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Abstract

More and more researchers are focusing on the managememnyjrguand pattern
mining of streaming data. The visualization of streamintadaowever, is still a very
new topic. Streaming data is very similar to time-seriemdance each datapoint has
a time dimension. Although the latter has been well studnethé area of information
visualization, a key characteristic of streaming data,cumged and large-scale input, is
rarely investigated. Moreover, most techniques for vigual time-series data focus on
univariate data and seldom convey multidimensional r@stips, which is an important
requirement in many application areas. Therefore, it isssgary to develop appropri-
ate techniques for streaming data instead of directly apgltime-series visualization
techniques to it.

As one of the main contributions of this dissertation, | aciice a user-driven ap-
proach for the visual analytics of multivariate data stredrased on effective visualiza-
tions via a combination of windowing and sampling strategi help users identify and
track how data patterns change over time, not only the cusieing window content
but also abstractions of past data in which users are inieet@se displayed. Sampling is
applied within each single time window to help reduce visatter as well as preserve
data patterns. Sampling ratios scheduled for differentlaivs reflect the degree of user
interest in the content. A degree of interest (DOI) funci®uoised to represent a user’s
interest in different windows of the data. Users can apply types of pre-defined DOI
functions, namely RC (recent change) and PP (periodic phena) functions. The de-
veloped tool also allows users to interactively adjust D@idtions, in a manner similar
to transfer functions in volume visualization, to enablei@+and-error exploration pro-

cess. In order to visually convey the change of multidimemasi correlations, four layout



strategies were designed. User studies showed that thtkesaf are effective techniques
for conveying data pattern changes compared to traditiimal series data visualization
techniques. Based on this evaluation, a guide for the setect appropriate layout strate-
gies was derived, considering the characteristics of tigetad datasets and data analysis
tasks. Case studies were used to show the effectivenessiduB&@ions and the various
visualization techniques.

A second contribution of this dissertation is a data-driframework to merge and
thus condense time windows having small or no changes atwidise time axis. Only
significant changes are shown to users. Pattern vectonstewduced as a compact format
for representing the discovered data model. Three viewsgposed views, pattern vector
views, and pattern change views, were developed for conga&lata pattern changes. The
first shows more details of the data but needs more canvas;gpadast two need much
less canvas space via conveying only the pattern parambtgrbse many data details.
The experiments showed that the proposed merge algorithesewes more change in-
formation than an intuitive pattern-blind averaging. Awustidy was also conducted to
confirm that the proposed techniques can help users findrpati@nges more quickly
than via a non-distorted time axis.

A third contribution of this dissertation is the history wie with related interaction
techniques were developed to work under two modes: nonenang merge. In the
former mode, the framework can use natural hierarchicad timits or one defined by
domain experts to represent timelines. This can help useigate across long time peri-
ods. Grid or virtual calendar views were designed to progidempact overview for the
history data. In addition, MDS pattern starfields, distamegs, and pattern brushes were
developed to enable users to quickly investigate the degfreattern similarity among
different time periods. For the merge mode, merge algostiwrare applied to selected

time windows to generate a merge-based hierarchy. Thegromts time windows having



similar patterns are merged first. Users can choose difféegals of merging with the
tradeoff between more details in the data and less visutdéclun the visualizations. The
usability evaluation demonstrated that most participaatdd understand the concepts of
the history views correctly and finished assigned tasks avittygh accuracy and relatively

fast response time.
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Chapter 1

Introduction

1.1 Motivation

Advances in hardware enable people to record data at raessl &g., kilobytes or mega-
bytes per second or even higher speeds. Some real applieatias require data analysis
at the same speed as the data being collected, such as nmanttee health of a collec-
tion of people, investments, or computer systems. Moredavenany cases, the volume
of data precludes storage for later analysis. For examplgyork traffic monitoring in-
volves tracking each packet to identify features of intei®sch as bottlenecks and poten-
tial intrusions. It is insufficient to detect potential neik attack with significant delay;
immediately revealing an intrusion will increase the natwadministrator’s effective-
ness in handling the hacking. In the areas of database anddahge discovery, the term
data streamsr streaming dateéhas been used to refer to such data that keeps growing
and needs to be processed on the fly. Researchers have deletapy techniques to
manage, query and analyze data streams in real-time [22].

In recent years, people have agreed that visualization zgngpcritical role in the

processes of data analysis and decision-making, sinca he&l@ analysts use visual per-



ception to uncover different patterns, such as clustesgcations, relationships, and
trends. Moreover, visual analytics can provide an int@ra@nvironment that combines
human visual cognitive capabilities with high performanoeputations, thus improving

the speed and accuracy at which analysts discover datansattéowever, there has been
little work to date on stream visualization.

Streaming data is similar time-serieslata, which has been identified as one of basic
data types [55] in the area of information visualizationbtith data types, each datapoint
has a time attribute, i.e., a timestamp. One can find a richfsgsualization techniques
for time-series data in the literature. As the first step, s should consider the direct
application of such existing time-series data visual@atechniques to streaming data.
Hence, the problem of visually exploring data streams capdvgally addressed. For
example, a continuously expanding line chart can conveyrérel of a univariate data
stream. However, an important characteristic of streardatg,unbounded inpytmakes
this simple approach ineffective and incomplete, as exgstisualization techniques for
time-series data generally regard the whole dataset as atat assume that all of the
data is available before rendering. This is inappropriatestreaming data. Instead, it is
necessary to design techniques capable of processinghstigedata in a continuous and
unbounded fashion.

Two other challenges arise in the visual exploration of hintie-series and streaming

data that must be addressed in order to help users performmoordata analysis tasks:

(1)Temporal Visual Mining: Many data mining tasks can be targeted on time-series
data, including the discovery of temporal associationgaed pattern evolution
[53]. Existing time-series data visualization technigoal/ support a small frac-
tion of these tasks. In this dissertation, | focus on one g type of temporal

mining: how data patterns change over time.



(2) Multivariate Correlations : Although a few existing visualization techniques for
time-series data try to present the relationships amongipteidlimensions, their
usefulness is often limited. For example, Hao et al. comantedisplay the degree
of importance for dimensions [25] , and present some preispe statistical values
among dimensions [24]. However, dimensions often have ¢exripterrelations
that these methods do not convey. In this dissertation, t@aoembine multivariate

and time-series data visualization techniques for stregmiata to fill this gap.

The main goal of this dissertation is to present a frameworkvisually exploring
unbounded multivariate data streams online and afterwalmi®ther words, this goal
can be split to two parts: (1) visualize streaming data witiioo much delay when new
data arrives, and (2) provide a history view to help userstiflerecurring or changing
patterns over history. Although different patterns exmstmany application areas, this
dissertation will focus on how multivariate data patterhartge over time. Two examples
to be discussed are: (1) the change of the regression lipe;sdod (2) The movement of

a cluster from one time window to the next

1.2 The Sketch of Proposed Solutions

To achieve the goal mentioned in the previous section, Igseg solutions based on the

following three aspects:

e Data Definition and Preprocessing A fact is that streaming data is dynamic, since
the new data keeps arriving at data processing centers. @sttewisting visualiza-
tion techniques are designed for static data. It is truedhatpossible solution is
to update the existing techniques a little bit to adapt thethé dynamic data. For
example, shifting a line chart can leave space for new dataeder, this design is

awkward because it lacks extensibility. For example, ifapplication requirement

3



is to convey complex multivariate data patterns, it mighttbavoidable to use scat-
terplots or other visualization techniques that are difficushift. In addition, some

tasks require the visualization systems to retrieve datt@ns using data mining
algorithms before generating the final output. To solvedl@®blems, | propose
to separate the data preprocessing from the visualizationghis dissertation, a

data preprocessing unit was designed that can retrievepd#itans and detect pat-
tern changes in the streaming data, and wrap a part of thensitng data in a static

dataset before sending it to the visualization unit.

Visualizations for Current Data: Although | mainly use existing visualization
techniques for static data, the visualization itself st@h change when a new time
window arrives. Since data changes might be very quick, eretlare too many
changes in one figure, under certain circumstances, it sigeghat the visualiza-
tions have changed to the next frame before users fully exina pattern changes
of interest. Thus the design of visualization techniquesuihreduce users’ re-

sponse time as much as possible.

Visualizations for Historical Data: As well as monitoring the live stream, users
might want to explore the past data over a long period, e.thinvthe past year.
Some common data analysis tasks include: What is the trertidadata patterns
within the past year? Are there any cycles or rules for tha gattern changes? Do
some time periods have similar data patterns to a specifie window? To help
users answer these types of question, data preprocesgmglains and visualiza-
tion techniques are needed for history data. For the dafagressing, | made use
of the algorithms for current data but with some adaptatidfer example, users
might want to observe the data in a hierarchical time stre¢tso the data model

must be modified to accommodate this goal. When designingsbealizations and



interactions, the data can be regarded as static and thietiess for current data
can be ignored. In other words, the historical data can bardegl as regular time

series data.

In the remaining part of this section, | will briefly descritiee three developed ap-
proaches. The first two aim to visualize dynamic streamirtg,dahile the last focuses

on history data.

1.2.1 A User-driven Approach Based on DOI Function

This approach aims to visualize the dynamic data as folloWse data in the current
window is mixed with those in the past windows and displayedn interactive view.
Datapoints from different time windows mixed within the wi@re distinguished using
different visual attributes, or the data is juxtaposed iroetdered set of views. A degree
of interest (DOI) function [21] is introduced to describe thegree of user interest in a
particular window. A lower DOI value results in a smaller gdimg ratio. This approach
works in two ways: (1) Users can choose which windows to simomunally those con-
taining data patterns that users want to compare; and (2sds@ reduce visual clutter
by assigning lower DOI values to selected windows. A spemakideration during the
design of the DOI function was to adapt it to a dynamic contegt example, in highway
traffic monitoring, one time window could be 30 minutes, asdns want to compare the
data patterns between the current window and the previoeis\Winen it is 6:00AM, the
two most recent windows are 5:00AM-5:30AM and 5:30AM-6:08AAfter one hour,
the two recent windows will be 6:00AM-6:30AM and 6:30AM-DAM. Thus, a reason-
able way is to refer to the time window using the distance betwa given window and
the current window in the DOI function.

Figure 1.1 shows examples of visualization layouts. Thigréguses a small slice

(5:00AM-6:30AM on Feb. 16, 2009) of a traffic data stream jaed by Mn/DOT (Min-

5



nesota Department of Transportation) [48]. In this slia@ghedatapoint includes three
measured values during a 30 second period from sensor D62 thoose two dimen-
sions to investigate their correlations here. One dimensidhe average vehicle speed
(Speed, and the other is the percentage of time that the detechsesea vehicle@c-
cupancy. A traditional time-series data visualization technigadine chart, is shown
in Figure 1.1(a). Figure 1.1(b) shows a naive solution tresits all datapoints in these
1.5 hours as a static dataset. One can neither identify aoggstelationship between
SpeedandOccupancynor learn how patterns changed over time. Figure 1.1(dsspke
data stream into three time windows and uses colors to dehetage of the windows.
One can draw a conclusion th@tcupancydoes not correlate with the changeSjeed
in the early period, but an obvious negative relationshiptebetween these two dimen-
sions later. In Figure 1.1(d), each time window is visualibg a scatterplot and three of
them are juxtaposed in the order of the time attribute. Oneeeaily confirm the pattern
changes that were found in Figure 1.1(c), but the last vizai@n technique relieves the
visual clutter found in Figure 1.1(c). In Figure 1.2, One sape how DOI functions work
to reduce visual clutter. After the DOI function is adjustededuce sampling ratios of
the three windows, visual clutter is reduced, and users cae clearly see how a single
cluster moves over time.

Although the above approach can be applied to regular diate-series data, the

following issues are some considerations to make it effid@nstreaming data:

¢ As mentioned above, the definition of the DOI function is lshea the dynamic

context of the data stream.

e When designing the visualization techniques to convey tita @attern changes,
users’ response time is the first priority, since the visudpot will get refreshed at

regular intervals and users have limited time to observik égare.
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Figure 1.1: This figure shows some of the main ideas of thedisezn approach based
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terplot; (c) The ages of data are denoted by colors; (d) pasition of data in the order of
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to Figure (d) to make this obvious) changes from one windatheémext, but it is difficult
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Figure 1.2: Using DOI functions to reduce visual clutter osleep data stream. (a) All
datapoints are displayed; (b) Sampling is applied to eawh window based on the DOI
function after user adjustment.



1.2.2 A Data-driven Approach Using Compression

The solution based on DOI functions is effective to visualike data pattern changes
across several time windows. However, if the number of tinredews is very big, say
20, this approach does not work well. Figure 1.3 uses stefapasition to visualize
a slice of traffic data having 13 windows. In this figure, theus is still the changes
of the regression line slope for the linear trend betw@mtupancyand Speed One
interesting phenomena is that the regression line in thesfitsfigure is horizontal, and it
becomes almost vertical in the last subfigure. So, one datigsis task is to find where
the regression line changed. This might take 20 or 30 sedonfilsd the change in the
subfigures with label “big change”. Under some circumstanttes is not an acceptable
response time for urgent tasks. The reason is that the soddidnaving “big change”
are buried by other ones. In conclusion, when the numbemnw# tvindows chosen by
the DOI function is too big, the disadvantages of the propasggution include: (1) it
might result in a slow response rate, which is not acceptablsome applications, e.g.,
intensive care units; (2) the display canvas is wasted by af Isubfigures with small or
no changes.

One intuitive solution is using a distorted time axis viaigsgg more space to sub-
figures with big pattern changes and merging those with samaino changes. This is a
commonly-used technique in many time-series data visatédias [3, 26, 46]. However,
all of these techniques are user-driven, which means ugerdelwhich slice of the data
gets more screen space. For data streams, this is not ddegftecause many applica-
tions need a quick response. Thus, the basic idea is to dalgigrithms to automatically
merge windows with small or no changes and assign more sspza@ to periods having
large pattern changes. Figure 1.4 shows a motivating examiere 48 original win-
dows (24 hours) are merged to 3 windows and then visualizetidmpfigures. Note that

each subfigure contains the data in two adjacent time windamgis linked to the time



Speed Speed Speed

g ? g
c c c
u u u
§ § §
n n n
c c c
¥ v ¥
02:0002:30 02:30-03:00 03:00-03:30
02:3003:00 H 03:0003:30 03:30-04:00
Speed Speed Speed
s} s} o
g g B
i i H
1 1 3
n n H
c c 1
¥ ¥ I
LIRS . Tt nagtda | E .__"-.:';.;-‘-__
03:30-04:00 04:00-04:30 04:3005:00
04:00-04:30 04:30.05:00 05-0005-30 ll
Speed Speed Spead
0 0 o
: : H
u u n
: t e B y
. - n a;
G . c o c "o
y y
; Sh o) ’ 2
", o
05:00-05:30 ! 06:30-06:00 ) 06:00-06:30
. . Big r 20l Big B B
05:30-08:00 08:00-08:30 . .
u Change Change 08:30-07:00 ll
Speed Speed Speed
0 0 0
o o o
c . c .y c
: ‘ T : -
] L i
n ¥y n s n :
; T 5 b 5 S
at e F
06:30-07:00 07:00-07:30 07:30-08:00
07:0007:30 H 07:30-08:00 H 03:00-08:30

Figure 1.3: A juxtaposed output using the traffic data of @6rk from a specific sensor.
13 windows are shown in this figure. Each subfigure shows tvmtigaaous windows.
Data for the current time period is black, and for the presi@iyellow. Significant
changes are buried in a lot of subfigures with few or no changes
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Figure 1.4: 48 windows, containing the data in Figure 1.8,maerged to 3 windows and
then shown with 2 scatterplots. Each scatterplot contamstindows, and is linked to
the time axis via three lines to delimit the time range foisthewo windows.



axis via three lines (two thick and one narrow) to delimit time ranges for these two
windows. Obviously, Figure 1.4 reduces users’ response significantly, and merging
maintains most of the information about recognizable ckargf the fit line slope: the
increasing at 6AM, and the decreasing at 8PM.

After merging windows, the next problem is to visualize tteadpattern changes.
In this dissertation, | describe three types of views to eéahithis goal: (1)juxtaposed
views laying out all windows using small multiples to enable sster detect the pattern
changes; (2pattern vector viewsrepresenting the data pattern in each window via a
vector, and then visualizing these vectors using tradiiime-series data visualizations,
e.g., line charts; (3pattern change viewscalculating the distance (change) between
pattern vectors and visualizing these changes directly.

For some applications, a pattern vector contains only sévariables, and users are
interested in how each variable changes across time windearsexample, in the prior
examples about traffic data, the pattern of interest is thgesthange of the regression
line. This is equal to tracking a univariate variable. THus reasonable to use traditional
time series data visualization techniques, such as lingsla bar charts, to represent
the trend. For the proposed three views in the prior pardgagitern vector and pattern
change views are suitable for this type of case, even acradatavely long time period,
e.g, the changes of traffic patterns across one week.

In the algorithm to merge windows, the number of original daws in the current
view shown to users is fixed. If one new window arrives, theestdvindow in the final
view must be removed. This expired window cannot be disda@dause users may want
to study the change of data patterns over a long time rangietlee traffic change within
one month. Thus another important issue that needs to bessid is about storage.
Policies have been designed to choose whether to storepddistor only a vector to

describe the data patterns (the pattern vector), for a fpéiocne window. The latter
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solution can save memory space at the cost of losing datdsdatal requiring that the
pattern vector of a merged window must be computed from tlotov® of its associated
original windows. This assumption is true for most statetivalues, such as average,
standard deviation, minimum and maximum. Chen et al. indittaat this is possible for

regression analysis on data cubes [15].

1.2.3 History Views with Nested Hierarchical Timelines

In the prior section, | proposed pattern vector and patteamge views with traditional
time series data visualization techniques for streamirtg deross a relatively long time
period. This is a possible solution for the visualizatiorhadtory data. However, if the
duration for the whole dataset is very long, e.g., one yéas, dolution might fail. It is

true that the merge algorithm can be applied to the wholesdgtaut this cannot satisfy

users’ requirements. Reasons are as below:

e It is not practical to apply the merge algorithm to the whodtadet because it is
very possible to lose some important details. For examplnei traffic data of
one year is compressed to less than 365 time windows, noladgee the traffic

pattern changes in some days.

e Only showing line or bar charts cannot solve some more malctiata analysis

tasks, such as discovering the similarity among differiemé tperiods.

e Many temporal datasets have hierarchical time structudetfagir patterns change
in a cyclic way. A traditional line chart or bar chart, as mened in Sections 1.2.1

and 1.2.2, cannot effectively convey this phenomena.

In the recent literature, distorted timelines are commaudgd in the visualizations

for large scale time series data [3, 26, 46, 62]. For exanigaee et al. [3] used three
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timelines at different resolutions to represent a timeesediataset across 9 years. Users
can easily navigate to any time period. Borrowing from tlied, | have developed a
hierarchical structure to represent timelines. This $tmacis defined by users. It can be
based on natural time units, such as years, quarters, waakslays, or from an arbitrary
definition. Figure 1.5 shows an example of hierarchical lines having five levels. Users
have specified a perspective level on quarters and a pagtezhdn days. It means that
users wanted to investigate how the traffic patterns chaagessdays within a selected
guarter. Figure 1.5 also shows a history view composed gqiftglyn a grid. Each glyph
corresponds to one day in the selected quarter and conwegtoje change of regression
line (OccupancyagainsiSpeejlvia a curve.

Although this is a natural extensionpéttern vector viewslescribed in Section 1.2.3.

this solution has some obvious advantages:

e This solution makes it easy for users to discover cyclicgpatthange phenomena

on the streaming datasets having hierarchical time streictu

e The goal to investigate the similarity among time windowsrazt be achieved by
applying more visualization and interaction techniqueth&above proposed solu-
tion. For example, distance measures can be used to reptieseiifference among

glyphs and map them to colors.

When users explore the traffic data, they might want to olesétre detailed informa-
tion within one day instead of pattern abstractions. Thab isay, they want to observe
the datapoints themselves instead of pattern vectors. Willibring the same problem
as that in Section 1.2.2, long response time caused by tog timaa windows (Figure
1.3). Therefore, | use the merge algorithm mentioned inif@du2.2 to reduce the num-
ber of visualized windows in each day. Different from theusioin described in Section

1.2.2, this generates multiple merge results, each of wiasha different number of time

12
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Figure 1.5: This figure shows a history view (top) with hieracal time structure (bot-

tom) defined by users. | focus on the changes across consguiodows on the pattern
level (days) in this figure. The selected quarter (March 30neJ29) on the perspective
level is highlighted in red color and indicates the time pdsi of interest. The red color
on the week and day level means all segments in the selecsetbgare selected. In the
history view, each glyph corresponds to one day (patteraljeand contains a curve to
represent the slope change of regression lines within 48wmdows for each day. Grey
background is applied to all weekdays to help readers obsata patterns.

windows. One example is first merging 48 original windows Powindows, and then
changing the threshold for the pattern change measuresédayimg 22 windows to 9
windows. This merging process can be repeated until uniyl @me window contains all

datapoints in this day. Thus a hierarchical structure iegaed to allow users to select

an appropriate level to observe data details.
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1.3 Major Contributions of the Dissertation

The main contributions of this dissertation are as follows:

A user-driven approach based on a DOI function

e A framework for the visual exploration of streaming datarnegented. This frame-
work applies the strategies of windowing and sampling totivariate and time-
series data visualization techniques. Its aim is to handl®unded input as well
as to convey trends, multivariate correlations, and thegbs of data patterns over

time.

e This framework allows users to define DOI functions to ddsxithe degree of
users’ interest [21] for different portions of the data. §hinction enables users to
choose which windows to display, and to adjust sampling@sat reduce possible

visual clutter.

e Four layout strategies are designed to organize multiteadata visualizations and

convey the change of multi-dimensional correlations.

e User studies showed that three of four proposed strategieeftectively convey
multivariate pattern changes compared to traditional ts@ees data visualization
techniques. Using the experimental results, a guide wasedketo advise data
analysts and visualization system developers to choosepipate layout strategies

in terms of the characteristics of datasets and data asdfsis.

e Interaction techniques were designed and integrated pdrelysts explore data
streams, including a DOI function interaction tool thatdselisers analyze data via
a trial-and-error process, and linked brushing acrossipheliews. Several cases

studies are discussed to show the effectiveness of thesadtibn tools.
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A Data-driven Approach Using Compression

e A framework was developed to visualize data streams withgthed of showing
significant pattern changes to users. The main approachmeitge those windows

with few or no changes when visualizing and storing recemtelsas old data.

e The above framework is materialized using two frequentgdugata patterns: linear

trends and data range.

e Experiments were performed to show that the merge algorjtheserves more
change information than an intuitive pattern-blind avargg User studies were
conducted to demonstrate that the techniques can significaduce users’ re-

sponse time when looking for significant pattern changesdata stream.

History Views with Nested Hierarchical Timelines

e A framework was designed to convey the pattern changesméthelatively long
time period. The main idea is to generate a hierarchicat&tre for timelines, with

which users can easily navigate within the history data.

¢ An MDS algorithm and brushing technologies were appliech®history view in

order to ease the exploration on the similarity among tinmedaws.

¢ A usability evaluation was performed to confirm that mostrsi®an correctly un-
derstand the concepts involved in these new techniques amndearn to use the

implemented system without too much difficulty.
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Chapter 2

Related Work

Based on the analysis in Chapter 1, one can see that the qeelsnof streaming data
visualization can be regarded as real-time time-seriasalimtion with unbounded and
large-scale input. Therefore, itis necessary to go backistieg visualization techniques
for time-series data in recent literature and seek ingpirat

Time-series data visualization is a very popular topic ifoimation visualization.
It aims to help analysts perceive data patterns in datasétsie each data item has a
timestamp or a time dimension. In the recent literature, care find many techniques
related to this topic [2, 3, 6, 12, 24, 25, 26, 27, 28, 29, 4549658, 62, 63, 64].

Most of these techniques for time-series data visualindtbaus on one or more of
the following four sub-problems: (1) representation of thange of univariate data over
time; (2) layout of data items in terms of the time dimensi@&);how to convey relation-
ships and data patterns among multiple data dimensiong4ahow to handle very large
and real-time data.

These four sub-problems are not independent. For exampleo@ layout can help
mining multi-dimensional patterns. In the following sects, | will discuss existing tech-

nigues in terms of the above four aspects.
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2.1 Representation of Univariate Data

In order to represent how univariate data change over time,dharts are frequently
used. One can find many applications in routine life, suchnamial areas, meteorology,
and so on, where line charts can represent the change of gtoels, currency ratios,
temperatures, or some other numerical values. Since siimgleharts cannot convey
too much information, people normally add some variationgpresent more patterns of
data. The candlestick chart [10] is such a variation widskdiin representing the change
of stock prices, currency ratios or other equities (seeréi@ul). This chart combines
line charts and bar charts, which are used to reflect the ehahgnivariate data in the
specified period (e.g., a day). Figure 2.2 shows two typeswdiesticks corresponding

to the increasing and decreasing price (ratio) in a timeogeri

DDDDD

Figure 2.1: A candlestick chart which denote change of ayreatio between USD and
JPY from Nov. 1, 2005 to Jan. 7, 2006 [10].

Miksch et al. put a vertical colored line in each time pointgpresent the data uncer-
tainty for a univariate temporal dataset [46]. They firstlagapa linear regression model
to a time window of fixed size sliding over the entire curve madl steps. Then they
plotted a vertical red line, termed tepread around the center of each regression line to

represent the distribution of datapoints in the correspandliding window. The height
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Figure 2.2: Two kinds of candlesticks (Low: the lowest pribegh: the highest price,
open: the price in the beginning of the period, close: thegain the end of the period.

of each red line i2 D, whereD is the standard deviation of the datapoints in that slid-
ing window. By connecting all upper and lower ends of Hpeead this approach can
describe a region containing most of the datapoints. FiguBeshows such a region with
threespreads

parameter
values

SRdiR

time

time-window 1

o<
time-window 2

Figure 2.3: The red stripes around the regression line dahetstandard deviation, thus
the distributions of the datapoints in the correspondindjrsj window. The polygon
generated by connecting the ends of these stripes contaistsainthe datapoints [46].

Bade et al. [3] created an ICU monitoring system, naMHdGAARD, which utilizes
line charts to display changing pathological measurenwpatients, such as body tem-
peratures and blood pressure. They applied various visicding styles to the basic
line charts to better convey the data trends. Figure 2.4 sl kinds of encoding for a
fever curve, which can display clearly the change of bodyperature from one threshold
value to the other.

Boukhelifa et al. designed an open architecture, naw#iReactiveto collect sev-
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Figure 2.4: Two types of coded timeline representation @veif curve [3].

eral aggregated measures on the French Wikipedia. Thigecttire can provide the data
via Web Service or visualization [9]. For example, in Fig@rB, line charts are used to

show the increased activities on Wikipedia Fr.
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Figure 2.5: This figure shows the number of added (in bludgtee (in red), and moved
(in green) characters for all articles on Wikipedia.fr. .[9]

Hochheiser and Shneiderman developedeSearcheran information visualization
tool to help analysts explore line charts composed of melupivariate time-series pro-
files [29]. They usetimeboxandangle querywidgets in this tool to represent queries on a
univariate profile. If»; € N is an item in a time-series dataset, ang)) is the value of;
at timej, then atimeboxis a 4-tuple:b = (tin, tmazs Vmins Vmaz)- NOte thatt,,;, <t
andv,in < Upmae- If ONe itemn; satisfiesvt (tmin < tmae — Vmin < () < Upmaz), ONE
can say that this item satisfies this timebox. axgle queryvidget is defined as a 4-tuple:

b = (tmin, tmaz, Omin, Omaz)- 1t can help users find items with similar slopes over several
specified time periods. Figure 2.6 shows the results of apgplymeboxes to a dataset of

stock prices that changed over time.

Theriver metaphoris frequently used to visualize a special kind of univariatee-
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(b)

Figure 2.6: The original dataset contains prices of 1436kstoIn order to find stocks
satisfying some specified constraints, a single timebogeslin (a), thus filtering a subset
of items. Three timeboxes in (b) result in a further refinetéthe query in (a) [29].
series data, which represents the number of occurrenceimedfor repeated items, e.g.,
baby names [62], DNS traffic [52], and keywords of patentg.[27 this technique, The
river’s changing width corresponds to the magnitude of oences. Figure 2.7 shows a
screenshot frodlameVoyagemwhich shows the frequency of baby names. In Figure 2.8,
the band width represents the request frequency from diffesource IP addresses.
Although my dissertation will focus on multivariate datayree measures in the target
patterns, such as slope of the regression lines, are stithiate. For example, in history

view, line charts will be used to represent the regressimslacross a long time period.

2.2 Layout Strategies for Time-series Data

An intuitive approach to time-series data layout is timedifb9], which use the horizontal

axis to represent time. The horizontal position of a data itenveys its time attributes.
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Figure 2.7: This figure shows the change of frequency for babyes starting with 'J’
from 1880s to 2006. Blue and red rivers correspond to boy anel rgspectively. The
river width is proportional to the number of occurrences][62

Figure 2.8: In this figure, each stream band correspondsedsource IP address. It width
is proportional to the number of request sent from this 1P].[52
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Timelines are effective in showing how one variable charayes time. We can see that
all of the discussed techniques in Section 2.1 use a tima8rige layout strategy.

Other than timelines, researchers have developed otheutlaethods to facilitate
specific analytic tasksSpiral Graphg[12, 28, 60, 63] use a spirally shaped time axis to
visualize temporal data having seasonal cyclic charatiesi If an appropriate visual
encoding is utilized, repeated patterns can be easilyifcaht Figure 2.9 shows a spiral
layout of star glyphs [60]. Each glyph contains the averagi@es of four statistical
variables in one month: Dow Jones Industrial Average (t§ndard and Poor’s 500
Index (bottom), retail sales (right), and unemploymerit)l®ne circle is one year. 12:00
corresponds to January. We can easily identify some datarpatwhich are difficult to
obtain with regular timelines. For example, normally, sgeak happens in December,

and unemployment reaches the maximum in June.
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Figure 2.9: The star glyphs with spiral layout for a timeisgmataset about business,
sales, and unemployment data [60].

Van Wijk and Selow introduced @alendar Viewcombined with clustering to visual-

ize natural phenomena that change weekly, monthly, or y¢é4l]. Figure 2.10 shows
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such a view to show the number of employees present at a caseamter. Days having
similar behavior of employee presence are organized intoctster tagged with differ-
ent colors. For instance, cluster 718 (green color) dertbteBridays during the summer.
In this calendar view, the changing data patterns over tirmeshowed clearly with the

help of the calendar and clustering.

1907 employees Cluster viower
1 () ECN 1998
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di
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Figure 2.10: The calendar view of the number of employeesguiteat a research cen-
ter [64].
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Figure 2.11: This figure shows time-series bitmaps to calopde time series and repre-
sent them via images. (a) The DNA of four animals are reptesny images using the
Chaos gamalgorithm, which is the base of Time-series bitmaps. It igiobs that the
left two animals are similar to each other, and a high degfsgalarity exists between
the other two. (b)Four files correspond to different pasemth congestive heart failures.
One can find thag¢eg®6is different from other three people [36].

Kumar et al. developetime-series bitmap® use a compact way to represent a time
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series dataset [36]. This technique used an algorithm eddpim theChaos gamé¢4]
that visualizes DNA sequences by color encoding the genatterps. It first uses the
Symbolic Aggregate approXimation(SAX) [42] to convertlrealued series into discrete
symbols, and then applies tidaos gaméo them to produce bitmaps. Figure 2.11 shows
DNA visualizations by th&€haos gaméFigure 2.11(a)) andime-series bitmap@$-igure
2.11(b)).

2.3 Conveying Multi-dimensional Patterns

For the third sub-problem, most techniques discussed ataveepresent some relation-
ships or data patterns implicitly. For example, integm@tmultiple lines in one graph
can help identify how the change of one dimension relatesdmthers. However, direct

visualization of the differences might be more effective.
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Figure 2.12: The importance-driven layout of a time-setegsiset of 24 stock prices [25].
The stock price is normalized and redundantly mapped todheddors and height.

Hao et al. used an importance-driven layout to representiéigeee of importance
for different dimensions via assigning the important disiens more space [25]. Figure
2.12 shows a time-series dataset of 24 stock prices. Note#ta stock is represented
by a bar chart. The size of each bar chart is proportionalealggree of importance for

the corresponding stock. From this figure, one can easily lednich stocks are more
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important than others. Obviously, this approach can bdyeadapted to other measures

for multiple data dimensions in multivariate time-seriesasgets or data streams.
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Figure 2.13: An example of applying IVQuery to a time-sedasaset about sales data
for a company in different countries [24].

The Intelligent Visual Analytics Query (IVQuery) is a vidumnalysis tool to help
users perceive relationships among multiple time-sera&a dimensions [24]. The IV-
Query can report some analysis results, such as relevarasunes, classification, and
clustering, after users select the region of interest. AamgXe is shown in Figure 2.13.
Figure 2.13(a) is a monthy regional sales map. Each line & &lart representing the
sales amount in a country, with one bar denoting one montle. gb¢el in the bar corre-
sponds to one invoice and its color is determined by thisstiation$Amountin terms of
the legend on the right side. We can find that US and France thavwost invoices in
December. If analysts want to mine the sale behavior of tlstimin these two countries,
they can select the corresponding two bars and perform ané¥Q The analysis results
are shown in Figures 2.13(b) and 2.13(c), correspondingS@kd France respectively.
The numbers below th# of Visitsand Quantityare the Pearson correlation coefficients
used to measure the relevance between these two dimensidrseinvoicebAmount

These two dimensions arfBAmountare also visualized via pixel maps. Figure 2.13(b)
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indicates that saleAmountin US correlates more to the quantities in each transaction
(Quantity, 0.873) than to the number of visits of the customérsf(Visits 0.603). How-
ever, the reverse situation happened in France. Based dv@heery results, analysts
might design better sale strategies for different cousinehe future.

The above two techniques both have a common goal to convely-dnumlensional
relationships in time-series data. However, their linnita$ are obvious. Importance-
driven layout is limited to representing the ordering of tiplé dimensions. The IV-
Query currently can only measure relevance, conduct filesson and clustering. More
non-trivial design and implementation are needed if usenstwther types of statistical
or data mining analysis. Compared to these techniques,dakaf my dissertation is
to enable visualizations to convey general multi-dimenaioelationships, such as with
traditional multivariate visualizations: parallel coordte [32], scatterplot matrices [1],
star glyphs [56], dimension stacking [38], and pixel-otezhdisplays [33]. My basic idea

is to adapt these techniques to data streams.

‘ variable axes \

7 ) time axis

| lines connecting
time and variable
values

reduced color
intensity

Figure 2.14: A TimeWheel with six variables changing overdi[58].

TimeWheeputs the time axis in the center and other data dimensioaaged circu-
larly. Each data item corresponds to a group of lines frontithe axis to the axes for data
dimensions. Figure 2.14 shows a TimeWheel to visualize e-sBries dataset having six

dimensions, not including the time dimension. However, bm&ation of TimeWheel
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is that it is difficult for users to identify data patterns amgadifferent data dimensions
because it does not explicitly convey the relationship agndimensions. | believe that
users will be able to identify and classify complex temp@atterns and relations via the
research efforts that will be presented in my dissertation.

Yu et al. developed a tool for the visual analysis of multeatn multimedia data [69].
Continuous time-series data and event data are first estrérm the multimedia stream,
and then are visualized via line charts and heatmaps. Uaarkighlight selected data
portions, or zoom in on the region of interest to study thadands and the multivariate
data patterns. Figure 2.15 shows a screenshot from thensysteeloped by Yu et al.
Compared to the techniques that are presented in this @iiear this tool utilizes line
charts and heatmaps to convey multivariate relationshipss. is not effective since these

visualization techniques only excel in conveying univiiaends.

variable 1

Variable 2

variable 3

variable 4

3:13:000 3:14:000 3:15:000 3:16:000

Figure 2.15: This figure shows an example of using heatmapviEstigate the multidi-
mensional correlations among four variables in a multimefdita stream [69]. Although
one can see that variable 1 and variable 2 are correlated aable 3 and variable 4
are not, this technique only excels in conveying univariegeds and might cause a long
response time.
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2.4 Handling Large Scale and Real Time Data in Time-
Series Data Visualization

In order to deal with large time-series datasets, someadt&in algorithms have been
introduced into time-series visualization for adaptinggéatemporal datasets to limited
display space. The approaches can be categorized into ty& wlata-driven [45] and

user-driven [26, 31] means.
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Figure 2.16: A multi-resolution display for a time-seriegaket containing the CPU uti-
lization history of 8 hosts. One host corresponds to one rotlie figure. Three parts of
each row have different DOI function values. The most redetd is at the right part, and
has the largest DOI values, so it has a higher sampling rat@@maller grid size. The
older data is in the middle and the oldest is at the left. TheyeHower sampling rates,
thus yielding a bigger grid size [26].

I
|

Miksch et al. developed an abstraction algorithm for terapanivariate data that
aims to transform numerical values to qualitative desiois [45]. It can smooth data
oscillation near thresholds. This algorithm was impleradnt VIE-VENT, an open-
loop knowledge-based monitoring and therapy planningesygor artificially ventilated
newborn infants. Hao et al. used the sampling techniquedtyati time-series data and
introduced DOI (degree of interest) functions to deternthreesampling rate. The DOI
function is used to represent how users are interestedfareiift portions of a time-series
dataset [26]. The subset of the original dataset with a high &lue will be abstracted
using a high sampling rate and displayed in high resolut@therwise, the overview with

lower resolution corresponding to the DOI value will be déged. An example is shown
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in Figure 2.16. In this dissertation, | will extend the DOhfition to dynamic context
for streaming data, as well as the use case that needs toyc@peated occurring data

patterns.

2000 2001 2002 2003

2000 2001 [2002 2003

o
g

| 1996 [1997 199844.3&9 2000  [2QgAmpp2002 20@_'_;004‘

Figure 2.17: The timeline interaction: the bottom timelnegers to the whole time pe-
riod. Users can select a subrange, thus getting a rescaadinithe middle and top
timelines [3].

If using an abstraction algorithm, a distorted timeline imilge necessary to give im-
portant data more space. This technique is used in manyrobsefiorts [3, 26, 31, 46,
62]. Figure 2.17 shows an interaction interface to distdntn@line driven by users [3].

Huynh’'stimelinein SIMILE project [31] uses the same way to distort a timelase
Figure 2.17, but focused on representing instant (focusimg specific time) and dura-
tion(occurring over a period of time) events. Figure 2.18veha screenshot aimeline
that visualizes the instant events before and after thedem@Kennedy was assassinated.
It represents the time axis in hierarchical ways. The botban has a bigger interval (15
minutes per cell), while the top uses one grid to denote 5 tagiuDragging the bottom
part horizontally can make the visualizations shift morekjy than doing it on the top.

Actually, | followed two basic approaches, namely the déiaen and user-driven
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Figure 2.18: A screenshot of thienelinein SIMILE project developed by Huynh [31].
There are two time axes in this figure. The top one has a fineutaaty.

means discussed in previous text, in my dissertation. Tiereihce between the above
research efforts and mine is that they are only applied teanigite data or events and did
not consider real-time requirements. | focused on unbodintdtivariate data generated
in real-time to overcome this limitation.

Visualization experts have developed some systems usedliapplications to mon-
itor large-scale time series datireVisis a system that can help banks detect fraudulent
activities using a set of coordinated views based on idgngfspecific keywords within
the wire transactions [13]. Figure 2.19 shows a screen bioaps this system. It is
composed of four views: (lthe heatmagtop left), which uses colors to represent the
frequency of keywords (column) in account clusters (ro); gearch by exampléop
right), that can search accounts having activities simdaa specific wire transfer; (3)
keyword graph(lower right) to show the relationship between keywordghwine most
frequent keywords in the middle of the view; (gfrings and beads viegower left), in
which the strings (the curve in the view) represents the @aaisoor clusters of accounts

over time, and the beads (the dots on the strings) refer wfgpgansactions on a given
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day. Note that, in the fourth view, the x-axis shows the pesgion of time, and the y-
axis denotes the “value” of the transaction, such as the atr@furansactions, and the
frequency of activities. Four views are coordinated. Fameple, if users selected a key-
word in the heatmap, then all activities (beads) ingtrengs and beads vietvaving this

keyword will be highlighted. If the fraud analysts are itgted in one activity and select
it, accounts having similar behavior will be shown in gearch by exampleiew. Users

further can select one search result and look at it in othewsi Because illegitimate
wire transfers normally have similar pattern on keywordspant and frequency, this
system can effectively help risk managers in banks find apadrtehose transfers related

to criminal endeavors.
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Figure 2.19: This figure shows thWireVisdeveloped by Chang et al. [13]. It visualizes
the information within wire transfers and help fraud antdys banks to identify those re-
lated to criminal endeavors such as money laundering. ¥/stes shows four views:the
heatmap (top left), search by example (top right), keywaeagphg (lower right), and strings
and beads (lower left).
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Chapter 3

Data Model and Example Datasets

3.1 Data Model

In the context of this dissertation, a data point is defined as
(‘/7 tS) = (Ul,Ug,...,Un,tS) (31)

wheren is the number of dimensions;(1 < ¢ < n) are real numbers denoting attribute
values, ands is the timestamp when the datapoint originated. Nominaleslor other
types of data, such as documents, images and video, arerdftfire work.

When investigating different streaming datasets, | foumméd main types of multi-

variate data streams, which is important for the selectionsualization techniques:

e Univariate-Aggregation: In this type of data stream, each dimension can be re-
garded as a univariate data stream. For example, in Equationf v; represents

the price of one company’s stock, this dataset belongs tavarti@te-aggregation

type.
e Object-Aggregation: For some data streams, arriving datapoints belong tordiffe
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ent objects, so trends on each dimension do not always make.s®ne example
is the KDD CUP’99 dataset [50], which is a network intrusicetettion stream
dataset obtained from an experimental network at MIT Lindabs. It recorded
some attributes, such as duration and the number of byteg)If6CP and UDP

connections within nine weeks when some network attacke wienulated.

e The Combination of above Two Types The KDD CUP’00 dataset [34] is a
combination of the above two types. It contains clickstresard order data from
Gazelle.com. Obviously, the dimensions in this data stresarch as quantity, and
tax amount, cannot form univariate data streams becaugd#ieng to different
purchasers. However, if a subset corresponding to a spéaijier or product is

picked, it can be regarded as univariate aggregation.

In this dissertation, | will focus on univariate-aggregatand try to visually convey

trends for each dimension as well as multivariate data pestte

3.2 Example Streaming Datasets

The two streaming datasets used in this dissertation afeltbe/ing.

Traffic Data Stream: | got this dataset from Mn/DOT [48] (Minnesota Departmeht o
Transportation). In Section 1.2.1, | have shown a slice of tlata stream. Mn/DOT
installed more than one thousand sensors on highway eefexitcramps and main lanes
throughout the Twin Cities Metro area. Each detector calecoa value for each of the
following measures with an interval of 30 seconds: (1) Vodurthe number of vehicles
passing the detector; (2) Occupancy: the percentage ofthatethe detector sensed a
vehicle; and (3) Speed: the average speed of all vehiclesgpihe detector. The website
of Mn/DOT provides a Java-based to8lataExtract to allow users to extract detector

data to csv files. Thus several thousand values can be obttaweey 30 seconds. Instead
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of using all of these values at the same time, | select onetetand retrieve its three
measures during a specific time period, e.g., one day or oak.we
Sleep Data Stream This data stream is a physiological dataset (Santa Fe taness
competition data set B) selected from the PhysioBank aecf#@]. It is recorded from
a patient suffering from sleep apnea (periods during whiehakes a few quick breaths
and then stops breathing for up to 45 seconds) in a sleepdivgr Since it is relatively
long (about 4 hours at a frequency of 2Hz), it can be used talai@a data stream. This
dataset has three measures: heart rate, chest volumedtespiorce), and blood oxygen
concentration.

Although the above datasets both have only three dimenglomproposed techniques
in this dissertation can support more dimensions becagseate based on some tradi-
tional multivariate visualization technologies, such eatterplot matrices and parallel

coordinates.
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Chapter 4

A User-driven Approach Based on DOI

Functions

4.1 The User-driven Framework Based on Windowing,
Sampling and DOI Functions

In this section, I will discuss my proposed user-driven fesark. The basic goal of this
framework is to provide a mechanism that allows users tacseateltiple time windows
of interest, from which they can observe how data patterasgé across windows or
across cycles. The design of this framework also can clanaiidity within the dynamic

context of the data stream.

4.1.1 Basic Concepts

Sampling Ratio: The proposed method is based on sampling. The ssmmpling ratio

is used as the percentage of datapoints to be selected taydiSampling ratio is defined
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as follows:

the number of selected datapoints (4.1)

r(sampling ratio) =
(sampling ) the number of all datapoints

Note that sampling ratio must satisfy) < r < 1.

DOI Functions: A DOI function represents how interested the user is inrggaiparticu-
lar time window. In a regular static dataset, a DOI functiattalates a value to represent
the degree of interest for a portion of the dataset basedoorexample, the age of the
data or the presence or absence of a data feature. Then tlenpardata with high DOI
values will be displayed with more details [21]. For streagndata, when the stream
system gets a new time window (Windayy a specific DOI level should be applied to
this new portion of data. However, when Windewxpires and a new window (Window
1 + 1) becomes the current one, users might want to focus on Wirnidew and show
less interest in Windowi. In this situation, the sampling ratio for Windawnust change.
Hence, an age-based DOI function should have two parameatémestamp representing
the specific time window and the current time point. Formahg DOI function is given
asDOI = f4,:(tq,t.), Wheret, andt. are the timestamps corresponding to the target time

window and the current one.

4.1.2 User-driven framework

In order to describe this framework clearly, | will first bitiedescribe the information
visualization reference model, or namely the visualizaggpeline. In this model de-
veloped by Chi [16] and re-interpreted by Card, Mackinlayd &hneiderman [11], the
visualization process is divided into three steps: (1) tfaasformation: pre-process the
raw data and generate data tables; (2) visual mapping: reehst visual abstraction of

the data represented by visual properties, such as pqsitidor, and geometry; (3) ren-
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dering: create interactive views of the data. This sectidhmainly describe how to do
data transformation, i.e., generating data tables frond#ta streams, and then feed the

visual mapping stage of traditional multivariate data al&ation techniques.

Linking
T Fool, +— Interaction
L bl
— ' Time Windows !
> ! ] i - - .
Wi ==> Selection ofInterest Sampling =1 VEL:_\,aI I\/éap_plng — View 1 —
we_| endering
w3
| H=p Selection » Sampling > Vgllj?a;r':/(;?;:irrj:gg — View 2 —
I Foo*—
Data i : ;
Stream == Selection » Sampling > Vslgémaeﬂ;'gg —> View m —

__________________________________________________

Figure 4.1: The framework of user-driven multiple-viewuwadizations for data streams.

Figure 4.1 shows the proposed framework. In the data stré@gnms the current time
window, andiW_, W_,, ..., are past windows over some bounded duration. The subscript
of W means the distance between this window &iind All data in these time windows
will be sent to multiple pipelines to generate views. Thisniework supports linked
interaction among multiple views to facilitate users’ expltion on data streams. Each
pipeline is composed of a selection operator, a samplingadbpe visual mapping and
rendering. The selection operator selects a range of timeaws in which users are
interested. Sampling is then applied to the data in the eldene windows. Different
windows may have different sampling ratios. Users can dddgteaviors of selection
and sampling operators using DOI functions. Hence, thiméwaork can be calledser-
driven

Note that all views will get updated when a new time windovivas. The mechanism

for this refresh is as follows. Since data streams are dyniamore datapoints will be
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available after a limited time, e.g., the duration of a timadow. Then,IW, will contain
the new datapoints in a new time window, and the datapoiritg,imill go to 1/, and so
on. Thus, the input of each pipeline will change, which cawdkviews to refresh.

This framework allows users to define multiple DOI functidgagyet more than one
output because users might want to observe multiple changese application. For ex-
ample, during traffic monitoring, users might have two datalsis tasks: (1) identifying
how the vehicle speed changes within the last hour, e.g., &AM; and (2) compar-
ing the traffic pattern changes within the last hour of todath what of yesterday at the
same hour. For the first task, the selector operator needdect gl time windows from
5AM-6AM today. To perform the second task, it is necessargliserve all data during
5AM-6AM of today and yesterday. Obviously, two different Dfoinctions should be
defined.

Figure 4.2 shows the screenshot of the implemented visi@iz system using the
user-driven framework. The DOI function is shown at the t@ip $ection and can select
the most recent four time windows today as well as in the lastdays. So, the traffic
pattern changes within recent three days are conveyeddicgby.

In this dissertation, most examples use scatterplots tov &id relations. This does
not nullify the claim that the proposed technique can conlieypattern changes for multi-
variate data. Reasons include: (1) The above framework eypbped visualization tech-
niques can support any multivariate visualization; (2) Té@hniques using scatterplots
can be easily extended to scatterplot matrices. Actually,éxamples using scatterplot

matrices and parallel coordinates are discussed later.
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Figure 4.2: The screenshot of the implemented system uisdeidriven framework using
a type PP DOI function to observe the traffic pattern withicerd three days.
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4.2 DOI Functions

This section describes two types of DOI functions that camuded for some common
tasks. As discussed in Section 4.1, the output of a DOI foncfi,;(t4, t.) is a DOI
value, which then can be mapped to a sampling ratio via thetifomr = f,.(DOI). For
the sake of convenience, DOI functions are defined in a wathiea output is just the
sampling ratio.

Type RC (Recent Change) Figure 4.3(a) shows the curve for this type of DOI functions
It aims to help users study how data patterns change withireitent: + 1 time windows.
The sampling ratios are), 71, ..., 7, in the order from the current window to the oldest
one.r; satisfied) < r; < 1 for any:. One common settingistolef =r, = ... = r, =

1.0. Figure 4.4(c) is generated using this type of DOI functiaothwrguments: = 2 and

ro = r1 = ro = 1.0. If there is too much visual clutter and users are less igtedein the
old data, the setting can bg< 1for1 <i < k.

Type PP (Periodic Phenomena) The DOI functions shown in Figure 4.3(b) can assist
users in observing data patterns with periodic charatiesis The data stream is split
into multiple cycles (the vertical time axis) with the saneadth. Each cycle contains
multiple time windows (the horizontal time axes). In eackleythe DOI function has a
shape similar to functions of Type RC. The DOI function inutig 4.3(b) enables users
to investigate data patterns within the recent 1 cycles, namely Cycle 0, Cycle 1, .,
and Cyclep in the order from the current one to the oldest one. In eaclecgaq., Cycle

i, this function chooses + 1 windows, namely\V, o, W, 1, ..., W, x. Note thatiV,, is
the current window, and; (1 < i < p) belong to the past cycles, but have the same
position in the cycle a¥l’, ,. The design of this type of DOI function aims to help users
study how data patterns change across both windows andscyubmsider the example of

monitoring traffic. Imagine the current time window is 6:0d46:30AM on a Monday.
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Figure 4.3: Two instances of DOI functions: (a) Type RC (Rec&hange); (b) Type PP
(Periodic Phenomena).
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The current traffic data pattern could be similar to last Mondnd less similar to last
Tuesday to Friday, and totally different from last weekemtlhe same interval (6:00AM-
6:30AM). To confirm this assumption, a Type PP DOI function ba defined to choose
only time windows corresponding to 6:00AM-6:30AM in theseyd.

The DOI function is similar to the opacity transfer functionvolume rendering [41].
The opacity transfer function assigns an opacity value tox@Moased on the voxel’s in-
tensity and can bring out certain features of those voxelsganigh opacity values. The
relationship between the sampling ratio and the windowstar@p is like the relationship
between the opacity value and the voxel’s intensity.

It is true that users might need to compare the data pattathswany two arbitrary
windows, and the above two types of DOI functions cannot callelata stream analysis
requirements. However, Type RC and Type PP can satisfy mamynon tasks under a
dynamic context, since users are normally interested idifference between the current
patterns and those of past time windows or cycles for a liveast. When a specific
application requires to explore those time windows withibiet current time window, an
arbitrary N-way comparison might be needed. This can berdeglaas data analysis on

static time-series data because all data is available @ad ibe visualized in a static view.

4.3 Visualization Techniques

As mentioned in Section 1.2.1, a goal of this research isdoally convey changes of

multidimensional correlations. Thus the visualizaticrhti@ques have been designed with
the following question as the main consideration: How stia@dtapoints be organized

in different time windows to convey multivariate corretats and the changes of data
patterns?

In this section, | will first introduce four layout strategjenamelysuperimposition
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juxtaposition step juxtapositiomndanimation playbackto answer the above question,
and then demonstrate their usage with type RC DOI functidukile this dissertation
mainly uses scatterplots as examples to explain the ptessiphese strategies in general
can be applied to any multivariate visualization technidquieese four strategies will then
be extended to type PP DOI functions. Finally, a new visa#itn technique, namely
“embedded views”, is presented based on combining line<lad scatterplot matrices.
This is to take advantage of the visual representation d¢ipesoof multivariate and time-

series data visualization techniques in one figure.
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Figure 4.4: This figure shows some of the main ideas of thedisezn approach based
on DOI functions using traffic data collected from a highwagyrance. (a) A traditional
time-series data visualization; (b) All datapoints areveitogether in a traditional scat-
terplot; (c) The ages of data are denoted by colors; (d) position of data in the order
of timestamps. Figures (c) and (d) can convey how the fit llopes(lines A and B in
Figure (d)) changes from one window to the next, but it is clifi to see this change in
(a) and (b).
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4.3.1 Layout Strategies

Superimposition: This strategy fuses all datapoints into a single pictuedistinguishes
datapoints from different time windows via visual attriesif the choice of which can af-
fect the effectiveness of the final visualizations. In theviwus research work, | per-
formed a user study on visual representation of data quality concluded that color
has a stable capacity to convey data attributes under placalbrdinates and scatterplot
matrices as long as the visualization is not too cluttere@].[@ he reason is probably
that it is processed preattentively [61] and does not regextra space. Thus colors
were used to convey the timestamps of windows. Figure 4ig@gnerated by applying
superimposition to a scatterplot.

An obvious disadvantage is that displays can become owBtbaith too much in-
formation, which may result in a longer analysis time. Moeif there are too many
windows to be chosen in the DOI function and many dataporots different time win-
dows overlap each other, it is difficult to distinguish betwe¢hem, even if using colors
to convey the window to which each datapoint belongs. Alsnitihng the number of
colors enables users to quickly differentiate differemigtiwvindows with higher accuracy.
Inherently, this is a visual clutter problem. Ellis and Dhotoughly discussed current
clutter reduction techniques, and put them into elevengcaies [20]. Sampling is a
commonly-used technique [19, 7, 8] and was reflected in théflx@tions, but cannot
reduce the overlapping when data pattern changes are Srhal.| used the filtering ap-
proach discussed by Ellis and Dix to extract datapoints ol éane window, and generate
small multiples, namely juxtaposition and step juxtapositto reduce the visual clutter
as well as convey the data pattern changes.

Juxtaposition: In this method, one sub-picture is generated using a nawiéite visual-
ization for each time window, and then place these figuresderoof time (horizontally,

vertically, or a grid). In Figure 4.4(d), each scatterplolds the datapoints from one time
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window. Users can see the change of data patterns by corgghree sub-pictures.

Although juxtaposition overcomes some shortcomings oeguagposition, it brings
two new disadvantages. (1) Recall Figure 4.4(d), in whiehdbts in the second and third
sub-pictures form two lines, A and B. As a recognizable défee exists between the
slopes of lines A and B, users can draw conclusions aboutiege of the linear trend.
If this difference is not that big, users may not easily idgrithe change of line slopes
using juxtaposition, as distance exists between theseihgs.| In the superimposition
layout, this difference should be recognized more easiy tluxtaposition, assuming
there is not too much visual clutter, because one line acésraterence as the analysts
observe the other. Thus superimposition appears to hav@mrgst capability to help
users identify subtle changes of patterns than juxtaposi() If users want to compare
the data patterns between two windows, they must move tiies lpack and forth. This
could make the data analysis tasks cumbersome and might iresulonger response
time, especially when there are a large number of windowiserOl functions.

In order to overcome the shortcomings from both superintjposand juxtaposition, |
have designed a third layout strategy that combines thendayes of these two strategies,
namelystep juxtaposition
Step Juxtaposition Imagine that the DOI function choosés+ 1 (See Figure 4.3(a))
windows to display. | creaté sub-pictures: the first show&, and W, _;, the second
presentdl,_; andWW,_,, and so on. This strategy uses superimposition to help users
compare the data patterns of two consecutive windows, attdgasition to reduce pos-
sible visual clutter and shorten completion time for datalgsis tasks. Figure 4.5 shows
an example. More than two windows can be superimposed in oinpisture in this
technique to save display space if there is not too much Miduter. Note that step jux-
taposition can work relatively well even if there is ovepapm between consecutive time

windows. For example, in the scatterplot 3 of Figure 4.5, fomding is that the dark dots
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Figure 4.5: A step juxtaposition output using a type PP D@ctfion as shown in Figure
(b). The cycle length is one day. All windows are put into thggoups(y, G; andGs,
corresponding to three days, March 24, 23 and 22, respsctiveFigure (a), one can
see clearly how data patterns change within the recent timeewindows for March 24.
However, data patterns do not have significant changes ooh\V2& and 23.
(19:00-19:30) hide almost all yellow ones (18:30-19:00ktually, the data in the time
window 18:30-19:00 is just the dark ones in scatterplot 1tuAlty, there is no pattern
change between these two time windows. To be general, if weant to observe time
windows and data patterns do not change too much in the pamdag periody + 1
time windows can be chosen in the DOI functions to relievartgact of overlapping in
the step juxtaposition.

A more convincing example is shown in Figures 4.6 and 4.7 revheslice of traffic
data ( Sensor D722, Feb. 16, 2009 ) is used. The DOI functiah igpe RC and 25
windows are selected. Imagine users were asked to find wieetit ime slope changes
from one window to the next. This is definitely impossiblesing superimposition since
human eyes cannot effectively distinguish 25 colors in ogeré. In figure 4.6, it is an
arduous task because of the huge number of windows. Howaueéigure 4.7, this task

becomes much easier. In each scatterplot, users only nese tgght yellow datapoints

as the reference and observe dark yellow dots. One not onlyira obvious changes
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from Window 05:00-05:30 to Window 05:30-06:00, and from émw 05:30-06:00 to
Window 06:00-06:30, but can also perceive tiny changes vdimdow 06:00-06:30 to
Window 06:30-07:00, from Window 09:00-09:30 to Window 08:80:00, and from Win-
dow 09:30-10:00 to Window 10:00-10:30. These tiny changesamost impossible to
detect using juxtaposition (Figure 4.6). In the sectionlmuser studies, the experimen-
tal result will show that step juxtaposition can help usdsam a much higher response
accuracy than juxtaposition and shorten completion timel&ba analysis tasks.
Compared to superimposition, juxtaposition and step pogéion need more display
space. Therefore, if users want to observe the tiny datarpathange, they should select
fewer time windows in the DOI functions.
Animation: Itis an intuitive idea to play the data pattern change uaimgnimation, with
each frame representing a time window. Animation combiheshienefits of the prior

three visualization techniques:

(1) Because of the short term memory of the human visual sysaisers can normally
memorize the previous frame in the animation when the ctframe is shown to
us. Thus it has similar capabilities to convey data patteamge as superimposition

and step juxtaposition.

(2) Compared to superimposition and step juxtapositiormation can avoid the visual

clutter caused by overlapping datapoints from differemetwindows.

(3) Unlike juxtaposition and step juxtaposition, animatistill uses a canvas having
the same size as superimposition, which can also avoid th&lge visual clutter

caused by a smaller canvas size.

However, animation might delay the data analysis taskgaalty when the number
of displayed windows is large. The reasons include: (1) §seed to frequently play the

animation multiple times to confirm what they found. (2) A daw ID must be shown
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Figure 4.6: A juxtaposition output using the traffic datanfrgensor D722 on Feb. 16,
2009. Assume that the data analysis task is to detect the sl@gnges for fit lines of linear
trends between consecutive time windows. It is difficult ettt tiny slope changes.
Moreover, even for an obvious change, it takes a long time.
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Figure 4.7: A step juxtaposition output using the same dafdgure 4.6. One can easily
and quickly find when the slope of the fit line for a linear trexénges.
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together with the visualization, so users know what windiegytare viewing. Thus users
have to stay aware of this caption while watching the aniomedind cannot fully focus on
the data patterns.

| have discussed the advantages and disadvantages foragach trategies. How
can developers choose one of them for a real applicationfioSet5 will describe an
experiment to compare their representation capabilitied then derive a guide to advise

analysts on choosing appropriate techniques for theiratzdysis requirements.

4.3.2 Extension of Layout Strategies to Type PP DOI Functios

| have discussed four layout strategies and showed thegeusgether with type RC DOI
functions. In theory, one can directly apply these layouytrapches to the scenarios with
type PP DOI functions. For example, in a type PP DOI functisgers might choose
two cycles and three time windows per cycle, and thus in ®italvindows would be
shown. If a real system directly utilizes the proposed laysitategies to handle these
six windows, users could retrieve the information they watdwever, this initial idea is
not efficient compared to the alternative approach of gmogipind then visualizing them.
This approach is based on the fact that users normally havéyves of interests: (1) the
pattern changes across windows in the same cycle; and (2hmge of patterns across
cycles in the same time period, such as window 1 and windofwuers are interested in
(1), one approach is to organize windows into two groupswiaglows 1 & 2 & 3; and
(b) windows 4 & 5 & 6. For the second task, all windows can bé& smio three groups:
(a) windows 1 & 4; (b) windows 2 & 5; and (c) windows 3 & 6. Theicetale is to put
those windows where users want to detect pattern changethamsame group. Then the
four proposed layout strategies can be used to visualizegracip. Therefore, users can
observe each group and try to extract information of inter&@bviously, this grouping

approach makes the pattern change analysis easier thamttakenion-grouping method.

50



For superimposition, it can decrease the number of time evisdn one figure; for the
other three layout strategies, the grouping approach wiltggether only those windows
in which users want to detect the pattern changes.

To be general, two grouping approaches are provided, na@®lyand GA2 (Figure
4.8) for the type PP function shown in Figure 4.3(b).

GAL: If the data analysis task focuses on the pattern changesaaiadows within one
cycle,p + 1 groups (o, G4, ..., G, in Figure 4.8) will be provided. Actually, each
group contains all windows in one cycle. An example of thisugring approach is

shown in Figure 4.5.

GA2: If users are interested in changes across cyglesl groups &, G}, ..., G}, in
Figure 4.8) are generated. Every group pas1 windows, each of which belongs

to a cycle. All windows in one group are in the same positiothimithe cycles.

Grouping
Approach 1

Wok oo Wor Wpo — Gp
Past cycle

Wl,k Wl,l Wl,O G Gl

Current cyclel Wok ... Wo1 Woo «+—— G,
4 TSR S

Grouping | l l
Approach 2 Gk Gl Go

Current Windov

Figure 4.8: Two grouping approaches to helping users aelviasrous data analysis goals.

4.3.3 Integrating Time-series and Multivariate Data Visudizations

All of the above techniques assumed the use of extendedvangtie visualizations to
convey multi-dimensional correlations. Another normabdanalysis requirement in ex-
ploring data streams is to observe the trends for each diorenBhis can be achieved us-

ing traditional time-series data visualization techni&gech as line charts and heatmaps.
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Figure 4.9: The embedded views for the sleep data streanrs deéonly can see how
clusters move over time in the scatterplots, but can alsthesteends for each dimension
via line charts in the diagonal plots. Figure (b) is genatatgng the DOI function shown
in Figure (a), which chooses the recent 9 windows to dispMtgr the user uses the DOI
function interactive tool to adjust the function to Figuoy, (@ new view (Figure d) will
be shown. Users can more clearly see the movement of clustétgjure (d) than Figure

(0).
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It is true that one solution is just to put line charts and dtegalot matrix side by side
to convey both the trends for each dimension and multi-dsioeral correlations. This
requires decreasing the canvas size for each visualizatime the total canvas size is
normally fixed, e.g., the monitor size. To overcome this &aming, a novel technique,
namelyembedded viewss proposed to embed line charts into scatterplot matiices
der to save canvas space. This approach is adapted fromttaeaad scatterplot matrices
of Cui et al. [18], who introduced 0D, 1D and 2D visualizaspmcluding histograms,
line charts and images, into the diagonal plots. The diffeeas that | use the DOI func-
tion to partition each diagonal cell based on the number atiaivs being viewed.
Figures 4.9(b) and 4.9(d) show two embedded views usindele slata stream. They
use the DOI functions shown in Figures 4.9(a) and 4.9(cpeaetsvely. From these two
views, one can clearly see how a single cluster moves over itinthe scatterplot. In

addition, this can be used to study the trends for each dimeng line charts.

4.4 DOI Function Interaction Tool

Although two pre-defined types of DOI functions have beercdlesd in Section 4.2,
it is necessary to enable users to define DOI functions by skéms to analyze data
streams in different applications. Moreover, it will make tsystem much more useful
to allow users to adjust the DOI functions interactively.sBally, visual analysis based
on the DOI function is often a trial and error process. It ismal that analysts do not
know the exact characteristics of the data patterns and hesetpatterns change prior to
exploring the data streams. By allowing users to adjust t&¢ fDnctions, analysts can
select a predefined DOI function first, and then adjust it td fiseful data patterns while
the system is running. Some possible adjustments to teiléxploration include: (1)

Increasing the sampling ratio to see more details or deiogdise ratio to avoid visual
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clutter. (2) Changing some of the arguments for pre-defigpds of DOI functions. For
example, if the number of time windows to be displayed fort{fpe RC DOI function is
large, say 9, but most important changes occur within themtetwo or three windows,

the user can reduce it and observe the changes in more detail.

heart_rate heart_rate

O Qoo™
H
i1 Tt Bl
L
)

Figure 4.10: Using DOI functions to reduce visual clutteraosieep data stream. (a) Al
datapoints are displayed; (b) Sampling is applied to eawh window based on the DOI
function after user adjustment.

| designed an interface to enable users to change the DQidannteractively. Using
this tool, users can (1) drag the DOI function curve to chad@e values for a particular
window; (2) save or load a DOI function to/from a file; (3) adelete a window;(4)
add/delete a cycle (only applicable for type PP functiony] €b) reset the DOI function
to the original state. Figures 4.9 and 4.10 show the effeasofg this tool. Figure 4.10
shows the effect of reducing the number of windows. In Figud®(a), the arguments
for the DOI function are set ag = r; = r, = 1.0, but they are changed tg = 0.5 and
r1 = ro = 0.33 in Figure 4.10(b).

4.5 Evaluation 1: User Studies on Layout Strategies

For the four layout strategies introduced to utilize triial multivariate visualizations
for conveying the pattern changes in data streams, thetevarenportant questions to be

answered:
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e Are the proposed techniques significantly better thanticadil time-series data vi-
sualization techniques, such as line charts and heatnmapsnveying the changes

of multi-dimensional correlations?

e Which one among the proposed layout strategies is the besbrieey pattern

changes for particular datasets and patterns?

In order to answer these two questions, a user study wasrpextoto observe par-
ticipants’ capabilities in detecting pattern changes.sxperiment compared the effec-
tiveness of the four proposed layout strategies with thataafitional time-series data
visualizations, including line charts and heatmaps. Threarmental results help validate
the effectiveness of the proposed techniques, and helpdsfiving a guide for choosing
layout strategies based on the characteristics of datysasadsks and datasets. These
results can provide potential benefits to both data anadgsteell as visualization system

designers.

4.5.1 Experimental Design

The basic procedure used to design the experiment is as/®l(@) Choose some commonly-
used data patterns that can be defined easily and clearl@p{ijtruct streaming datasets
with changes in selected data patterns between time wind8)Senerate visualizations
using the proposed techniques, as well as line charts anchaps; (4) Design questions
for subjects in the experiment regarding the pattern chengéhe generated visualiza-
tions.

In the experiment, users’ response accuracy as well asnsspione were collected. It
was assumed that higher accuracy and lower response timat@dn effective technique.
Whether a proposed technique is good depends on many aspestias the selected data

patterns and the magnitude of pattern change. In this erpeati many combinations
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of these factors were tried, and how they affected userporeses was observed. It is
impossible to try all combinations, thus the experimentsedi to test the most common
ones to guide most data analysis tasks.

Choosing Data Patterns Prior figures showed two types of data pattern change: the
slope change of linear trends (Figures 4.4, 4.5), and theement of a single cluster (4.9,
Figures 4.10). They are both very common in real applicatemd are easy to explain
to participants, even without any prior experience in vislada analysis. There are other
types of changes, such as the offset change of fit lines remiag linear trends, and the
expansion or shrinking of clusters. Different types of daa#terns might be similar to
each other, e.g., the offset change and the slope chang&éebairend. Therefore, some
results on evaluating slope changes may be borrowed whestensyeed to be designed
to help users detect offset changes in linear trends. If adega analysis task is totally
different from the tested data pattern changes, a new erpatican be performed with
this user study as a design guide.

Note that observing the change of line slope and movementsiofigie cluster are
low-level tasks. In most real data analysis tasks, peoptmalty do not know which
low-level task to choose until after observing the overvigithe data. In this experiment,
participants do not need to decide which low-level taskdhtmose. This is normally im-
possible in the real applications. For example, for thditralata, users first investigated
the data in different time windows, then determined thanedr trend existed between
two variables, and finally decided to observe the line sldpesetrieving pattern changes
over time. However, the experiment design will not impaa dnedibility of this user
study. The reason is as follows: this user study is simila p@rception experiment. Its
main goal is to check human capabilities to distinguish gatgern changes on four types
of layout strategies. Thus, the performance of participantthese low-level tasks is just

what | want to analyze in this experiments.
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Constructing Datasets The basic idea for constructing a dataset is as followsP{@k

a specific time window, namely/,, from a real dataset and regard it as the first window
of the experimental data. (2) Construct several time wirgJdvom W/ to W,,_,, based

on the initial window. Note that is the number of windows shown to participants. The
selected pattern is changing fraij to 17, , for any: that satisfie® < i < n — 1. (3)
Generate the final dataset by composing the windows frigymio WW,,_; into one single
stream. An example dataset is shown in Figure 4.11. It isrgéee from a snapshot of
the traffic data with changes to the linear trend. Figure (@)ldorresponds to a subset of
the real traffic data, while Figures 4.11(b) and 4.11(c) amegated using synthetic time

windows adapted from the data in Figure 4.11(a).

X 3 X
¥ A . ¥

(@) (b) (©)

Figure 4.11: Figures (a) - (c) show three time windows of@astring dataset. Figure (a) is
extracted from a traffic data stream. The datapoints in Eg(p) and (c) are constructed
from those in Figure (a) by changing the fit line slope as arpl&in Figure 4.12.

In the above step (2), multiple variations of the experimkdatasets were generated
by using different change magnitude and changing the nuof&mdows. The reason
why to choose these two variables is that adjusting thesdaetors can help distinguish
which layout strategies are better than others for congeghranges for particular data
patterns. In some preliminary results, if the change magdeitvas big enough and there
were only two time windows, all of four proposed layout stgies worked very well.
However, small pattern changes make juxtaposition fadesursers cannot distinguish the

tiny difference between two similar figures, and too manyetimindows will produce too
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much overlapping in superimposition.

One could argue that noise should be added when construddiagets for the eval-
uation. This is not necessary. The reason is that the lacloiskrwill not impact the
validity of these user studies. If the goal is to visualize linear trends or clusters, noise
has to be introduced to increase the credibility of the useties. However, in this dis-
sertation, | focus on how to convey the changes for the pdaticlata patterns, e.g., the
linear trend in this experiment. | want to observe how twddes; the change magnitude
and the number of windows, affect users’ capabilities tecdetind estimate this change.
Adding noise could make the tasks more difficult, but candotmore credibility to this

experiment.

Figure 4.12: This figure shows the methodology applied tostoiting a streaming
dataset having three time-windows from a real dataset. Thayht line P A, represents
the linear trend with which the datapoints in a specific tinnedew agree P A, and P A,
correspond to the linear trends of two synthetic time winsloour or five windows were
constructed for some questions.

Figure 4.12 shows how to determine the magnitude of thernpatteange (in this case,
the linear trend) between contiguous windows. The strdightP A, represents the fit
line of the linear trend for the initial window. In this linthe pointP is the intersection of
fit lines for two contiguous time windows in the real traffic@aone of which is the initial

window. For example, if one picks the second time window guFe 4.4(d) as the initial
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window, the pointP is the intersection of lined andB. The distance betweehn and A,

is half of the diagonal line for the scatterplot. The fit liieswindows fromW; to W,,_;
were then constructed. Figure 4.12 contains two manualgtrocted fit lines]; (P As,)
andly(PAs), for W, andW,. Note that|PAy| = |PA;| = |PA| andd; = |ApA,| and
dy = |A;As| represent the change magnitude. In the part of this expatifoe linear
trend patterns, | used the combination of three types of ghamagnitude (1, 4 and 12
pixels), and three time window counts (3, 4, 5 windows).

The construction of datasets for cluster motion patteragndar to the above process.
Note that only one single cluster is shown in each window #edctuster size does not
change across windows. Larger numbers of clusters andngpsyzes will be tested as
part of the future work.

Generating Visualizations and Questionsin order to make the comparison among the
user responses for different techniques meaningful, dfatid several rules:

(1) Color Scheme: In superimposition and step juxtapasitite selection of the color
scheme can significantly affect participants’ capabditie detect pattern changes. Thus
the same color scheme was applied to all visualizationsrg&gtusing superimposition
and step juxtaposition. Specifically, | selected a colorpauntilized the colors at the
two ends in the step juxtaposition, and chose the linearpotated colors based on RGB
color space for the superimposition.

(2) Canvas Size: Because a small canvas size can lower sspoouracy and in-
crease the response time because of possible overlappihg tgta of different windows,
the total canvas size was fixed and a specific canvas size gigaad to each scatterplot
based on the layout strategies. To be specific, the supesitigpoand animation use the
total canvas size, but juxtaposition and step juxtapasitiere in a grid while maintaining
the ratio between width and height for each scatterplot. tdted size of the grid is equal

to the total canvas size. For example, if 5 windows are needgdnerating a juxtaposi-
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tion, the total canvas was split to a grid having3(3) cells (Figure 4.13). Although this

wasted four cells, it maintains the shape of scatterplots.

W, | W3 | W,

W | W,

Figure 4.13: This figure shows how to split the whole canvés imultiple cells for jux-
taposition and step juxtaposition. If five subfigures neebdegshown, a grid having nine
cells are constructed. Although four of them are wasted, dpproach can maintain the
shape of each scatterplot.

(3) Point Size: The point size must be appropriate to conatg gatterns in scatter-
plots since small dots are difficult to distinguish and bigsdcould result in too much
overlap. After some initial experiments, | chose suitalites for each of the proposed
layout strategies. In particular, the superimpositionamidhation used x 4 pixel points
and the juxtaposition and step juxtaposition u8ed 3 pixel points, because the latter
ones occupy a smaller region of the display.

The design of questions for the user studies was straigidfol. Participants were
asked to answer only multiple choice questions to qualiéyghattern changes instead of
qguantify them. This aims to make the user studies convemiedtfriendly. For exam-
ple, for linear trends evaluation, Subject only needed &miifly how the fit line slope
changes (increasing or decreasing) between two speciftgoons windows. However,
it is almost impossible to perceive afit line or a cluster melcharts and heatmaps. Thus,
instead, some equivalent questions were provided. Foaritrends, participants were

asked to estimate the rate of change for one variable withertdo the change of the
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other, as this can be regarded as the fit line slope. Then weeesasked to report how
this rate changes. In the cluster movement questions, usresasked to estimate how
the average value of one variable changes from one windolaetodxt.

Figure 4.14 shows a real question used in this experiment.

Cuestion 1

Azsume all datapoints in each shding window agree with a inear model wa a fit ine. Which of the following options best describes
the change of slope for fit ines from window 1 to window 27

@ (a) . l'.. ol ) e c (¢) Unchanged, o () I do not know.
Subrit |
B
1 2 3

Window Plot Colors

Figure 4.14: This is a question used in the user study for $ke-driven framework. The

figure is generated using the superimposition technigugiciRents are asked to identify
how the fit line changes from window 1 to window 2.
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4.5.2 Experimental Settings

In total, 14 computer science students participated in fee studies. Two of them were
undergraduate students, while the others were graduatergsu | first gave a short intro-
duction and showed some sample questions to each studdnheanasked each to finish
two groups of questions. Each group has 33 questions. Ongp gvas for linear trends
and the other pertained to cluster movement. To avoid theeesigct of a learning curve,
all questions in each group were shuffled for each parti¢ip@ihquestions were shown

to the subjects on the same laptop.

4.5.3 Experimental Results

Response Accuracy (95%Cl)
Response Time { 95%Cl)

SEERIRE 8

T T T T T T T T T T T T
Super Jux StepJux Animation LineCharts HeatMaps Super Jux StepJux Animation LineCharts HeatMaps

(@) (b)

Figure 4.15: The experiment results for all participants gnestions: (a) response accu-
racy; (b) response time.

Result I: Figures 4.15(a) and 4.15(b) show the mean values with a @5ffidence inter-

val of response accuracy (RA) and response time (RT) foraatigpants and questions.
The paired samples t-test was applied to the experimenitsgsucompare RA and RT
values for different visualization techniques. The foliog/conclusions were drawn: (1)

From the aspect of RA, superimposition, step juxtaposito animation are all signifi-
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cantly better than juxtaposition, line charts, and heasifap:c 0.001). Since every ques-
tion has only three choices, the performance of juxtapmsitine charts, and heatmaps
was deemed not acceptable within the experimental configurbecause their RA mean
values are less than 50%. Thus three of the four proposediteets conveyed multi-
dimensional correlations much better than line charts aadrhaps. (2) Superimposition
and animation have a little bit higher RA values than stepgpasition f = 0.02 and
0.05). but superimposition is not significantly different fromimation ¢ = 0.67). (3)
For the RT values, participants spent less time on stepposition than superimposition
and animation. However, superimposition is not signifisadifferent from animation
(» = 0.10), while the difference between step juxtaposition and aiom is significant
(» = 0.005). Therefore, for tasks requiring users’ quick responseattepn changes, step

juxtaposition is a good option.

LES
0.6

0.0

Response Accuracy (95%Cl)

T T T T T T T T T T T T
1 4 12 1 4 12 1 4 122 1 4 12 Pixels
Super Jux StepJux Animation

Figure 4.16: The response accuracy for all participantsdatdsets having only 3 time
windows. The numbers on the horizontal axis mean the chamgmitude in the unit of
pixels.

Result 2 In order to see how the magnitude of pattern change affectecpants’ per-
formance, | calculated the mean values with a 95% confidemesval of RA values
grouped by the combination of layout strategies and charggnitude. The results are

shown in Figure 4.16. The numbers, 1, 4, and 12 on the hoararis denote the change
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magnitude in terms of the number of pixels. This demonsirate facts:

1. Participants have improved performance when the chargmiude ( the number
of pixels ) becomes bigger, except for juxtaposition. Thitedence between a 1
pixel change and a 4 (12) pixel change is significant for glbla strategiesy( <
0.02) except juxtaposition. Moreover, the RA values for 4 and i2lpchange are
close to 100% for all layout strategies except juxtaposittdowever, the RA values

for a 4 pixel change is not significantly worse than those fb2 pixel change.

2. For the 1 pixel change, animation has the highest RA vahreswas significantly
better than superimposition and step juxtapositjpr=(0.04 and0.03). Subjects
had a response accuracy of about 65%. Considering that thesuce is4 x 4 for
animation, this is a very good result. The reason is obviadren the change is very
small, the similarity between the datapoints of two windoesults in too much
overlapping. Thus participants cannot perceive subtlegés from the figures
generated using superimposition and step juxtapositiamwenter, animation can
avoid the overlaps and still convey the pattern changesusecaf the short-term

memory of the human brain.

Based on the above observations, the following conclustanse drawn:

1. Under the experimental configuration, superimpositsey juxtaposition and ani-

mation can work very well for changes bigger than or equal poxéls.

2. Animation can work relatively well even if the change isadier than the point size,

while superimposition and step juxtaposition cannot.

An interesting result of this experiment is that juxtapiositis not a good option for
conveying pattern change. It was expected at least to berltétin superimposition

because it could relieve visual clutter and make the patteamges obvious. However,
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the experimental results reveal that it is not as good as ttier three techniques. My
guess is that human eyes cannot detect changes from one tfigtne other without an
appropriate reference if the change is very small. Recatl plarticipants were asked to
detect the slope change of a linear trend. One can obsentgr@@indow by treating the
datapoints in the other time window as a reference in sugpergmion, step juxtaposition,
and animation, because datapoints of two time windows arénghe same scatterplot.
Note that when an animation shows the second frame, therfirsefcan still be used as a
reference because of human short-term memory. This ma&asyitto perceive the pattern
changes. However, if using juxtaposition, it is difficulitee such a reference because two
windows are separated from each other. One possible soligtionprove juxtaposition
is to add reference grid lines for each individual scattgrpin this way, users can more
easily estimate the parameters for the data patterns invactow, including the slope
of fit lines and the distance between a cluster and the sphtdyorder. This solution
has an obvious disadvantage: grid lines can cause visutdricdnd thus counteract their

benefits. This should be tested in an experiment, which rey@d as future work.

4.5.4 Evaluation Summary and Implications

For question 2 stated in the beginning of this section, Méera set of guidelines to advise
data analysts and visualization system designers to clagge®priate layout strategies

with the main goal to increase the response accuracy. Tabkhéws this guideline.

The number of windows The magnitude of the pattern change
involved in pattern changes Small Large

Small Animation | Superimposition & step juxtaposition
Large Animation | Step juxtaposition

Table 4.1: A guideline to advise data analysts and visuabizasystem designers on
choosing appropriate layout strategies in terms of theadtaristics of datasets and data
analysis tasks.
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| recommend the use of animation when the change is sma#yiseanimation is the
only technique that appears to work relatively well in trase. Note that animation could
cause a long response time when the number of windows is Bageyperimposition and
step juxtaposition should be used when the change magngualg. Superimposition
does not work well when users choose too many windows in thé fxxtions, as it
tends to cause serious visual clutter and humans cannolyrddfirentiate many colors
at once. In this situation, step juxtaposition is a bett@iad A key question is what this
threshold may be at which superimposition becomes protilemtis almost impossible
to give such a number for all visual analysis tasks, becausepends on many factors,
including the selection of color scheme, canvas size andé¢heece of visual clutter. For
a specific use case, users or system designers would needdoct@n experiment to
determine this number.

Table 4.1 divided the change magnitude into two types, ngnsshall and large.
Based on the experimental results in Figure 4.16, only ainomacan work relatively
well when the pattern change is smaller than the point sizeth& recommendation is
that if the change is smaller than the size of the visual itetis regarded as small and
the suggestion is to use animation to observe the pattengelsa

One might argue that small changes can be clearly obsergetyuzooming in all
views. This is not feasible for certain circumstances bseaisers might not have enough

time to zoom in views when data arrival rates are relativéegyh

4.6 Evaluation 2: Case Studies on Interaction Techniques
and Other Multivariate Visualizations

In this section, | analyze the effectiveness of the propagsahlization and interaction

techniques. Because the effectiveness of the proposealizition techniques in the user
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studies was shown in Section 4.5, | will mainly focus on destating the usefulness of
DOl functions and their interactions in three case studiés. first will use a type PP DOI
function, while the second focuses on the trial-and-erxgiagation process using the
DOl function interaction tool. Since examples so far uselg soatterplots, the third case
will demonstrate the integration of step juxtapositioroipiarallel coordinates to show
that any of the proposed layout strategies can be appliethey traditional multivariate
visualization techniques.

Case Study 1 Figure 4.5 uses the measures from sensor D191 (close totdreaction
of I-35W and 35th Street) in the traffic data stream. A type FB finction is used as
shown in Figure 4.5 (b). The length of a cycle is one day. Thieecti window is 7:00PM-
7:30PM on Tuesday, March 24, 2009. In the implemented systeatterplot matrices
were used to show this example. For the sake of saving spatesk two interesting
subplots from each scatterplot matrix to form Figure 4.5[iis not difficult to find that
the traffic pattern on March 24 conveyed by the scatterptdteeethird row is significantly
different from patterns on March 22 and 23 as shown by thdesgdtts in the first and
second row. In the scatterplots formed $geedand Occupancy These two variables
always have a negative relationship with each other. Howéve fit lines in scatterplot
9 have a larger slope than those in scatterplots 1 and 5. Tiwoef# (lines A and B) can
be observed in scatterplot 11. The absolute value of theedlmpline A is much larger
than that for line B. Line B is formed by the points with darkdao It shows that the
linear relationship betweeBpeedand Occupancywas restored to normal after 7:00PM,
as it has a similar slope to the fit lines in scatterplots 3 anthus, the conclusion is that
traffic was very heavy (higlbccupancyand lowSpeedl before 7:00PM and then went to
normal. Such a change of data patterns did not happen on Marahd 23, i.e, the traffic
from 6:00PM to 7:30PM was not that heavy.

Some interesting changes of data patterns happened in dltterptots formed by
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VolumeandOccupancy In scatterplot 10, the negative linear relationship exgtween
Volumeand Occupancy but the relationships in scatterplots 2 and 6 are posifirem
scatterplot 12, it is observed that this linear relatiopsthanged after 7:00PM. In this
scatterplot, points with dark color formed line C, whoseipos and shape are similar to
the points in scatterplots 4 and 8. Since line C contains #ta df the current window
(7:00PM-7:30PM), it also shows the traffic became normaraftOOPM. This change
is different from the change in scatterplot 11, as the lime&tionship changed from a
negative one to a positive one. This inspired me to consitietiver some abnormal things
happened. My hypothesis is that this is a sign of a traffic jawsed by some special
reasons, such as an accident or road construction. Therssas®follows. In scatterplots
2,4, 6, and 8, some points have high occupancy, and otheeddaer occupancy. Thus
the traffic is always oscillating from 6:00PM to 7:30PM on Mar22 and March 23.
However, the relationship betwe®nlumeandOccupancyare always positive. Recall the
definition of Volumein section 3.1. This shows that vehicles still can run at atredly
high speed when th@ccupancys high, which results in more vehicles passing the sensor
(high volumg. However, in scatterplot 10 and line D in scatterplot ¥@8lumebecame
lower when theOccupancywas very high. This could happen during a traffic jam. For
example, when police cleaned the highway after an accidentrs could drive in only
one lane, then the average speed of vehicles is very low,esO¢bupancyis very high
( close to 100%) and theéolumeis close to 0. Incident records of Mn/DOT showed that
flooding happened in the late afternoon on March 24, neantssing of I35W and 42nd
Street, because of 0.44 inch of precipitation on that days iBhvery probably the reason
for the interesting changes of data patterns as shown byd-#yG.

The analysis of this example confirms that the developechiqals can convey not
only the multidimensional correlations for a particulandé period, but also the change of

data patterns, and evéme change of the changes of data pattest&n using the type PP
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functions.
Case Study 2 This case study investigates Figure 4.9 using the sleepsaieam. The
current window is 36.5-37 minutes after the beginning of gleeping experiment. Fig-
ures 4.9(b) and 4.9(d) use embedded views to convey noti@mgls for three dimensions
but also multidimensional correlations. Figure 4.9(b) waserated using a DOI function
to compare the recent 9 time windows as shown in Figure 4.%@m each scatterplot
one can quickly find how the primary data in each window mowes ¢ime. For ex-
ample, in the plot with the heart ratbgartrate) as X and blood oxygen concentration
(blood.oxygen as Y, one interesting pattern is that the older data maiilg into the
bottom area, then slowly moves in the upper-left directamg finally returns back to a
middle position. The line charts in the diagonal plots shioat the heart rate decreased to
a minimum value and then slowly went up within the recent tiwmedows. At the same
time, the blood oxygen concentration reached a maximumevahd then slowly went
down. The findings from the line charts are good supplementohclusions gained
from the scatterplot display.

Figure 4.9(b), shows that this interesting change existisanmecent several windows.
If users want to see more details of this change, the DOI fondhteractive tool can
be used to adjust the DOI function in order to choose fewee tmmdows to display.
Followed by this idea, the new DOI function shown in Figur@(d) results in the new
view shown in Figure 4.9(d). This new view clearly demonsisehow the positions of
clusters change as compared to Figure 4.9(b).
Case Study 3

This case uses a 5-minute slice of the sleep data streamit it$pto 10 time win-
dows and generated Figure 4.17 using step juxtapositiorparallel coordinates. Let
us first observe the changes of the correlation between #u¢ fate and blood oxygen

concentration. Basically, Figure 4.17 shows two types sfritiution: Type 1. low heart
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rate and high blood oxygen concentration, such as in wind2@-54.5, 56.5-57.0, and
58.0-58.5; and Type 2: high heart rate and low blood oxygercentration, e.g., win-
dows 54.5-55.0 and 57.0-57.5. The datapoints in some wiadwoe the mixture of two
types of data, such as window 57.5-58.0. Each sub-figureleany show how the data
is changing from one type to the other. For example, in Figut&(a), the data changed
from type 1 to type 2. After investigating the whole streanfipund that type 1 is the
primary one while type 2 concentrates in some portions o$tfeam. Thus type 2 can be
considered to be an outlier. Since the patient in this sigpexperiment shows sleep ap-
nea (periods during which he takes a few quick breaths amdstops breathing for up to
45 seconds), type 2 data might be associated with this aladibynThe third dimension,
the chest volume, that is the indicator of respiration, edlrus whether the hypothesis is
accurate or not. During normal human breathing, the chdathwe should change in an
oscillating way. We can see that in most time windows, thesthelume values exist in
a wide range, which is normal. However, the values of thisetigion in four windows
have a very narrow range, including windows 54.0-54.5, &89, 56.5-57.0, and 58.0-
58.5, where the patient stopped breathing for a while. Mggqust after each of these
four windows, data changed from type 1 to type 2. For exampl€&jgure 4.17(c), the
darker points correspond to window 55.5-56.0, where thiep&atight stop breathing. In
addition, the data changed from type 1 to type 2 in Figure (@)1 7Thus, a finding, with
the help of visualizations, is that the patient will changan abnormal condition of high
heart rate and low blood oxygen concentration after theosd@aea happened. This find-
ing has not been confirmed with the medical expert, but trss study at least can show
that the proposed layout strategies are useful in helpirffjmdgossible cause and effect
in data streams, when data analysts apply them to traditonkivariate visualizations.

This will help analysts promote hypotheses or confirm newirfigsl
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Figure 4.17: The visualization for a slice of sleep dataastrgenerated by applying step
juxtaposition to parallel coordinates. All time units iretfigure are minutes. We can
clearly see how the relationship between variables chaingesone window to the next.
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Chapter 5

A Data-driven Approach to Merging

Windows

5.1 The Data-driven Framework

Before describing the framework and algorithms, | will ga@me terms and definitions.
Terms:

If windows W7, Ws, ..., andi¥, are merged to a windowW/’, W’ is called theparent
(window) of W3, W, ..., andWy, and Wy, Ws, ..., andWW, are defined as thehild
(windows) of W’. In other words Wi, Ws, ..., andW, areoriginal windows and W’
is themerged window. Many multivariate data patterns can be described usingtove
(v1,v9,...,v,) that is apattern vector. An example is the vectdr-2, 5) that describes
alinear trend) = —2x + 5.

Definitions:
W An original or merged window.

n,, The number of merged windows visualized.
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n, The number of original windows, including all child windowsall merged windows

visualized.

V,, The pattern vector to describe the data pattern retrievied & merged or original

window.

F,(W) The pattern retrieving function to compute a pattern vedtgrfrom the data-

points in a windoww .

d(Vy,, Vp,) The function to measure the distance between two pattetonged-or one
specific pattern vector definition, this might not be unigu, to reflect different

users’ interests.

Gm(Vp:, Vp,,---, Vp,) The merge function to generate the pattern vector of a par-
ent window from its child windows$V,, W5, ..., andWW, that have pattern vectors

Vo, Vooo -y andV,, .

For the two data patterns investigated in this dissertalio@ar trends and data range,
| provide details about their pattern vectdrs,, and three functionsd(V,,, Vp,), Fp,
andG,, in Appendix .1 and .2.

Figure 5.1 shows the framework to generating the patternpatigtrn change visu-
alizations for the current view and history data. Here neerapped time windows are
used. The time window is the minimal unit that users want ®tosstudy data patterns.
The current view containg, contiguous time windows, including the most recent time
window. ng is normally determined by users, could be bigger than the maximal hum-
ber of windows that the canvas can hold, which is defined/aq=3 in Figure 1.4). In
other words, we allow at mosY,,, time windows to be displayed in the final output. The
merge algorithm can reduce the number of windows in the ntiiew ton,, (< N,,) via

merging adjacent windows having only small changes. If om&aw in the current view
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becomes expired, it is sent to the history data pool. Whersiteeof this pool exceeds
the memory limit, a procedure is trigger to compress thehysiata via merging window
pairs having small or no pattern changes. The pattern vatradgorithm calculates the
data patterns and pattern changes for the windows in botbutttent view and the his-
tory data pool. Finally, three types of views, juxtaposesiwg, pattern views and change
views, are generated. The first type generates multiplé&iwadl multivariate visualiza-
tions for each merged window, and juxtaposes them on theasarhis can preserve all
the details in the data. However, it needs a lot of canvasespad is not applicable to
history data. The last two types regard the pattern vectatsteeir changes as time-series
data, and generate traditional time-series visualizatiorwonvey the data pattern change.

For current view

_——_—————————

Juxtaposition ',; Juxtapositior}

u Current

172 View Layout i Mews |
1
| : Merge e
1l V‘ Algorithm Pattern for Pattern Vector| ! _ Pattern '
' || Pattern Visualization | 1+~ Views !
! | Retrieval : |
ImE Algorithm Pattern Changg¢ ' . Change |
L=} - Visualization | 1 = Views !
between windows 1

lme e !
For current view

and history data

Figure 5.1: The framework to show how the windows are mergestiory data is stored,
and patterns or pattern changes are retrieved and visdalize

5.2 Merge Algorithm

As mentioned in the previous section, the basic idea of thpgeed approach is to merge
no windows ton,,,(< N,,) windows, whereV,, is the maximal number of windows that
the canvas can hold. Basically, this is a problem of data cesgon. First, | will discuss

some theory and algorithms for compressing data, and int®@@ quality measure to

describe how well a merge algorithm performs. | then progesealgorithms: brute
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forceand heuristic and finally extend them to data streams.

5.2.1 The State of The Art in Data Compression

Data compression is based on information theory in whichptimaary goal is to mini-
mize the amount of data to be transmitted [39, 54]. The bagthad is to reduce the
redundancy, leaving only the informational content. Onela$sical data compression
algorithms is Huffman coding [30]. It assigns short code¥goto those messages ap-
pearing frequently. Aother compression technique for ienegmpression iglifference
mapping[37] that is worthwhile mentioning. It represents an imageaa array of dif-
ferences between adjacent pixels rather than the pixef colding. Since the adjacent
pixels normally are similar, this technique can achieve adggompression ratio. | was
inspired by this algorithm since my goal is to represent tifferénce between adjacent
windows.

Data compression techniques can be categorized into $ssatel lossy algorithms.
The former technique means that we can get back all infoonatiter we decompress the
compressed data, while the latter will discard some inféiona For example, Huffman
coding and difference mapping both belong to lossless cesspyn. Lossy compression
is commonly used to compress audio, video or images, bedhasgny difference in
these areas is normally acceptable [17]. JPEG is a commaely iossy compression
technique for digital images. The name “JPEG” stands fantJ®hotographic Experts
Group, the name of the committee that created the JPEG sthadd also other stan-
dards. In this technique, the images first are converted R&@B to YCbCr color space
(Y: brightness, Cb: blue component, Cr: red component).e&fgomponents will be
sent to separate channels to be compressed to achieve moenetompression. Each
channel is split into 8 8 blocks. A discrete cosine transform (DCT) is applied tcheac

block. DCT is a Fourier-related transform that can separadiigh-frequency and low-
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frequency components. Human eyes are good at seeing sifi@iedces in brightness
over a relatively large area, but not so good at distingagkine exact strength of a high
frequency brightness variation. So JPEG algorithm redtleesamount of information
in the high frequency components after DCT transformattanally, the reduced infor-
mation is quantized. For video compression, existing algamrs normally make use of
the similarities between adjacent frames. In MPEG-I, pesdware categorized into four
types: (a) | pictures, which are coded via the JPEG technig)® pictures, which can be
predicted from previous | or P pictures; (c) B (bidirecti§ractures, which are predicted
from both past and/or future | or P pictures (for these datar,dering may be necessary);
and (d) D pictures, which allow fast-forward mode with retéd quality.

Wavelets are another important technique for lossy comsprsA wavelet is a kind
of mathematical function used to divide a given function entnuous-time signal into
different frequency components and study each compondm&wesolution that matches
its scale. Its main advantages are the low time cost, meslution features, and scal-
ability [43]. Some visualization researchers used wasdlevisualize large-scale multi-
variate data at multiple resolutions [47, 51, 65]. For exempliller et al. [47] applied
wavelet transformations to the digital signal construdtech words within a document,
and then used wavelet energy to analyze the thematic chasdicts at varying degrees
of detail, ranging from sections to words. Based on the amhesults, a visualization
system, named TOPIC ISLANDS, was created to provide fuzzyioh@nt outlines at dif-
ferent levels of detail. Wong and Bergeron utilized wavélahsformations to display

brushed data at a different resolution than the non-brudh&d[65].

5.2.2 The Quality Measure for The Merge Algorithm

The basic idea for measuring the merge result quality istopzde how much the change

information is preserved by the merge algorithm. To expthis, | first introduce an
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intuitive merge algorithm, namephattern-blind averagingwhich merges eveny,/N,,
original time windows to one merged window. The pattern @eof the merged window
is the average value of the pattern vectors of the origigalV,, time windows. Pattern-
blind averaging is easy to understand and will be the congedf the brute forceand
heuristic mergalgorithms proposed later. Figure 5.2 shows the mergetresphttern-
blind averaging and heuristic merge for the same input. dthoss of generality, in
this example, the pattern of a time window is described byahmember, namelpattern
number and the change from one window to the next is defined by tiferdiice between
two numbers. One assumption in this example is that therpati@mber of a merged
window is the weighted average value of pattern numbers|aloatesponding original

windows computed via:
V1N + VaNeo
ni + No

v =

Note thatv;(v2) andn(n,) are the pattern number and the number of datapoints for
window Wy (1W5).

Although a pattern vector could contain many scalar valoagal applications, the
distance between two pattern vectors are always represent@real numbedt(V), . V},)
(defined in Section 5.1). In the following definitions, | us@ythe distance measures
between two time windows instead of pattern vectors thevaselSimplifying the pattern
vector to a numerical value does not impact the discussiontahe quality measures of
the merge algorithm.

Figure 5.2 contains two subfigures. In each subfigure, therbws represents the
original windows; the merged windows are shown in the segomd The second row
of the left part shows the result of a heuristic merge algarithat will be discussed in
detail in Section 5.2.4. The right part is from an intuitivetimod, named pattern-blind
averaging, which merges evemy/N,, original time windows to one merged window.

In Figure 5.2, the heuristic algorithm mergéd;,1V,,W3; and W, to one window.
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Figure 5.2: This figure shows how to measure result qualithefheuristic merge algo-
rithm and pattern-blind averaging regarding the degreehicimthe change magnitude is
preserved.
Therefore, from the user’s perspective, the pattern nusnbethese four windows will
be the sam@(15), although their actual pattern numbers arg 0.2, 0.2 and0.1. This
loss is shown in the third row of this figure. Hence, the distabetweei; andWW; will
be O if try to retrieve it from the final visualization, whilbe actual change froi/; to
W5 is 0.1. That is to say, the change information frdii to W, have been totally lost.
Similarly, the original distance betweé¥, andW; is 0.4, but this will change td.35 in
the final visualization.

If d; is used to represent the actual distance between origimalomis|V; andW,, 1,
andd,, is the perceived distance from the visualization after yipglthe merge algorithm

to the data, then
n—1
D=3 |d;—dj (5.1)
=1

is the total deviation for the change information after tiwirdows are merged. Note that
n is the number of original windows.

Obviously, a better merge algorithm should have a smaligiatien D. So Equation

Q=" nf(l—M) (5.2)

n—1:= Amaz

5.1is extended to

to represent the merge result quality. Note thgt, is the maximal change. The above
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definition guarantees that < @ < 1. A bigger @ value means a higher quality. If
dmee = 1.0, then the quality measures for Figures 5.2(a) and 5.2(bp&%® and 0.85
based on Equation 5.2, respectively.

In addition, normally people are more interested in biggemges than small ones,
so only those changes bigger than a threshold are counteédcaration 5.2 is extended

to

Q: 1_1 Z <1_ |di_d;‘> (53)

n' di>dr maz
wheredy is a distance threshold, amd is the number of items in the sét;|d; > dr}.
If dr = 0.2, based on Equation 5.3, the quality measures for Figuréda)sahd 5.2(b)
become 0.975 and 0.725, respectively .

5.2.3 Brute Force

The basic idea to brute force merge is intuitive. If the gedabimerge:, to V,,, windows,
the brute force algorithm will iterate all possible ways pditsn, original windows toV,,,
subsets. Note that, in each subset, all windows should egomus. For each subset, the
quality measure is calculated via Equation 5.2 or 5.3, aadédhult is that one having the
best quality. Figure 5.3 shows a result using brute forcerdlym (ny = 12,N,, = 4). Its

quality measure is 0.85 from Equation 5&,(, = 1.0);

1 2 3 4 5 6 7 W8 9 WlO Wll W12
m

Figure 5.3: An example to show the result of brute force merigere 12 windows need
to be merged to 4 windows. Its quality measure is 0.85 (Egds.2. = 1.0).

To analyze the time complexity of this algorithm, I will firshow a theorem:
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Theorem. There are(ﬁg;l) ways to merge, original windows taV,,, merged windows.

Proof. Imagine that we havé/,, — 1 poles and put each of them between two contiguous
windows, and two poles cannot be in the same position, thesetN,, — 1 poles can
split ny — 1 original windows to/V,,, subsets. Thus we can g&t, merged windows by
merging all windows in each subset. Because there are ilvigtal positions where we

can put poles, we can fir(qg‘s:_ll) ways to merge windows. O

The process to find the best quality measure is as follows:
1. Compute the quality measure f@@fn:ll) combinations. For each,

1.1 Use the merge functiof,, to calculate the pattern vectors 6f,, merged

windows.

1.2 Obtain the quality measure via Eq. 5.2.
2. Find the combination having the largest quality measures

For each combination, the time cost of Operations 1.1 ants1.2n, andC5NV,,; in
addition, the operation 2 takés V,, (C4, Cs andC are constant real numbers). So, the

whole algorithm needs to run:
Mo — 1
< ) (01710 + OQNm) + O3Nm (54)

Ny, —1

Normally, N,, is a constant in many applications, thus

ng — 1 _
(w ) = ot

Therefore, the time cost of the brute force merg@s)™).
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5.2.4 Heuristic Merge

The brute force merge is easy to implement but is time consgni is not acceptable for
some real applications that need quick response. | now peoateuristic algorithm that
is much faster although its result might have a lower quatigasure. The basic idea is
to repeatedly scan the window list multiple times and memggiguous windows having
a change smaller than a threshold value, until the numberrafaws is smaller or equal

to N,,.

Round 1
§4=0.15
Round 2

Round 3

Figure 5.4: An example to show how to do multiple pass hdariserge for the same
input as Figure 5.3. The distance threshold sequence | ssgd i= 0.15, 6, = 0.25
andds = 0.35}. In each pass, The scan on the window list might be multiphesi until
all changes between contiguous windows are bigger éhahhe quality measure of the
merge resultis 0.838 (Eq.5.2,,.. = 1.0).

Figure 5.4 shows how to merge 12 windows to 4 windows usindp&ugistics merge.
This example uses the same input as the brute force merggumeF5.3. The whole
procedure is composed of three rounds. Each raumskes a different pattern distance
thresholds;. The goal of this round is to merge as many windows as possitiiethe
smallest pattern distance between contiguous windowsgigebithand;. Hence, two
problems need to be solved: (1) how to chogsand (2) how to merge.

In order to choose an appropriatg | first scan the whole window list, and then get

the minimal pattern change between contiguous winddws,, which is the minimal
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values in{A;(1 < j < n’)}. Note that' is the current length of the window list. Then
| choosed = f(A,..n) as the input of the one pass merge algorithm. The definition of
function f depends on the application. In this example; A,,;, + 0.05.

One may argue that = A,,;, can be used to set the threshold in the merge algo-
rithm. The reason why | do not sét= A,,;,, is that probably only two windows will be
merged in one round in that way. That could cause too manydoumthe merged-based
hierarchical structure and high time costs.

In the first roundA,,.;, = 0.1, sod; = 0.15. The pattern distance measures between
Wi and Wy, Wy andWs, W3 and Wy, all are 0.1. Is it feasible to mergé;, W5, W3
andWW, to one window? Absolutely not. The reason is that the dat#pais increasing
steadily fromI¥; to W,. The aggregate change is 0.3, which is not small. If these fou
windows are merged to one window, this important changebeiliotally lost. Therefore,
the heuristic merge algorithm only merges two windows ateonto explain this idea,
assume the original window list sy, W5, ..., W, }, and the change thresholdds
The algorithm will search the whole window list from the baging, until finding two
contiguous windows, salyf/; andWW,_; having a change less than or equad tand then
merge them. After that, the same searching and merging avikkpeated fromi’; ., until
W,,. For example, in the first scan, this algorithm only merggsandiV,, W5 and Wy,

W andW-, Ws andW,, and keeps other windows unchanged. Note that a single scan i
not enough because the change between a merged window angdiaalavindow, or two
merged windows, can be less than or equal to the cufteng.,V;(1.05) andii/;(0.95).
Thus multiple scans are necessary for the window list. Alytuthis algorithm did the

full scan twice in Round 1. After Round 3, the length of the eow list is 4, which is the
goal, so the heuristic merge can stop.

Algorithm 1 shows the pseudocode to do one merge round giysitarn distance

threshold). In Algorithm 2, multiple rounds are done by calling Algdm 1.
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Algorithm 1 Merge windows with pattern distangeé.

1: Input: {W;} (The window list) ;0 ( pattern distance threshold).
2: found <« false;

3: repeat

4. S« () {Sisthe set to store merged windows.

5. whilej < Len({V;})-1do

6: while j < Len({W;}) -1 and d(W;, W;;1) > ¢ do

7 ] < J+1;

8: end while

9 if j < Len({W;})-1then

10: S < SU Merge (W;, W;11); {Merge() merges two windows and returns the
result}

11: found < true;

12: | < jt2;

13: end if

14:  end while

15:  Update the window list via replacing windows with their patrevindows inS' if

they exist.

16: until found = false

Algorithm 2 Mergen, windows ton,,,(< N,,) windows.

1: Input: {W;} ={ Wy, Wy, ..., W,, } (The original window list) ;
2: k<= 0;
3: while Len({W;}) > N,,, do

4:
5.

© o N

{ Len() returns the length of the window li$t.

Apin = min({d(W;, W; + 1)|1 < i <n/—1}), n’ is the length of current window
list;

Call Algorithm 1 usingy;

k<=k+1,

end while
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The heuristic merge might generate a result having a lowalityumeasure than the
brute force method. For example, the result quality in Fegbod is 0.838. Although it
is a little lower than 0.85 generated by brute force merggui@ 5.3), it is much higher

than the result quality 0.730 generated by pattern-blirdaying (Figure 5.5).

W, W, Wy W, W5 We W7 Wsg Wi Wi Wi T

Wy
0.1 |0.2| |0.3[ |0.4| [0.6] |1.0] [1.1 1.3] |1.9] |15
I
1.0

Figure 5.5: Pattern-blind averaging is applied to merge tmmdows for the same input
as Figure 5.3. Its quality measure is 0.730 (Eq.8,2. = 1.0), much lower than brute
force and heuristic merge.

In the heuristic merge, every time two windows are mergesl|g¢hgth of the window
list will be decreased by 1, so the time cost for merging wimsl@s C(ng — N,,). In
addition, it takes time to find a smallest distance in eachsitein on the window list.
For the worst case, this algorithm needs tordo- N,, scans. so the time cost for this

operation i<C3(ng — N,,,)?. Thus the total time cost is:

01(710 — Nm) + 03(71() — Nm)2 = O(TLS) (55)

Note that the constants, andC’; have the same meaning as Eq. 5.4 in Section 5.2.3 used
to compute the time cost for brute force merge. Compareduteliorce merge, the time
cost have been decreased frarn, ™) to O(n3) with a loss of result quality. It is a big
savings whenv,, > 2.

Section 5.4 will describe an experiment to compare the rgsality of the two merge
algorithms, and show that the loss in quality is worthwhitenpared to the savings in

computation cost.
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5.2.5 Stream-based Merge

For a data stream, if one new window arrives, the oldest winad@mely the expired
window, has to be removed from the current view before the wawlow is added into
the visualization (Figure 5.1). For example, in Figure .41;3 comes as a new window,
then the current view becomésiy, Wi, .. ., Wiy, Wis}, andV; is expired. Obviously, a
re-merge is needed. The easiest approach to re-merge iz tioerbrute force or heuristic
merge again on this new window li§tWW,, Wi, ..., Wiy, Wis }. This is not efficient
because the existing merge result {orl’;, W, ..., Wiy, Wis} is not reused. To avoid
this disadvantage and save the time cost for merging, th/raemved window is handled
by the following steps: (1) If the expired window has beengedrinto other windows,
decompose the oldest merged window and put all its child exwsdback on the window
list. (2) Remove the oldest window from the window list. (3Jdithe new window to the
window list. (4) Run the brute force or heuristic merge onnlee window list. There-
fore, after the new windowV;; arrives, merge algorithm is run onWsy, Ws,W,,Ws,
Wy Wi WY, Wis) instead of{ Wa, Wi, ..., Wis, Wis}. Figure 5.6 shows the details of
how to decompos®&/{’ and do the re-merge starting from the existing result. Thalte
is the same as what is obtained by doing heuristic mergetlirec the original window
list, but is obtained by running the merge algorithm stgrfiom 8 windows instead of
12 windows.

Recall that the time cost of the brute force and heuristig@ésO(n)™) andO(n?)
respectively, where,, is the number of original windows. For eveny input windows,
on averagey,/N,, original windows are merged to one merged window, so theastr
based merge algorithm needs to merge ggthy+ N,,, windows. Normally,N,,, is a smalll
constant number, so, stream-based merge can reduce thedsnef brute force and
heuristic merges sz},IVT andN%Qn respectively.

The above estimation does not consider the time cost iner@adetach the expired
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windows from the existing merge result. In Section 5.4, lodieg experiments to inves-

tigate whether and how this optimization affects the regudtlity and time cost.

J Expired View {

2 3 4 5 6 7 8 9 W10 W11 W12

Current View

W13

Wy

_____

Result

Round 2
82=0.35

Figure 5.6: This figure shows how to do a stream-based heumsirge when a new win-
dow arrives after 12 windows are merged to 4 windows in FigudelV|" is decomposed
to make full use of existing result. In this way, the mergetstttom 8 windows instead
of 12 ones.

How to Merge Windows. There are two options to merge two windows: (1) doing a
union set operation on two windows and then doing samplingdice the number of
datapoints to the size of one window; or (2) utilizing the geefunctionG,, to calculate
the pattern vector of the parent window. In the current vieags, the first approach is
picked because it can save data details. For the historyanebdata storage, the selection
depends on the users and the characteristics of the da&amattor the data patterns
having the merge functio&,,,, the second approach can be chosen to save memory space.
If the merge function does not exist or is difficult to compfaea particular data pattern,
e.g., clusters, only the first approach is viable.

Storage Policy When one new window arrives, an old window must leave theeour
view. It will be stored in the history data pool for the purposf generating history

views. Because the data stream is potentially infinite iumgatall windows cannot be
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stored. Even if only pattern vectors for time windows aregeddp the memory will still
be eventually full. To solve this problem, the merge appnoacused: merging those
windows with small changes to save memory space. In addiidrwindows are merged
earlier than newer windows because more recent data is mariant than older data
for most data analysis tasks. For example, if users want davkmhether today’s traffic
is normal, they normally need to compare it with yesterdalast week, and rarely with
last month or last year.

Specifically, users are allowed to provide two sequeddes! , (7ho < 71 < ... <
Ty To = 0, T, = o0), and{0;}7_, (6o < 01 < ... < ¢,), whereT; denotes a data age
(the difference between the timestamp of this datapointhedurrent time), and; is a
pattern change threshold. Note thats the maximal possible change of the data pattern.
The sequencégT;}!_, divides all the arriving windows intg sections,[Ty(= 0), 7],
[Ty, Ty, ..., andT,_1,T,(= c0)], in the order of the degree of users’ interests from high
to low. When the memory is full, the following procedure iggered to merge windows
in the history data pool. The goal is to reduce the histora gatol size to a predefined
size Sy, e.g. 0.9M, where M is the maximal memory size assigned to the data pool.
This process is done via calling Algorithm 1 up(fo+ 1)q times. Each call is represented
by F'(6;, [T}, T;+1)), which means merging all window pairs with change equal tess
thand; in the intervalT;, T;.,)). All calls are placed in the following order:
F(00, [Ty-1,T})), F (00, [Ty—2,Ty-1))s - - -, F (0, [T, T1)),
F(6,,[Ty1,T), F(61,[Ty—2,Ty-1)), -, F(01, [To, T1)),

F(0p, [Ty—1,Ty)), F(0p, [Tg—2, Ty1)), - - -, F(0p, [T0, T1)).-
This order ensures that more important data is kept, whictaoes the most recent data
and window pairs having significant pattern changes. Aftahecall F'(6;, [T}, Tj11]),

the data pool size is evaluated. If it is smaller th&n, the merge process is stopped.

87



Otherwise, go to the next call. Sindg is the largest possible change &fd= 0, the
memory space held by the data pool definitely will shrink ssléhanS,, after one call.
The pseudocode of this procedure is shown in Algorithm 3.

Note that it is better to run Algorithm 3 offline than in paehlvith online merging,
because the latter way will increase the system compleritycauses more processing

overhead.

Algorithm 3 Shrink history data pool.

1: Input: {T:}]_, (The data age sequence which satisfigs< 71 < ... < Ty, To = 0, andTy = oo); {8;},_, (a stepped
change magnitude sequence which satisfies: 61 < ... < d,); Sar ( The expected size held by history data pool after this

algorithm)

2: for i=0topdo do
3: for j=g-1downtoOdo do
4: {W} « all windows within sectiofT};, Tj11)).
5: Call Algorithm 1 with parameter§; and{WW };
6: if DataPoolSize) < Sy, then
7: Exit;
8: end if
9: end for
10: end for

5.3 Visualization of Patterns and Their Changes

This section will discuss three visualizations used in thadlriven approach: juxtaposed
views, pattern vector views and pattern change views. Twiicpdar data patterns, linear

trends and data range, are chosen to show as examples.

5.3.1 Juxtaposed Views

This section presents visualization techniques basestem juxtapositiordescribed in
Section 4.3. Other techniques in Section 4.3 can also beeajol the techniques in the
data-driven juxtaposed views.

In juxtaposed views, two types of visualization technigaes developed: (1juxta-

posed full viewthat uses traditional visualization techniques to showlaiapoints in the
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windows (Figure 1.4); and (3)ixtaposed pattern outline vietliat shows only the outline
of the discovered pattern for each window. The pattern m&itiiew is specific to each

pattern. For example, it can be a line for linear trends.

Speed Speed
@] .
C .
C ..
0 S i
- .
00:00:00 0f:00:00 20:00:00 00:00:00

Figure 5.7: 48 windows, containing the traffic data in one, dag merged to 3 windows
and then shown with 2 scatterplots. Each scatterplot aasitaio windows, and is linked
to the time axis via three lines to delimit the time range farse two windows.

Speed Speed

L{USQJ’DCDUO

00:00:00 06:00:00 20:00:00 00:00:00

Figure 5.8: A pattern outline view to visualize the pattenamge in traffic data slice used
in Figure 5.7. Each line represents a linear model for a ntevgadow. Note that three

lines connecting each scatterplot to the time axis mark wveesponding time windows,

which is similar to Figure 5.7.

Figure 5.7 shows a juxtaposed full view after merging 48 wimsl (traffic data in one
day) to 3. Figure 5.8 uses the same dataset and merge atgastiigure 5.7 but contains

the pattern outline view.
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In Figures 5.7 and 5.8, all subfigures are placed on the cérorantally in the order
of the timestamp. Because the time axis is evenly spacedudbfdsres have different
lengths of time range, Lines are used to connect subfigutég time axis. This can help
users understand where the change is fast and where theecisesigw. | call this @D
layout

The 1D layout is intuitive to interpret, but it does not mak# @ise of the canvas when
the number of merged windows is large, especially for thasgalization techniques that
generate output in a shape close to square, such as scattenpparallel coordinates. In
order to avoid this drawback, a grid layout is proposed, irctviall subfigures are laid out
in a grid having: rows andn columns. If there are: subfiguresp = |v/m — 1] + 1. In
grid views, the representation of the time axis is probléendt the same method as the
1D layout is used to connect the subfigures to the time axibnes, a lot of overlapping
will occur. | solve this problem using an interaction tecfue: when the mouse hovers
over a subfigure, the corresponding time range is highlgybte the time axis (Figure
5.9).

Figure 5.9 shows an example using the pattern outline vielgad layout. Each sub-
figure is a two-dimensional parallel coordinates. Theretarebands in each subfigure.
One band represents the data range in a time window. On diomeXistwo corners of the
rectangles correspond (& + s) and(X — s) respectively, wher&l ands represents the
average value and standard deviation of all values witlerctrresponding time window.
There are two types of range in this figure: Type 1 (low heade aad high blood oxygen
concentration, e.g., the yellow band in the highlightedfiguioe) and Type 2 (high heart
rate and low blood oxygen concentration, e.g., the dark batigb highlighted subfigure).
The merge algorithm can automatically detect the shift betwtwo types, as shown in
Figure 5.9. From the time axis, one can find that Type 2 nogmaalily exists in a short

time range, so it can be treated as an outlier. This might becésted with sleep apnea,
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Figure 5.9: A pattern outline view in the grid layout to viima the changes in data range
for the sleep data. A subfigure is highlighted with a purpledeowhen the mouse hovers
over it. The corresponding part of the time axis is highleghas well.

with which the subject in this sleeping experiment has beagribsed [23].

5.3.2 Pattern Vector and Pattern Change Views

For data in the current view (see Figure 5.1), juxtaposedviean do very well in con-
veying the pattern change. But they perform worse for hisdbdata. The main reason
is that there will be many windows in the history. Imaginettihere are 100 scatterplots
on the canvas. Then each scatterplot will be very small. Bvasoming techniques and
scrolled area are provided, it is still a tedious and difficalta analysis task to study how
the linear model changes within these 100 windows. Theeefattern vector viewand
pattern change vieware designed to visualize the history data. The basic ideauislize
time-series visualization techniques to visualize thégpatvectors and pattern changes
directly.

Pattern Vector Views: Assume that the pattern vector isiatuple, i.e.,V, = (vi, v, ..., v,).

Then, starting fromm,,, merged windows, a multivariate dataset havingdatapoints can
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be created. Each datapoint corresponds to a pattern vé@energed window and has
columns. This is also a time-series dataset because eagtoddthas a timestamp. Line
charts, bar charts, heatmaps, or any other time-seriealiation techniques can be used
to visualize this dataset. The final output is namedtiern vector view

Now, a problem similar to juxtaposed views arises: whichaypts better in the even
and uneven time axis? Since most time-series visualizégicimiques can be distorted
to be uneven, three approaches are proposed. To explaindigen, assume that in one
streaming dataset, the windows from 6AM to 9AM has been ntktge windows: one
is from 6AM to 7AM (1 hour); the other is from 7AM to 9AM (2 hoyrsBar charts are

used to represent one dimension in the pattern vector.

1 1 1 1 | 1 1 I |
6AM 7AM 8AM 9AM  6AM 7AM 9AM 6AM 7AM 8AM 9AM

(a) (b) (©)

Figure 5.10: This figure shows three approaches to choosiegen or uneven time axis:
(a) Even time axis, even windows; (b) Uneven time axis, everdows; (c) Even time
axis, uneven windows.

1. Even time axis, even windows The visual elements (points or bars) of the time-
series visualizations corresponding to each merged wirttloxe the same width,
but the time axis is evenly spaced, so windows have to be cbteshéo the time
axis using straight lines (Figure 5.10(a)). This approamitds us to place the

visualization on one row.

2. Uneven time axis, even windowsvisual elements corresponding to each merged

window are allowed to use the same width but the time axisvisléd ton,, parts
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with the same length. Each part of the time axis is just bel@wisual elements of
the corresponding merged windows, so the time axis is natlgwpaced (Figure

5.10(b)).

3. Even time axis, uneven windowsThis approach uses an evenly spaced time axis,
but distorts the visual elements corresponding to eachedexgndow to force them

to be just above the correct label on the time axis (Figuré(g)L

In the above three approaches, the first and the second ararpyiapplicable to only
the current view, but not for the history data. The reasohas approach 1 needs many
straight lines to connect time-series visualizations whihntime axis, and approach 2 has
to provide the label at the border of all merged windows ontiime axis. For history
data potentially containing many merged windows, bothetegsproaches will make the
final visualizations too cluttered. Thus the suggestion isse approaches 1 and 2 for the
current view, but use the third approach on the historictd.da

Figure 5.11(a) shows the pattern vector view via line chémdraffic data over 9
weeks (Jan. 3 - March 6, 2009). 3024 original windows are stktg 173 windows.
This figure uses the even time axis and uneven windows. Thi@eénanglearctan 5 is
shown for each window in this figure, whesas the fit line slope for the linear modgl =
a+ £ X. Note that merged windows in Figure 5.11(a) normally hatfedint time length.
Labeling the time for each window is impossible becausentlrang a lot of overlapping
at the time axis. Instead, the thickness of the time axis segmepresents the length
of each merged window. A thicker time axis segment means gelowindow, and thus
indicates a slow pattern change, while a thin segment itebca quick change. In order
to show how the proposed techniques help users detect tieerpethange, all the original
windows are visualized in the historical data in Figure §)10ne obvious observation

is that the basic trend of incline angle is a wave style. Haresometimes there are
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Figure 5.11: Pattern vector views using the traffic data &wseeks. The figures use line
charts and only show the change of fit line slope for the limeadel betweemccupancy
andspeed The purple vertical line represents the beginning pasibica window selected
by users via moving the mouse to the specific place. (a) Thgedewindows in the
historical data are used; (b) The original windows are \lizad.
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some quick fluctuations and vibrations, such as the placeenthe purple vertical line
resides (20:30 at 02/01). It is difficult to perceive theséckjichanges because each
original window is rendered in a very small region even if ggpattern changes are very
quick. The proposed visualization techniques based on #rgeralgorithm output can
overcome this drawback. In Figure 5.11(a), the same winddwghlighted via a purple
vertical line. In this figure, changes can be easily obsebeshuse only the significant
changes are shown. Therefore, the merge algorithm alomgheétproposed visualization
techniques can pull out significant pattern changes anduselis detect them.

Figure 5.11(a) has five rows. For the first four rows, each efrtltontains around
two weeks, but the last row contains only one week. In addlitioe last part of the curve
is smooth, which corresponds to the last day (March 6). Taigarms to the principle
of the merge algorithm for history data where | want to keeperaetails for the recent
data.

Pattern Change Views This technique aims to enable users to quickly identify lciaa
patterns change via conveying the distance between dawnmtlirectly. Assume that
the current view or the history data pool has merged windows. The pattern vectors
for them arel,V4,...,V,, . The pattern distance function can be used to get a distance
sequencdd;}? !, whered; = d(V;,V;,1). This is a univariate time-series data. Now
the same method as in the pattern vector views is used tolizistlais distance sequence
and to generatpattern change viewsCompared to th@attern vector viewsthis tech-
nique enables users to perceive the change magnitude mickdygbut loses the pattern

information itself.

5.3.3 A Guide to Choose Visualization Techniques

| used several real streaming datasets to study the stieagthweaknesses of the above

three views and concluded that:
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e Pattern outline, pattern vector, and pattern change viemshelp users quickly

perceive the target data patterns in a data stream.

e Pattern outline, pattern vector, and pattern change vieaw ®nly the target data

pattern. Juxtaposed full views can help convey other in&tiom.

e Given a fixed size of canvas, juxtaposed full views can hoél#ast number of
merged windows, while pattern outline views can show mornedaws. Pattern

vector (change) views can show the most windows.

Therefore, | provide the following guide to advise data gst in choosing appropri-

ate views in terms of data analysis tasks:

o If users want to study only the target data pattern and itagds, the pattern vector

and change views are the best options for both the currewtasel historical data.

e For the current view, if users want to study other data charestics as well as the
target data pattern, the juxtaposed full views are the h@stmm If the application
has close to real-time requirements, the pattern vectonamge views are the best

options. Without these requirements, users can choosesahgitjue.

e When visualizing historical data potentially containingmy merged windows, the
pattern vector and change views are the best options beeagbetime window

needs the least canvas space.

5.4 Evaluation

In this section, | evaluate two important issues: (1) howlweks the heuristic merge

algorithm perform on reducing running time and preservimg ¢hange information for
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data patterns compared to pattern-blind averaging and botte? (2) how much can the

proposed techniques reduce users’ response time?

5.4.1 Comparisons among Two Merge Algorithms

To the best of my knowledge, there are no existing algoritdesgned and optimized
for achieving the same goal as the proposed merge algoritiierefore, | chose the
pattern-blind averaging as the competitor in this algonitb evaluate the output quality.

The traffic data on Sensor D191 was used in the experimenestarpet data pattern
is the linear trend betwee®ccupancyand Speed Every 30 minutes (60 datapoints)
are regarded as one original time window. The pattern chahgeerest was the slope
difference between regression lines of two contiguous auvsl

In the previous discussion about time complexity of the psmgal merge algorithms,
the number of original windows:) and the number of merged windows'() are two
main factors to impact the running time of the proposed #lgms. Thus two groups
of experiments are run: (1) Fix, and changéV,, (Figures 5.12, 5.14(a), and 5.15(a));
(2) Fix N,, and change:, (Figure 5.13). Once the developed application based on the
proposed merge algorithm finished the processipnoriginal windows, it immediately
shifted the current view by one window and started the melg@righm again. The total
running time for all input data is recorded. In real appl@as, it is not necessary to
run the merge algorithms so soon, because the system cafowtie arrival of a new
time window if the processing time for, windows is shorter than the length of one time
window. However, this difference does not impact the consparfor the time cost of
the proposed algorithms. In addition, the computation efrésult quality is based on
Equation 5.3 in Section 5.2.2/,(,., = 7/3,dr = 7/24). It means that the maximal
change isr/3 and users are only interested in slope changes biggerrtfan

In the first group of experiments, | also ran the stream-basezsions for heuristic and

97



Result Quality

Running time
(Seconds)

— ¢ /i 100,000
098 /’ /
096 " 10,000
094 — /
1,000
092 +
=#=BruteForce / === BruteForce
09 / —8=Heuristic 100 / ==Heuristic
0388 — e Averaging e Averaging
0.86 10
0.84
1
0.82 P——————
08 0
4 6 8 12 4 3 8 12
The number of merged windows The number of merged windows

Figure 5.12: These two figures show the result of experimersirlg the traffic data over
7 days (Jan. 1 - Jan. 7, 2008). Algorithm performance was unedsvhen changing the
number of merged window®',,,. The number of original windows, in the current view
is fixed at 24 windows. Note that the running time for heucisind averaging is close to
each other in Figure (b), so they overlapped a lot.
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Figure 5.13: These two figures show the result of experimergi2g the traffic data of
70 days (Jan. 1 - March 10, 2008). The algorithm performanae measured when
changing the number of original windows in the current view. The number of merge
windowsN,, is fixed at 4.
brute force merge. This is to investigate how the streanedbaptimization affects the
time cost and result quality.

All experiments were run on a machine with Intel(R) Core(P\Duo CPU E8400 @
3.00GHz and 3.25G RAM. Its OS is Windows XP SP3.

The following observations can be made based on Figures 5.12, 5.14, and 5.15:

e Regarding the result quality, the heuristic algorithm perfs better than pattern-

98



Running time

Result Quality (Seconds)
10,000

1
058 _\
0.96
\ 1,000

094 ~—
092 \. /./.

09 100
088 —m—Stream BruteForce ://., ==Stream BruteForce

0.86

10

084

0382

08 1
12 24 36 48 12 24 36 48

The number of original windows The number of original windows

() (b)

Figure 5.14: This is to compare regular brute force mergdlamdtream-based optimiza-
tion version. The results are from the same group of experisnees Figure 5.12.
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Figure 5.15: This is to compare regular heuristic merge arghi-based optimization
version. The results are from the same group of experimarfesgare 5.12.

blind averaging and close to brute force, especially whenniimber of merged

windows is big.

e The time cost of the heuristic merge is very close to patbdimd averaging and

much shorter than brute force.

e The scalability of the brute force algorithm is very bad. \Whg or V,, become

big, its running time is not acceptable.

e The stream-based optimization reduced the time cost faielfarce merge by
aroundl1/2 to 1/8, and does not reduce the result quality by at most 2%, which

is very small.
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e For heuristic merge, the stream-based optimization dgtunireased the time cost,

probably because of the high cost to detach the expired timeom.

Thus, the conclusion is that the heuristic merge is a verglgoprovement on brute
force merge and can be applied to most cases. The brute faecgensan be chosen
only if ny and N,,, are small and the experimental running time is within thée tiese
requirement. For brute force merge, we can apply strearaebaptimization to it to

reduce the time cost. However, this optimization shouldoectpplied to heuristic merge.

5.4.2 Comparing Proposed Techniques with Uniform Time Axis

One claim in Section 5.3 is that the proposed techniquesediuce users’ response time
for detecting pattern changes. This needs the support froexperiment. | conducted a
user study to compare users’ response accuracy (RA) anonespime (RT) on different
visualization techniques. The techniques to be testedded: (1) Juxtaposed views with
the original windows; (2) Juxtaposed full views; (3) Juxdagd pattern outline views; (4)
Pattern vector views; and (5) Pattern change views. Thedimstis the competitor, and
techniques 2, 3, 4, and 5 use the merged windows.

The experiments details are as follows:
Datasets and data patternsin this experiment, | chose the traffic data and set the kengt
of the current view to one day. The target data pattern wasititrends. The length of
one time window was 30 minutes. The number of merged windewstito 6. | picked 2
sensors and generated 2 figures for each technique, rgsualtl® figures.
Questions Every participant was asked to observe each figure on adaptmitor and
answer: “When did the biggest change of the fit line slope BappNote that one figure
using technique 1 contains 47 scatterplots, so users awedllto apply zooming on
figures when exploring them. 8 graduate students in compatence participated in this

user study.
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Figure 5.16 shows the screenshot of a question used in thesiexent.

Buestion 1

Assume all datapoints in each sliding window agree with a linear model via a fit line. When did the biggest change happen
for the fit line slope?

@ (a) 0:30; (b)  10:30; (e} 19:30; ©(d) T do not know.
Submit
N, ORI . ’ m- . =+ o,
00mn30 10:30 13:30 00:00

Figure 5.16: This is a question used in the user study for #te-driven framework. The
figure is generated using juxtaposed full views along withesitmposition technique.
Participants need to identify when did the biggest changg&afor the fit line slope.

Experiment Results Since there was no significant difference for the RA usirgfive
techniques, | only calculated the average RT shown in Figuré with 95% confidence
interval, and compared the RT of different techniques uaipgired samples t-test. The
statistical result revealed that the proposed technidieshfiques 2-5) have significantly
shorter response time than the visualizations of the algiindows ¢ < 0.01). The RT

of pattern vector and pattern change views are significatttyrter than the full view
using merged windows(= 0.011 andp = 0.006) as expected. However, the difference
between the RT of pattern vector (pattern change) views attémp outline views using
merged windows is not significant & 0.115 andp = 0.053). This might be because the
sample size was small.

Based on the experiment result, the conclusion is that thegsed visualization tech-
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95% ClI

Figure 5.17: The response time for five techniques with 95#idence interval. Tech
1: juxtaposed views with the original windows. Tech 2: jypdaed views (full view).
Tech 3: juxtaposed views (pattern outline). Tech 4: pattector views. Tech 5: pattern
change views. Note that Techniques 3, 4, and 5 use the meligddws.

nigues combined with the merge algorithm can significargjuce users’ response time
when exploring the linear trend changes on streaming datdnel future, | plan to intro-

duce other data patterns, such as data range, into thisiegmér More participants will

also be invited.
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Chapter 6

History Views for History Data Using

Nested Hierarchical Timelines

6.1 A Frameworkto Visualize History Data Using Nested
Hierarchical Timelines

Figure 6.1 shows how to generate history views. This frammkwassumes that the stream-
ing data can be defined using a hierarchical structure. At &ael, users can define a
time unit, and then the streaming data is split into many ssges One segment at one
specific level could contain several segments at the lowet.lédNote that the segments
at the bottom level are the time windows mentioned in therpri@apters. For example,
traffic can be defined at five levels, including year, quavteek, day and half hour. One
year contains 4 quarters, each of which has 13 weeks, and $itlbe data does not have
this structure, a hierarchical structure with only one l@an be defined. This structure
is shown at the left side of Figure 6.1. It has totallyevels. For the traffic data; = 5.
Each segment at levels, L, L., L3 andL, corresponds to half hour, day, week, quarter

and year, respectively.
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Time-based Hierarchical Structure Merge-based Hierarchical Structure

——

Perspective T L
Level l n-3

Pattern T .
Level l’ 0 3

Non-merge Mode Views Merge Mode Views

Figure 6.1: The framework to generate history views usirgjetehierarchical timelines.
Left side shows hierarchical time units that contains twele, perspective and pattern.
At both levels, users can specify time ranges, named pdrgpend pattern ranges. All
time windows in the pattern range can be directly output to@merge mode view, or
the merge algorithm to generate a merge-based hierarcticature. Users can select a
specific level on this structure. All time windows on thisééwill be output to a merge
mode view.

On this user-defined hierarchical structure, users canfg@egattern levelnd aper-
spective levelEach time window on two levels are callpdttern windowandperspective
windowrespectively. The former indicates the time unit in whiclkergswant to observe
the data patterns. On the latter level, users can define adéinge that is callegerspec-
tive range(highlighted by a blue solid line rectangle at the perspedivel). The blue
dashed line rectangle at the pattern level contains all pereods (pattern rangé that
users want to observe pattern changes. For instance, idngihusers move the perspec-
tive level to week, and the pattern level to half hour, and thelect a specific week. Thus
the pattern range should contain all time windows (half Bpwithin this week. In this
case, users focus on investigating how data patterns ctaorgss these time windows
within this week.

Now, the key task is to visually convey the pattern changésimthe pattern range.
To solve this problem, two approaches, named non-merge amgenmodes, were de-

signed. For the non-merge mode, | generate the visualimtm each time period and

organize them on the history views called “non-merge mode/si, using layout strate-
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gies proposed in prior chapters. In addition, some new aues appropriate for history
data will be proposed to form the final output. The above smius straightforward and
could cause long response time if there are too many timeg®rin the pattern range.
The reason has been discussed in Section 1.2. Thus the medgs were designed to
display fewer visual elements via the merge algorithm (Bed.1) while keeping the pri-
mary pattern changes. Slightly different from Algorithmr2Section 5.1, | selV,, = 1
(the number of merged windows). It means that all time perieil eventually be merged
to one merged window. During the merge process, the intaatescesults after each call
to the single step merge ( Algorithm 1) are recorded, thudyxcimg a merge-based hier-
archical structure (Figure 6.1). Users can choose a leuwlsrstructure, and the system
will then form the visualizations using only the merged tiwiadows on a selected level.
A higher level can allow users to focus on the primary trenfdhe data, while a lower
one conveys more details but with possibly more visual efutNote that sometimes in
the merge process it is necessary to merge time periods\aldhat is not at the bottom
in the time-based hierarchical structure. For exampleséfsiwant to investigate how the
patterns changed from one day to the next within one yearnigeded to merge adjacent
days if the changes on traffic patterns are small, so the futplub has enough space to
show significant changes, e.g., from weekends to weekdayts 19 different from the
discussion about the merge algorithm in Section 5.1, wHeredquirement is to merge
the time windows at the bottom level ( the leaves of the trébeleft side in Figure 6.1).
To solve this problem, it is necessary to define the distart®@d®en two time periods at a
higher level, i.e., two days or weeks. This definition depeon the application area and
users’ interests. For example, one possible definitionHerdistance between two days
of traffic is the difference between the average volumes ofdays, while another one
could be the summation of the slope difference of the regres¢imes (occupancy against

speed), between the corresponding time windows.
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Figure 6.2: A snapshot of history views showing merged moeey.

Figure 6.2 shows a snapshot of the implemented visualizatystem based on the
above proposed framework under the merged mode. This systeomposed of three
views: time-based hierarchy (bottom left), merge-basedanchy (bottom right), and his-
tory views (upper section). The first two views corresponthttime-based hierarchical
structure and the merge-based hierarchical view in Figureréspectively. The history
views can be non-merged views or merged-views based on’ gsedgstion. A merged
one is shown in Figure 6.2. This figure shows the traffic dadenfsensor D191 (close to
the intersection of I-35W and 35th Street) during the pefioch Jan. 1, 2008 to Dec.31,
2008. In the time-based hierarchy, one timeline is showreéwh level in this dataset.
Thus this hierarchy has five timelines, corresponding te,\arter, week, day and half
hour. Users can use the mouse to drag the perspective ardnplattel tag to change
them. Note that the perspective level is set to the day angdttern level is on the half
hour. Since the data is only for one year, the top level hag@mt segment that is always

selected and highlighted in dark red. Four segments in tbensklevel corresponds to
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four quarters in this year. For instance, the second segmémm April 1 to June 30.
Users can click one segment to select this quarter and glghitiin dark red, then the
timeline in the week level contains the thirteen weeks is tjuarter. That means the
first segment is the week from April 1 to April 7, and the seconé corresponds to the
following week ( April 8 - 14). Users can continue to seleceameek on the week level
timeline, and then do similar things on the following levelstil reaching the perspective
level, the day timeline. If one day on this level is highligtif all time windows on the
pattern level (half hour) will be highlighted. In Figure 6 &pril 18 is selected at the
perspective level. Then, the highlighted time windowsf(halurs, i.e., pattern level) in
this day are highlighted and output to the merge algorithngémerating the merge-based
hierarchy (the bottom right section of Figure 6.2). In thisrbrchy, users can select and
highlight a whole level instead of one segment, which isedéht from the time-based
hierarchy. Then all merged windows on the selected levébeivisualized in the history
view at the upper section of Figure 6.2, nantméstory view Note that this figure uses the
1D layout discussed in Section 5.3. The grid layout is alspl@mented in this system
for merge-mode views.

For non-merge mode, it is necessary to develop some newitgEs) because a nor-
mal case is to visualize tens or hundreds of time windows & waeaw. Under such a
situation, both 1D and grid layout will cause too much vistlatter and fail in conveying
pattern changes. Figure 6.3 shows a grid view that preseatslépe change for the re-
gression lines across three months. This figure containsiews: a time-based hierarchy
(bottom) and a grid view (top). The bottom view is the samehasterged mode, while
users select the quarter as the perspective level, and yressdbe pattern level. Since the
second quarter (April 1 - July 1) was selected, all days withis period were highlighted
at the day timeline (pattern level). This quarters cont@ihdays, 001 x 48 = 4368 time

windows (half hours). Although it is possible to apply thergesalgorithm to all 4368
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time windows, Figure 6.3 shows a better solution, if useesoaly interested in the slope
change of the regression line between variapsedand Occupancy In the top view
of Figure 6.3, each glyph has a curve to show the slope chaitgmwne day. It is easy
to observe that the curves in the first and last columns aatively smooth compared
to other grids. It shows that the traffic pattern changesiwitiese days are slower than

other days. Actually, these two columns correspond to 8aysand Sundays.
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Figure 6.3: This figure shows a history view (top) with hiefacal time structure (bot-

tom) defined by users. They are interested in the changessacontiguous windows on
the pattern level (days) in this figure. The selected quéiarch 30 - June 29) on the
perspective level is highlighted in red color and indicadkestime periods of interest. The
red color on the week and day level means all segments in thetsé quarter are se-
lected. In the history view, each glyph corresponds to opgpiattern level) and contains
a curve to represent the slope change of regression linegwi8 time windows for each

day. Grey background is applied to all weekdays to help msaoleserve data patterns.

Definitions
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Some terms used in this framework are given below:

pattern level: A level in the time hierarchy on which a window is a basic dartusers
to observe data patterns during pattern evolution. For el@nif users want to
investigate how traffic patterns change from one day to ampthe “day” is the

pattern level.
pattern window: A time window on the pattern level.

pattern range: The time range on the pattern level containing pattern auwslamong

which users want to explore the traffic pattern changes.

perspective level The highest level on which users can select one or more timaows
to define the time range containing pattern windows of irgieré&or example, if
users are interested in the traffic pattern changes acrgssdtin one quarter, the

perspective level is “quarter”.
perspective window A time window on the perspective level.

perspective range The selected time range on the perspective level.

6.2 Visualization Techniques for Merged Mode

This section will discuss more details about visualizationmerged mode. One advan-
tage of merged mode views is that the height of the mergedeblaierarchical tree can
reflect the intensity of the pattern change. More levelsdatdi a quicker pattern change.
In addition, it enables users to choose an appropriate nuafilselbfigures based on can-
vas size and their requirements. For example, Figure 6.tacmnonly 5 levels in the
merge-based hierarchy for the data on April 20 (Sunday). édaw in Figure 6.2, the
merge algorithm generated a hierarchy having 7 levels dtta on April 18 (Friday).
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It shows that the traffic pattern changes more frequently pnl 20 than April 18. This

finding can be confirmed through Figure 6.3.
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Figure 6.4: A snapshot of history views showing merged madey with less levels in
merge-based hierarchy. The selected day is April 20, 2008.

To help users understand how time windows are merged fromeweéto the next,
an approach, named th&o levels viewwas designed to display the merged windows on
two levels together. An example is shown in Figure 6.5. Is figure, two levels, “L2”
and “L3", are selected in the merge-based hierarchy. Thesponding time windows in
these two levels are displayed in the history views simelbasly. Two levels both are
connected to the same time axis. From this figure, one carlyckse how time windows
are merged from one level to the other.

In conclusion, merged mode views can help users perfornottening data analysis

tasks in the history data:

e Observe the data pattern changes on the pattern level. tieedjust the number

of displayed windows in terms of canvas size and the degresoél clutter.
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Figure 6.5: This figure shows the merged mode withtihe levels view Two levels on
April 20, 2008 are selected to show how windows are mergeah fadower level to a
higher one.

¢ Investigate how time windows are merged from one level talearovia thetwo

levels view

6.3 Visualization Techniques for Non-merged Mode

In Section 6.1, Figure 6.3 shows a non-merged grid view. $ $@me obvious disad-

vantages: (1) This technique cannot work for the case wiherélifference between the

perspective level and pattern level is bigger than 2; (2p#&sinot explicitly convey the
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pattern change from one day to the next. In this sectionnextas will be applied to
the proposed approach for solving the above problems. #e618.1 focuses on issue 1;
Section 6.3.2 proposes visualization and interactiontegles for explicitly representing

the pattern changes.

6.3.1 Virtual Calendar View

In many cases, users might need to observe the pattern chantipen a bigger time
range. For example, in the traffic data, a common analysiagde observe how patterns
for each day change across one year. Since its hierarchigetige has five levels (year,
qguarter, week, day and half hour), the perspective levallshioe year, and the pattern
level is day. The difference between these two levels is 3nswisualization technique
proposed in Section 6.1 does not work unless a certain egtersapplied to it. For
this data analysis task, the solution is to render one gad/\for each quarter, and then
generate the final visualization by laying out four viewsibontally (Figure 6.6). Note
that this is similar to a calendar, thus it can be calledrtaal calendar view The reason
why to call it virtual is that this approach can be used on the streaming data having
hierarchical structure not based on natural time unitsr(ygaarter, week and so on). In
such a case, the view is not a real calendar.

The above approach was inspired by the Wijk and Selow’s dalewiew [64] and
MulteeSum[44] developed by Meyer et al. Wijk and Selow’s work used d caséendar
to visualize the numbers of employees present at a reseantérc¢hat were encoded by
colors. Meyer et al. visually represented the gene expressbfiles of cells via a small-
multiple matrix of line charts. Each row corresponds to d w#lile each column is a
gene. Then one line chart can convey the time series dathdaxpression of one gene
in a specific cell. My non-merge mode views are very similaMidteeSumbut rows,

columns, and glyphs all are representing different timésunia hierarchical way.

112



1/01 01/0% 01/03 p1/04 P05 01406 P10 408 Derlg D41 14| 40k Das0) 0 701 pFi0g D703 P04 0705 0706 070 5734 (10, 10/ WD'% i 05 [I0/0|
ol
108 0109 OTAg 0y p1Aag g1 g4 4/0g P4708 04, 44 04 413 [T (] I} 1 T2 13 i 0 TO/0R [TUATH [T 0T (OAE 00T
e oot )
115 016 D1Ag D1Ag D18 01720 D17 418 D4/ 1p 04718 04/ 4719 4720 Dl 711 T/Wﬁ RGN A ER N ) 10714 [10/14 [10/1 1% 0718 1019 [0/
122 0123 01724 P1rg, 1@* 127 D172 4724 Dar2a D4] 14/ 4728 Dar27 D4z Tflg [ 724 D7i2s 107728 ;/;‘7 112 10720, 10738 10723 1 0725 10728 0727
.ji. u' .»j\ .ujb .min P e ey
1/29 01/30 01731 201 P2/02 D2/03 D2/04 D4/29 D4/3R 08/04 05/02 D5/03 a4 Pa/0; 7129 07i3g, 07731 Paf01 08/02 08/03 Da/0 10728 [10/24 [1 10/ it 1/0% 11/
e P s
05 0206 |02 1y W08 p2A0 12T Sg PSfOy [ISAF 0508 050 157 [ 8Mg DEOT g 08/08 0870 06T T1/04 [T170g [T1708 (117 111 1O 1
2112 P13 14 02015 D216 D2A17 D218 571k D5f14 DEAS 081G D617 DBA1p Dail 8f14 Paf 814 Par1s Eﬂ‘éﬁ 8717 D81 TIAL [T 11018 (11744 [ 1718 111
209 D220 027271 P2722 D223 D2/24 02725 520 DAz Das. 523 0524 D525 D526 B4 D820 DB24 P8F. 8723 08724 DB/2; 1171 [11718 [11725 (117 1422 1723 24
et P Wihia Pk
2726 02727 D272 P2f29 D301 D302 0303 5727 Dar2g 0828 03 2/31 Pefy PE/0; Bf2p DB/2%{ DE/2R Pef29 08730 0831 0901 117254 [117gg [11727 117 1729 1730 200
Pt Faars P .-'A—
105 /05 03708 PO Pam: Jul=R AETEIN) B/07 PE0g 06/ g,tl B/07 PEms pu: PRIl Ui, B‘EE 5707 oA/, T2 T2y T2 [T27 I 7 T
iy A A
311 P3/1g D313 P34 parna ]ISHE nanT peng DefE 06812 06/13 06/14 DEf19 DB/ 9/09 D9/10 D9/ 911, UBﬂE 9/1¢ D91 12704 (12014 12114 12/ 23 1214 N2
L PN Fi™
3118 0318 03720 P31 pan2 D323 037, B/1¢ DB/ 0610 0620906721 06/29 D62 571 QIW [T 97 9‘13 TeTir X I T 127 PR (12014 12038 [12/ 2020 1261
oty
3f: 32 3f2ﬂ 3f: 37259 [3r30 P3/31 br2g DEf25 1672 E/E'{ 6728 PB4 [6/30 4 9, G725 DA 5727 09728 DA, 12023 1 2ggt (12625 (12026 [\ 2727 2628 272
Avvsl P

Figure 6.6: 2D grid view is extended to createidual calendar view

Figure 6.7 shows how to generate the virtual calendar viemmg@ared to Figure 6.1,
a new level, grid level, was added. It is just two more layeghér than the pattern level.
If users selected a range in the perspective level, it wiltam some continuous segments
on the grid level, which can be called tbalendar range For each segment in this range,
a grid view is generated. In Figure 6.6, each segment on tiéayel corresponds to one
quarter. All grid views are then organized horizontallytiaally, in a bigger grid, or via
other layout strategies to obtain the final visualizatidngheory, this approach can work
regardless of the number of segments in the calendar rang@e\rr, if this number is
too big, the quality of the final output will be very low becaus too much visual clutter.
Thus, in real applications, developers should not allowsigeselect too many segments
on the grid level to avoid low quality output.

Perspective Range

Pattern
e — /Eli

e E—1 - —
Level

/ Calendar Range
Pattern | Y | -
Level

Pattern Range

Figure 6.7: To generate thivertual calendar viewsa grid level is added to the framework
in 6.1. Each segment on the grid level corresponds to a geid i the final visualization.
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6.3.2 Explicitly Conveying Pattern Changes

In all the above visualizations, the patterns for each seggmehe pattern level were con-
veyed to the users. It is true that data analysts can inastigow patterns change across
the selected time range by observing the whole figure and aongpglyph shapes. How-
ever, this is time consuming especially if there are hursliddjlyphs on the final output.
In this section, two visualization techniques that can iextpt convey the pattern changes
will be discussedMDS pattern starfieldnddistance mapThen some interaction tech-

nigues based on them will be introduced.

i
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Figure 6.8: MDS algorithm is used to generate positions &isc The distance between
grids represents the distance between corresponding cells

MDS Pattern Starfield

MDS is a commonly used approach in data visualization to eptive distance among
multiple objects. For example, Yang et al. developed the MR display to visually
represent the distances among multiple dimensions in a-sggle multivariate dataset
[68, 67]. Figure 6.8 shows an MDS pattern starfield to preagattern space for the first

guarter in the same dataset as what is used in Section 6.llaSimFigure 6.3, each
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glyph corresponds to one day, i.e., one pattern window. [Blyisut was generated using
an MDS algorithm [35]. The proximity among glyph positiomslects pattern distances.
Assume that users want to observe N pattern windows, theguoe to get such a starfield
is as follows: (1) Distances among these pattern windowsalceilated and recorded in
an N x N matrix. (2) This matrix is regarded as the input to an MDSoalym [35],
which generates a position for each pattern window. (3) pattern window is rendered
as a glyph in the position obtained from the MDS algorithm.

The advantage of this approach is obvious. First, users asity@bserve the dis-
tribution of pattern windows and clusters in pattern spaag;e this layout conveys the
distance among pattern windows. Then different actionsh st manual clustering and
outlier detection, can be easily applied to some patterdews. For example, in Figure
6.8, one can see that there are several outliers: the glygphssponding to the pattern
windows on Jan. 1, Jan. 21, Feb. 14, Feb. 16 and March 7. Iti@idone interesting
phenomena is that weekends mainly occupy the right parteofiglure while weekdays
are in the middle and left sections. This is easy to explasabse weekend traffic pat-
terns are significantly different from those in weekdaystuadly, the expectation is to
have two clusters shown on the output, one representingdagskand the other being
weekends. Probably because there are some outliers, thesgusters are not clearly
separated.

In order to avoid the impact of outliers and observe whetierdlusters (weekends
and weekdays) exist in this dataset, | introduced an intieratechnique to allow data
analysts to remove some glyphs from the figures. When useve the mouse to a
specific glyph, they can right click this glyph then this dhywill be removed from the
input of the MDS algorithm and it will not be rendered in theafimutput. Users can
repeat this action multiple times to remove more than onphglyJsing this technique,

two glyphs, March 7 and Jan. 1, were removed from Figure G@&jyxring Figure 6.9.
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Now, two clusters are clearly shown.

A

2/19

31

W‘ el
i = T4

@ I:I Weekends

I:I Wieekdays

Figure 6.9: Two days, March 7 and Jan. 1, were removed fromr€&i§.8, since they are
obvious outliers. Now one can clearly see two clusters: wag& and weekends.

Distance Map

The main goal of the distance map is to convey the patterartistamong pattern
windows. Assume users selected N pattern windows ifP#teern Ranggethere are NN
possible distance measures to be represented. It is noigatdo show all these measures
in one figure. For example, there &@®! x 364 = 132496 distance measures in Figure 6.6.
Actually, in most data analysis tasks, users probably alg iaterested in the distance
between two specific pattern windows, or one target windosvahothers. A possible
scenario is as follows: the data analyst finds one interggtaitern window, and then
wants to investigate how this window is different from otheor how patterns change
around this window. Thus what needs to be shown is the distamgasures between
this target window and its neighbors. Therefore, | allowrside specify a target pattern
window, and then use the distance map to show the pattermndstmeasures between

this target and others.
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Figure 6.10: This figure shows an example of thstance map One day (Feb. 3) is
selected as the target pattern window. The distance mesalset@een other pattern win-
dows and this day are printed in each grid and explicitly @spnted by the background
color. The legend shows how the distance measures are mappeldrs

The other problem is how to visualize the distance meas@iase the color is a visual
variable that has a high degree of preattentive process6itlg 4n encoding technique is
used to map distance measures to glyph background coloegérterated output is called
adistance mapOne example is shown in Figure 6.10. In this figure, Feb. 8lscséed as
the target pattern window. The implemented visualizatistem calculates the distance
measures between this target windows and all others, andgtiwevs all measures via the
glyph background color. All distance measures are norredliefore visualizing via the

following formula:

-
whered,,,... andd,,;,, are the maximal and minimal distancgis the real distance and
is the normalized value. For the examples in this sectigns, = 0, since the distance
between one pattern window and itself is 0, and all distaneasures are positive values.

Obviously, the biggest distance measure will be normalipetl. This distance is also
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printed in each glyph. For example, in the glyph for Jan. &,nbmber 0.4 is the nor-
malized distance measure between Jan. 1 and Feb. 3. Onesodmélthat March 7 has
a normalized distance equal to 1 (maximal possible valug),its glyph has the darkest
color.

In Figure 6.10, one finding is that most glyphs in the first aotu(Sundays) and the
last column (Saturdays) have a smaller distance to Feb.r8lg&) since their background
colors are brighter than other columns. That is to say, thekda@y columns (the second to
the sixth) have a smaller similarity to Feb. 3 than the SuradaySaturday columns. This
finding is consistent with common sense that normally th#icrpatterns in weekends
are different from those in weekdays.

One disadvantage of the distance map is that it might be wlific distinguish differ-
ent colors when the difference measures among pattern wsdee slight. Actually, the
difference between background colors of weekday and wekkelumns is not obvious
in Figure 6.10. It might require a long response time to diasvatbove conclusion. In or-
der to shorten the user’s response time, an interactivaigaed, namely gattern brush
is introduced. Its main idea is to use two colors to distisgua small difference and a
bigger one. Thus users can easily investigate the pattamgels across pattern windows.
Pattern Brush

Brushing is a commonly used interaction technique to alleersito select a subset
of data via a query [5]. In order to use brushing, all pattenrmdows are regarded as a set

S = {W;|1 < i < n} and then are divided into two subsets:

Si = {Wi|ld(Wy, W') < 8,1 <i <n)}

and
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wherell” is the target pattern window,is a distance threshold. ThuS, contains those
pattern windows closer to the target window thgn In the existing literature, there are
a lot of techniques [14] to highlight a subset of interest.réHepropose to use the fog
technique used by lots of visualization systems, such aedalj57]. If fog is applied to
a subset (67 or S, ), the other one will be highlighted. For example, in Figurél6 the
subsetS; is highlighted by applying fog t&; (0 = 0.4). It is obvious that most glyphs
having a distance measure smaller than 0.4 are in the weekdunains. This conclusion
is the same as what one draws via Figure 6.10. However, usenmmnore easily draw this
conclusion from Figure 6.11 than Figure 6.10. This showsttha approach achieved the

goal of shortening user response time.
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Figure 6.11: A fog effect is applied to the glyph whose dis&ato Feb. 3 is bigger than
0 = 0.4. This can make those pattern windows close to the targetrpattindow more
obvious than Figure 6.10.

In order to enable users to adjust the distance thresholdyige a slider in the config-
uration dialog. If users adjust the distance thresholdgufé 6.11 fron?.4 to 0.5, Figure
6.12 is generated. Compared to Figure 6.11, more pattertowis are highlighted. All

weekend pattern windows are highlighted except Feb. 16.thRemmbservation is that
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some weekday pattern windows have a similar curve to thetgattern window Feb.
3. This leads to some more interesting findings: (1) Feb. Xffisrent from regular
weekends, even though it is a Saturday. If observing itsecaihape carefully, the finding
is that it is also different from most weekdays. Actuallysiain outlier (recall Figure 6.8).
(2) Some weekdays have similar traffic patterns to Feb. 3(&gn such as Dec.31, Feb.
4, Feb. 18, and so on. It means that the traffic in these days fFeavy. Some of them are
easy to interpret. for example, Dec. 31 is New Year Eve and Rels the Washington’s

Birthday. Most people did not go to work on these two days.

12/30,0.27 12/31,0.35 01/01,04 01/02,048 11/03,0.4 01/04,0.49 01/05,0.32
P i VO ._._...L.. e i VN _._-.-L.... s L S Y
11/06,0.32 01/07,047 01/12.0.31

TN
et S

D']J"]SW 117140 .41 146,048 1418,0.49 114, 029
U Rix [ . | . 1
= m ...—A.A. N ety

11/20,0.24 w W 11/26,0.36
e e, | et W,
M
12/04,0 12/04,0.37 12/05,0.41 DQ!DB 045 12/08,0.34
PN Y A s Pt i =Y
2iaa.d 207,041 2012.0.44 1213 0.8
D e Ve, il

Wi~
12/17,0.28 021'18031 12/23,0.37

PR,V el
0272403 02f25 0.34 D2/26,0. 44 027270 48 03/01,0.24
e e e,
03/02,0.34 DSfDS 0.35 W 13080 41
DSIDQENSTQ_MM- DSHW 3f11 042 314048 31’15033
0. i I ]
A W-!

DéHB,D.S 03/17,045 3;’1805 31’22029

S S RGN
37230 28

Pt

13739 0 4 =

Figure 6.12: This figure uses the same dataset and techracfigure 6.11 but with a
bigger threshold = 0.5. Fewer glyphs are dimmed than Figure 6.11.

6.4 Usability Evaluation

In the prior sections, | showed the proposed history viewkeumerged and non-merged
mode views along with their associated interaction tealesg Many examples have
demonstrated that the proposed techniques can help ddisstanefficiently discover

how data patterns change across pattern windows in difféierarchical levels over a
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very long time period. However, the discussion and examplése prior sections is not
enough to show the usability of the implemented system bardtie proposed frame-
work. A pending question is: can users really understanadeois about the proposed
data model and visualization/interaction techniques aadl to use this system? To an-
swer this question, | designed a usability evaluation anddd some people to use the
implemented system for performing some specific data aisalgsks. Below is a list of

questions | wanted to answer in this usability experiment:

e Timelines (Navigating Timelines): Can users navigate two timelireeBrtd infor-
mation of interest? For example, can they correctly seleetspecific day in the
user-defined hierarchical timelines? Can they choose opeppate level in the
merge-based hierarchy for observing the data pattern ehanty a pattern win-

dow?

e Merge Mode (Investigating Merge Mode Views): Can merge mode views kEnab

users to easily observe the pattern change within a timegb2ri

e Grid Views (Browsing Grid and Virtual Calendar Views): Can data analysd
the pattern changes of interest, such as periodic phenoamhgattern trends,

without difficulty via grid and virtual calendar views?

e MDS (Understanding MDS Pattern Starfield): Is the MDS patteld Aea efficient

way to help users find clusters and outliers among patterdows?

e Distance Map (Mastering Distance Map and Pattern Brush): Is it easy fopjee

to use the pattern brush to understand the similarity amattgqm windows?

The basic idea to designing this experiment is as followsdésign some data anal-

ysis tasks on streaming data related to the above ques(R)nsyite participants to per-
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form these tasks; (3) record the average response time apdirge accuracy for each
task, based on which the above questions can be answered.

In this experiment, | continue to use the traffic data useckitiSns 6.1 and 6.3, since
it has all features, such as cyclic changes and outliersntedso ask participants to look
for. Eleven software engineers from Microsoft attended éxiperiment. All of them have
experience with simple visualizations, including line ghabar charts and scatterplots,
but had not worked with some advanced ones, such as the MDStlayarticipants first
received training to familiarize themselves with my systamd then performed 24 tasks
belonging to 12 categories.

The list below contains 12 types of tasks this experimenedskibjects to perform:

Timelines (Navigating Timelines)
1. Find a specific day in the time-based hierarchy.
2. Find a specific half hour in the time-based hierarchy.
Merge Mode (Investigating Merge Mode Views)
1. Find where the biggest change of the regression line $sopea specific day.

2. Find up to three biggest changes between adjacent tingbowiin the regression

line slope in a specific day.
Grid Views (Browsing Grid and Virtual Calendar Views):

1. Observe the traffic pattern trends within a specific quardeng the grid views and

choose the correct description from multiple choices.

2. Observe the traffic pattern trends within one year usiegvtitual calendar views

and choose the correct description from multiple choices.

MDS (Understanding MDS Pattern Starfield)
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Response Time (SecondsResponse Accuracy

Task Type Task No Avg | Std Dev Avg | Std Dev
1 8.3 3.8 1.0 | 0.0
Timelines 2 11.3 | 3.6 1.0 | 0.0
Merge Mode 1 130.8| 14.9 0.86| 0.23
2 160.5| 29.7 0.82] 0.25
v 1 197.0| 45.9 1.0 [ 0.0
Grid Views 2 | 168.0] 54.2 0.95] 0.15
1 21.7 | 10.1 0.95]| 0.15
MDS 2 33.0 | 15.7 0.91] 0.20
1 113.0| 41.0 0.73] 0.34
Distance Map 2 121.5|41.4 0.77] 0.26
3 41.1 | 17.0 0.91] 0.20

Table 6.1: The response time of usability experiment foidnysviews.
1. Look for the outliers or clusters, if any, in a MDS pattetargeld.
2. Remove one or more outliers until they can clearly seeltrstars.
Distance Map (Mastering Distance Map and Pattern Brush)

1. Find the top 10 glyphs closest to a specific day regardiadrtffic pattern trends
using the distance map. If users can find more than 7 corrgphgl the answer

was treated as correct.

2. Find the top 10 glyphs farthest from a specific day regardire traffic pattern
trends using the distance map. The standard for correcteansmas same as the

previous task.

3. Set a specific distance threshold to highlight only 10 lgyplosest to a specific
day regarding the traffic pattern trends using the patteustbrIf 8-12 glyphs are

finally highlighted, the answer was treated as a correct one.

Table 6.1 lists the response time and response accuradyefee L2 tasks.

From these experiments, the conclusion are:
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Users can easily understand the time-based and merge-hasacthy.

The merge-based hierarchy can be effective in helping usersse a short time
period with uneven pattern change rates. Most users cateltwapattern changes

correctly.

Users can retrieve pattern trends from the grid views andithgal calendar views
with relatively ease. Although the tasks normally took thedsmout three minutes on

average, the response accuracy is very high.

MDS pattern starfield conveyed the clusters and outliersaitepn windows very
well. Users quickly learned how to remove outliers from thewand make the

clusters separate.

The first two types of tasks in “Distance Map” have a low butegtable response
accuracy, while most users performed very well on the lgs tf task. It shows
that the distance map achieved the goal to represent tfepdtstance among time
windows, but needs more improvement. Most users compldhregdt is difficult
for them to distinguish the background color for glyphs, dwetter color scheme
is necessary. In addition, outliers can be removed to make ddference more

obvious.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, | have proposed a group of visualwatiechniques to visually convey
the data pattern changes in multivariate data streams.
User driven approach

The basic idea of the user driven approach is to display bwhctrrent data and
abstractions of past data to show how changes occur over Tineewhole stream is split
into non-overlapped time windows and pattern-blind avexggs applied to each window.
The sampling ratio for a particular window is determined bp@l (degree of interest)
function to reflect users’ interests. A larger DOI value t&sin a larger sampling ratio
for the specified window, meaning more details shown in tiesvv Two types of DOI
functions are provided to satisfy common data analysisstaak well as a DOI function
interactive tool to allow users to adjust the DOI functionemtexploring data streams. In
order to show how data patterns change, | have proposeddgout strategies, namely,
superimposition, juxtaposition, step juxtaposition, angmnation, to place time windows

in the final views. The evaluation showed that three of theaeisualization techniques
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can effectively convey the multivariate pattern change parad to the traditional time-
series data visualization techniques. A guide was derigealdiise data analysts and
visualization system developers in choosing appropri@geut strategies based on the
characteristics of datasets and data analysis tasks. Ihadisers are allowed to use
multiple views in the final visualization and use linked bring to highlight a subset of
interest in all views when defining a query in one view.
Data driven approach

This approach addresses the problem of how to efficientlyalige pattern changes on
a data stream given the fact that the pattern change ratégenstant. Distorting the time
axis can patrtially solve this problem, but most existinditeques are user-driven. This is
not applicable to data streams that normally need quicloresgs. A data-driven approach
is proposed to automatically merge adjacent time windovtk ¥&@w or no changes in
the current view. A group of experiments show that the predaserge algorithm can
preserve more change information than pattern-blind gvega | proposed two types of
visualization techniques: juxtaposed full views and oliews. The former keeps the
data details while the latter aims to convey only the dateepad users want to observe. A
user study was conducted to confirm that the proposed visu@n techniques together
with the merge algorithm can significantly reduce the timgt ¢o detect pattern changes
over data streams.
History views

The history views are used to help users explore the datarpathanges within a
relatively long time period. The data analysis tasks nolyvaak off-line and do not need
urgent response. The proposed history views work under tadest non-merged and
merged. In the former mode, users need to define a hieraldtraature to represent
timelines. The definition of the hierarchy can be from ndttimae units, such as year,

guarter, and month, or domain specific units. When userstsaefe time period on the
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first timeline hierarchy, | generate the history view conitag all time windows in this
time duration. In each glyph, the abstraction of data past@re drawn instead of the
original datapoints. All glyphs comprise a grid or virtualendar. Other approaches,
such as an MDS pattern starfield, distance map, and pattesh bare designed to assist
users in discovering the similarities of time windows retjag the target data patterns.
For the merge mode, time windows selected by users are sehé tmerge algorithm
and a merge-based hierarchy is generated. The contigunasiindows having similar
patterns will be merged first. If users want to know more detbout the data, they can
choose one lower level in this hierarchy, but with more visligter. Otherwise, they can
choose a higher level to avoid visual clutter with randomlamg, which could lose some
details in the data. The usability evaluation demonstrdtatimost users can understand
the concepts in history views and finish assigned tasksuydieg) navigating timelines,

finding significant pattern changes, and investigatinglamity among time windows.

7.2 Future Works

Although these approaches can effectively help data atsabfsserve, understand, and
retrieve how data patterns change in multivariate stregmata, these techniques can be

improved from the following aspects:

e Target patterns: When | designed visualization techniques for conveyiniepa
changes, | always tried to make the proposed solutions bersrg as possible
for most data patterns. It has been verified that they argblea®r linear trends
and data distribution. However, this is not enough. A plaio igpply the proposed

techniques to more data patterns, such as data densitigrslusnd outliers.

e Application domains: All of the proposed approaches are general solutions for

streaming data, and do not target at any specific applicatibme next step is
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to apply them to a variety of real domains, such as financitd daalysis and
video monitoring. It might be necessary to modify the pragebfamework and
design more visualization and interaction techniquestiesé applications. The
algorithms might need further optimization because of fpbsstrict requirements

for response time.

More data types In all of proposed techniques, an assumption is that siream
data contains only numerical values. However, a lot of agilbn data is not nu-

merical, and includes text, audio, video, networks, aneotypes. There are two
possible ways to handle them: (1) convert them to multivardata and apply the
approaches developed in this dissertation; or (2) diretgsign new approaches for

them. Either is an interesting direction for continued agsk.

More Evaluation: All user studies in this dissertation invited only panpiants
who did not have expertise in the application domain rel&tdtie dataset. A more
efficient way is to find domain experts to assess the impleegesitstem using the
dataset of their interest. For example, | can visit medieakarchers to ask them
to observe sleep datasets in the implemented system anchegieewvand how this

can help them better understand their data.

Distribute the Code: Following the tradition of the Xmdv group, releasing the

code of this system is an efficient way to get feedback.
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Appendices
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.1 Pattern Vectors for Linear Models

In this dissertation|east squard40], the most commonly-used regression method, is
used to estimate the linear model between two variallesdY in a specific window.
Assume that the paired data in this window(is, v1), (x2,¥2),..., and(z,,y,). The

linear model can be represented by:

Y =a+pX
where
RQ'Sl—Rl'T n-T—Rl-Sl
o = ’/8:

NOtethatR1 = ZTL:IZ‘,RQ = ZTL:I'?,Sl = Zn:y,»,andT: znszyl
=1 =1 =1 i=1
If the linear model pattern vector of two specific windows, andW”, are repre-
sented as

V, - (O/vﬁlan,? Rlla RlQa Si7T,)

p

and

14 1 14 " /! /! /! U
‘/p :(Oé 7ﬁ 7n 7R17R27517T>

then the pattern vector of the parent windowdf andW; is:
(a, B, +n", Ry + R{, R, + Ry, S+ S{, T +T")

where
(Ry+ Ry) - (S1+87) = (S1+857)- (T"+T")
(' +n") - (R + Ry) — (R} + RY)?

(W +n") - (T' +T") — (R, + RY) - (S, + S)
(' +n") - (Ry + Ry) — (Ry + RY)?

B =
Note that, in the pattern vectors, onrlyand are used to describe the linear model, while
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other items serves the operation to merge windows.
The distance betweér andV, can be computed via:
| arctan 8" — arctan 5"

where | am interested in only the change of fit line slope far lihear model. Other

definitions for distance functions can be used if users hdfereht requirements.

.2 Pattern Vectors for Data Range

In this dissertation, | use mean value and standard dewmifdioeach dimension to repre-
sent the data range. Other measures can be easily added.
Assume that variable X in a specific windowais, z-, . . ., z,,, its meanX and stan-

dard deviatiors can be represented by

|
I
i

and

n—1
whereR;, = é x; andRy = éx?
If the datg range patterr:ivector of two specific windoWs,andW,, are represented
as
V), = (X', s',n', R}, R})

and

" ~" n _n 1" 1"
‘/p :(X ,S ,n 7R17R2)
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then the pattern vector of the parent window/df andV is:
(X,s,n"+n", R, + R}, Ry + R})

where
WX +n'"X"
n/ + n//

X =

2

o | (Bt B3 —2- X (Ry+ R+ (0 +n") - X
B n+n"—1

The distance betwedr; andWV, can is defined as:

\/(7/ _ 7”)2 N (?/ _ ?//>2

To make this distance function usable, two variables botulshbe normalized to

0, 1] first. Other distance functions are possible in terms of ifipepplications.
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