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Abstract

The fragment shader is a powerful, efficient tool for image process-
ing. However, shaders are often unwieldy to use, even for simple post-
processing operations. We have developed multiple systems in order to
simplify the use of fragment shaders for image processing, and applied
these systems across different domains, including live coding, creative cod-
ing and game development. Through this iterative process, it became clear
that a custom domain-specific language (DSL) could simplify the author-
ship of a non-trivial rendering pipeline that involves multiple fragment
shaders. As a result, we developed Tinsl (Tinsl Is Not a Shading Lan-
guage) which is a DSL for specifying multipass render-to-texture (RTT)
post-processing effects. This language uses the familiar syntax of GLSL,
but adds semantics for specifying how to utilize temporary textures. This
“shader metaprogramming system” enables live coders, creative coders
and game developers to create complex post-processing effects that in-
volve feedback and multipass blurs in a single file. We evaluate the ef-
fectiveness of this system using Petre and Greene’s cognitive dimensions
framework to provide a qualitative analysis. We also perform a user study
that gathers feedback from participants who were asked to follow a short
tutorial on the language in a web-based creative coding environment. We
released the software as a set of open-source libraries and programming
environments.
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1 Introduction

Despite graphics programming being an endeavor often fraught with technical
hurdles, fragment shaders are, by contrast, surprisingly elegant. A fragment
shader is a small program that runs once on every pixel to produce a final output.
The GPU (graphics processing unit) in a computer specializes in parallelizing
these kinds of operations. One area where the elegance of fragment shaders shine
is in live coding. Live coding environments offer a playground-like user interface
to rapidly see the results of editing programs, often in real time; the simplicity
they offer enables these environments to be used in audio-visual performances.
Many graphical live coding environments focus on fragment shaders, abstracting
away the tedium of dealing directly with graphics API (application programming
interface). However, single fragment shaders operating with a single texture can
only do so much. Many post-processing effects can only be implemented (in a
reasonably efficient way) by using temporary rendering targets and running
multiple passes.

This form of control flow is outside the scope of the fragment shader. We
hypothesize that a DSL could allow programmers to write logic for render-to-
texture (RTT) steps directly alongside shader code. In this paper, we discuss
the language we created, Tinsl (Tinsl Is Not a Shading Language) which has
the succinctness and familiarity of a shading language like GLSL (OpenGL
shading language). Unlike GLSL, Tinsl also lets the user specify intermediate
rendering to off-screen textures, and sample from those textures later in the
effect. The compiler divides (and combines, where possible) the operations into
multiple fragment shaders. The compiled output of this language is a tree with
leaves containing fragment shader source code. We have also created a live
coding environment that focuses on writing post-processing effects on webcam
video with Tinsl code. This has the dual purpose of testing the core design of
Tinsl, as well as offering live coders a unique tool to enhance performances with
easily-authorable multipass rendering techniques. We will also discuss merge-
pass, which is a post-processing effect library that offers an API in TypeScript,
and highlight the domains where it has been applied. Tinsl is not written on
top of merge-pass; it is a completely separate library.

We evaluated Tinsl using Green and Petre’s “cognitive dimensions frame-
work” to perform a qualitative analysis. We also performed a user study to
gather feedback on the design of the language. Finally, we perform a quantita-
tive analysis based on lines of code needed to implement a “bloom” effect on an
image with Tinsl and without.

2 Background

In this section, we offer a brief history and explanation of shader metaprogram-
ming techniques, and where these techniques fit into the current landscape of
graphical apps and games in the web browser. We will also go over existing
theory about live coding systems with examples.
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2.1 Shader Metaprogramming

In the paper “Abstract Shade Trees”, the authors note that GLSL lacks modern
language features for encapsulation and abstraction, making it “hard to create
and maintain long GPU programs” [14, p. 1]. While this remark was published
in 2006, there are many domains where this is still the case. This problem is
especially acute when we consider the web world, where we are limited to earlier
versions of GLSL.

“Shader metaprogramming systems” are one solution to these problems and
surprisingly common in the world of game engines and other high-performance
graphical applications intended to run on native hardware. Metaprogramming
techniques range from simple textual replacement, DSLs embedded in higher-
level languages, and even forks of existing shader compilers. “Sh” is perhaps one
of the earliest examples of bringing high-level programming features to shader
development. It is a C++ API that provides a metaprogramming language for
shaders with operator overloading and macros [13]. Such an approach would not
be feasible for a language that does not provide such features natively, like Java
or JavaScript. (Sh eventually developed into the RapidMind Multi-core develop-
ment platform at Intel; both systems are no longer maintained [20].) Other em-
bedded DSLs for shader metaprogramming exist in Haskell and Python [6][12].

Slang is a relatively recent example of shader metaprogramming. Slang
extends HLSL with modern language features that help with managing com-
plexity, such as generics and interfaces [10]. Instead of being implemented as an
embedded DSL leveraging the features of the host language, the team behind
Slang accomplished this by developing a custom compiler.

Robust shader metaprogramming techniques are not as prevalent in web pro-
gramming; the solutions that have been engineered have suffered from waning
or non-existent maintenance in recent years. When WebGL was a relatively new
standard for browsers in 2012, David William Wallace made the observation that
“WebGLSL lacks many high-level language features such as user-defined names-
paces and modules” [22], which mirrors the comments made by by McCool et.
al. in 2002, who note “custom shading languages usually will not be as powerful
as full programming languages. They often may be missing important features
such as such as modularity and typing constructs useful for organizing complex
multipart shaders” [13]. In an effort to make building large-scale 3D applica-
tions for the web more manageable, Ashima Arts developed gloc, which is briefly
described in the paper “gloc: Metaprogramming WebGL Shaders with OCaml”.
It would appear that this library is no longer maintained as the latest commit is
from May 2012.1 Another library, glslify, attempts to bring shader modularity
to the web, allowing the user to make use of many prewritten shader functions.
This open-source project is no doubt still used by many, however contributions
to this project have slowed down considerably. The latest official release is from
2016, and glslify still lacks proper WebGL 2 and GLSL 3.00 support.2

1To the best of our knowledge, the most recent version of gloc is only available at this link:
https://github.com/dsheets/gloc

2As of April 2021, this 2015 issue on the GitHub page of glslify is still open, which can be
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String concatenation and textual replacement is certainly a form of metapro-
gramming, in the sense that it is code that manipulates other code as data. In
general, this is what we see in PlayCanvas3, Babylon4 and Threejs,5 which
are three popular open-source platforms for 3D programming. These frame-
works/engines treat the shader code as a “black box”. The shaders live as a
string inside the code of the host language; there is little to no semantic un-
derstanding this string of embedded shader code before it is compiled. Such
techniques lack the robust features and early error detection.

One possibility for this disparity is that lightweight metaprogramming so-
lutions are sufficient for the common use cases of web-based game/rendering
engines. By contrast, in the AAA games industry, advanced shader pipelines
are developed due to the need to coordinate a team of graphics programmers
and artists to produce a massive game with high graphical fidelity. TFX, the
shader pipeline for the game Destiny, is a prime example of this [27]. A “TFX for
the WebGL” would be over-engineered for the current landscape of web games,
as no web game has come close to the level of production seen in Destiny. We
can speculate about why this is the case, but determining a concrete reason
for this is out of scope for this thesis. At the same time, we believe there is
some middle ground between the complex shader metaprogramming of the AAA
games industry and the simplicity of unembellished string concatenation that
could serve to elevate the ease of use and maintainability of shaders, namely
for post-processing effects, in the web. While a system like Tinsl might serve
this niche in the video game industry, we have instead created a minimalistic
live coding environment for creating post-processing effects that includes syntax
and error highlighting.

2.2 Live Coding

Live coding systems enable programmers to see the results of changes to code
very rapidly, often in real time. In the paper “VIVA: A Visual Language for
Image Processing”, Steven Tanimoto describes four levels of “liveness”, a term
which refers to the extent to which the programmer receives live feedback from
the system. The third level of liveness is described as “edit-triggered updates”,
an environment where the user only needs to make a change to the model in
order to see the result. No “run button” is required. The fourth level of liveness
describes a system that is updating its output based on some time-varying
stream even when the user is not directly editing the model. In the paper,
author presents this as a layered taxonomy, even going so far as to create a
diagram where each level encompasses the last [26, p. 129]. However, now that
we have many of these reactive systems, we see that a system can exist between
levels. While The Force [25, p. 2]tries to compile your code as you type, forgoing
any kind of “run button”, many other systems require the user to select blocks

seen here: https://github.com/mrdoob/three.js/
3https://github.com/playcanvas/engine
4https://github.com/BabylonJS/Babylon.js
5https://github.com/mrdoob/three.js
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of code. This has the advantage of giving the user more control (at the cost of
simplicity), preventing the computer from executing on what is essentially an
“incomplete thought”. By this description of “liveness”, such a system would
sit below level 3. At the same time, these environments also present a time-
varying visualization, a characteristic of level 4 liveness systems. (The authors
of this paper implement the live visual programming system two years later.
They observe that their implementation is at “level 3” liveness. Edits trigger a
change in the output, but the image does not change based on time [2].)

In the paper “Live Coding Ray Marchers with Marching.js”, Charlie Roberts
characterizes “two camps” of live coding environments. [16] The first camp in-
cludes a host of live coding environments that focus on the “traditional” graphics
pipeline, which involves rasterizing meshes built of triangular faces. The second
camp includes environments that take full advantage of the fact that modern
graphics pipelines are very programmable, leaning heavily on fragment shaders
to drive the visuals.6 VEDA is a live coding environment that is an easy to use
GLSL runtime [1]. VEDA provides very few abstractions over raw GLSL. In
this way, it is similar to The Force, which is browser-based instead of an plugin
for the text editor Atom [25, p. 1]. Hydra, by contrast, is a live coding envi-
ronment that provides many abstractions over GLSL in order to mirror analog
synthesizers (although it is still possible to drop down to the level of GLSL if
desired) [11]. These synthesizer-inspired abstractions get compiled into frag-
ment shaders. Marching.js is similar to Hydra but with a focus on constructive
solid geometry [16, p. 1]. The declarative syntax of Marching.js gets compiled
into a single fragment shader using ray marching techniques, abstracting away
the linear algebra typically required to write a fragment shader that performs
volumetric rendering.

2.3 Multipass Effects in Different Environments

Multipass effects are not possible to specify within a single fragment shader. As
such, different environments offer unique ways to author multipass effects.

2.3.1 Unity

Unity uses the language HLSL for its shaders. In previous versions, shaders
were written in Cg. Because HLSL was created for use in DirectX, Unity uses an
open-source program called HLSLcc to cross-compile HLSL bytecode to GLSL
or Metal when targeting non-Windows platforms [21]. It is also possible to
insert snippets of GLSL directly into the fragment shader code [8].

In order to perform multipass post-processing effects that require a texture
for intermediate calculations, a user can call RenderTexture.GetTemporary.
Unity keeps a pool of these temporary textures for this purpose. Calling the
function RenderTexture.ReleaseTemporary returns this texture to the pool,
allowing the resource to be reused [15]. In Ronja Böhringer’s Unity tutorial
series, she makes use of this function to implement a Gaussian blur effect [3].

6Our system, Tinsl, falls into this category.
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2.3.2 TouchDesigner

Touch Designer enables users to perform post-processing effects through a visual
node-based language. Texture Operators, or TOPs, allow the user to perform
real-time image processing on the GPU. Touch Designer provides a Feedback
TOP for this purpose [7].

Figure 1: Section of a freely available Touch Designer project available at the
following link: https://www.youtube.com/watch?v=X8MPdeMM__U

2.3.3 Shadertoy

The user has access to multiple channels of textures, which can be sampled from
by passing in iChannel0 (up to iChannel3) to a call to texture. A channel
can also be set up as a buffer instead of a texture. Using the “+” button to
create a new tab, one of the options revealed includes BufferA up to BufferD.
The user can sample from the same buffer that is being written to. Reading
from and writing to the same render target is prohibited in WebGL, so one can
only assume that Shadertoy provides some abstraction over this.

One usability issue is with running multiple passes of the same shader. In
Shadertoy, this can only be done by duplicating the same code in the BufferA

editor into the BufferB editor, but making the code for BufferB sample from
BufferA’s channel. This can be chained all the way to BufferD.

2.4 Implementing Bloom in OpenGL with GLSL

Many post-processing effects require intermediary rendering targets and multi-
ple passes. Consider how we might implement a bloom post-processing effect,
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which creates a glowing haze around all bright objects in a scene. This is a
widely used example for image processing [12, p. 7]. A summary for this pro-
cedure is described in the Learn OpenGL blog written by Joey de Vries [28].
Walking through this process will highlight some of the “tedious” aspects of
creating a multipass effect that requires rendering to a temporary off-screen
texture. The purpose of this section is to demonstrate how the implementation
of multipass texture-to-texture effects lack the satisfying elegance of singular
shaders, which are, by contrast, one program that runs once once on each frag-
ment, fully described in one file. While the management of resources is by no
means difficult for an experienced graphics programmer, this process can be
frustrating and error-prone to those who are less experienced.

Figure 2: Steps for performing a bloom effect. Image by Joey de Vries, from
the following article: https://learnopengl.com/Advanced-Lighting/Bloom

licensed under Creative Commons version 4: https://creativecommons.org/
licenses/by-nc/4.0/ Joey de Vries on Twitter: https://twitter.com/

JoeyDeVriez

To begin our bloom effect, the scene needs to be copied over to a separate
texture with all fragments that fall below a certain brightness masked off. This
requires an intermediary render target. We must bind an intermediary texture to
the current framebuffer before executing this first program. This is a relatively
simple program which only serves to “drop” all bright fragments “on the floor”.

Second, the masked version of the original scene needs to be blurred. While
there are many ways to blur an image, one of the most efficient ways is to
perform a Gaussian blur in multiple passes, sampling from only a small kernel
of colinear points and repeating the process in an orthogonal direction to the first
pass. Since one cannot render to the same texture from which you are sampling
from, this requires that we “ping-pong” between two textures to get the final
effect. Additionally, since we need the first pass to blur the image horizontally,
and the second pass to blur vertically, this requires writing and maintaining
two separate but very similar shaders. Again, we are burdened with managing
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more resources and attaching the right texture to the current framebuffer and
changing the sampler uniform to point to the previous texture. Also, how many
times do we want to perform this feedback-based blur effect? More passes will
result in a stronger blur. This detail is written into the implementation of
the texture-swapping loop, not the GLSL shader code, further fragmenting our
effect into multiple locations in source code.

At this point, we have a texture that contains a blurred version of all the
bright objects in the scene set on a black background. Now, we must add this
new image back on top of the original image. This requires yet another shader
with two samplers, one for the texture that contains the original scene and
another texture for the blurred masked version of the scene. We also need to
tell the framebuffer to render to the screen since this is the final step.

Some steps, however, do not require an entirely new shader pass. For exam-
ple, if we wanted to change the contrast of the final image, we could do so by
modifying the final shader that combines the original image with the blurred
image, since increasing the contrast does not require sampling from adjacent
fragments. We only need to perform a single operation on the final color before
assigning the current fragment color.

Another complication arises from splitting all of this logic across many
shaders. Typically a given uniform can only be set when a program is in “use”.
In OpenGL with C/C++, this is following the call glUseProgram. In JavaScript,
this is gl.useProgram. In most cases, you cannot have a single uniform across
multiple shaders, which is inconvenient if steps of the process need access to the
same information.7 Suppose you wanted to increase the size of the Gaussian
kernel by updating a float uniform. You would need to do this across two dif-
ferent shaders, since the Gaussian blur is split into a horizontal blur shader and
a vertical blur shader. These are two uniforms with two separate locations in
memory that can only be updated at two separate points in the program, only
when that shader is “in use”.

The library merge-pass partially solves these issues. It will generate a tree
of shader programs that contains information about how many times to repeat
each program, which texture to render to and how many texture will be needed.
Then, it compiles the programs based on the source code in the tree, generates
the required resources, and executes these programs in the correct order. It also
provides a simple way to update uniforms on the GPU regardless of how the
final post-processing effect might be split up, potentially resulting in a uniform
being repeated across multiple shaders.

3 merge-pass

We created a post-processing library in order to bring post-processing effects
to Charlie Robert’s Marching.js playground. This library, titled merge-pass,

7In later versions of OpenGL, there exists the shared keyword that exists for this purpose,
but it is not available in all versions of OpenGL. Most importantly, it is not available in
OpenGL ES, the subset of OpenGL used for WebGL.
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simplifies the creation and implementation of multipass post-processing effects.
In Section 2.3, we discuss how multipass effects are authored in different envi-
ronments, which will illuminate why we decided to build a unified approach to
generating code for multipass post-processing effects for our own purposes.

3.1 Applications

merge-pass has been applied (by the author) in other projects, including a p5
library, called post5, and a generative art toy called artmaker.

3.1.1 Marching.js

Marching.js is a live coding environment created by Charlie Roberts. This
environment focuses on volumetric rendering using ray marching.

In the paper “Live Coding Ray Marchers with Marching.js”, Charlie Roberts
concludes by noting that the output of the ray marched scenes could be de-
scribed, as “cold”, “sterile”, “technical”, or “clinical”, and that post-processing
effects could be applied to address this [16, p. 6]. In the summer of 2020, merge-
pass was integrated into Marching.js in order to provide optional post-processing
effects. Some of the effects include hue rotation, antialiasing, bloom, depth of
field and edge detection. The user can chain however many of these effects, and
manipulate properties of these effects in realtime.

Figure 3: Antialiasing, bloom and depth of field effects running in Charlie
Robert’s Marching.js using merge-pass.

Some of these effects require a depth texture, namely “god rays” (a sunbeam
effect) and depth of field. Because ray marching differs from the traditional
graphics pipeline, where polygonal meshes are rasterized, the depth of the scene
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was not immediately accessible. Therefore, the developer of Marching.js added
an additional code in Marching.js to render the depth of each fragment to a
floating point texture which is then consumed by merge-pass.

The user can use these post-processing effects to add realism with to the
scene, or take the aesthetic in an abstract direction. Charlie Roberts, creator
of Marching.js, made a fractal look like undulating underwater coral by using
blue-tinted sunbeams and by bringing the foreground out of focus, as seen in
Figure 4. This was accomplished with the Focus and Godrays effects.

Figure 4: Underwater scene created with ray marching and post-processing with
merge-pass.

While the original intention of including post-processing effects in March-
ing.js was to add “cinematic” effects, these effects also allow for non-photorealistic
rendering. In contrast to the underwater fractal scene, teacher and creative
coder Daniel Opreza used a long chain of effects to transform a largely black-
and-white scene into a colorful neon matrix, as seen in Figure 5.

3.1.2 post5

In order to make merge-pass more easily accessible for creative coding, we cre-
ated post5, which is a thin wrapper for merge-pass and postpre, a set of merge-
pass presets. This allows the the user to add a variety of effects to simple p5
sketches with very little effort or lines of code.

As discussed in Section 3.3, merge-pass encodes GLSL’s type system into
TypeScript’s type system so that it is theoretically not possible to create an
effect that has type errors when compiled to GLSL fragment shaders. However,
p5 is primarily used in JavaScript. Therefore, it is possible to pass in incorrect
values to merge-pass expressions to produce erroneous GLSL code. In practice,
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Figure 5: An abstract use of post-processing effects. On the left is the original
image, and on the right is the image after post-processing.

this mostly amounts to a usability issue; the user will have to debug type errors
without the help of the TypeScript compiler.

We have also created six examples, available in the online p5 web editor, to
get users of all skill levels started with creative coding using post5. The code
for some of these examples is included in the Appendix. The p5 code for the
sketch depicted in Figure 6 is only 20 source lines of code, and easily fits into a
reasonably sized editor window.8

3.1.3 artmaker

artmaker is a generative art web toy with a minimalist UI. Upon hitting ‘R’ or
loading the page for the first time, the program generates a simple abstract 2D
animation with randomized parameters, such as color, speed, size, and shape.
Some of the animations were adapted from creative coding pieces by the author;
others were created anew. Various post-processing effects are chosen and layered
on top of the image in a random order. The randomly chosen effects range in
complexity from simple color grading to overlaid dancing beams of light with
colors sourced from the original image. The order in which these effects are
applied to the simple, abstract source image have surprising results that are
enjoyable to contemplate. The user can save a still image of the generated art,
or copy the link and send it to another person so they can view it in realtime
in the browser.

8All interactive sketches can be viewed in the browser at https://editor.p5js.org/

bandaloo/sketches. Desktop Chrome/Firefox is required.
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Figure 6: “Inky sunbeams” interactive example using post5, available at
https://editor.p5js.org/bandaloo/sketches/zXMOZkuYU. The user can
create blots of black or white using the mouse. Compare this to the unpro-
cessed version in the Appendix, Figure 12.

Much of the work in creating artmaker went into fine-tuning the dozens
of randomized parameters. For example, some post-processing effects are ran-
domly selected far less frequently than others. In addition, some effects can be
selected by the algorithm multiple times, while others are stricken from the list
of available choices once they have been already chosen. This continual tweaking
of probabilities was performed based on the author’s own aesthetic preferences.
It is interesting to think about how the way in which generative aspects of the
system are tuned is a form of self-expression, despite each individual piece being
machine generated.

artmaker is intended to be a very passive, offering very little control over
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its output. Instead of using a set of tools to craft an abstract piece as you
would in a more pragmatic creative tool, the user takes a back seat to the un-
derlying generative algorithms, exploring the expressive range of the generator
by repeatedly generating new animations. However, the user can override the
generated color palette through the use of color selectors in the top left corner
of the screen.

Researchers Kate Compton and Michael Mateas coined the term “Casual
Creators” in their paper by the same name. “Casual Creators” are “creativity
tools” which “privilege the enjoyable experience of explorative creativity over
task-completion” [5, p. 228]. The authors define the term: “A Casual Creator is
an interactive system that encourages the fast, confident, and pleasurable explo-
ration of a possibility space, resulting in the creation of discovery of surprising
new artifacts that bring feelings of pride, ownership, and creativity to the users
that make them,” even offering the Spirograph art toy as an analog example of
a Casual Creator [5, p. 229]. The question arises: is artmaker a Casual Creator?
Is its constrained design what makes it a Casual Creator, or are the limitations
it places on authorial control so extreme that it prevents users from experiencing
the “pride” and “ownership” they would otherwise feel if they had more control
over the output? We will not attempt to answer these questions definitively
in this paper. However, exploring how constrained a creative tool can become
before it prohibits users from experiencing a sense of ownership is an intriguing
potential for new research.

artmaker can also be used outside of the web toy in order to add abstract
animations to any web application. It is available as a single minified script
that can be included in a <script> tag without any additional build steps.
Alternatively, it is also available as an npm package. The purpose of this is to
encourage users with JavaScript and HTML5 knowledge to take the randomly
generated animations discovered through the web toy and use them in new
domains.

We used the npm version of artmaker to add moody, abstract backgrounds to
a text-based prototype for a future game later developed in Unity. Although this
incarnation of the game was a prototype, it stands on its own as it offers a unique
aesthetic and gameplay experience, different from the final Unity version. The
act of curating animated backgrounds for the game involved repeatedly hitting
the “regenerate” key and copying down the “seeds” (short strings used to recre-
ate the same animation) with an accompanying note of where this background
could be used in the overall narrative. Despite the lack of authorial control, the
rapidity at which we could explore generative animated backgrounds allowed us
to quickly find enough animations that supported the ambiance of various parts
of the narrative. Surprisingly, this generator originally conceived as a web toy
offered a productive (and enjoyable) mode of exploring an aesthetic domain.

merge-pass and the collection of post-processing presets, postpre, greatly
simplified the implementation of artmaker. Together, postpre and merge-pass
consist of 6269 source lines of code. artmaker itself is merely 942 source lines
of code. This data was calculated was calculated with the npm package sloc
version 0.2.1. Versions of merge-pass, postpre and artmaker in question are
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versions 0.6.4, 0.1.5 and 0.4.0 respectively.9 Minified, artmaker.min.js is 96
kilobytes. Beyond merge-pass and postpre, artmaker also requires the npm
package seedrandom, which contributes to the size of the bundled version of
artmaker.

Figure 7: The player is being quizzed by a malicious AI in the text-based
prototype for “Forward”. The background is in motion, changing color and
shape.

3.2 Regions

Using region, it is possible to constrain a post-processing effect to a specific
area of the screen. In a single shader, this is trivial, however, recall that merge-
pass may use multiple shader passes for image processing. region is useful for
split-screen applications, as different effects can be applied to different parts of
the screen in what appears to the user like a single post-processing step. For
effects that sample from neighboring pixels, such as blurs, sampled positions
are clamped to that particular area of the screen.10 This prevents the colors of
adjacent regions from “bleeding” into the current region. Regions can also con-
tain nested regions, which will be obscured by the boundaries of outer regions,
as seen in Figure 8.

9The program sloc allows us to exclude comments and empty lines in our count. Even still,
these measurement should be regarded as an estimate.

10This works for rectangular regions only. merge-pass also supports masking a non-
rectangular region based on an image.
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Figure 8: Nested regions each with their own arbitrary post-processing effect

3.3 Limitations

Because JavaScript and TypeScript do not have useful metaprogramming fea-
tures such as macros or operator overloading without additional tooling, using
merge-pass is verbose compared to shading languages such as GLSL.11 While
merge-pass provides many simple functions to perform complex operations such
as simplex noise or bloom, basic math expressions can become particularly cum-
bersome to read and write. Consider the GLSL expression:

cos(fragColor.y * 270. * 3.14159)

In merge-pass, this becomes:

a1(

"cos",

op(getcomp(pos(), "y"), "*", 270 * Math.PI)

)

There are many builtins in GLSL that take one argument and return a value
of the same type. To use one of these so-called “arity 1” functions, the calls the
function a1 and pass in the function name as a string. The TypeScript compiler
will not compile if the user passes in a function that does not exist. However,
incorrect components passed into getcomp can only be caught at runtime; even
TypeScript’s type system is not expressive enough to detect all cases at compile
time.

11In one sense, JavaScript is a very powerful metaprogramming language in that it allows
for interpreting arbitrary strings as JavaScript code. What we mean to highlight is that it
lacks the features to “metaprogram” in a structured way.
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Using merge-pass feels like building up an abstract syntax tree by hand. In
certain cases, such as the metaprogramming done in artmaker (Section 3.1.3)
where these trees are built up procedurally, this is useful and even elegant.12

With merge-pass, the user can create metaprogramming helper functions in the
host language (TypeScript) to generate code in a type-safe way. Consider what
would happen if a user of merge-pass attempts to write the code:

op(someVec2, "*", someVec3)

The TypeScript compiler will alert the user to this; there is no runtime
error. Naturally, this extends to metaprogramming helper functions as well; a
function that takes in merge-pass expressions as arguments to return another
merge-pass expression must naturally return a merge-pass expression with no
type errors if the TypeScript compiler type checks the program successfully.
While TypeScript has a very expressive type system (which becomes even more
flexible with every release) the series of union types, function overloads and
generics used to encode GLSL’s type system into TypeScript became complex.
This is the reason merge-pass only deals with floating point vectors, matrices
and scalars, and does not include signed and unsigned integers, booleans or
array types.13

4 Tinsl

Like merge-pass, Tinsl aims to simplify the use of WebGL for non-trivial post-
processing effects by abstracting away the details of managing multiple interme-
diate rendering targets. Tinsl, however, is its own language with syntax familiar
to those who have interacted with fragment shaders before, even briefly.

Tinsl is designed to be similar to GLSL ES 3.00, the version of GLSL that
WebGL 2 supports, with additional features and restrictions. The main benefit
of this is that this allows users to take advantage of existing GLSL code. There
are many highly-optimized versions of common functions used for procedural
graphics that could simply be dropped in (if the licensing allows for this, which
is often the case.) For example, the following function, written in GLSL, can
be pulled into Tinsl without modification:

// https://github.com/hughsk/glsl-hsv2rgb/blob/master/index.glsl

// by Hugh Kennedy, MIT licensed

vec3 hsv2rgb(vec3 c) {

vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);

vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);

return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);

}

12This is also used within merge-pass itself; the fractalize function can take a noise-like
function and call it with successively smaller octaves and amplitudes.

13Tinsl, by contrast, has a hand-written type checker to support all of the edge cases specified
by the GLSL ES 3.00 language specification. It supports the types that merge-pass does not.
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Designing Tinsl to be broadly compatible with GLSL was an important goal
for us. Shadertoy offers a wealth of knowledge to those willing to dig through
and understand the code. Similarly, the stack.gl ecosystem brings modularity
to the creation of shaders by hosting packages that users can import directly in
GLSL with a special pragma.

GLSL is a C-like language with certain restrictions. Common features of
general-purpose programming languages are absent, such as pointers, recursion
and multi-dimensional arrays. Type casting and the sizeof operator are also
not supported [23]. These restrictions simplify (and in some instances compli-
cate) the inclusion of additional features through source-to-source compilation.
The parser for Tinsl is implemented with nearley, which is a parsing toolkit
written in JavaScript [4].

4.1 Language Features

The features Tinsl to adds to GLSL with source-to-source compilation include:
static type inference, named arguments, default arguments, and extra options
for immutability. Most notably, Tinsl allows the user to specify a rendering
pipeline, using “render blocks”, alongside this GLSL-style code.

4.1.1 Static Type Inference

Tinsl can infer function return types and variable declaration types with the :=

operator and fn keyword, as seen in the following function definition:

fn tinsl_rotate2d(vec2 v, float angle) {

// declaration with := operator infers type

m := mat2(cos(angle), -sin(angle), sin(angle), cos(angle));

return m * v; // tinsl compiler knows that a mat2 * vec2 -> vec2

}

For familiarity and compatibility with existing GLSL, Tinsl also supports
explicit return types and variable declaration types:

vec2 glsl_style_rotate2d(vec2 v, float angle) {

mat2 m = mat2(cos(angle), -sin(angle), sin(angle), cos(angle));

return m * v;

}

There are a few key differences between variable declaration in Tinsl com-
pared to GLSL. All variable declarations must have an initial value. This is the
case with both styles of declaration. It is also not possible to declare multiple
variables in the same statement with a comma. However, the terseness of the
:= operator makes it so that multiple related declarations can fit easily onto
one like regardless. Precision qualifiers are also not available in Tinsl. A default
precision is used across the entire program.
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4.1.2 Immutability

The concept of const in GLSL differs from other languages. A const variable
in GLSL must be a compile time constant; it cannot be the result of a user
defined function, function argument, or even a uniform value. Tinsl introduces
another keyword for immutability.

Variables declared with := are “final” by default. This means they are
immutable. This extends to all components of a vector and elements of an
array. If the user wishes to declare a mutable variable with :=, Tinsl requires
the user to be explicit:

fn foo() {

mut bar := 1;

bar += 2;

return bar;

}

In the original GLSL style of variable declaration, the user may declare a
variable as final with the keyword:

fn baz(int a, int b) {

final int result = a + b;

return result;

}

In line 2 of the above code example, we would not be able to use GLSL’s
const keyword because the expression a + b is not a compile-time constant;
there is no construct in GLSL ES 3.00 to ensure immutability for non-compile-
time variables. This is where final is useful. Again, this is the default behavior
for values declared with the := operator. Parameters are also immutable; if the
user wishes to perform mutation on a parameter they must explicitly assign
it to a mutable variable. The inclusion of final is a small feature, however,
immutability by default is a popular design choice in modern languages. Kotlin,
Rust and Swift have features that encourage users to embrace immutability first.

4.1.3 Default and Named Arguments

Unlike GLSL, Tinsl allows for default arguments with the following syntax:

fn godrays (

vec4 col = frag,

float exposure = 1.,

float decay = 1.,

float density = 1.,

float weight = 0.01,

vec2 light_pos = vec2(.5, .5),

int num_samples = 100,

int channel = -1
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) {

// function body omitted

}

Default arguments must be trailing. User-defined functions can also be called
with named arguments. Combining named arguments and default arguments is
particularly useful for functions that have many parameters. For example, if we
only wanted to pass in an argument for num samples and use the default values
for all others, our function call could look like this:

godrays(num_samples: 50)

Although a module system for this version of Tinsl does not exist yet, a
library could provide many robust and customizable functions that perform
complex post-processing effects. The motivation for including default arguments
and named arguments is to simplify the invocation of these types of functions.

The inclusion of optional arguments makes it non-obvious how best to handle
cases where a function overloads collide due to the fact that not all arguments are
required. In the current version of Tinsl, overloaded functions are not allowed.

4.1.4 No Preprocessor

Tinsl does not have preprocessor pragma such as #define and #ifdef. Instead,
Tinsl has the keyword def that serves the purpose of #define but does so
without raw textual replacement. Consider the GLSL program which can be
run in Shadertoy:

#define PI2 3.1415926535 * 2

// our real error is here: ^ (it should be a float)

void mainImage(out vec4 fragColor, in vec2 fragCoord) {

vec2 uv = fragCoord / iResolution.xy * 32.;

float h = sin(iTime + uv.x * PI2); // compile time error here

float v = sin(iTime + uv.y * PI2); // and here

fragColor = vec4(vec3(h, v, 0.), 1.);

}

Preprocessor macros with #define are very powerful. However, they can
cause many cascading errors, the error messages of which can be very confusing
since the compiler is unaware that the erroneous code is actually a result of text
that the preprocessor expanded. The GLSL preprocessor, like the C preproces-
sor, is essentially a separate language; it does not have a semantic understanding
of the code it is operating on, and sees everything after #defines and within
#ifdef blocks as mere text.

Anecdotally, programmers often use #define to inline an expression in order
to avoid repeated code. In Tinsl, def supports this use case, and reports type
errors on the correct line and column, as seen in Figure 9.
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Figure 9: The type error shows only on line 1 in the Tinsl programming envi-
ronment.

By contrast, GLSL reports an error wherever the macro from PI2 is used.
Furthermore, the error message refers to expressions that do not appear on the
line on which the error is reported due to the nature of the preprocessor. This
can be seen in the Shadertoy environment in Figure 10.

def PI2 3.1415926535 * 2

// error shown here: ^

// it does not report cascading errors where PI2 is used

def seconds time / 1000. // unlike #define, comments can go on same line

// the `def' expression could also span multiple lines

fn stripes() {

vec2 uv = npos * 32.;

h := sin(seconds + uv.x * PI2);

v := sin(seconds + uv.y * PI2);

return vec4(vec3(h, v, 0.), 1.);

}

{ stripes(); }

Additionally, the def expression cannot contain undefined symbols, unlike
#define. It is true that the removal of preprocessor directives does remove with
it some convenient features that are available in GLSL, and def in Tinsl is not a
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Figure 10: Type errors do not appear on line one, but multiple times wherever
the macro is used in GLSL.

complete replacement. However, the simplification of #define into def, and the
removal of so-called “unhygienic” macros such as #ifdef has multiple benefits
for tooling; we have already seen how def allows for better error messages in
the Tinsl live-coding environment.

4.1.5 Color Strings

Since GLSL is a language for graphics programming, and not for handling text,
there is no concept of strings. Therefore, text enclosed with single or double
quotes has no semantic meaning; a string-like token would result in a syntax
error. In Tinsl, we use this as an opportunity to add syntactic sugar for creating
a vector expression that represents a color. For example, "#f00" or "#ff0000"
is equivalent to vec3(1., 0., 0.). Conveniently, so is "red"; all 140 named
HTML5 colors are available, and are insensitive to casing and whitespace, mean-
ing "cornflower blue" is the same as "CornflowerBlue". Single quotes can
also be used instead of double quotes; they have the same meaning. Hex colors
with alpha values such as #f00f or #ff0000ff will be de-sugared into vec4s
instead of vec3s. To include an alpha value for a named color, Tinsl uses the
syntax "red"4; the expression "red"3 is also valid and potentially preferable to
the user since it is more explicit, but ultimately unnecessary since vec3 is the
default for named colors.
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4.1.6 Render Blocks

What separates Tinsl from shading languages is that Tinsl includes information
about when to render to an intermediate target using “render blocks”, which is
functionality that is beyond the scope of shaders. For this reason, Tinsl is not a
shading language but rather a DSL to specify a pipeline for processing an image.
The compiler emits a tree of shader source code with extra information about
how to handle each rendering pass, such as whether to render to an intermediate
texture or repeat a rendering pass (or group of passes) multiple times. Render
blocks allow us to succinctly represent render-to-texture effects. Consider this
short three-line program for a pixel-accumulation motion blur:

// prime the accumulation texture (texture 1) so it isn't empty

// do this only one time

once { frag0; } -> 1

// blend the new image with the accumulation texture

{ 0.03 * frag0 + 0.97 * frag1; } -> 1

// render the accumulation texture to the screen

{ frag1; }

The first render block primes the texture we are using for blending so that
it does not start empty. This is so the image does not slowly fade in as the
alpha value of the accumulation texture approaches 1 asymptotically. The once

keyword indicates that this should only happen once. (If we copied texture 0
to texture 1 every draw call, there would be no blur effect.)

The second render block mixes the new image, frag0, with the accumulation
texture, frag1. We then update the accumulation texture with the new blended
image. Notice that we can read from texture 1 (with frag1) and render to
texture 1 (with -> 1) in the same step, unlike OpenGL. This restriction that
exists within OpenGL is abstracted away by the Tinsl runtime. (Because of
this, when we say “texture 1”, we are not referring to the actual resource; we
are referring to Tinsl’s abstraction around textures.) If we were to increase the
coefficient of frag0 and decrease the coefficient of frag1 accordingly, we could
make the effect of the motion blur less pronounced.

The final render block renders the contents of the accumulation texture,
frag1, to the screen. The final render block (or final iteration of the render
block, if it is looped) will always be rendered to the screen.

4.2 Implementing Bloom in Tinsl

Many post-processing effects require intermediary rendering targets and multi-
ple passes. Bloom is an example of this; bright parts of an image are made to
seem more bright by adding a blurry haze around “glowing” parts of the scene.

def threshold 0.5

fn luma(vec4 color) { return dot(color.rgb, vec3(0.299, 0.587, 0.114)); }
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fn blur(vec2 direction, int channel) {

uv := npos;

off1 := vec2(1.3333333333333333) * direction;

mut color := vec4(0.);

color += frag(uv, channel) * 0.29411764705882354;

color += frag(uv + (off1 / res), channel) * 0.35294117647058826;

color += frag(uv - (off1 / res), channel) * 0.35294117647058826;

return color;

}

pr two_pass_blur(float size, int reps, int channel = -1) {

loop reps {

blur(vec2(size, 0.), channel); refresh;

blur(vec2(0., size), channel);

}

}

{ vec4(frag.rgb * (step(1. - luma(frag0), 1. - threshold)), frag.a); } -> 1

1 -> { @two_pass_blur(size: 1., reps: 3);} -> 1

{ frag0 + frag1; }

The function luma calculates the brightness for a color that is passed in. The
function blur takes a linear sample of points and returns a weighted average in
order to blur the image along a single direction.

two pass blur is not a function, but a “procedure”. Chunks of render blocks
can also be extracted into procedures which allow the user to reuse these blocks
of code. These are different than functions since they cannot return a value
and can only be called within a render block. Procedures in Tinsl are like a
limited form of macro that expand to a series of vec4 expressions or render
blocks—the kind of statement that can go within a render block. We use the
procedure by preceding the name with @. This makes it clear that they do
not behave like functions, and cannot be used like them. The two pass blur

procedure runs a horizontal blur, refreshes the texture, then runs a vertical blur,
and repeats this process reps times. The refresh statement will render out
to the target texture before continuing; this enables the blur to happen in two
separate passes. Procedures can be used to parameterize the source texture
number of a render block (the optional number preceding the first arrow) or a
texture number passed into frag. When any of these values are -1, this will
default to the source texture number of the outer render block. We see this with
the default argument for channel.

The first render block masks all pixels off that are below a certain brightness,
and renders this result out to texture 1. The second render block blurs the
contents of texture 1 and writes to texture 1. This happens three times for a
stronger blur, since we passed in 3 as reps to the procedure two pass blur

defined above. The final pass adds the blurred bright objects (on texture 1)
with the original scene (stored on texture 0) together for the final effect. Being
the last render block, this gets rendered to the screen.
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4.3 Error Reporting

Of course, a compiler must not only compile valid source code; it must also
reject invalid source code and report to the user where the problem arose, and
why. Unfortunately, we cannot rely on the underlying GLSL compiler to provide
users a “friendly” error message that describe why they are unable to run their
program. Not only will the line and column numbers be completely different in
the compiled GLSL source code compared to Tinsl; there are various features of
Tinsl that GLSL does not have natively and are “de-sugared” into an equivalent
version that will compile in GLSL. Therefore, the corresponding GLSL error
message would have little to do with the language feature being misused in the
corresponding Tinsl code, and would only confuse the user.

Furthermore, as we have touched upon throughout the paper, Tinsl does
not get compiled to a single shader, but multiple shaders with metadata on how
to handle the different render-to-texture steps. Therefore, not all Tinsl code
generates corresponding GLSL; the code that governs these render-to-texture
passes manifest as information outside of the GLSL fragment shader. Thus, the
GLSL compiler would not be able to report such errors.

In Tinsl, there are nearly 400 unit tests, and many of these tests check that
the proper error is thrown when an erroneous program is checked by the Tinsl
compiler. There are approximately 80 such errors that can be reported to the
user.

4.3.1 Type Checking Expressions

We have to check the GLSL-style code within the Tinsl program in order to
meet our goal of providing early error detection. This includes type checking
every expression, function call and return statement of every function definition
within the program. Ideally, it is impossible to write Tinsl code that generates
GLSL that does not compile for any reason. If the user is able to do this, we
would consider it to be a bug in the Tinsl compiler. Type checking the Tinsl
code is not merely a redundant check on top of GLSL’s type-checker in order to
provide better error messages to the user. Implementing a robust understanding
of GLSL’s type system enabled us to include static type inference in Tinsl, as
discussed in Section 4.1.1. Providing accurate type checking that catches all
errors before the code is generated involved implementing and testing many
edge cases as specified by the OpenGL ES 3.00 language specification.

We also wanted to provide access to as many of GLSL’s builtin functions
as possible.14 All of these functions are listed in Chapter 8 of the OpenGL ES
3.00 language specification [24, p. 84]. However, these functions are listed in a
generic way. This generic-style syntax exists only in documentation and is not
valid GLSL syntax. Tinsl uses this style of listing in order to type check GLSL’s
builtin functions. For example, consider the following example from page 90 of
the language specification:

14If the Tinsl compiler becomes a frontend for supporting more languages other than GLSL,
this will become more difficult to support.
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genType mix(genType x, genType y, genType a)

genType mix(genType x, genType y, float a)

genType mix(genType x, genType y, genBType a)

This indicates that the builtin function mix can take in, as arguments, all
floats or all floating point vectors of the same length. Alternatively, the first two
elements can be floating point vectors of the same length if the last argument
is a float. As a third option, the last argument can be a boolean vector of the
same length as the first two floating point vectors. In all cases, the return type
of mix is the same type as the first two arguments. In GLSL, if we were to make
a user-defined function that conforms to this schema, we would have to define
four nearly identical functions for the first listing alone. A GLSL programmer
could potentially get rid of repeated code by utilizing a macro, however this
solution does not provide the safety and readable error messages that a generic
type system would supply. The creators of Slang noticed this lacking feature in
HLSL and added generics into their HLSL-based shading language, which is just
one of the many higher-level language features that Slang provides [10]. Tinsl
does not yet support generics, however we hope to explore options for generics
in a future version. One syntactic possibility for generics is to make genType

and its variations a keyword in Tinsl.

4.3.2 Checking Texture Numbers

The other remaining step in verifying a Tinsl program is checking the Tinsl code
that does not become compiled into GLSL directly. As mentioned previously,
some sections of Tinsl code do not become GLSL when compiled. Instead, these
sections of code relate to how off-screen textures are utilized, and manifest as
metadata surrounding the fragment shader code. Namely, these features are
“render blocks” and “procedures”. Consider the block of code:

pr copy(int src, int dest) {

src -> { frag; } -> dest

}

This procedure is a helper that copies the contents of one texture to another.
As a reminder, procedures in Tinsl are not functions; they get expanded to the
contents of their body and can only be used within render blocks. Consider a
program that abuses the fact that the source and destination textures in Tinsl
are represented as ints for simplicity.

pr erroneous_copy(int src, int dest) {

src -> { frag + float(src + dest); } -> dest

}

If a parameter in a procedure is used as a texture num (as src and dest

are used in the procedure copy) it is essentially regarded as a different type at
compile time. There are new restrictions on how to use these “texture ints”.
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In the above code example, src and dest are being used for the source and
destination textures as well as for basic arithmetic, as seen in the expression
src + dest. In Tinsl, this would result in a “mixed use” error.

Additionally, ints used as textures have to be determined at compile time.
Recall that we can use frag as a function and pass in a number for which texture
to sample from. The number passed in is a “texture int”, and is subject to the
same restrictions as src and dest in the procedure definition copy. One of these
restrictions is that it must be a simple integer so that it can be determined at
compile time. Consider the following series of expressions:

// compiles

frag(0)

// does not compile (even though it's 0)

frag(int(sin(0)))

frag(1 - 1)

// does not compile

// user defined function cannot be determined at compile time)

frag(some_user_defined_func())

In Tinsl, we used integers to replace GLSL’s sampler2D type with the hope
that this would lead to a simpler, more terse language design. However, as
we have seen through the code examples, integers used as texture numbers are
subject to many restrictions that normal integers are not. This is because these
integers are samplers “under the hood”; they become compiled into a corre-
sponding sampler when translated into GLSL. Therefore, it is not completely
fair to say we have coalesced integers and textures into the same type; instead,
we have made int refer to two separate types, a true integer, and a sampler.
The compiler determines whether an int is a sampler or an integer through
usage. This has two major disadvantages. Firstly, this complicates the program
validation step in the compiler; determining whether an int expression is not
being used as a sampler number and a normal integer was non-trivial for us.
Even worse, it is unlikely that a programmer would unwittingly use a procedure
parameter for arithmetic and as a sampler at the same time unless they were
trying to abuse the system. However, as compiler authors we are beholden to
catching every semantic edge-case as unlikely as they may be. Secondly, this
makes the signatures for functions and procedures less explicit. It is impossible
to know without looking at the implementation whether a function or procedure
accepts a normal integer or a texture number. For these reasons, we regard this
as a design mistake; the next version of Tinsl will likely have an explicit type
for “texture numbers” that is distinct from int.

4.4 Live Coding Environment

The Tinsl live coding environment can be thought of as existing between an
environment like Hydra and an environment like The Force, systems discussed

28



on Section 2.2. It allows the user to program in what is essentially plain GLSL,
while also providing Hydra-like semantics for rendering to other targets. Read-
ing from and writing to intermediate textures will enables the user to create the
playful, chaotic feedback-based rendering loops of Hydra, while giving GLSL-
style code a first-class treatment instead of the “escape hatch” that Hydra pro-
vides. While Tinsl’s success as a language for live coding will not be our primary
method of evaluation, such an environment allows us to test and share Tinsl
easily, while exploring possible use cases for the surrounding framework.

5 Evaluation

There are many possibilities for how to evaluate our work, since there are nu-
merous ways in which our system could be used. There exist potential ways to
audit code understandability automatically, such as the methodology presented
in “‘Automatically Assessing Code Understandability’ Reanalyzed: Combined
Metrics Matter”[17], using hundreds of features collected from code snippets
combined with surveys given to developers. While such a methodology seems
initially attractive, the amount of resources to assess “understandability” in this
way exceeds the scope of this project. Instead, in this paper we will primar-
ily build a qualitative evaluation using the framework in the paper “Usabil-
ity Analysis of Visual Programming Environments: A ‘Cognitive Dimensions’
Framework” [9]. The dimensions we will focus on (which are defined in the
aforementioned paper) include: abstraction gradient, consistency, diffuseness,
error-proneness, progressive evaluation and viscosity. This framework will guide
our analysis of Tinsl, and has the benefit of going beyond “understandability”
to include the many other factors listed previously. We also performed a user
study where we asked participants to follow a short tutorial and answer a sur-
vey. Finally, we will compare GLSL shader code with the Tinsl source code of
the bloom effect. This will give us a sense of the shaders the programmer would
have to manage manually when doing raw GLSL programming.

5.1 Cognitive Dimensions Framework Analysis

Petre and Green present the “cognitive dimensions framework” as a “broad
brush evaluation technique”. This differs from traditional HCI evaluation tech-
niques where the goal is to predict the amount of time the user will need to carry
out specific tasks and learn new ideas. Petre and Green make the claim that
the cognitive dimensions framework avoids “death by detail” and “is extremely
quick and cheap: an afternoon of careful thought about a system is probably
all that is needed” [9, p. 4]. The authors note that this type of evaluation is
best utilized when supplemented with other techniques [9, p. 40]. In this paper,
we will also evaluate Tinsl with a brief user study and an analysis based on the
number of source lines of code. However, the cognitive dimensions framework
will be our primary method of evaluation. We will step through several dimen-
sions, modeling the structure of our analysis off of the example set in Petre and
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Green’s analysis of Basic, LabVIEW and Prograph. We will be analyzing the
structure of the “bloom” program presented in Section 2.4, where it applies.
While this program does not utilize every single language feature available in
Tinsl (such a program would be rather contrived) it does use many important
features. Bloom is an image processing operation that requires multiple frag-
ment shaders, operating on the image in a pipeline, making use of more than
one temporary texture. We will also make comparisons to how bloom might be
accomplished working directly with GLSL, a process described in Section 2.4.

5.1.1 Abstraction Gradient

Abstraction gradient refers to the level of abstraction permitted within a lan-
guage. Petre and Green claim that languages can be described as either “abstraction-
hating, abstraction-tolerant, or abstraction-hungry” [9, p. 18]. One might be
eager to claim that using GLSL combined with C or JavaScript is a partic-
ularly “abstraction-hating” way to get graphics on the screen. Compared to
using a library like Threejs, this is certainly true. However, in the browser,
the programmer is not interfacing with their graphics hardware as directly as it
would seem. In Chromium-based browsers as well as Firefox, Google’s ANGLE
(Almost Native Graphics Layer Engine) is used to convert OpenGL calls to a
native API. For example, when targeting Windows, ANGLE converts OpenGL
calls to Direct3D calls, and translates the shaders from GLSL to HLSL [29]. In
reality, OpenGL ES in the browser is an abstraction over non-GLSL API calls,
and the GLSL code may get translated to one of many high-level shading lan-
guages. Unsurprisingly, these target APIs do not have complete feature parity
with one another; OpenGL ES is a convenient “lowest common denominator” as
it is a limited version of OpenGL designed for mobile devices. In this sense, the
use of GLSL in the web is, in fact, a highly impressive abstraction to support
hardware accelerated graphics on a wide array of target architectures. However,
to the user, this abstraction is merely an implementation detail. For example,
many programmers new to graphics programming are surprised by just how
much “boilerplate” code is required to render something as simple as a textured
rotating cube.

In Tinsl, of course, we are not concerned with rendering a cube, or any 3D
mesh for that matter.15 Specifically, Tinsl aims to simplify the use and author-
ship of post-processing effects. Thus, we provide abstractions for operations that
are necessary or common when using GLSL to perform hardware-accelerated im-
age processing. The user does not have to concern themselves with setting up
a vertex shader and pushing data to a buffer on the GPU, among many other
small details just to get OpenGL to render a flat rectangular image.

The main abstraction that Tinsl provides is render blocks (see Section 4.1.6).
We would not suggest that graphics APIs like OpenGL would “do better” to
include Tinsl-style render blocks. The way this is framed, such a suggestion does
not make sense; the goal of GLSL and OpenGL is to program the GPU in a way

15In fact, Tinsl does render a mesh, however this mesh is two “big triangles” the size of the
screen on which to render a texture.
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that is “close to the metal” in order to perform arbitrary graphics tasks. The
only reason we can create a DSL like Tinsl in order run image post-processing
efficiently is because of the level of control that OpenGL gives us over the GPU.

5.1.2 Consistency

Consistency refers to what elements of a language can be inferred once a portion
of the language is learned. Tinsl borrows many of GLSL’s semantics since it is
a familiar (and already well-specified) way to work with vectors and matrices.
A large part of Tinsl is a parser and checker for a sizable subset of GLSL. In
this sense, we have tried to make Tinsl as consistent as possible with GLSL.

For simplicity, we have not renamed any of GLSL’s builtin function names.
However, many of these function names are inconsistent in terms of casing
and style. For example, inversesqrt, smoothstep and faceforward are not
written in “camelCase” style and while functions like matrixCompMult and
outerProduct are. Perhaps there is some internal consistency that follows a
set rule that eludes us. However, we felt it best to not do any renaming so that
GLSL’s documentation for these functions could serve as Tinsl documentation
as well.

There are corners of Tinsl that are actually stricter than GLSL, especially
in regards to constructors, for the sole reason that we failed to glean everything
from the language specification. For example, in GLSL, you can specify a mat2

by passing in four floats, or by defining it by column vector by passing in two
vectors. Tinsl supports these two forms. However, it is perfectly legal to specify
all 4 elements of a mat2 in this way:

mat4(vec3(.1, .2, .3), .4)

This would be a particularly strange way to construct a two-by-two matrix,
however it is perfectly legal in GLSL. All vectors are flattened into their com-
ponents in matrix and vector constructors. This was an oversight of ours, and
we fully expect to find other ways in which Tinsl inconsistent with GLSL that
are not by design.

Other syntactic differences between GLSL and Tinsl have to do with array
declarations. In GLSL, there is some flexibility with where the square brackets
can go. Consider the following code block:

// doesn't work in Tinsl, but works in GLSL

float a[3] = float[3](1., 2., 3.);

float b[] = float[](1., 2., 3.);

// works in tinsl and GLSL

float[3] c = float[3](1., 2., 3.);

float[] d = float[](1., 2., 3.);

We elected to use the latter syntax (float[] a instead of float a[]) be-
cause it aligns more closely with the constructor call, where the square brackets
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must immediately follow float.16 Another inconsistency, which we argue is
a design choice, is that variables can not be declared without being defined.
This is discussed in greater detail in Section 4.1.1. It is not possible to use
assignments like expressions.

Unlike GLSL, assignments can only be used as statements, similar to Go
or Python prior to version 3.8. This simplification was made early on to make
splitting Tinsl code into multiple shaders simpler. However, this constraint
ended up not being necessary for implementation, and could be lifted in a future
version of Tinsl.

5.1.3 Diffuseness/Terseness

Diffuseness and terseness refer to the amount of syntactic elements that are
needed to express an idea. The GLSL-style syntax within Tinsl allows the user
to be very terse. Syntactic features such as “swizzling” allows the user to reorder
the components of a vector to create a new vector in a delightfully short and
intuitive way.17 Arithmetic operators can be used with scalars, vectors and
matrices in a way that is natural for those who have familiarity with linear
algebra. In Section 3.3, we highlight the diffuse nature of using merge-pass
for simple arithmetic expressions; this is much improved in Tinsl. Beyond the
GLSL style code, Tinsl provides render blocks, which gives the programmer the
ability to describe arbitrarily complex texture-to-texture effects within a single
file

The decision to use ints as texture numbers was made in the interest of
terseness. However, in Section 4.3.2, we discuss some of the issues with folding
integers and samplers into a single type.

5.1.4 Error-proneness

Error-proneness refers to how easy it is to make a mistake in the language, and
whether elements of the language invite or prevent making errors. Perhaps the
hardest and most time consuming part of implementing Tinsl was finding and
testing all of the semantic errors that could occur, and reporting as many of
these errors to the user as possible at the same time.

In order to parse the program into an abstract syntax tree, we used nearley,
a parsing toolkit written in JavaScript. This allowed us to define a parsing
expression grammar (PEG) to define the syntax of the language. nearley uses
the Earley algorithm which handles left-recursive grammars very well; this let
us specify our BNF-style (Backus-Naur form) grammar in a way that is easier to
read. With another parser, such as Jison (which is based on GNU’s Bison) we
would have had to reorient our grammar so that it contained no left-recursive
production rules [4].

While using a parser generator is convenient, this gave us less control over
“synchronizing” syntactic errors. With a hand-written parser, it might have

16This form happened to be slightly easier to parse as well.
17For example, the user can reverse a three-component vector with vec.zyx.
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been easier to report multiple syntactic errors, and synchronize by skipping
to the end of the statement, which in Tinsl is demarcated by semicolons. In
the current version of Tinsl, when nearley encounters an unexpected symbol,
parsing stops.

However, our compiler is much better about reporting multiple semantic
errors. Type errors and undefined identifier errors are examples of semantic
errors. These errors make their way past the initial parsing because detecting
them requires greater context than the grammar provides. Reporting as many
errors at once is in some ways more art than science, because the compiler has
to recover for programmer mistakes that result in a program that is incorrectly
specified.

An implication of the basic static type inference we have in Tinsl is that
if there is a type error on the right hand side of a variable declaration, the
compiler cannot determine the type of that variable when it is used later in
the program. We have a similar problem when a function’s return type is ill-
defined. For example, if a function returns values in different branches that
have non-matching types, or if a function does not return at all, we can not
say for certain what the intended return type of that function was meant to
be. We do not have this problem in GLSL; even if the right hand side of a
variable declaration is ill-formed, we know whether that variable is a float, int,
etc. because the programmer is forced to be explicit by providing a type name
before the identifier: int x = 1;. So that we do not get cascading errors where
an ill-defined variable declaration or function is used, internally, we have an
undefined type. Like the any type in TypeScript, operating on an undefined

type with another type coalesces the entire type of that expression to undefined.
For example:

undefined + int -> undefined

float - undefined -> undefined

undefined * undefined -> undefined

foo(undefined) -> undefined

In general, we aimed to provide descriptive semantic error messages that
match up to the GLSL error messages provided by the browser. The Tinsl play-
ground highlights the line and column where the error message appeared. While
good error messages ensure that the programmer can correct their mistakes
quickly, this does not necessarily speak to the error-proneness of a language.
There are a handful of possible common errors we have observed in regard to
the syntax of render blocks. One such example is that render blocks must con-
tain semicolons after all statements within them, even if that render block only
contains one statement on one line. For example, the following program would
result in a syntax error:

0 -> { frag } -> 1 // BAD!!! does not compile; missing semicolon

The following render block, which copies the contents of texture 0 onto
texture 1, is missing a semicolon after frag. Potentially, the semicolon is easier
to remember when each statement is on separate lines.
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// `brighten' and `sharpen' are user defined funcs that return vec4s

0 -> {

brighten(frag, 1.);

sharpen(prev, 1.);

} -> 1

Another source of potential errors is the way in which texture numbers are
handled in Tinsl. In the Tinsl playground, the lowest texture number is the
texture the video is written to. If the user “comments out” a block of code
that contains the lowest-used texture number, the next lowest number will be
used. This can cause confusing errors when testing the effect by breaking it into
separate steps.

Because there is much overlap between the semantic errors possible between
Tinsl and GLSL, we can compare the error messages directly. Tables 1, 2, 3
and 4 compare these error messages side-by-side. We believe that GLSL’s error
messages are likely more consistent and explicit overall, but we also believe that
Tinsl’s error messages are generally more terse and offer similar information.

Language Error message
GLSL ’+’ : wrong operand types - no operation ’+’

exists that takes a left-hand operand of type

’const 2-component vector of float’ and a right

operand of type ’const 3-component vector of

float’ (or there is no acceptable conversion)

Tinsl cannot do vector/matrix operation ‘vec2 + vec3‘

Table 1: Adding a vec2 with a vec3. Tinsl is more terse.

Language Error message
GLSL ’unknown ident’ : undeclared identifier

Tinsl undefined identifier "unknown ident"

Table 2: Using an identifier before declaring it results in very similar messages.

Language Error message
GLSL ’foo’ : no matching overloaded function found

Tinsl required argument for "a" not filled in

Table 3: Invoking function foo(a) with no arguments. The wording changes in
Tinsl as it supports optional arguments; a has no default value.

5.1.5 Progressive Evaluation

Tinsl allows the user to progressively evaluate their render-to-texture effects
using render blocks. In order to inspect the contents of a texture, the user
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Language Error message
GLSL ’xg’ : illegal - vector component fields not

from the same set

Tinsl mixed sets (rgba, xyzw, stpq) in components xg

Table 4: GLSL and Tinsl have separate error messages, but Tinsl reminds the
user which vector component sets are allowed.

would simply that texture to the screen. To inspect texture 1, the user can add
the following render block to the end of the program:

{ frag1; } // last render block goes to the screen

This provides a convenient way to incrementally test the program. For
example, the line above could be used to debug the bloom program shown in
Section 4.2. This allows the user to verify that the darker parts of the scene are
being masked off correctly, and determine whether the threshold for luminance
needs to be adjusted. In a situation where the rendering pipeline is hard-coded,
like using OpenGL on its own, it is difficult to inspect any arbitrary texture
used for the rendering processes. Tinsl makes reworking the rendering pipeline
for debugging easy.

5.1.6 Viscosity

Viscosity refers to how difficult it is to make a change to the program. The
main advantage of using Tinsl for post-processing effects is that the entire ren-
dering pipeline can be described with render blocks. Any block of effects can be
looped, or extracted out into procedures and reused. Tinsl can also make use of
an arbitrary amount of intermediate textures. The programmer does not have
to worry about allocating these textures and managing various other resources
as the needs for the post-processing effect changes. Section 2.4 describes the
process of implementing a bloom post-processing effect, and the resource man-
agement that goes into this. This set up to create a bloom can be described in
a single Tinsl file. In this way, Tinsl makes it fluid to change the properties of
post-processing effects, or author an entirely new post-processing step.

5.2 User Study

We prepared a written tutorial for users to follow within the creative coding en-
vironment, gathering data from 13 participants. We will refrain from performing
any in-depth statistical analysis on the survey data due to the relatively small
sampling size, and will instead summarize the results broadly. Charts for survey
data can be seen in Appendix E.

The majority of questions were Likert-scales from 1-5 asking users to rate
how strongly they agree with the following statements. The survey begins with
questions relating to the user’s experience. 69.2% of users chose “strongly dis-
agree” for the statement “I am experienced in writing fragment shaders with
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GLSL.” We expected that most of our participants would not have experience
with GLSL, since it is a niche, domain-specific programming language. By the
way participants responded to agreement with the statement “The syntax of
Tinsl looks familiar to me based on my previous programming experience” was
higher, although grouped around the neutral response. The syntax of Tinsl bor-
rows from GLSL for the definition of its functions, expressions and statements,
which itself borrows from C. This suggests to us that our decision to keep with
existing GLSL syntax, where possible, helped us create an accessible language
even for those who are not experienced with GLSL. However, no participant
“strongly agreed” with the statement. Perhaps this is expected, as one cannot
expect a programmer to feel that a novel language is completely familiar.

Other questions assessed the language in tandem with the quality of the
tutorial. We decided not to “quiz” our participants to test understanding, as
this would lead to a much longer survey, and perhaps intimidate participants
into thinking the survey was testing their programming aptitude; this would
risk making our participants feel uncomfortable. Of course, we are not testing
participant aptitude but rather the core design of the language and learning
material surrounding it. Instead of quizzing our participants, we simply asked
users to rate how strongly they felt they understood a particular section of the
tutorial. The two statements posed to the participants relating to conceptual
understanding were “I understood the code in the tutorial pertaining to motion
blur” and “The difference between Tinsl keywords ‘prev’ and ‘frag’ was clear
to me.” The mode for these Likert-scale questions were both 3. Overall, this
is encouraging for an approximately 10-15 minute written tutorial. However, in
a future study, we would like to drill deeper into what prevented participants
from feeling they understood the concepts fully. For now, it is not clear whether
the blame lies in the design of the language or the design of the tutorial. In
practice, it might be impossible to separate these two related factors.

We were also interested to see if participants were inclined to experiment
with the system beyond the explicit instructions given by the tutorial. 38.5% of
participants noted that they spent no time with experimentation, while the rest
(61.5%) spent at least some time experimenting with Tinsl outside of the tutorial
steps. Two participants reportedly spent more than 10 minutes experimenting
with the system. Since this user study was offered to students at the beginning
of two different related online lectures at WPI, the participants were under an
external time constraint. Thus, students that spent longer on the tutorial steps
might have been rushed into making sure they could complete the survey and
return to lecture. Despite this, it was encouraging to see that participants were
inclined to experiment even within the limited timeframe.

We wanted to gather information about the error messages and overall de-
bugging experience of using Tinsl; an additional section of the online survey
opens up if the user experienced compiler errors at all throughout their experi-
ence. Since under half of our users experienced any compiler errors while going
through the tutorial (46.2%), it would be imprudent to come to any conclusions
based on only six respondents. We will note, however, that one respondent was
very dissatisfied with the error messages and highlighting, noting some confu-
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sion they had with regard to wording in the tutorial; the feedback was helpful
and we will address the noted ambiguity in the instructions. However, it is
encouraging that over half of our participants reportedly moved through the
tutorial without experiencing any compiler errors.

The final section of the tutorial asked participants to consider a block of code
containing novel syntax not taught explicitly within the tutorial. The code is
repeated here:

// the same luma function in the tutorial previously

fn luma(vec4 color) {

return dot(color.rgb, vec3(0.299, 0.587, 0.114));

}

{ mix('red'4, 'blue'4, luma(frag)); }

The unfamiliar syntax in the above code example are the ’red’4 and ’blue’4

color strings, which are not covered in the tutorial. We encouraged the user to
be creative about how they might improve this code with the following prompt:

If you found the syntax of the block of code to be undesirable, please
rewrite the code in a syntax to suit your liking. Provide comments where
the meaning of your new syntax is not obvious. If you are inclined to offer
suggestions about syntax outside of the scope of the given code block, feel
free to do so here. You may be as detailed as you want.”

Participants did not share any ideas on how the syntax of this code block
might be improved. Perhaps the open-ended nature of this section of the survey
intimidated some users as it essentially asked the participant to redesign the
language; we can only speculate. In retrospect, it might have been more useful
for us to offer a set of options for alternative language syntax. We would have
then asked the user which block of code expresses a particular idea more clearly.
Despite not being able to solicit all the information from participants that we
desired due to the nature of the open response questions, the information we
gathered from the survey will help guide our design in the future. Overall,
the survey results help to confirm our hypothesis that a DSL can improve the
experience of authoring post-processing effects, as many participants grasped
the core ideas in a very short tutorial.

5.3 Code Analysis

Like papers on shader metaprogramming systems and image-processing DSLs
that precede it, we will also perform an evaluation based on lines of code [18][12][19].
Tinsl reduces the amount of shaders and total lines of GLSL needed to execute
a post-processing effect with multiple render-to-texture steps. Consider the
bloom Tinsl program shown in Section 4.2. The listing below is an edited ver-
sion18 of shaders output by the Tinsl compiler. Not pictured is the surrounding

18Whitespace was added, redundant groupings were removed and some assignments to vari-
ables were added for clarity and to keep the length of individual lines down.

37



information for looping certain shaders, namely the blur shaders.

// new file: masking shader

#version 300 es

precision mediump float;

out vec4 fragColor;

uniform sampler2D uSampler0;

uniform vec2 uResolution;

#define THRESHOLD .5

float luma(vec4 color) {

return dot(color.rgb, vec3(.299,.587,.114));

}

void main() {

vec2 uv = gl_FragCoord.xy / uResolution;

vec3 col = step(1. - luma(texture(uSampler0, uv)), 1. - THRESHOLD);

fragColor= vec4(texture(uSampler0, uv).rgb * col, 1.);

}

// new file: horizontal blur shader

#version 300 es

precision mediump float;

out vec4 fragColor;

uniform sampler2D uSampler1;

uniform vec2 uResolution;

vec4 blur(vec2 direction, sampler2D channel) {

vec2 uv = gl_FragCoord.xy / uResolution;

vec2 off1 = vec2(1.3333333333333333) * direction;

vec4 color =vec4(0.);

color += texture(channel, uv)*0.29411764705882354;

color += texture(channel, uv + off1/uResolution) * 0.35294117647058826;

color += texture(channel, uv - off1/uResolution) * 0.35294117647058826;

return color;

}

void main() {

fragColor = blur(vec2(1., 0.), uSampler1);

}

// new file: vertical blur shader

#version 300 es

precision mediump float;

out vec4 fragColor;

uniform sampler2D uSampler1;

uniform vec2 uResolution;

vec4 blur(vec2 direction, sampler2D channel){

vec2 uv = gl_FragCoord.xy / uResolution;
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vec2 off1 = vec2(1.3333333333333333) * direction;

vec4 color =vec4(0.);

color += texture(channel, uv) * 0.29411764705882354;

color += texture(channel, uv + off1/uResolution) * 0.35294117647058826;

color += texture(channel, uv - off1/uResolution) * 0.35294117647058826;

return color;

}

void main() {

fragColor = blur(vec2(0.,1.), uSampler1);

}

// new file: copy texture 1 onto texture 2

#version 300 es

precision mediump float;

out vec4 fragColor;

uniform sampler2D uSampler0;

uniform sampler2D uSampler1;

uniform vec2 uResolution;

void main() {

vec2 uv = gl_FragCoord.xy / uResolution;

fragColor = texture(uSampler0, uv) + texture(uSampler1, uv);

}

The program listed above is 58 source lines of code. The Tinsl bloom pro-
gram in Section 4.2 is 20 source lines of code, and encapsulates information for
the entire rendering pipeline not seen in the above shaders. This information
would be represented in the host code calling the OpenGL API, potentially in
C or JavaScript.

6 Conclusion

We approached this study to answer the question of whether a DSL could im-
prove the experience of authoring post-processing effects that require multi-
ple rendering passes and temporary off-screen textures. We developed this re-
search question after creating the post-processing library merge-pass, which did
not contain its own DSL. We integrated merge-pass into various projects that
spanned across multiple creative domains. After our evaluation, which involved
a user study and a qualitative analysis using Petre and Green’s cognitive di-
mensions framework, we believe the answer to be yes, a DSL can abstract away
many of the tedious aspects of managing a rendering pipeline to create a non-
trivial post-processing effect. Like we have done with merge-pass, we are eager
to use Tinsl in new and exciting projects to further explore the possibilities it
offers.

In the future, we would like to explore the possibility of authoring and main-
taining “standard library” for Tinsl, which would include common operations,
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such as fast, efficient functions for transforming color spaces or for procedural
noise. The fact that Tinsl contains syntax very similar to GLSL mitigates the
fact that there is not much (if any) Tinsl code available on the web for people
to re-use. We would like to encourage the authorship of reusable Tinsl modules
by incorporating a module system with namespaces. Beyond this, there are a
handful of other language features that were not implemented due to the time
constraints of this research project, such as generics. We hope to include some
of these features in later versions of the language.

There are not many up-to-date libraries for performing code transformations
on shader code for the web. GLSLx19 and glsl-parser 20 both do not have good
support for GLSL 3.00, the latest version that WebGL 2 supports. We do not
make any claim that the GLSL parsing we perform in Tinsl is somehow more
powerful or robust than these two excellent libraries. However, some of the
code within Tinsl could be used more generally for GLSL parsing and semantic
validation. It will be interesting to see what changes WebGPU brings to the
ecosystem of hardware accelerated graphics in the web; as of now, the shading
language for WebGPU is not fully specified.21 We believe it is safe to say that
metaprogramming shaders will still be a productive way to work when WebGPU
finally hits the mainstream; these metaprogramming solutions might even be a
way to ease the growing pains of transitioning away from WebGL 2.

We have created multiple live demos and released multiple open-source
projects throughout the project. Listed below are links to the repositories and
demos:

• Tinsl source code: https://github.com/bandaloo/tinsl

• Tinsl live coding environment: https://bandaloo.fun/playground

• merge-pass source code: https://github.com/bandaloo/merge-pass

• post5 source code: https://github.com/bandaloo/post5

• artmaker source code: https://github.com/bandaloo/art-maker

• post5 sketches in web editor: https://editor.p5js.org/bandaloo/sketches

• merge-pass live demos: https://bandaloo.fun/merge-pass/example.

html

• postpre live demos: https://bandaloo.fun/postpre/example.html

19https://github.com/evanw/glslx
20https://github.com/stackgl/glsl-parser
21As of May 2021, the document “WebGPU Shading Language” is stubbed out with many

TODOs: https://gpuweb.github.io/gpuweb/wgsl/
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A Donut Code

march(

a = Torus().scale(1).translate(0, 0.4, 2.6).texture('checkers', {scale: 6}),

p = Plane().texture('checkers', {scale: 2}),

p2 = Plane(Vec3(0, 0, 1), 9).texture('checkers', {scale: 1.5})

)

.post(Bloom(.1), Edge(), h = Hue(), Invert(1), f = Focus(.15), Antialias(4))

.light(Light(Vec3(0, 4, 2), Vec3(0)))

.shadow(4)

.render('med').camera()

onframe = t => {

p.texture.uv = 4 + Math.abs(t) * 0.5

a.texture.uv = Math.abs(t) * 0.3

a.rotate(t * 15, 1, 0, 1)

h.shift = t / 5

}

B Tutorial

The following is the tutorial that was presented to participants of the user study.
The links in this tutorial were removed. The language in the survey is more
informal than the rest of this paper as it is meant to be an approachable way to
learn the language.

If you intend to fill out the survey by the end of the tutorial, visit the
survey link now in order to read and agree to the informed consent form before
proceeding. Keep the survey open and return to it by the end of the tutorial.
Thank you for your participation!

tinsl is a language for creating post-processing effects that can run in real
time. It would be helpful to know a little bit about fragment shaders for this
tutorial, however, if you are completely new to this, that is okay too. If you
want to learn more about fragment shaders, The Book of Shaders] is a fun way
to get started.

Follow along in this tutorial with the tinsl playground. Chrome is the rec-
ommended browser for this. Firefox should also work, but use Chrome if you
have the option. Resize your window to make it wide enough so that nothing is
cut off. You can enable your webcam and microphone for this. The microphone
is used for audio-reactive components that are not required for this tutorial.
However, if you do not have a webcam or you do not want to give permission to
use it, that is okay too. You will get a test image that you can use to complete
the tutorial.

What separates tinsl from a shading language? (After all, the acronym for
tinsl claims that it’s not one.) tinsl allows you to specify a rendering pipeline us-
ing special semantics to render to off-screen textures. This is not as complicated
as it sounds. Let’s see how that works:

{ vec4(1., 0., 0., 1.); } -> 0 // render to texture 0 (red)

{ vec4(0., 0., 1., 1.); } -> 1 // render to texture 1 (blue)

{ frag0 + frag1; } // add texture 0 and texture 1, render to screen (magenta)
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What you see in the previous code example is a series of three “render
blocks”. Render blocks are a series of expressions that evaluate to a vec4

(a four component floating point vector) separated by semicolons, enclosed by
curly brackets. In this particular example, we only have one such expression
statement in each block. Each component of the vec4 corresponds to red, green,
blue and alpha (transparency) in that order. In the first line, we create a vector
to represent solid red, with an instruction to render the final output of that
block to texture 0.

In the next line, we do the same thing, but we make texture 1 blue. In the
final render block, we sample from the two textures we wrote to and add them
together. Red and blue make magenta, so that’s what we see.

(Note: in the playground, the lowest texture number used in the program is
the texture that the video feed is on. We’ll use zero for all these examples, but
if you ignore texture 0 by commenting out a line of code, the video feed will be
on the next lowest texture number. Keep this in mind! We’re overwriting the
video texture in this example because we don’t care about it.)

Perhaps you don’t find a pink screen particularly compelling. Tough, but
fair. Let’s create a feedback effect that simulates motion blur. We do this by
using an extra texture texture for color accumulation. Delete everything and
paste this in:

once { frag0; } -> 1 // prime our color accumulation texture just once!

{ frag0 * 0.03 + frag1 * 0.97; } -> 1 // accumulate colors

{ frag1; } // render to the screen

Run this program in the playground and wave your hand around. Many
video games use this kind of effect to simulate drunkenness and I think it’s
pretty apparent why. (Motion blur in modern video games is not often done
with color accumulation anymore. Instead, objects are blurred based on their
velocity; this method allows camera movement to be removed from the motion
blur equation, which is just way nicer for actual gameplay.)

The first line is a bit of a nitpick. If you got rid of it, the image would
slowly fade in, but with this small addition we can copy the contents of our
video stream texture on the first draw call. once lets us do this, well, once. If
we left off the once, we’d be overwriting our accumulation texture each draw
call, which we don’t want! This would result in no blur at all.

The next line blends a bit of our video stream (3% of it) with a lot of our
accumulation texture (97% of it). You can bump these coefficients around to
see how this changes the final effect. (If they don’t add up to 1 the feedback
loop might blow up and go to white!) The values give us a very pronounced
effect.

The last line renders the accumulation texture to the screen. If we forgot
this line (try it, comment it out) we’ll still see an image but we don’t get a
motion blur. This is because the last render block in a tinsl program always
goes to the screen. The -> 1 of the previous block is ignored, and texture 1
never gets used as an accumulation texture. Keep this in mind! If you think
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this is a footgun and overall design flaw, I’m inclined to agree. However, this is
how it is for now.

Okay, let’s do another effect. Delete everything! In Tinsl, we can have
functions that look like GLSL. In fact, (nearly) all of the builtin functions and
operators of GLSL 3.00 can be used in tinsl function definitions. Paste this in:

fn luma(vec4 color) {

v := vec3(0.299, 0.587, 0.114); // coefficients for each color channel

return dot(color.rgb, v);

}

You can think of this function as taking in a color and returning how bright
it is. Notice that we can declare variables with := to get static type inference,
and we don’t need to specify the return type of a function either. tinsl takes
care of that. We could have been explicit and written this function in the GLSL
compatible way. This is helpful if you’re just pasting in GLSL functions you
find on the internet:

float luma(vec4 color) {

vec3 v = vec3(0.299, 0.587, 0.114);

return dot(color.rgb, v);

}

But, the first way is nicer, don’t you think? (Truthfully, there are arguments
to be made for either style.) Moving on, let’s use this function to turn our camera
feed into a bespoke black-and-white. We’ll write a simple function to do this:

fn black_and_white() {

gray := vec3(luma(frag)); // grayscale rgb value

return vec4(gray, 1.); // return a gray color with an alpha of 1.

}

You’ll notice we left off the number after frag. When there’s no number,
tinsl will sample from the “in number” of the enclosing render block. We do
that by including an arrow before the render block:

0 -> { black_and_white(); }

Run the program now to check that everything’s in black and white. Let’s
do something that maps the domain of the image to a different coordinate space.
In other words, let’s turn the image upside down. Delete the render block we
just wrote and replace it with this:

0 -> { frag(vec2(0., 1.) - npos); }

Run it, and you’ll see that you’re now upside down (and in full color again).
I mentioned earlier that you could have multiple ‘vec4‘ expression statements.
Let’s do that, and add back in our black and white filter. Augment the existing
render block to look like this:
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0 -> {

frag(vec2(0., 1.) - npos);

black_and_white();

}

If we call frag like a function and pass in a vec2, we can sample from off-
center. The ‘npos‘ keyword is the normalized pixel position. We invert the y
component to flip the image.

Run this, and wait...what happened? You’re in black and white again, but
you’re now right side up. The issue here is that we want the color of the
previous operation; we don’t want to sample from the original image again, like
black and white does with frag. The prev keyword lets us do this. To fix our
issue, let’s make black and white take in an argument. Update the function
definition, and while we’re at it let’s just inline the luma part:

fn black_and_white(vec4 color) {

return vec4(vec3(luma(color)), 1.);

}

Now, update the call to black and white and pass in prev:

0 -> {

frag(vec2(0., 1.) - npos);

black_and_white(prev);

}

To summarize, we can use frag like a function and pass in a vec2 to sample
from a different position. This is useful in conjunction with ‘npos‘, which allows
you to transform the coordinate space. prev lets us chain together steps without
breaking up a render block. As an aside, if we really wanted to break these into
separate steps, we could have broken this into two render blocks:

0 -> { frag(vec2(0., 1.) - npos); } -> 0

0 -> { black_and_white(frag); } // renders to screen

// don't do this if you don't have to!!!

This works because the black and white call is in a separate render block,
and frag has access to a fresh new texture 0. As the code comment indicates,
don’t do this if you don’t have to! The single render block version from earlier
is more efficient. However, there are cases where breaking an operation into two
passes is the most efficient option (see: Gaussian blur, which is a mathematically
separable image processing filter.) We can do the same thing with the refresh

keyword:

0 -> {

frag(vec2(0., 1.) - npos);

refresh; // now `frag` has access to the updated fragments

black_and_white(frag);

}
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B.1 Survey Code

Take a look at the following block of code. It may contain syntax you are
unfamiliar with, so you are not expected to accurately predict what it will do.
Even so, please try to guess at the effect it will produce. Once you have made
your guess, run the following code. Take a note of whether your intuition was
correct; it will be asked on the survey.

// the same luma function in the tutorial previously

fn luma(vec4 color) {

return dot(color.rgb, vec3(0.299, 0.587, 0.114));

}

{ mix('red'4, 'blue'4, luma(frag)); }

Thank you for going through the tutorial! Return to the survey (you should
have the link open already; if not, here it is) and complete the survey. Thanks
again!
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C IRB Approval Certificate

Figure 11: IRB approval certificate.
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D Additional Screenshots

Figure 12: Processing sketch depicted in Figure 6 without post-processing.
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Figure 13: “Mandala” p5 sketch using layered post-processing effect.
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E Survey Results

Figure 14: Results for question about GLSL experience.

Figure 15: Results for survey question gauging familiarity of the syntax.
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Figure 16: Results for question asking about comprehension of the motion blur
effect.

Figure 17: Results for question asking about comprehension of the prev and
frag keywords.

53



Figure 18: Results for question gauging whether participants spent time with
the system outside of explicit steps within the tutorial.

Figure 19: Results for question asking if the users experienced errors.

Figure 20: Results for question asking about error messages.
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Figure 21: Results for question asking about error highlighting.

Figure 22: Results asking about comprehension of code block.
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