

Next-Gen Solitaire Tutorials

Written By:
Daniel Duff, Andrew Levy

Advised By:

George T. Heineman

Creating a New Solitaire Family/Variation

1. Setting Up Work Environment and Test Running Variations

a. Install latest version of IntelliJ
i. Include all Scala tools when prompted

ii. If IntelliJ is already installed, install Scala plugin

b. Open Next-Gen Solitaire
i. Open up the Next-Gen Solitaire project which can be found and

cloned/downloaded at: https://github.com/combinators/nextgen-

solitaire/tree/Dan-TestCases-Perturb

c. Configure IntelliJ
i. In the top right corner click the drop down and go to edit configurations

ii. Choose to add a new SBT Task

iii. Change the tasks field to be just “run”

iv. Rename the command if desired and save and close configuration

v. Got to File>install settings and select the IntelliJSettings.jar in the demo folder

d. Run/Test the service you created in B
i. In a web browser go to http://localhost:9000/narcotic (you can replace narcotic

with any existing variations, note variations in families include their family name

before the variation name, such as http://localhost:9000/fan/shamrocks

ii. Wait for the page to load

1. May take up to a minute

2. If page never stops loading then there may be an error (check IntelliJ

terminal for errors)

iii. Press the compute button on the web page

iv. Copy the git clone line from the git tab that appears when you compute

e. Run/Test generated Java code
i. Open a terminal and navigate to a folder where you want to store your variations

ii. Run the git clone command

iii. In IntelliJ open the project structure and import the generated code from the

folder in step i as a new module.

iv. Link the standalone.jar found in demo/ folder of the generating-solitaire project

v. The code should be runnable and allow you to run any downloaded variations

2. Creating a New Family/Variation

a. Intro
i. Solitaire variations can either be a part of a family or be alone as part of a

standalone variation.

ii. This section will focus on creating a family which can contain several variations

based on the family.

iii. This intro will be following the creation of the Simple Simon family.

b. Setup
i. In src/main/scala/org.combinators/solitaire/ create a folder named

“simplesimon”

ii. Inside this folder, create the following files:

1. Controllers - Scala trait class

https://github.com/combinators/nextgen-solitaire/tree/Dan-TestCases-Perturb
https://github.com/combinators/nextgen-solitaire/tree/Dan-TestCases-Perturb

a. Defines the family’s controllers and their behaviors.

2. Simplesimon - Solitaire Target

a. Handles variation controllers for all variations in the family..

3. Simplesimon - Package object

a. The Scala model for the Simple Simon variation.

b. Pulls characteristics of the family from variationPoints.

4. simplesimonDomain - Scala class

a. Requesting additional imports for generating code.

b. Custom constraints are defined here within ExtraMethods.

5. variationPoints - Scala trait class

a. Defines characteristics of the Simple Simon family that all

variation models can pull from (for example, number of number

of tableaus)

6. These files can all be created from scratch, from the currently existing

templates (File, New, scroll to find the template of each file above), or

copied from other working variations and then renamed and refactored to

match the new variation.

7. Each variation that is created must be registered in the routes file located

in the resources folder (src/main/resources/routes). This will allow the

synthesizer to find it during generation. Each variation should be

registered in routes as shown in the image below.

iii. Create the family - variationPoints

1. Structure Map

a. Structure Map (usually called structureMap in

variationPoints) is where the type of card containers are

defined. For example, Simple Simon uses tableaus, foundation

piles, and a stock.

b. The tableau takes two values, the number of tableaus and the

type of piles that the tableaus can be. These types include: piles,

buildable piles, and columns. The pile type determines how

cards are shown on the tableau, such as whether the underlying

cards are visible below the top of the stack.

c. Foundation takes the same type of values as tableau, but for

Simple Simon the foundation uses piles instead of columns.

d. All the stock needs is the number of stocks since all cards in a

stock move in the same way and therefore the type does not have

to be defined.

2. Layout Map

a. Layout Map (usually called layoutMap or map in

variationPoints) defines the location of the containers defined

in the structure map.

b. In the layout map, all of the containers take an x position, y

position, the number of that type of container, and the size of the

containers. card_height represents the height of one card so

that the containers are large enough to fit the cards that they are

containing.

3. Deal

a. Now that the layout has been set, the next step is to deal the

cards into their containers. Each game deals a different amount

of cards to a different amount of locations so the getDeal

function defines how many cards should go to each container. In

the example below, 8 cards are dealt to the first two tableaus,

with one less card being added to the subsequent piles. (ex: 8, 8,

8, 7, 6, …).

b. The faceUp variable is a boolean that states whether or not the

cards are dealt face up. The numCards variable states how many

cards are dealt to the specified tableau. Any remaining cards not

dealt in dealStep are placed into the stock.

c. In Simple Simon, the deal step deals 8 cards face up to tableau 0

and 1. For each remaining tableau the number of cards decreases

by 1 after dealing. Simple Simon does not have any leftover

cards that are placed into the stock, however the container still

exists for Simple Simon variations to place cards into.

4. Moves

a. Each game has a set of moves that are allowed within the game.

These moves define which cards can be moved into which

locations and when.

b. Each move needs to be given several properties. The type of

move, how the move is performed (dragging or clicking), the

source and destination of the cards in the move, and a set of

constraints that define if the move is allowed. Each move may

take many constraints in order to be a successful move and

therefore these constraints are usually defined in a helper

function. Constraints will be discussed more in the next

subsection.

c. Simple Simon uses two moves, tableau to tableau and tableau to

foundation. Both moves are exactly as they sound as tableau to

tableau is moving cards from one tableau to another and tableau

to foundation is moving cards from a tableau to a foundation.

5. Constraints

a. Constraints can be used to check a specific condition and returns

true if that condition is met. For example isAce(card) would

return true if the defined card is an ace.

b. Constraints can be used to define what makes a specific move

valid. Using the same example, if a move can only be valid if the

card is an ace, the move can check that by determining if the

isAce() constraint returns true.

c. There are a list of predefined constraints however since all

games are very different, another constraint that does not exist

may need to be created to meet a specific condition. Custom

constraints can be defined in Java within the Domain in an

extraMethods function.

d. Simple Simon uses the two methods buildOnTableau and

buildOnFoundation to check constraints for moving cards to

the tableau and the foundation.

e. The tableau to tableau move only allows piles of cards to move

onto another pile if the bottom card of the moving pile is the

same suit and one rank below the top card of the destination pile.

f. The tableau to foundation move only allows a pile of a complete

set of descending cards (King through Ace) of the same suit to

be moved into an empty foundation.

iv. Create the model - package

1. Setting model

a. In the package folder of each variation, the model is created

where each variable for a solitaire game is defined. Many of

these come from variationPoints so it must be extended in the

package.

b. structure, layout, deal, and moves are the same as what

is defined within variationPoints.

c. logic refers to how the user can win the game of solitaire. In the

Simple simon variation example, the user wins when the game is

in a board state where all 52 cards are all in the foundation.

d. solvable an optional value as when it is set to false then it will

not be utilized in the variation. If the value is set to true, then an

additional button is available to the user upon launching a

variation: solve. This button then iterates through all possible

potential moves for a given board state, effectively brute-forcing

all available options until the most progress is made.

e. specializedElements is a part of the model that is used to set

special elements on the board display. Elements that are

“specialized” are any elements that are not contained within the

standard board components of decks, tableaus, and foundations.

When set to an empty sequence, no special elements are used.

2. Test Setup - Set Board State

a. SetBoardState is a function that defines an example board

state. This board state should represent how the cards should be

set up so that moves can be tested easily after generating test

cases.

b. The Simple Simon variation does not utilize this function (and as

of yet does not utilize generating test cases) and therefore is just

set as an empty sequence. However, the Simplevar variation in

the Simple Simon family does utilize setBoardState.

Simplevar has the same rules as Simple Simon but some of the

cards begin in the stock and can be dealt to the tableau.

c. Simplevar’s setBoardState creates a scenario where the

moving pile is a set of cards king to ace that are all the same suit.

Then tableaus 1 and 2 are cleared. This organization of cards

allows for a successful tableau to tableau move and tableau to

foundation move to be tested.

v. Controllers

1. Controller are responsible for adding combinators relating to in-game

actions, such as dragging. The initial template covers most controllers

that will be needed for each variation, however occasionally new

controllers will need to be added to accommodate specific actions in

games. For example, clicking on a buildable pile causes the top card to

flip over (as shown in the spider variation controller).

c. Adding more variations

i. To add more variations to the family, create a new package named after the new

variation. This variation will be modeled in the same way and will also extend

varitionPoints to take info from the family.

ii. Since new variations are different from the variations within their families, they

also have different attributes. Values can be overwritten so that the model utilizes

the game mechanics of the new variation instead of those defined for the main

variation (defined in variationPoints). The override method can be used as

shown below. This override is used by Simplevar to override the number of cards

dealt to the tableau at the start of a game.

iii. New variations must have their controllers added to the family’s variation

controllers as shown in the image below.

iv. It is important that any new variations be added to routes so that they can be

generated as well.

Creating New Generated Test Cases for a Solitaire

Variation

1. Set Board State

a. The first step to creating test cases for a variation is to set an initial board state. The

initial board state is an orientation of cards where the various moves of a game can be

tested. This involves creating a scenario that when a stack of cards (movingCards) is

moved it should be able to successfully move on to the tableau or the foundation. This

scenario is defined within the variation’s package object and is written in Java using

Scala’s built-in Java method

b. In the example above (Simplevar), a scenario is created where the stack of moving cards

is a stack of all clubs ranked in descending order from king to ace. Tableau 1 and 2 are

cleared of cards so that the moving cards can be moved from tableau 1 to tableau 2 with

no other cards interfering with the tableau to tableau move. In this scenario, all of the

conditions for the Simplevar moves are met and therefore the moves are all valid.

c. Inside the model for the variation, the testSetup is set to setBoardSate so that the

variation keeps track of its valid board state and can call it when needed when generating

test cases. If the model is just set to an empty sequence, then it will not generate any test

cases.

d. Once creating the testSetup, the variation will be able to generate test cases that pass.

However, since each variation uses different constraints, moves, and structures, all of the

tests may not pass if the Solitaire Test Suite is encountering a new game mechanic. These

changes can be made in UnitTestCaseGeneration.scala.

2. Unit Test Case Generation

a. The SolitaireTestSuite class inside of UnitTestCaseGeneration.scala generates

Java unit test cases for a variation. When running the apply code registry, a default test is

created that makes sure that the move being tested is valid given all of the constraints.

For each constraint, another test is generated with that constraint negated. These results

all should return as false, showing that each constraint must be met in order for the

entirety to return true. Each possible move for the variation is run and tested in this way.

b. UnitTestCaseGeneration.scala defines methods that negate each constraint (for

example isAceNegative(Constraint)). These methods have only been defined for the

variations that currently generate test cases. If creating test cases for a new variation, then

a new method for a negated constraint may need to be created if the new variation uses a

currently unused constraint. To make a new method for a negated constraint, a scenario

needs to be defined where the constraint would not be met. For example, in

allSameSuitNegative() a set of cards is created where all of the cards are aces of

different suits.

c. While running tests for new variations there may be extra additions that need to be made

outside of constraints. In certain scenarios there may need to be specific checks added to

update the apply method to account for other variations game mechanics. For example,

the shamrocks game used movement of single cards instead of stack so a logic check was

done to determine if the move was using stacks or single cards. This type of check can be

done for other scenarios that have not currently been accounted for in the testing.

3. Controller

a. When running the game code for a variation the Controller.scala file in the shared

folder will create a Solitaire Test Suite for the variation. This is located at the beginning

of the createMoveClasses method. The method checks to see if a class has a

testSetup (if the board state has been set) defined in the model and if so it will generate

the test cases. If the testSetup is not defined then the method will just print that there is

no set up found and there are no tests generated for the variation.

