
Nonlinear Optimization of a Stochastic Function
in a Cell Migration Model

by

Dorothy Marie Branco

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Applied Mathematics

by

May 2006

APPROVED:

Professor Roger Lui, Thesis Advisor

Professor Bogdan Vernescu, Department Head

Abstract

The basis for many biological processes such as cell division and differen-

tiation, immune responses, and tumor metastasis depends upon the cell’s ability

to migrate effectively. A mathematical model for simulating cell migration can be

useful in identifying the underlying contributing factors to the crawling motions

observed in different types of cells. We present a cell migration model that simu-

lates the 2D motion of amoeba, fibroblasts, keratocytes, and neurons according to

a set of input parameters. In the absence of external stimuli the pattern of cell

migration follows a persistent random walk which necessitates for several stochastic

components in the mathematical model. Consequently, the cell metrics which pro-

vide a quantitative description of the cell motion varies between simulations. First

we examine different methods for computing the error observed between the output

metrics generated by our model and a set of target cell metrics. We also investigate

ways of minimizing the variability of the output by varying the number of iterations

within a simulation. Finally we apply finite differences, Hooke and Jeeves, and

Nelder-Mead minimization methods to our nonlinear stochastic function to search

for optimal input values.

Acknowledgments

I would like to express special thanks to my advisor, Professor Roger Lui,

whose guidance, suggestions, and encouragement have made this thesis possible. I

am very grateful for his endless time and patience, and for giving me the opportunity

to work on this project.

Second, I would like to thank Professor Yu-Li Wang from the University of

Massachusetts Medical School for allowing us to study his cell migration program

and for his close assistance throughout the project.

In addition, I have greatly appreciated the prompt assistance from Joshua

Brandt, Allan Johannesen, and Michael Malone on all the computing aspects of this

project including knowledge of the Unix systems and parallel processing at WPI.

I am also very thankful for all the cordial and knowledgeable faculty and staff

in the Department of Mathematics whose instruction and support have contributed

to the value of my graduate education. I also want to thank my fellow classmates in

the mathematics graduate program who have been more than helpful and supportive

during my time here.

Finally, I want to thank my parents and friends for their unending love and

support. I cannot end without thanking my dear friend, Michael Sylvia, who has

assisted me with his tremendous knowledge in medicine and has provided me with

everlasting support and inspiration throughout this process.

i

Contents

1 Introduction 1

2 Cell Migration Model 4

2.1 Computational Model of Cell Migration 4

2.1.1 SimMigration Input Parameters 4

2.1.2 Ten Steps Governing Cell Migration 5

2.2 Cell Metrics . 13

2.3 Four Cell Types Generated by SimMigration 15

2.3.1 Amoeba . 16

2.3.2 Fibroblast . 17

2.3.3 Keratocyte . 18

2.3.4 Neuron . 19

3 Evaluating Error in SimMigration 21

3.1 Computing Error in SimMigration . 22

3.2 Assessing Fluctuations in Repeated Simulations of SimMigration . . . 25

3.3 Choosing Best Subset of Cell Metrics to Compute L2Error 28

3.3.1 Correlation Matrices . 35

4 Minimizing a Nonlinear Stochastic Function 38

ii

4.1 Minimization with Derivatives . 39

4.1.1 Finite Difference Method . 39

4.2 Minimization without Derivatives . 41

4.2.1 Hooke and Jeeves Method . 41

4.2.2 Nelder-Mead Method . 45

A Nelder-Mead Implementation in C 49

A.1 main.c code . 49

iii

List of Figures

2.1 Flow chart for one iteration of the nCycle loop in SimMigration. . . . 12

2.2 SimMigration Images of an Amoeba During Migration 16

2.3 SimMigration Images of a Fibroblast During Migration 17

2.4 SimMigration Images of a Keratocyte During Migration 18

2.5 SimMigration Images of a Neuron During Migration 19

3.1 Best Subsets of Cell Metrics . 36

3.2 Second Best Subsets of Cell Metrics 36

3.3 Third Best Subsets of Cell Metrics 37

iv

List of Tables

2.1 SimMigration Input Parameters . 5

2.2 SimMigration Input Values for the Four Cell Types 15

2.3 SimMigration Cell Metrics . 20

3.1 Variance of L2Error With and Without nTimes 26

3.2 Variance of L2Error for Different nTimes, nRound, and nCycle Values 28

3.3 Metric Identification Numbers . 29

3.4 Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Amoeba

Simulations . 31

3.5 Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Keratocyte

Simulations . 33

3.6 Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Fibroblast

Simulations . 34

3.7 Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Neuron

Simulations . 35

4.1 Amoeba Target Value Input Parameters and Step Sizes for Finite

Difference Methods . 40

4.2 L2Error Function Derivative Approximations using Finite Difference

Methods for Amoeba . 41

v

4.3 Results of Hooke and Jeeves Minimization Method on Amoeba Input

Parameters . 44

4.4 Results from Nelder-Mead Minimization on each Amoeba Input Pa-

rameter . 48

4.5 Results from Nelder-Mead Minimization on 4 Amoeba Input Parameters 48

4.6 Results from Nelder-Mead Minimization on 5 Amoeba Input Parameters 48

4.7 Results from Nelder-Mead Minimization on 5 Amoeba Input Parameters 48

vi

Chapter 1

Introduction

Cell migration has been implicated in a variety of medical conditions, for example:

cancer, immune dysfunction, and inflammatory disease such as multiple sclerosis,

rheumatoid arthritis, and atherosclerosis [3]. In cancer one of the differences be-

tween benign and malignant cells is the property of motility. When a cancerous cell

gains the ability to migrate, what is known as cancer metastasis, the severity of the

condition increases. On the other hand, in immune diseases such as Wiskott-Aldrich

syndrome and HIV infection, normal cell migratory function is impaired[13, 1]. Un-

derstanding the complex dynamic of cell motility will help both scientists and physi-

cians develop methods to modulate cell movement by either inhibiting migration,

as in cancer, or provoking migration, as in immune dysfunctions [3].

The underlying mechanisms of cell movement are governed by a complex

molecular process. Actin, a protein found in the cytoskeleton of eukaryotic cells,

plays a major role in cell locomotion [2, pg. 821]. The stages of cell movement are

classified into three main steps: protrusion, adhesion, and traction [2, pg. 845]. Dur-

ing protrusion, tightly bound bundles of actin filaments extend away from the cell in

the direction of its motion. The site of protrusion constitutes what is known as the

1

leading edge forming extensions which may be classified as filopodia or pseudopodia.

In the adhesion stage, actin attaches to certain sites on the surface beneath the cell.

In fibroblast cells, these attachments are made with stress fibers, a particular bundle

of actin filaments containing myosin-II, and form focal adhesions on the cell surface

[2, pg. 840]. These stress fibers add a tension component between the cell surface

and its surroundings and are continually being assembled and disassembled during

cell migration. Traction is the final stage that involves the forward motion of the

cell. Cell movement takes place over many repetitions of the three stage process of

protrusion, adhesion, and traction.

An attempt to explain the inherent causes of the force invoking cell protru-

sion has led to multiple theories and may not be standard for all types of cells.

Current theories include actin polymerization at the leading edge, internal hydro-

static pressure, and the ability of motor proteins to convert chemical energy into a

force [9, 11]. Less is known about traction forces. One theory suggests that certain

extensions of the cell’s membrane, such as filopodia, generate a layer of actin which

allows the cell to move forward [9].

Although all cells follow the basic steps of movement, different types of cells

will have variations in qualities, such as shape, speed, and persistence, in their

movements. For example, the unicellular organism Dictyostelium discoideum forms

short rounded protrusions called pseudopods as it crawls across a surface [4]. The

fibroblast, however, forms longer thinner protrusions named lamellipodia which ex-

tend and retract at greater speeds [2, pg. 827]. These unique characteristics are

attributed to each cell’s specific function.

Advancements in cell imaging have enabled scientists to measure certain

characteristics of cell motion. As a result scientists are currently able to phenotyp-

ically identify a specific cell according to a set of quantitative measurements based

2

on past experiments. Consequently, new knowledge supporting the complex mech-

anisms behind cell movement is directly obtained (experimentally) by comparing

a normal cell to a genetically mutated cell targeting specific proteins. However,

identifying precisely at which step in the process of cell motion that changes are

occurring is experimentally challenging.

A mathematical model based on internally driven cell mechanisms can be a

valuable tool in future cell research. In this thesis we examine a computer simula-

tion of cell migration based on a set of input parameters that govern the processes

of cell protrusion, adhesion and traction. After the simulation is repeated a num-

ber of times, a set of cell metrics is computed which quantitatively describe the

cell’s motion. Upon examining the output of this computer simulation, we observed

that repeated simulations were highly variable due to the stochastic components

incorporated in modeling the random nature of cell motion. We have applied sev-

eral numerical techniques in order to examine the program’s inconsistency and to

minimize the fluctuations in the program’s output. First we devise a method for

computing the error between the program’s output cell metrics and a set of target

metrics which can be obtained from observing live cells in the laboratory. We refer

to this as L2Error and compute it using all or a subset of the cell metrics. In addi-

tion, we perform a correlation analysis of all possible subsets of the cell metrics to

test for independency between the metrics.

Finally, we examine ways of minimizing our nonlinear stochastic L2Error

function. First we apply finite difference methods by approximating the function’s

derivatives. Since finding the function’s derivatives was unsuccessful, we proceeded

with the Hooke and Jeeves and Nelder-Mead direct search methods which do not

rely on derivative approximations.

3

Chapter 2

Cell Migration Model

In this chapter we describe the computer model for cell migration. The computer

program that simulates cell migration was developed by Yu-Li Wang, Ph.D., a pro-

fessor in the Department of Physiology at the University of Massachusetts Medical

School. We will refer to his program as SimMigration. The computer program is

written in C/C++. There are ten steps in the simulation program of cell migration

that are directed by eleven input parameters. After one complete simulation a set of

cell metrics are produced that identify a particular cell type. We aim to investigate

the behavior of the cell metrics over repeated simulations for different types of cells.

2.1 Computational Model of Cell Migration

2.1.1 SimMigration Input Parameters

SimMigration simulates cell movement for four types of cells: amoeba, fibroblast,

keratocyte, and neuron. Each cell type has different characteristics and displays a

unique set of cell metrics in the laboratory. SimMigration uses stimulating signals

to induce cell protrusion and inhibiting signals to drive cell retraction. There are

4

eleven input parameters which are set by the user in SimMigration. Each cell type

has a different set of values for these input parameters which guides its distinctive

features of motility. The following table lists the eleven input parameters followed

by a number which indicates the step in the SimMigration program where it appears.

A brief description is also given for each input parameter.

Table 2.1: SimMigration Input Parameters

Parameter, Step Description

fDiffuse, 3 diffusion rate of the stimulating signal
fDecay, 3 fraction of stimulating signal left after each iteration
fBurst, 2 probability of gaining additional stimulating signal
nBurst, 2 amount of stimulating signal added to the boundary points
dlnhibitorConc, 5 amount of inhibiting signal
fProtrusion, 8 rate at which radius increases upon protrusion
fRetraction, 7 rate at which radius decreases upon retraction
fFeedback, 4 probability of signals receiving additional bursts of signal
nOffPoint, 4 threshold of Feedback curve
bFocalAdhesion, 6 ability to form focal adhesions
fFAAssembly, 6 probability of forming a focal adhesion during protrusion
fFAHalflife, 6 amount of focal adhesions lost

2.1.2 Ten Steps Governing Cell Migration

Step 1: Initialization

One iteration of SimMigration consists of two nested loops. The outer loop

is repeated the number of times given by the variable nRound. We have set nRound

to be 20 for all the simulations unless indicated otherwise. The first step is the

initialization step, which begins in this outer loop and initializes each of the cell

metrics. The location of the center of the cell is expressed in Cartesian coordinates

as (xc, yc). The cell has 360 boundary points which are given in polar coordinates

(rj, θj) with respect to the cell center established at the origin. The initial radius

5

from each boundary point to the cell’s center is set in SimMigration as fRadius and

equals 10 units in all of our simulations.

Once the boundary points are defined, each is assigned a value for the pres-

ence of stimulating signal. At each time point ti, the stimulating signal for the jth

boundary point is expressed as S+
j (ti). Stimulating signals are initially assigned

using a uniformly distributed random number generator. First, the random number

generator assigns to each boundary point a random number Rj between 0 and 1.

If Rj < fBurst, then S+
j (t0) = nBurst. Otherwise S+

j (t0) = 0. A positive value

indicates the presence of an initial stimulating signal while a value of zero indicates

its absence. Once the cell’s initial position, boundary points, and stimulating signals

are determined the initialization step is complete.

Step 2: Display Cell

The second step begins inside the inner loop, which is executed a set number

of times given by the variable nCycle. We have defined nCycle to be 1200 for all

simulations except where we have noted otherwise. Each iteration in the inner loop

is comprised of steps 2 through 10 and produces a new set of boundary points and

a new cell center based upon the cell’s position in the previous iteration. The cell

is displayed by connecting the new 360 boundary points in order of their angles.

Step 3: Diffuse and Decay of Stimulating Signals

The following step calculates the diffusion and decay of existing stimulating

signals along the boundary points. The two input parameters fDiffuse and fDecay

give the diffusion rate and the decay constant of the cell. At boundary points where

the cell is protruding, the stimulating signal is diffused to nearby locations. Simul-

taneously all stimulating signals that are present must decay uniformly. Thus stim-

6

ulating signals are dependent on signals present at previous time points. Modeling

stimulating signals in cells is complex and requires both a deterministic and stochas-

tic component. First the deterministic component models the change in stimulating

signal based on fDiffuse and fDecay. In this step, a diffusion function D is calcu-

lated as D(S+
j−1, S

+
j , S+

j+1) =

[

S+
j−1 − S+

j

2dj−1,j

+
S+

j+1 − S+
j

2dj+1,j

]

fDiffuse where dj−1,j is

the distance between the (j − 1)th and jth boundary points. Based on diffusion and

decay of existing stimulating signals, the stimulating signal at the end of this step

is given by S+
j (ti) =

[

S+
j (ti−1) + D(S+

j−1(ti−1), S
+
j (ti−1), S

+
j+1(ti−1))

]

fDecay. The

stochastic component of stimulating signals appears in the next step.

Step 4: Generation of New Pulses of Stimulating Signals

Each boundary point has a probability of gaining a set quantity nBurst of

additional stimulating signals. This probability not only depends on the differ-

ence of a boundary point’s stimulating and inhibiting signals, but also increases

linearly according to the cell’s positive feedback behavior. The net signal at each

boundary point is given by x = S+
j (ti) − S−(ti) where S+

j is the boundary point’s

stimulating signal and S− is the total inhibiting signal which will be explained

in Step 5. The function f(x) defines the probability of gaining additional stim-

ulating signal according to the positive feedback so that boundary points with a

greater net signal have an increased probability. Since f(x) is a cumulative distri-

bution function, then 0 ≤ f(x) ≤ 1. The input parameter nOffPoint provides the

threshold value for positive feedback such that if x < nOffPoint, then f(x) = 0

indicating that net signals below the threshold have zero probability of gaining ad-

ditional stimulating signals. If nOffPoint ≤ x <
1

fFeedback
+ nOffPoint, then

f(x) = fFeedback(x−nOffPoint) indicating that the probability of gaining addi-

tional signal for these boundary points increases in proportion to fFeedback. Finally,

7

if x ≥ 1/fFeedback + nOffPoint, then f(x) = 1 indicating that boundary points

with very large net signals have the maximum probability of gaining additional

bursts of signal.

The probability of stimulating signals gaining an additional bursts of signal

given by f(x) is then added to the probability of gaining additional stimulating

signals set by fBurst. Let α = f(x)+fBurst, then ϕ(α) is defined to be a stochastic

function where the probability of ϕ(α) = 1 is α and the probability of ϕ(α) = 0

is (1 − α). This stochastic function is implemented in the SimMigration program

by using a uniformly distributed random number generator that assigns a random

number Rj, between 0 and 100 to each boundary point. If Rj < α, then nBurst is

added to the boundary point’s stimulating signal. Each boundary point can attain

a minimum stimulating signal equal to 0 and a maximum stimulating signal equal

to 100.

The fourth step completes the calculation of stimulating signals. The final

stimulating signal for the jth boundary point is given by

S+
j (ti) =

[

S+
j (ti−1) + D(S+

j−1(ti−1), S
+
j (ti−1), S

+
j+1(ti−1))

]

fDecay + nBurst ϕ(α)

where the first component was calculated in the third step.

Step 5: Calculation of Inhibiting Signals

Unlike stimulating signals, inhibiting signals are defined globally for the cell.

The inhibiting signal at the ith time point is expressed as

S−(ti) =

(

360
∑

j=1

S+
j

)

dInhibitorConc

(

π

360

360
∑

j=1

r2
j

)

.

The input parameter dInhibitorConc is the inhibition constant for the cell.
360
∑

j=1

S+
j

is the sum of the stimulating signals at all the boundary points and
π

360

360
∑

j=1

r2
j is the

8

area of the cell. The inhibiting signal prevents the boundary points from protruding

all at once and aids in maintaining the cell’s size and direction.

Step 6: Focal Adhesion Turnover

Fibroblasts are the only types of cells in SimMigration that form focal adhe-

sions. When simulating fibroblast cells, the input parameter bFocalAdhesion is set

to TRUE to turn on focal adhesion assembly. The formation and removal of focal

adhesions are controlled by two additional input parameters fFAAssembly and fFA-

Halflife. Focal adhesion assembly occurs with a probability defined by fFAAssembly

in protruding areas of the cell. Each protruding boundary point is assigned a number

between 0 and 1 using a uniform random number generator. If the value assigned

to the protruding boundary point is less than fFAAssembly, then a focal adhesion

point is formed. Once a focal adhesion point is defined, its location and age are

recorded. During cell movement, focal adhesions points determined in previous it-

erations do not change location. Over time focal adhesions are removed with a

probability equal to fFADisassembly. Since focal adhesions exhibit exponential de-

cay, their half-life is given by fFAHalflife =
− ln(2)

ln(1 − fFADisassembly)
. Thus

fFADisassembly = 1 − [exp(− ln 2)]1/fFAHalflife = 1 − 0.51/fFAHalflife. A focal

adhesion is removed if the uniformly distributed random number between 0 and

1 assigned to the focal adhesion is less than fFADisassembly. When simulating

amoeba, keratocytes, and neurons bFocalAdhesion is set to FALSE, and the steps

involving focal adhesions are skipped.

Step 7: Retraction

In the absence of focal adhesions retraction occurs if the stimulating signal

at each boundary point S+
j is less than or equal to the net inhibiting signal S−. The

9

radius of the retracting boundary point becomes rj(1 − fRetraction). However, if

the retracted radius is less than the minimum radius allowed which is set to 10 units,

then the boundary point is not retracted to ensure that the cell does not collapse at

any point.

In the presence of focal adhesions retraction may be restricted at some bound-

ary points. The retracting boundary point does not retract beyond a focal adhesion

during retraction. Also, the retracting boundary point does not retract beyond

any line connecting two other focal adhesion points that lie on opposite sides of

the boundary point. If none of these situations occur, then the boundary point’s

retracted radius is equal to rj(1 − fRetraction).

Step 8: Protrusion and New Focal Adhesion Assembly

Protrusion occurs at the jth boundary point if S+
j > S−. In the protrusion

step, the radius is increased at these boundary points by a normal random variable

with mean set by the input parameter fProtrusion and variance 0.1*fProtrusion. For

each boundary point that protrudes there is an associated probability of forming a

focal adhesion point in fibroblast cells as discussed in step 7. In all types of cells, a

site consisting of sequentially protruding boundary points forms a pseudopod. The

number of pseudopods are recorded during migration.

Step 9: Reinitialization

Once cell protrusion, adhesion, and retraction have been determined for all

boundary points, the next step is to construct the cell with its new position and

shape. First location of the new centroid is calculated in Cartesian coordinates. The

new cell center after each iteration is given by xc(ti+1) = xc(ti) +
1

360

360
∑

j=1

rj cos(θj)

10

and yc(ti+1) = yc(ti) +
1

360

360
∑

j=1

rj sin(θj), where rj is the new radius calculated

for the jth boundary point with angle θj at the end of the ith iteration. Then

the polar coordinates for the new boundary points are calculated with respect to

(xc(ti+1), yc(ti+1)) as follows. Let xj(ti+1) = rj cos(θj) and yj(ti+1) = rj sin(θj).

Then the new radius rj and angle θj are calculated as rj =

√

(xj(ti+1))
2 + (yj(ti+1))

2

and θj = arctan(yj(ti+1)/xj(ti+1)). This completes one cycle through the nCycle

loop of SimMigration.

Step 10: Morphometry

The final step in SimMigration is the calculation of the cell metrics which

describe the characteristics of its motion. Details of the metrics and their calcula-

tions will be given in the following section. The cell metrics are computed inside

the second loop and are averaged over nCycle times. This is repeated within the

outer loop nRound number of times and again the average value for each metric is

computed. The final output of SimMigration is the average value of each cell metric

over nRound × nCycle times. Since the computer simulation of cell movement in-

cludes some random components, it is best to take the average values of the metrics

over repeated simulations. We will investigate this issue further in the next chapter.

11

'
&

$
%

Step 1
Initialization

-

'
&

$
%

Step 2
Display Cell

?'
&

$
%

Step 3
Diffuse and Decay of Stimulating Signals

?'
&

$
%

Step 4
Generate New Pulses of Stimulating Signals

?'
&

$
%

Step 5
Calculation of Inhibiting Signals

?'
&

$
%

Step 6
Focal Adhesion Turnover

?'
&

$
%

Step 7
Retraction

?'
&

$
%

Step 8
Protrusion and Focal Adhesion Assembly

?'
&

$
%

Step 9
Reinitialization

?'
&

$
%

Step 10
Morphometry

6

�

�
�

�
�

�
�

�
�

�
�

���

Figure 2.1: Flow chart for one iteration of the nCycle loop in SimMigration.

12

2.2 Cell Metrics

Cell metrics offer a means of quantitatively describing the properties of cell motility

such as size, shape, and persistence. Current technology is available to measure these

quantities in digital movies of live cells. The ultimate goal of the simulation program

is to try to closely match experimental metrics of different types of cells. The

cell metrics include area, speed, perimeter, maximum radius, persistence, percent

extension, number of pseudopods, and roundness.

The following are the formulas we use to compute the cell metrics.

Area

Area is calculated as the average space contained inside the 360 boundary

points.

Area =
π

360

360
∑

i=1

r2
i

Speed

Speed is measured by calculating the distance between the cell center at time

i, (xc(ti), yc(ti)), and at time i + 1, (xc(ti+1), yc(ti+1)) per unit time.

Speed =

√

(xc(ti+1) − xc(ti))
2 + (yc(ti+1) − yc(ti))

2

Perimeter

Perimeter is the distance connecting all the boundary points of the cell.

Perimeter =
360
∑

i=1

√

[ri cos(θi) − ri+1 cos(θi+1)]2 + [ri sin(θi) − ri+1 sin(θi+1)]2

13

Maximum Radius

The maximum radius is the largest radius, ri, obtained over all the boundary

points where i = 1, .., 360.

RadMax = max
i

ri

Persistence

Persistence is a measure of the cell’s tendency to travel in the same direction

for a sustained period of time. It is calculated based on the coordinates of three

successive cell centers c1, c2, and c3 and the difference in the angles θ1 and θ2. θ1

and θ2 are formed between the positive x-axis and the lines joining the points c1 and

c2, and c2 and c3, respectively. In particular, the lines joining two cell centers form

the hypotenuse of a right triangle and the angles are calculated by θ = arctan(∆y
∆x

),

where ∆y and ∆x are the change in the coordinates of two consecutive cell centers.

In the following formula for persistence, Turnangle = θ2 − θ1.

Persistence =

∣

∣

∣

∣

Speed

1 + 100

360
× TurnAngle

∣

∣

∣

∣

Percent Extension

Extension is the percentage of the perimeter of the cell that is connected by

protruding boundary points.

Extension =
ExtendingPerimeter

TotalPerimeter
× 100

Pseudopods

The number of pseudopods is determined by counting the number of groups

of successively protruding boundary points.

14

Roundness

Roundness is given by the area of the cell divided by the area of a circle

with the cell’s maximum radius. As a cell attains a rounder or more circular shape,

roundness tends toward a value of 1.

Roundness =
Area

πRadmax2

2.3 Four Cell Types Generated by SimMigration

The following table shows the values for the input parameters used to generate the

four cell types. Amoeba, keratocytes, and neurons require nine input values, while

fibroblasts require eleven input values due to its focal adhesions. In this section we

will see how the migration of each cell type is affected, despite the small changes

among the input values between the different cells.

Table 2.2: SimMigration Input Values for the Four Cell Types

Parameter Amoeba Fibroblast Keratocyte Neuron

fDiffuse 0.2 0.2 0.6 0
fDecay 0.999 0.999 0.98 0.9999
fBurst 0.003 0.002 0.002 0.001
nBurst 4 4 5 4
dlnhibitorConc 0.000003 0.000003 0.000003 0.000003
fProtrusion 0.2 0.15 0.08 0.08
fRetraction 0.005 0.003 0.008 0.0001
fFeedback 1 1 10 10
nOffPoint 5 5 1 0
bFocalAdhesion FALSE TRUE FALSE FALSE
fFAAssembly N/A 0.02 N/A N/A
fFAHalflife N/A 50 N/A N/A

15

2.3.1 Amoeba

The amoeba is a single-celled organism that thrives in soil, fresh water, and oceans

[5]. During movement, the amoeba takes on many different shapes. It is most

distinguished by its projections, called pseudopods, which aid in its motion. In

Figure 2.2 the images taken from SimMigration show the amoeba’s irregular shape

and its ability to forms both short and long protrusions. Its leading edge tends to

extend a quarter to a third of its circumference. The amoeba moves about rapidly

and frequently changes direction.

Figure 2.2: SimMigration Images of an Amoeba During Migration

16

2.3.2 Fibroblast

Fibroblasts are found in connective tissue and are important in scar formation and

wound healing. These cells have the ability to form focal adhesions which aid in cell

migration. These focal adhesions are marked by the white dots in Figure 2.3. Focal

adhesion points inhibit retraction and protrusion at particular boundary points. A

moving fibroblast forms a broad leading edge covering about a third of the cell’s

circumference and changes direction infrequently since retraction is limited by focal

adhesions.

Figure 2.3: SimMigration Images of a Fibroblast During Migration

17

2.3.3 Keratocyte

Keratocytes refer to a certain class of abnormally shaped red blood cells that have

two prominent cytoplasm projections. Red blood cells are normally shaped like

round disks, but keratocytes shown in Figure 2.4 have a semicircular shape that is

induced by projections on opposite sides of the cell. In the SimMigration program

keratocytes form the broadest leading edge which cover half of its perimeter. Once

the leading edge has been established, the keratocyte tends to move in the same

direction exhibiting persistency.

Figure 2.4: SimMigration Images of a Keratocyte During Migration

18

2.3.4 Neuron

Neurons play a fundamental role in quickly transmitting signals to and from the

brain. Their primary means of signal transmission is through a very long and this

protrusion called an axon. Neurons typically show one leading edge extending to

form an axon while the cell body remains virtually immobile. Figure 2.5 shows a

neuron during migration whose cell body remains unchanged except for one protru-

sion that continues to extend further.

Figure 2.5: SimMigration Images of a Neuron During Migration

19

Table 2.3 shows some typical values of cell metrics produced by the Sim-

Migration program for the four types of cells . Amoebas exhibit large areas, fast

speeds, and average about two pseudopods. Keratocytes show the smallest area

and greatest percent extension. Neurons have the slowest speed which reflects their

tendency to remain stationary while extending protrusions. Fibroblasts have the

largest area, perimeter, and maximum radius along with a fast speed indicative of

their importance in quickly migrating to injured sites.

Table 2.3: SimMigration Cell Metrics

Metrics Amoeba Fibroblast Keratocyte Neuron

Area 1144.459464 1243.510226 969.673176 1164.201204
AreaSD 1.429039 2.059442 2.549485 3.422075
Speed 0.165226 0.098488 0.074442 0.016005
SpeedSD 0.000520 0.000373 0.000260 0.000162
Perimeter 224.759095 300.125728 210.172332 211.186254
PerimeterSD 0.426630 0.606931 0.718930 0.631655
RadMax 49.557879 52.623142 37.384989 37.687814
RadMaxSD 0.100619 0.104838 0.129259 0.087860
Persistence 0.152457 0.064733 0.068065 0.014930
PersistenceSD 0.000528 0.000353 0.000248 0.000156
Extension 21.866658 15.402795 40.419852 20.452028
ExtensionSD 0.050698 0.063789 0.126664 0.169116
Pseudopod 2.162125 1.961715 3.105110 2.177340
PseudopodSD 0.006897 0.006131 0.018323 0.018558
Roundness 0.190823 0.204614 0.362587 0.325892
RoundnessSD 0.000670 0.000946 0.001418 0.001051

20

Chapter 3

Evaluating Error in SimMigration

In this chapter, we discuss the different methods used for computing error between

the SimMigration output metrics and a set of target metrics. Error was computed

using both the L1-norm, denoted by L1Error, and the L2-norm, denoted by L2Error.

In the following formulas for L1Error and L2Error, xi represents the ith output met-

ric value and xi represents the ith target metric value. Since the number of metrics

used in computing L1Error and L2Error may vary, we express the summation from

i = 1 to i = n.

L1Error =
n
∑

i=1

∣

∣

∣

∣

xi − xi

xi

∣

∣

∣

∣

L2Error =

√

√

√

√

n
∑

i=1

(

xi − xi

xi

)2

Since the L2-norm yielded better results than the L1-norm in the Nelder-

Mead minimization, we proceeded with only L2Error computations. The following

section of this chapter will discuss the three methods for computing L2Error and

its behavior over repeated runs of SimMigration.

21

3.1 Computing Error in SimMigration

Method 1 L2Error with calibration

In this first method we compute L2Error using the metrics Area, Speed,

SpeedSD, RadMax, RadMaxSD, Persistence, Pseudopod, PseudopodSD, and Round-

ness. The cell metrics outputted by the SimMigration program are compared to a

set of metrics taken from experimental data. When introducing a set of experimen-

tal metrics, there is a discrepancy in the units of measurement. In order to overcome

this, it is necessary to introduce calibration. Two metrics, Area and Speed, are used

to calibrate length and time by the following equations.

dell =

√

ExperimentalArea

SimMigrationArea

dtau =
SimMigrationSpeed

ExperimentalSpeed
× dell

Dell is the ratio relating experimental length to computational length. Similarly,

dtau is the ratio relating experimental time to computational time. Dell and dtau are

used to calibrate metrics with units. For example, in order to compare the computed

value of RadMax, whose unit is computational length, to the experimental value

of RadMax, whose unit is experimental length, we must multiply computational

RadMax by dell to convert its units to experimental length. After calibration, the

term used in computing L2Error is

(

RadMax × dell − RadMax

RadMax

)2

where RadMax is the output metric from SimMigration and RadMax is the exper-

imental value. Similarly, the following are the terms for Persistence, RadMaxSD,

22

and SpeedSD in the computation of L2Error with units and calibration.

(

Persistence × dell − Persistence

Persistence

)2

(

RadMaxSD × dell − RadMaxSD

RadMaxSD

)2

(

SpeedSD × dell
dtau

− SpeedSD

SpeedSD

)2

Pseudopod and Roundness have no units, thus calibration is not necessary.

L2Error is then computed with all cell metrics except Area and Speed, which are

used only for calibration purposes. This method is of limited use since it cannot

compare Area and Speed to the experimental metrics. Area and Speed are two

fundamental metrics which may be important in classifying a particular cell type.

The set of metrics we used to compute L2Error in Method 1 consists of the nine

metrics: RadMax, Perimeter, Pseudopod, Extension, Persistence, PseudopodSD,

ExtensionSD, SpeedSD, and PersistenceSD. To study the variance of L2Error com-

puted with Method 1, we ran SimMigration 20 times and recorded L2Error each

time. The mean and standard deviation of L2Error was 3.963 and 0.028, respec-

tively. Since these results still show a 1% error in repeated runs, we seek an alter-

native method that will reduce the standard deviation in repeated simulations.

Method 2 L2Error without calibration

Calibration may introduce some additional error into the final computation

of L2Error. An alternative way to compute L2Error and avoid calibration is to

eliminate all units in the metrics. One way to do this is to use the coefficient of

variance of each metric instead of the mean. The coefficient of variance of a metric

is its standard deviation divided by its mean.

23

Let CVi = σi

xi

for the ith computational metric with units, and let CVi = σi

xi

for

the ith experimental metric with units, where σi and σi are the standard deviations of

the ith computational and experimental metrics, respectively. Then for each metric

with units, the term used in computing L2Error is
(

CVi−CVi

CVi

)2

. Terms for metrics

without units are computed as before,
(

xi−xi

xi

)2

.

This method is useful when comparing two sets of data with different units

of measurement. We are able to avoid calibration and are not restricted from using

the metrics Area and Speed used for calibration in Method 1. In the computations

of L2Error in Method 2, we included the 9 metrics: RadMax, Perimeter, Area,

Speed, Pseudopod, Extension, Persistence, PseudopodSD, and ExtensionSD. Ana-

lyzing L2Error over 20 runs resulted in a mean of 2.703 and a standard deviation

of 0.0035. Method 2 resulted in a standard deviation eight times smaller than in

Method 1. Although Method 2 provides a sufficiently low variance in L2Error over

repeated runs, the metrics SpeedSD and PersistenceSD cannot be used as additional

metrics because they are needed to calculate the coefficients of variance for speed

and persistence.

Method 3 L2Error without units

In this method, we eliminate the need for calibration and coefficients of vari-

ance in our L2Error computations. For the purpose of analyzing the consistency

of this program, we have produced a set of target output metrics from the Sim-

Migration program. This set of target output metrics is shown in Table 2.3. The

SimMigration program is run ten times with nRound = 20 and nCycle = 1200 and

then the output data is averaged over the ten simulations and set as the target out-

put data. Using these computer simulated metrics as the target data eliminates the

need for calibration since the same units apply to both the target and output data.

24

In addition, this method allows all of the cell metrics and their respective standard

deviations to be considered in the computation of L2Error. We will use Method

3 for computing L2Error in our Hooke and Jeeves and Nelder-Mead minimization

searches.

3.2 Assessing Fluctuations in Repeated Simula-

tions of SimMigration

One computer simulation of SimMigration performs nRound × nCycle iterations.

Another input parameter, nStartAnalysis, determines which iteration in the nCycle

loop to start collecting data for morphometry. At iteration steps less than nStart-

Analysis, the cell metrics calculated are not included in the final cell metrics output

of SimMigration. Let nCycle1 = nCycle−nStartAnalysis, then the cell metrics are

recorded over nRound × nCycle1 iterations. For one simulation of SimMigration,

the output for each metric is computed as follows, where X[i] denotes the ith output

metric and x[i]m,n denotes the ith metric computed during the nth nRound iteration

and mth nCycle1 iteration.

Let R = nRound and C1 = nCycle1.

X[i] =
1

R × C1

R
∑

n=1

C1
∑

m=1

x[i]m,n

Similarly, the variance of the ith metric is defined as follows:

V [i] =
1

R × C1

R
∑

n=1

C1
∑

m=1

(

x[i]m,n − X[i]
)2

R × C1 − 1

25

Let X[i]n =
1

C1

C1
∑

m=1

x[i]m,n. Then the variance can also be expressed as:

V [i] =
1

(R × C1)(R × C1 − 1)

{

R
∑

n=1

(C1 − 1)S2
n + C1

R
∑

n=1

X[i]2n − R × C1 X[i]2

}

where S2
n =

{

C1
∑

m=1

(

x[i]m,n − X[i]n
)2

}

/ (C1 − 1). We then calculate the standard

deviation of each metric as SD[i] =
√

V ar[i]. Repeated simulations of SimMigra-

tion produce slightly different output values for each X[i] and SD[i]. To minimize

the variance in repeated simulations, we have added an outer loop which performs

nTimes number of simulations. We collect the output metrics computed for each

simulation and then compute the mean given by X[i], and the standard deviation

given by SD[i] =

√

√

√

√

nTimes
∑

k=1

(

X[i]k − X[i]
)2

/(nTimes − 1). When we compared these

new output values, X[i] and SD[i], over repeated runs, the standard deviation be-

tween simulations was reduced by 75%. These results are given in Table 3.1.

Table 3.1: Variance of L2Error With and Without nTimes

Simulation L2Error Without nTimes L2Error With nTimes
1 2.44296 2.44460
2 2.44720 2.44392
3 2.43790 2.44494
4 2.44346 2.44323
5 2.44626 2.44470
6 2.44221 2.44535
7 2.44856 2.44309
8 2.44734 2.44505
9 2.44535 2.44386

10 2.44571 2.44388
Mean 2.44470 2.44426

Standard Deviation 0.00314 0.00078

Although the addition of the nTimes loop decreases the variance of the

26

L2Error function, we must also consider the time and expense of running the sim-

ulations multiple times. A single run with nTimes = 10, nRound = 20, and

nCycle = 1200 may only take about an hour on a UNIX server; however, in the

next chapter we will perform searches that require twenty or more simulations.

These searches would take approximately one day on the UNIX server. To reduce

the run times we will use parallel computing which has twenty processors and can

run twenty runs of SimMigration with these settings in less than an hour.

The variability among successive simulations of SimMigration may also be

attributed to some random components used in modeling cell migration. For exam-

ple, a random component is introduced when assigning stimulating signals to the

cell’s boundary points. Since each boundary point has the probability of gaining a

stimulating signal, then a random number is assigned to each boundary point with

a Gaussian distribution. The Gaussian distribution for this random component has

mean nBurst and variance 0.3×nBurst. Therefore, it is unlikely that a simulation

of SimMigration will assign the same stimulating signal to each boundary point as

in another simulation.

In analyzing the variance of repeated simulations, we expect less variation in

L2Error as the values of nTimes, nRound, and nCycle increase. We ran SimMigra-

tion for nTimes = 10, 20, and 30, nRound = 10 and 20, and nCycle = 1200 and

2400. We found that repeated simulations with nTimes = 10, nRound = 20, and

nCycle = 1200 give a reasonably low standard deviation and coefficient of variance

without too great an increase in the number of iterations. The results are reported

in Table 3.2.

27

Table 3.2: Variance of L2Error for Different nTimes, nRound, and nCycle Values

nTimes nRound nCycle L2Error Mean L2Error SD L2Error CV
10 10 1200 2.6968034 0.00557 0.002064
10 20 1200 2.7025071 0.00263 0.000973
10 10 2400 2.697345 0.00455 0.001688
10 20 2400 2.7031501 0.00199 0.000737
20 10 1200 2.6961705 0.00583 0.002161
20 20 1200 2.7042991 0.00410 0.001516
20 10 2400 2.6964116 0.00322 0.001195
20 20 2400 2.7031450 0.00354 0.001339
30 10 1200 2.6965091 0.00603 0.002236
30 20 1200 2.7034867 0.00328 0.001214
30 10 2400 2.6969542 0.00317 0.001177
30 20 2400 2.7029223 0.00243 0.000900

3.3 Choosing Best Subset of Cell Metrics to Com-

pute L2Error

Whether L2Error is computed using method 1, 2, or 3, variability is inevitable. Nev-

ertheless, we question whether a certain subset of the cell metrics produces greater

consistency in L2Error. It is evident that since the cell metrics can only measure

size, shape, and persistence of the cell’s movement, some metrics may behave simi-

larly, therefore, any two metrics have the possibility of being highly correlated. This

adds redundancy to the model and can contribute to its inconsistency. In this sec-

tion we search for a particular subset of metrics which may decrease the variability

in L2Error. Finding the best subsets requires both the computation of correlation

matrices and finding the eigenvalues of these matrices.

To investigate the interdependency of the eleven metrics, we proceeded with

a correlation analysis. First 10,000 simulations of SimMigration were performed and

the 11 metrics were recorded. This resulted in a 10, 000×11 matrix which we denote

by A. For simplification purposes we have numbered the metrics from 1 through

28

11 corresponding to the column in matrix A in which the metric appears. We will

refer to each metric by its assigned number as indicated in Table 3.3. For example,

we will refer to Speed as metric 6 and its values are collected in column 6 of matrix

A. Next we choose a subset of size k ∈ {2, 3, ..., 11}. There are
11
∑

i=2

(

11

i

)

= 2, 036

possible choices where

(

11

i

)

=
11!

i!(11 − i)!
. Then the 2,036 subsets are grouped by

size which refers to the number of metrics in the subset. For example, the group of

size 2 will consist of 55 subsets, the group of size 3 will consist of 165 subsets, and

so on.

Table 3.3: Metric Identification Numbers

ID Number Metric
1 RadMax
2 Perimeter
3 Pseudopod
4 Extension
5 Area
6 Speed
7 Persistence
8 PseudopodSD
9 ExtensionSD
10 SpeedSD
11 PersistenceSD

For each subset in a group we obtain the corresponding simulations matrix.

For example, we begin with the group of size 2 and consider the 55 subsets. For each

subset containing the metrics i and j, we choose the ith and jth columns and form a

10, 000×2 submatrix A′ with these columns. The MATLAB function corrcoef(A’) is

called to compute the correlation matrix of the metrics i and j which we denote by R.

Section 3.3.1 describes correlation matrices in more detail. The same procedure is

applied to the remaining groups of sizes 3 through 11. This completes the correlation

component of obtaining the best subsets.

29

The next step is to find the maximum eigenvalue of each correlation matrix.

To do this we use MATLAB’s eig(R) function. In some cases negative eigenvalues

were obtained from eig(R), therefore, we took the absolute value of each eigenvalue.

We then chose the maximum eigenvalue and saved it with its corresponding subset.

Now each of our subsets is associated with exactly one eigenvalue. This allowed us

to sort the subsets by their eigenvalues from least to greatest. Minimum eigenvalues

within a group were closest to 1 in their value. For example, Table 3.4 lists the

smallest five eigenvalues obtained for groups of size 2, 3, 4, and 5 from 10,000

simulations of the amoeba cell type.

From these results we see that the subset of size 2 with the smallest eigenvalue

of 1.0061 consists of metrics 7 and 10. This is the subset of size 2 with an eigen-

value closest to 1. We choose 1 as an ideal eigenvalue because it is the eigenvalue

corresponding to the identity matrix which contains linearly independent columns.

Therefore the subset containing metrics 7 and 10 are highly uncorrelated. We con-

sider the subset {7, 10} to be the best subset of size two. Since the second least

eigenvalue in the group of size 2 is very close to the minimum eigenvalue, we also

consider this as a good subset. Thus the metrics 6 and 10 which produce an eigen-

value of 1.0063 are also highly uncorrelated metrics. We refer to this subset as the

second best subset. The third smallest eigenvalue in this group is 1.0452 for metrics

1 and 8 which is still reasonably close to 1. We consider this the third best subset of

size 2. We also look at the smallest five eigenvalues found for the groups of size 3, 4,

and 5. Notice that as the size of the subsets gets larger, the minimum eigenvalues

also increase. For groups larger than size 5, the eigenvalues are much larger than

1 which would show that some of the metrics within the subset are correlated. For

our purposes we are interested in finding subsets of metrics that are independent.

The larger the size of the subset with a small enough eigenvalue, the more metrics

30

Table 3.4: Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Amoeba
Simulations

Size Max Eigenvalue Subset of Metrics
1.0061 7, 10
1.0063 6, 10

2 1.0452 1, 8
1.0512 4, 5
1.0797 6, 11
1.2291 3, 4, 11
1.2512 1, 7, 11

3 1.2565 3, 4, 10
1.2761 1, 6, 11
1.2762 1, 7, 10
1.4228 1, 7, 8, 11
1.4329 1, 6, 8, 11

4 1.4439 4, 5, 7, 11
1.4673 1, 7, 8, 10
1.4706 4, 5, 6, 11
1.6961 4, 5, 7, 8, 11
1.7018 1, 4, 7, 8, 11

5 1.7125 4, 5, 6, 8, 11
1.7332 1, 4, 6, 8, 11
1.7349 4, 5, 7, 8, 10

we can show to be independent.

We performed the same analysis for 10,000 simulations of SimMigration also

for keratocytes, fibroblasts, and neurons. The smallest five eigenvalues obtained for

groups of size 2, 3, 4, and 5 for these cells are shown in Tables 3.5 for keratocytes,

3.6 for fibroblasts, and 3.7 for neurons. Figure 3.1 shows the best subsets obtained

for each cell type by taking the subset in each group with the smallest eigenvalue.

For example, the best subsets for amoeba in order of increasing size are {7, 10}, {3,

4, 11}, {1, 7, 8, 11}, and {4, 5, 7, 8, 11}. We do the same to obtain the second best

subsets by taking the subsets with the second smallest eigenvalue in each group.

For example, the second best subsets for amoeba are {6, 10}, {1, 7, 11}, {1, 6, 8,

11}, and {1, 4, 7, 8, 11}. The second best subsets for all the cell types are shown in

31

Figure 3.2. Similarly, the third best subsets are obtained for each cell type and are

shown in Figure 3.3.

We now try to identify metrics that are uncorrelated to include in our

L2Error. The cell metrics may be classified into three categories: size, speed, and

shape. The size group consists of the metrics RadMax (1), Perimeter (2), and Area

(5). The speed group contains the metrics Speed (6) and Persistence (7), and the

shape group consists of Pseudopod (3) and Extension (4).

First we look at the size group. The metrics RadMax (1), Perimeter (2),

and Area (5) are not collectively contained in any of the best, second best, or third

best subsets except in the case of neuron which contains Perimeter (2) and Area

(5). However, these subsets have eigenvalues approximately equal to 2 (see Table

3.7, size 5) and therefore, are correlated. We can conclude that the metrics RadMax

(1), Perimeter (2), and Area (5) are highly correlated. Since these are all measures

of size, we expect these metrics to be correlated.

Next we look at the speed group. In the best (Fig. 3.1), second best (Fig.

3.2), and third best (Fig. 3.3) subsets, the metrics Speed (6) and Persistence (7)

never appear in the same subset. This indicates that these two metrics are highly

correlated which we expect to be the case since persistence is calculated based on

speed.

Finally we look at the shape group. Pseudopod (3) and Extension (4) appear

in the best subset (Fig. 3.1) of size 3 for amoeba and in the second best subset (Fig.

3.2) of size 4 for neuron. In the case of amoeba, the eigenvalue for the subset {3, 4,

11} is 1.2291 which is moderately close to 1. In the case of neuron, the eigenvalue

for the subset {3, 4, 5, 8} is 1.6190 showing less independence among of the two

metrics. If we look at the third best subsets (Fig. 3.3), there are three subsets

containing Pseudopod (3) and Extension (4). One subset is {3, 4, 10} in the case of

32

Table 3.5: Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Keratocyte
Simulations

Size Max Eigenvalue Subset of Metrics
1.0026 2, 6
1.0032 1, 9

2 1.0134 1, 11
1.0194 6, 10
1.0305 1, 7
1.0916 1, 7, 10
1.1361 5, 6, 9

3 1.1408 2, 6, 9
1.1528 5, 6, 11
1.1606 3, 6, 9
1.1723 5, 6, 9, 11
1.2053 1, 7, 9, 11

4 1.2060 2, 6, 9, 11
1.2167 1, 6, 9, 11
1.2258 3, 6, 9, 11
1.7127 1, 6, 8, 9, 11
1.7290 1, 6, 8, 9, 10

5 1.8016 1, 7, 8, 9, 11
1.8055 1, 7, 8, 9, 10
1.8102 1, 4, 7, 9, 11

amoeba with an eigenvalue of 1.2565 (see Table 3.4, size 3). Another subset is {3,

4, 5} in the case of neuron with an eigenvalue of 1.1344 (see Table 3.7, size 3). The

third subset is {3, 4, 8, 9, 11} in the case of fibroblast with an eigenvalue of 1.5683

(see Table 3.6, size 5). While the eigenvalues in the cases of amoeba and neuron

are moderately close to 1, the eigenvalue in the case of fibroblast is rather large. It

is not clear whether the metrics Pseudopod (3) and Extension (4) are correlated.

Although both these metrics result from cell protrusion they may not necessarily be

correlated since some cells may form one long and thin protrusion and other cells

may form many short protrusions.

The results from the best subsets analysis suggest that only three or four

metrics may be necessary to form L2Error. The correlation analysis shows that

33

Table 3.6: Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Fibroblast
Simulations

Size Max Eigenvalue Subset of Metrics
1.0045 7, 9
1.0073 8, 11

2 1.0152 6, 10
1.0239 2, 6
1.0288 1, 9
1.0600 1, 4, 8
1.0769 1, 4, 9

3 1.0855 1, 6, 9
1.0992 5, 6, 9
1.1229 4, 8, 10
1.2807 1, 4, 8, 10
1.2986 1, 6, 8, 10

4 1.3122 2, 4, 8, 9
1.3131 1, 4, 8, 9
1.3155 4, 5, 8, 9
1.5350 1, 6, 8, 9, 11
1.5668 1, 4, 6, 9, 10

5 1.5683 3, 4, 8, 9, 11
1.5716 1, 4, 8, 9, 11
1.5878 3, 4, 6, 9, 10

subsets containing one metric from each group are more likely to be independent

and still retain the three main properties of cell motility. Including more than three

or four metrics in our calculation of L2Error may be unnecessary and contribute to

its variability.

34

Table 3.7: Maximum Eigenvalues of Subsets of Size 2, 3, 4, and 5 for Neuron
Simulations

Size Max Eigenvalue Subset of Metrics
1.0383 5, 7
1.0399 3, 7

2 1.0426 3, 5
1.0660 5, 6
1.0667 5, 8
1.0428 3, 5, 7
1.1006 3, 5, 6

3 1.1344 3, 4, 5
1.1731 3, 5, 9
1.2316 3, 5, 11
1.5717 3, 5, 7, 8
1.6190 3, 4, 5, 8

4 1.6212 3, 5, 8, 11
1.6237 3, 5, 6, 8
1.6466 3, 5, 8, 10
1.9033 2, 3, 5, 7, 8
1.9251 2, 3, 5, 6, 8

5 1.9255 2, 3, 5, 8, 9
1.9490 2, 3, 4, 5, 8
1.9994 2, 3, 5, 8, 11

3.3.1 Correlation Matrices

The correlation matrix of n metrics is an n × n matrix whose i, j entry is the

correlation coefficient of metrics i and j denoted by ρi,j. The correlation matrix is

symmetrical since ρi,j = ρj,i. The correlation coefficient of metrics i and j is defined

as ρi,j =
COV (i, j)

σiσj

, where COV (i, j) is the covariance of metrics i and j. σi is

the standard deviation of metric i and σj is the standard deviation of metric j.

Covariance is defined as COV (i, j) =
1

n − 1

n
∑

k=1

(ik − i)(jk − j), where ik is the kth

observation of metric i and i is the mean value of i over all observations.

35

Figure 3.1: Best Subsets of Cell Metrics

Figure 3.2: Second Best Subsets of Cell Metrics

36

Figure 3.3: Third Best Subsets of Cell Metrics

37

Chapter 4

Minimizing a Nonlinear Stochastic

Function

In unconstrained optimization, the goal is to find the point x∗ = (x∗

1, x
∗

2, ..., x
∗

n)

which minimizes or maximizes the objective function f(x1, x2, ..., xn) where there

is no constraint on any of the variables x1, ..., xn. Algorithms for unconstrained

optimization problems require an initial starting point, xs, that is a reasonable ap-

proximation to the solution. Although the function may have many local minima,

we seek a method that will be able to converge to the global minimum. There

are many effective algorithms available for unconstrained optimization problems;

however, the speed and accuracy of the algorithm depend on the type of function

being optimized. The number of variables, smoothness of the function, and expense

of function evaluations can greatly increase the difficulty in optimization. In this

chapter we will discuss unconstrained optimization methods which require evalua-

tion of the function’s derivatives and those that use a direct search strategy.

38

4.1 Minimization with Derivatives

Two main approaches in unconstrained minimization algorithms are line search and

trust region methods [10]. Line search methods first choose a direction and then

determine a step length that will produce a new iterate which decreases the function.

Trust region methods use a model function, usually a quadratic, that behaves like

the objective function in a region around the current iterate. First a step length is

chosen within the trust region, and then a direction is determined by minimizing

the function over all directions.

Among the line search methods there are many ways of obtaining the search

direction. For example, the steepest-descent direction is given by −▽ fk which re-

quires calculation of the function’s gradient. On more complex functions, the New-

ton direction, −▽2f−1

k ▽fk, may be of interest. The Newton direction can be found

only if the Hessian of the function’s second derivatives can be computed. Alter-

natively, there are Quasi-Newton search directions which approximate the Hessian

based on information from the previous iterate. Both the Newton and Quasi-Newton

methods require that the Hessian or approximate Hessian matrix be positive definite.

4.1.1 Finite Difference Method

Line search methods rely on information about the function’s first derivatives and

sometimes its second derivatives. In order to approximate the derivatives of our

L2Error function in SimMigration, we use finite differences which only require two

function evaluations at each iteration. For each input parameter, we compute

L2Error at its initial value, xi, then at its initial value increased by its step size,

xi + hi, and at its initial value decreased by its step size, xi − hi. The forward,

backward, and central difference formulas were used to approximate the derivatives

39

for each input parameter as follows.

Let xi be the ith input parameter and hi be its step size. Let fj−1 = f(xi−hi),

fj = f(xi), and fj+1 = f(xi + hi). Then the three finite difference formulas are:

Forward Difference

f ′ ≈
fj+1 − fj

hi

Backward Difference

f ′ ≈
fj − fj−1

hi

Central Difference

f ′ ≈
fj+1 − fj−1

2hi

The finite difference methods were performed on the L2Error function for

Amoeba input data. Table 4.1 shows the target values and step sizes for each

input parameter. The derivatives obtained from the forward, backward, and central

difference formulas for each input parameter are shown in Table 4.2.

Table 4.1: Amoeba Target Value Input Parameters and Step Sizes for Finite Differ-
ence Methods

Parameter Target Value Step Size

fDiffuse 0.2 0.002
fDecay 0.999 0.01
fBurst 0.003 0.00003
nBurst 4 0.04
dlnhibitorConc 3.0e-6 3.0e-8
fProtrusion 0.2 0.002
fRetraction 0.005 0.00005
fFeedback 1 0.01
nOffPoint 5 0.05

40

Table 4.2: L2Error Function Derivative Approximations using Finite Difference
Methods for Amoeba

Parameter Forward Backward Central

fDiffuse 1153.3678 ± 1.1770 -1152.2804 ± 0.6261 0.5437 ± 0.4010
fDecay 234.1970 ± 0.0796 -230.2079 ± 0.1735 1.9946 ± 0.1265
fBurst 7.6822e4 ± 3.1723e1 -7.6845e4 ± 8.8070 -11.5232 ± 15.5262
nBurst 57.6036 ± 0.0342 -57.6845 ± 0.0148 -0.0404 ± 0.0238
dlnhibitorConc 7.6720e7 ± 6.3715e4 -7.6811e7 ± 1.0974e4 -4.5259e4 ± 3.3585e4
fProtrusion 1152.4893 ± 0.5684 -1151.2146 ± 1.7516 0.6373 ± 0.9127
fRetraction 46062.6504 ± 35.0438 -46049.4650 ± 55.1431 6.5927 ± 10.0640
fFeedback 230.3985 ± 0.0683 -230.1535 ± 0.1793 0.1225 ± 0.1110
nOffPoint 46.1140 ± 0.0181 -46.1374 ± 0.0320 -0.0117 ± 0.0130

The derivative approximations for each input parameter are inconsistent

among the forward, backward, and central difference calculations. Thus computing

derivatives of the L2Error function is not practicable and we must seek an alter-

native way to minimize the L2Error function which does not rely on derivative

calculations.

4.2 Minimization without Derivatives

In certain cases it is more efficient to find the minimum of a function by direct

evaluation when the approximation of derivatives fails. Two direct search methods

for unconstrained optimization problems are the Hooke and Jeeves, and Nelder-

Mead methods. Both methods can conduct searches in n dimensions for nonlinear

functions.

4.2.1 Hooke and Jeeves Method

We first take a look at the Hooke and Jeeves method for finding the minimum of a

nonlinear function. The algorithm we used to perform the Hooke and Jeeves method

41

was provided by the Netlib Library [7]. This algorithm requires the user to provide

the number of the function’s dependent variables, an initial guess to the minimum

point, the step size, termination criteria for the step size, and the maximum number

of iterations allowed.

There are two types of moves in the Hooke and Jeeves iterates [12]. The first

move is an exploratory move that searches for a value near the initial guess which

reduces the function’s value. This is considered the best point nearby. The second

move is a pattern move that is based on the direction established by the exploratory

move. Once the best point is found, the search continues in its direction.

Hooke and Jeeves Algorithm

Step 1: Find a point nearby which minimizes the function. For each variable, let

xi = xi + δi, where δi is a given step length for the ith variable.

Step 2: Evaluate the function at each of the xi’s. If f(xi + δi) < f(xi) then replace

xi with xi + δi. Otherwise evaluate f(xi − δi). If f(xi − δi) < f(xi) then

replace xi with xi − δi. If neither of these moves produces a reduction in the

function, then do not alter xi.

Step 3: Begin Pattern Moves Calculate the new step length: δi = |xp ∗ρ|, where xp

is the starting point obtained from the initial guess or from the previous

iteration. After each iteration the step length is reduced by the parameter ρ.

Stopping Conditions

• Stop when the step length is smaller than ǫ, the minimum step length allowed.

• Stop when the maximum number of iterations is reached.

Table 4.3 shows the results from applying the Hooke and Jeeves minimization

algorithm to the input parameters for amoeba. First the Hooke and Jeeves method

42

was performed on the nine input parameters. The method failed to find any of

the target values within a 10% relative error. In fact, the smallest error was 20%.

Then we narrowed down the search to four parameters. The first four parameter

search was performed on fDecay, fBurst, fProtrusion, and fFeedback. This search

still failed to find reasonable estimates of the target values with the lowest error

at 10% for fDecay which was our original starting point. A second four parameter

search on fBurst, fProtrusion, fRetraction, and fFeedback performed better. The

method was able to find the target values for fBurst, fProtrusion, and fRetraction

within 23% of the target values. However, this search was still not able to attain a

reasonable value for fFeedback. We then narrowed the search to only three variables

fBurst, fProtrusion, and fRetraction. The largest error observed among these three

variables was 37% in the three variable search compared to 23% in the four variable

search. Although we reduced the number of variables in the search to simplify the

minimization problem, the Hooke and Jeeves method was still not able to attain

target values for all variables with at least a 90% accuracy. As a result we pursued

an alternative minimization method.

43

Table 4.3: Results of Hooke and Jeeves Minimization Method on Amoeba Input
Parameters

Parameter Target Value Start Point Minimum Found Relative Error

fDiffuse 0.2 0.1 0.525 163 %
fDecay 0.999 1.0 3.55 255 %
fBurst 0.003 0.004 0.0176 487 %
nBurst 4 3 3 25 %
dInhibitorConc 0.000003 0.000003 0.0000056 87%
fProtrusion 0.2 0.15 0.5325 166%
fRetraction 0.005 0.004 0.004 20%
fFeedback 1 1.7 1.7 70%
nOffPoint 5 4 4 20%

fDecay 0.999 0.90 0.90 10 %
fBurst 0.003 0.0025 0.013 333 %
fProtrusion 0.2 0.1 0.68 240 %
fFeedback 1 1.2 1.2 20 %

fBurst 0.003 0.002 0.0037 23%
fProtrusion 0.2 0.05 0.1997 0.15%
fRetraction 0.005 0.002 0.0054 16%
fFeedback 1 2 2 100%

fBurst 0.003 0.01 0.0019 37%
fProtrusion 0.2 0.08 0.205 2.5%
fRetraction 0.005 0.001 0.00399 20%

44

4.2.2 Nelder-Mead Method

Nelder and Mead proposed a widely used direct search method for minimizing a non-

linear function in multidimensions. The Nelder-Mead method performs relatively

well on functions that contain some noise. This method searches for a minimum by

forming a simplex in n dimensions, or a convex hull of n + 1 points in Rn [8]. The

algorithm we used to perform the Nelder-Mead method was supplied by the GNU

Scientific Library and is shown in Appendix A [6]. The user must supply an ini-

tial vector of estimates to the solution, the step sizes for each variable, the number

of variables, and the function to minimize. From the initial vector, the algorithm

constructs n + 1 vectors in which the ith vector increases the (i − 1)th variable by

its step size. These n + 1 vectors form the vertices of the simplex. Each iteration

consists of the following steps:

Nelder-Mead Algorithm

Step 1: Construct n+1 vectors from the initial vector

Let the initial guess be x = (x0, x1, ..., xn−1) and the respective step sizes be

given by s = (s0, s1, ..., sn−1).

Then v0 = (x0, x1, ..., xn−1)

v1 = (x0 + s0, x1, ..., xn−1)

...

vi = (x0, x1, ..., xi−1 + si−1, ..., xn−1)

...

vn = (x0, x1, ..., xn−1 + sn−1)

Step 2: Evaluate the function at each vertex and order the vertices by their function

values

Step 3: Reflect the vector, vi, that produces the highest function value about the

45

centroid of the remaining n points. Evaluate the function at the reflection

vector, vr. If f(vr) is less than the maximum function value and greater than

the minimum function value, then stop. vr becomes the new vertex.

Step 4: If f(vr) < f(vl), where f(vl) is the minimum function value over all vertices,

then expand the simplex by doubling the distance of vr to the centroid.

Evaluate the function at the expansion point ve.

If f(ve) < f(vr), then ve is the new vertex. Otherwise vr is the new vertex.

Step 5: If f(vr) > f(vh), where f(vh) is the maximum function value over all

vertices, then contract the simplex by halving the distance of vr to the

centroid. Evaluate the function at the contraction point vc.

If f(vc) < f(vr), then vc is the new vertex.

Step 6: If f(vc) > f(vr), then shrink the simplex by halving the distance of each

vertex to the vertex which produces the smallest function value.

Step 7: Repeat until the termination criteria is met.

The Nelder-Mead search was performed to minimize L2Error with the input

parameters for amoeba. In addition, all of the parameters were scaled to a number

between 1 and 10, to allow the step size to be a value of 1. The initial guess for the

input parameters was set to within 20% error of the target value.

First, we performed the Nelder-Mead search on one input parameter at a

time while keeping the rest of the input parameters set to their target values. This

reduces the simplex to only one dimension and requires less run time, about thirty

minutes on a 3CPU parallel processor. Table 4.4 shows the results obtained from the

one dimensional Nelder-Mead search on each of the input parameters. By searching

for one parameter at a time we can differentiate between those parameters whose

target values were achieved with at least 90% accuracy and those who did not achieve

sufficient accuracy. Based on the information obtained from the one dimensional

46

Nelder-Mead search, we classified five input parameters as ”good” variables and

three as ”bad” variables. Parameters that had a relative error of 6% or less were

classified as ”good” variables, otherwise they were considered ”bad” variables. The

five good variables were fDecay, fBurst, fProtrusion, fRetraction, and dInhibitorConc

and the four bad variables were fDiffuse, nBurst, nOffPoint, and fFeedback.

Following the one dimensional searches we then selected subsets of the five

”good” variables to conduct searches in larger dimensions. Table 4.5 shows the re-

sults from the Nelder-Mead search on fDecay, fBurst, fProtrusion, and fRetraction.

All of the four variables except for fProtrusion converged to the their target value

within a 5% relative error. Table 4.6 and 4.7 show the Nelder-Mead minimization

results for five input parameters. The starting point for each input parameter is

at 20% below the target value in Table 4.6, and at 10% below the target value in

Table 4.7. For starting points at 20% below the target value, the method converged

to the target value for fDecay within 1% error. For the remaining variables, fBurst,

fProtrusion, fRetraction, and dInhibitorConc, the method made no progress in ob-

taining the target values. Reducing the starting points to only 10% below the target

value improved the results for the five variable search with a convergence of fDecay,

fBurst, and fProtrusion to within 7% of the target value.

Although the five dimensional search with starting points at 10% below the

target values proved to be successful, the range of values for the starting points

may be too restricting for practical use. In addition, we are not able to include

more than five variables in the Nelder-Mead search due to the poor performance of

fDiffuse, nBurst, nOffPoint, and fFeedback. These ”bad” input parameters may have

multiple local minima causing our Nelder-Mead search to fail when these parameters

are added. A deeper investigation in the behavior of these input parameters may

offer further valuable insight into the complications we encountered.

47

Table 4.4: Results from Nelder-Mead Minimization on each Amoeba Input Parame-
ter

Parameter Target Value Start Point Minimum Point Relative Error

fDiffuse 0.2 0.24 0.2463 23.15 %
fDecay 0.999 0.80 0.9996 0.06 %
fBurst 0.003 0.004 0.0029 4.83 %
nBurst 4 4.8 6.55 63.75 %
dlnhibitorConc 0.000003 0.0000036 0.000003162 5.40 %
fProtrusion 0.2 0.24 0.2025 1.25 %
fRetraction 0.005 0.004 0.005 0.06 %
fFeedback 1 0.8 1.79 79.30 %
nOffPoint 5 4 3.996 20.08 %

Table 4.5: Results from Nelder-Mead Minimization on 4 Amoeba Input Parameters

Parameter Target Value Start Point Minimum Point Relative Error

fDecay 0.999 0.799 0.9985 0.05 %
fBurst 0.003 0.0024 0.003021 0.70 %
fProtrusion 0.2 0.16 0.1811 9.45 %
fRetraction 0.005 0.004 0.005165 3.30 %

Table 4.6: Results from Nelder-Mead Minimization on 5 Amoeba Input Parameters

Parameter Target Value Start Point Minimum Point Relative Error

fDecay 0.999 0.799 0.9911 0.79 %
fBurst 0.003 0.0024 0.002159 28.03 %
fProtrusion 0.2 0.16 0.1635 18.25 %
fRetraction 0.005 0.004 0.003782 24.36 %
dlnhibitorConc 0.000003 0.0000024 0.000002024 32.53 %

Table 4.7: Results from Nelder-Mead Minimization on 5 Amoeba Input Parameters

Parameter Target Value Start Point Minimum Point Relative Error

fDecay 0.999 0.8991 1.0006 0.16 %
fBurst 0.003 0.0027 0.002807 6.45 %
fProtrusion 0.2 0.18 0.1866 6.71 %
fRetraction 0.005 0.0045 0.004403 11.93 %
dlnhibitorConc 0.000003 0.0000027 0.000002653 11.58 %

48

Appendix A

Nelder-Mead Implementation in C

A.1 main.c code

#include ”SimMigration.h”
#include ”stdio.h”
#include <gsl/gsl vector.h>
#include <gsl/gsl multimin.h>
int
main(void)
{

FLOAT fDiffuse;
double L2Error;
FLOAT relerr, tar;
FILE *fp;
fp = fopen(”Results”,”w”);

// STARTING POINT //
fDiffuse = (FLOAT) 2.20;
tar = 2.00;
size t np = 1;
double par[1] = {2.00}; //scaled from 0.20

const gsl multimin fminimizer type *T = gsl multimin fminimizer nmsimplex;
gsl vector *ss, *x;
gsl multimin function minex func;
size t iter = 0, i;
int status;
double size;

/* Initial vertex size vector */
ss = gsl vector alloc (np);

49

/* Set all step sizes to 1 */
gsl vector set all (ss, 1.0);

/* Starting point */
x = gsl vector alloc (np);

gsl vector set (x, 0, fDiffuse);

/* Initialize method and iterate */
minex func.f = &MigrationSimulation f;
minex func.n = np;
minex func.params = (void *)∥

s = gsl multimin fminimizer alloc (T, np);
gsl multimin fminimizer set (s, &minex func, x, ss);

do
{

iter++;
status = gsl multimin fminimizer iterate(s);

if (status)
break;

size = gsl multimin fminimizer size (s);
status = gsl multimin test size (size, 1e-4);

if (status == GSL SUCCESS)
{
fprintf (fp,”converged to minimum at %d iterations \n”, iter);

for (i = 0; i < np; i++)
{
fprintf (fp, ”Parameter value: %10.3e ”, gsl vector get (s->x, i));
relerr = (tar - gsl vector get (s->x, i))/tar*100;
fprintf (fp, ”Relative Error: %.3f \n”, relerr);
}
fprintf (fp, ”f() = %7.3f size = %.3f \n”, s->fval, size);
}

}
while (status == GSL CONTINUE && iter < 100);

50

gsl vector free(x);
gsl vector free(ss);
gsl multimin fminimizer free (s);
fclose(fp);

return status;
}

51

Bibliography

[1] Janardhan A., Swigut T., and Hill B. et al. HIV-1 Nef Binds the DOCK2-
ELMO1 Complex to Activate Rac and Inhibit Lymphocyte Chemotaxis. PLOS
Biology Vol. 2, pages 65–76, January 2004.

[2] Alberts B., Bray D., and Lewis J. et al. Molecular Biology of the Cell. Garland
Publishing, New York, NY, 1994.

[3] Luster A. D., Alon R., and von Andrian U. H. Immune cell migration in
inflammation: present and future therapeutic targets. Nature Immunology Vol.
6, pages 1182–1190, December 2005.

[4] Palsson E. and Othmer H. G. A model for individual and collective cell
movement in Dictyostelium discoideum. PNAS Vol. 97.

[5] Solomon E.P., Berg L.R., and Martin D.W. et al. Biology, Fourth Edition.
Saunders College Publishing, Fort Worth, Texas, 1996.

[6] Galassi M. et al. GNU Scientific Library Reference Manual, Second Edition.

[7] Johnson M. G. Hooke and Jeeve’s direct search. CACM, June 1963.

[8] Press W. H., Teukolsky S. A., Vetterling W. T., and Flannery B. P. Numerical
Recipes in C: The Art of Scientific Computing Second Edition. Cambridge
University Press, New York, NY, 1992.

[9] Mitchison T. J. and Cramer L. P. Actin-Based Cell Motility and Cell Loco-
motion. Cell Vol. 84, pages 371–379, February 1996.

[10] Nocedal J. and Wright S. J. Numerical Optimization. Springer, New York, NY,
1999.

[11] Yanai M., Kenyon C. M., and Butler J. P. et al. Intracellular pressure is a mo-
tive force for cell motion in Amoeba proteus. Cell Motility and the Cytoskeleton
Vol. 33, pages 22–29, Decmber 1998.

[12] Hooke R. and Jeeves T. A. Direct search solution of numerical and statistical
problems. Journal of the Association for Computing Machinery (ACM), pages
212–219, 1961.

52

[13] Chen X., Huang B. Q., and Splinter P. L. et al. Cdc42 and the Actin-Related
Protein/Neural Wiskott-Aldrich Syndrome Protein Network Mediate Cellular
Invasion by Cryptosporidium parvum. Infection and Immunity Vol. 72, pages
3011–3021, May 2004.

53

