pattern
level (days) in this figure. The selected quarter (March 30 - June 29) on the perspective
level is highlighted in red color and indicates the time periods of interest. The red color
on the week and day level means all segments in the selected quarter are selected. In the
history view, each glyph corresponds to one day (pattern level) and contains a curve to
represent the slope change of regression lines within 48 time windows for each day. Grey
background is applied to all weekdays to help readers observe data patterns.

windows. One example is first merging 48 original windows to 22 windows, and then

changing the threshold for the pattern change measures for merging 22 windows to 9

windows. This merging process can be repeated until until only one window contains all

datapoints in this day. Thus a hierarchical structure is generated to allow users to select

an appropriate level to observe data details.

13

1.3 Major Contributions of the Dissertation

The main contributions of this dissertation are as follows:

A user-driven approach based on a DOI function

• A framework for the visual exploration of streaming data is presented. This frame-

work applies the strategies of windowing and sampling to multivariate and time-

series data visualization techniques. Its aim is to handle unbounded input as well

as to convey trends, multivariate correlations, and the changes of data patterns over

time.

• This framework allows users to define DOI functions to describe the degree of

users’ interest [21] for different portions of the data. This function enables users to

choose which windows to display, and to adjust sampling ratios to reduce possible

visual clutter.

• Four layout strategies are designed to organize multivariate data visualizations and

convey the change of multi-dimensional correlations.

• User studies showed that three of four proposed strategies can effectively convey

multivariate pattern changes compared to traditional time-series data visualization

techniques. Using the experimental results, a guide was derived to advise data

analysts and visualization system developers to choose appropriate layout strategies

in terms of the characteristics of datasets and data analysis tasks.

• Interaction techniques were designed and integrated to help analysts explore data

streams, including a DOI function interaction tool that helps users analyze data via

a trial-and-error process, and linked brushing across multiple views. Several cases

studies are discussed to show the effectiveness of these interaction tools.

14

A Data-driven Approach Using Compression

• A framework was developed to visualize data streams with thegoal of showing

significant pattern changes to users. The main approach is tomerge those windows

with few or no changes when visualizing and storing recent aswell as old data.

• The above framework is materialized using two frequently used data patterns: linear

trends and data range.

• Experiments were performed to show that the merge algorithmpreserves more

change information than an intuitive pattern-blind averaging. User studies were

conducted to demonstrate that the techniques can significantly reduce users’ re-

sponse time when looking for significant pattern changes in adata stream.

History Views with Nested Hierarchical Timelines

• A framework was designed to convey the pattern changes within a relatively long

time period. The main idea is to generate a hierarchical structure for timelines, with

which users can easily navigate within the history data.

• An MDS algorithm and brushing technologies were applied to the history view in

order to ease the exploration on the similarity among time windows.

• A usability evaluation was performed to confirm that most users can correctly un-

derstand the concepts involved in these new techniques and can learn to use the

implemented system without too much difficulty.

15

Chapter 2

Related Work

Based on the analysis in Chapter 1, one can see that the techniques of streaming data

visualization can be regarded as real-time time-series visualization with unbounded and

large-scale input. Therefore, it is necessary to go back to existing visualization techniques

for time-series data in recent literature and seek inspirations.

Time-series data visualization is a very popular topic in information visualization.

It aims to help analysts perceive data patterns in datasets,where each data item has a

timestamp or a time dimension. In the recent literature, onecan find many techniques

related to this topic [2, 3, 6, 12, 24, 25, 26, 27, 28, 29, 45, 46, 49, 58, 62, 63, 64].

Most of these techniques for time-series data visualization focus on one or more of

the following four sub-problems: (1) representation of thechange of univariate data over

time; (2) layout of data items in terms of the time dimension;(3) how to convey relation-

ships and data patterns among multiple data dimensions; and(4) how to handle very large

and real-time data.

These four sub-problems are not independent. For example, agood layout can help

mining multi-dimensional patterns. In the following sections, I will discuss existing tech-

niques in terms of the above four aspects.

16

2.1 Representation of Univariate Data

In order to represent how univariate data change over time, line charts are frequently

used. One can find many applications in routine life, such as financial areas, meteorology,

and so on, where line charts can represent the change of stockprices, currency ratios,

temperatures, or some other numerical values. Since simpleline charts cannot convey

too much information, people normally add some variations to represent more patterns of

data. The candlestick chart [10] is such a variation widely used in representing the change

of stock prices, currency ratios or other equities (see Figure 2.1). This chart combines

line charts and bar charts, which are used to reflect the change of univariate data in the

specified period (e.g., a day). Figure 2.2 shows two types of candlesticks corresponding

to the increasing and decreasing price (ratio) in a time period.

Figure 2.1: A candlestick chart which denote change of currency ratio between USD and
JPY from Nov. 1, 2005 to Jan. 7, 2006 [10].

Miksch et al. put a vertical colored line in each time point torepresent the data uncer-

tainty for a univariate temporal dataset [46]. They first applied a linear regression model

to a time window of fixed size sliding over the entire curve in small steps. Then they

plotted a vertical red line, termed thespread, around the center of each regression line to

represent the distribution of datapoints in the corresponding sliding window. The height

17

(a) Bullish (b) Bearish

Figure 2.2: Two kinds of candlesticks (Low: the lowest price, high: the highest price,
open: the price in the beginning of the period, close: the price in the end of the period.

of each red line is2D, whereD is the standard deviation of the datapoints in that slid-

ing window. By connecting all upper and lower ends of thespread, this approach can

describe a region containing most of the datapoints. Figure2.3 shows such a region with

threespreads.

Figure 2.3: The red stripes around the regression line denote the standard deviation, thus
the distributions of the datapoints in the corresponding sliding window. The polygon
generated by connecting the ends of these stripes contains most of the datapoints [46].

Bade et al. [3] created an ICU monitoring system, namedMIDGAARD, which utilizes

line charts to display changing pathological measurementsof patients, such as body tem-

peratures and blood pressure. They applied various visual encoding styles to the basic

line charts to better convey the data trends. Figure 2.4 shows two kinds of encoding for a

fever curve, which can display clearly the change of body temperature from one threshold

value to the other.

Boukhelifa et al. designed an open architecture, namedWikiReactive, to collect sev-

18

(a) Color-coded (b) Height-coded

Figure 2.4: Two types of coded timeline representation of a fever curve [3].

eral aggregated measures on the French Wikipedia. This architecture can provide the data

via Web Service or visualization [9]. For example, in Figure2.5, line charts are used to

show the increased activities on Wikipedia Fr.

Figure 2.5: This figure shows the number of added (in blue), deleted (in red), and moved
(in green) characters for all articles on Wikipedia.fr. [9].

Hochheiser and Shneiderman developedTimeSearcher, an information visualization

tool to help analysts explore line charts composed of multiple univariate time-series pro-

files [29]. They usedtimeboxandangle querywidgets in this tool to represent queries on a

univariate profile. Ifni ∈ N is an item in a time-series dataset, andni(j) is the value ofni

at timej, then atimeboxis a 4-tuple:b = (tmin, tmax, vmin, vmax). Note thattmin ≤ tmax

andvmin ≤ vmax. If one itemni satisfies∀t(tmin ≤ tmax → vmin ≤ ni(t) ≤ vmax), one

can say that this item satisfies this timebox. Anangle querywidget is defined as a 4-tuple:

b = (tmin, tmax, θmin, θmax). It can help users find items with similar slopes over several

specified time periods. Figure 2.6 shows the results of applying timeboxes to a dataset of

stock prices that changed over time.

The river metaphoris frequently used to visualize a special kind of univariatetime-

19

(a)

(b)

Figure 2.6: The original dataset contains prices of 1430 stocks. In order to find stocks
satisfying some specified constraints, a single timebox is used in (a), thus filtering a subset
of items. Three timeboxes in (b) result in a further refinement of the query in (a) [29].

series data, which represents the number of occurrences over time for repeated items, e.g.,

baby names [62], DNS traffic [52], and keywords of patents [27]. In this technique, The

river’s changing width corresponds to the magnitude of occurrences. Figure 2.7 shows a

screenshot fromNameVoyager, which shows the frequency of baby names. In Figure 2.8,

the band width represents the request frequency from different source IP addresses.

Although my dissertation will focus on multivariate data, some measures in the target

patterns, such as slope of the regression lines, are still univariate. For example, in history

view, line charts will be used to represent the regression lines across a long time period.

2.2 Layout Strategies for Time-series Data

An intuitive approach to time-series data layout is timelines[59], which use the horizontal

axis to represent time. The horizontal position of a data item conveys its time attributes.

20

Figure 2.7: This figure shows the change of frequency for babynames starting with ’J’
from 1880s to 2006. Blue and red rivers correspond to boy and girls respectively. The
river width is proportional to the number of occurrences [62].

Figure 2.8: In this figure, each stream band corresponds to one source IP address. It width
is proportional to the number of request sent from this IP [52].

21

Timelines are effective in showing how one variable changesover time. We can see that

all of the discussed techniques in Section 2.1 use a timelineas the layout strategy.

Other than timelines, researchers have developed other layout methods to facilitate

specific analytic tasks.Spiral Graphs[12, 28, 60, 63] use a spirally shaped time axis to

visualize temporal data having seasonal cyclic characteristics. If an appropriate visual

encoding is utilized, repeated patterns can be easily identified. Figure 2.9 shows a spiral

layout of star glyphs [60]. Each glyph contains the average values of four statistical

variables in one month: Dow Jones Industrial Average (top),Standard and Poor’s 500

Index (bottom), retail sales (right), and unemployment (left). One circle is one year. 12:00

corresponds to January. We can easily identify some data patterns which are difficult to

obtain with regular timelines. For example, normally, sales peak happens in December,

and unemployment reaches the maximum in June.

Figure 2.9: The star glyphs with spiral layout for a time-series dataset about business,
sales, and unemployment data [60].

Van Wijk and Selow introduced aCalendar Viewcombined with clustering to visual-

ize natural phenomena that change weekly, monthly, or yearly [64]. Figure 2.10 shows

22

such a view to show the number of employees present at a research center. Days having

similar behavior of employee presence are organized into one cluster tagged with differ-

ent colors. For instance, cluster 718 (green color) denotesthe Fridays during the summer.

In this calendar view, the changing data patterns over time are showed clearly with the

help of the calendar and clustering.

Figure 2.10: The calendar view of the number of employees present at a research cen-
ter [64].

(a) (b)

Figure 2.11: This figure shows time-series bitmaps to color encode time series and repre-
sent them via images. (a) The DNA of four animals are represented by images using the
Chaos gamealgorithm, which is the base of Time-series bitmaps. It is obvious that the
left two animals are similar to each other, and a high degree of similarity exists between
the other two. (b)Four files correspond to different patients with congestive heart failures.
One can find thateeg6is different from other three people [36].

Kumar et al. developedTime-series bitmapsto use a compact way to represent a time

23

series dataset [36]. This technique used an algorithm adapted from theChaos game[4]

that visualizes DNA sequences by color encoding the genome patterns. It first uses the

Symbolic Aggregate approXimation(SAX) [42] to convert real valued series into discrete

symbols, and then applies theChaos gameto them to produce bitmaps. Figure 2.11 shows

DNA visualizations by theChaos game(Figure 2.11(a)) andTime-series bitmaps(Figure

2.11(b)).

2.3 Conveying Multi-dimensional Patterns

For the third sub-problem, most techniques discussed abovecan represent some relation-

ships or data patterns implicitly. For example, integrating multiple lines in one graph

can help identify how the change of one dimension relates to the others. However, direct

visualization of the differences might be more effective.

Figure 2.12: The importance-driven layout of a time-seriesdataset of 24 stock prices [25].
The stock price is normalized and redundantly mapped to the bar colors and height.

Hao et al. used an importance-driven layout to represent thedegree of importance

for different dimensions via assigning the important dimensions more space [25]. Figure

2.12 shows a time-series dataset of 24 stock prices. Note that each stock is represented

by a bar chart. The size of each bar chart is proportional to the degree of importance for

the corresponding stock. From this figure, one can easily learn which stocks are more

24

important than others. Obviously, this approach can be easily adapted to other measures

for multiple data dimensions in multivariate time-series datasets or data streams.

(a) (b) (c)

Figure 2.13: An example of applying IVQuery to a time-seriesdataset about sales data
for a company in different countries [24].

The Intelligent Visual Analytics Query (IVQuery) is a visual analysis tool to help

users perceive relationships among multiple time-series data dimensions [24]. The IV-

Query can report some analysis results, such as relevance measures, classification, and

clustering, after users select the region of interest. An example is shown in Figure 2.13.

Figure 2.13(a) is a monthy regional sales map. Each line is a bar chart representing the

sales amount in a country, with one bar denoting one month. One pixel in the bar corre-

sponds to one invoice and its color is determined by this transaction$Amountin terms of

the legend on the right side. We can find that US and France havethe most invoices in

December. If analysts want to mine the sale behavior of this month in these two countries,

they can select the corresponding two bars and perform an IVQuery. The analysis results

are shown in Figures 2.13(b) and 2.13(c), corresponding to US and France respectively.

The numbers below the# of VisitsandQuantityare the Pearson correlation coefficients

used to measure the relevance between these two dimensions and the invoice$Amount.

These two dimensions and$Amountare also visualized via pixel maps. Figure 2.13(b)

25

indicates that sales$Amountin US correlates more to the quantities in each transaction

(Quantity, 0.873) than to the number of visits of the customers (# of Visits, 0.603). How-

ever, the reverse situation happened in France. Based on theIVQuery results, analysts

might design better sale strategies for different countries in the future.

The above two techniques both have a common goal to convey multi-dimensional

relationships in time-series data. However, their limitations are obvious. Importance-

driven layout is limited to representing the ordering of multiple dimensions. The IV-

Query currently can only measure relevance, conduct classification and clustering. More

non-trivial design and implementation are needed if users want other types of statistical

or data mining analysis. Compared to these techniques, the goal of my dissertation is

to enable visualizations to convey general multi-dimensional relationships, such as with

traditional multivariate visualizations: parallel coordinate [32], scatterplot matrices [1],

star glyphs [56], dimension stacking [38], and pixel-oriented displays [33]. My basic idea

is to adapt these techniques to data streams.

Figure 2.14: A TimeWheel with six variables changing over time [58].

TimeWheelputs the time axis in the center and other data dimensions arranged circu-

larly. Each data item corresponds to a group of lines from thetime axis to the axes for data

dimensions. Figure 2.14 shows a TimeWheel to visualize a time-series dataset having six

dimensions, not including the time dimension. However, onelimitation of TimeWheel

26

is that it is difficult for users to identify data patterns among different data dimensions

because it does not explicitly convey the relationship among dimensions. I believe that

users will be able to identify and classify complex temporalpatterns and relations via the

research efforts that will be presented in my dissertation.

Yu et al. developed a tool for the visual analysis of multi-stream multimedia data [69].

Continuous time-series data and event data are first extracted from the multimedia stream,

and then are visualized via line charts and heatmaps. Users can highlight selected data

portions, or zoom in on the region of interest to study the data trends and the multivariate

data patterns. Figure 2.15 shows a screenshot from the system developed by Yu et al.

Compared to the techniques that are presented in this dissertation, this tool utilizes line

charts and heatmaps to convey multivariate relationships.This is not effective since these

visualization techniques only excel in conveying univariate trends.

Figure 2.15: This figure shows an example of using heatmap to investigate the multidi-
mensional correlations among four variables in a multimedia data stream [69]. Although
one can see that variable 1 and variable 2 are correlated and variable 3 and variable 4
are not, this technique only excels in conveying univariatetrends and might cause a long
response time.

27

2.4 Handling Large Scale and Real Time Data in Time-

Series Data Visualization

In order to deal with large time-series datasets, some abstraction algorithms have been

introduced into time-series visualization for adapting large temporal datasets to limited

display space. The approaches can be categorized into two ways: data-driven [45] and

user-driven [26, 31] means.

Figure 2.16: A multi-resolution display for a time-series dataset containing the CPU uti-
lization history of 8 hosts. One host corresponds to one row in the figure. Three parts of
each row have different DOI function values. The most recentdata is at the right part, and
has the largest DOI values, so it has a higher sampling rate and a smaller grid size. The
older data is in the middle and the oldest is at the left. They have lower sampling rates,
thus yielding a bigger grid size [26].

Miksch et al. developed an abstraction algorithm for temporal univariate data that

aims to transform numerical values to qualitative descriptions [45]. It can smooth data

oscillation near thresholds. This algorithm was implemented in VIE-VENT, an open-

loop knowledge-based monitoring and therapy planning system for artificially ventilated

newborn infants. Hao et al. used the sampling technique to abstract time-series data and

introduced DOI (degree of interest) functions to determinethe sampling rate. The DOI

function is used to represent how users are interested in different portions of a time-series

dataset [26]. The subset of the original dataset with a high DOI value will be abstracted

using a high sampling rate and displayed in high resolution.Otherwise, the overview with

lower resolution corresponding to the DOI value will be displayed. An example is shown

28

in Figure 2.16. In this dissertation, I will extend the DOI function to dynamic context

for streaming data, as well as the use case that needs to convey repeated occurring data

patterns.

Figure 2.17: The timeline interaction: the bottom timelinerefers to the whole time pe-
riod. Users can select a subrange, thus getting a rescaled view in the middle and top
timelines [3].

If using an abstraction algorithm, a distorted timeline might be necessary to give im-

portant data more space. This technique is used in many research efforts [3, 26, 31, 46,

62]. Figure 2.17 shows an interaction interface to distort atimeline driven by users [3].

Huynh’s timeline in SIMILE project [31] uses the same way to distort a timelineas

Figure 2.17, but focused on representing instant (focusingon a specific time) and dura-

tion(occurring over a period of time) events. Figure 2.18 shows a screenshot oftimeline

that visualizes the instant events before and after the President Kennedy was assassinated.

It represents the time axis in hierarchical ways. The bottompart has a bigger interval (15

minutes per cell), while the top uses one grid to denote 5 minutes. Dragging the bottom

part horizontally can make the visualizations shift more quickly than doing it on the top.

Actually, I followed two basic approaches, namely the data-driven and user-driven

29

Figure 2.18: A screenshot of thetimelinein SIMILE project developed by Huynh [31].
There are two time axes in this figure. The top one has a finer granularity.

means discussed in previous text, in my dissertation. The difference between the above

research efforts and mine is that they are only applied to univariate data or events and did

not consider real-time requirements. I focused on unbounded multivariate data generated

in real-time to overcome this limitation.

Visualization experts have developed some systems used in real applications to mon-

itor large-scale time series data.WireVisis a system that can help banks detect fraudulent

activities using a set of coordinated views based on identifying specific keywords within

the wire transactions [13]. Figure 2.19 shows a screen snapshot of this system. It is

composed of four views: (1)the heatmap(top left), which uses colors to represent the

frequency of keywords (column) in account clusters (row); (2) search by example(top

right), that can search accounts having activities similarto a specific wire transfer; (3)

keyword graph(lower right) to show the relationship between keywords, with the most

frequent keywords in the middle of the view; (4)strings and beads view(lower left), in

which the strings (the curve in the view) represents the accounts or clusters of accounts

over time, and the beads (the dots on the strings) refer to specific transactions on a given

30

day. Note that, in the fourth view, the x-axis shows the progression of time, and the y-

axis denotes the “value” of the transaction, such as the amount of transactions, and the

frequency of activities. Four views are coordinated. For example, if users selected a key-

word in the heatmap, then all activities (beads) in thestrings and beads viewhaving this

keyword will be highlighted. If the fraud analysts are interested in one activity and select

it, accounts having similar behavior will be shown in thesearch by exampleview. Users

further can select one search result and look at it in other views. Because illegitimate

wire transfers normally have similar pattern on keywords, amount and frequency, this

system can effectively help risk managers in banks find and report those transfers related

to criminal endeavors.

Figure 2.19: This figure shows theWireVisdeveloped by Chang et al. [13]. It visualizes
the information within wire transfers and help fraud analysts in banks to identify those re-
lated to criminal endeavors such as money laundering. This system shows four views:the
heatmap (top left), search by example (top right), keyword graph (lower right), and strings
and beads (lower left).

31

Chapter 3

Data Model and Example Datasets

3.1 Data Model

In the context of this dissertation, a data point is defined as:

(V, ts) = (v1, v2, ..., vn, ts) (3.1)

wheren is the number of dimensions,vi(1 ≤ i ≤ n) are real numbers denoting attribute

values, andts is the timestamp when the datapoint originated. Nominal values or other

types of data, such as documents, images and video, are left for future work.

When investigating different streaming datasets, I found three main types of multi-

variate data streams, which is important for the selection of visualization techniques:

• Univariate-Aggregation: In this type of data stream, each dimension can be re-

garded as a univariate data stream. For example, in Equation3.1, if vi represents

the price of one company’s stock, this dataset belongs to a univariate-aggregation

type.

• Object-Aggregation: For some data streams, arriving datapoints belong to differ-

32

ent objects, so trends on each dimension do not always make sense. One example

is the KDD CUP’99 dataset [50], which is a network intrusion detection stream

dataset obtained from an experimental network at MIT Lincoln labs. It recorded

some attributes, such as duration and the number of bytes, for all TCP and UDP

connections within nine weeks when some network attacks were simulated.

• The Combination of above Two Types: The KDD CUP’00 dataset [34] is a

combination of the above two types. It contains clickstreamand order data from

Gazelle.com. Obviously, the dimensions in this data stream, such as quantity, and

tax amount, cannot form univariate data streams because they belong to different

purchasers. However, if a subset corresponding to a specificbuyer or product is

picked, it can be regarded as univariate aggregation.

In this dissertation, I will focus on univariate-aggregation and try to visually convey

trends for each dimension as well as multivariate data patterns.

3.2 Example Streaming Datasets

The two streaming datasets used in this dissertation are thefollowing.

Traffic Data Stream: I got this dataset from Mn/DOT [48] (Minnesota Department of

Transportation). In Section 1.2.1, I have shown a slice of this data stream. Mn/DOT

installed more than one thousand sensors on highway entrance/exit ramps and main lanes

throughout the Twin Cities Metro area. Each detector can collect a value for each of the

following measures with an interval of 30 seconds: (1) Volume: the number of vehicles

passing the detector; (2) Occupancy: the percentage of timethat the detector sensed a

vehicle; and (3) Speed: the average speed of all vehicles passing the detector. The website

of Mn/DOT provides a Java-based tool,DataExtract, to allow users to extract detector

data to csv files. Thus several thousand values can be obtained every 30 seconds. Instead

33

of using all of these values at the same time, I select one detector and retrieve its three

measures during a specific time period, e.g., one day or one week.

Sleep Data Stream: This data stream is a physiological dataset (Santa Fe time series

competition data set B) selected from the PhysioBank archive [23]. It is recorded from

a patient suffering from sleep apnea (periods during which he takes a few quick breaths

and then stops breathing for up to 45 seconds) in a sleep laboratory. Since it is relatively

long (about 4 hours at a frequency of 2Hz), it can be used to simulate a data stream. This

dataset has three measures: heart rate, chest volume (respiration force), and blood oxygen

concentration.

Although the above datasets both have only three dimensions, the proposed techniques

in this dissertation can support more dimensions because they are based on some tradi-

tional multivariate visualization technologies, such as scatterplot matrices and parallel

coordinates.

34

Chapter 4

A User-driven Approach Based on DOI

Functions

4.1 The User-driven Framework Based on Windowing,

Sampling and DOI Functions

In this section, I will discuss my proposed user-driven framework. The basic goal of this

framework is to provide a mechanism that allows users to select multiple time windows

of interest, from which they can observe how data patterns change across windows or

across cycles. The design of this framework also can claim its validity within the dynamic

context of the data stream.

4.1.1 Basic Concepts

Sampling Ratio: The proposed method is based on sampling. The termsampling ratio

is used as the percentage of datapoints to be selected to display. Sampling ratio is defined

35

as follows:

r(sampling ratio) =
the number of selected datapoints

the number of all datapoints
(4.1)

Note that sampling ratior must satisfy0 ≤ r ≤ 1.

DOI Functions: A DOI function represents how interested the user is in seeing a particu-

lar time window. In a regular static dataset, a DOI function calculates a value to represent

the degree of interest for a portion of the dataset based on, for example, the age of the

data or the presence or absence of a data feature. Then the portion of data with high DOI

values will be displayed with more details [21]. For streaming data, when the stream

system gets a new time window (Windowi), a specific DOI level should be applied to

this new portion of data. However, when Windowi expires and a new window (Window

i + 1) becomes the current one, users might want to focus on Windowi + 1 and show

less interest in Windowi. In this situation, the sampling ratio for Windowi must change.

Hence, an age-based DOI function should have two parameters: a timestamp representing

the specific time window and the current time point. Formally, the DOI function is given

asDOI = fdoi(td, tc), wheretd andtc are the timestamps corresponding to the target time

window and the current one.

4.1.2 User-driven framework

In order to describe this framework clearly, I will first briefly describe the information

visualization reference model, or namely the visualization pipeline. In this model de-

veloped by Chi [16] and re-interpreted by Card, Mackinlay, and Shneiderman [11], the

visualization process is divided into three steps: (1) datatransformation: pre-process the

raw data and generate data tables; (2) visual mapping: construct a visual abstraction of

the data represented by visual properties, such as position, color, and geometry; (3) ren-

36

dering: create interactive views of the data. This section will mainly describe how to do

data transformation, i.e., generating data tables from thedata streams, and then feed the

visual mapping stage of traditional multivariate data visualization techniques.

W1

W2

W3

.

.

.

Data
Stream

Selection

...

Sampling

Time Windows
of Interest Visual Mapping

& Rendering
View 1

FDOI1

...

Linking
Interaction

Selection Sampling

FDOI2

Visual Mapping
& Rendering

View 2

... ...

Selection Sampling
Visual Mapping

& Rendering
View m

FDOIm

T

Figure 4.1: The framework of user-driven multiple-view visualizations for data streams.

Figure 4.1 shows the proposed framework. In the data stream,W0 is the current time

window, andW−1,W−2, ..., are past windows over some bounded duration. The subscript

of W means the distance between this window andW0. All data in these time windows

will be sent to multiple pipelines to generate views. This framework supports linked

interaction among multiple views to facilitate users’ exploration on data streams. Each

pipeline is composed of a selection operator, a sampling operator, visual mapping and

rendering. The selection operator selects a range of time windows in which users are

interested. Sampling is then applied to the data in the selected time windows. Different

windows may have different sampling ratios. Users can definebehaviors of selection

and sampling operators using DOI functions. Hence, this framework can be calleduser-

driven.

Note that all views will get updated when a new time window arrives. The mechanism

for this refresh is as follows. Since data streams are dynamic, more datapoints will be

37

available after a limited time, e.g., the duration of a time window. Then,W0 will contain

the new datapoints in a new time window, and the datapoints inW0 will go to W1, and so

on. Thus, the input of each pipeline will change, which causes all views to refresh.

This framework allows users to define multiple DOI functionsto get more than one

output because users might want to observe multiple changesin one application. For ex-

ample, during traffic monitoring, users might have two data analysis tasks: (1) identifying

how the vehicle speed changes within the last hour, e.g., 5AM-6AM; and (2) compar-

ing the traffic pattern changes within the last hour of today with that of yesterday at the

same hour. For the first task, the selector operator needs to select all time windows from

5AM-6AM today. To perform the second task, it is necessary toobserve all data during

5AM-6AM of today and yesterday. Obviously, two different DOI functions should be

defined.

Figure 4.2 shows the screenshot of the implemented visualization system using the

user-driven framework. The DOI function is shown at the top left section and can select

the most recent four time windows today as well as in the last two days. So, the traffic

pattern changes within recent three days are conveyed accordingly.

In this dissertation, most examples use scatterplots to show 2D relations. This does

not nullify the claim that the proposed technique can conveythe pattern changes for multi-

variate data. Reasons include: (1) The above framework and proposed visualization tech-

niques can support any multivariate visualization; (2) Thetechniques using scatterplots

can be easily extended to scatterplot matrices. Actually, two examples using scatterplot

matrices and parallel coordinates are discussed later.

38

Figure 4.2: The screenshot of the implemented system under user-driven framework using
a type PP DOI function to observe the traffic pattern within recent three days.

39

4.2 DOI Functions

This section describes two types of DOI functions that can beused for some common

tasks. As discussed in Section 4.1, the output of a DOI function fdoi(td, tc) is a DOI

value, which then can be mapped to a sampling ratio via the function r = fr(DOI). For

the sake of convenience, DOI functions are defined in a way that their output is just the

sampling ratio.

Type RC (Recent Change): Figure 4.3(a) shows the curve for this type of DOI functions.

It aims to help users study how data patterns change within the recentk+1 time windows.

The sampling ratios arer0, r1, ..., rk in the order from the current window to the oldest

one.ri satisfies0 ≤ ri ≤ 1 for anyi. One common setting is to letr0 = r1 = ... = rk =

1.0. Figure 4.4(c) is generated using this type of DOI function with argumentsk = 2 and

r0 = r1 = r2 = 1.0. If there is too much visual clutter and users are less interested in the

old data, the setting can beri < 1 for 1 ≤ i ≤ k.

Type PP (Periodic Phenomena): The DOI functions shown in Figure 4.3(b) can assist

users in observing data patterns with periodic characteristics. The data stream is split

into multiple cycles (the vertical time axis) with the same length. Each cycle contains

multiple time windows (the horizontal time axes). In each cycle, the DOI function has a

shape similar to functions of Type RC. The DOI function in Figure 4.3(b) enables users

to investigate data patterns within the recentp + 1 cycles, namely Cycle 0, Cycle 1,. . .,

and Cyclep in the order from the current one to the oldest one. In each cycle, e.g., Cycle

i, this function choosesk + 1 windows, namely,Wi,0, Wi,1, . . . , Wi,k. Note thatW0,0 is

the current window, andWi,0(1 ≤ i ≤ p) belong to the past cycles, but have the same

position in the cycle asW0,0. The design of this type of DOI function aims to help users

study how data patterns change across both windows and cycles. Consider the example of

monitoring traffic. Imagine the current time window is 6:00AM-6:30AM on a Monday.

40

Current
Window

t

r0

rk

DOI

r1…

k windows

1

… …

kW 1W 0W

(a)

Current
Window

twin

DOI

k windows

1

... ...

twin

rp,0

DOI

k+1 windows

1

... ...

C0

Cp

k,0W 1,0W 0,0W

0,pW1,pWk,pW

Cycle 0

...

rp,1

rp,k

...

r0,0

r0,1

r0,k

...

tcycle

Cycle p

(b)

Figure 4.3: Two instances of DOI functions: (a) Type RC (Recent Change); (b) Type PP
(Periodic Phenomena).

41

The current traffic data pattern could be similar to last Monday, and less similar to last

Tuesday to Friday, and totally different from last weekend for the same interval (6:00AM-

6:30AM). To confirm this assumption, a Type PP DOI function can be defined to choose

only time windows corresponding to 6:00AM-6:30AM in these days.

The DOI function is similar to the opacity transfer functionin volume rendering [41].

The opacity transfer function assigns an opacity value to a voxel based on the voxel’s in-

tensity and can bring out certain features of those voxels having high opacity values. The

relationship between the sampling ratio and the window timestamp is like the relationship

between the opacity value and the voxel’s intensity.

It is true that users might need to compare the data patterns within any two arbitrary

windows, and the above two types of DOI functions cannot cover all data stream analysis

requirements. However, Type RC and Type PP can satisfy many common tasks under a

dynamic context, since users are normally interested in thedifference between the current

patterns and those of past time windows or cycles for a live stream. When a specific

application requires to explore those time windows withoutthe current time window, an

arbitrary N-way comparison might be needed. This can be regarded as data analysis on

static time-series data because all data is available and itcan be visualized in a static view.

4.3 Visualization Techniques

As mentioned in Section 1.2.1, a goal of this research is to visually convey changes of

multidimensional correlations. Thus the visualization techniques have been designed with

the following question as the main consideration: How should datapoints be organized

in different time windows to convey multivariate correlations and the changes of data

patterns?

In this section, I will first introduce four layout strategies, namelysuperimposition,

42

juxtaposition, step juxtapositionandanimation playback, to answer the above question,

and then demonstrate their usage with type RC DOI functions.While this dissertation

mainly uses scatterplots as examples to explain the principles, these strategies in general

can be applied to any multivariate visualization technique. These four strategies will then

be extended to type PP DOI functions. Finally, a new visualization technique, namely

“embedded views”, is presented based on combining line charts and scatterplot matrices.

This is to take advantage of the visual representation capabilities of multivariate and time-

series data visualization techniques in one figure.

(a) (b)

(c)

0500 0530 0600
Line A Line B

(d)

Figure 4.4: This figure shows some of the main ideas of the user-driven approach based
on DOI functions using traffic data collected from a highway entrance. (a) A traditional
time-series data visualization; (b) All datapoints are shown together in a traditional scat-
terplot; (c) The ages of data are denoted by colors; (d) Juxtaposition of data in the order
of timestamps. Figures (c) and (d) can convey how the fit line slope (lines A and B in
Figure (d)) changes from one window to the next, but it is difficult to see this change in
(a) and (b).

43

4.3.1 Layout Strategies

Superimposition: This strategy fuses all datapoints into a single picture, but distinguishes

datapoints from different time windows via visual attributes, the choice of which can af-

fect the effectiveness of the final visualizations. In the previous research work, I per-

formed a user study on visual representation of data qualityand concluded that color

has a stable capacity to convey data attributes under parallel coordinates and scatterplot

matrices as long as the visualization is not too cluttered [66]. The reason is probably

that it is processed preattentively [61] and does not require extra space. Thus colors

were used to convey the timestamps of windows. Figure 4.4(c)is generated by applying

superimposition to a scatterplot.

An obvious disadvantage is that displays can become overloaded with too much in-

formation, which may result in a longer analysis time. Moreover, if there are too many

windows to be chosen in the DOI function and many datapoints from different time win-

dows overlap each other, it is difficult to distinguish between them, even if using colors

to convey the window to which each datapoint belongs. Also, limiting the number of

colors enables users to quickly differentiate different time windows with higher accuracy.

Inherently, this is a visual clutter problem. Ellis and Dix thoroughly discussed current

clutter reduction techniques, and put them into eleven categories [20]. Sampling is a

commonly-used technique [19, 7, 8] and was reflected in the DOI functions, but cannot

reduce the overlapping when data pattern changes are small.Thus I used the filtering ap-

proach discussed by Ellis and Dix to extract datapoints in each time window, and generate

small multiples, namely juxtaposition and step juxtaposition, to reduce the visual clutter

as well as convey the data pattern changes.

Juxtaposition: In this method, one sub-picture is generated using a multivariate visual-

ization for each time window, and then place these figures in order of time (horizontally,

vertically, or a grid). In Figure 4.4(d), each scatterplot holds the datapoints from one time

44

window. Users can see the change of data patterns by comparing three sub-pictures.

Although juxtaposition overcomes some shortcomings of superimposition, it brings

two new disadvantages. (1) Recall Figure 4.4(d), in which the dots in the second and third

sub-pictures form two lines, A and B. As a recognizable difference exists between the

slopes of lines A and B, users can draw conclusions about the change of the linear trend.

If this difference is not that big, users may not easily identify the change of line slopes

using juxtaposition, as distance exists between these two lines. In the superimposition

layout, this difference should be recognized more easily than juxtaposition, assuming

there is not too much visual clutter, because one line acts asa reference as the analysts

observe the other. Thus superimposition appears to have a stronger capability to help

users identify subtle changes of patterns than juxtaposition. (2) If users want to compare

the data patterns between two windows, they must move their eyes back and forth. This

could make the data analysis tasks cumbersome and might result in a longer response

time, especially when there are a large number of windows in the DOI functions.

In order to overcome the shortcomings from both superimposition and juxtaposition, I

have designed a third layout strategy that combines the advantages of these two strategies,

namelystep juxtaposition.

Step Juxtaposition: Imagine that the DOI function choosesk + 1 (See Figure 4.3(a))

windows to display. I createk sub-pictures: the first showsWk andWk−1, the second

presentsWk−1 andWk−2, and so on. This strategy uses superimposition to help users

compare the data patterns of two consecutive windows, and juxtaposition to reduce pos-

sible visual clutter and shorten completion time for data analysis tasks. Figure 4.5 shows

an example. More than two windows can be superimposed in one sub-picture in this

technique to save display space if there is not too much visual clutter. Note that step jux-

taposition can work relatively well even if there is overlapping between consecutive time

windows. For example, in the scatterplot 3 of Figure 4.5, onefinding is that the dark dots

45

0G

1G

2G (Mar. 22)

(Mar. 23)

(Mar. 24)

Line A Line B

Line C Line D

(a) (b)

Figure 4.5: A step juxtaposition output using a type PP DOI function as shown in Figure
(b). The cycle length is one day. All windows are put into three groups,G0, G1 andG2,
corresponding to three days, March 24, 23 and 22, respectively. In Figure (a), one can
see clearly how data patterns change within the recent threetime windows for March 24.
However, data patterns do not have significant changes on March 22 and 23.

(19:00-19:30) hide almost all yellow ones (18:30-19:00). Actually, the data in the time

window 18:30-19:00 is just the dark ones in scatterplot 1. Actually, there is no pattern

change between these two time windows. To be general, if users want to observen time

windows and data patterns do not change too much in the corresponding period,n + 1

time windows can be chosen in the DOI functions to relieve theimpact of overlapping in

the step juxtaposition.

A more convincing example is shown in Figures 4.6 and 4.7, where a slice of traffic

data (Sensor D722, Feb. 16, 2009) is used. The DOI function isof type RC and 25

windows are selected. Imagine users were asked to find when the fit line slope changes

from one window to the next. This is definitely impossible if using superimposition since

human eyes cannot effectively distinguish 25 colors in one figure. In figure 4.6, it is an

arduous task because of the huge number of windows. However,in Figure 4.7, this task

becomes much easier. In each scatterplot, users only need touse light yellow datapoints

as the reference and observe dark yellow dots. One not only can find obvious changes

46

from Window 05:00-05:30 to Window 05:30-06:00, and from Window 05:30-06:00 to

Window 06:00-06:30, but can also perceive tiny changes fromWindow 06:00-06:30 to

Window 06:30-07:00, from Window 09:00-09:30 to Window 09:30-10:00, and from Win-

dow 09:30-10:00 to Window 10:00-10:30. These tiny changes are almost impossible to

detect using juxtaposition (Figure 4.6). In the section on the user studies, the experimen-

tal result will show that step juxtaposition can help users obtain a much higher response

accuracy than juxtaposition and shorten completion time for data analysis tasks.

Compared to superimposition, juxtaposition and step juxtaposition need more display

space. Therefore, if users want to observe the tiny data pattern change, they should select

fewer time windows in the DOI functions.

Animation : It is an intuitive idea to play the data pattern change usingan animation, with

each frame representing a time window. Animation combines the benefits of the prior

three visualization techniques:

(1) Because of the short term memory of the human visual system, users can normally

memorize the previous frame in the animation when the current frame is shown to

us. Thus it has similar capabilities to convey data pattern change as superimposition

and step juxtaposition.

(2) Compared to superimposition and step juxtaposition, animation can avoid the visual

clutter caused by overlapping datapoints from different time windows.

(3) Unlike juxtaposition and step juxtaposition, animation still uses a canvas having

the same size as superimposition, which can also avoid the possible visual clutter

caused by a smaller canvas size.

However, animation might delay the data analysis tasks, especially when the number

of displayed windows is large. The reasons include: (1) Users need to frequently play the

animation multiple times to confirm what they found. (2) A window ID must be shown

47

Figure 4.6: A juxtaposition output using the traffic data from sensor D722 on Feb. 16,
2009. Assume that the data analysis task is to detect the slope changes for fit lines of linear
trends between consecutive time windows. It is difficult to detect tiny slope changes.
Moreover, even for an obvious change, it takes a long time.

48

Figure 4.7: A step juxtaposition output using the same data as Figure 4.6. One can easily
and quickly find when the slope of the fit line for a linear trendchanges.

49

together with the visualization, so users know what window they are viewing. Thus users

have to stay aware of this caption while watching the animation and cannot fully focus on

the data patterns.

I have discussed the advantages and disadvantages for each layout strategies. How

can developers choose one of them for a real application? Section 4.5 will describe an

experiment to compare their representation capabilities,and then derive a guide to advise

analysts on choosing appropriate techniques for their dataanalysis requirements.

4.3.2 Extension of Layout Strategies to Type PP DOI Functions

I have discussed four layout strategies and showed their usage together with type RC DOI

functions. In theory, one can directly apply these layout approaches to the scenarios with

type PP DOI functions. For example, in a type PP DOI function,users might choose

two cycles and three time windows per cycle, and thus in totalsix windows would be

shown. If a real system directly utilizes the proposed layout strategies to handle these

six windows, users could retrieve the information they want. However, this initial idea is

not efficient compared to the alternative approach of grouping and then visualizing them.

This approach is based on the fact that users normally have two types of interests: (1) the

pattern changes across windows in the same cycle; and (2) thechange of patterns across

cycles in the same time period, such as window 1 and window 4. If users are interested in

(1), one approach is to organize windows into two groups: (a)windows 1 & 2 & 3; and

(b) windows 4 & 5 & 6. For the second task, all windows can be split into three groups:

(a) windows 1 & 4; (b) windows 2 & 5; and (c) windows 3 & 6. The rationale is to put

those windows where users want to detect pattern changes into the same group. Then the

four proposed layout strategies can be used to visualize each group. Therefore, users can

observe each group and try to extract information of interest. Obviously, this grouping

approach makes the pattern change analysis easier than the initial non-grouping method.

50

For superimposition, it can decrease the number of time windows in one figure; for the

other three layout strategies, the grouping approach will put together only those windows

in which users want to detect the pattern changes.

To be general, two grouping approaches are provided, namelyGA1 and GA2 (Figure

4.8) for the type PP function shown in Figure 4.3(b).

GA1: If the data analysis task focuses on the pattern change across windows within one

cycle,p + 1 groups (G0, G1, ...,Gp in Figure 4.8) will be provided. Actually, each

group contains all windows in one cycle. An example of this grouping approach is

shown in Figure 4.5.

GA2: If users are interested in changes across cycles,k + 1 groups (G′
0, G

′
1, ...,G′

k in

Figure 4.8) are generated. Every group hasp + 1 windows, each of which belongs

to a cycle. All windows in one group are in the same position within the cycles.

Wp,k ... Wp,1 Wp,0

... ...

W1,k ... W1,1 W1,0

W0,k ... W0,1 W0,0Current cycle

Current Window

Past cycles

'
kG 'G1

'G0…

0G

1G

pG

...

Grouping
Approach 1

Grouping
Approach 2

Figure 4.8: Two grouping approaches to helping users achieve various data analysis goals.

4.3.3 Integrating Time-series and Multivariate Data Visualizations

All of the above techniques assumed the use of extended multivariate visualizations to

convey multi-dimensional correlations. Another normal data analysis requirement in ex-

ploring data streams is to observe the trends for each dimension. This can be achieved us-

ing traditional time-series data visualization techniques such as line charts and heatmaps.

51

(a) (b)

(c) (d)

Figure 4.9: The embedded views for the sleep data stream. Users not only can see how
clusters move over time in the scatterplots, but can also seethe trends for each dimension
via line charts in the diagonal plots. Figure (b) is generated using the DOI function shown
in Figure (a), which chooses the recent 9 windows to display.After the user uses the DOI
function interactive tool to adjust the function to Figure (c), a new view (Figure d) will
be shown. Users can more clearly see the movement of clusterson Figure (d) than Figure
(b).

52

It is true that one solution is just to put line charts and a scatterplot matrix side by side

to convey both the trends for each dimension and multi-dimensional correlations. This

requires decreasing the canvas size for each visualizationsince the total canvas size is

normally fixed, e.g., the monitor size. To overcome this shortcoming, a novel technique,

namelyembedded views, is proposed to embed line charts into scatterplot matricesin or-

der to save canvas space. This approach is adapted from the enhanced scatterplot matrices

of Cui et al. [18], who introduced 0D, 1D and 2D visualizations, including histograms,

line charts and images, into the diagonal plots. The difference is that I use the DOI func-

tion to partition each diagonal cell based on the number of windows being viewed.

Figures 4.9(b) and 4.9(d) show two embedded views using the sleep data stream. They

use the DOI functions shown in Figures 4.9(a) and 4.9(c), respectively. From these two

views, one can clearly see how a single cluster moves over time in the scatterplot. In

addition, this can be used to study the trends for each dimension via line charts.

4.4 DOI Function Interaction Tool

Although two pre-defined types of DOI functions have been described in Section 4.2,

it is necessary to enable users to define DOI functions by themselves to analyze data

streams in different applications. Moreover, it will make the system much more useful

to allow users to adjust the DOI functions interactively. Basically, visual analysis based

on the DOI function is often a trial and error process. It is normal that analysts do not

know the exact characteristics of the data patterns and how these patterns change prior to

exploring the data streams. By allowing users to adjust the DOI functions, analysts can

select a predefined DOI function first, and then adjust it to find useful data patterns while

the system is running. Some possible adjustments to facilitate exploration include: (1)

Increasing the sampling ratio to see more details or decreasing the ratio to avoid visual

53

clutter. (2) Changing some of the arguments for pre-defined types of DOI functions. For

example, if the number of time windows to be displayed for thetype RC DOI function is

large, say 9, but most important changes occur within the recent two or three windows,

the user can reduce it and observe the changes in more detail.

(a) (b)

Figure 4.10: Using DOI functions to reduce visual clutter ona sleep data stream. (a) All
datapoints are displayed; (b) Sampling is applied to each time window based on the DOI
function after user adjustment.

I designed an interface to enable users to change the DOI function interactively. Using

this tool, users can (1) drag the DOI function curve to changeDOI values for a particular

window; (2) save or load a DOI function to/from a file; (3) add/delete a window;(4)

add/delete a cycle (only applicable for type PP function); and (5) reset the DOI function

to the original state. Figures 4.9 and 4.10 show the effect ofusing this tool. Figure 4.10

shows the effect of reducing the number of windows. In Figure4.10(a), the arguments

for the DOI function are set asr0 = r1 = r2 = 1.0, but they are changed tor0 = 0.5 and

r1 = r2 = 0.33 in Figure 4.10(b).

4.5 Evaluation 1: User Studies on Layout Strategies

For the four layout strategies introduced to utilize traditional multivariate visualizations

for conveying the pattern changes in data streams, there aretwo important questions to be

answered:

54

• Are the proposed techniques significantly better than traditional time-series data vi-

sualization techniques, such as line charts and heatmaps, in conveying the changes

of multi-dimensional correlations?

• Which one among the proposed layout strategies is the best toconvey pattern

changes for particular datasets and patterns?

In order to answer these two questions, a user study was performed to observe par-

ticipants’ capabilities in detecting pattern changes. This experiment compared the effec-

tiveness of the four proposed layout strategies with that oftraditional time-series data

visualizations, including line charts and heatmaps. The experimental results help validate

the effectiveness of the proposed techniques, and helped inderiving a guide for choosing

layout strategies based on the characteristics of data analysis tasks and datasets. These

results can provide potential benefits to both data analystsas well as visualization system

designers.

4.5.1 Experimental Design

The basic procedure used to design the experiment is as follows: (1) Choose some commonly-

used data patterns that can be defined easily and clearly; (2)Construct streaming datasets

with changes in selected data patterns between time windows; (3) Generate visualizations

using the proposed techniques, as well as line charts and heatmaps; (4) Design questions

for subjects in the experiment regarding the pattern changes in the generated visualiza-

tions.

In the experiment, users’ response accuracy as well as response time were collected. It

was assumed that higher accuracy and lower response time indicate an effective technique.

Whether a proposed technique is good depends on many aspects, such as the selected data

patterns and the magnitude of pattern change. In this experiment, many combinations

55

of these factors were tried, and how they affected users’ responses was observed. It is

impossible to try all combinations, thus the experiments aimed to test the most common

ones to guide most data analysis tasks.

Choosing Data Patterns: Prior figures showed two types of data pattern change: the

slope change of linear trends (Figures 4.4, 4.5), and the movement of a single cluster (4.9,

Figures 4.10). They are both very common in real applications and are easy to explain

to participants, even without any prior experience in visual data analysis. There are other

types of changes, such as the offset change of fit lines representing linear trends, and the

expansion or shrinking of clusters. Different types of datapatterns might be similar to

each other, e.g., the offset change and the slope change of a linear trend. Therefore, some

results on evaluating slope changes may be borrowed when a system need to be designed

to help users detect offset changes in linear trends. If a newdata analysis task is totally

different from the tested data pattern changes, a new experiment can be performed with

this user study as a design guide.

Note that observing the change of line slope and movement of asingle cluster are

low-level tasks. In most real data analysis tasks, people normally do not know which

low-level task to choose until after observing the overviewof the data. In this experiment,

participants do not need to decide which low-level tasks to choose. This is normally im-

possible in the real applications. For example, for the traffic data, users first investigated

the data in different time windows, then determined that a linear trend existed between

two variables, and finally decided to observe the line slopesfor retrieving pattern changes

over time. However, the experiment design will not impact the credibility of this user

study. The reason is as follows: this user study is similar toa perception experiment. Its

main goal is to check human capabilities to distinguish datapattern changes on four types

of layout strategies. Thus, the performance of participants on these low-level tasks is just

what I want to analyze in this experiments.

56

Constructing Datasets: The basic idea for constructing a dataset is as follows: (1)Pick

a specific time window, namelyW0, from a real dataset and regard it as the first window

of the experimental data. (2) Construct several time windows, fromW1 to Wn−1, based

on the initial window. Note thatn is the number of windows shown to participants. The

selected pattern is changing fromWi to Wi+1 for any i that satisfies0 < i < n − 1. (3)

Generate the final dataset by composing the windows fromW0 to Wn−1 into one single

stream. An example dataset is shown in Figure 4.11. It is generated from a snapshot of

the traffic data with changes to the linear trend. Figure 4.11(a) corresponds to a subset of

the real traffic data, while Figures 4.11(b) and 4.11(c) are generated using synthetic time

windows adapted from the data in Figure 4.11(a).

(a) (b) (c)

Figure 4.11: Figures (a) - (c) show three time windows of a streaming dataset. Figure (a) is
extracted from a traffic data stream. The datapoints in Figures (b) and (c) are constructed
from those in Figure (a) by changing the fit line slope as explained in Figure 4.12.

In the above step (2), multiple variations of the experimental datasets were generated

by using different change magnitude and changing the numberof windows. The reason

why to choose these two variables is that adjusting these twofactors can help distinguish

which layout strategies are better than others for conveying changes for particular data

patterns. In some preliminary results, if the change magnitude was big enough and there

were only two time windows, all of four proposed layout strategies worked very well.

However, small pattern changes make juxtaposition fail since users cannot distinguish the

tiny difference between two similar figures, and too many time windows will produce too

57

much overlapping in superimposition.

One could argue that noise should be added when constructingdatasets for the eval-

uation. This is not necessary. The reason is that the lack of noise will not impact the

validity of these user studies. If the goal is to visualize the linear trends or clusters, noise

has to be introduced to increase the credibility of the user studies. However, in this dis-

sertation, I focus on how to convey the changes for the particular data patterns, e.g., the

linear trend in this experiment. I want to observe how two factors, the change magnitude

and the number of windows, affect users’ capabilities to detect and estimate this change.

Adding noise could make the tasks more difficult, but cannot add more credibility to this

experiment.

0l

1l 2l

a

b

2

22 ba +

d
d

P

A1

A2

A0

Figure 4.12: This figure shows the methodology applied to constructing a streaming
dataset having three time-windows from a real dataset. The straight linePA0 represents
the linear trend with which the datapoints in a specific time window agree.PA1 andPA2

correspond to the linear trends of two synthetic time windows. Four or five windows were
constructed for some questions.

Figure 4.12 shows how to determine the magnitude of the pattern change (in this case,

the linear trend) between contiguous windows. The straightline PA0 represents the fit

line of the linear trend for the initial window. In this line,the pointP is the intersection of

fit lines for two contiguous time windows in the real traffic data, one of which is the initial

window. For example, if one picks the second time window in Figure 4.4(d) as the initial

58

window, the pointP is the intersection of linesA andB. The distance betweenP andA0

is half of the diagonal line for the scatterplot. The fit linesfor windows fromW1 toWn−1

were then constructed. Figure 4.12 contains two manually constructed fit lines,l1(PA2)

andl2(PA2), for W1 andW2. Note that|PA0| = |PA1| = |PA2| andd1 = |A0A1| and

d2 = |A1A2| represent the change magnitude. In the part of this experiment for linear

trend patterns, I used the combination of three types of change magnitude (1, 4 and 12

pixels), and three time window counts (3, 4, 5 windows).

The construction of datasets for cluster motion patterns issimilar to the above process.

Note that only one single cluster is shown in each window and the cluster size does not

change across windows. Larger numbers of clusters and varying sizes will be tested as

part of the future work.

Generating Visualizations and Questions: In order to make the comparison among the

user responses for different techniques meaningful, I followed several rules:

(1) Color Scheme: In superimposition and step juxtaposition, the selection of the color

scheme can significantly affect participants’ capabilities to detect pattern changes. Thus

the same color scheme was applied to all visualizations generated using superimposition

and step juxtaposition. Specifically, I selected a color ramp, utilized the colors at the

two ends in the step juxtaposition, and chose the linear interpolated colors based on RGB

color space for the superimposition.

(2) Canvas Size: Because a small canvas size can lower response accuracy and in-

crease the response time because of possible overlapping bythe data of different windows,

the total canvas size was fixed and a specific canvas size was assigned to each scatterplot

based on the layout strategies. To be specific, the superimposition and animation use the

total canvas size, but juxtaposition and step juxtaposition were in a grid while maintaining

the ratio between width and height for each scatterplot. Thetotal size of the grid is equal

to the total canvas size. For example, if 5 windows are neededin generating a juxtaposi-

59

tion, the total canvas was split to a grid having 9 (3×3) cells (Figure 4.13). Although this

wasted four cells, it maintains the shape of scatterplots.

W4 W3 W2

W1 W0

Figure 4.13: This figure shows how to split the whole canvas into multiple cells for jux-
taposition and step juxtaposition. If five subfigures need tobe shown, a grid having nine
cells are constructed. Although four of them are wasted, this approach can maintain the
shape of each scatterplot.

(3) Point Size: The point size must be appropriate to convey data patterns in scatter-

plots since small dots are difficult to distinguish and big dots could result in too much

overlap. After some initial experiments, I chose suitable sizes for each of the proposed

layout strategies. In particular, the superimposition andanimation used4× 4 pixel points

and the juxtaposition and step juxtaposition used3 × 3 pixel points, because the latter

ones occupy a smaller region of the display.

The design of questions for the user studies was straightforward. Participants were

asked to answer only multiple choice questions to qualify the pattern changes instead of

quantify them. This aims to make the user studies convenientand friendly. For exam-

ple, for linear trends evaluation, Subject only needed to identify how the fit line slope

changes (increasing or decreasing) between two specific contiguous windows. However,

it is almost impossible to perceive a fit line or a cluster in line charts and heatmaps. Thus,

instead, some equivalent questions were provided. For linear trends, participants were

asked to estimate the rate of change for one variable with respect to the change of the

60

other, as this can be regarded as the fit line slope. Then userswere asked to report how

this rate changes. In the cluster movement questions, userswere asked to estimate how

the average value of one variable changes from one window to the next.

Figure 4.14 shows a real question used in this experiment.

Figure 4.14: This is a question used in the user study for the user-driven framework. The
figure is generated using the superimposition technique. Participants are asked to identify
how the fit line changes from window 1 to window 2.

61

4.5.2 Experimental Settings

In total, 14 computer science students participated in the user studies. Two of them were

undergraduate students, while the others were graduate students. I first gave a short intro-

duction and showed some sample questions to each student, and then asked each to finish

two groups of questions. Each group has 33 questions. One group was for linear trends

and the other pertained to cluster movement. To avoid the side-effect of a learning curve,

all questions in each group were shuffled for each participant. All questions were shown

to the subjects on the same laptop.

4.5.3 Experimental Results

(a) (b)

Figure 4.15: The experiment results for all participants and questions: (a) response accu-
racy; (b) response time.

Result 1: Figures 4.15(a) and 4.15(b) show the mean values with a 95% confidence inter-

val of response accuracy (RA) and response time (RT) for all participants and questions.

The paired samples t-test was applied to the experiment results to compare RA and RT

values for different visualization techniques. The following conclusions were drawn: (1)

From the aspect of RA, superimposition, step juxtaposition, and animation are all signifi-

62

cantly better than juxtaposition, line charts, and heatmaps (p < 0.001). Since every ques-

tion has only three choices, the performance of juxtaposition, line charts, and heatmaps

was deemed not acceptable within the experimental configuration because their RA mean

values are less than 50%. Thus three of the four proposed techniques conveyed multi-

dimensional correlations much better than line charts and heatmaps. (2) Superimposition

and animation have a little bit higher RA values than step juxtaposition (p = 0.02 and

0.05). but superimposition is not significantly different from animation (p = 0.67). (3)

For the RT values, participants spent less time on step juxtaposition than superimposition

and animation. However, superimposition is not significantly different from animation

(p = 0.10), while the difference between step juxtaposition and animation is significant

(p = 0.005). Therefore, for tasks requiring users’ quick response to pattern changes, step

juxtaposition is a good option.

Figure 4.16: The response accuracy for all participants anddatasets having only 3 time
windows. The numbers on the horizontal axis mean the change magnitude in the unit of
pixels.

Result 2: In order to see how the magnitude of pattern change affects participants’ per-

formance, I calculated the mean values with a 95% confidence interval of RA values

grouped by the combination of layout strategies and change magnitude. The results are

shown in Figure 4.16. The numbers, 1, 4, and 12 on the horizontal axis denote the change

63

magnitude in terms of the number of pixels. This demonstrates two facts:

1. Participants have improved performance when the change magnitude (the number

of pixels) becomes bigger, except for juxtaposition. The difference between a 1

pixel change and a 4 (12) pixel change is significant for all layout strategies (p <

0.02) except juxtaposition. Moreover, the RA values for 4 and 12 pixel change are

close to 100% for all layout strategies except juxtaposition. However, the RA values

for a 4 pixel change is not significantly worse than those for a12 pixel change.

2. For the 1 pixel change, animation has the highest RA values, and was significantly

better than superimposition and step juxtaposition (p = 0.04 and0.03). Subjects

had a response accuracy of about 65%. Considering that the point size is4× 4 for

animation, this is a very good result. The reason is obvious:when the change is very

small, the similarity between the datapoints of two windowsresults in too much

overlapping. Thus participants cannot perceive subtle changes from the figures

generated using superimposition and step juxtaposition. However, animation can

avoid the overlaps and still convey the pattern changes because of the short-term

memory of the human brain.

Based on the above observations, the following conclusionscan be drawn:

1. Under the experimental configuration, superimposition,step juxtaposition and ani-

mation can work very well for changes bigger than or equal to 4pixels.

2. Animation can work relatively well even if the change is smaller than the point size,

while superimposition and step juxtaposition cannot.

An interesting result of this experiment is that juxtaposition is not a good option for

conveying pattern change. It was expected at least to be better than superimposition

because it could relieve visual clutter and make the patternchanges obvious. However,

64

the experimental results reveal that it is not as good as the other three techniques. My

guess is that human eyes cannot detect changes from one figureto the other without an

appropriate reference if the change is very small. Recall that participants were asked to

detect the slope change of a linear trend. One can observe onetime window by treating the

datapoints in the other time window as a reference in superimposition, step juxtaposition,

and animation, because datapoints of two time windows are put in the same scatterplot.

Note that when an animation shows the second frame, the first frame can still be used as a

reference because of human short-term memory. This makes iteasy to perceive the pattern

changes. However, if using juxtaposition, it is difficult touse such a reference because two

windows are separated from each other. One possible solution to improve juxtaposition

is to add reference grid lines for each individual scatterplot. In this way, users can more

easily estimate the parameters for the data patterns in eachwindow, including the slope

of fit lines and the distance between a cluster and the scatterplot border. This solution

has an obvious disadvantage: grid lines can cause visual clutter and thus counteract their

benefits. This should be tested in an experiment, which is planned as future work.

4.5.4 Evaluation Summary and Implications

For question 2 stated in the beginning of this section, I derived a set of guidelines to advise

data analysts and visualization system designers to chooseappropriate layout strategies

with the main goal to increase the response accuracy. Table 4.1 shows this guideline.

The number of windows
involved in pattern changes

The magnitude of the pattern change
Small Large

Small Animation Superimposition & step juxtaposition
Large Animation Step juxtaposition

Table 4.1: A guideline to advise data analysts and visualization system designers on
choosing appropriate layout strategies in terms of the characteristics of datasets and data
analysis tasks.

65

I recommend the use of animation when the change is small, because animation is the

only technique that appears to work relatively well in this case. Note that animation could

cause a long response time when the number of windows is huge,so superimposition and

step juxtaposition should be used when the change magnitudeis big. Superimposition

does not work well when users choose too many windows in the DOI functions, as it

tends to cause serious visual clutter and humans cannot readily differentiate many colors

at once. In this situation, step juxtaposition is a better choice. A key question is what this

threshold may be at which superimposition becomes problematic. It is almost impossible

to give such a number for all visual analysis tasks, because it depends on many factors,

including the selection of color scheme, canvas size and thedegree of visual clutter. For

a specific use case, users or system designers would need to conduct an experiment to

determine this number.

Table 4.1 divided the change magnitude into two types, namely, small and large.

Based on the experimental results in Figure 4.16, only animation can work relatively

well when the pattern change is smaller than the point size. So the recommendation is

that if the change is smaller than the size of the visual items, it is regarded as small and

the suggestion is to use animation to observe the pattern changes.

One might argue that small changes can be clearly observed just by zooming in all

views. This is not feasible for certain circumstances because users might not have enough

time to zoom in views when data arrival rates are relatively high.

4.6 Evaluation 2: Case Studies on Interaction Techniques

and Other Multivariate Visualizations

In this section, I analyze the effectiveness of the proposedvisualization and interaction

techniques. Because the effectiveness of the proposed visualization techniques in the user

66

studies was shown in Section 4.5, I will mainly focus on demonstrating the usefulness of

DOI functions and their interactions in three case studies.The first will use a type PP DOI

function, while the second focuses on the trial-and-error exploration process using the

DOI function interaction tool. Since examples so far used only scatterplots, the third case

will demonstrate the integration of step juxtaposition into parallel coordinates to show

that any of the proposed layout strategies can be applied to other traditional multivariate

visualization techniques.

Case Study 1: Figure 4.5 uses the measures from sensor D191 (close to the intersection

of I-35W and 35th Street) in the traffic data stream. A type PP DOI function is used as

shown in Figure 4.5 (b). The length of a cycle is one day. The current window is 7:00PM-

7:30PM on Tuesday, March 24, 2009. In the implemented system, scatterplot matrices

were used to show this example. For the sake of saving space, Ichose two interesting

subplots from each scatterplot matrix to form Figure 4.5(a). It is not difficult to find that

the traffic pattern on March 24 conveyed by the scatterplots at the third row is significantly

different from patterns on March 22 and 23 as shown by the scatterplots in the first and

second row. In the scatterplots formed bySpeedandOccupancy, These two variables

always have a negative relationship with each other. However, the fit lines in scatterplot

9 have a larger slope than those in scatterplots 1 and 5. Two fitlines (lines A and B) can

be observed in scatterplot 11. The absolute value of the slope for line A is much larger

than that for line B. Line B is formed by the points with dark color. It shows that the

linear relationship betweenSpeedandOccupancywas restored to normal after 7:00PM,

as it has a similar slope to the fit lines in scatterplots 3 and 7. Thus, the conclusion is that

traffic was very heavy (highOccupancyand lowSpeed) before 7:00PM and then went to

normal. Such a change of data patterns did not happen on March22 and 23, i.e, the traffic

from 6:00PM to 7:30PM was not that heavy.

Some interesting changes of data patterns happened in the scatterplots formed by

67

VolumeandOccupancy. In scatterplot 10, the negative linear relationship exists between

VolumeandOccupancy, but the relationships in scatterplots 2 and 6 are positive.From

scatterplot 12, it is observed that this linear relationship changed after 7:00PM. In this

scatterplot, points with dark color formed line C, whose position and shape are similar to

the points in scatterplots 4 and 8. Since line C contains the data of the current window

(7:00PM-7:30PM), it also shows the traffic became normal after 7:00PM. This change

is different from the change in scatterplot 11, as the linearrelationship changed from a

negative one to a positive one. This inspired me to consider whether some abnormal things

happened. My hypothesis is that this is a sign of a traffic jam caused by some special

reasons, such as an accident or road construction. The reason is as follows. In scatterplots

2, 4, 6, and 8, some points have high occupancy, and others have lower occupancy. Thus

the traffic is always oscillating from 6:00PM to 7:30PM on March 22 and March 23.

However, the relationship betweenVolumeandOccupancyare always positive. Recall the

definition ofVolumein section 3.1. This shows that vehicles still can run at a relatively

high speed when theOccupancyis high, which results in more vehicles passing the sensor

(high volume). However, in scatterplot 10 and line D in scatterplot 12,Volumebecame

lower when theOccupancywas very high. This could happen during a traffic jam. For

example, when police cleaned the highway after an accident,drivers could drive in only

one lane, then the average speed of vehicles is very low, so the Occupancyis very high

(close to 100%) and theVolumeis close to 0. Incident records of Mn/DOT showed that

flooding happened in the late afternoon on March 24, near the crossing of I35W and 42nd

Street, because of 0.44 inch of precipitation on that day. This is very probably the reason

for the interesting changes of data patterns as shown by Figure 4.5.

The analysis of this example confirms that the developed techniques can convey not

only the multidimensional correlations for a particular time period, but also the change of

data patterns, and eventhe change of the changes of data patternswhen using the type PP

68

functions.

Case Study 2: This case study investigates Figure 4.9 using the sleep data stream. The

current window is 36.5-37 minutes after the beginning of this sleeping experiment. Fig-

ures 4.9(b) and 4.9(d) use embedded views to convey not only trends for three dimensions

but also multidimensional correlations. Figure 4.9(b) wasgenerated using a DOI function

to compare the recent 9 time windows as shown in Figure 4.9(a). From each scatterplot

one can quickly find how the primary data in each window moves over time. For ex-

ample, in the plot with the heart rate (heart rate) as X and blood oxygen concentration

(blood oxygen) as Y, one interesting pattern is that the older data mainly falls into the

bottom area, then slowly moves in the upper-left direction,and finally returns back to a

middle position. The line charts in the diagonal plots show that the heart rate decreased to

a minimum value and then slowly went up within the recent timewindows. At the same

time, the blood oxygen concentration reached a maximum value and then slowly went

down. The findings from the line charts are good supplements to conclusions gained

from the scatterplot display.

Figure 4.9(b), shows that this interesting change exists inthe recent several windows.

If users want to see more details of this change, the DOI function interactive tool can

be used to adjust the DOI function in order to choose fewer time windows to display.

Followed by this idea, the new DOI function shown in Figure 4.9(c) results in the new

view shown in Figure 4.9(d). This new view clearly demonstrates how the positions of

clusters change as compared to Figure 4.9(b).

Case Study 3:

This case uses a 5-minute slice of the sleep data stream. I split it into 10 time win-

dows and generated Figure 4.17 using step juxtaposition andparallel coordinates. Let

us first observe the changes of the correlation between the heart rate and blood oxygen

concentration. Basically, Figure 4.17 shows two types of distribution: Type 1: low heart

69

rate and high blood oxygen concentration, such as in windows54.0-54.5, 56.5-57.0, and

58.0-58.5; and Type 2: high heart rate and low blood oxygen concentration, e.g., win-

dows 54.5-55.0 and 57.0-57.5. The datapoints in some windows are the mixture of two

types of data, such as window 57.5-58.0. Each sub-figure can clearly show how the data

is changing from one type to the other. For example, in Figure4.17(a), the data changed

from type 1 to type 2. After investigating the whole stream, Ifound that type 1 is the

primary one while type 2 concentrates in some portions of thestream. Thus type 2 can be

considered to be an outlier. Since the patient in this sleeping experiment shows sleep ap-

nea (periods during which he takes a few quick breaths and then stops breathing for up to

45 seconds), type 2 data might be associated with this abnormality. The third dimension,

the chest volume, that is the indicator of respiration, can tell us whether the hypothesis is

accurate or not. During normal human breathing, the chest volume should change in an

oscillating way. We can see that in most time windows, the chest volume values exist in

a wide range, which is normal. However, the values of this dimension in four windows

have a very narrow range, including windows 54.0-54.5, 55.5-56.0, 56.5-57.0, and 58.0-

58.5, where the patient stopped breathing for a while. Moreover, just after each of these

four windows, data changed from type 1 to type 2. For example,in Figure 4.17(c), the

darker points correspond to window 55.5-56.0, where the patient might stop breathing. In

addition, the data changed from type 1 to type 2 in Figure 4.17(d). Thus, a finding, with

the help of visualizations, is that the patient will change to an abnormal condition of high

heart rate and low blood oxygen concentration after the sleep apnea happened. This find-

ing has not been confirmed with the medical expert, but this case study at least can show

that the proposed layout strategies are useful in helping usfind possible cause and effect

in data streams, when data analysts apply them to traditional multivariate visualizations.

This will help analysts promote hypotheses or confirm new findings.

70

Figure 4.17: The visualization for a slice of sleep data stream generated by applying step
juxtaposition to parallel coordinates. All time units in the figure are minutes. We can
clearly see how the relationship between variables changesfrom one window to the next.

71

Chapter 5

A Data-driven Approach to Merging

Windows

5.1 The Data-driven Framework

Before describing the framework and algorithms, I will givesome terms and definitions.

Terms:

If windowsW1, W2, ..., andWk are merged to a windowW ′, W ′ is called theparent

(window) of W1, W2, ..., andWk, andW1, W2, ..., andWk are defined as thechild

(windows) of W ′. In other words,W1, W2, ..., andWk areoriginal windows andW ′

is themerged window. Many multivariate data patterns can be described using a vector

(v1, v2, . . . , vr) that is apattern vector. An example is the vector(−2, 5) that describes

a linear trendy = −2x+ 5.

Definitions:

W An original or merged window.

nm The number of merged windows visualized.

72

no The number of original windows, including all child windowsof all merged windows

visualized.

Vp The pattern vector to describe the data pattern retrieved from a merged or original

window.

Fp(W) The pattern retrieving function to compute a pattern vectorVp from the data-

points in a windowW.

d(Vp1
,Vp2

) The function to measure the distance between two pattern vectors. For one

specific pattern vector definition, this might not be unique,i.e., to reflect different

users’ interests.

Gm(Vp1
,Vp2

, . . . ,Vpk
) The merge function to generate the pattern vector of a par-

ent window from its child windowsW1,W2, . . ., andWk that have pattern vectors

Vp1, Vp2, . . ., andVpk.

For the two data patterns investigated in this dissertation, linear trends and data range,

I provide details about their pattern vectorsVp, and three functions,d(Vp1
,Vp2

), Fp,

andGm in Appendix .1 and .2.

Figure 5.1 shows the framework to generating the pattern andpattern change visu-

alizations for the current view and history data. Here non-overlapped time windows are

used. The time window is the minimal unit that users want to use to study data patterns.

The current view containsn0 contiguous time windows, including the most recent time

window. n0 is normally determined by users.n0 could be bigger than the maximal num-

ber of windows that the canvas can hold, which is defined asNm (=3 in Figure 1.4). In

other words, we allow at mostNm time windows to be displayed in the final output. The

merge algorithm can reduce the number of windows in the current view tonm(< Nm) via

merging adjacent windows having only small changes. If one window in the current view

73

becomes expired, it is sent to the history data pool. When thesize of this pool exceeds

the memory limit, a procedure is trigger to compress the history data via merging window

pairs having small or no pattern changes. The pattern retrieval algorithm calculates the

data patterns and pattern changes for the windows in both thecurrent view and the his-

tory data pool. Finally, three types of views, juxtaposed views, pattern views and change

views, are generated. The first type generates multiple traditional multivariate visualiza-

tions for each merged window, and juxtaposes them on the canvas. This can preserve all

the details in the data. However, it needs a lot of canvas space and is not applicable to

history data. The last two types regard the pattern vectors and their changes as time-series

data, and generate traditional time-series visualizations to convey the data pattern change.

T Current
View

Merge
Algorithm

Pattern
Retrieval
Algorithm

Pattern for
each window

Pattern change
between windows

Pattern Vector
Visualization

Pattern Change
Visualization

Pattern
Views

Change
Views

History
Data Pool

Juxtaposition
Layout

Juxtaposition
Views

For current view

For current view
and history data

Figure 5.1: The framework to show how the windows are merged,history data is stored,
and patterns or pattern changes are retrieved and visualized.

5.2 Merge Algorithm

As mentioned in the previous section, the basic idea of the proposed approach is to merge

n0 windows tonm(≤ Nm) windows, whereNm is the maximal number of windows that

the canvas can hold. Basically, this is a problem of data compression. First, I will discuss

some theory and algorithms for compressing data, and introduce a quality measure to

describe how well a merge algorithm performs. I then proposetwo algorithms:brute

74

forceand heuristic, and finally extend them to data streams.

5.2.1 The State of The Art in Data Compression

Data compression is based on information theory in which theprimary goal is to mini-

mize the amount of data to be transmitted [39, 54]. The basic method is to reduce the

redundancy, leaving only the informational content. One ofclassical data compression

algorithms is Huffman coding [30]. It assigns short codewords to those messages ap-

pearing frequently. Aother compression technique for image compression isdifference

mapping[37] that is worthwhile mentioning. It represents an image as an array of dif-

ferences between adjacent pixels rather than the pixel color coding. Since the adjacent

pixels normally are similar, this technique can achieve a good compression ratio. I was

inspired by this algorithm since my goal is to represent the difference between adjacent

windows.

Data compression techniques can be categorized into lossless and lossy algorithms.

The former technique means that we can get back all information after we decompress the

compressed data, while the latter will discard some information. For example, Huffman

coding and difference mapping both belong to lossless compression. Lossy compression

is commonly used to compress audio, video or images, becausethe tiny difference in

these areas is normally acceptable [17]. JPEG is a commonly used lossy compression

technique for digital images. The name “JPEG” stands for Joint Photographic Experts

Group, the name of the committee that created the JPEG standard and also other stan-

dards. In this technique, the images first are converted fromRGB to YCbCr color space

(Y: brightness, Cb: blue component, Cr: red component). Three components will be

sent to separate channels to be compressed to achieve more efficient compression. Each

channel is split into 8× 8 blocks. A discrete cosine transform (DCT) is applied to each

block. DCT is a Fourier-related transform that can separatethe high-frequency and low-

75

frequency components. Human eyes are good at seeing small differences in brightness

over a relatively large area, but not so good at distinguishing the exact strength of a high

frequency brightness variation. So JPEG algorithm reducesthe amount of information

in the high frequency components after DCT transformation.Finally, the reduced infor-

mation is quantized. For video compression, existing algorithms normally make use of

the similarities between adjacent frames. In MPEG-I, pictures are categorized into four

types: (a) I pictures, which are coded via the JPEG technique; (b) P pictures, which can be

predicted from previous I or P pictures; (c) B (bidirectional) pictures, which are predicted

from both past and/or future I or P pictures (for these data, reordering may be necessary);

and (d) D pictures, which allow fast-forward mode with restricted quality.

Wavelets are another important technique for lossy compression. A wavelet is a kind

of mathematical function used to divide a given function or continuous-time signal into

different frequency components and study each component with a resolution that matches

its scale. Its main advantages are the low time cost, multi-resolution features, and scal-

ability [43]. Some visualization researchers used wavelets to visualize large-scale multi-

variate data at multiple resolutions [47, 51, 65]. For example, Miller et al. [47] applied

wavelet transformations to the digital signal constructedfrom words within a document,

and then used wavelet energy to analyze the thematic characteristics at varying degrees

of detail, ranging from sections to words. Based on the analysis results, a visualization

system, named TOPIC ISLANDS, was created to provide fuzzy document outlines at dif-

ferent levels of detail. Wong and Bergeron utilized wavelettransformations to display

brushed data at a different resolution than the non-brusheddata [65].

5.2.2 The Quality Measure for The Merge Algorithm

The basic idea for measuring the merge result quality is to compute how much the change

information is preserved by the merge algorithm. To explainthis, I first introduce an

76

intuitive merge algorithm, namedpattern-blind averaging, which merges everyn0/Nm

original time windows to one merged window. The pattern vector of the merged window

is the average value of the pattern vectors of the originaln0/Nm time windows. Pattern-

blind averaging is easy to understand and will be the competitor of thebrute forceand

heuristic mergealgorithms proposed later. Figure 5.2 shows the merge result of pattern-

blind averaging and heuristic merge for the same input. Without loss of generality, in

this example, the pattern of a time window is described by a real number, namelypattern

number, and the change from one window to the next is defined by the difference between

two numbers. One assumption in this example is that the pattern number of a merged

window is the weighted average value of pattern numbers of all corresponding original

windows computed via:

v =
v1n1 + v2n2

n1 + n2

Note thatv1(v2) andn1(n2) are the pattern number and the number of datapoints for

windowW1(W2).

Although a pattern vector could contain many scalar values in real applications, the

distance between two pattern vectors are always represented by a real numberd(Vp1, Vp2)

(defined in Section 5.1). In the following definitions, I use only the distance measures

between two time windows instead of pattern vectors themselves. Simplifying the pattern

vector to a numerical value does not impact the discussion about the quality measures of

the merge algorithm.

Figure 5.2 contains two subfigures. In each subfigure, the first row represents the

original windows; the merged windows are shown in the secondrow. The second row

of the left part shows the result of a heuristic merge algorithm that will be discussed in

detail in Section 5.2.4. The right part is from an intuitive method, named pattern-blind

averaging, which merges everyn0/Nm original time windows to one merged window.

In Figure 5.2, the heuristic algorithm mergedW1,W2,W3 andW4 to one window.

77

0.1 0.2 0.2 0.1 0.9

W1 W2 W3 W4 W6

0.5

W5

0.90.50.15 W1' W2' W3'

0.1 0 0.1 0.4 0.4

0.15 0.15 0.15 0.15 0.90.5

0 0 0 0.35 0.4

Original
Windows

Merged
Windows

Information
perceived
by users

0.1 0.2 0.2 0.1 0.9

W1 W2 W3 W4 W6

0.5

W5

0.70.15 W1' W2'

0.1 0 0.1 0.4 0.4

0.15 0.15 0.15 0.15 0.70.7

0 0 0 0.55 0

0.15

(a) Heuristic Merge (b) Pattern-Blind Averaging

W3'

Figure 5.2: This figure shows how to measure result quality ofthe heuristic merge algo-
rithm and pattern-blind averaging regarding the degree to which the change magnitude is
preserved.

Therefore, from the user’s perspective, the pattern numbers of these four windows will

be the same(0.15), although their actual pattern numbers are0.1, 0.2, 0.2 and0.1. This

loss is shown in the third row of this figure. Hence, the distance betweenW1 andW2 will

be 0 if try to retrieve it from the final visualization, while the actual change fromW1 to

W2 is 0.1. That is to say, the change information fromW1 to W2 have been totally lost.

Similarly, the original distance betweenW4 andW5 is 0.4, but this will change to0.35 in

the final visualization.

If di is used to represent the actual distance between original windowsWi andWi+1,

andd′i is the perceived distance from the visualization after applying the merge algorithm

to the data, then

D =
n−1
∑

i=1

|di − d′i| (5.1)

is the total deviation for the change information after timewindows are merged. Note that

n is the number of original windows.

Obviously, a better merge algorithm should have a smaller deviationD. So Equation

5.1 is extended to

Q =
1

n− 1

n−1
∑

i=1

(

1− |di − d′i|
dmax

)

(5.2)

to represent the merge result quality. Note thatdmax is the maximal change. The above

78

definition guarantees that0 ≤ Q ≤ 1. A biggerQ value means a higher quality. If

dmax = 1.0, then the quality measures for Figures 5.2(a) and 5.2(b) are0.95 and 0.85

based on Equation 5.2, respectively.

In addition, normally people are more interested in bigger changes than small ones,

so only those changes bigger than a threshold are counted, and Equation 5.2 is extended

to

Q =
1

n′ − 1

∑

di≥dT

(

1− |di − d′i|
dmax

)

(5.3)

wheredT is a distance threshold, andn′ is the number of items in the set{di|di ≥ dT}.

If dT = 0.2, based on Equation 5.3, the quality measures for Figures 5.2(a) and 5.2(b)

become 0.975 and 0.725, respectively .

5.2.3 Brute Force

The basic idea to brute force merge is intuitive. If the goal is to mergen0 toNm windows,

the brute force algorithm will iterate all possible ways to split n0 original windows toNm

subsets. Note that, in each subset, all windows should be contiguous. For each subset, the

quality measure is calculated via Equation 5.2 or 5.3, and the result is that one having the

best quality. Figure 5.3 shows a result using brute force algorithm (n0 = 12,Nm = 4). Its

quality measure is 0.85 from Equation 5.2 (dmax = 1.0);

0.1 0.2 0.3 0.4 1.0 1.1 0.9 1.0

W1 W2 W3 W4 W6 W7 W8 W9

0.25

0.6

W5
T

1.3 1.9 1.5

W10 W11 W12

0.6 1.06 1.7

Figure 5.3: An example to show the result of brute force mergewhere 12 windows need
to be merged to 4 windows. Its quality measure is 0.85 (Eq.5.2, dmax = 1.0).

To analyze the time complexity of this algorithm, I will firstshow a theorem:

79

Theorem. There are
(

n0−1
Nm−1

)

ways to mergen0 original windows toNm merged windows.

Proof. Imagine that we haveNm− 1 poles and put each of them between two contiguous

windows, and two poles cannot be in the same position, then theseNm − 1 poles can

split n0 − 1 original windows toNm subsets. Thus we can getNm merged windows by

merging all windows in each subset. Because there are in total n0− 1 positions where we

can put poles, we can find
(

n0−1
Nm−1

)

ways to merge windows.

The process to find the best quality measure is as follows:

1. Compute the quality measure for
(

n0−1
Nm−1

)

combinations. For each,

1.1 Use the merge functionGm to calculate the pattern vectors ofNm merged

windows.

1.2 Obtain the quality measure via Eq. 5.2.

2. Find the combination having the largest quality measures

For each combination, the time cost of Operations 1.1 and 1.2is C1n0 andC2Nm; in

addition, the operation 2 takesC3Nm (C1, C2 andC3 are constant real numbers). So, the

whole algorithm needs to run:

(

n0 − 1

Nm − 1

)

(C1n0 + C2Nm) + C3Nm (5.4)

Normally,Nm is a constant in many applications, thus

(

n0 − 1

Nm − 1

)

= O(nNm−1
0)

Therefore, the time cost of the brute force merge isO(nNm

0).

80

5.2.4 Heuristic Merge

The brute force merge is easy to implement but is time consuming. It is not acceptable for

some real applications that need quick response. I now propose a heuristic algorithm that

is much faster although its result might have a lower qualitymeasure. The basic idea is

to repeatedly scan the window list multiple times and merge contiguous windows having

a change smaller than a threshold value, until the number of windows is smaller or equal

toNm.

0.1 0.2 0.3 0.4 1.0 1.1 0.9 1.0

W1 W2 W3 W4 W6 W7 W8 W9

0.15 W1' W2' W3' W4'

0.6

W5
T

1.3 1.9 1.5

0.35 1.05 0.95

W10 W11 W12

1.0

0.6 1.3 1.9 1.5

0.15 0.35 0.6 1.3 1.9 1.5
Round 1

=0.15

0.25 1.00.6 1.3 1.9 1.5Round 2
=0.25

0.32 1.06 1.9 1.5Round 3
=0.35

W1' ' W2' ' W3' ' W4' '

Figure 5.4: An example to show how to do multiple pass heuristic merge for the same
input as Figure 5.3. The distance threshold sequence I used is {δ1 = 0.15, δ2 = 0.25
andδ3 = 0.35}. In each pass, The scan on the window list might be multiple times until
all changes between contiguous windows are bigger thanδi. The quality measure of the
merge result is 0.838 (Eq.5.2,dmax = 1.0).

Figure 5.4 shows how to merge 12 windows to 4 windows using theheuristics merge.

This example uses the same input as the brute force merge in Figure 5.3. The whole

procedure is composed of three rounds. Each roundi uses a different pattern distance

thresholdδi. The goal of this round is to merge as many windows as possibleuntil the

smallest pattern distance between contiguous windows is bigger thanδi. Hence, two

problems need to be solved: (1) how to chooseδi; and (2) how to merge.

In order to choose an appropriateδi, I first scan the whole window list, and then get

the minimal pattern change between contiguous windows∆min, which is the minimal

81

values in{∆j(1 < j < n′)}. Note thatn′ is the current length of the window list. Then

I chooseδ = f(∆min) as the input of the one pass merge algorithm. The definition of

functionf depends on the application. In this example,δ = ∆min + 0.05.

One may argue thatδ = ∆min can be used to set the threshold in the merge algo-

rithm. The reason why I do not setδ = ∆min is that probably only two windows will be

merged in one round in that way. That could cause too many rounds in the merged-based

hierarchical structure and high time costs.

In the first round,∆min = 0.1, soδ1 = 0.15. The pattern distance measures between

W1 andW2, W2 andW3, W3 andW4, all are 0.1. Is it feasible to mergeW1, W2, W3

andW4 to one window? Absolutely not. The reason is that the data pattern is increasing

steadily fromW1 to W4. The aggregate change is 0.3, which is not small. If these four

windows are merged to one window, this important change willbe totally lost. Therefore,

the heuristic merge algorithm only merges two windows at once. To explain this idea,

assume the original window list is{ W1, W2, . . . ,Wn0
}, and the change threshold isδ.

The algorithm will search the whole window list from the beginning, until finding two

contiguous windows, sayWj andWj+1 having a change less than or equal toδ, and then

merge them. After that, the same searching and merging will be repeated fromWj+2 until

Wn0
. For example, in the first scan, this algorithm only mergesW1 andW2, W3 andW4,

W6 andW7, W8 andW9, and keeps other windows unchanged. Note that a single scan is

not enough because the change between a merged window and an original window, or two

merged windows, can be less than or equal to the currentδ, e.g.,W ′
3(1.05) andW ′

4(0.95).

Thus multiple scans are necessary for the window list. Actually, this algorithm did the

full scan twice in Round 1. After Round 3, the length of the window list is 4, which is the

goal, so the heuristic merge can stop.

Algorithm 1 shows the pseudocode to do one merge round given apattern distance

thresholdδ. In Algorithm 2, multiple rounds are done by calling Algorithm 1.

82

Algorithm 1 Merge windows with pattern distance≤ δ.
1: Input : {Wi} (The window list) ;δ (pattern distance threshold).
2: found⇐ false;
3: repeat
4: S⇐ ∅ {S is the set to store merged windows.}
5: while j < Len({Wi})-1 do
6: while j < Len({Wi}) -1 and d(Wj ,Wj+1) > δ do
7: j ⇐ j+1;
8: end while
9: if j < Len({Wi})-1 then

10: S ⇐ S∪ Merge (Wj,Wj+1); {Merge() merges two windows and returns the
result.}

11: found⇐ true;
12: j ⇐ j+2;
13: end if
14: end while
15: Update the window list via replacing windows with their parent windows inS if

they exist.
16: until found = false

Algorithm 2 Mergen0 windows tonm(≤ Nm) windows.
1: Input : {Wi} = { W1, W2, . . . ,Wn0

} (The original window list) ;
2: k ⇐ 0;
3: while Len({Wi}) > Nm do
4: { Len() returns the length of the window list.}
5: ∆min = min({d(Wi,Wi +1)|1 ≤ i ≤ n′ − 1}), n′ is the length of current window

list;
6: δ ⇐ f(∆min);
7: Call Algorithm 1 usingδk;
8: k ⇐ k + 1;
9: end while

83

The heuristic merge might generate a result having a lower quality measure than the

brute force method. For example, the result quality in Figure 5.4 is 0.838. Although it

is a little lower than 0.85 generated by brute force merge (Figure 5.3), it is much higher

than the result quality 0.730 generated by pattern-blind averaging (Figure 5.5).

0.1 0.2 0.3 0.4 1.0 1.1 0.9 1.0

W1 W2 W3 W4 W6 W7 W8 W9

0.2

0.6

W5
T

1.3 1.9 1.5

W10 W11 W12

0.67 1.0 1.57

Figure 5.5: Pattern-blind averaging is applied to merge time windows for the same input
as Figure 5.3. Its quality measure is 0.730 (Eq.5.2,dmax = 1.0), much lower than brute
force and heuristic merge.

In the heuristic merge, every time two windows are merged, the length of the window

list will be decreased by 1, so the time cost for merging windows isC1(n0 − Nm). In

addition, it takes time to find a smallest distance in each full scan on the window list.

For the worst case, this algorithm needs to don0 − Nm scans. so the time cost for this

operation isC3(n0 −Nm)
2. Thus the total time cost is:

C1(n0 −Nm) + C3(n0 −Nm)
2 = O(n2

0) (5.5)

Note that the constantsC1 andC3 have the same meaning as Eq. 5.4 in Section 5.2.3 used

to compute the time cost for brute force merge. Compared to brute force merge, the time

cost have been decreased fromO(nNm

0) to O(n2
0) with a loss of result quality. It is a big

savings whenNm > 2.

Section 5.4 will describe an experiment to compare the result quality of the two merge

algorithms, and show that the loss in quality is worthwhile compared to the savings in

computation cost.

84

5.2.5 Stream-based Merge

For a data stream, if one new window arrives, the oldest window, namely the expired

window, has to be removed from the current view before the newwindow is added into

the visualization (Figure 5.1). For example, in Figure 5.4,if W13 comes as a new window,

then the current view becomes{W2,W3, . . .,W12,W13}, andW1 is expired. Obviously, a

re-merge is needed. The easiest approach to re-merge is to run the brute force or heuristic

merge again on this new window list{ W2, W3, . . ., W12, W13 }. This is not efficient

because the existing merge result for{ W1, W2, . . ., W11, W12} is not reused. To avoid

this disadvantage and save the time cost for merging, the newly arrived window is handled

by the following steps: (1) If the expired window has been merged into other windows,

decompose the oldest merged window and put all its child windows back on the window

list. (2) Remove the oldest window from the window list. (3) Add the new window to the

window list. (4) Run the brute force or heuristic merge on thenew window list. There-

fore, after the new windowW13 arrives, merge algorithm is run on{ W2, W3,W4,W5,

W ′′
2 ,W ′′

3 ,W ′′
4 , W13} instead of{ W2, W3, . . ., W12, W13}. Figure 5.6 shows the details of

how to decomposeW ′′
1 and do the re-merge starting from the existing result. The result

is the same as what is obtained by doing heuristic merge directly on the original window

list, but is obtained by running the merge algorithm starting from 8 windows instead of

12 windows.

Recall that the time cost of the brute force and heuristic merge isO(nNm

0) andO(n2
0)

respectively, wheren0 is the number of original windows. For everyn0 input windows,

on average,n0/Nm original windows are merged to one merged window, so this stream-

based merge algorithm needs to merge onlyn0

Nm
+Nm windows. Normally,Nm is a small

constant number, so, stream-based merge can reduce the timecost of brute force and

heuristic merges by 1

N
Nm
m

and 1
N2

m
respectively.

The above estimation does not consider the time cost increase to detach the expired

85

windows from the existing merge result. In Section 5.4, I describe experiments to inves-

tigate whether and how this optimization affects the resultquality and time cost.

0.2 0.3 0.4

1.06

1.9 1.5 1.2

W2 W3 W4 W2 ' ' W3 ' ' W4 ' ' W13

0.6

W5 T

0.35 0.6

0.6
Round 1

=0.15

0.375Round 2
=0.35

0.4 1.06 1.9 1.5 1.2

0.3 1.06 1.9 1.5 1.2

1.06 1.9 1.35

0.1 0.2 0.3 0.4 1.0 1.1 0.9 1.0

W1 W2 W3 W4 W6 W7 W8 W9

0.6

W5

1.3 1.9 1.5

W10 W11 W12

1.2

W13

Expired View

Current View

Start
Point

0.32

1.06

1.9 1.5W3' ' W4' 'W1' ' W2' 'Existing
Result

0.1

W1

Figure 5.6: This figure shows how to do a stream-based heuristic merge when a new win-
dow arrives after 12 windows are merged to 4 windows in Figure5.4.W ′′

1 is decomposed
to make full use of existing result. In this way, the merge starts from 8 windows instead
of 12 ones.

How to Merge Windows: There are two options to merge two windows: (1) doing a

union set operation on two windows and then doing sampling toreduce the number of

datapoints to the size of one window; or (2) utilizing the merge functionGm to calculate

the pattern vector of the parent window. In the current view stage, the first approach is

picked because it can save data details. For the history viewand data storage, the selection

depends on the users and the characteristics of the data pattern. For the data patterns

having the merge functionGm, the second approach can be chosen to save memory space.

If the merge function does not exist or is difficult to computefor a particular data pattern,

e.g., clusters, only the first approach is viable.

Storage Policy: When one new window arrives, an old window must leave the current

view. It will be stored in the history data pool for the purpose of generating history

views. Because the data stream is potentially infinite in nature, all windows cannot be

86

stored. Even if only pattern vectors for time windows are stored, the memory will still

be eventually full. To solve this problem, the merge approach is used: merging those

windows with small changes to save memory space. In addition, old windows are merged

earlier than newer windows because more recent data is more important than older data

for most data analysis tasks. For example, if users want to know whether today’s traffic

is normal, they normally need to compare it with yesterday orlast week, and rarely with

last month or last year.

Specifically, users are allowed to provide two sequences{Ti}qi=0 (T0 < T1 < . . . <

Tq, T0 = 0, Tq = ∞), and{δi}pi=0 (δ0 < δ1 < . . . < δp), whereTi denotes a data age

(the difference between the timestamp of this datapoint andthe current time), andδi is a

pattern change threshold. Note thatδp is the maximal possible change of the data pattern.

The sequence{Ti}qi=0 divides all the arriving windows intoq sections,[T0(= 0), T1],

[T1, T2], . . . , and[Tq−1, Tq(= ∞)], in the order of the degree of users’ interests from high

to low. When the memory is full, the following procedure is triggered to merge windows

in the history data pool. The goal is to reduce the history data pool size to a predefined

sizeSM , e.g. 0.9M , whereM is the maximal memory size assigned to the data pool.

This process is done via calling Algorithm 1 up to(p+1)q times. Each call is represented

by F (δi, [Tj, Tj+1)), which means merging all window pairs with change equal to orless

thanδi in the interval[Tj, Tj+1)). All calls are placed in the following order:

F (δ0, [Tq−1, Tq)), F (δ0, [Tq−2, Tq−1)), . . . ,F (δ0, [T0, T1)),

F (δ1, [Tq−1, Tq)), F (δ1, [Tq−2, Tq−1)), . . . ,F (δ1, [T0, T1)),

. . .

F (δp, [Tq−1, Tq)), F (δp, [Tq−2, Tq−1)), . . . ,F (δp, [T0, T1)).

This order ensures that more important data is kept, which contains the most recent data

and window pairs having significant pattern changes. After each callF (δi, [Tj, Tj+1]),

the data pool size is evaluated. If it is smaller thanSM , the merge process is stopped.

87

Otherwise, go to the next call. Sinceδp is the largest possible change andT0 = 0, the

memory space held by the data pool definitely will shrink to less thanSM after one call.

The pseudocode of this procedure is shown in Algorithm 3.

Note that it is better to run Algorithm 3 offline than in parallel with online merging,

because the latter way will increase the system complexity and causes more processing

overhead.

Algorithm 3 Shrink history data pool.
1: Input : {Ti}

q

i=0
(The data age sequence which satisfiesT0 < T1 < . . . < Tq , T0 = 0, andTq = ∞); {δi}

p

i=0
(a stepped

change magnitude sequence which satisfiesδ0 < δ1 < . . . < δp); SM (The expected size held by history data pool after this
algorithm)

2: for i = 0 to p do do
3: for j = q-1 downto 0 do do
4: {W} ⇐ all windows within section[Tj , Tj+1)).
5: Call Algorithm 1 with parametersδi and{W};
6: if DataPoolSize() ≤ SM then
7: Exit;
8: end if
9: end for

10: end for

5.3 Visualization of Patterns and Their Changes

This section will discuss three visualizations used in the data-driven approach: juxtaposed

views, pattern vector views and pattern change views. Two particular data patterns, linear

trends and data range, are chosen to show as examples.

5.3.1 Juxtaposed Views

This section presents visualization techniques based onstep juxtapositiondescribed in

Section 4.3. Other techniques in Section 4.3 can also be applied to the techniques in the

data-driven juxtaposed views.

In juxtaposed views, two types of visualization techniquesare developed: (1)juxta-

posed full viewthat uses traditional visualization techniques to show alldatapoints in the

88

windows (Figure 1.4); and (2)juxtaposed pattern outline viewthat shows only the outline

of the discovered pattern for each window. The pattern outline view is specific to each

pattern. For example, it can be a line for linear trends.

Figure 5.7: 48 windows, containing the traffic data in one day, are merged to 3 windows
and then shown with 2 scatterplots. Each scatterplot contains two windows, and is linked
to the time axis via three lines to delimit the time range for these two windows.

Figure 5.8: A pattern outline view to visualize the pattern change in traffic data slice used
in Figure 5.7. Each line represents a linear model for a merged window. Note that three
lines connecting each scatterplot to the time axis mark two corresponding time windows,
which is similar to Figure 5.7.

Figure 5.7 shows a juxtaposed full view after merging 48 windows (traffic data in one

day) to 3. Figure 5.8 uses the same dataset and merge algorithm as Figure 5.7 but contains

the pattern outline view.

89

In Figures 5.7 and 5.8, all subfigures are placed on the canvashorizontally in the order

of the timestamp. Because the time axis is evenly spaced and subfigures have different

lengths of time range, Lines are used to connect subfigures tothe time axis. This can help

users understand where the change is fast and where the change is slow. I call this a1D

layout.

The 1D layout is intuitive to interpret, but it does not make full use of the canvas when

the number of merged windows is large, especially for those visualization techniques that

generate output in a shape close to square, such as scatterplots or parallel coordinates. In

order to avoid this drawback, a grid layout is proposed, in which all subfigures are laid out

in a grid havingn rows andn columns. If there arem subfigures,n = b
√
m− 1c+ 1. In

grid views, the representation of the time axis is problematic. If the same method as the

1D layout is used to connect the subfigures to the time axis vialines, a lot of overlapping

will occur. I solve this problem using an interaction technique: when the mouse hovers

over a subfigure, the corresponding time range is highlighted on the time axis (Figure

5.9).

Figure 5.9 shows an example using the pattern outline view and grid layout. Each sub-

figure is a two-dimensional parallel coordinates. There aretwo bands in each subfigure.

One band represents the data range in a time window. On dimension X, two corners of the

rectangles correspond to(X + s) and(X − s) respectively, whereX ands represents the

average value and standard deviation of all values within the corresponding time window.

There are two types of range in this figure: Type 1 (low heart rate and high blood oxygen

concentration, e.g., the yellow band in the highlighted subfigure) and Type 2 (high heart

rate and low blood oxygen concentration, e.g., the dark bandin the highlighted subfigure).

The merge algorithm can automatically detect the shift between two types, as shown in

Figure 5.9. From the time axis, one can find that Type 2 normally only exists in a short

time range, so it can be treated as an outlier. This might be associated with sleep apnea,

90

Figure 5.9: A pattern outline view in the grid layout to visualize the changes in data range
for the sleep data. A subfigure is highlighted with a purple border when the mouse hovers
over it. The corresponding part of the time axis is highlighted as well.

with which the subject in this sleeping experiment has been diagnosed [23].

5.3.2 Pattern Vector and Pattern Change Views

For data in the current view (see Figure 5.1), juxtaposed views can do very well in con-

veying the pattern change. But they perform worse for historical data. The main reason

is that there will be many windows in the history. Imagine that there are 100 scatterplots

on the canvas. Then each scatterplot will be very small. Evenif zooming techniques and

scrolled area are provided, it is still a tedious and difficult data analysis task to study how

the linear model changes within these 100 windows. Therefore,pattern vector viewsand

pattern change viewsare designed to visualize the history data. The basic idea isto utilize

time-series visualization techniques to visualize the pattern vectors and pattern changes

directly.

Pattern Vector Views: Assume that the pattern vector is ann-tuple, i.e.,Vp = (v1, v2, . . . , vn).

Then, starting fromnm merged windows, a multivariate dataset havingnm datapoints can

91

be created. Each datapoint corresponds to a pattern vector of a merged window and hasn

columns. This is also a time-series dataset because each datapoint has a timestamp. Line

charts, bar charts, heatmaps, or any other time-series visualization techniques can be used

to visualize this dataset. The final output is named apattern vector view.

Now, a problem similar to juxtaposed views arises: which option is better in the even

and uneven time axis? Since most time-series visualizationtechniques can be distorted

to be uneven, three approaches are proposed. To explain thembetter, assume that in one

streaming dataset, the windows from 6AM to 9AM has been merged to 2 windows: one

is from 6AM to 7AM (1 hour); the other is from 7AM to 9AM (2 hours). Bar charts are

used to represent one dimension in the pattern vector.

6AM 7AM 8AM 9AM

(a)

6AM 7AM 9AM

(b)

6AM 7AM 8AM 9AM

(c)

Figure 5.10: This figure shows three approaches to choosing an even or uneven time axis:
(a) Even time axis, even windows; (b) Uneven time axis, even windows; (c) Even time
axis, uneven windows.

1. Even time axis, even windows: The visual elements (points or bars) of the time-

series visualizations corresponding to each merged windowhave the same width,

but the time axis is evenly spaced, so windows have to be connected to the time

axis using straight lines (Figure 5.10(a)). This approach forces us to place the

visualization on one row.

2. Uneven time axis, even windows: visual elements corresponding to each merged

window are allowed to use the same width but the time axis is divided tonm parts

92

with the same length. Each part of the time axis is just below the visual elements of

the corresponding merged windows, so the time axis is not evenly spaced (Figure

5.10(b)).

3. Even time axis, uneven windows: This approach uses an evenly spaced time axis,

but distorts the visual elements corresponding to each merged window to force them

to be just above the correct label on the time axis (Figure 5.10(c)).

In the above three approaches, the first and the second are primarily applicable to only

the current view, but not for the history data. The reason is that approach 1 needs many

straight lines to connect time-series visualizations withthe time axis, and approach 2 has

to provide the label at the border of all merged windows on thetime axis. For history

data potentially containing many merged windows, both these approaches will make the

final visualizations too cluttered. Thus the suggestion is to use approaches 1 and 2 for the

current view, but use the third approach on the historical data.

Figure 5.11(a) shows the pattern vector view via line chartsfor traffic data over 9

weeks (Jan. 3 - March 6, 2009). 3024 original windows are merged to 173 windows.

This figure uses the even time axis and uneven windows. The incline anglearctanβ is

shown for each window in this figure, whereβ is the fit line slope for the linear modelY =

α+βX. Note that merged windows in Figure 5.11(a) normally have different time length.

Labeling the time for each window is impossible because it can bring a lot of overlapping

at the time axis. Instead, the thickness of the time axis segment represents the length

of each merged window. A thicker time axis segment means a longer window, and thus

indicates a slow pattern change, while a thin segment indicates a quick change. In order

to show how the proposed techniques help users detect the pattern change, all the original

windows are visualized in the historical data in Figure 5.11(b). One obvious observation

is that the basic trend of incline angle is a wave style. However, sometimes there are

93

(a)

(b)

Figure 5.11: Pattern vector views using the traffic data over9 weeks. The figures use line
charts and only show the change of fit line slope for the linearmodel betweenoccupancy
andspeed. The purple vertical line represents the beginning position of a window selected
by users via moving the mouse to the specific place. (a) The merged windows in the
historical data are used; (b) The original windows are visualized.

94

some quick fluctuations and vibrations, such as the place where the purple vertical line

resides (20:30 at 02/01). It is difficult to perceive these quick changes because each

original window is rendered in a very small region even if some pattern changes are very

quick. The proposed visualization techniques based on the merge algorithm output can

overcome this drawback. In Figure 5.11(a), the same window is highlighted via a purple

vertical line. In this figure, changes can be easily observedbecause only the significant

changes are shown. Therefore, the merge algorithm along with the proposed visualization

techniques can pull out significant pattern changes and helpusers detect them.

Figure 5.11(a) has five rows. For the first four rows, each of them contains around

two weeks, but the last row contains only one week. In addition, the last part of the curve

is smooth, which corresponds to the last day (March 6). This conforms to the principle

of the merge algorithm for history data where I want to keep more details for the recent

data.

Pattern Change Views: This technique aims to enable users to quickly identify howdata

patterns change via conveying the distance between data patterns directly. Assume that

the current view or the history data pool hasnm merged windows. The pattern vectors

for them areV1,V2,. . .,Vnm
. The pattern distance function can be used to get a distance

sequence{di}nm−1
i=1 , wheredi = d(Vi, Vi+1). This is a univariate time-series data. Now

the same method as in the pattern vector views is used to visualize this distance sequence

and to generatepattern change views. Compared to thepattern vector views, this tech-

nique enables users to perceive the change magnitude more quickly, but loses the pattern

information itself.

5.3.3 A Guide to Choose Visualization Techniques

I used several real streaming datasets to study the strengths and weaknesses of the above

three views and concluded that:

95

• Pattern outline, pattern vector, and pattern change views can help users quickly

perceive the target data patterns in a data stream.

• Pattern outline, pattern vector, and pattern change views show only the target data

pattern. Juxtaposed full views can help convey other information.

• Given a fixed size of canvas, juxtaposed full views can hold the least number of

merged windows, while pattern outline views can show more windows. Pattern

vector (change) views can show the most windows.

Therefore, I provide the following guide to advise data analysts in choosing appropri-

ate views in terms of data analysis tasks:

• If users want to study only the target data pattern and its changes, the pattern vector

and change views are the best options for both the current view and historical data.

• For the current view, if users want to study other data characteristics as well as the

target data pattern, the juxtaposed full views are the best option. If the application

has close to real-time requirements, the pattern vector or change views are the best

options. Without these requirements, users can choose any technique.

• When visualizing historical data potentially containing many merged windows, the

pattern vector and change views are the best options becauseeach time window

needs the least canvas space.

5.4 Evaluation

In this section, I evaluate two important issues: (1) how well does the heuristic merge

algorithm perform on reducing running time and preserving the change information for

96

data patterns compared to pattern-blind averaging and brute force? (2) how much can the

proposed techniques reduce users’ response time?

5.4.1 Comparisons among Two Merge Algorithms

To the best of my knowledge, there are no existing algorithmsdesigned and optimized

for achieving the same goal as the proposed merge algorithms. Therefore, I chose the

pattern-blind averaging as the competitor in this algorithm to evaluate the output quality.

The traffic data on Sensor D191 was used in the experiments. The target data pattern

is the linear trend betweenOccupancyand Speed. Every 30 minutes (60 datapoints)

are regarded as one original time window. The pattern changeof interest was the slope

difference between regression lines of two contiguous windows.

In the previous discussion about time complexity of the proposed merge algorithms,

the number of original windows (n0) and the number of merged windows (Nm) are two

main factors to impact the running time of the proposed algorithms. Thus two groups

of experiments are run: (1) Fixn0 and changeNm (Figures 5.12, 5.14(a), and 5.15(a));

(2) Fix Nm and changen0 (Figure 5.13). Once the developed application based on the

proposed merge algorithm finished the process onn0 original windows, it immediately

shifted the current view by one window and started the merge algorithm again. The total

running time for all input data is recorded. In real applications, it is not necessary to

run the merge algorithms so soon, because the system can waitfor the arrival of a new

time window if the processing time forn0 windows is shorter than the length of one time

window. However, this difference does not impact the comparison for the time cost of

the proposed algorithms. In addition, the computation of the result quality is based on

Equation 5.3 in Section 5.2.2 (dmax = π/3,dT = π/24). It means that the maximal

change isπ/3 and users are only interested in slope changes bigger thanπ/24.

In the first group of experiments, I also ran the stream-basedversions for heuristic and

97

���������������������������������������
� � � ��

�	
�� ������
��	 ����	� �� �	��	� ������

��� !"#�$!%!��&' &$()!�*+&,+
(a)

-..-.--./---.-/---.--/---
0 1 2 .3

4566768 97:;<=;>?6@AB
CD; 65:E;F ?G :;F8;@ H76@?HA

IJKLMNOJPMQMKJRSLRPTUMJVWRXW
(b)

Figure 5.12: These two figures show the result of experiment 1using the traffic data over
7 days (Jan. 1 - Jan. 7, 2008). Algorithm performance was measured when changing the
number of merged windowsNm. The number of original windowsn0 in the current view
is fixed at 24 windows. Note that the running time for heuristic and averaging is close to
each other in Figure (b), so they overlapped a lot.

YZ[YZ[\YZ[]YZ[^YZ[[YZ_YZ_\YZ_]YZ_^YZ_[̀
`\ \] a^][

bcdefg heifjgk
lmc neopcq rs rqjtjnifujnvrud

wxyz{|}x~{�{yx��z�~��{x�����
(a)

�����������������
�� �� �� ��

������� �������������
��� ��� �¡ �¢ �¡����£¤ ¥����¥�

¦§ ©̈ª«¬§ª®ª¨§¯°©¯±²ª§³´¯µ´
(b)

Figure 5.13: These two figures show the result of experiment 2using the traffic data of
70 days (Jan. 1 - March 10, 2008). The algorithm performance was measured when
changing the number of original windowsn0 in the current view. The number of merge
windowsNm is fixed at 4.

brute force merge. This is to investigate how the stream-based optimization affects the

time cost and result quality.

All experiments were run on a machine with Intel(R) Core(TM)2 Duo CPU E8400 @

3.00GHz and 3.25G RAM. Its OS is Windows XP SP3.

The following observations can be made based on Figures 5.12, 5.13, 5.14, and 5.15:

• Regarding the result quality, the heuristic algorithm performs better than pattern-

98

¶·̧¶·̧ ¹¶·̧ º¶·̧ »¶·̧ ¸¶·¼¶·¼¹¶·¼º¶·¼»¶·¼½̧
½¹ ¹º ¾» º¸

¿ÀÁÂÃÄ ÅÂÆÃÇÄÈ
ÉÊÀ ËÂÌÍÀÎ ÏÐ ÏÎÇÑÇËÆÃÒÇËÓÏÒÁ

ÔÕÖ×ØÙÚÕÛØÜ×ÕØÝÞ ÔÕÖ×ØÙÚÕÛØ
(a)

ßßàßààßáàààßàáààà
ßâ âã äå ãæ

çèééêéë ìêíîïðîñòéóôõ
ö÷î éèíøîù òú òùêëêéûüýêéóòýô

þÿ�����ÿ����ÿ��� þÿ�����ÿ��
(b)

Figure 5.14: This is to compare regular brute force merge andthe stream-based optimiza-
tion version. The results are from the same group of experiments as Figure 5.12.

	
�	
��	
�	
��	
��	
�	
��	
�	
��	
���
�� � �� �

������ �������
��� ��� �! "# "!�$����%��&"%�

'()*+,-+./-*(01 '()*+,-+.
(a)

2
23

24 45 67 58
9:;;<;= ><?@AB@CD;EFG

HI@ ;:?J@K DL DK<=<;MNO<;EDOF PQRSTUVTWXVSQYZ PQRSTUVTW
(b)

Figure 5.15: This is to compare regular heuristic merge and stream-based optimization
version. The results are from the same group of experiments as Figure 5.12.

blind averaging and close to brute force, especially when the number of merged

windows is big.

• The time cost of the heuristic merge is very close to pattern-blind averaging and

much shorter than brute force.

• The scalability of the brute force algorithm is very bad. When n0 or Nm become

big, its running time is not acceptable.

• The stream-based optimization reduced the time cost for brute force merge by

around1/2 to 1/8, and does not reduce the result quality by at most 2%, which

is very small.

99

• For heuristic merge, the stream-based optimization actually increased the time cost,

probably because of the high cost to detach the expired time window.

Thus, the conclusion is that the heuristic merge is a very good improvement on brute

force merge and can be applied to most cases. The brute force merge can be chosen

only if n0 andNm are small and the experimental running time is within the real time

requirement. For brute force merge, we can apply stream-based optimization to it to

reduce the time cost. However, this optimization should notbe applied to heuristic merge.

5.4.2 Comparing Proposed Techniques with Uniform Time Axis

One claim in Section 5.3 is that the proposed techniques can reduce users’ response time

for detecting pattern changes. This needs the support from an experiment. I conducted a

user study to compare users’ response accuracy (RA) and response time (RT) on different

visualization techniques. The techniques to be tested included: (1) Juxtaposed views with

the original windows; (2) Juxtaposed full views; (3) Juxtaposed pattern outline views; (4)

Pattern vector views; and (5) Pattern change views. The firstone is the competitor, and

techniques 2, 3, 4, and 5 use the merged windows.

The experiments details are as follows:

Datasets and data patterns: In this experiment, I chose the traffic data and set the length

of the current view to one day. The target data pattern was linear trends. The length of

one time window was 30 minutes. The number of merged windows is set to 6. I picked 2

sensors and generated 2 figures for each technique, resulting in 10 figures.

Questions: Every participant was asked to observe each figure on a laptop monitor and

answer: “When did the biggest change of the fit line slope happen?” Note that one figure

using technique 1 contains 47 scatterplots, so users are allowed to apply zooming on

figures when exploring them. 8 graduate students in computerscience participated in this

user study.

100

Figure 5.16 shows the screenshot of a question used in this experiment.

Figure 5.16: This is a question used in the user study for the data-driven framework. The
figure is generated using juxtaposed full views along with superimposition technique.
Participants need to identify when did the biggest change happen for the fit line slope.

Experiment Results: Since there was no significant difference for the RA using the five

techniques, I only calculated the average RT shown in Figure5.17 with 95% confidence

interval, and compared the RT of different techniques usinga paired samples t-test. The

statistical result revealed that the proposed techniques (Techniques 2-5) have significantly

shorter response time than the visualizations of the original windows (p < 0.01). The RT

of pattern vector and pattern change views are significantlyshorter than the full view

using merged windows (p = 0.011 andp = 0.006) as expected. However, the difference

between the RT of pattern vector (pattern change) views and pattern outline views using

merged windows is not significant (p = 0.115 andp = 0.053). This might be because the

sample size was small.

Based on the experiment result, the conclusion is that the proposed visualization tech-

101

Figure 5.17: The response time for five techniques with 95% confidence interval. Tech
1: juxtaposed views with the original windows. Tech 2: juxtaposed views (full view).
Tech 3: juxtaposed views (pattern outline). Tech 4: patternvector views. Tech 5: pattern
change views. Note that Techniques 3, 4, and 5 use the merged windows.

niques combined with the merge algorithm can significantly reduce users’ response time

when exploring the linear trend changes on streaming data. In the future, I plan to intro-

duce other data patterns, such as data range, into this experiment. More participants will

also be invited.

102

Chapter 6

History Views for History Data Using

Nested Hierarchical Timelines

6.1 A Framework to Visualize History Data Using Nested

Hierarchical Timelines

Figure 6.1 shows how to generate history views. This framework assumes that the stream-

ing data can be defined using a hierarchical structure. At each level, users can define a

time unit, and then the streaming data is split into many segments. One segment at one

specific level could contain several segments at the lower level. Note that the segments

at the bottom level are the time windows mentioned in the prior chapters. For example,

traffic can be defined at five levels, including year, quarter,week, day and half hour. One

year contains 4 quarters, each of which has 13 weeks, and so on. If the data does not have

this structure, a hierarchical structure with only one level can be defined. This structure

is shown at the left side of Figure 6.1. It has totallyn levels. For the traffic data,n = 5.

Each segment at levelsL0, L1, L2, L3 andL4 corresponds to half hour, day, week, quarter

and year, respectively.

103

...

...

... ...

... ...L0

Ln-3

Ln-2

Ln-1

Perspective
Level

Pattern
Level

Time-based Hierarchical Structure

... ...

... ...

Merge-based Hierarchical Structure

... ...

... ...

...

...

L0

L1

Lm-2

Lm-1
T

Perspective Range

Pattern Range

Merge Mode Input

Merge

Non-merge Mode Views Merge Mode Views

Figure 6.1: The framework to generate history views using nested hierarchical timelines.
Left side shows hierarchical time units that contains two levels, perspective and pattern.
At both levels, users can specify time ranges, named perspective and pattern ranges. All
time windows in the pattern range can be directly output to a non-merge mode view, or
the merge algorithm to generate a merge-based hierarchicalstructure. Users can select a
specific level on this structure. All time windows on this level will be output to a merge
mode view.

On this user-defined hierarchical structure, users can specify a pattern leveland aper-

spective level. Each time window on two levels are calledpattern windowandperspective

windowrespectively. The former indicates the time unit in which users want to observe

the data patterns. On the latter level, users can define a timerange that is calledperspec-

tive range(highlighted by a blue solid line rectangle at the perspective level). The blue

dashed line rectangle at the pattern level contains all timeperiods (pattern range) that

users want to observe pattern changes. For instance, imagine that users move the perspec-

tive level to week, and the pattern level to half hour, and then select a specific week. Thus

the pattern range should contain all time windows (half hours) within this week. In this

case, users focus on investigating how data patterns changeacross these time windows

within this week.

Now, the key task is to visually convey the pattern changes within the pattern range.

To solve this problem, two approaches, named non-merge and merge modes, were de-

signed. For the non-merge mode, I generate the visualizations for each time period and

organize them on the history views called “non-merge mode views”, using layout strate-

104

gies proposed in prior chapters. In addition, some new approaches appropriate for history

data will be proposed to form the final output. The above solution is straightforward and

could cause long response time if there are too many time periods in the pattern range.

The reason has been discussed in Section 1.2. Thus the merge modes were designed to

display fewer visual elements via the merge algorithm (Section 5.1) while keeping the pri-

mary pattern changes. Slightly different from Algorithm 2 in Section 5.1, I setNm = 1

(the number of merged windows). It means that all time periods will eventually be merged

to one merged window. During the merge process, the intermediate results after each call

to the single step merge (Algorithm 1) are recorded, thus producing a merge-based hier-

archical structure (Figure 6.1). Users can choose a level inthis structure, and the system

will then form the visualizations using only the merged timewindows on a selected level.

A higher level can allow users to focus on the primary trends of the data, while a lower

one conveys more details but with possibly more visual clutter. Note that sometimes in

the merge process it is necessary to merge time periods at a level that is not at the bottom

in the time-based hierarchical structure. For example, if users want to investigate how the

patterns changed from one day to the next within one year, it is needed to merge adjacent

days if the changes on traffic patterns are small, so the final output has enough space to

show significant changes, e.g., from weekends to weekdays. This is different from the

discussion about the merge algorithm in Section 5.1, where the requirement is to merge

the time windows at the bottom level (the leaves of the tree atthe left side in Figure 6.1).

To solve this problem, it is necessary to define the distance between two time periods at a

higher level, i.e., two days or weeks. This definition depends on the application area and

users’ interests. For example, one possible definition for the distance between two days

of traffic is the difference between the average volumes of two days, while another one

could be the summation of the slope difference of the regression lines (occupancy against

speed), between the corresponding time windows.

105

Figure 6.2: A snapshot of history views showing merged mode views.

Figure 6.2 shows a snapshot of the implemented visualization system based on the

above proposed framework under the merged mode. This systemis composed of three

views: time-based hierarchy (bottom left), merge-based hierarchy (bottom right), and his-

tory views (upper section). The first two views correspond tothe time-based hierarchical

structure and the merge-based hierarchical view in Figure 6.1, respectively. The history

views can be non-merged views or merged-views based on users’ selection. A merged

one is shown in Figure 6.2. This figure shows the traffic data from sensor D191 (close to

the intersection of I-35W and 35th Street) during the periodfrom Jan. 1, 2008 to Dec.31,

2008. In the time-based hierarchy, one timeline is shown foreach level in this dataset.

Thus this hierarchy has five timelines, corresponding to year, quarter, week, day and half

hour. Users can use the mouse to drag the perspective and pattern level tag to change

them. Note that the perspective level is set to the day and thepattern level is on the half

hour. Since the data is only for one year, the top level has only one segment that is always

selected and highlighted in dark red. Four segments in the second level corresponds to

106

four quarters in this year. For instance, the second segmentis from April 1 to June 30.

Users can click one segment to select this quarter and highlight it in dark red, then the

timeline in the week level contains the thirteen weeks in this quarter. That means the

first segment is the week from April 1 to April 7, and the secondone corresponds to the

following week (April 8 - 14). Users can continue to select one week on the week level

timeline, and then do similar things on the following levels, until reaching the perspective

level, the day timeline. If one day on this level is highlighted, all time windows on the

pattern level (half hour) will be highlighted. In Figure 6.2, April 18 is selected at the

perspective level. Then, the highlighted time windows (half hours, i.e., pattern level) in

this day are highlighted and output to the merge algorithm for generating the merge-based

hierarchy (the bottom right section of Figure 6.2). In this hierarchy, users can select and

highlight a whole level instead of one segment, which is different from the time-based

hierarchy. Then all merged windows on the selected level will be visualized in the history

view at the upper section of Figure 6.2, namedhistory view. Note that this figure uses the

1D layout discussed in Section 5.3. The grid layout is also implemented in this system

for merge-mode views.

For non-merge mode, it is necessary to develop some new techniques, because a nor-

mal case is to visualize tens or hundreds of time windows in one view. Under such a

situation, both 1D and grid layout will cause too much visualclutter and fail in conveying

pattern changes. Figure 6.3 shows a grid view that presents the slope change for the re-

gression lines across three months. This figure contains twoviews: a time-based hierarchy

(bottom) and a grid view (top). The bottom view is the same as the merged mode, while

users select the quarter as the perspective level, and the day as the pattern level. Since the

second quarter (April 1 - July 1) was selected, all days within this period were highlighted

at the day timeline (pattern level). This quarters contains91 days, or91×48 = 4368 time

windows (half hours). Although it is possible to apply the merge algorithm to all 4368

107

time windows, Figure 6.3 shows a better solution, if users are only interested in the slope

change of the regression line between variablesSpeedandOccupancy. In the top view

of Figure 6.3, each glyph has a curve to show the slope change within one day. It is easy

to observe that the curves in the first and last columns are relatively smooth compared

to other grids. It shows that the traffic pattern changes within these days are slower than

other days. Actually, these two columns correspond to Saturdays and Sundays.

Figure 6.3: This figure shows a history view (top) with hierarchical time structure (bot-
tom) defined by users. They are interested in the changes across contiguous windows on
the pattern level (days) in this figure. The selected quarter(March 30 - June 29) on the
perspective level is highlighted in red color and indicatesthe time periods of interest. The
red color on the week and day level means all segments in the selected quarter are se-
lected. In the history view, each glyph corresponds to one day (pattern level) and contains
a curve to represent the slope change of regression lines within 48 time windows for each
day. Grey background is applied to all weekdays to help readers observe data patterns.

Definitions

108

Some terms used in this framework are given below:

pattern level: A level in the time hierarchy on which a window is a basic unitfor users

to observe data patterns during pattern evolution. For example, if users want to

investigate how traffic patterns change from one day to another, the “day” is the

pattern level.

pattern window: A time window on the pattern level.

pattern range: The time range on the pattern level containing pattern windows among

which users want to explore the traffic pattern changes.

perspective level: The highest level on which users can select one or more time windows

to define the time range containing pattern windows of interest. For example, if

users are interested in the traffic pattern changes across days within one quarter, the

perspective level is “quarter”.

perspective window: A time window on the perspective level.

perspective range: The selected time range on the perspective level.

6.2 Visualization Techniques for Merged Mode

This section will discuss more details about visualizations in merged mode. One advan-

tage of merged mode views is that the height of the merged-based hierarchical tree can

reflect the intensity of the pattern change. More levels indicate a quicker pattern change.

In addition, it enables users to choose an appropriate number of subfigures based on can-

vas size and their requirements. For example, Figure 6.4 contains only 5 levels in the

merge-based hierarchy for the data on April 20 (Sunday). However, in Figure 6.2, the

merge algorithm generated a hierarchy having 7 levels for the data on April 18 (Friday).

109

It shows that the traffic pattern changes more frequently on April 20 than April 18. This

finding can be confirmed through Figure 6.3.

Figure 6.4: A snapshot of history views showing merged mode views with less levels in
merge-based hierarchy. The selected day is April 20, 2008.

To help users understand how time windows are merged from onelevel to the next,

an approach, named thetwo levels view, was designed to display the merged windows on

two levels together. An example is shown in Figure 6.5. In this figure, two levels, “L2”

and “L3”, are selected in the merge-based hierarchy. The corresponding time windows in

these two levels are displayed in the history views simultaneously. Two levels both are

connected to the same time axis. From this figure, one can clearly see how time windows

are merged from one level to the other.

In conclusion, merged mode views can help users perform the following data analysis

tasks in the history data:

• Observe the data pattern changes on the pattern level. Userscan adjust the number

of displayed windows in terms of canvas size and the degree ofvisual clutter.

110

Figure 6.5: This figure shows the merged mode with thetwo levels view. Two levels on
April 20, 2008 are selected to show how windows are merged from a lower level to a
higher one.

• Investigate how time windows are merged from one level to another via thetwo

levels view.

6.3 Visualization Techniques for Non-merged Mode

In Section 6.1, Figure 6.3 shows a non-merged grid view. It has some obvious disad-

vantages: (1) This technique cannot work for the case where the difference between the

perspective level and pattern level is bigger than 2; (2) It does not explicitly convey the

111

pattern change from one day to the next. In this section, extensions will be applied to

the proposed approach for solving the above problems. Section 6.3.1 focuses on issue 1;

Section 6.3.2 proposes visualization and interaction techniques for explicitly representing

the pattern changes.

6.3.1 Virtual Calendar View

In many cases, users might need to observe the pattern changes within a bigger time

range. For example, in the traffic data, a common analysis task is to observe how patterns

for each day change across one year. Since its hierarchical structure has five levels (year,

quarter, week, day and half hour), the perspective level should be year, and the pattern

level is day. The difference between these two levels is 3, sothe visualization technique

proposed in Section 6.1 does not work unless a certain extension is applied to it. For

this data analysis task, the solution is to render one grid view for each quarter, and then

generate the final visualization by laying out four views horizontally (Figure 6.6). Note

that this is similar to a calendar, thus it can be called avirtual calendar view. The reason

why to call it virtual is that this approach can be used on the streaming data havinga

hierarchical structure not based on natural time units (year, quarter, week and so on). In

such a case, the view is not a real calendar.

The above approach was inspired by the Wijk and Selow’s calendar view [64] and

MulteeSum[44] developed by Meyer et al. Wijk and Selow’s work used a real calendar

to visualize the numbers of employees present at a research center that were encoded by

colors. Meyer et al. visually represented the gene expression profiles of cells via a small-

multiple matrix of line charts. Each row corresponds to a cell while each column is a

gene. Then one line chart can convey the time series data for the expression of one gene

in a specific cell. My non-merge mode views are very similar toMulteeSum, but rows,

columns, and glyphs all are representing different time units in a hierarchical way.

112

Figure 6.6: 2D grid view is extended to create avirtual calendar view.

Figure 6.7 shows how to generate the virtual calendar view. Compared to Figure 6.1,

a new level, grid level, was added. It is just two more layers higher than the pattern level.

If users selected a range in the perspective level, it will contain some continuous segments

on the grid level, which can be called thecalendar range. For each segment in this range,

a grid view is generated. In Figure 6.6, each segment on the grid level corresponds to one

quarter. All grid views are then organized horizontally, vertically, in a bigger grid, or via

other layout strategies to obtain the final visualizations.In theory, this approach can work

regardless of the number of segments in the calendar range. However, if this number is

too big, the quality of the final output will be very low because of too much visual clutter.

Thus, in real applications, developers should not allow users to select too many segments

on the grid level to avoid low quality output.

... ...Pattern
Level

... ...

Perspective Range

... ...

... ...

... ...
Grid
Level

Pattern
Level

Calendar Range

Pattern Range

Figure 6.7: To generate thevirtual calendar views, a grid level is added to the framework
in 6.1. Each segment on the grid level corresponds to a grid view in the final visualization.

113

6.3.2 Explicitly Conveying Pattern Changes

In all the above visualizations, the patterns for each segment in the pattern level were con-

veyed to the users. It is true that data analysts can investigate how patterns change across

the selected time range by observing the whole figure and comparing glyph shapes. How-

ever, this is time consuming especially if there are hundreds of glyphs on the final output.

In this section, two visualization techniques that can explicitly convey the pattern changes

will be discussed:MDS pattern starfieldanddistance map. Then some interaction tech-

niques based on them will be introduced.

Figure 6.8: MDS algorithm is used to generate positions for cells. The distance between
grids represents the distance between corresponding cells.

MDS Pattern Starfield

MDS is a commonly used approach in data visualization to convey the distance among

multiple objects. For example, Yang et al. developed the MDSVaR display to visually

represent the distances among multiple dimensions in a large-scale multivariate dataset

[68, 67]. Figure 6.8 shows an MDS pattern starfield to presenta pattern space for the first

quarter in the same dataset as what is used in Section 6.1. Similar to Figure 6.3, each

114

glyph corresponds to one day, i.e., one pattern window. Thislayout was generated using

an MDS algorithm [35]. The proximity among glyph positions reflects pattern distances.

Assume that users want to observe N pattern windows, the procedure to get such a starfield

is as follows: (1) Distances among these pattern windows arecalculated and recorded in

an N× N matrix. (2) This matrix is regarded as the input to an MDS algorithm [35],

which generates a position for each pattern window. (3) Eachpattern window is rendered

as a glyph in the position obtained from the MDS algorithm.

The advantage of this approach is obvious. First, users can easily observe the dis-

tribution of pattern windows and clusters in pattern space,since this layout conveys the

distance among pattern windows. Then different actions, such as manual clustering and

outlier detection, can be easily applied to some pattern windows. For example, in Figure

6.8, one can see that there are several outliers: the glyphs corresponding to the pattern

windows on Jan. 1, Jan. 21, Feb. 14, Feb. 16 and March 7. In addition, one interesting

phenomena is that weekends mainly occupy the right part of the figure while weekdays

are in the middle and left sections. This is easy to explain because weekend traffic pat-

terns are significantly different from those in weekdays. Actually, the expectation is to

have two clusters shown on the output, one representing weekdays, and the other being

weekends. Probably because there are some outliers, these two clusters are not clearly

separated.

In order to avoid the impact of outliers and observe whether two clusters (weekends

and weekdays) exist in this dataset, I introduced an interaction technique to allow data

analysts to remove some glyphs from the figures. When users move the mouse to a

specific glyph, they can right click this glyph then this glyph will be removed from the

input of the MDS algorithm and it will not be rendered in the final output. Users can

repeat this action multiple times to remove more than one glyph. Using this technique,

two glyphs, March 7 and Jan. 1, were removed from Figure 6.8, producing Figure 6.9.

115

Now, two clusters are clearly shown.

Figure 6.9: Two days, March 7 and Jan. 1, were removed from Figure 6.8, since they are
obvious outliers. Now one can clearly see two clusters: weekdays and weekends.

Distance Map

The main goal of the distance map is to convey the pattern distance among pattern

windows. Assume users selected N pattern windows in thePattern Range, there are N×N

possible distance measures to be represented. It is not practical to show all these measures

in one figure. For example, there are364×364 = 132496 distance measures in Figure 6.6.

Actually, in most data analysis tasks, users probably are only interested in the distance

between two specific pattern windows, or one target window and all others. A possible

scenario is as follows: the data analyst finds one interesting pattern window, and then

wants to investigate how this window is different from others, or how patterns change

around this window. Thus what needs to be shown is the distance measures between

this target window and its neighbors. Therefore, I allow users to specify a target pattern

window, and then use the distance map to show the pattern distance measures between

this target and others.

116

Figure 6.10: This figure shows an example of thedistance map. One day (Feb. 3) is
selected as the target pattern window. The distance measures between other pattern win-
dows and this day are printed in each grid and explicitly represented by the background
color. The legend shows how the distance measures are mappedto colors

.

The other problem is how to visualize the distance measures.Since the color is a visual

variable that has a high degree of preattentive processing [61], an encoding technique is

used to map distance measures to glyph background colors. The generated output is called

adistance map. One example is shown in Figure 6.10. In this figure, Feb. 3 is selected as

the target pattern window. The implemented visualization system calculates the distance

measures between this target windows and all others, and then shows all measures via the

glyph background color. All distance measures are normalized before visualizing via the

following formula:

d′ =
d− dmin

dmax − dmin

wheredmax anddmin are the maximal and minimal distance,d is the real distance andd′

is the normalized value. For the examples in this sections,dmin = 0, since the distance

between one pattern window and itself is 0, and all distance measures are positive values.

Obviously, the biggest distance measure will be normalizedto 1. This distance is also

117

printed in each glyph. For example, in the glyph for Jan. 1, the number 0.4 is the nor-

malized distance measure between Jan. 1 and Feb. 3. One can also find that March 7 has

a normalized distance equal to 1 (maximal possible value), and its glyph has the darkest

color.

In Figure 6.10, one finding is that most glyphs in the first column (Sundays) and the

last column (Saturdays) have a smaller distance to Feb. 3 (Sunday) since their background

colors are brighter than other columns. That is to say, the weekday columns (the second to

the sixth) have a smaller similarity to Feb. 3 than the Sundayand Saturday columns. This

finding is consistent with common sense that normally the traffic patterns in weekends

are different from those in weekdays.

One disadvantage of the distance map is that it might be difficult to distinguish differ-

ent colors when the difference measures among pattern windows are slight. Actually, the

difference between background colors of weekday and weekend columns is not obvious

in Figure 6.10. It might require a long response time to draw the above conclusion. In or-

der to shorten the user’s response time, an interactive technique, namely apattern brush,

is introduced. Its main idea is to use two colors to distinguish a small difference and a

bigger one. Thus users can easily investigate the pattern changes across pattern windows.

Pattern Brush

Brushing is a commonly used interaction technique to allow users to select a subset

of data via a query [5]. In order to use brushing, all pattern windows are regarded as a set

S = {Wi|1 ≤ i ≤ n} and then are divided into two subsets:

S1 = {Wi|d(Wi,W
′) < δ, 1 ≤ i ≤ n}

and

S2 = {Wi|d(Wi,W
′) ≥ δ, 1 ≤ i ≤ n}

118

whereW ′ is the target pattern window,δ is a distance threshold. Thus,S1 contains those

pattern windows closer to the target window thanS2. In the existing literature, there are

a lot of techniques [14] to highlight a subset of interest. Here I propose to use the fog

technique used by lots of visualization systems, such as Tableau [57]. If fog is applied to

a subset (S1 or S2), the other one will be highlighted. For example, in Figure 6.11, the

subsetS1 is highlighted by applying fog toS2 (δ = 0.4). It is obvious that most glyphs

having a distance measure smaller than 0.4 are in the weekendcolumns. This conclusion

is the same as what one draws via Figure 6.10. However, users can more easily draw this

conclusion from Figure 6.11 than Figure 6.10. This shows that this approach achieved the

goal of shortening user response time.

Figure 6.11: A fog effect is applied to the glyph whose distance to Feb. 3 is bigger than
δ = 0.4. This can make those pattern windows close to the target pattern window more
obvious than Figure 6.10.

In order to enable users to adjust the distance threshold, I provide a slider in the config-

uration dialog. If users adjust the distance threshold in Figure 6.11 from0.4 to 0.5, Figure

6.12 is generated. Compared to Figure 6.11, more pattern windows are highlighted. All

weekend pattern windows are highlighted except Feb. 16. Another observation is that

119

some weekday pattern windows have a similar curve to the target pattern window Feb.

3. This leads to some more interesting findings: (1) Feb. 16 isdifferent from regular

weekends, even though it is a Saturday. If observing its curve shape carefully, the finding

is that it is also different from most weekdays. Actually, itis an outlier (recall Figure 6.8).

(2) Some weekdays have similar traffic patterns to Feb. 3(Sunday), such as Dec.31, Feb.

4, Feb. 18, and so on. It means that the traffic in these days is not heavy. Some of them are

easy to interpret. for example, Dec. 31 is New Year Eve and Feb. 18 is the Washington’s

Birthday. Most people did not go to work on these two days.

Figure 6.12: This figure uses the same dataset and technique to Figure 6.11 but with a
bigger thresholdδ = 0.5. Fewer glyphs are dimmed than Figure 6.11.

6.4 Usability Evaluation

In the prior sections, I showed the proposed history views under merged and non-merged

mode views along with their associated interaction techniques. Many examples have

demonstrated that the proposed techniques can help data analysts efficiently discover

how data patterns change across pattern windows in different hierarchical levels over a

120

very long time period. However, the discussion and examplesin the prior sections is not

enough to show the usability of the implemented system basedon the proposed frame-

work. A pending question is: can users really understand concepts about the proposed

data model and visualization/interaction techniques and learn to use this system? To an-

swer this question, I designed a usability evaluation and invited some people to use the

implemented system for performing some specific data analysis tasks. Below is a list of

questions I wanted to answer in this usability experiment:

• Timelines (Navigating Timelines): Can users navigate two timelines to find infor-

mation of interest? For example, can they correctly select one specific day in the

user-defined hierarchical timelines? Can they choose one appropriate level in the

merge-based hierarchy for observing the data pattern change with a pattern win-

dow?

• Merge Mode (Investigating Merge Mode Views): Can merge mode views enable

users to easily observe the pattern change within a time period?

• Grid Views (Browsing Grid and Virtual Calendar Views): Can data analysts find

the pattern changes of interest, such as periodic phenomenaand pattern trends,

without difficulty via grid and virtual calendar views?

• MDS (Understanding MDS Pattern Starfield): Is the MDS pattern field an efficient

way to help users find clusters and outliers among pattern windows?

• Distance Map (Mastering Distance Map and Pattern Brush): Is it easy for people

to use the pattern brush to understand the similarity among pattern windows?

The basic idea to designing this experiment is as follows: (1) design some data anal-

ysis tasks on streaming data related to the above questions;(2) invite participants to per-

121

form these tasks; (3) record the average response time and response accuracy for each

task, based on which the above questions can be answered.

In this experiment, I continue to use the traffic data used in Sections 6.1 and 6.3, since

it has all features, such as cyclic changes and outliers, I wanted to ask participants to look

for. Eleven software engineers from Microsoft attended this experiment. All of them have

experience with simple visualizations, including line charts, bar charts and scatterplots,

but had not worked with some advanced ones, such as the MDS layout. Participants first

received training to familiarize themselves with my system, and then performed 24 tasks

belonging to 12 categories.

The list below contains 12 types of tasks this experiment asked subjects to perform:

Timelines (Navigating Timelines)

1. Find a specific day in the time-based hierarchy.

2. Find a specific half hour in the time-based hierarchy.

Merge Mode (Investigating Merge Mode Views)

1. Find where the biggest change of the regression line slopeis in a specific day.

2. Find up to three biggest changes between adjacent time windows in the regression

line slope in a specific day.

Grid Views (Browsing Grid and Virtual Calendar Views):

1. Observe the traffic pattern trends within a specific quarter using the grid views and

choose the correct description from multiple choices.

2. Observe the traffic pattern trends within one year using the virtual calendar views

and choose the correct description from multiple choices.

MDS (Understanding MDS Pattern Starfield)

122

Task Type Task No
Response Time (Seconds)Response Accuracy
Avg Std Dev Avg Std Dev

Timelines
1 8.3 3.8 1.0 0.0
2 11.3 3.6 1.0 0.0

Merge Mode
1 130.8 14.9 0.86 0.23
2 160.5 29.7 0.82 0.25

Grid Views
1 197.0 45.9 1.0 0.0
2 168.0 54.2 0.95 0.15

MDS
1 21.7 10.1 0.95 0.15
2 33.0 15.7 0.91 0.20

Distance Map
1 113.0 41.0 0.73 0.34
2 121.5 41.4 0.77 0.26
3 41.1 17.0 0.91 0.20

Table 6.1: The response time of usability experiment for history views.

1. Look for the outliers or clusters, if any, in a MDS pattern starfield.

2. Remove one or more outliers until they can clearly see the clusters.

Distance Map(Mastering Distance Map and Pattern Brush)

1. Find the top 10 glyphs closest to a specific day regarding the traffic pattern trends

using the distance map. If users can find more than 7 correct glyphs, the answer

was treated as correct.

2. Find the top 10 glyphs farthest from a specific day regarding the traffic pattern

trends using the distance map. The standard for correct answers was same as the

previous task.

3. Set a specific distance threshold to highlight only 10 glyphs closest to a specific

day regarding the traffic pattern trends using the pattern brush. If 8-12 glyphs are

finally highlighted, the answer was treated as a correct one.

Table 6.1 lists the response time and response accuracy for these 12 tasks.

From these experiments, the conclusion are:

123

• Users can easily understand the time-based and merge-basedhierarchy.

• The merge-based hierarchy can be effective in helping usersbrowse a short time

period with uneven pattern change rates. Most users can locate the pattern changes

correctly.

• Users can retrieve pattern trends from the grid views and thevirtual calendar views

with relatively ease. Although the tasks normally took themabout three minutes on

average, the response accuracy is very high.

• MDS pattern starfield conveyed the clusters and outliers in pattern windows very

well. Users quickly learned how to remove outliers from the view and make the

clusters separate.

• The first two types of tasks in “Distance Map” have a low but acceptable response

accuracy, while most users performed very well on the last type of task. It shows

that the distance map achieved the goal to represent the pattern distance among time

windows, but needs more improvement. Most users complainedthat it is difficult

for them to distinguish the background color for glyphs, so abetter color scheme

is necessary. In addition, outliers can be removed to make color difference more

obvious.

124

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, I have proposed a group of visualization techniques to visually convey

the data pattern changes in multivariate data streams.

User driven approach

The basic idea of the user driven approach is to display both the current data and

abstractions of past data to show how changes occur over time. The whole stream is split

into non-overlapped time windows and pattern-blind averaging is applied to each window.

The sampling ratio for a particular window is determined by aDOI (degree of interest)

function to reflect users’ interests. A larger DOI value results in a larger sampling ratio

for the specified window, meaning more details shown in this view. Two types of DOI

functions are provided to satisfy common data analysis tasks, as well as a DOI function

interactive tool to allow users to adjust the DOI function when exploring data streams. In

order to show how data patterns change, I have proposed four layout strategies, namely,

superimposition, juxtaposition, step juxtaposition, andanimation, to place time windows

in the final views. The evaluation showed that three of these four visualization techniques

125

can effectively convey the multivariate pattern change compared to the traditional time-

series data visualization techniques. A guide was derived to advise data analysts and

visualization system developers in choosing appropriate layout strategies based on the

characteristics of datasets and data analysis tasks. In addition, users are allowed to use

multiple views in the final visualization and use linked brushing to highlight a subset of

interest in all views when defining a query in one view.

Data driven approach

This approach addresses the problem of how to efficiently visualize pattern changes on

a data stream given the fact that the pattern change rate is not constant. Distorting the time

axis can partially solve this problem, but most existing techniques are user-driven. This is

not applicable to data streams that normally need quick responses. A data-driven approach

is proposed to automatically merge adjacent time windows with few or no changes in

the current view. A group of experiments show that the proposed merge algorithm can

preserve more change information than pattern-blind averaging. I proposed two types of

visualization techniques: juxtaposed full views and outline views. The former keeps the

data details while the latter aims to convey only the data patterns users want to observe. A

user study was conducted to confirm that the proposed visualization techniques together

with the merge algorithm can significantly reduce the time cost to detect pattern changes

over data streams.

History views

The history views are used to help users explore the data pattern changes within a

relatively long time period. The data analysis tasks normally are off-line and do not need

urgent response. The proposed history views work under two modes: non-merged and

merged. In the former mode, users need to define a hierarchical structure to represent

timelines. The definition of the hierarchy can be from natural time units, such as year,

quarter, and month, or domain specific units. When users select one time period on the

126

first timeline hierarchy, I generate the history view containing all time windows in this

time duration. In each glyph, the abstraction of data patterns are drawn instead of the

original datapoints. All glyphs comprise a grid or virtual calendar. Other approaches,

such as an MDS pattern starfield, distance map, and pattern brush, are designed to assist

users in discovering the similarities of time windows regarding the target data patterns.

For the merge mode, time windows selected by users are sent tothe merge algorithm

and a merge-based hierarchy is generated. The contiguous time windows having similar

patterns will be merged first. If users want to know more details about the data, they can

choose one lower level in this hierarchy, but with more visual clutter. Otherwise, they can

choose a higher level to avoid visual clutter with random sampling, which could lose some

details in the data. The usability evaluation demonstratedthat most users can understand

the concepts in history views and finish assigned tasks, including navigating timelines,

finding significant pattern changes, and investigating similarity among time windows.

7.2 Future Works

Although these approaches can effectively help data analysts observe, understand, and

retrieve how data patterns change in multivariate streaming data, these techniques can be

improved from the following aspects:

• Target patterns: When I designed visualization techniques for conveying pattern

changes, I always tried to make the proposed solutions be as general as possible

for most data patterns. It has been verified that they are feasible for linear trends

and data distribution. However, this is not enough. A plan isto apply the proposed

techniques to more data patterns, such as data density, clusters, and outliers.

• Application domains: All of the proposed approaches are general solutions for

streaming data, and do not target at any specific application. The next step is

127

to apply them to a variety of real domains, such as financial data analysis and

video monitoring. It might be necessary to modify the proposed framework and

design more visualization and interaction techniques for these applications. The

algorithms might need further optimization because of possible strict requirements

for response time.

• More data types: In all of proposed techniques, an assumption is that streaming

data contains only numerical values. However, a lot of application data is not nu-

merical, and includes text, audio, video, networks, and other types. There are two

possible ways to handle them: (1) convert them to multivariate data and apply the

approaches developed in this dissertation; or (2) directlydesign new approaches for

them. Either is an interesting direction for continued research.

• More Evaluation: All user studies in this dissertation invited only participants

who did not have expertise in the application domain relatedto the dataset. A more

efficient way is to find domain experts to assess the implemented system using the

dataset of their interest. For example, I can visit medical researchers to ask them

to observe sleep datasets in the implemented system and see whether and how this

can help them better understand their data.

• Distribute the Code: Following the tradition of the Xmdv group, releasing the

code of this system is an efficient way to get feedback.

128

Appendices

129

.1 Pattern Vectors for Linear Models

In this dissertation,least square[40], the most commonly-used regression method, is

used to estimate the linear model between two variablesX andY in a specific window.

Assume that the paired data in this window is(x1, y1), (x2, y2),. . ., and(xn, yn). The

linear model can be represented by:

Y = α+ βX

where

α =
R2 · S1 − R1 · T
n ·R2 − R2

1

, β =
n · T − R1 · S1

n ·R2 − R2
1

Note thatR1 =
n
∑

i=1
xi , R2 =

n
∑

i=1
x2
i , S1 =

n
∑

i=1
yi , andT =

n
∑

i=1
xiyi

If the linear model pattern vector of two specific windows,W ′ andW ′′, are repre-

sented as

V ′
p = (α′, β ′, n′, R′

1, R
′
2, S

′
1, T

′)

and

V ′′
p = (α′′, β ′′, n′′, R′′

1, R
′′
2, S

′′
1 , T

′′)

then the pattern vector of the parent window ofW1 andW2 is:

(α, β, n′ + n′′, R′
1 +R′′

1, R
′
2 +R′′

2, S
′
1 + S ′′

1 , T
′ + T ′′)

where

α =
(R′

2 +R′′
2) · (S ′

1 + S ′′
1)− (S ′

1 + S ′′
1) · (T ′ + T ′′)

(n′ + n′′) · (R′
2 +R′′

2)− (R′
1 +R′′

1)
2

β =
(n′ + n′′) · (T ′ + T ′′)− (R′

2 +R′′
2) · (S ′

1 + S ′′
1)

(n′ + n′′) · (R′
2 +R′′

2)− (R′
1 +R′′

1)
2

Note that, in the pattern vectors, onlyα andβ are used to describe the linear model, while

130

other items serves the operation to merge windows.

The distance betweenV ′
p andV ′′

p2
can be computed via:

| arctanβ ′ − arctanβ ′′|

where I am interested in only the change of fit line slope for the linear model. Other

definitions for distance functions can be used if users have different requirements.

.2 Pattern Vectors for Data Range

In this dissertation, I use mean value and standard deviation for each dimension to repre-

sent the data range. Other measures can be easily added.

Assume that variable X in a specific window isx1, x2, . . . , xn, its meanX and stan-

dard deviations can be represented by

X =

n
∑

i=1
xi

n

and

s =

√

√

√

√

√

n
∑

i=1
(xi −X)2

n− 1
=

√

√

√

√

R2 − 2 ·X · R1 + n ·X2

n− 1

whereR1 =
n
∑

i=1
xi andR2 =

n
∑

i=1
x2
i .

If the data range pattern vector of two specific windows,W1 andW2, are represented

as

V ′
p = (X

′
, s′, n′, R′

1, R
′
2)

and

V ′′
p = (X

′′
, s′′, n′′, R′′

1, R
′′
2)

131

then the pattern vector of the parent window ofW1 andW2 is:

(X, s, n′ + n′′, R′
1 +R′′

1, R
′
2 +R′′

2)

where

X =
n′X

′
+ n′′X

′′

n′ + n′′

s =

√

√

√

√

(R′
2 +R′′

2)− 2 ·X · (R′
1 +R′′

1) + (n′ + n′′) ·X2

n′ + n′′ − 1

The distance betweenW1 andW2 can is defined as:

√

(X
′ −X

′′
)2 + (Y

′ − Y
′′
)2

To make this distance function usable, two variables both should be normalized to

[0, 1] first. Other distance functions are possible in terms of specific applications.

132

Bibliography

[1] D. Andrews. Plots of high dimensional data.Biometrics, 28:125–136, 1972.

[2] A. Aris, B. Shneiderman, C. Plaisant, G. Shmueli, and W. Jank. Representing
unevenly-spaced time series data for visualization and interactive exploration.Proc.
Intl. Conf. Human-Computer Interaction - INTERACT, pages 835–846, 2005.

[3] R. Bade, S. Schlechtweg, and S. Miksch. Connecting time-oriented data and infor-
mation to a coherent interactive visualization.CHI, pages 105–112, 2004.

[4] M. F. Barnsley.Fractals Everywhere. Morgan Kaufmann, San Francisco, CA, USA,
1993.

[5] A. Becker and S. Cleveland. Brushing scatterplots.Technometrics, 29(2):127–142,
1987.

[6] L. Berry and T. Munzner. Binx: Dynamic exploration of time series datasets across
aggregation levels.IEEE Symp. Information Visualization Poster, page 215.2, 2004.

[7] E. Bertini and G. Santucci. Quality metrics for 2d scatterplot graphics: Automati-
cally reducing visual clutter. InProc. 4th International Symposium on SmartGraph-
ics, pages 77–89, 2004.

[8] E. Bertini and G. Santucci. Give chance a chance- modeling density to enhance scat-
ter plot quality through random data sampling.Information Visualization, 5(2):95–
110, 2006.

[9] N. Boukhelifa, F. Chevalier, and J.-D. Fekete. Real-time aggregation of wikipedia
data for visual analytics. InProc. IEEE Symp. Visual Analytics Science and Tech-
nology, pages 147–154, 2010.

[10] A candlestick chart to reflect the ratio change between USD and JPY.
http://forex.easy-forex.com.au/images/candlestick-chart2-lrg.jpg, accessed on Apr.
2, 2008.

[11] S. Card, J. Mackinlay, and B. Shneiderman.Readings in Information Visualization.
Morgan Kaufmann, San Francisco, CA, 1999.

133

[12] J. V. Carlis and J. A. Konstan. Interactive visualization of serial periodic data.Proc.
Symp. User Interface Software and Technology, pages 29–38, 1998.

[13] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E.A. Suma,
C. Ziemkiewicz, D. A. Kern, and A. Sudjianto. Wirevis: Visualization of cate-
gorical, time-varying data from financial transactions. InProc. IEEE Symp. Visual
Analytics Science and Technology, pages 155–162, 2007.

[14] H. Chen. Compound brushing.Proc. IEEE Symposium on Information Visualiza-
tion, pages 181–188, 2003.

[15] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. Multi-dimensional regression
analysis of time-series data streams. InVLDB, pages 323–334, 2002.

[16] E. H. Chi. A framework for information visualization spreadsheets. PhD thesis,
University of Minnesota, 1999.

[17] R. J. Clarke. Image and video compression: a survey.International Journal of
Imaging Systems and Technology, 10:20–32, 1999.

[18] Q. Cui, M. Ward, and E. Rundensteiner. Enhancing scatterplot matrices for data with
ordering or spatial attributes.Visualization and Data Analysis, Part of IS&T/SPIE
Symposium on Electronic Imaging, pages 0R1–0R11, 2006.

[19] A. Dix and G. Ellis. By chance - enhancing interaction with large data sets through
statistical sampling.Proc. Advanced Visual Interfaces, pages 167–176, 2002.

[20] G. Ellis and A. Dix. A taxonomy of clutter reduction for information visualisa-
tion. IEEE Transactions on Visualization and Computer Graphics, 13(6):1216–
1223, 2007.

[21] G. Furnas. Generalized fisheye views.Proc. ACM SIGCHI Conference on Human
Factors in Computing Systems, pages 16–23, 1986.

[22] L. Golab and M. T.Özsu. Issues in data stream management.SIGMOD Rec.,
32(2):5–14, 2003.

[23] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley.PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new researchresource for complex
physiologic signals.Circulation, 101(23):e215–e220, 2000.

[24] M. C. Hao, U. Dayal, D. A. Keim, D. Morent, and J. Schneidewind. Intelligent visual
analytics queries.Proc. IEEE Symp. Visual Analytics Science and Technology, pages
91–98, 2007.

134

[25] M. C. Hao, U. Dayal, D. A. Keim, and T. Schreck. Importance-driven visualization
layouts for large time series data.Proc. IEEE Symp. Information Visualization,
pages 203–210, 2005.

[26] M. C. Hao, U. Dayal, D. A. Keim, and T. Schreck. Multi-resolution techniques for
visual exploration of large time-series data.EuroVis07: Joint Eurographics - IEEE
VGTC Symp. on Visualization, pages 27–34, 2007.

[27] S. Havre, E. Hetzler, P. Whitney, and L. Nowell. ThemeRiver: Visualizing thematic
changes in large document collections.IEEE Transactions on Visualization and
Computer Graphics, 8(1):9–20, January 2002.

[28] K. P. Hewagamage, M. Hirakawa, and T. Ichikawa. Interactive visualization of
spatiotemporal patterns using spirals on a geographical map. Proc. Symp. Visual
languages, pages 296–303, 1999.

[29] H. Hochheiser and B. Shneiderman. Dynamic query tools for time series data sets:
Timebox widgets for interactive exploration.Information Visualization, 3(1):1–18,
2004.

[30] D. A. Huffman. A method for construction of minimum-redundancy codes.Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

[31] D. F. Huynh. SIMILE – timeline [http://simile.mit.edu/timeline/]. Massachusetts
Institute of Technology, 2006.

[32] A. Inselberg. The plane with parallel coordinates.Special Issue on Computational
Geometry, The Visual Computer, 1:69–97, 1985.

[33] D. Keim. Designing pixel-oriented visualization techniques: Theory and appli-
cations. IEEE Transactions on Visualization and Computer Graphics, 6(1):1–20,
January-March 2000.

[34] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng.KDD-Cup 2000 orga-
nizers’ report: Peeling the onion.SIGKDD Explorations, 2(2):86–98, 2000.

[35] J. Kruskal and M. Wish.Multidimensional Scaling. Sage Publications, Thousand
Oaks, CA, USA, 1978.

[36] N. Kumar, V. N. Lolla, E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana. Time-
series bitmaps: a practical visualization tool for workingwith large time series
databases. InSIAM International Data Mining Conference, Poster, 2005.

[37] R. P. Laeser, W. I. Mclaughlin, and D. M. Wolff. Engineering voyager 2s encounter
with uranus.Scientific American, 255(5):36–45, 1986.

[38] J. LeBlanc, M. Ward, and N. Wittels. Exploring n-dimensional databases.Proc.
IEEE Visualization, pages 230–237, 1990.

135

[39] D. A. Lelewer and D. S. Hirschberg. Data compression.ACM Comput. Surv.,
19:261–296, September 1987.

[40] S. J. Leon.Linear Algebra with Applications (7th Edition). Prentice Hall, Upper
Saddle River, NJ, USA, 2005.

[41] B. Lichtenbelt, R. Crane, and S. Naqui.Introduction to Volume Rendering. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1998.

[42] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. ExperiencingSAX: a novel symbolic
representation of time series.Data Min. Knowl. Discov., 15(2):107–144, 2007.

[43] S. Mallat.A Wavelet Tour of Signal Processing. Academic Press, Maryland Heights,
MO, USA, 1999.

[44] M. D. Meyer, T. Munzner, A. H. DePace, and H. Pfister. Multeesum: A tool for
comparative spatial and temporal gene expression data.IEEE Trans. Vis. Comput.
Graph., 16(6):908–917, 2010.

[45] S. Miksch, W. Horn, C. Popow, and F. Paky. Utilizing temporal data abstraction
for data validation and therapy planning for artificially ventilated newborn infants.
Artificial Intelligence in Medicine, 8(6):543–576, 1996.

[46] S. Miksch, A. Seyfang, W. Horn, and C. Popow. Abstracting steady qualitative
descriptions over time from noisy, high-frequency data.Proc. Artificial Intelligence
in Medicine. Joint European Conference on Artificial Intelligence in Medicine and
Medical Decision Making, pages 281–290, 1999.

[47] N. Miller, P. Wong, M. Brewster, and H. Foote. Topic islands: A wavelet-based text
visualization system.Proc. IEEE Visualization, pages 189–196, 1998.

[48] Minnesota Department of Transportation. Mn/DOT traveler information.
http://www.dot.state.mn.us/tmc/trafficinfo/, accessedon Feb. 25, 2009.

[49] A. V. Moere. Time-varying data visualization using information flocking boids.
Proc. IEEE Symp. Information Visualization, pages 97–104, 2004.

[50] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning
databases [http://www.ics.uci.edu/∼mlearn/
mlrepository.html].University of California, Irvine, Dept. of Information andCom-
puter Sciences, 1998.

[51] G. Nielson, I.-H. Jung, and J. Sung. Wavelets over curvilinear grids. Proc. IEEE
Visualization, pages 313–317, 1998.

[52] P. Ren, J. Kristoff, and B. Gooch. Visualizing dns traffic. In Proc. 3rd Workshop on
Visualization for Computer Security, pages 23–30, 2006.

136

[53] J. F. Roddick and M. Spiliopoulou. A survey of temporal knowledge discovery
paradigms and methods.IEEE Trans. Knowl. Data Eng., 14(4):750–767, 2002.

[54] K. Sayood. Introduction to Data Compression, Third Edition. Morgan Kaufmann
Pub, San Francisco, CA, USA, 2005.

[55] B. Shneiderman. The eyes have it: a task by data type taxonomy for information
visualization.Proc. IEEE Symposium on Visual Languages, pages 336–343, 1996.

[56] J. Siegel, E. Farrell, R. Goldwyn, and H. Friedman. The surgical implication of
physiologic patterns in myocardial infarction shock.Surgery, 72:126–141, 1972.

[57] C. R. Stolte. Visual interfaces to data. InSIGMOD Conference, pages 1067–1068,
2010.

[58] C. Tominski, J. Abello, and H. Schumann. Axes-based visualizations with radial
layouts.Proc. ACM Symp.on Applied Computing, pages 1242–1247, 2004.

[59] E. Tufte.The Visual Display of Quantitative Information. Graphics Press, Cheshire,
CT, USA, 1983.

[60] M. Ward and B. Lipchak. A visualization tool for exploratory analysis of cyclic
multivariate data.Metrika, 51(1):27–37, 2000.

[61] M. O. Ward, G. Grinstein, and D. Keim.Interactive Data Visualization: Founda-
tions, Techniques, and Applications. A K Peters Ltd, Natick, MA, USA, 2010.

[62] M. Wattenberg. Baby names, visualization, and social data analysis.Proc. IEEE
Symp. Information Visualization, pages 1–7, 2005.

[63] M. Weber, M. Alexa, and W. Müller. Visualizing time-series on spirals.Proc. IEEE
Symp. Information Visualization, pages 7–14, 2001.

[64] J. V. Wijk and E. V. Selow. Cluster and calendar based visualization of time series
data.Proc. IEEE Symposium on Information Visualization, pages 4–9, 1999.

[65] P. Wong and R. Bergeron. Multi-resolution multidimensional wavelet brushing.
Proc. IEEE Visualization, pages 141–148, 1996.

[66] Z. Xie, S. Huang, M. O. Ward, and E. A. Rundensteiner. Exploratory visualization of
multivariate data with variable quality.Proc. IEEE Symposium on Visual Analytics
Science and Technology, pages 183–190, 2006.

[67] J. Yang, D. Hubball, M. Ward, E. Rundensteiner, and W. Ribarsky. Value and re-
lation display: Interactive visual exploration of large data sets with hundreds of
dimensions. IEEE Trans. Visualization and Computer Graphics, 13(3):494–507,
2007.

137

[68] J. Yang, A. Patro, S. Huang, N. Mehta, M. Ward, and E. Rundensteiner. Value and
relation display for interactive exploration of high dimensional datasets.Proc. IEEE
Symposium on Information Visualization, pages 73–80, 2004.

[69] C. Yu, Y. Zhong, T. Smith, I. Park, and W. Huang. Visual mining of multimedia data
for social and behavioral studies. InProc. IEEE Symposium on Visual Analytics
Science and Technology, pages 155–162, 2008.

138

