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INTRODUCTION 

The credit derivatives market has known an incredible development since its 

advent in the 1990’s. Today there is a plethora of credit derivatives going from 

the simplest ones, credit default swaps (CDS), to more complex ones such as 

synthetic single-tranche collateralized debt obligations. Valuing this rich panel of 

products involves modeling credit risk. For this purpose, two main approaches 

have been explored and proposed since 1976. The first approach is the Structural 

approach, first proposed by Merton in 1976, following the work of Black-Scholes 

for pricing stock options. This approach relies in the capital structure of a firm to 

model its probability of default. The other approach is called the Reduced-form 

approach or the hazard rate approach. It is pioneered by Duffie, Lando, Jarrow 

among others. The main thesis in this approach is that default should be modeled 

as a jump process. 

The objective of this work is to value Asset-backed Credit default swaps using the 

hazard rate approach. The first section of the first chapter deals with the formal 

modeling of credit risk and the second section with managing credit risk. Then in 

chapter 2, section 1 is dedicated to corporate credit defaults swaps and section 2 

to asset-backed CDS. Section 3 looks at the use of credit defaults swaps as a risk 

management tool. Section 4 then deals with the valuation of asset-backed CDS. 

The third chapter consists of the description of the methods used in this work for 

valuing asset-backed credit defaults swaps as well as the result of the 

implementation of a numerical example. We then close with a conclusion on the 

applicability of the hazard rate approach to price asset-backed credit default 

swaps.  
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CREDIT RISK 

Credit Risk or Default Risk is defined as risk due to uncertainty in a 

counterparty's or obligor's ability to meet its obligations. Credit Risk comes in 

various forms because there are many types of counterparties and obligations. 

We can characterize Credit Risk by three elements: credit exposure, default 

probability and recovery rate. 

Credit exposure refers to the magnitude of loss in the value of the outstanding 

obligation when default occurs. Default probability represents the likelihood 

that the counterparty will default on its obligation either over the life of the 

obligation or over some specified horizon, such as a year. In the event of 

default, recovery rate is the fraction of the exposure that may be recovered 

through bankruptcy proceedings or some other form of settlement. 

Credit Risk came out as the key risk management challenge in the late 1980s 

and one way to hedge Credit Risk is through the use of Credit Derivatives and 

Securitization with loans and bonds as collateral assets. 

In the effort to account for Credit Risk, it is important to be able to model it. 

Modeling Credit Risk is done through two major approaches, the Structural 

Approach and the Reduced Form Approach, also known as the Intensity-based or 

Hazard Rate Approach. Both approaches will be covered in this work. In this 

section, we will delve into the details of Credit Risk modeling and management. 
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1.1. MODELING CREDIT RISK 

1.1.1. The structural approach 

The structural framework is based on the idea of linking the credit quality of a 

company to its financial and economic conditions. Therefore defaults are 

resultant of the firm’s capital structure. There are two main structural models, 

Merton’s model and the Black-Cox or First Passage Model. In the following, we 

put ourselves in a continuous trading economy. We assume that a money market 

account and default free zero coupon bonds are traded in this economy. Non 

arbitrage is assumed in the market of these traded securities, ensuring the 

existence of a risk-neutral probability measure [5]. Time T, T>0, is the final date 

of the model. 

Merton’s Model 

This approach was introduced in 1974 by Merton [12] and is considered as the 

first structural model. Merton applied the idea of Black-Scholes [3] for option 

pricing to modeling a firm’s liability. Let ( )( )0, ,t≥Ω PF
t

 be a probability space 

and ( )
0

1

≥ttW is a Wiener process Ft –adapted. In this model, the asset value 

0)( ≥= ttVV of a firm is modeled as a geometric Brownian motion. In other 

words, we can write the change in the asset value tdV as: 

0

t t V t t
dV rV dt σ V dW

V v

= +


=
 (1) 
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 where r is the risk-free interest rate and Vσ, is the volatility of  V . 

Moreover this model assumes that the firm’s liability D can be modeled as an 

outstanding T-maturity zero-coupon bond. The company then defaults if at time 

of servicing the debt, the asset value is less that its outstanding liability, i.e. 

T
V < D . Therefore the firm’s equity can be seen as a European call option with 

strike price D on the asset value and expiration time T. This is a direct result of 

the assumption that default can only occur at maturity. Thus we can write that 

( )T TE = max V - D,0  (2) 

Other assumptions include the absence of: 

r  Transaction costs, 

r   Bankruptcy costs,  

r  Taxes, 

r  Or problems of assets indivisibilities [7]. 

Since the asset value of the firm is not typically traded, market prices cannot be 

observed for it. Thus we cannot compute Vσ  from market data. Even tough 

balance sheet information is available, due to the coarse frequency (quarterly or 

annually); this information might not be helpful in estimating Vσ  on a more 

frequent basis as it is needed for hedging purposes.  To go around this problem, 

we use the known relationship between equity tE and asset value tV  through the 

fundamental theorem of accounting 
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T T
V = D + E  (3) 

The advantage of using this relationship is that equity is traded and market prices 

are readily available for it.  

We also assume the following model for equity: 

t t E t t
dE rE dt E dWσ= +                          (4) 

where Eσ  is the volatility of tE . 

With the assumption that the firm’s equity is a call option on its asset value, we 

use Black-Sholes’s option pricing theory to express equity as follows 

),( tt VtfE =                                          (5) 

where  

( )
1 2( , ) ( ) ( )

r T t
f t x xN d De N d

− −
= −          (6) 

2

1

1
ln( / ) ( )( )

2
V

V

x D r T t

d
T t

σ

σ

+ + −
=

−
, 

2 1d d T tσ= − −  

Using Ito’s lemma, we have: 

( )
2

2

( , ) ( , ) ( , ) ( , )21

2
t

f t V f t V f t V f t V
t t t tdE rV V dt V dW

t t V t V tt x x x
σ σ

 ∂ ∂ ∂ ∂
 = + + +
 ∂ ∂ ∂ ∂
 

    (7) 

Thus identifying (7) with (4) and using (6), we have  

1

( , )
( )t

E t V t V t

f t V
E V N d V

x
σ σ σ

∂
= =

∂
 

Thus we can now express
V

σ . 
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( )
E t

V

d t

E

N d V

σ
σ =                                                               (8) 

Where 

2

2
1

( )
2

zx
N x e dz

π

−

= ∫
−∞

 is the cumulative distribution function of the 

standard normal random variable. 

We then use tE
^
 the observed market price of equity, and 

^

t
V obtained through 

averaging a time series of asset values from the available balance sheets to 

estimate 
V

σ as 

^
^

^ ^

1( )

E t
V

t

E

N d V

σ
σ ≈                                                                            (9) 

Where  

^^
2

^

1 ^

1
ln( / ) ( )( )

2
t V

V

V D r T t

d

T t

σ

σ

+ + −
=

−

. 

Then, we can solve numerically for 
^

V
σ                                             (10) 

The only other parameter needed in the approximation is the liability D. To 

estimate D, the face value of the zero-coupon T-maturity bond used to model the 

firm’s liability, Sundaram [21] points out that “default tends to occur in practice 

when the market value of the firm’s assets drops below a critical point that 

typically lies below the book value of all liabilities, but above the book value of 
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short-term liabilities.” A good approximate for D is a value in between these to 

values.  

To obtain the maturity of the zero coupon bond, “we can either choose it to 

represent the maturity structure of the debt, for example as the Macaulay duration 

of all the liabilities, or simply as a required time horizon (for example, in case we 

are pricing a credit derivative with some specific maturity)” [7] 

While the assumptions make it easy to implement this model, they are clearly 

unrealistic. All improvements of this model are attempts to adopt more realistic 

assumptions. Other concerns are the assumptions of a constant and flat term 

structure, the use of a simple zero coupon bond to model the firm’s debt and the 

predictability of default occurring only at maturity T, resulting in very low short-

term spreads. 

Once we have estimated Vσ , the parameters of the model in (1) are all specified. 

Next there are at least two quantities of interest for modeling Credit Risk:  

r  The default probabilities. 

r  The time of default. 

The next section covers these two concepts with more details. 

The First Passage Model: Black-Cox Model 

Rather than making the assumption that default occurs only at maturity of the 

zero coupon bond, this model assumes a threshold in the form of a stochastic 

process ( )
≥t t 0

D= d  [6]. The firm will default at time t once its asset value 
t

V  hits 
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t
d . In this model, the time of default is given as the first passage time of the value 

process ≥t t 0V =(V ) to either a deterministic or a random barrier [7]. 

Default can then occur at any point of time and the main issue becomes finding 

the correct threshold process 
t

d . As in the Merton Model, we also consider the 

following model for the asset value 
t

V  

t t V t t
dV rV dt V dWσ= +  

Where 
V

σ is estimated using (10). 

The random variable time of default is then defined by  

{ }( ) inf | s st s t V dτ = ≥ ≤                                             (11) 

This represents the first default after time t .  

We can now write the default probabilities explicitly using the assumptions on tV  

( ) ( ) ( )

( )

≤ ≤ ≤

≤

 
≤  

 

 
 
 

P P P P

P

1 1
V Vrs+σ W rs+σ W ss s

s s 0
s T s T s T

0

1 s
V s

s T
0

d
τ T = min V < d = V e < d = min e <s

V

d
= min rs+σ W < ln

V

min

 

It can be shown that the random variable ( )1min sV
ts

t WrsG σ+=
≤

 has an inverse 

Gaussian1 distribution. Thus, assuming that ( )
0≥

=
ttdD  is such that dd t =  

0≥∀t , 
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( )

 
 
 

      
         ≤    

      
   

P

0

2
V

d2rln
V

0 σ 0

V V

d drT - ln ln + rT
V V

τ T =1-N +e N
σ T σ T

 (12) 

The other improvements of the Black-Cox model from Merton’s model relate to 

the inclusion of transaction costs, taxes, stochastic interest rates, debt 

subordination, jump in 
t

V  among others. These improvements however 

introduce more analytical complexity into the problem. Certain authors point that 

it is more suitable to model the ratio of the asset value over the threshold t

t

V

d
. 

This would help to go around the problem of having to find an explicit 

expression for td . 

1.1.2. The reduced-form approach 

The main idea behind the reduced-form approach- also known as the hazard rate 

approach- is that the time of default of a firm can be modeled as a jump process, 

specifically as the first jump of a Poisson process. Market data are then used to 

determine the parameters associated with the default intensity. This approach was 

introduced by various authors among whom Jarrow and Turnbull [14], Madan & 

Unal [16], Duffie & Singleton [5] and Hughston & Turnbull [9]. 

The intensity-based model 

Unlike the structural models, the hazard rate model does not use the capital 

structure of the firm to find the time of default but it rather takes it as the first 

jump in a Poisson process. To better understand this approach, we explore the 
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“time to default” process. As in section 1.1.1, we let ( )( )P,, 0≥Ω ttF  be a 

probability space and let τ  denote the time to default or the waiting time for the 

happening of default. Let )(tS  be the probability of survival after time t. In other 

words,  

PS(t)= (τ > t)     (13) 

Thus  

( ) 1 ( ) ( )F t S t tτ= − = ≤P  (14) 

 is the probability of default before or at time t. 

Since we assume no default at time 0, we have 1)0( =S . 

The question then is to find an appropriate distribution that can be used to model 

the default probabilities.  

For that purpose, the notion of hazard function tλ  is introduced [5, 14]. 

This function is defined as: 

( )[ ]τ τ
λ

→

< < + >
=

0

/
limt

h

t t h t

h

P
    (15) 

Then by definition of conditional probability 

( )
[ ]( ) ( )( ) ( )

/
( ) ( )

S t h S tF t h F t
t t h t

S t S t
τ τ

− + −+ −
< < + > = =  P  (16) 

Therefore since 1S(0) =  it follows that: 

'

t

S (t)
λ = -

S(t)
   and hence 

-

0( )

t
ds

s

S t e
λ∫

=   .                                          (17) 
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Observe that if we assume 
t

λ to be constant and equal toλ , we have  

−= λtS(t) e             (18) 

Therefore, under these assumptions, τ  has an exponential distribution with 

parameter λ>0. 

Knowing this, it seems plausible [2] to assume  that there is a sequence ( ) 0≥iτ   of 

independent random variables, exponentially distributed with parameter λ>0 such 

that: 1τ  is the time to the 1st default, 2τ  is the time between the 1st and 2nd 

default,…, nτ  is the time between the (n-1)th  and nth defaults and so on. 

The sequence ( )
0≥iiτ  represents an infinite sequence of random variables on the 

probability space. The variable 1 2 ...
n n

τ τ τΜ = + + +  characterizes the time to the 

nth default with 0 0Μ = . With the assumptions that two defaults cannot happen 

simultaneously and that only a finite number of defaults can happen in each 

interval time, ( )
0n n≥

Μ  is an increasing sequence that converges to infinity. Thus   

0 1 20 ( ) ( ) ( ) ...ω ω ω= Μ < Μ < Μ <  and sup ( )
n

n

ωΜ = ∞ . 

We then look at the process tN  defined as the number of defaults in the time 

interval [ ]t,0 . In other words,  

[ ]max :t nN n t= Μ ≤     (20) 

Note that because of the nature of the sequence ( )
0n n≥

Μ , 0=tN  if 1 1t τ< Μ = . 

In particular 
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00 =N . 

We deduce that the number of defaults in the time interval ( ]ts,  is the 

increment st NN − . 

From (12), it can easily be shown that 

[ ] [ ]t nN n t≥ = Μ ≤  

and deduce that  

[ ] [ ]1t n nN n t += = Μ ≤ < Μ    (21) 

It can be shown [2] that tN  is a homogenous Poisson process with intensityλ , 

i.e.: 

[ ] ( ) ( )1

!

n t

t
N n t e

n

l
l

-
= =P      0,1,...n =   (22) 

and the increments are independent and have a Poisson distribution: 

[ ] ( ) ( )1

!

n t sn

t s
N N n t s e

n

λλ − −
− = = −P    0,1,...n =   0 s t≤ ≤             (23) 

This model can be generalized by letting 
t

λ  be a stochastic process. For example, 

Duffie & al. [5] in their work, modeled 
t

λ as a diffusion process of the form 

tttt dWdtd σλµλλ +=    (24) 

where 
t

W  is a Brownian motion, µ and σ  are respectively the mean and 

volatility  of 
t

λ . The Poisson process is then called a Cox process. 
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1.2. MANAGING CREDIT RISK 

Let’s introduce some common terms that will be used in the remainder of this 

thesis. 

Credit Derivative is a derivative instrument designed to transfer credit risk from one 

party to another. A Credit Event is an event such as a debt default or bankruptcy 

that will affect the payoff on a credit derivative A Reference Asset is an asset, such 

as a corporate or sovereign debt instrument that underlies a credit derivative. A 

Reference Entity is the issuer of a Reference Asset. A Notional Amount is the amount 

of the Reference Asset par value to which a contract applies. The Par value of a 

bond is usually the amount the issuing company promises to pay at the maturity 

date of the bond. In the most general sense, a spread is the difference between two 

similar measures. In the credit derivatives market, spread is computed using bid 

and offer quotes from dealers. A basis point (bps) is a unit equal to 1/100th of 1%. 

In this paper, it is used as a unit for the spread. 

1.2.1. Credit Derivatives 

Credit Derivatives represent one of the most important innovations of the 

financial industry in the last 15 years [1]. They allow isolating and trading the 

Reference Entity’s credit risk through a partial or total transfer. They come in 

various types and flavors, the most common being: 

r  Collateralized Debt Obligations (CDO) 

r  Credit Default Swaps (CDS) 
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Other types of credit derivatives include Total Return Swaps and Credit-Linked 

Notes. While the latter are still frequently used and described in the literature [10], 

this project will focus on CDS and CDO. The figure below illustrates the Credit 

Derivatives market as of 2003.  

 

Figure 1Credit Derivative market breakdown 
by instrument type 

Collateralized Debt Obligations (CDO) 

CDO ([10]) are investment-grade securities backed by a pool of bonds, loans and 

other assets. CDO are also referred to as portfolio correlation products. They represent 

a way of packaging Credit Risk.  Four classes called tranches are created from a 

portfolio of corporate bonds or bank loans or asset-backed securities. The first 

tranche owns 5% of the principal of the portfolio and bears the first 5% default 

losses. 10% of the principal belongs to the second tranche which also takes the 

next 10% default losses. The third tranche has 10% of the principal and takes in 

the next 10% default losses. Finally the fourth tranche owns the remaining 75% 

of the principal and absorbs the residual losses.  
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The figure below illustrates a CDO. 

 

Tranche 4 is usually called the super senior tranche, tranche 3, the senior tranche, 

tranche 2, the mezzanine and tranche 1, the subordinate tranche or “toxic waste”. 

The structure of the CDO is supported by a rating given by the ratings agencies 

such as Moody’s, S&P, and Fitch. Although these ratings might vary slightly 

among these agencies, the highest rates, equivalent to almost default-free are the 

AAA or Aaa, and the lowest, also called “junk” are rated C, Ca or D. 

Tranche 4 is usually rated AAA by S&P and Aaa by Moody’s because almost no 

default risk is associated with that tranche. Despite the existence of default risk in 

Tranche 3, it is still lower than that of the entire underlying portfolio. Unlike 

tranche 3, tranche 2 is probably more risky than the portfolio. Tranche 1 can be 

very risky. A 5% loss in the portfolio will translate in a 100% loss in that tranche. 

Bond 1 
Bond 2 
Bond 3 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Bond n 

 
Average yield 

y% 

 
 

Trust 

Tranche 1 
1st 5% loss 
Yield=35% 

Tranche 2 
2nd 10% loss 
Yield=15% 

Tranche 3 
3rd 10% loss 
Yield=7.5% 

 

Tranche 4 
Residual loss 
Yield=8% 
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That is the reason why this tranche is usually retained by the creator of the CDO, 

given the high risk associated with it. CDO allow creating high-quality debt with 

average quality. An important issue is the correlation between bonds in the 

portfolio, given that the risk to which the mezzanine, senior and super senior 

tranches are exposed depend on that. Recently, copula models, which are statistical 

models, are being used to incorporate the correlation between the elements of a 

CDO. 

Credit Default Swaps (CDS) 

CDS ([1, 19]) are the simplest type of credit derivatives and act as a form of 

insurance. If the reference asset is one bond of a single firm, they are called 

single-name CDS. If the Reference Asst is a portfolio of bonds, then we talk 

about multi-name CDS. There are also CDS backed by an index such as the Dow 

Jones index. In that case, they are called CDX. 

In a CDS contract, one party (the protection buyer or Credit Risk seller) is 

protected from a Reference Entity default through the payment of a regular 

Premium to the other party (the protection seller or Credit Risk buyer), entitling 

the former a payment of any non recoverable amount in the event of the 

Reference Entity default. This process is illustrated below: 
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The calculation of the value of a CDS is then done using the risk-neutral 

valuation method: The expectation of the discounted value of the contingent 

payment to the protection buyer subtracted from the sum of the payments to 

the protection seller. In other words, if we denote the value of the CDS by 

CDSV  we have: 

{ } { } { }11 1
( )1 ( ) (1 ) ( )(1 1 ) ( )

i i i i i i

n n

CDS i i it t ti i
V E ANot i B t t R Not i B t

τ τ τ−> > ≤= =
 = ∆ − − −
 ∑ ∑

 

 Where 

r  n is the number of payments by the protection buyer to the 

protection seller if no default were to occur until maturity, 

r  A is the premium that the buyer pays to the seller at each payment 

in case of no default, 

r  Not() is the value of the notional at each payment date, 

r  ( )
niit ≤≤1
 are the time elapsed (in years) between the premium 

payment dates and the start date of the contract, 

PPrrootteeccttiioonn  
BBuuyyeerr  

PPrrootteeccttiioonn  

SSeelllleerr  

PPrreemmiiuumm  PPaayymmeennttss  

RReeffeerreennccee  EEnnttiittyy  

CCrreeddiitt  EEvveenntt  

CCoonnttiinnggeenntt  PPaayymmeenntt  
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r  ( )
nii ≤≤1

τ  are as defined in Section 1.1.2, 

r  ( )iB t  is the discounting factor at it , 

r  R is the recovery rate of the Reference Asset in case of default, 

r  And [ ]E  is the expectation under the probabilityΠ. 

Therefore under the assumptions that default events, recovery rates and interest 

rates are mutually independent we obtain:  

( ) ( ) ( )∑ ∑= = − −−−∆=
n

i

n

i iiiiiiCDS tBtStSiNotRttBtSiANotV
1 1 1 )()(()1()()(  (25) 

At origination, under the risk neutral valuation framework, we should have  

0=CDSV  

More details about CDS will be provided in Chapter 2. 

1.2.2. Synthetic Securitization 

The idea behind synthetic securitization is among others, to allow credit 

protection, capital relief and exposure to an asset without having the obligation 

to retain ownership of the asset. For example a bank can transfer the Credit 

Risk associated with a portfolio of BBB-rated (medium credit quality) corporate 

loans to a bankruptcy remote special purpose financing vehicle without actually 

transferring the underlying loans. The special purpose vehicle (SPV) can then 

issue securities whose interest and principal payments are provided by cash 

flows coming from the loans. The SPV then creates a portfolio of single-name 

CDS on each the security type and buys protection synthetically for the CDO, 

therefore replicating the CDO synthetically. In this way, the bank is able to 
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avoid sensitive client relationship issues arising from loan transfer notification 

requirements, loan assignment provisions, and loan participation restrictions. It 

is also able to maintain client confidentiality. 

Almost inexistent in 2001, the synthetic products market has grown quickly as 

illustrated by the figure below (reference). 

 

Figure 2 Breakdown of the CDS market in 2001 and………………2003 

There are many types of synthetic credit derivatives such as Synthetic CDO 

(SCDO), Single Tranche CDO (STCDO). 

Synthetic CDO (SCDO) 

Synthetic CDO are artificial CDO that are backed by a pool of credit derivatives 

such as CDS, forwards, and options. SCDO achieve exposure to the pool of 

assets underlying these derivatives by synthetically selling CDS. In such a CDS, 

the SCDO receives a periodic payment from a counterparty that seeks protection 

against the default of a referenced asset. A special purpose vehicle is used to 

structure a SCDO and it can issue floating or fixed rate obligations tranched in a 
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variety of ways with respect to seniority and payment. SCDO obligations can 

have special features customized or tailor-made to investor requirements. 

Single-Tranche Synthetic CDO (STSCDO) 

A single-tranche CDO is one where the sponsor sells only one tranche from the 

capital structure of a synthetic CDO. It is also known as mezzanine-only CDO, 

instant CDO (iCDO), custom tailored CDO tranches and bespoke (meaning 

custom tailored) CDO tranches, STCDO deals are based on synthetic CDO 

technology. A bank arranger will create a customized tranche for an investor. The 

investor chooses the initial portfolio – usually a portfolio of diversified corporate 

reference credits. The portfolio may be static, or the investor may “lightly 

manage” the portfolio, usually at no extra cost. A tranche is defined by its 

attachment point and its detachment point. These two elements characterize its 

position in the CDO structure as illustrated in the figure below. 

 

Figure 3Tranches on CDX or more generally 
Single Tranche CDO 
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CREDIT DEFAULT SWAPS 

A CDS is a form of OTC credit derivative security, which can be regarded as 

default insurance on reference assets such as bonds or loans.  CDS are one of the 

most innovative financial instruments in the last decade and are expanding very 

rapidly and successfully. According to the November 2005 report of the Bank of 

International Settlements (BIS) on the Global OTC Derivatives Market at end-

June 2005 “Notional Amounts outstanding of credit default swaps rose by 60% 

during the first half of 2005 to $10.2 trillion, weathering the sell-off in credit 

markets triggered by downgrades in the US auto industry in March.3 Growth was 

particularly strong in multi-name contracts, whose Notional Amount more than 

doubled to $2.9 trillion, single-name CDS increased by 43% to $7.3 trillion. The 

vast majority of contracts have maturities between one and five years.” [22] 

CDS is a sophisticated form of a traditional financial guarantee, with the 

difference that it needs not be limited to compensation upon an actual default but 

might even cover events such as downgrading, apprehended default etc.  

CDS covers only the Credit Risk inherent in the asset, while risks on account of 

other factors such as interest rate movements remain with the originator. 

CDS are used as a way of hedging a specific exposure to a specific asset or as a 

mean to gain exposure to a specific asset. 
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Two parties are involved in a CDS, protection buyers or risk sellers and 

protection sellers or risk buyers. Protection buyers express their negative view of 

the performance of the specific asset by seeking insurance for a default event. 

Protection sellers on the other hand gain exposure to the specific asset. 

The protection buyer, hereafter referred to as the buyer agrees to pay a Premium 

to the protection seller until a credit event occurs or maturity is attained. The 

protection seller, hereafter referred to as the seller, agrees to pay the contingent 

value to the buyer in case a default event occurs. 

At the time of definition, a CDS contract comes with various specifications. 

Apart from the Premium, the Maturity Date and the Notional Amount, the other 

ingredients to a CDS contract:  

r  Specification of the credit events 

r  Type of settlement ( physical or cash) 

r  Payment frequency  

r  Business day convention 

r  Discounting factor 

r  Effective date 

According  to an article that appeared on Bloomberg News on November 18th 

2005, “GM was among the five companies most frequently included in credit-

derivatives contracts in 2004, along with Ford Motor Co., France Telecom SA, 

DaimlerChrysler AG and Deutsche Telekom AG, Fitch said. Investors bought 
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more contracts protecting payments from Korea, Italy and Russia than any other 

governments.”   

We observe a wide range of participants in the credit-derivatives market. In the 

same article cited above, it is said that “The survey of 120 banks and financial 

institutions showed that banks are typically net buyers of debt insurance because 

they can use default swaps to reduce the risk of corporate loans. Banks used 

credit derivatives to transfer a record $427 billion of credit risk from their balance 

sheets to other counterparties in 2004, up from $260 billion a year earlier, Fitch 

said.” According to a survey from the BBA, “Banks, security houses, and hedge 

funds dominate the protection-buyers market, with banks representing about 50 

percent of the demand. On the protection-sellers side, banks and insurance 

companies dominate [23]. 

We can distinguish two types of CDS, corporate CDS and Asset-Backed CDS.   

2.1. CORPORATE CDS 

The Reference Asset, also know as Reference Obligation, in this case is a 

corporate bond and the Reference Entity is a firm. One of the distinctive features 

of corporate CDS is that the contract terminates at the first credit event or when 

the bond matures, whichever comes first.  

The buyer agrees to pay a Premium to the seller until the underlying Reference 

Entity defaults or the bond matures, whichever comes first. The CDS Premium is 
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typically quoted in basis points per $100 of the Notional Amount of the reference 

asset.  In return the seller makes the engagement to buy the defaulted bond at par 

value from the buyer.  

In the case of a corporate CDS, the guidelines for credit events set by ISDA (the 

International Swaps and Dealers Association) are: 

r  Failure to Pay, 

r  Loss event,  

r  Bankruptcy,  

r  And downgrading.  

The type of settlement can be: 

r  Physical, in which case the seller buys the reference asset at par 

r  Cash, entitling the buyer the reimbursement of the defaulted amount.  

In [10] we can see the following example: suppose two parties enter into a five-

year CDS on March 1, 2002. Assume that the notional principal is $100 million 

and the buyer agrees to pay 90 bps annually for protection against default by the 

reference entity. If the Reference Entity does not default (i.e. there is no default 

event), the buyer receives no payoff and pays $900,000 on March 1 of the years 

2003, 2004, 2005, 2006 and 2007. If there is a credit event, a substantial payoff is 

likely. 

 Suppose the buyer notifies the seller of a credit event on September 1, 2005 

(halfway through the 4th year). If the contract specifies physical settlement, the 
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buyer presents “$100 million divided by par value” of the reference obligation to 

the seller and receives $100 million. If the contract requires cash settlement, the 

calculation agent would poll dealers to determine the mid-market price of the 

reference obligation, a pre-designated number of days after the credit event. If the 

value of the reference obligation proved to be $35 per $100 of par value, the cash 

payoff would be$65 million.  

In the two cases, physical and cash settlement, the buyer would be required to pay 

the seller the amount of the annual payment accrued during March 1, 2005 and 

September 1, 2005 (approximately $450,000), but no further payments would be 

required. 

 

 

                                    Payment if default by reference entity

 

2.2. ASSET-BACKED CDS (ABCDS) 

Asset-backed CDS are written on Asset-backed securities. Parties involved are the 

same as in a corporate CDS. Contract elements such as the Premium, the 

Maturity Date, the business day convention, discounting factor are also the same. 

The main difference resides in the following: 

90bps per year 

Default 

protection 

buyer 

Default 

protection 

seller 

Reference entity 

Defaulted amount 

Credit Event 
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The ABCDS is a PAYGO contract; defaulted amounts are paid and reimbursed 

as they happen, therefore the Notional Amount is not constant and might 

increase or decrease. The contract is not terminated at the first credit event but 

when the Outstanding Notional Balance becomes null or at Maturity Date, 

whichever comes first. Additional provisions are the payment by the buyer to the 

seller of any reimbursed defaulted amount. Also credit events include Principal 

Writedown (reduction), Failure to pay while Bankruptcy is no longer considered. 

2.3. CDS AS RISK MANAGEMENT TOOL 

CDS be used by commercial banks as well as portfolios managers to diversify 

their credit portfolios, reduce their exposure to credit risk and trade credit risk. 

Let’s look at a specific example in which CDS are used as a way of effectively 

hedging a specific exposure to a specific asset or as a mean to gain exposure to 

a specific asset. The table below shows quotes for CDS as a market maker 

might provide them in January 2001. 

 

Maturity 

Company Rating 3 years 5 years 7 years 10 years 

M. Lynch Aa3/AA- 21/41 40/55 41/83 56/96 

Enron Baa1/BBB+ 105/125 115/135 117/158 182/233 

Nissan  Ba1/BB+ 115/145 125/155 200/230 244/274 
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For the last 4 columns, the pair of numbers represents bid and offer quotes for 

CDS with maturity 3, 5, 7 and 10 years. Suppose that a bank had several 

hundreds million dollars of loans outstanding to Enron in January 2001 and was 

concerned about its exposure.  How can it use CDS to hedge its exposure to a 

default by Enron? A possible hedging strategy would be to buy a $100 million 

5-year CDS on Enron from the market maker in table 1 for 135bps or $1.35 

million/year. This would shift to the market maker part of the bank’s Enron 

credit exposure. Instead of shifting the credit exposure to the market maker, the 

bank can also choose to exchange part of the exposure for an exposure to a 

company in a totally different industry, say Nissan. The bank could sell a 5-year 

$100 million CDS on Nissan for $1.25million/year at the same time as buying a 

CDS on Enron. The net cost of this strategy would be 10bps or $100,000. 

As it happens, Enron defaulted within 12 months of January 2001. Either 

strategy would have worked out well! 

2.4. ASSET-BACKED CDS VALUATION 

In this section, we discuss the pricing of CDS in the reduced form framework. 

In pricing CDS, there are two cases to consider: the primary market or at 

origination and the secondary market or after origination. In the primary market, 
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we are pricing a CDS that has not been initiated yet while in the secondary 

market, we are pricing an existing CDS. Both cases will be covered in this section. 

Let’s consider a CDS contract with a constant notional )(tNot . We assume that 

in the event of default, the seller will only pay the non- recoverable part 

)()1( tNotR−  of the notional. We also assume, for simplicity, the recovery rate R 

to be constant. Let T be the length of the contract in years. 

A CDS has two cash flow legs:  

r  The fixed leg or the Premium payments that the buyer pays to the seller  

r  And the floating leg or protection payments that the seller pays to the 

buyer in the case of a credit event. 

 For simplicity we assume no counterparty credit risk. Then the pricing strategy is 

as follows: 

r  In the primary market, risk neutral valuation is used to equate the present 

value of these two legs and determine the fair price.  

r  In the secondary market, current CDS market prices are used to determine 

the implied default probability and compute the value of the CDS contract. 

Each case will be studied in details. 

2.4.1. Pricing CDS in the primary market 

Let ( )
0≥kkm  be defined as a sequence of a set of dates representing the possible 

maturity dates of a CDS contract. km  is usually chosen such that the length of 

the contract follows the usual bond length agreement. In other words,  
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1
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1

=

=

=

 

Also let ( )
1k

A
≥k  be a sequence representing the CDS market premiums 

corresponding to the sequence ( )
1k k

m
≥
. We know that each of these premiums 

will depend on how the market perceives the credit risk associated with the 

Reference Entity, i.e., the probability of default of the Reference Entity. kA is 

paid periodically, for example every quarter, until the end of the contract or 

until a certain credit event occurs for a corporate CDS or the Notional has been 

entirely paid in the case of ABCDS or the contract reaches maturity. 

Consider a CDS contract in which the Premium A is paid every quarter, at a set 

of dates to which we associate a sequence ( )
niit ≤≤1
 , that represent the time 

elapsed between the payment dates and the start date of the contract. 

Thus Tttt n =<< ...21 .   

We set 00 =t . 

Given this definition, there will be some 
i

t  such that ki mt =  for Tmk ≤ . 

Let ( )iF t  be the probability that the Reference Entity will default by time 

it (see equation (14)) and ( ) ( )1i iS t F t= − , the probability that the Reference 

Entity will survive 
i

t .  
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One of the challenges for pricing ABCDS is that unlike with corporate CDS 

where a credit event signifies the end of the CDS contract, a credit event merely 

implies a contingent default payment if the notional is not exhausted. Another 

salient feature is that contingent payments are dependent on the type of credit 

event. Thus to express the default leg, one needs to take into account the 

various type of credit events and their related time of default, as well as the 

likely correlation among them. 

In this work, to simplify the model, we assume only one type of credit event, a 

principal writedown, implying a reduction in the notional.  

The present value of the expected cash flows to be paid by the buyer is: 

( , , ) ( ) ( ) ( )
1

i i iFixedLeg

n
PV A n ANot t S t t B t

i
i

λ = ∆∑
=

            (26) 

where B(.)  is the risk-free discount factor 

On the other side of the contract, the present value of the expected cash flows 

to be paid by the protection seller is given by: 

( ) ( )-1( , ) 1- ( ) ( ) - ( ) ( )
1

FloatingLeg i i i i

n
PV l n R Not t S t S t B t

i

= ∑
=

   (27) 

Under a non-arbitrage assumption, (26) should be equal to (27) at the initiation 

of the CDS contract. Thus the fair Premium is given by: 
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( ) ( )−− −∑
==

∆∑
=

i 1 i i

i i i

n
1 R Not(t ) S(t ) S(t ) B(t )

i
i 1A

n
Not(t )S(t ) t B(t )

i
i 1

    (28) 

At this point, if we know the survival probabilities )(tS  then we can compute 

the Premium A. Therefore our effort in this work will be using the market 

premiums ( )
1.. Tk K=kA where TK is the index for the sequence ( )

1k k
m

≥
 such that 

Tm
TK = , to find the implied survival probabilities. These latter will be used in 

the above expression to compute A. 

The algorithm for finding the implied hazard rate for each maturity will be 

described later. 

2.4.2. Valuing an existing CDS 

Suppose we have a T-maturity CDS contract that has been already initiated in the 

past at time kt−  and suppose that we are now at time 0t . We now want to 

determine the value of this contract. To do this, we first need to find out the 

default probabilities implied by the current market prices for smaller maturities 

CDS contract on the same reference asset. These probabilities will be implied 

from equation (28) using the market prices and used to compute each leg in (26) 

and (27) using the CDS price. The value of the CDS will be the difference 

between the fixed and floating leg. 

( , , ) ( , ) ( , )
CDS FixedLeg FloatingLeg

V A n PV n PV nλ λ λ= −  
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( ) ( )1
( , , ) ( ) ( ) 1 ( ) ( ) ( )

11
iCDS i i i i i

n n
V A n ANS t t B t R N S t S t B t

ii

λ
−

= ∆ − − −∑ ∑
==

   (29) 

Given that in practice spreads are correlated with maturity, it is advisable to use 

the term structure of the hazard rate in (27) and (28). We incorporate that factor 

by using the spread of the various CDS contracts available in the market to 

determine the corresponding hazard rate and use bootstrapping to find the T-

hazard curve. This process will be described in more details in the next chapter. 
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Data and Methods 

In this work, we essentially used the risk-neutral valuation method within the 

reduced form framework to value ABCDS in the secondary market. To account 

for the dependence between spread and maturity, the bootstrapping method is 

used find the term structure of the hazard rate.  

C++ code was implemented to price ABCDS using the aforementioned 

methods. The data source for this work is the INTEX database. The INTEX 

cash flow engine was used to generate cash to use to test the methods and also 

for comparing the effect of applying default at the tranche level and the 

collaterals level. 

3.1. THE HAZARD RATE METHOD USING BOOTSTRAPPING 

Recall that from the hazard rate defined in section 1.1.2.1.  

( ) /
lim
0

t t h t

t hh

τ τ
λ

< < + >  =
→

P
, 

We used this formula to derive an expression for the survival function in 

terms of the hazard rate 
-

0

( )

t
dss

S t e

λ∫

=  

 

If we assume the hazard rate is constant, we have from equation (16): 
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( ) tS t e λ−=  

For short maturities, this assumption makes sense. However for long term 

maturities, given the known dependence between spreads and CDS maturities, we 

use bootstrap to obtain more reasonable default intensities. 

Let ( )
niit ≤≤1
be the sequence of elapsed time between payment dates and the 

contract start date as in section 2.4.1.  

We denote by kλ  the hazard rate that applies between km  and 1+km , where 

( )
1.. T

k k K
m

=
∈ km  and TK is the index for the sequence ( )

1k k
m

≥
 such that 

Tm
TK =  

Also let kn  be the number of payments for the km -maturity CDS. 

Then
freq

mn kk

12
= , where freq  is the payment frequency that can take value 

in 1,3,6,12  meaning monthly, quarterly, semi-annually or annually, respectively. 

The idea of bootstrapping consists of finding the hazard rate kλ  that will make 

the value of the CDS equal to 0, assuming that the previous  jλ  , for 1.. 1j k= − , 

are used for their corresponding period of time.  

To illustrate the method, we look at a practical example. Suppose we have a 10-

year maturity ABCDS, with quarterly payments.  Then the method is 

implemented as follows: 

Set  
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5.01 =m , 12 =m , 23 =m , 34 =m , 45 =m , 56 =m , 77 =m , 108 =m  

For j=1 

Compute 2
3

12
11 == mn  

Set  ( ) ( ) ( )11 1 11 1

2 2
( , , ) ( ) ( ) 1 ( ) ( ) ( )

11
iCDS j i i i i ij

V A n A NS t t B t R N S t S t B t
ii

λ
−≤ ≤

= ∆ − − −∑ ∑
==

 

( ) ( ) ( )1

1 1 11 1

2 2
( , , ) ( ) 1 ( )

11

i i it t t

CDS j i i ij
V A n A Ne t B t R N e e B t

ii

λ λ λλ −− − −

≤ ≤
= ∆ − − −∑ ∑

==

 

Solve numerically for 1λ  by setting  ( )1 11 1
( , , ) 0CDS j j

V A nλ
≤ ≤

= . 

For j=2 

Set 4
3

12
1

3

12
22 =×== mn  

 

Set  

( ) ( ) ( )

( ) ( )

1

1

2 2 21 2

2

2 2
( , , ) ( ) ( ) 1 ( ) ( ) ( )

11

4 4
( ) ( ) 1 ( ) ( ) ( )

33

i

i

CDS j i i i i ij

i i i i i

V A n A NS t t B t R N S t S t B t
ii

A NS t t B t R N S t S t B t
ii

λ
−

−

≤ ≤
= ∆ − − − +∑ ∑

==

∆ − − −∑ ∑
==

 

Rewrite as 

( ) ( ) ( )

( ) ( )

1 1 1 1

1

2 2 21 2

2

2 2
( , , ) ( ) 1 ( )

11

4 4
( ) 1 ( )

33

i i i

i i i

t t t

CDS j i i ij

t t t

i i i

V A n A Ne t B t R N e e B t
ii

A Ne t B t R N e e B t
ii

λ λ λ

λ λ λ

λ −

−

− − −

≤ ≤

− − −

= ∆ − − − +∑ ∑
==

∆ − − −∑ ∑
==
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Or  

( ) ( ) ( ) ( )1
4 4

2 2 2 1 21 2 1 1 3 3

( , , ) ( , , ) ( ) 1 ( )i i it t t

CDS j CDS j i i ij j i i

V A n V A n A Ne t B t R N e e B t
λ λ λλ λ −− − −

≤ ≤ ≤ ≤ = =

= + ∆ − − −∑ ∑

 

Then solve numerically for 2λ  by setting ( )1 21 2
( , , ) 0CDS j j

V A nλ
≤ ≤

= . 

Repeat the steps until 
10K

m  

We can generalize this process in the following: 

Solve for 1λ  by setting   

( ) ( ) ( )
1 1

11 1 11 1 1 1

( , , ) ( ) ( ) 1 ( ) ( ) ( ) 0
i

n n

CDS j i i i i ij i i

V A n A NS t t B t R N S t S t B tλ
−≤ ≤ = =

= ∆ − − − =∑ ∑  

Then iteratively solve for kλ  given 11 ,..., −kλλ  in the following equation: 

( )

( )

k 1

k

k 1 k 1

CDS k 1 1

n n
1

k i i i i i
i n i n

V (A , λ , n )

A Not(t ) ∆t B(t ) 1 R Not(t )( ) B(t ) 0
k

i i k

t t t
i i ie e e

λ λ λ

−

− −

≤ ≤ −

− − −−

= =

+

− − − =∑ ∑
 

 For 2.. 1
T

k K= −  

 So that at the end, the hazard rate function is a given as a step function of the 

form: 









=

≤≤

=

−

T

kk

k

Kk

mtm

t

,..,1

)(

1

λλ

 



 40 

3.2. RESULTS AND DISCUSSION 

We now present a numerical example to illustrate the valuation process under 

various scenarios. For that purpose, we consider a CDS contract with the 

following specifications: 

Start Date: 29/04/05 

Next Pay Date: 25/05/05 

Prev Pay Date: 25/04/05 

Business Days: New York Banking 

Discounting: 1 month LIBOR 

Scenario: PPC 100/call 

Notional: $7,500,000  

Recovery: 40% 

Premium (bps): 190  

Curr Mkt Spread: 175 

Maturity: 29/04/12  

We consider 3 cases to evaluate the effect of the hazard rate curve on the value of 

the CDS. In the first case, we assume one hazard rate, therefore ignoring the 

dependence between spreads and maturities. In the second case we consider only 

one market price available, i.e.
TK

A , we assume a straight line hazard rate term 
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structure. A 3rd case is considered in which we assume the availability of a full 

market spread structure, i.e. ( )
1 T

k k K
A

≤ ≤
. 

Case 1 

Then using equation (20), we solve for the constant hazard rate λ and find that 

0.032801778λ =  and the swap value is   $159,299 .00
CDS

V =  

While this might work for short-term maturities, it is clearly not realistic to use a 

single point hazard rate to price CDS. It is well know that spreads are dependent 

on maturities. 

Case 2 

In this case, we assume the same market price for all maturities and a straight line 

hazard rate term structure. We then use this information to obtain the implied 

hazard curve. The results are shown in the following table. 

CDS Maturity 
(Years) 

CDS Market Spread 
(bps) 

Hazard curve 

1 175 0.0295553 
2 175 0.0295548 
3 175 0.0295547 
4 175 0.0295546 
5 175 0.0295548 
7 175 0.0295548 
10 175 0.0295548 

 

The value of the CDS is   $107569.00
CDS

V = . 

As we would expect, we observe that the hazard curve is almost flat .We repeat 

this process for various spreads and observe the same result.  
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Case 3 

Assume we have a full market price term structure of the CDS. We feed this term 

into the bootstrap method to compute the hazard rate term structure. 

CDS Maturity 
(Years) 

CDS Market Spread 
(bps) 

Hazard rate 

1 130 0.0219575 
2 135 0.0228179 
3 140 0.023698 
4 145 0.0246013 
5 150 0.025531 
7 160 0.0274247 
10 175 0.0304582 

 

We obtained the values shown in the table with a swap value of 

  $108434.00
CDS

V = . Interestingly, the swap value is very close to the previous 

case, while the first case seems to overestimate the CDS value. This suggests that 

using a single market spread to generate the hazard curve for the purpose of 

valuing a CDS is more reasonable that assuming a flat term structure. This 

practice seems to be used by data vendors like Bloomberg [1]. 

We graph both curves on the same figure as shown below. The hazard term 

structure when we assume the market spread curve shows a behavior that we 

would expect. The hazard rate is dependent on maturities, lower maturity CDS 

presenting less hazard than their longer maturity counterparts. 
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Hazard curve
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Figure 4 Hazard curves for the flat (blue) and 
full (pink) market price term structures. 

We now focus on analyzing the sensitivity of the hazard term structure to other 

parameters such as the recovery rate. We generate the hazard curve using 

constant recovery rates, 0%, 20%, 40%, 50%, 60% and 80%. The graph of the 

curves is shown below. 
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Figure 5 Hazard term structures for various 
recovery rates. 
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While we observe a similar increasing trend in all curves, we notice that for lower 

recovery rates, the spread between curves is minimal and that spread widens as 

we go to higher recovery rates. This result is in agreement with what we would 

expect. We notice that curves are ordered by the recovery rates. Indeed hazard 

rates are higher for higher recovery rates than lower ones as illustrated in fig. 5. 

This result is somewhat counterintuitive and evidences the need for further work, 

with different models for the recovery rate. For example, one could model the 

recovery rate as a stochastic process. 
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Conclusion 

The credit derivatives market has known an incredible growth in the last five 

years. Since its infancy, along with corporate credit default swaps more complex 

products have been developed. One of these complex products is Asset-backed 

credit default swaps. In this work, we tried to value the latter using one of the two 

approaches used to model credit risk that is a key element in pricing credit 

derivatives. The question we tried to answer is whether this approach, the hazard 

rate or reduced form approach is applicable to price ABCDS. We have seen that 

default payments in ABCDS contract are contingent to the type of credit event, 

making it difficult to apply the hazard rate method as in the case of corporate 

CDS. To go around this problem, we considered one type of credit event only. 

We then implemented a numerical example and obtained a hazard curve that is 

consistent with what we expected. Thus the method seems applicable if we 

simplify the set of credits events. Further research will require considering each of 

the types of credit event as a single jump process and model eventually their joint 

distribution as well. We also tested the sensitivity of the method to the recovery 

rate and obtained very interesting because of counterintuitive results. This 

suggests that further research is needed in this area. 

It is evident that pricing ABCDS still presents a challenge. Besides the various 

types of credit event in question, another issue is that by the nature of structured 

products, there is no direct and linear relationship between default at the tranche 

stratum and the collaterals level. This makes it difficult to properly model the 

total credit risk, which involves the credit risk at the tranche level but also at the 

collaterals echelon. Presently there is no easy way to do take both risks into 

account.  
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