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Abstract 
 

Our project introduces the concept of “detached monitoring” in a 

context-adaptive cooking system. The system has two parts: the Rat, a device 

mounted above the stove and the Hat, an augmented reality (AR) headset worn by 

the user. The Rat provides information about the user's actions and the food being 

cooked. This information, combined with information from the Hat, is used to 

determine the user's context. Instructions and status information are then 

embedded in the user's environment via the Hat.  

The system was piloted with 7 participants in a kitchen setting. The results 

indicated that users found the tasks easier the more detached monitoring it 

incorporated, and, overall, found detached monitoring to be intuitive.  
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Executive Summary 
 

Although the smart-kitchen has been heralded as the future of domestic 

living since the Jetsons, this promise has yet to be realized beyond showrooms and 

research labs. “Smart” appliances can be awkward to control, especially while 

cooking. They are often controlled through multiple mobile apps, or a  smart 

speaker. These interfaces require the user to shift their hands or attention from 

their task in order to provide input. They also typically can't detect the user's 

context: what they are making, what they are doing, where they are in the home.  

Our project introduces the concept of “detached monitoring” in a 

context-adaptive cooking system.The system has two parts: the Rat, a device 

mounted above the stove and the Hat, an augmented reality (AR) headset worn by 

the user. The rat, which can be retrofitted onto existing stoves, combines a thermal 

and RGB camera to understand what is happening on and around the stove. This 

includes detecting if a burner has been left on, pancake needs to be flipped, or that 

a user has completed a action (like flipping a pancake). This information, combined 

with information from the AR headset, is fed to a context resolution system that 

determines what the user is making and how the input should be used. It then 

determines the instructions and status information that are naturally mapped into 

the user's environment via the hat. For example, if a user places a pot on the stove, 
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the system detects this action and anchors a voice prompt directly above the pot. 

Alternatively, if the system detects that the user has poured in pancake mix, a 

"Waiting to Cook" label and a spinning ring will be augmented above that pot, and 

the user will be notified when they need to take further action. 

We also introduce a set of four novel heuristics we developed for designing 

AR applications in a domestic setting: contextual anchoring, contextual mapping, 

contextual input and adaptive minimalism. 

The system was piloted with 7 participants in a kitchen setting. The results 

indicated that users found the tasks easier the more detached monitoring it 

incorporated, and, overall, found detached monitoring to be intuitive. 
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1. Introduction 
 

Cooking is difficult -- it requires following precise instructions, maintaining 

focus for long periods of time, and multi-tasking. Consumers have long been 

seeking ways to reduce this difficulty with technology, starting with cast-iron 

stoves from 200 A.D. More recently, in the 1960s, novel tools like electric blenders 

and toasters entered the kitchen to make cooking more time efficient [23]. Although 

they did reduce physical labor, they did not necessarily make cooking any safer or 

less stressful. 

Since the invention of mobile phones, meal-prep kits and on-demand delivery 

services have been rapidly growing in popularity (nearly 4x as fast as the rest of 

the restaurant industry). But, these recent solutions are wasteful; they require 

excess packaging and resources for transportation.. 

Since the Jetsons, dreams of a "smart kitchen" have promised to alleviate 

this difficulty. But, this promise has yet to be realized beyond showrooms and 

research labs.  Current implementations of smart kitchens often involve a slew of 

"smart" appliances, such as a "smart" blender or "smart" fridge. But kitchen 

appliances like these have the lowest rate of adoption among smart-home devices.  

These appliances can be awkward to control, especially while cooking. They 

are often controlled through multiple mobile apps, potentially one for each 
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appliance, or a  single smart speaker. These interfaces require the user to shift 

their hands and/or attention from their task in order to provide input. They are 

also typically unable to detect the user's context: what they are making, what they 

are doing, where they are in the home.  

Augmented Reality (AR) is an emerging human-computer interaction 

modality that has potential for overcoming some of these challenges. Unlike 

smartphones, which are largely limited in output on a small screen, AR head 

mounted displays (HMD) can digitally embed information in the user’s world. This 

allows for a more natural mapping of information, and can convey this information 

without requiring the user to shift their attention from their surroundings, which 

could be useful in the kitchen. Cooking often requires large amounts of information 

— measurements, ingredients, instructions — and furthermore, requires that said 

instructions be executed upon with precise timing. A momentary lapse of attention 

can lead to burnt food or, worst case, a fire. In fact, nearly half of all home fires are 

caused by cooking [1].  

Although AR allows for output to be directly mapped to the environment, this 

natural mapping does not exist for input. Hand gestures, seen both in research and 

science fiction movies like Minority Report [28] as illustrated in Figure 1 , are one of 

the most common forms of input in AR today. Hand gestures used today include 

movements like swiping and pinching, as well as key poses like a thumbs up or a 
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fist. But gestural input has a number of flaws. For one, these gestures lack any 

type of tactile feedback. Tactile feedback -- for example, the feeling of a click -- is a 

critical component of interaction [14]. Additionally, these physically unsupported, 

repetitive gestures can become tiresome, in what is known as gorilla arm [32]. 

 

Figure 1: Hand Gestures in Minority Report [26] 

 

With this in mind, there are several factors to consider in the design, and we 

explored these in our project. First, instead of requiring the user to perform 

artificial gestures, we explore whether it would be preferable to detect when the 

user has completed an instruction, and have the system proceed to the next step. 

That is, to have a natural, rather than explicit, input. For example, if a user is 

cooking chicken and it is time to flip the chicken, the system can proceed to the next 

step once the chicken is flipped — it would not require an explicit gesture like a 
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swipe or a thumbs up. These gestures consume the user’s hand, which are 

necessary for the tasks they are performing. 

Further, we explore the benefits of providing this natural input — both when 

the user is present and when they are not.. In addition to detecting when an action 

has been done, it may be desirable to know when an action should be done. For 

example, many meals require waiting until a pan is hot before starting. Other 

meals, like cooking pancakes or eggs, require the food to have a certain 

appearance (like bubbles around the edges) before proceeding. These steps often 

require long periods of waiting, and a momentary lapse of attention could ruin the 

meal. It is not practical to use the camera on the user’s headset for this task — the 

user will not always be looking at the stove. They may be preparing a different part 

of the meal elsewhere in the kitchen, or perhaps completing a different activity 

elsewhere in the home (for instance, the bathroom).  

We propose a new input system, which we call “detached monitoring.” With a 

detached monitoring system, AR is enriched with the context of the user’s 

environment — what we call “contextual input.” The user can work alongside it, or 

leave for short periods of time with the peace of mind that their task is being 

supervised. It informs the AR system both when action should be taken, and once 

an action has been taken. It has the potential to reduce stress and the need for 

explicit input, while also improving safety. 
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In the following chapters, we will describe Remy’s different features and the 

design considerations behind it. We will then discuss in detail the methods we used 

to implement these features in the implementation chapter. Then, we will discuss 

evaluation methods and the results we obtained. The report will end with a 

conclusion, a discussion of future work, and a discussion of design tradeoffs.  
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2. Meet Remy 
 

Remy  is a cooking aide developed for the realities of life. It assists the user 1

when they're in the kitchen, and when they're not -- when they're following a recipe, 

and when they're not. The system is able to sense the user's context and adapt 

appropriately. 

Remy has two parts: a device mounted above the stove (the "Rat") and an 

augmented reality (AR) headset worn by the user (the "Hat"). The Rat, which can be 

retrofitted onto existing stoves, has a suite of sensors including an RGB and 

thermal camera. Using custom computer vision algorithms and machine learning, 

the Rat can detect important events such as when burners are left on, when water 

is boiling, or when pancakes need to be flipped. The Rat also detects the user's 

actions to understand what they are doing. 

  The second part is the “Hat," our software application that runs on a Magic 

Leap AR headset. The primary purpose of the Hat is to embed information in the 

user's environment. It is what allows the user to see instructions and information 

as they go about their task. In addition, the device can collect input like gaze, hand 

position and voice input. 

1 The naming scheme of our system was inspired by the Pixar movie "Ratatouille." In the movie, 
"Remy" is an ambitious young rat with a passion to cook. He ends up helping a young chef learn how 
to cook by hiding in his hat and tugging on his hair. Hence, "Remy," "Rat," and the "Hat." 
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Information from both the Hat and the Rat is fed to a context resolution 

system that determines what the user is making and how the input should be used. 

For example, it decides when a recipe should be automatically started, when a 

prompt should be shown or when the user should be notified of a dangerous 

situation. 

Walkthrough 

Remy is designed to adapt to the context of the user. As such, there is no 

single entrypoint, and no set order of steps that a user must follow. What we can 

describe, then, is not the path a user must follow but the paths a user might follow 

given an objective. In this scenario, a user wants to prepare a package of instant 

ramen. Figure 2 shows the different paths a user might take when making Ramen. 
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Figure 2: Ramen Recipe Flowchart 

If this user does not have experience with preparing the ramen, they will 

likely search the package for instructions. In this case, we highlight the package 
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and give them a voice prompt as seen in Figure 2. If they say "make," we will start 

the process for making ramen. 

 

Figure 3: Ramen Anchored Voice Prompt 

 

The next step will be to pour 2/3 cup of water as shown in Figure 4. If they place 

the package down the instructions will go to heads-up mode (Figure 5). 
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Figure 4 (Left): Instructions anchored to a ramen package 

Figure 5 (Right): Instructions anchored to headset 

 

Once they place the pot of water on the stove, the system automatically 

starts waiting for the water to boil.  

 

 

Figure 6: Waiting to Boil 

But if the user has made ramen before, they likely know approximately how 

much water to use. They might not even bother taking the package out of the 

cabinet until the water is boiling. So, perhaps they began by pouring water and 
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placing it on the stove. Once they do, they'll see a white ring indicating the pot has 

been detected. If they look at the pot, a voice prompt will appear. 

 

 

 

Figure 7 (Left): Pot Detected Indicator 

Figure 8 (Right): Voice Prompt Anchored to Pot 

 

If they simply say "make ramen," Remy will pick up from where they are, 

detecting the pot with water, and start monitoring  the pot until it boils. 

What if the user has left the kitchen without telling Remy what they're making? 

Wherever they are in the home, they can open their hand and say "stove" to 

summon a miniature version of their stove. Saying "make ramen" will get them to 

the same point. 
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Figure 9: Hand Contextual Anchoring “Mini Mirror” 

Once the water boils, in any of the above cases, the user will be notified. The 

system will automatically move to the next step: "Add Noodles." When Remy detects 

that noodles have been added, the system once again moves to the next step: 

setting a 3 minute timer. 

       

Figure 10 (Left): Taking ramen out of package 

Figure 11 (Right): Ramen in the process of being added 
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Figure 12: Timer set once Ramen is added 

But what if the user is an expert -- what if they're not preparing instant 

ramen, but a traditional family ramen recipe? In this case, when they place water 

on the stove they can simply say "boil" -- Remy will notify them when it boils. Once 

the water boils, and they add more ingredients, Remy will be there ready to set a 

timer. Remy will never know every family's recipe -- but it will still help along the 

way. 

System Capabilities 

Preparing Ramen is just one of the system's many features. For instance, 

Remy can detect when users accidentally leave burners on. This ability is provided 

by a fusion of input -- the temperature of the burner and whether or not there is a 
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pot on the stove. Remy can communicate this situation through a combination of 

augmented visualizations or notifications.  

    

Figure 13: Burner On Visualization (Left) 

Figure 14: Notifications (Right) 

 

The system also enables users to complete more complicated recipes, like 

making pancakes, and enables users to check the status of their stove by simply 

looking at their hand. 
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3. Related Work 
 

Before starting the design process, we conducted a research to explore how 

technology has been used in the kitchen. We also looked into projects that used AR 

in the kitchen as well as projects that focus on context awareness. 

The Smart Kitchen 

 Over the years, there has been no shortage of "smart kitchen" projects [19, 

28]. Many of these projects involve "smart" sensors and appliances distributed 

around the kitchen. For example, Stander et al. in their research on smart kitchen 

Infrastructures [28] use sensors to track cooking and enable remote control of 

kitchen appliances. It contains a set of sensors and RFID tags on utensils, in 

drawers, and throughout the kitchen. Nearly every appliance in the kitchen is made 

"smart," including a scale, blender, steamer, and a coffee machine. The entire 

system is controlled through a mobile application. However, in many cases, it 

would be easier to simply turn on the blender, rather than using a mobile phone. 

Having to juggle a mobile phone while cooking is difficult and potentially dangerous. 

Although the technical accomplishes of this project are interesting, it ignores some 

realities of domestic living.  
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AR + Smart Kitchen 

CounterIntelligence [13] is one of the few “smart kitchen” projects that 

incorporates a form of AR. CounterIntelligence uses projectors to display 

information onto objects and surfaces in a kitchen. It also embeds a number of 

physical sensors throughout the kitchen, including above the stove, in the fridge 

and even inside cabinet drawers.Instead of having to take out a mobile phone to 

see information, multiple projectors were used to display information on surfaces 

throughout the kitchen. With this projected information, users provide explicit 

input once they've completed a step. In Figure 15, a user moves to the next step by 

pressing a "next" button projected onto their counter. This explicit input introduces 

the inconvenience of having to stop a task to provide input. Further, if the user's 

hands are dirty (as they often are during cooking), interacting with the system may 

dirty their kitchen. Enabling context-aware input is one way to avoid these 

problems, as we explore with Remy.  
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Figure 15: Explicit Input from CounterIntelligence 

 

The system is described as being "context aware," but the paper does not 

describe how it adapts to the user with that context. In fact, CounterIntelligence 

requires users to follow specific, sequential steps, instead of conforming to the 

user’s actions. Having a system that is able to infer actions would allow the user  to 

avoid explicit input, and truly adapt to the user, which we explore with Remy 

The Counterintelligence project also doesn't consider how the user will 

interact with the system outside of the kitchen. Practically speaking, users will not 

always be in the kitchen during the cooking process. They may be in the bathroom, 

for example, or watching TV in the living room as water boils or as noodles cook.  
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Lastly, the type of  "Augmented Reality" used in CounterIntelligence differs 

from the modern meaning. CounterIntelligence uses projection mapping to display 

information throughout the kitchen. Projection mapping uses a traditional 

projector to project information onto surfaces as seen in Figure 15. Although this 

has the benefit of allowing users to use the system without a HMD, it has a number 

of drawbacks. For example, any surface that needs information projected onto it 

would require a separate projector. It also requires the said surfaces to be flat 

and requires the room be darkened so that projections are visible. These are 

serious drawbacks that limit the potential and practicality of such a system. 

 

 

Figure 16: Projection mapping example from CounterIntelligence 
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With modern, three dimensional, AR systems, the digital and physical worlds 

are more closely intertwined. The user wears a head mounted device that allows 

the information to be displayed anywhere in their environment. The information 

doesn't have to be flat or against a surface -- it can have volume and float in mid 

air. It also allows information to be anchored to an object, even if it's something the 

user is holding.  

Context Aware Systems 

While we were unable to find cooking projects that used three dimensional 

AR, two projects shed a light on how it could benefit the kitchen.  

Khuong et. al [11] developed a context aware assembly support system that tracks 

LEGO block assembly status in real-time and automatically recognizes error and 

completion states at each step. The user, wearing a head mounted display, could 

see where they should attach new blocks and which blocks are correct/incorrect. 

Once they installed a a block, the system would automatically advance to the next 

step. 
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Figure 17: Display Modes from AR-based context-aware assembly support system 

 

GuideMe is a mobile AR application that provides guidance in using home 

appliances [16]. The project compared AR instructions to paper and video based 

instructions. Although they found that paper instructions had lower error rates, 

users reported a lower cognitive load while using AR instructions. The higher 

error rates might be explained by lack of familiarity with the medium and needing 

to hold a phone (as it was not head mounted). 
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4. Design 

Design Considerations 

The kitchen is a unique space in the home. It has a great deal of cultural 

significance and is an integral part of family life. This considered, our project 

necessarily involves not just designing technology, but determining how to design 

an experience. We began with familiarizing ourselves with designing for this space. 

In Designing Technology for Domestic Spaces: A Kitchen Manifesto [2], Bell and 

Kaye comprehensively outlined a number of pitfalls when designing technology for 

the kitchen. Their paper asks how one designs "...not for efficiency, but for 

experience, affect, and desire. The challenge is to make sense of people’s daily 

practices so that these practices can meaningfully inform design and innovation." 

Along these lines, rather than forcing users to behave a certain way, the authors 

encourage designers to "find and support rituals of domesticity." Although the 

authors do not discuss implementation specifics, much less AR, the paper provided 

a solid starting point. It became clear that domestic spaces pose unique challenges 

and that we needed to deeply consider how people actually behave in the kitchen. 
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Design Process 

Personas 

To begin, we defined potential users of our system (personas). Personas are 

representations of specific users, each with unique needs. The personas we 

created include the "Busy Bee" (young professionals who are short on time), the 

"College Kid" (someone who is so inexperienced they could burn ramen) and the 

"Octopus" (a parent trying to juggle three toddlers while preparing breakfast). Next, 

for each persona, we came up with an extensive list of contexts users might find 

themselves in while using our system. This includes cooking, of course, but also 

situations that arise while cooking. For example, the Busy Bee might leave the 

burner on in a rush to an important meeting. The College Kid might be staring at a 

jar of tomato sauce, wondering how to make pasta. An Octopus might need to run 

to their room to grab Tylenol for their kid with 102 degree fever, while they are 

preparing breakfast for the rest of the kids. After developing this list of contexts, 

two additional design goals emerged: 

1. People are not always in the kitchen while cooking 

2. Different people will complete the same task in different ways, depending on 
situational factors. 
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Practical Futurism 

This led us to create a design manifesto we call "Practical Futurism." 

Although the details of this design manifesto are out of the scope of the paper, the 

gist is to design for how life really is. In life, we burn things, we pour too much and 

we drop batter all over the floor. In life, we realize we are late to an eye doctor's 

appointment in the middle of making lunch. Life is messy. Designers creating 

applications for mobile phones have more room to ignore this -- the application's 

stage is not the world but a small phone screen. But, when designing AR 

applications this becomes imperative -- the user's world is the stage.  

Wit we narrowed down the specific scenarios we  

Scenario Mapping 

Next, we revisited the scenarios we had previously identified during the 

persona creation process. We decided to design our system around a diverse, yet 

specific, set of scenarios. The scenarios we chose were: setting a timer, making 

Ramen, and making pancakes. These scenarios were chosen because each differs 

in the level of complexity and system involvement, while also being representative 

of other tasks. For example, making pancakes is similar to making chicken  (each 

requires flipping after reaching a certain state). 
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Figure 18: Example Storyboard 

 

We then mapped out each scenario as seen in Figure 18. These maps 

blended both design elements and user actions, and provided an effective way to 

communicate and evaluate the designs, prior to implementation. 

Design Patterns 

When designing a mobile app, there are countless guidelines and best 

practices that can be employed. For example, both Apple and Google offer practical 

design guidelines tailored to their specific platform. Although Magic Leap does 

offer a limited set of design guidelines, these are tailored for experiences that 
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demand users' complete attention (like games). Our system works in tandem, and 

blends into the real world. Due to these differences, we found the Magic Leap 

guidelines to be largely inapplicable. 

Unable to find an existing set of heuristics tailored for AR, we referred back 

to the timeless heuristics developed by Nielsen Norman Group [17]. These include 

"visibility of system status," "match between system and the real world," and "user 

control and freedom." While designing with these heuristics in mind, we developed 

a number of new guidelines that we strived to emphasize throughout our work. 

Anchor to Context 

Remy does not have a centralized user interface — instead the user 

interface is distributed across the kitchen, anchored to objects — more 

specifically, contexts. This allows direct mappings between digital information and 

the source of the said information. Our system has a plethora of examples. 

When a user is setting a timer or starting a recipe, they speak directly to the 

burner itself as seen in Figure 7 (left). Once this timer is set, we know which burner 

the timer is for and can place a timer directly around the rim of the pot as seen in 

Figure 12. This is particularly useful if the user is cooking multiple things 

simultaneously -- when a timer finishes, they are able to see precisely which pot 

the timer is for. 
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Similarly, when the user is following  a recipe, instructions are anchored to 

the relevant item. This could be the bowl they're using, Ramen package they were 

looking at, or burner cooking the meal. If the user needs to know what the first step 

for a certain meal is, they need to look no further than where their food is. Again, 

this is particularly useful if the user is cooking multiple dishes simultaneously -- it 

could be easy to forget which dish is which and add the right ingredient to the 

wrong pot. 

Another example is how we communicate setting the temperature of the 

stove. Rather than verbalize the setting  ("Medium High") we directly augment the 

level onto the dial. This also allows the system to communicate with a higher level 

of fidelity. 

 

Figure 19: Contextual Mapping on Burner Dial 
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 If a burner is left on, we directly augment a pulsing red disk onto the stove. 

This directly communicates which burner is left on in a natural fashion. 

Additionally, when a burner is left on, we have a pulsing red ring around the dial for 

the burner that needs to be turned off, further clarifying the mapping between the 

information and how to remedy the situation. Interesting, in Design of Everyday 

Things, Don Norman specifically calls attention to the often confusing mapping 

between burners and dials. 

If the context of the stove is not available -- for example, the user is in a 

different room -- we recreate a miniaturized version and anchor the UI 

appropriately (an idea we call "Mini Mirror'). An example of this is available in 

Figure 9. When the user opens up a voice prompt using a hand gesture, they see a 

miniature stove mirroring the state of their actual stove. The UI is anchored just 

like it would be on their real stove. This, again, carries the benefits of "natural 

mappings" as described by Don Norman [18]. 

Conform to Context 

This rule is related to contextual anchoring, but still distinct. Fitting the 

context is more of an aesthetic concern.  As much as possible, we believe the UI 

should be conform to the context and object -- essentially becoming an extension of 
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the object. This results in a true augmentation of an object or context. This can be 

seen throughout a number of UI elements -- for example, timers. 

 

Figure 20 (Left): Timers are floating billboards 

Figure 21 (Right): Timers on the rim of pans/pots 

 

The above images show two designs we considered during the design 

process. On the left, the timers do not conform and are simply displayed as floating 

billboards. The design on the right, used by our system, conforms to the context, in 

this case the rim of the pans/pots. This design best implements a number of 

heuristics provided by Nielsen Norman Group, including "match between system 

and the real world" and "aesthetic and minimal design." 
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Contextual, not explicit, input 

Unlike traditional systems which rely almost entirely on explicit input, our 

system depends mostly on implicit contextual input. That contextual input has two 

flavors: behavioral and environmental. 

Behavioral input describes actions, both intentional and subliminal, that the 

user takes that can be used as input. For example, if the user is making pancakes 

and they are told to turn the stove on, they are automatically advanced to the next 

step once the burner is turned on. When a user places a pot on the stove, a white 

ring appears to let them know it’s been detected. If the user looks at the pot they 

just placed for more than a certain period after said action, it transitions to 

listening or voice input. Behavioral input is often multilayered and the combination 

of multiple input sources. When speaking to a voice assistant, like Alexa or Google 

Assistant, there is no contextual basis for the conversation. In our system, we use 

objects as a contextual basis -- a burner or a package of ramen, for instance 

(enabling the user to "speak to" the object). In addition to being the perfect place to 

anchor the UI to (contextual anchoring), the knowledge of what the object is 

enables the system to suggest potential actions and infer meaning with less 

verbosity from the user. 
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Environmental input describes events that happen in the user’s 

environment, indirectly related to the user’s actions. For example, if the 

temperature of a burner is not decreasing over a certain time period, and there is 

no pot on the stove, the system can determine that the stove has been left on. It 

covers inputs related to food: if water is boiling, if a pancake needs to be flipped. 

Environmental input is typically used for monitoring food and automatically 

advancing to the next step of a recipe. 

 

Adaptive Minimalism 

In recent years, designers have been striving for a “minimal” UI, which in 2D 

user interfaces often means removing the non essentials. In the context of AR, a 

minimalistic user interface is important: it obscures as little of the user’s real 

world as possible. Obscuring the real world is especially dangerous in a safety 

critical context like cooking. Our user interface has adaptive minimalism — that is, 

the minimalism adapts to the user’s context. One example of this happens when 

instructions are anchored to a pot or pan. The instructions move to the rim of the 

pot or pan when the user’s hands come near. This allows a user to see the 

instructions from afar, while also retaining full visibility of their task (for example, 

adding noodles to a pot of boiling water).  
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Another example of this adaptive minimalism are the augmented rings 

around pots placed on the stove. The ring fades out towards the back, depending 

on the direction the user is looking at the pot. This helps make text more visible and 

avoids obscuring anything that might be behind the pan. 
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5. Implementation 
 

To meet the aforementioned goals, we have implemented a system with two 

primary components: a device mounted above the stove (the “Rat”) and the 

software running on the AR HMD worn by the user (the “Hat”). The Rat monitors the 

stove and the user's actions near the stove, and sends this input to the Hat. The Hat 

also detects user input, like speech, hand position and gaze, but the primary 

purpose is to display information in the user's environment. 

 

Figure 22: Overall System Diagram 

 

 

 

41 



 

 

The Rat and the Hat communicate through Firebase. Firebase is a NoSQL 

database that enables real time communication between the two devices (< 30ms 

readtime). Since the Rat is providing input to the Hat, low latency communication is 

required. Firebase was also chosen because it is easy to develop and because it 

would allow communication over different wifi networks so the user can still get 

notifications when they leave the house. The database has a root node that 

represents the whole stove, and a child node for each burner. Each burner has 

attributes including the temperature, whether or not a pot is detected, and 

whether or not boiling water is detected. The following figure shows an example of 

one of the four nodes.  
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Figure 23: Firebase Node Example 

The Hat 

“The Hat” allows the user to see information embedded in the world around 

them. It also provides additional input to determine the user’s intentions and 

proximity to the stove. The system we implemented runs on a Magic Leap One AR 

headset.  

The Magic Leap One offers a robust set of input methods, including hand key 

pose detection, hand tracking, eye tracking, and more. It is untethered, so the user 

can move about the kitchen without being physically connected to a more powerful 

computer. At the time of writing, the Field of View (FOV) was better than the only 

potential replacement, the Microsoft Hololens (40° x 30° compared to 29° x 17°). 

This difference in FOV allows the user to see more of the system, particularly in 

their peripheral vision. Additionally, the Magic Leap One is more comfortable to 

wear, largely due to the weight distribution (all the computing happens in a  puck 

that clips on the waist). This weight reduction may also improve depth perception 

by reducing the added inertia, as described by [10]. 

 

 

43 



 

 

Unity Game Engine 

Our application is built on top of the Unity game engine. Unity was chosen 

due to its compatibility with the Magic Leap One and ease of development 

compared to other methods (for example, Unity offers a graphical interface where 

objects in the scene can be configured). 

First, we will disambiguate a number of Unity specific terms that will be used 

explain our architecture. The building blocks of a Unity program are GameObjects. 

GameObjects have a position, rotation, scale, as well as components. These 

components define the behavior or ability of GameObjects. For example, in a video 

game, an item that can be picked up might have a PickupBehavior component 

attached. All of the GameObjects are contained by the world, which in Unity is 

called the scene. Returning to the video game analogy, the scene contains all of the 

characters, buildings, mountains etc. Everything in the scene is what the user 

could possibly see if they looked/walked around, but not everything in a scene is 

visible at any given moment.  

Every frame, all of the GameObjects are updated. This happens by calling an 

Update()  function attached to each component. Each GameObject controls its own 

state, and is fairly isolated from other GameObjects. 

Components and other scripts used by Unity are written in C#. 
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Software Architecture 

 

 

Figure 24: The Hat Overall System Architecture 

Model 

In a computer application, the "model" represents the underlying data 

behind the user interface. It is encapsulated from the rest of the system so the way 
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the information is displayed can be easily changed. The model for our system has 

two primary components: burners and recipes. 

Burners 

The Burner data class has a number of attributes, including the 

temperature, and whether or not a pot is detected, burner is on, or boiling is 

detected. All of these attributes are exposed as ReactiveProperties from the 

UniRx  library. This allows other classes to bind themselves to the data model and 2

update themselves automatically when the data changes. This programming 

paradigm is known as "reactive programming." [22] 

Recipes 

Recipes contain the instructions for preparing various meals. Although our 

system currently only supports making pancakes and ramen, the Recipe system 

was written in a extensible way to easily support new recipes. 

Recipes contains a queue of recipe steps (RecipeStep). Each recipe step 

has the following attributes: 

● Instruction or Wait Explanation (string) 

2  UniRx is an open source implementation of the reactive programming paradigm 
for Unity. It is nearly identical to other "Rx" implementations such as JavaRx and 
SwiftRx. More information can be found here: https://github.com/neuecc/UniRx 
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○ Each recipe step has either an instruction or wait explanation. 

An instruction is something the user must do, and a wait 

explanation is for a step that requires something to happen (like 

a pan to preheat or water to boil). 

○ If a wait explanation is provided, an indeterminate state will be 

displayed above the anchor. 

● Anchor (Anchorable) 

○ The Anchorable system will be explained in more detail under 

Key Components, but this is the location that the UI for the 

current step will be anchored to. 

● Requires Burner (bool) 

○ Whether or not this step requires a burner to proceed. For 

example, if the step is "Boil 2/3 Cup of Water," a pot of water 

must be placed on the stove to proceed 

○ This tells the RecipeManager (explained in the "Managers" 

section) to consume the first unused burner with a pot placed 

on it. 

● On Enter (lambda function) 

○ Called when the step is first entered. Handles setup for the step. 

● On Complete (lambda function) 
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○ Called when the step is done. Cleans up the user interface in 

preparation for the step. 

 

The recipe class has an Update function that is called by the 

RecipeManager  every frame. This function checks whether or not the current step 

has been satisfied and, if so, proceeds to the next step. If a recipe is started in the 

middle of a user making something, it will automatically skip steps until it catches 

up to the user. 

Managers 

In our program, there are four "Manager" classes that orchestrate how 

GameObjects behave with one another. Those classes are DatabaseManager , 

RecipeManager , SpeechManager and NotificationManager. 

DatabaseManager 

DatabaseManager manages the connection with Firebase and updating the 

data layer. It is responsible for deserializing the json response from Firebase, and 

mapping the values to burner locations. Burner data objects are stored in an array 

within this class. 
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SpeechManager 

SpeechManager  handles the streaming speech recognition service. This 

includes controlling access, keeping track of whether or not the resource is in use, 

permissions,  and initiating/closing requests.  

RecipeManager 

RecipeManager  is a singleton responsible for starting and managing 

recipes. It is capable of handling multiple recipes at the same time. To start a 

recipe, any script can instantiate a recipe and pass it to StartRecipe. 

RecipeManager  also handles assigning burners to recipes when needed, and 

releasing them when appropriate. 

NotificationManager 

NotificationManager handles sending notifications to the user and 

dismissing them when appropriate. It is implemented as queue since in the current 

implementation, only one notification can be viewed as a time. Safety critical 

notifications will always take priority and be displayed first. 

State Machines 

State machines are used throughout our program, from burners to 

notifications. Encapsulating functionality into states makes the code more flexible 
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and easier to maintain. For example, to add a new capability to the burner voice 

prompt, we would create a state for the said capability and add a trigger to the 

voice input state. This minimizes the number of classes that have to be modified. It 

also helps us handle transitions: individual states can detect that a transition is 

required and cleanup after themselves (for example, hiding unnecessary UI 

components).r 

In our system, a state machine was implemented using a "State" class with 

an "Update" function. This "Update" function returns a State. This return value is 

either the current state or the next state. Components use this state machine by 

having an attribute of type state, which is assigned to an initial value. In the 

components update function, the update function of the state is called and the 

return value is assigned to the state attribute. If the state was changed, it will be 

updated on the next frame. 

Burners 

There is a GameObject in the scene for each of the four burners.  The 

position (e.g. "Upper Left") is set for each burner in the editor. Each GameObject 

has a BurnerBehaviour class which controls the state and high level 

functionality for the burner. Additionally, each burner GameObject has a number of 

child GameObjects including a "BurnerOnVisualizer," a timer, and an indicator 
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ring. This allows the UI functionality to be encapsulated. For example, if a burner 

has been left on, the  BurnerBehaviour  class will enable the 

BurnerOnVisualizer. The BurnerOnVisualizer class will handle pulsing the 

red disk displayed on top of the burner. Once it is turned off, the 

BurnerOnVisualizer will be disabled by the BurnerBehaviour. 

BurnerBehaviour 

As mentioned above, a BurnerBehaviour  component is attached to each 

Burner. Each BurnerBehaviour  has its own state machine. Burner states are 

broken up into four categories InputStates, TimerStates , BoilingStates , and 

RecipeStates  (these are not states themselves, but packages for states). The 

state diagram below illustrates how and why the burner moves through its states. 
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Figure 25: Burner State Diagram 

The following are explanations of each state's behavior: 

● AvailableState 

○ When available, the burner is checking to see if a pot is added. It is 

also checking to see if it's been left on for more than 5 seconds, in 

which case it transitions to BurnerLeftOn  state. 
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● BurnerLeftOnState 

○ In this state, a glowing red disk is augmented directly on top of the 

burner (as seen previously in Figure 13).  Once the burner has been 

turned off, the system returns to AvailableState 

● InputStates 

○ ProactiveState 

■ When a pot is placed on the stove, and the burner is not needed 

for a recipe, the burner is transitioned to a proactive state. In 

this state, a white ring is displayed above the pot to indicate that 

it has been detected. If the user looks at the ring for more than 

~ .3 seconds, the burner transitions to VoiceInputState 

○ VoiceInputState 

■ In this state, the ring transitions to be blue and wavy. Voice 

prompts are displayed and, as the user talks, the recognized 

text is displayed as well. This state also handles errors (in 

which case, the recognized text will flash red and clear) as well 

as determining how to process the input. 

● BoilStates 

○ WaitForBoilState 
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■ If the user asks the system to monitor boiling, this state will be 

initiated. The ring switches to a red indeterminate mode, as 

seen in Figure 6, and "Waiting to Boil" is displayed. Once the 

water boils, the system transitions to DoneBoilingState 

○ DoneBoilingState 

■ Once the water is done boiling, the ring transitions to pulsing 

green and "Done" is displayed. Once dismissed, the burner 

returns to ProactiveState 

● TimerStates 

○ WaitForTimerState 

■ If a timer is set, this state will be initiated. The ring transitions to 

a timer and the time remaining is displayed. Once the desired 

time has elapsed, the system switches to TimerDoneState. 

○ TimerDoneState 

■ Once the water is done boiling, the ring transitions to pulsing 

green and "Done" is displayed. Once dismissed, the burner 

returns to available. 

● UseForRecipeState 

○ UseForRecipeState is entered once RecipeManager  determines 

that the burner should be used for a recipe. It is the only state which 
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has a sub-state. It assigns this sub-state based on the current recipe 

step -- for example, if the current RecipeStep  is waiting for water to 

boil, the sub-state will be the WaitingToBoil  state. 

BurnerMiniMirror  

BurnerMiniMirror  is an extension of the BurnerBehaviou r class. It 

contains all of the same components and child GameObjects, but instead of 

updating its own state it copies the state of a target burner. This is used for the 

Mini Mirror display shown in Figure 9. 

Anchoring System 

One unique ability of our system is contextual anchoring: that is, the UI can 

anchor itself to physical contexts in the users environment. To enable this, we 

developed a unique anchoring system. The system has two primary components: 

Anchorable and anchor points. 

Any context (represented as a GameObject) that can be anchored to (for 

example, a Ramen package or burner) extends from the Anchorable  class. It also 

defines one or more transforms (scale, position, and rotation) the UI can anchor to 

-- what we call anchor points. 

The Anchorable class has two functions: IsInView() and 

GetBestAnchorPoint() . IsAvailable returns whether or not the Anchorable 
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is visible to the user. For example, if the Ramen package has been placed on the 

counter or ripped open it is no longer visible. In this case, the Anchorable  class 

will fall back to an anchor in the upper corner of the user's display. Next, 

GetBestAnchorPoint returns the best anchor point to anchor to. For example, 

the default anchor for a pot is in the middle, but if the user's hands are near the pot 

it moves to an alternative anchor point along the edge of the rim. 

Improving Device Input 

Although the Magic Leap has a number of different input methods, they are 

difficult to incorporate out of the box (due to instability, inaccuracies, or 

implementation specific details.) We developed a number of strategies for 

circumventing these deficits.  

Gaze 

One input source used is gaze tracking. Gaze tracking provides a 3D vector, 

with the camera at origin, that represents where the user's eyes are looking. We 

use this in order to understand where the user is directing their attention. For 

example, in Figure 5 (Left) a white ring is shown above a pot to indicate a detection, 

and this ring turns into a voice prompt when the user directs their attention 

towards it. 
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Although it is easy to detect which GameObject is being looked at in a given 

moment, this information alone is not very useful. Eyes tend to jump quickly 

between fixation points, in movements known as saccades [21]. These saccades 

happen extremely quickly, and users might not even notice them happening. In our 

system, we usually combine three measures: whether or not the GameObject is 

being looked at; if so how long it's been looked at, and if not how long it's been since 

it was looked at. The former is usually used to initiate an action (like showing a 

voice prompt) and the latter is usually used to exit an action (a timeout). 

In order to more easily incorporate gaze tracking into our system, we created two 

new classes: GazeCaster  and GazeReceiver . A single GazeCaster  is added to 

any Unity Scene that uses eye-tracking. This class constantly gets the latest gaze 

direction and performs a Physics raycast into the environment. Lastly, any 

GameObject that wishes to somehow utilize raycasting adds a Physics Collider and 

our GazeReceiver  component. The GazeReceiver  component provides a variety 

of useful data including duration of current gaze and duration since last gaze.  

Image Tracking 

Another input source is image tracking. Magic Leap is capable of tracking 

image targets in the real world and providing the position and location. There are a 

number of problems with this tracking. For one, it can be extremely noisy even in 
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the best of circumstances. This noise can be extremely jarring, and potentially 

nauseating, for users. Additionally, optimal conditions are extremely hard to 

achieve. Lighting will worsen this problem, as will small image targets. The 

inaccuracies get worse as the image targets move further away from the headset. 

And if the image target is too close to the headset, the rendered content can 

become invisible. 

To resolve this problem, we created the TrackerFollower class. The class 

is assigned an Magic Leap ImageTracker  to follow and a tracking speed. 

TrackerFollower  uses linear interpolation in order to smooth out the image 

tracking data and follow more smoothly. Different tracking speeds make sense for 

different applications. Something that is handheld should have a higher tracking 

speed than something expected to be stationary. 

TrackerFollower automatically decreases following speed as the image 

tracker gets further away. This helps counteract the loss of accuracy. It can also, 

if enabled, ensure the image target is outside of the camera's clipping plane. 

The last feature of TrackerFollower  is the ability to automatically switch 

between multiple targets for the same object. For example, if you want to follow a 

Ramen package, the user could be looking at either the front or back of the 

package. TrackerFollower can be provided both and will track whatever is 

available/closest. 
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Hand Tracking 

Magic Leap provides hand tracking, including a location of the user's palm 

and recognition of a small set of key-poses (like thumbs up, open hand, and fist). 

Like eye tracking, hand tracking can be extremely noisy and we often want to know 

more about how long the key-pose has been active for.  

To work around this issue, we implemented KeyPoseTracker. 

KeyPoseTracker  is provided a a key-pose to track. From that, it tracks a number 

of different data points: 

● Hand velocity 

● Smoothed (median + linear interpolation) hand position 

● Key-pose duration 

● Duration since key-pose 

● Whether or not the hand is stationary 

● Duration of stationary 

● Duration since stationary 

Adaptive Transparency Shader 

The adaptive transparency shader makes it easier to read text when it is 

anchored to a burner. The figures below illustrate legibility without (left) and with 

(right) the adaptive transparency shader. 
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Figure 26: Text is obscured by the indicator ring (Left) 

Figure 27: Adaptive transparency makes text more legible (Right) 

 

This effect was achieved using what is known as a shader. A shader changes 

how a mesh is rendered by the camera. In this case, the shader, which is 

calculated for every pixel, does the following:   

 

// this is psuedocode 

// this function is run on every single pixel location being  

// shaded on an objecte 

void surf() 

{ 

  Position meshCenter= GetCenterOfMesh(); 

  Vector directionUserIsFacing = meshCenter - CameraPosition; 

Position closestPointOnMesh = GetClosestPointOnMesh(meshCenter,  
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Radius,  

directionUserIsFacing); 

 

//the farther away this pixel is from being the closest in line with 

the user's gaze the more transparent the pixel is 

float pixelAlpha  = 1 - abs(distance(closestPointOnMesh,  

ThisPixelsWorldLocation))  

  SetTransparency((pixelAlpha) 

} 

Speech Recognition 

Speech recognition is not provided by Magic Leap. There were a number of 

existing Speech Recognition packages that worked with Magic Leap, but these did 

not offer streaming. Streaming speech recognition predicts what the user is saying 

as they talk, rather than recording an audio clip and submitting it for recognition. 

For our project, we modified an Azure Speech Recognition [6] library for use with 

Magic Leap and other IL2CPP devices. This modified package has been open 

sourced and is available for download at the following link: 

http://github.com/bhylak/magicleap-streaming-stt 
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The Rat 

Purpose 

In order to successfully monitor the user’s kitchen environment both when 

the user is in the kitchen or in another room, we needed a device that would always 

be in the kitchen continuously monitoring the environment. The device is meant to 

provide information about the user’s environment in the kitchen to determine 

actions taken and actions that need to be taken.  

Before building the Rat, we defined a set of requirements that the Rat has to 

meet. The requirements are summarized in the following table.   

Requirement  Reasons 

The Rat needs to consistently monitor 
the kitchen 

Maintain safety since the user can 
leave the burner on any time of the day; 
Decrease the need for explicit input 

All operations need to run locally on the 
Rat 

Maintain the privacy of the user 

The Rat should be mounted securely 
above the stove 

To get a good view of the stove top and 
surroundings; Not in the user’s way 
during cooking 

Low latency  To detect user’s actions in real time so 
the user is not left wondering whether 
or not explicit input is needed 
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Hardware 

To meet the above criteria, we determined that the following hardware 

modules are needed: 

● A microcontroller with high processing power 

● An RGB camera to detect objects placed on the stove and status of recipes. 

● A thermal camera to detect which burners are on. 

A block diagram of the different parts can be seen in Figure 28. The Coral 

USB accelerator was added later on in the design process to speed up machine 

learning inferencing. The following is a picture of the electronic assembly. 
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Figure 28: Electronic Assembly 

Raspberry Pi 3 B+ 

For the microcontroller, we decided to use a Raspberry Pi, which is a 

single-board computer used widely for prototyping purposes. We used the 

Raspberry Pi model 3B+ for its high processing power, affordability, and 

prototyping capabilities.  

The high processing power of the Raspberry Pi was a priority since it would be 

used to run multiple different operations at the same time. These operations 

include the use of thermal detection, computer vision, and machine learning. All of 

these processes require high processing devices especially when run at the same 

time. However, for machine learning applications, the high processing power of the 

Raspberry Pi was still not sufficient. Therefore, we used a google coral accelerator 

to run machine learning processes. The coral accelerator will be discussed in 

more detail later in this chapter.  

Fisheye Camera 

The SainSmart Wide Angle Fish-Eye is a Raspberry Pi compatible camera 

that has a 160 o viewing angle. The reason we used a fisheye camera was due to 

the narrow field of view of a regular Raspberry Pi camera, which has a horizontal 

field of view of 62.2 o and a vertical field of view of 48.8 o.  
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Due to the fact that the camera needed to capture a stove top with the dimensions 

28” x 20.5” and the device is mounted at a height of 18”, we needed to use a fisheye 

camera since our calculations showed that the field of view of the regular camera 

would not be sufficient. This is shown in the following figures of the horizontal 

fields of view of each of the cameras.  

 

Figure 29: Field of View of Fisheye Camera (Left)  

Figure 30: The Regular Camera (Right) 

 

Thermal Camera 

We decided to use the Adafruit AMG8833 IR Thermal Camera for our 

thermal detection purposes due to its affordability and compatibility with the 

Raspberry Pi. The main limitation of the thermal camera, however, is the 

temperature range of 0 oC to 80 oC. For the purposes of our prototype, the 
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temperature change that the thermal camera is able to detect can still allow us to 

detect when a burner is turned on and when a burner is left on. 

Although the field of view of the thermal camera does not cover the whole stove, it 

covers enough of the burners to be able to get their temperatures. The camera has 

a viewing angle of 60 o. 

 

Appendix C 

Figure 31: Field of View of Thermal Camera from datasheet 

 Figure 32: Field of View of Thermal Camera on top of Stove 

 

Coral Edge TPU Accelerator 

Google Edge TPU Coral accelerator was added later on in the design process 

to speed up machine learning processes run on the Raspberry Pi. The accelerator 
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uses Google Edge TPU to run machine learning inferences. Edge TPU is an ASIC 

(Application Specific Integrated Circuit) designed to provide high performance 

machine learning inferencing for Tensorflow Lite models. The Coral accelerator is 

designed for any Linux device with a USB port and is therefore compatible with the 

Raspberry Pi. The Coral team recommends using a USB 3 port to get the best 

inference speeds that can reach 100 FPS. The accelerator is still compatible, 

however, with the USB 2 port of the Raspberry Pi.  

Construction 

Electronic 

The following block diagram shows the connections made to the Raspberry 

Pi in order to integrate the various parts of the system. The integration between all 

the hardware pieces included three connections, the thermal camera to the 

Raspberry Pi, the fisheye camera to the Raspberry Pi, and the Coral Accelerator to 

the Raspberry Pi.  
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Figure 33: Block Diagram of Hardware Components 

 

The Coral Accelerator can simply be plugged into a USB port on the 

Raspberry Pi and does not require any additional connections. Similarly, the 

Fisheye camera uses a CSI-2 (Camera Serial Interface), which is the most widely 

used camera interface in the mobile industry, and can be connected to the CSI port 

on the Raspberry Pi. The thermal camera connection, however, is slightly more 

complex and is discussed in more detail below.  

As seen in the block diagram, the connection between the thermal camera 

and the Raspberry Pi uses four pins on the thermal camera. These pins are split 

into power pins and logic pins as follow: 
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Power Pins: 

● 3Vo, which is a 3.3V output from the onboard voltage regulator which 

converts the voltage input from 3-5V to a safe voltage.  

● GND which is the common ground pin for power and logic pins. 

 

Logic Pins: 

 

● SCL, which is the I2C clock pin that connects to the SCL pin on the Raspberry 

Pi. This pin includes a 10k pull up resistor needed for I 2C connections. 

● SDA, which is the  I2C data pin and it connects to the SDA pin on the 

Raspberry Pi. This pin also includes a 10k pull up resistor.  

 

I2C is a serial protocol for two wire interface that connects low speed 

devices like microcontrollers to similar peripherals in embedded systems. I 2C bus 

allows for connecting almost unlimited  number of I2C devices using only two wires 

that include pull up resistors. Each I2C slave has a 7-bit address that is unique to 

each bus. The microcontroller generates the clock using the SCL pin and gets the 

data through SDA.  
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Enclosure 

We needed to design an enclosure for our electronic parts both to protect 

them and be able to mount them directly over the stove. Before starting the design, 

we had the following criteria: 

 

● Both the thermal camera and the fisheye camera should get a view of all 

four burners on the stove.  

● The enclosure needs to be compact 

● The enclosure needs to have holes for mounting the Raspberry Pi 

● Power input, USB ports, and the HDMI port needed to be exposed 

● The horizontal position of the enclosure needs to be adjustable in case we 

need to move it to a different stove 

● The whole design needs to be securely mounted to the backsplash 

 

The 3D design of the enclosure that includes the Raspberry Pi, the thermal 

camera, and the fisheye camera can be seen in the figures below.  
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Figure 34: Enclosure 3D design (Top view)  

Figure 35: Enclosure 3D design (Bottom View)  

 

The enclosure rests on a part that can slide over two Aluminum rods 

attached to a back piece that gets mounted to the backsplash. The back piece is 

designed to be bulky and larger than the other components in the design so that it 

can support the weight of all the other components. The complete design can be 

seen in the figure below.  
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Figure 36: Enclosure and Wall Anchor 3D Design 

 

All parts of the design were 3D printed, assembled and mounted over the 

stove. The following is a picture of the design after being mounted on top of the 

sove.  
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Figure 37: The Rat Mounted over The Stove 

Software 

The Rat provides information about the user’s environment and actions. 

Therefore, the images provided by the thermal camera and the fisheye camera 

need to be processed to collect useful information about the kitchen environment. 

This information is collected through processes that run on the Rat, including 

temperature detection, burner on detection, pot detection and food state detection. 

These are discussed in more detail below. 
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The software processes were designed with the following assumptions 

about the stove environment: 

● The stove is electric with four burners. Although the processes might work 

for gas stoves and induction cooktops, this has not been tested. 

● The area of the stove top is not larger than 21" x 28".  

● The Rat is mounted a minimum of 18" above the stove so the thermal camera 

has a view of all four burners 

Temperature Detection 

One of the main things that we need the device to do is detection of 

temperature on different burners to detect whether or not a burner is on. The 

output image from the thermal camera is an 8x8 pixel array as shown in Figure 38. 

This image alone is not enough to get useful information about each burner.  

 

Appendix C 
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Figure 38: Thermal Camera Raw Output 

 

Before processing the image to get burner temperatures, we needed to 

refine the visualization from the thermal camera to a higher resolution. We used 

interpolation, which is a mathematical method used to construct data points 

between discrete points of data to get a refined measurement. After interpolation, 

we get a 32x32 pixel image. The image from the thermal camera of all burners of 

the stove being on is shown below. Red represents the highest temperature while 

blue represents the lowest temperature. 
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Figure 39: Thermal Camera Interpolated Image 

Our initial method of getting temperature of burners was to split up the 

image from the thermal camera into four quarters representing each burner and 

take the average of the pixel readings in each quarter. That method proved to be 

inaccurate, however, due to the fact that it takes into account the cooler parts of 

the stove and affects the temperature readings.  

To detect the burner temperatures more accurately, we apply computer 

vision methods using the OpenCV library [20]. OpenCV is an open source library 

developed for real-time computer vision and image processing applications.  

The process applied to the thermal camera image to detect the temperature of 

each burner is summarized in the following flowchart.  
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Figure 40: Thermal Processing Flowchart  

 

The following figure shows the processed images of each quarter of the 

stove with the mask applied to the each burner area. 
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Figure 41: Thermal Processing Output Images 

Burner On Detection 

Besides getting the temperature of each burner, the Rat also needs to 

determine if a burner is on. One approach would be to check whether or not the 

temperature is higher than a certain threshold. But, this approach does not 

account for a burner that has just recently been turned off. A hot burner can take 

several minutes to cool down after being turned off.  
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Therefore, we instead collect temperature differentials over a time window 

to check for decreasing trends. In order to account for temporary temperature 

spikes caused by the user’s hands or other burners, we take the median of a set of 

temperature values over a time window before checking for decreasing 

temperatures.  

In order to constantly process a collection of data points both for getting a 

median of temperatures and getting temperature differentials, we used a moving 

average array. A moving average is used to store a maximum number of data 

points in an array over time. Once the array reaches its maximum size, data points 

that were stored earlier get pushed out of the beginning of the array and a new 

data point is added to the end of the array.  

The following diagram sums up the burner on detection process. 
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Figure 42: Burner On Detection Flowchart 

Pot Detection 

Pot detection is an important form of behavioral input. For example,when the 

user is making Ramen, the device can start detecting whether or not water is 

boiling based on the presence of a pot. It is also important to know which burner is 

being used so that UI components, like instructions, can anchor itself to the correct 

burner.  

The first step in the process was to collect a set of pot images using the 

Fisheye camera on the Rat. We collected 250 images of different pots with varied 
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lighting conditions, positions, orientations, and combinations. Next, the location of 

the pot in each image pictures need to be recorded in a process known as labeling. 

In this process, a bounding box is drawn around each pot. We used an open source 

software called LabelImage [31] for this task. The following figure shows the 

interface we used and an example image. 

 

Figure 43: Pot Detection Labeling Example 

 

Next, we trained a machine learning model using the Tensorflow library. 

Tensorflow is widely used for machine learning applications because it makes the 

process of training and running machine learning models easier. However, training 

Tensorflow machine learning models from scratch can take millions of images and 

is very time consuming. Therefore, we used a technique known as transfer 

learning to train the model more quickly and accurately. Transfer learning is a 

method that allows for general purpose models to be retrained for a more specific 
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task [5]. In this case, we re-trained a Mobilenet V2 [30] Tensorflow model to detect 

pots.  

Since training a machine learning model takes a long time on devices with 

low processing power, we used Google Cloud TPU to train our model which 

accelerated the training process significantly to take around 30 minutes [24].  

After the training finishes an inference graph is created. The inference 

graph can then be used by the Tensorflow library to detect objects and their 

locations in images. One of the test images used to verify the success of the trained 

model is shown below. The model detected a pot with a 90% probability.  

 

 

Figure 44: Pot Detection Example 
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Using a Tensorflow model for real time applications is inefficient since the 

processing time it takes is 0.067 FPS (Frames Per Second). However, Tensorflow 

offers a lighter version of a Tensorflow model that is called a TFLite model 

(Tensorflow Lite), with the disadvantage of decreasing accuracy. After converting 

the pot detection graph to a tflite graph, the speed increased to 0.2 FPS. However, 

that was still slow considering that UI elements need to be updated in real time 

depending on the results of the tflite detection. Therefore, we decided to use Coral 

Accelerator to run the pot detection model.  

To use the coral accelerator with the pot detection model, all we needed to 

do was use the TPU object detection script included in the Edge TPU package with 

the TFLite model that we had created earlier. When tested with our pot detection 

model, the coral accelerator increased the framerate 26x from 0.2FPS to 5 FPS.  

Next, to detect which burner the pot is placed on, we used the detection boxes 

generated by the Edge TPU object detection class. The detection box around a pot 

is returned in an array in the following format [x_min, y_min, x_max, y_max].  The 

following flowchart shows the process of detecting which burner the pot is placed 

on. 
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Figure 45: Pot Detection Flowchart 

 

Food State Detection 

To demonstrate how the Rat can be used to detect different states of food, 

we implemented two different use cases boiling detection and pancake detection. 

The device can detect when water starts to boil and when a pancake is poured, 

ready to flip, or has been flipped. 
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Boiling  

Boiling water is an essential part of many recipes including making Ramen, 

which we will be using to test the system. Therefore, it is important for the Rat to be 

able to detect when water starts boiling. Since boiling is a very dynamic process, 

machine learning won’t be effective in this case. We used image differencing 

techniques provided by OpenCv and scikit-image [25] libraries to detect boiling. The 

main technique we used to find the differences between images is the Structural 

Similarity Index (SSIM) [29]. SSIM provided a concrete measure of similarity 

between two given images based on a range from -1 which indicates completely 

different images to 1 which indicates identical images.  

To detect boiling, the main difference that need to be taken into account 

between consecutive frames is mainly the bubbles that arise in water when it 

starts boiling. Therefore, areas outside of the pot such as the stove top and the 

counters would make SSIM calculations less accurate since they contribute to 

adding unnecessary noise in the image. Therefore, the image is first cropped to 

only include the stove top area. The image is then split into four quadrants 

corresponding to each burner. Even after splitting the image to only include the pot 

area on each burner, there was still some noise around the pot that could affect 

the SSIM calculations.  
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To remove that noise, the image is further modified to include the area 

closest to the rim of the pot. That is done using OpenCv to find the largest elliptical 

contour in the image. The ellipse is then drawn onto a black mask to create a new 

mask. When this mask applied to the original image, it outputs the pot region of the 

burner. The following figures show the masking process.  

 

Figure 46: Boiling Detection Masked (Left)  

Figure 47: Boiling Detection Mask Applied to Image (Right) 

 

 

After this mask is applied, the image is used in an SSIM comparison process. 

In this process, every frame recorded by the Rat is compared to the frame 

previous to it. The SSIM comparison function returns a difference score and an 

image highlighting the differences between the two frames. For visualization 

purposes, the following figures shows the difference image, the image converted to 
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grayscale, and bounding boxes drawn using OpenCv to show the areas of 

difference between the two frames.  

 

Figure 48: Boiling Difference, Threshold, and Bounded Rectangle Images (Grayscale) 

 

Although every SSIM is stored, we do not take every number into account to 

determine if boiling occurs. That is because the SSIM might drop for reasons other 

than water boiling, such as someone passing their hand over the pot or the pot 

being slightly moved around. To avoid this issue, the median of five SSIM readings 

is stored into a list. We then take the average and use it to determine whether or 

not water is boiling. If the average SSIM drops under a certain threshold 

representing a larger difference between the frames, a boiling flag is set to true. If 

thirty seconds pass where that flag is set to true, we check the temperature of the 

water to see if it is in the boiling temperature range. If the temperature is in the 

boiling range, then the boiling status of the burner is set to true.  
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Pancakes 

It is important for the Rat to be able to monitor the progress of a recipe. That 

means that it should be able to recognize all the different states of a recipe once 

it’s placed on the stove. In our case, we used making pancakes as an example of a 

recipe that can be monitored using the rat. The different states of a pancake are: 

not placed in pan, placed in pan (not ready to flip), ready to flip, and flipped.  

We used a retrained image classification model run on the Coral EdgeTPU in 

order to detect the different pancake states. The data collected for the training 

process consisted of pictures of pancakes that we made. We made around 30 

pancakes and took 70 images per state with the Rat’s Fisheye camera (a total of 

280 images). We used data augmentation in order to generate more images for the 

training process. Data augmentation is an automatic process used to increase the 

size of datasets using for machine learning purposes [9]. We performed random 

operations on the images that include rotating, flipping (horizontally and vertically), 

adding noise and blurring. We increased the size of our dataset to 420 images 

using image augmentation. The following figure shows a sample of our dataset for 

all 4 states.  

 

 

88 



 

 

 

 

Figure 49: Pancake States 

 

Using the same training technique we used for pot detection to train a 

pancake state detection model resulted in a low accuracy Edge TPU TFLite model. 

Therefore, we used Google Cloud AutoML [3]. AutoML is designed to train machine 

learning models on the cloud. AutoML enabled us to optimize training for use with 

Edge TPU and resulted in a highly accurate model. 
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6. Evaluation 
 

After the system was complete, the evaluation for the system was divided 

into three sections: system usability, accuracy, and awareness. By separating 

these evaluations, we were able to explore each area in more depth. 

System Usability 

To test the system's usability, we conducted a study in a simulated kitchen 

environment. The study was performed to evaluate the merits of detached 

monitoring, particularly in its ability to reduce the need for physical presence while 

cooking and adapt to the user's context without explicit input. Additionally, we 

wanted to discover how usable our AR application was in a real world setting 

(because there is very little research in this area, the challenges are largely 

unknown).  

Recruitment 

For the experiment, we searched for participants who met the following criteria: 

● Over the age of 18 

● Had familiarity with cooking pancakes and ramen 

● No known history of seizures/photosensitive epilepsy 
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To find participants, we posted on school social media pages, posted flyers 

around campus and contacted relevant student groups and classes. We recruited 

a total of 7 participants, ranging from ages 18 to 30. Two of the participants 

identified as females, and the remaining five identified as male.  

Safety Considerations 

We took a number of steps to ensure the safety of our participants. First, we 

created a mock kitchen in a lieu of a real, operable kitchen. This is because the 

effects of our system and AR in general on depth perception were largely 

unknown. There was a non-trivial risk that the system could affect user's ability to 

perceive depth, or reduce awareness of their surroundings, either of which could 

result in a burn or other injury. We monitored users' actions throughout the 

experiment to look for errors, like misjudging the distance to a pot, that could 

cause complications when using the system in a real kitchen. 

Additionally, users completed a Simulator Sickness Survey before and after 

using our system. The Simulator Sickness Survey has users self-identify their level 

of discomfort across a wide range of symptoms, like burping, eye-strain and 

dizziness. The survey had two primary uses. First, it allowed us to filter users that 

had symptoms which could be exacerbated by AR. Users that had more than one 
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mild symptom in any category would not be allowed to participate. Second, it 

allowed us to track whether or not our system was causing Simulator Sickness. 

 

Setup 

First, we created the mock kitchen in our lab. The mock kitchen had a printed 

stove with switches to turn the burners on and off, a sink area with a pitcher of 

water, measuring cups, pans and other required materials. It also had plastic 

vegetables, and real packages of Ramen. 

Figure 50: Simulated Kitchen Setup 
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Although the Rat was mounted above the stove for added realism, due to the 

mock kitchen setting, all of the responses from the Rat were simulated. (For 

example, since our fake stove could not actually boil water, another researcher 

would simulate the signal that is sent to the Hat). We created a GUI using Python to 

easily simulate the responses from the Rat, which can be seen below.  

 

Figure 51: Experiment GUI 

Dependent Measures 

In our evaluation, we used a variety of surveying techniques, along with 

observation. The first surveying method was the Simulator Sickness 

Questionnaire, as mentioned previously.  
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The following two surveying techniques were chosen based on research 

provided by Laubheimer [12]. The first is a two-part post-task survey, administered 

after every task. Laubheimer’s experience in the field indicated that lengthy 

surveys after each task tired users out, and most questions were often redundant. 

Instead, they suggest asking a Single Ease Question, or SEQ. The SEQ asks the user 

to rate the task from Very Easy to Very Difficult on a 7 point scale, which we have 

them complete on a web survey. After the SEQ, Laubheimer recommends asking 

the user to verbally explain why they scored the task accordingly. 

After all tasks have been completed, we then administered the System 

Usability Survey (SUS). NNG recommends this survey at the culmination of a user 

study, in order to understand how the participants perceive the system as a whole. 

The system usability survey has 10 questions, each ranging from Strongly 

Disagree (1) to Strongly Agree (7). 

After the SUS, we also collect demographic data like age, gender, and 

experience level with AR/VR and cooking. Finally, we had a short, semi-structured 

interview to provide an outlet for any uncommunicated feedback. A list of all the 

surveys used in the experiment can be found in Appendix A. 

As mentioned, we also relied on observation throughout the experiment. 

Participants were instructed to think out loud as they completed the tasks. Each 
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participant was video recorded so we could further analyze their behavior 

post-experiment. 

 

Procedure 

We began with explaining the experiment, including potential risks, and 

reviewing the consent form with participants. Once the consent form was signed, 

we introduced them to the Magic Leap. We first showed them the device, and 

explained some of the capabilities. Afterwards, participants went through fitting 

and visual calibration, using built in Magic Leap utilities. This calibration improves 

eye tracking and overall visual quality, and also familiarizes participants with using 

an AR headset. Participants were then walked over to the mock kitchen and 

introduced to the various tools and components. 

Next, participants were asked to complete three tasks: reheating vegetables, 

making ramen and, lastly, making pancakes. One of the most important aspects of 

our evaluation is that we did not tell users how to complete the task. This is in 

contrast to the evaluation for CounterIntelligence where users had to follow a 

predetermined set of steps like "Put one egg into a small pot & fill the pot with 

enough HOT water to cover the egg [and then] bring the water to a simmer & let 

simmer for 3 min. " 
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Instead, we gave participants a goal: make ramen or make pancakes, for 

example. The only additional information we provided for the task was related to 

constraints of our simulated environment (for example, we told participants to 

pretend like there was real pancake mix in the bowl.) Our goal was to understand 

how people naturally complete common tasks in the kitchen. 

When a task had a long wait, the experimenter would sit down at two chairs 

located about two meters from the stove. This was to encourage participants to 

leave the stove, although they were not required to. If participants did not leave the 

stove naturally, we would ask them why. We instructed participants to keep the 

Magic Leap in-between tasks, unless they were experiencing discomfort (at which 

point, we would have ended the experiment) 

As mentioned, after each task participants were asked to fill out a Single 

Ease of Use Question (SEQ). We then proceeded with asking the participant how 

they decided what score to give the task. 

Once all three tasks were completed, participants removed the headset and 

provided final feedback. 

Survey Results 

The last participant (7) in our study encountered a number of device related 

technical problems, which resulted in the inability to complete the first and second 
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task. For this reason, we discarded their responses to the System Usability Survey 

and the Single Ease of Use Question. Their responses to the Simulator Sickness 

Survey, as well as observations gleaned from the trial, will still be used. 

No Signs of Simulator Sickness  

After an hour of using our system, the majority  of participants did not show 

any increase in simulator sickness, as reported by the Simulator Sickness Survey. 

Two participants did, however, report a small increase (from "None" to "Slight") in 

eyestrain. Additionally, one participant reported a decrease in two symptoms: 

fullness of head and stomach awareness. Although this only occured for one 

participant, it is nonetheless interesting to note that our system did not worsen 

their existing symptoms. Although it seems that the Magic Leap headset did cause 

eye strain after an hour, the lack of other symptoms associated with simulator 

sickness is a positive sign.   

Additionally, participants did not show signs of impaired depth perception 

nor impaired environmental awareness. None of the participants accidentally 

touched a hot surface, or made a mistake that could be attributed to the effects of 

wearing an AR headset. In other words, had the experiment taken place in a real 

kitchen, none of the participants in this study would have injured themselves.   
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System Usability Results 

  Five out of the six participants found the system easy to use and reported 

that they would like to use the system frequently. Four participants reported that 

they would not need help from a technical person to use the system. This, of 

course, means that two participants said they would need help. Those two 

participants were the first participants to try out the system. They encountered 

errors, mostly related to voice input, that were fixed directly after their 

participation. One out of the six participants reported that they did not feel very 

confident using the system. That participant also encountered technical issues that 

required our intervention. A summary of the answers to each of the System 

Usability Scale questions can be found in Appendix E. 

Single Ease Question (SEQ) 

Responses to Single Ease Questions are summarized in the following chart. 

The difficulty levels that could be assigned to each task varied from 1 being the 

easiest to 7 being the most difficult. None of the participants assigned a difficulty 

level higher than 5 to any of the tasks. Participants reported that making pancakes 

was the easiest task, while setting a timer was the most difficult.  
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Figure 52: Responses to Single Ease Questions 

Discussion 

Detached monitoring was intuitive 

One of the clearest findings from this experiment is that participants found 

detached monitoring to be intuitive. In fact, the tasks that relied more on detached 

input were rated as easier in the SEQ. Participants understood early in the task 

that their actions were being detected, without being told, and came to expect it. In 

contrast, participants often did not initially understand that they could provide 

voice input due to a lack of visual cues and prompts. This is especially surprising 

when considering how commonplace voice input is, and how uncommonplace 

detached monitoring is. 
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Participant 1 said that detached input was “...calming, almost. It takes the 

panic out of putting things on the stove.” While making ramen, participant 3 made a 

mistake by putting the noodles in the water and accidentally dropping in a sealed 

flavor packet before it was even on the stove, much less heated. But, when 

completing a task with more detached input (making pancakes), the same 

participant executed the task flawlessly and remarked “It was like somebody was 

watching over me." Participant 5 said that "almost completely autonomous.” 

Although they were performing all of the actions, the lack of explicit input led to this 

feeling of autonomy. 

Accommodating different paths 

As previously mentioned, we actively avoided prescribing a "correct" way of 

completing each task in the experiment. This effort was reflected in the diversity of 

ways our participants completed each task. For example, while making Ramen, 

four participants began by looking for instructions on the package, while three 

started by simply pouring water into the pot. One participant did not bother with a 

measuring cup, explaining that he simply pours out any excess water after making 

the ramen noodles. Some participants initiated the recipe following process, while 

others did not realize this was an option and simply prepared the ramen by using 

the boiling monitoring and timers. 
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Contextual anchoring is effective -- with caveats 

Contextual anchoring was found to be highly effective in our experiment. 

Contextual anchors to a pot or burner were by far the most usable. Participants 

did not need to be told where the UI was -- they found it naturally as they 

completed their task. Participant 6 particularly mentioned that they appreciate 

how "clear it was to see which timer went to which pot." Participants largely 

understood, and liked, that they could "leave" the UI where it was while they were 

waiting for a task to finish. While we were talking in proximity to the stove, waiting 

for a step to complete, all participants would occasionally glance over to check the 

status. 

A few issues did arise from the use of contextual anchoring. Three 

participants reported momentarily not being sure where exactly to look, or having 

to search for a UI. This happened when the interface was just out of the 

participant's FOV, or if the participant was expecting a certain UI to be available 

that simply wasn't. For example, some participants were expecting to see 

instructions for the next step while waiting for the pan to preheat. Although there 

was no next step available, participants had no way of knowing and would visually 

scan around the kitchen looking for the step. One participant expressed a desire 
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for directional cues (like arrows) to guide them towards what they should be 

looking at.  

Adaptive minimalism went largely unnoticed (a good thing!) 

Participants mostly did not remember the adaptive minimalism after 

completing a task. At the end of the second task, we asked participants if they saw 

the instructions move when adding food to a pot or pan. Only one participant could 

initially recall seeing this happen. However, after seeing the feature again in the 

third task, participants generally expressed that they remembered it from before. 

One participant remarked that it's “like its paying attention to you." The fact that 

participants did not notice the feature, but also had no trouble viewing the inside of 

the pot, indicates that the adaptive minimalism was successful. The point, after all, 

is to get out of the way. 

Most users did not find the entry point available from the package of Ramen 

The user interface anchored to the package of Ramen was, by far, our least 

successful UI element. This was partly exacerbated by the combination of Magic 

Leap's poor image tracking and the significant near clipping plane (0.37 meters). 

Magic Leap's image tracking suffered at large distances, and required the package 

to be held relatively close to the headset. At the same time, the near clipping plane 

prevented things from being viewed when less than 0.37 meters from the glasses. 
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It also takes a while to recognize the package, and most users have already found 

the instructions on that package by that time. If eye tracking was more precise, it 

would be preferred to simply detect that the user is reading the instructions and 

then offer to start a recipe automatically. 

When instructions are anchored to something that's held, users are afraid to put it down. 

For the participants that used the Ramen package entry point successfully, 

they all seemed to hesitate after seeing the initial instruction. Some participants 

were reluctant to put down the package. In fact, in the picture below, participant 3 

was so reluctant to put down the package that they turned on the burner with one 

finger while holding the package in the same hand. Participants who displayed this 

behavior said that they did not want to lose the information -- or the user interface 

in general. Some participants also seemed to think that subsequent steps would 

also show up on the package. 
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Figure 53: Participant Holding Onto The Ramen Packet 

Participants found the gesture for a voice prompt  to be easy and comfortable -- once 

shown how to do it correctly 

The only hand gesture in our system is to summon a handheld voice prompt. 

In our experiment, we taught users how to invoke the prompt prior to the third task 

(pancakes). For the first two participants, we tried to verbally tell them how without 

showing them, but they were unable to do so without seeing how. Once participants 

were shown how, they were largely successful. After being taught, we instructed 

users to open/close a voice prompt multiple times and asked if it was physically 

exhausting. All participants indicated that it was not. One participant specifically 

remarked that it was "just like taking out a phone." 
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Figure 54: Participant using hand-anchored voice prompt (Left)  

Figure 55: Example of what the participant might see (Right) 

 

Participants successfully used gaze to interact with elements of the system, without knowing it 

We asked the last three participants to place three pots done and set timers, 

one at a time. The goal was to determine if participants could use their gaze to 

select a specific burner. All three of the participants we asked were able to 

complete this mini-task successfully, without knowing that gaze was the input 

method. They seemed to naturally look at the burner while talking to it, avoiding any 

intentional redirection of gaze. 
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Status and time estimations 

Participants largely agreed that in order to feel confident enough to leave 

the stove, they needed a way to stay informed on the status of the task, including an 

estimate of time remaining. Notifications are useful, but may be too late. Unlike 

other participants, participant 7 decided not to sit down and converse while 

preparing pancakes.  Instead, they continued to watch the stove. When asked why 

they didn't want to leave, they illustrated the problem by walking to the other side 

of the lab, and pretending to complete activities of daily living, including laundry. 

When they got a notification that the pancake needed to be flipped, they said they 

were afraid it would burn before they had a chance to flip it. This was the reason 

they were wary of leaving the stove — they didn’t want to have to rush back 

immediately. 

Participants need to have an estimate of time remaining so they understand 

how long of a “leash” they have — how far they can go and make it back in time. The 

handheld stove visualization was later implemented in response to this feedback. 

A related finding is that participants expressed a need to know what’s coming next. 

It helps them prepare in advance and complete the task in a sequence that makes 

the most sense for their context. 
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System Accuracy 

To evaluate the performance of each process run by the Rat, a series of 

tests were conducted where both speed and accuracy measurements were 

recorded.  

Burner Temperature 

To evaluate temperature detection by the Rat, we compared the 

temperature reading from the Rat to the temperature readings from an IR 

thermometer. The tests conducted to make the comparison are recording boiling 

temperature and burner surface temperature.  

When running the tests, we realized that the burner surface temperatures 

and the temperature of hot pans almost always exceed 80oC, which is the 

maximum temperature the thermal camera could detect. Although the thermal 

camera could actually give readings higher than 80 oC, the accuracy decreased 

significantly with higher temperatures.  

Detecting when a Burner is On 

Although the thermal camera could not detect the high temperatures of 

burner surfaces accurately, it could still detect changes in temperature and could 
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be used to detect when a burner was on. To evaluate the ability of the Rat to detect 

when a burner is on, we conducted a test where a burner was turned on for a few 

minutes and then turned off. We measured the amount of time it took for the device 

to record that a burner was on after it was turned on. We also recorded the points 

of the experiments at which false detections were made. 

There was a delay of around 5 seconds before the device detected that a 

burner was on. That is caused by the fact that the burner does not get immediately 

hotter than the surrounding environment the moment it is turned on. After the 

burner has been turned on. As the temperature rises, the status detected by the 

device switches between on and off. Once the temperature reaches a steady level, 

the device could detect that the burner was constantly on. Similar results were 

obtained when detecting that a burner was turned off. Once the burner is turned 

off, the temperature does not significantly drop immediately. Therefore, the status 

detected by the device switches from on to off for around a 30 seconds. After the 

temperature starts decreasing more significantly, the device is able to detect that 

a burner was turned off. 

Detecting Boiling Water 

Three boiling experiments were conducted to record the delay between 

visual boiling and boiling detected by the Rat. The device detected boiling from a 

 

 

108 



 

 

minute to a minute and thirty seconds early in all cases. That is caused by the fact 

that the boiling detection algorithm checks if the water temperature is above a 

certain threshold before assigning a boiling status. The inaccuracy and 

inconsistency of temperature readings collected from the thermal camera are the 

main reason for this issue.   

Detecting the Presence of a Pot 

We measured the accuracy and speed of the pot detection algorithm by 

placing a variety of pots on each of the four burner. When tested with pots that the 

machine learning model was trained with, the device was able to successfully 

detect when a pot was placed on each of the four burners. However, the device 

was not able to accurately detect pots that were not included in the training 

dataset. When a pot from outside the dataset was placed on the stove, the device 

could detect it with a probability lower than 20%, which is not a high enough 

probability to avoid false detections and poorly positioned bounding boxes. The 

speed of the object detection algorithm using Edge TPU was measured to be 5 FPS.   

Pancake State Detection 

The accuracy of our pancake state detection model can be measured 

through the quality of pancakes made. Therefore, 3 pancakes were made with the 
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assistance of the Rat. The quality of the pancakes and the consistency of the 

results over the three pancakes were evaluated. We also measured the delay of 

the device to detect each pancake state.  

All pancakes states were detected successfully and the pancakes made can 

be seen in figure 56. The test also showed the consistency of pancake detection 

across the three pancakes since they all have a similar golden brown color. The 

speed of pancake detection using Edge TPU is 2.5FPS.  

 

Figure 56: Pancakes made with the Rat 
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7. Reflections on Design and Tradeoffs 
 

Before settling on our final method of running machine learning models, 

which is using the Edge TPU Coral accelerator, multiple different methods were 

considered. The first method we considered was using Azure Custom Vision AI 

[source]. Although the Custom Vision model was highly accurate and could 

recognize a wide variety of pots, it had two major drawbacks. The first drawback 

was the high latency, since its processing speed was 0.25 FPS. The second 

drawback was that the model was hosted online and therefore has privacy 

concerns associated with it. Since maintaining privacy of the users was a major 

design criteria for the Rat, we decided to explore other options for running 

machine learning models. 

Running a re-trained tensorflow model locally on the Raspberry Pi was our 

next option. However, as mentioned in the implementation section, the processing 

speed was 0.067 FPS. When we converted the Tensorflow model to a TFLite model 

and then to an Edge TPU TFLite model, there was a clear tradeoff between 

accuracy and speed. The Tensorflow model was the most accurate. For example, 

the pot detection tensorflow model could detect pots with probabilities higher than 

90%. TFLite model was significantly faster with a framerate of 0.2 FPS, but with 

lower accuracy. The TFLite model could detect a pot with probabilities higher than 
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70%. The Edge TPU TFLite model has a framerate of 5FPS, but the pot detection 

accuracy drops again to between 50% and 80%. However, the Edge TPU accuracy 

was still high enough to detect pots it was trained on, so we decided to use it for 

the purposes of our prototype.  

Because the Coral accelerator was released only a few weeks before the 

end of this project, we considered another inference acceleration option before we 

could get a Coral accelerator. We considered the Intel Neural Compute Stick 2, 

which uses a VPU (Vision Processing Unit) to accelerate machine vision tasks. 

Using Intel Neural Compute Stick for our specific application was not efficient for 

the following reasons: 

● Lack of detailed documentation on how to use the device. 

● No direct compatibility with Tensorflow models. Models needed to be 

converted to a format compatible with the ncsdk. 

● Incompatibility with custom trained Tensorflow model. 
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8. Future Work 
 

Measuring Awareness  

Notifications are a key part of detached monitoring. Effective notifications 

can help prevent errors like burnt pancakes and unattended burners. In this 

project we implemented two different forms of notifications: diegetic ("heads up") 

and nondiegetic (virtual objects in the user's environment). Unfortunately, we did 

not have the time to determine which form was the most effective. In the future, we 

would like to conduct a controlled study to determine which type of notification can 

keep users appropriately aware and prevent dangerous situations. 

 

Real Kitchen Environment 

Prior to our experiment, we did not know whether or not AR would risk 

participants' safety. We are now confident that it will not. In the future, we are 

planning to conduct a follow-up study in a real kitchen environment. 

 

Expanding Detached Monitoring  

Our project implemented a single form of detached monitoring, but there are 

countless applications in the kitchen and beyond. One application we'd like to 

pursue is a smart kitchen scale. The scale would use AR to show a progress bar as 
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different ingredients are added to a mixing bowl. It would enable the user to walk 

away in the middle of pouring an ingredient, effectively "saving" their working state 

at any given time. Like the Rat, it would also be able to detect actions like when 

something is placed on the scale or the user is done adding an ingredient.  

 

Thermal Camera  

Due to the temperature range limitations of the thermal camera we used, 

the Rat could not collect accurate surface or food temperatures on each burner. 

To solve this problem, a thermal camera with a larger temperature range should 

be used. In a future iteration of the project, we will use the MLX90640 which has a 

110 o view angel and can measure temperatures between -40oC and 300oC.  

 

Recipes from the Cloud 

One potential feature that can be added to the system is accessing and 

parsing recipes from the cloud for the user to follow. Some of the participants in 

our experiment expressed interest in being able to look up a recipe using Remy 

and have the device guide them through the recipe.  
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9. Conclusion 
 

The primary goal of the project was to explore how detached monitoring can 

help improve cooking. Based on our research and experiments, we believe that 

detached monitoring can make cooking easier, safer, and less stressful by guiding 

the user through recipes and keeping the user informed no matter where they are 

in the home. Participants in our experiment definitively reported that cooking tasks 

were easier the more detached monitoring was involved. In the future, AR , 

combined with detached monitoring, will certainly have a place in the kitchen and 

the rest of the home.  
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Appendix 

Appendix A 

Simulator Sickness Survey 

Instructions : Circle how much each symptom below is affecting you right now 

 

1. General discomfort  None  Slight  Moderate  Severe 

2. Fatigue  None  Slight  Moderate  Severe 

3. Headache  None  Slight  Moderate  Severe 

4. Eye Strain  None  Slight  Moderate  Severe 

5. Difficulty Focusing  None  Slight  Moderate  Severe 

6. Salivation Increasing  None  Slight  Moderate  Severe 

7. Sweating  None  Slight  Moderate  Severe 

8. Nausea  None  Slight  Moderate  Severe 

9. Difficulty Concentrating  None  Slight  Moderate  Severe 

10. « Fullness of the Head »   None  Slight  Moderate  Severe 

11. Blurred vision   None  Slight  Moderate  Severe 

12. Dizziness with eyes open  None  Slight  Moderate  Severe 

13. Dizziness with eyes closed  None  Slight  Moderate  Severe 

14. *Vertigo  None  Slight  Moderate  Severe 
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15. **Stomach awareness   None  Slight  Moderate  Severe 

16. Burping  None  Slight  Moderate  Severe 

 

* Vertigo is experienced as loss of orientation with respect to vertical upright.  

** Stomach awareness is usually used to indicate a feeling of discomfort which is 

just short of nausea. 

 

Setting a Timer 

Single Ease of Use Question (SEQ) 

Overall, this task was... 

 

Easy            Difficult 

1  2  3  4  5  6  7 
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Making Ramen 

Single Ease of Use Question (SEQ) 

Overall, this task was... 

 

Easy            Difficult 

1  2  3  4  5  6  7 

 

Making Pancakes 

Single Ease of Use Question (SEQ) 

Overall, this task was... 

 

Easy            Difficult 

1  2  3  4  5  6  7 
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System Usability Scale 

SUS uses a 5-point scale where 1 corresponds to strongly disagree and 5 

corresponds to strongly agree.  

 

1. I think that I would like to use system frequently  

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

2. I found the system unnecessarily complex 

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

3. I thought the system was easy to use   
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Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

   

4. I think that I would need the support of a technical person to be able to use the 

system 

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

5. I found the various functions in the system were well integrated  

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

6. I thought there was too much inconsistency in the system  

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 
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7. I would imagine that most people would learn to use the system very quickly 

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

8. I found the system very cumbersome to use  

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 

 

9. I felt very confident using the system 

 

Strongly 
Disagree 

      Strongly 
Agree 

1  2  3  4  5 
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Appendix B 

System Personas 

Parent 

A lot to cook, and a lot of mouths to feed. 

Contexts 

● Making breakfast for 3 kids while also preparing their lunches for school 

● Trying to prepare dinner as the baby is crying 

● Preparing Thanksgiving for 15 people 

● Toddlers running around the kitchen (kid trying to touch stove unattended) 

● Sharing the kitchen 

● Talking to people while cooking (divided attention) 

● go-to meal for family 

College Student 

Not experienced, not sophisticated, busy and poor 
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Contexts 

● finals week -- even less time than usual, and stressed 

● on the go-able food 

● food that's hard to mess up 

● cooking ramen/macaroni for dinner (just boil water) 

● cooking the same thing for the 100th time (repetition) 

● shopping for weekly groceries, needs food that fits budget 

Health Freak 

Counting calories, Paleo, vegan, etc. 

Contexts 

● craving a certain thing, but want it in healthy meal 

● wants to find something to eat that fits calorie range 

Busy Bee 

Knowledgeable about cooking, but short on time 

Contexts 

● Meal prepping for the week 
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● food within timespan [30 mins] -- want to maximize time, food that can be 

cooked in time span 

● on a conference call while cooking 

● taking at the look and seeing what can be made (not preparing a complex 

dish ahead of time) 

● wants to cook a quick meal, but doesn't want to feel like a college student (+ 

wants to eat healthy) 

● Dressed for work and doesn't want to get their clothes dirty 

● Consistent routine everyday (breakfast + dinner @ certain times) 

○ things ready when for them when they get back (Whatever that 

means) (recipes prepared?) 

● eats lunch at work 

● tell you what you're missing so you can buy it 

Linguini 

Amateur chef 

Contexts 

● Waiting for a pie to bake in the oven (waiting a really long time) 

● Cooking things that takes a while, and is not attended 
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● Cooking things that need to be checked up on periodically 

● Lots of ingredients, lots of steps, lots of things to mess up 

● Figuring out what flavors would work well together -- combinations of things 
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Appendix C 

AMG8833 Datasheet Highlights 
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Appendix D 

Answers to Single Ease Questions 
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Appendix E 

Answers to System Usability Scale 

Q1. I think that I would like to use system frequently 
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Q2. I found the system unnecessarily complex 
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Q3. I thought the system was easy to use 
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Q4. I think that I would need the support of a technical person to be able to use the 

system 
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Q5. I found the various functions in the system were well integrated 
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Q6. I thought there was too much inconsistency in the system 

 

Q7. I would imagine that most people would learn to use the system very quickly 
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Q8. I found the system very cumbersome to use 
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Q9. I felt very confident using the system 
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