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Abstract

The needs of new modern day applications such as network monitoring systems, telecom-

munications data management, web applications, remote medical monitoring applications

and others for near real time results over continuous data streams have spurred the de-

velopment of new data management systems called Data StreamManagement Systems

(DSMS). Unlike traditional database systems which answer one-time user queries only

after the finite data has been captured on disk, DSMSs provideon-the-fly answers to user

queries as data is arriving at various rates in the form of continuous, potentially infinite

streams of tuples. To meet the timeliness requirements of applications, DSMSs aim to

keep all data in main memory. Thus queries with multiple stateful operators pose a major

strain on memory.

Existing adaptation techniques designed to address this issue are ineffective when

faced with continuous bursts of high data rates. When systemload exceeds system ca-

pacity, a DSMS has three options: 1) discard some new data; 2)crash; or 3) spill data

to disk. Only option three allows it to produce delayed, yet accurate and complete query

results. However, this option involves disk access overhead and change in the natural or-

der of tuples flowing through the query plan tree. As not all stream operators can process

correctly out of order tuples, data spilling may have a negative impact on the quality of

the final results. Moreover, since operators in a query plan are interconnected, changes in

the order of tuple flows inevitably impact the stages of execution of affected downstream

operators such as for example data purging . Data purging is necessary for processing

continuous queries composed of stateful operators. The state of such operators is divided

into finite non-overlapping sets of tuples called windows. Thus, after all the tuples for a



window have been processed and all results output, these tuples can be discarded to free

memory for new data.

To address these issues, we have redesigned the state structure of continuous opera-

tors into smaller, finite, non-overlapping sets of tuples such as partitioned window groups,

which incur less disk-access overhead. Second, we provide for the capability of continu-

ous operators to correctly process out of order tuples usingpunctuation pointers. Third,

we design methods for downstream operators to synchronize their processing stages with

those of upstream operators to achieve optimized query planthroughput. Putting these

techniques together, we have designed a consolidated spilling adaptation strategy which

considers all aspects of operators’ inter-connections in aquery plan for making optimal

adaptation decisions.

The effectiveness of our integrated approach was empirically tested in a comparative

evaluation study against several alternate spilling adaptation strategies. We conducted

our experiments on CAPE, a DSMS developed at WPI, using different types of query

plans composed of multiple partitioned window join operators. Our experiments prove

that despite the higher overhead of a more synchronized adaptation approach, our consol-

idated strategy provides better query plan performance andhigher plan throughput during

periods of continuous bursts of high data rates.
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Chapter 1

Introduction

1.1 Introduction

The rapid advances of technology accompanied with changes in market forces stimulates

the development of new business and science-related applications and systems. Increase

in the volumes of data available to companies and research institutions, the constantly in-

creasing speed of networks, the continuously increasing deployment of sensors and wire-

less technologies in certain industries [35] and the need toanalyze streams of data in real

time have spurred the development of new types of data management systems called Data

Stream Management Systems (DSMS). Examples of applications in need of the services

offered by the newly developed systems include financial applications, network moni-

toring, telecommunications data management, web applications, manufacturing, remote

medical monitoring applications, sensor networks, and others [35, 26, 6].

Unlike traditional database systems which deal with a finiteamount of data, and an-

swer user queries only on data that had first been captured on disk, the newly developed

systems aim to answer user queries in real time as the data is arriving at various rates in

the form of continuous, potentially infinite, streams of tuples. The unpredictable char-
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acteristics of the arrival patterns of the data streams and the continuous nature of the

queries submitted to stream processing engines, together with the constraints imposed on

the streaming environment by the requirements of the applications for real-time yet accu-

rate results necessitate the development of novel query optimization techniques. Methods

developed for traditional database systems may no longer beapplicable due to the specific

characteristics of the streaming environment. Currently,optimization methods for DSMS

include at the operator level exploiting an operator’s selectivity [3, 29] using operator’s

punctuations for state purging [5, 29]; at the scheduler level various operators’ scheduling

techniques [29, 22, 4], and query approximation methods such as load shedding [35]; at

the query plan level the distribution of the query plans across multiple machines [29], dy-

namic query plan migration [36] and operators reallocation[9, 27]. Efficiently handling

critical resources such as main memory is a major concern in the design of DSMSs. Any

system of computing devices whether a centralized one, consisting of a single query pro-

cessor or a distributed one, consisting of multiple interconnected processors, suffers from

the inevitable problem of limited resources. They all have an upper bound on the amount

of data they can ultimately process at a time. Thus integration of optimization techniques

at various levels of query plan processing becomes necessary for the optimal utilization

of the available yet limited resources.

The focus of this thesis is the development of strategies fortemporarily pushing oper-

ators’ states to disk during periods of high-data arrival rates to prevent run-time memory

overflow problems and potential system crashes; and strategies for bringing data back

to main memory during periods of low system load or for finishing the query plan pro-

cessing. Thus a DSMS’s most critical resources such as main memory and processor’s

computing cycles can be managed and utilized in a very efficient way which would ul-

timately result in a better quality of service for the final applications. Such optimization

techniques, however, face certain challenges. 1) The swapping of operator’s states be-

2



tween disk and main memory has to be performed on demand at runtime with little

overhead. 2) The statistics on which different optimization techniques will be based has

to be collected at run-time, thus it has to be light-weight, yet accurate enough for making

better optimization decisions. 3) As data will be swapped between disk and main memory

at run time, the system has to be able to handle out of order tuple arrivals and still produce

accurate and correct results. We define as such output results with no data tuples missed

andno extra tuples generated.

Adaptation techniques based on spilling data to disk and theassociated with this mem-

ory management issues such as how mush data to spill and how toorganize the data spilled

to disk have been investigated in the design of join operators such as XJoin [32], progres-

sive merge join and hash-merge join [23] optimized for accessing data over distributed

networks stored in traditional database systems. [23] discusses the advantages and disad-

vantages of several different flushing policies such as flush-all policy, flush largest parti-

tion first,and flush smallest partition first policy.

Since even distributed data stream management systems haveultimately a finite amount

of processing resources, data spilling can help distributed systems too ro alleviate mem-

ory shortage problems incurred by spikes in data arrival rates. [20] investigates the issues

related to data spilling in a distributed environment. [20]focuses on the integration of

two run-time adaptation techniques, namely, state spill todisk and state relocation to an

alternate machine. The paper analyzes the tradeoffs regarding key factors affecting these

two runtime operator state adaptation techniques and proposes two adaptation strategies:

lazy-disk and active-disk. These strategies integrate both state spill and state relocation

adaptations with different emphasis on local versus globaldecision making.

Unlike [20], we focus only on the issues associated with dataspilling. We expand

on the memory management ideas presented in [23, 32]. The techniques proposed in

this work, however, are applicable to both centralized and distributed query processing

3



environments. The goal of the thesis is to investigate the impact of such strategies on the

performance of query plans consisting of multiple state intensive operators.

1.2 Motivation

As discussed in [10], efficient processing of queries under varying data arrival rates and

availabilities of system resources is the key to the successof many applications using the

services of DSMS. However, current research of continuous query processing often as-

sumes query operators with fairly-small sized operator states, for example, small window

joins or stateless operators such as select and project [2, 8, 5, 16]. Despite the fact that

complex multi-join continuous queries are rather common inthe data integration and the

data warehousing environments and the fact that there are some papers on parallel oper-

ators like FLUX [27], memory management for continuous queries with such potentially

huge operator states [9] have not been carefully studied.

...
Patients Monitoring System

A Natural Disaster Scene

Patients with Multiple Sensors

...

A Data-Stream Management System

Analyze 
patients’
current 
condition

Overloaded Medical Staff

Data sent more often if a 
patient’s condition 

deteriorates

Yet all patients’ records 
must be accurate, so no load 

shedding possible

(Joins on Patients’ IDs )

System still has limited 
resources

Innumerous injured rushed 
to closest help  location 

Potential solution:
Spilling data to disk

at times of high system overload

Figure 1.1: A real time mobile hospital DSMS.
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For example, a data integration system may be used by medicalteams working in a

mobile hospital deployed to a natural disaster scene or a battlefield as illustrated on Fig-

ure 1.1. Multiple sensors per person to monitor vital life symptoms can be attached to

casualties as they are checked into the hospital. Additionally, remote static database sys-

tems containing information on medical conditions or patients’ health records, assuming

ability to identify patients, can also be constantly queried. Assume further the ability of

sensors to increase their sampling rates upon the deterioration of a patient’s condition.

In such situations of emergency characterized by unpredictability and chaos, the neces-

sity of fast yet accurate decisions on behalf of the medical stuff makes it very important

that the data stream management system does not become the bottleneck in the chain of

events. Otherwise, this may cause the preventable death of people. Thus such a system

needs to be able to operate under potentially very heavy workloads and still produce as

many and accurate results as fast as possible. The more results are produced at run time

the more information the medical stuff will have for making critical life-saving decisions

on patients’ course of treatment. Furthermore, no approximate results that we may be

able to generate by the employment of load shedding techniques may be acceptable to the

end-application as patients’ records ought to be accurate for a later post-disaster analysis

and inspection. In the context of such stringent constraints and requirements it is very

important to provide an optimal main-memory management strategy.

A viable solution to the above scenario may be the temporary pushing of operators’

states to disk as discussed by XJoin [32, 9] and Hash-Merge Join [23, 9]. Thus no tuples

will be lost during the arrival of high bursts of data, yet theDSMS will still be able to

continue to produce near real-time results regarding the current states of patients. The em-

ployment of a content-based data-spill strategy can further improve the usefulness of such

a system by assigning high priority to the data of patients incritical condition and first

spilling the lower-priority data: the data of patients who are currently in stable condition.
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1.3 Challenges

The main challenges in the design of a join operator for the streaming context with the

capacity of swapping data between disk and main memory on demand and the design of

policies which would keep the operator’s performance at optimal levels for a particular

system load include:

1. Swapping of data between disk and main memory should not affect the accuracy of

the results produced by the operator. This means there should be no missed output

tuples and there should be no duplicate tuples ever output.

2. Reading and writing data to disk are very expensive operations in terms of system

resource consumption. Thus, such adaptations should not beperformed too often

by the operator, otherwise it may hurt system performance. It is important that the

moments when these adaptations need to be performed be correctly identified.

3. Since disk access is a very expensive operation, the granularity at which spilled

tuples are stored on disk is important. Larger files provide for less disk access

overhead, but reduce the flexibility of unspilling policieswhich may cause sub-

optimal query plan performance. On the other hand, small files provide for more

flexible unspilling policies but may cause increased disk access costs by incurring

too many reads and writes.

4. To correctly detect when a DSMS experiences heavy load or when data arrival rates

have slowed down and the system has enough free resources to process any spilled

on disk tuples, statistics have to be collected and analyzed. Collecting statistics

may prove to be counterproductive, as it is an expensive operation. It is important

to decide what statistical data is sufficient and how often tocollect it.
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5. The partition level statistical data collected by operators should be stored in a suit-

able data structure.

6. Operators in a query plan are interconnected and dependent on each other. It is

important that during a query plan execution operators synchronize their work to

improve system performance. This entails the need for: a) propagating metadata

about the stages of query execution down the query plan tree;b) policies for work

synchronization; and c) policies for data purging. It should be noted that sending

too much information down the query plan can hurt the performance of the operator

in two ways: it will increase the time an operator spends to process the incoming

information instead of processing incoming data and it willincrease the amount of

memory consumed by the operator.

1.4 Contributions

This thesis has made the following contributions:

1. A new partitioned window join operator with the ability tospill and unspill data to

disk on demand has been designed.

2. We further extend the semantics of punctuations embeddedin the data stream to

encode information of the processing stages completed by anoperator. Such infor-

mation is used for the correct processing of out of order tuples and for the design

of efficient data invalidation policies.

3. A new adaptation policy to synchronize the work of operators in a query plan has

been designed. The policy uses metadata about the stages of query execution prop-

agated down the query plan tree by operators and partition level statistical data to

make better memory management adaptation decisions.

7



4. We have designed several different adaptation policies with different levels of query

plan synchronization.

5. All the policies have been implemented and integrated into a data stream manage-

ment system called CAPE.

6. Experiments on the relative performance of the differentadaptation policies have

been carried out using a real software system, not simulation.
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Chapter 2

Preliminaries

2.1 Stateful Operators in Streaming Context

One of the distinguishing characteristics of continuous query processing is that the size

of the input data may be potentially infinite. Thus query plans composed of one or more

operators, which require to see the whole input before producing any query results, would

not run in the streaming environment. Such operators are called blocking operators. A

way of enabling queries with blocking operators to run in thestreaming environment is

by defining a mechanism for continuously breaking down the input stream into finite sub-

streams of data. This can be achieved by imposing constraints on the query output. In

the streaming context, bounds on the size of the input streams imposed by constraints on

the query output are calledwindows. Windows can be defined as limits on the maximum

distance tuples can be apart from each other in time or tuple count to be considered in the

query. Windows are characterized by asize and asliding step. In the rest of the thesis we

will denote the size of a window withw.size, and its sliding step withw.step. A window’s

size can be expressed in terms of time units or tuple-counts.Consequently, there are two

main types of windows:time-based windows andcount-based windows. The sliding step

9



of a window determines the distance between two consecutivewindows. Sliding steps are

also calledpanes [17]. In [17] a window is said to be composed of panes.

Figure 2.1: Example of a continuous window.

Based on the ratio of a window’s size to its sliding step, windows can be classified as

hopping or continuous.Hopping windows havew.size <= w.step whereas continuous

windows havew.size > w.step. In the latter case a tuple can belong to more than one

window. Figure 2.1 shows an example of a sliding window withw.size = 4 time units

and w.step = 1 time unit. Figure 2.2 shows an example of a hopping window with

w.size = 4 time units andw.step = 5 time units . In both figures we use the notation

wid whereid >= 1 to identify a particular window. As it can be seen in Figure 2.2, in the

case of hopping windows a tuple belongs to at most one window.[18] gives an extensive

list of window types that can be imposed on an operator.

Figure 2.2: Example of a hopping window

During query processing each individual window is characterized by its beginning
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and ending parameters. For time-based windows, these parameters are expressed in time

units and may be calculated relatively to the beginning timeof the first window. There

are different ways of determining the beginning time of the first window. It can be, for

instance, either set to the System time at the moment the query has been submitted for

execution, or it can be set to be equal to the timestamp of the first tuple received by the

operator. In this work we use the latter approach. We refer tothe beginning time of the

first window as thequery plan start time and we denote it withqp.start. As the query

plan is being executed, the newly created windows are assigned beginning, denoted with

w.start, and ending times, denoted withw.end, relatively to the query plan start time. For

example, let’s assume that window 1 (w1) from Figure 2.1 has a beginning time equal to

12:00 and ending time equal to 12:04. We assume thatw.size andw.step are expressed

in minutes. In this example,w.size = 4 minutes andw.step = 1 minute. So window

2 will start at 12:01, one sliding step later than window 1, and it will finish at 12:05,

one sliding step later than window 1. Respectively, window 3will start at 12:02, two

sliding steps later than window 1, and so on. When the state ofan operator is organized

in hopping windows, every new tuple that arrives at the inputqueues of the operator for

processing will belong to at most one window at a time. On the other hand, when the

state of an operator is organized in continuous windows, every new tuple that arrives for

processing will belong to at least one and possibly several windows simultaneously as

consecutive continuous windows have overlapping boundaries. Let us look at Figure 2.1.

We again assume that the first window starts at 12:00 and ends at 12:04. Then a tuple with

a timestamp of 12:03 will belong to windows 1, 2, 3 as these windows have overlapping

boundaries as it is shown in Figure 2.3. The maximum number ofwindows (maxW) a

tuple can belong to is determined by the following formula:

Formula 1: maxW = ⌈(w.size/w.step)⌉

The windows a tuple belongs to are determined by the relativeorder of a tuple’s ar-
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Figure 2.3: Example of maximum number of windows a tuple may belong to.

rival at the operator for processing in the case of count-based windows and by a tuple’s

timestamp in the case of time-based windows. As in [36], we assign a unique identifica-

tion number to each window. The identification numbers are assumed to be taken from a

sequence of consecutive integers starting at one. Thus a window’s identification number

also indicates how many sliding steps have expired from the query plan start time until the

beginning time of this window, that is the number of windows preceding this one. For ex-

ample, the very first window open at an operator during a queryplan execution is assigned

an identification number of 1. The next window whose beginning time is a sliding step

away from the beginning time of the first window is assigned anidentification number of

2 and so forth. We use this information to calculate the identification numbers of all win-

dows that a newly arriving tuple would belong to. Algorithm 1outlines the basic steps we

use to do this. As Algorithm 1 shows, we first identify the ID ofthe last window a tuple

belongs to. Then we use this information to trace back all theearlier windows the tuple

belongs to. A tupletuple belongs to a windowwid if the tuple’s timestamp (tuple.time) is

within the window’s boundaries, which we define here as:

Formula 2: w.start < tuple.time <= w.end

Windows impose constraints on the evaluation semantics of the query. Only tuples

which all belong to the same window will be processed by an operator to produce valid

query plan output. For example, a join operator will join a newly arriving tuple only with
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Algorithm 1 Calculating the Windows a Tuple Belongs to.
Input: tuple.time

Output: set wids={n|n>=1 or emptyset}

1: long tuple.maxW=-1
2: long ceiling=⌈(w.time − qp.start)/w.step⌉
3: long floor=⌊(tuple.time − qp.start)/w.step⌋
4: long maxW.start=qp.start+ceiling*w.step
5: long maxW.end=maxW.start+w.size
6: long minW.end=qp.start+floor*w.step+w.size

Case 1: tuple belongs to no windows

7: if ((w.time <= qp.start) or ((w.size < w.step and tuple.time > minW.end andmaxW.start >= tuple.time) or
(w.size < w.step andtuple.time = minW.start or tuple.time = minW.start)) then

8: return wids = ∅

Case 2: tuple belongs to first window

9: if ((tuple.time−qp.start <= w.size andw.size < w.step) or (tuple.time−qp.start <= w.step andw.size > w.step))
then

10: return wids.add(1)

Case 3: w.size>=w.step: tuple belongs to a window

11: if (tuple.time >= maxW.start) then
12: tuple.maxW = ceiling + 1
13: wids.add(tuple.maxW )
14: if (tuple.time <= maxW.start) then
15: tuple.maxW = floor + 1
16: wids.add(tuple.maxW )

Case 4: w.size<w.step: tuple belongs to more than one window

17: while(tuple.time <= [(tuple.maxW − 1) ∗ w.step + w.size] and (tuple.maxW 6= 0)) then
18: wids.add(tuple.maxW )
19: tuple.maxW = tuple.maxW − 1
20: endwhile
21: return wids

those tuples in its current state which belong to the same windows that the new tuple

belongs to. It is possible that a query plan can be composed ofmultiple stateful operators

each having different window characteristics. Figure 2.4 is an example of such a query

plan. As is illustrated, while join operators 1 and 2 have defined hopping windows on

their outputs with the following characteristics: window sizes of 5 and 4 time units and

window sliding steps of 7 and 6 time units respectively, joinoperators 3 and 4 have defined

continuous windows with widow sizes of 8 and 7 time units, andwindow sliding steps of

3 and 5 time units respectively.

In this work we assume time-based windows. However, the techniques we propose

can easily be applied to count-based windows. We assume thata tuple’s timestamp is

set at the data source and that tuples arrive at the DSMS in order. Network delays and

unsynchronized data sources may cause disorder in the incoming data streams. How-

13



Figure 2.4: Example of a query plan with different window sizes per operator.

ever, different techniques have been already proposed in the literature for resolving such

issues. One such mechanism is called heartbeats [33]. Heartbeats are punctuations on

the timestamps of tuples which can be generated either by thedata sources or by the

DSMS. A heartbeat with a timestampt1 = 12 : 05 indicates that all tuples with times-

tampstuple.time <= 12 : 05 have been received and no more such tuples are expected

henceforth. Another mechanism discussed in the literatureis calledSlack. Slack allows

disorder in the data streams within predefined bounds [33]. The generation and propaga-

tion of heartbeats is out of the scope of this work. In our workonly the leaf operators of

a query plan assume that tuples arrive in order. Since spilling and unspilling data to disk

changes the natural order of tuples, we have implemented mechanisms for handling out

of order tuples. We employ communication techniques calledpunctuation pointers which
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help operators exchange information with their ancestors about the current stage of their

data-processing. In Section 2.3 we provide an exact definition of apunctuation pointer

and an explanation how punctuation pointers are incorporated into our framework.

2.1.1 Query Syntax for Window-Based Operators

The sql syntax does support the definition of queries with time constraints imposed on

their output. This has prompted the development of a new query language called CQL

[25]. CQL is an SQL based language. It has a rich syntax which allows for the definition

of count-based and time-based constraints. CQL, however, does not have a clearly defined

and flexible window semantics which would allow the expression of different types of

windows in a query. [18] presents such a semantics. Query 1 isan example of a multi-

join query defined using a CQL-like syntax. The query assumesthe existence of a stream

processing financial system which receives financial data from various banks and other

financial institutions. The query joins streams over a 10 minute period and outputs the

data every 3 minutes.

QUERY 1:

SELECT brokerName, min(price)

FROM bank1,bank2,bank3

WHERE bank1.offerCurrency=bank2.offerCurrency

AND bank2.offerCurrency=bank3.offerCurrency

AND bank1.offer=bank2.offer

AND bank2.offer=bank3.offer AND

bank1.timestamp>=bank2.timestamp+window

AND bank1.timestamp>=bank3.timestamp+window

GROUP BY brokerName

The same query can be expressed also as the query below whereWATTR stands for

window attribute [18]:

QUERY 1:
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SELECT brokerName, min(price)

FROM bank1,bank2,bank3

WHERE bank1.offerCurrency=bank2.offerCurrency

AND bank2.offerCurrency=bank3.offerCurrency

AND bank1.offer=bank2.offer

AND bank2.offer=bank3.offer AND

bank1.timestamp>=bank2.timestamp

AND bank1.timestamp>=bank3.timestamp

[WATTR timestamp RANGE 10 minutes SLIDE 3 minutes]

GROUP BY brokerName

2.2 Invalidation Rules

As the execution of a query plan proceeds, no longer necessary data accumulates in main

memory, thus limiting the availability of memory resourcesfor the storing and processing

of new tuples. This necessitates the discarding of any outdated data accumulated in the

states of operators. The state of an operator consists of allthe tuples which have to be

buffered so that the operator can produce complete and accurate results. To be able to

ensure correct and complete query plan output, operators need rules for detecting when

data will be no longer needed. We provide a set of rules which guarantee that only unnec-

essary, already processed data will be discarded by operators.

Since windows have finite sizes, once an operator has received and processed all tu-

ples that belong to a given window, these tuples can be discarded granted the condition

that they do not belong to other windows the operator is stillprocessing input for. The

deletion of no longer needed tuples reduces the overall sizeof the state of an operator,

thus reducing the memory resources consumed by it. In the context of DSMS, the process

of detecting and deleting no longer needed tuples by a windowstream operator is called

invalidation [19]. An effective invalidation strategy can help an operator achieve better

and more efficient management of its memory resources. To guarantee correct and com-
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plete query plan output, which means that no tuples are discarded before all output results

for a given window have been produced, we define two invalidation rules.

Invalidation rule 1 : Tuples in an operator’s state can be invalidated when they be-

long to only one window and all the tuples within the window’s range have already been

received and processed.

The rule is correct. It needs no further conditions because the conditions are embedded

within the rule. If the following two conditions are both satisfied, then rule number 1

alone is sufficient to guarantee that no longer needed tuplesare invalidated at the earliest

possible moment:

• Condition 1: the window is hopping.

• Condition 2: tuples arrive in order at the operator.

However, if tuples arrive out of order, and the windows defined on the operator are

continuous, then rule number 1 is not sufficient to guaranteethat only outdated tuples are

deleted from an operator’s state. Before proceeding with the definition of a second more

general rule, several concepts need to be defined.

As it has been already explained, in the case of continuous windows, a tuple may

belong to more than one window at a time.We define the degree ofwindow correlation

(dwc) to be the number of windows that a window shares tuples with excluding itself.

dwc is equal to the maximum number of windows a window can share tuples with minus

one. The maximum number of windows can be calculated using Formula 1.

We note that hopping windows have a degree of window correlation of zero. As no

two hopping windows have overlapping boundaries, a hoppingwindow shares no tuples

with other windows. This can be seen in Figure 2.2. As anotherexample, consider a

continuous window withw.size = 7 time units andw.step = 2 time units as illustrated

in Figure 2.5. The degree of window correlation for this window is equal to 3 as calculated
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using Formula 1 and subtracting 1 from it (⌈(7/2)⌉− 1 = 3). Thus each window for such

a query plan shares tuples with at most three other consecutive windows. As shown in

Figure 2.5, w1 has overlapping boundaries with w2, w3 and w4.Window 1 ends before

window 5 begins. Thus a tuple with a timestamp of 12:06:45 belongs to four windows

simultaneously: w1 and the three other windows w1 shares tuples with, namely windows:

2,3 and 4.

Figure 2.5: Example of a window withdwc = 3.

The degree of window correlation determines the number of windows a window may

share tuples with. Thus it implies how many consecutive windows should have received

and processed all the tuples that belong to them before tuples from the first window can

be safely discarded by the operator and the window can be closed. Note that such ”in-

terleaved” windows may or may not have yet received and processed all the tuples that

belong to them. Thus an operator cannot safely invalidate tuples from a window even if

all the tuples falling within the window’s range have been already received and processed.
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Tuples from a processed window may be needed for the completion of the processing of

other windows so our goal is to determine a method to decide when it is safe to purge

tuples.

Closing a window means discarding all meta data (records) maintained by the opera-

tor for the given window. We number windows starting from 1. Thus the most currently

opened window will have the largest window identification number. If we start invali-

dating tuples from the most currently opened window, then weuse what we define as

backward window correlation to determine whether it is safe to discard tuples from this

window or not. However if we start invalidating tuples from the earliest open window, let

us say, for example, from window 1, then we need to determine how many windows after

the earliest opened window have received and processed their tuples. We define this as

forward window correlation.

Based on how many tuples for a window have been received thus far, a window can

be in several different states. Figure 2.6 shows the two mainstates a window can be in:

open andclosed. Each of these states is characterized by two sub-states.

Figure 2.6: A window’s state transition diagram.

An open window is a window for which at least one tuple has been received by the

operator. Yet all tuples belonging to the window have not been processed yet. Based on

whether all the tuples received thus far for the window are inmain memory or not, an
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open window can be further defined as eitheractive or inactive. An active open window

is an open window for which at least one tuple is residing in main memory. Aninactive

open window is an open window with no tuples within its range currently residing in

main memory. This implies that all thus far received tuples within the window’s range

have been spilled to disk. Even though aninactive open window may currently have a size

of 0, the operator may not have produced yet all possible output results for this window.

For it is possible that more tuples are expected to arrive at the operator or that tuples

temporarily put on disk may still need processing.

We define a window to be aclosed window if no more tuples will ever be received

by the operator from its children- children can be either other operators or input streams.

A closed window, however, may or may not have its tuples invalidated. Thus, aclosed

window can be further defined asprocessed or invalidated. A processed closed window

is a window for which all output results have been received but no tuples within the win-

dow’s range have been invalidated yet. This may bedue to the fact that its tuples are still

being required for processing of other windows. A processedwindow has no fragments

of it spilled on disk. On the other hand, aninvalidated closed window is defined to be

a closed window with all its tuples invalidated. If any meta information for this window

has been maintained by the operator during query plan execution, such meta information

can be now safely deleted because by invalidation rule 2 the tuples from this window are

guaranteed to be no longer needed for any processing in the future. Invalidation rule 2 is

provided below.

To ensure that all requirements necessary for the safe invalidation of tuples have been

met in the case of out of order tuples and continuous windows,we define a second inval-

idation rule.

Invalidation rule 2 : A tuple can be invalidated if and only if all the windows the tuple

belongs to are in a closed processed state.
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The intuition behind invalidation rule 2 is that if a tuple belongs to processed windows

only, then all possible output tuples that involve the tuplehave been already produced and

output by the operator. Furthermore, no future output results will involve this tuple as no

newly arriving tuples will belong to the windows the tuple belongs to. Thus the tuple can

be safely discarded by the operator to release memory for newdata.

Figure 2.7: Invalidation example with w.size=7 min and w.step=2 min.

For example, let us again assume that the state of a join operator is divided into con-

tinuous windows withw.step = 2 time units andw.size = 7 time units as shown in

Figure 2.7. Let’s further assume that at timet.time = 11 tuples within the time-range

tuple.time = 1 to tuple.time = 3 have not been received yet by the operator as indicated

by the question mark in Figure 2.7. Furthermore, the operator has no information about

whether tuples with timestamps between 1 and 3 should be expected. If any tuples within

the rangetuple.time = 1 to tuple.time = 3 arrive at the operator they will belong to

w1 and w2. All tuples with a timestamp greater than 3 have beenarriving at the operator

in consecutive order. Thus at timet.time = 11 the operator has received the last tuple
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within w3’s range. As is illustrated in Figure 2.7, w3 startsat t.time = 4 and ends at

t.time = 11 and it shares tuples with w1 and w2. By calculating the degreeof window

correlation with the help of formula 1, we can verify that w3 should share tuples with

three other windows. As w3 is the third consecutive open window, it can share tuples

with 2 other windows only- namely w1 and w2. Since w1 and w2 arestill expecting new

tuples, no tuples which belong to either of these windows andto w3 at the same time can

be invalidated. The last tuple which belongs simultaneously to w2 and w3 has a times-

tamp oftuple.time = 9. Given these conditions att.time = 11, can we invalidate any

tuples from w3? Tuples with timestamps t.tuple.time = 10 andtuple.time = 11 do not

belong to any of the previous windows: w1 and w2, however, they do belong to w4 too,

besides w3. At timet.time = 11 w4 will be in anopen, active state, therefore no tuples

which belong both to w3 and w4 can be invalidated either. Thusat timet.time = 11 no

tuples can be invalidated.

The check if an invalidation process can start can be triggered either by the expiration

of a predefined time interval (time-driven invalidation) orit can be triggered by the final-

ization or the beginning of an expected event (event-driveninvalidation). One example of

a plausible invalidation check trigger would be the expiration of a sliding step period as

the end of each sliding step marks the end of an already open window and the beginning

of a new one.

The invalidation process in our system, however, is a combination of both triggers- it

is time- and event-driven. We use an invalidation interval bigger than a window’s sliding

step. As we assume that tuples may arrive at an operator out oforder, the end of a

sliding period would not necessarily mean that all tuples for the just expired window

would have been already received and processed by the operator. Tuples from this window

may have been spilled to disk either locally or upstream the query plan1, that is, at

1Data in a query plan flows from leaf operators to the root. Thus, the direction from the leaves to the
root of a query plan tree is called downstream and vice versa from the root operator to the leaf operators
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children operators. Thus by using an invalidation timer longer than a window’s sliding

step valuable processing resources will not be wasted by frequent invalidation checks at

the end of each sliding period, as each invalidation attemptcauses some overhead.

In our system we use two more event triggers: tuples are invalidated before a spill

process starts and after an unspill process is finished. These triggers are independent of

the adaptation policies used. The intuition behind settingthese triggers is the following.

Before an operator spills tuples to disk, the operator can check if any tuples can be invali-

dated from its state as this could reduce the size of data written to disk, therefore reducing

the cost of spilling. Moreover, the time necessary for bringing the same data back to

main memory will be also decreased. Thus, by doing an invalidation check before a spill

process, we anticipate that valuable computing resources may be saved in the long run.

As some windows may not be invalidated because parts of the windows have been spilled

to disk locally before joining them with later arrived tuples within the same windows’

ranges, whenever tuples are unspilled these windows may have all tuples within their

bounds received and processed. Thus, the tuples from these windows can be invalidated.

By invalidating at the end of an unspill process we anticipate to achieve more efficient

memory management. As the end of an unspill process marks a spike in the memory

consumption of the operator anyway, the invalidation of anyno longer needed tuples will

reduce the amount of consumed memory at that moment.

2.3 Invalidation Synchronization Mechanism

As we assume that query plans may consist of multiple state-intensive operators which

may result that some tuples be out of order at non-leaf operators, the timestamps of the

tuples alone do not provide enough information for making a correct decision regarding

upstream.
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what tuples can be safely invalidated from an operator’s state. We assume that tuples

arrive in order at leaf operators so the timestamps of the tuples themselves can provide

enough information for the invalidation process at these operators. Out of order tuples

downstream the query plan can be caused by spill adaptation processes executed upstream

the query plan. Thus operators need a mechanism of synchronizing their invalidation

processes with the processing stages of operators located upstream the query plan. By

synchronizing the invalidation processes we mean that no operator can invalidate tuples

from its state, unless it has been explicitly notified by all of its children operators that no

tuples with timestamps within the range of the tuples to be invalidated will be received

in the future. A simple yet elegant way to achieve such synchronization is by using

punctuated tuples (or also called punctuated messages) interleaved with the data stream.

Punctuation is a way of inserting meta-data about the data stream by encoding the

information into special-purpose tuples. [19] defines punctuation as ”an ordered set of

patterns, each corresponding to an attribute of the tuple”.We overload the punctuation

message with extra information about the stage of processing which has been just com-

pleted by the sending operator. In our system we use punctuated messages to inform

operators downstream about the time-ranges of tuples that have been already processed

upstream. Thus downstream operators will know that tuples within such data ranges will

never come again. This gives them information to make correct invalidation decisions.

The punctuated messages used by our invalidation policy arecalledinvalidation pointers.

As it was discussed, aninvalidation pointer contains the time ranges of tuples that have

been already processed and invalidated upstream. To guarantee correct invalidation infor-

mation, an operator is allowed to send invalidation pointers only after it has successfully

invalidated tuples from its state. As we assume in-order arrival of tuples at leaf operators

only, which are directly connected to the data sources, leafoperators do not receive ex-

plicit punctuation pointers. Such operators thus initiatethem. An implication of this is
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that leaf operators should be able to invalidate some tuplesfrom their state at the expira-

tion of each sliding step. This may not be a very efficient strategy though if the windows

defined for an operator are large, continuous windows with very small sliding steps.

2.4 Granularity of Spill Units

In our work we consider query plans composed of multiple state-intensive join operators.

The state of an operator corresponds to input tuples an operator has to keep buffered in

order to produce accurate and complete query results. In thestreaming context the size of

the state of an operator is implied by the characteristics ofthe windows imposed on it. For

example, hopping windows with smaller window sizes imply smaller operators’ states. As

windows of state-intensive window operators may grow too large due to spikes in input

which may cause strain on machine resources, adaptation techniques at the state or state-

window level of an operator such as state spilling to disk maybecome very expensive.

To overcome the problem of potentially too costly query optimization strategies, the state

of a stateful operator can be partitioned into numerous non-overlapping subsets of tuples.

Thus during a query optimization stage only a subset of the whole operator’s state such

as window fragments may be potentially locally spilled to disk. In our work, we partition

each input stream into a large number of partitions per window, as proposed in [11]. Every

operator partitions the data as it comes, using its own partitioning function. Each partition

is identified by a unique partition ID, i.e., 1, 2, . . ., n (withn denoting the number of

distinct partitions). This gives us the opportunity to effectively work with partitions during

an adaptation process without even having to rehash any of the existing ones at run time.

This method has first been applied in early data skew handlingliterature [15] as well as in

the recent stream processing work Flux [27]. We organize operator states based on input

partitions. For simplicity, we may use the term partition torefer to the corresponding
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operator state window partition if the context is clear.

For a single input query operator, as tackled in Flux [27], itis natural to adapt par-

titions from this one input stream. However, as discussed in[10], for the multiple-input

operators we focus on, there are partitions from different inputs in the operator states with

the same partition ID. Thus, multiple ways of organizing partitions are possible, as dis-

cussed below. As in XJoin [32], we could choose partitions from one input at a time and

adapt them independently. However, this strategy increases the complexity of bringing

back to main memory any temporarily flushed to disk tuples in the partitioned processing

of multi-way join queries. Namely, if partitions have been pushed to disk, the operator

will be required to keep track of extra timestamps per tuple and per partition to avoid

duplicates later when spilled data is brought back to main memory. Thus we instead use

the [9, 10] idea of synchronized flushing of a group of partitions with the same partition

ID, but we take the same partition group per window. This is used as the smallest unit to

be adapted, as illustrated in Figure 2.8. This simplifies theunspilling process.

Figure 2.8: Example of a partitioned window group.

For simplicity, we call all partitions of a window with the same partition ID from

different inputs onepartition group. The term partition may be used to refer to a window

partition group if the context is clear. The processes of spilling and unspilling data to disk

will be described in more details in Section 2.6 .
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Granularity of Adaptation. The number of partitions into which the windows of an

operator are divided determines the granularity of the adaptation level. Thus controlling

the number of partitions provides control over the costs incurred during a query optimiza-

tion process. More partitions would imply smaller partition groups, therefore smaller

costs when data is written to disk or read back to main memory.Too small units, how-

ever, may cause too many writings to and readings from disk, thus increasing the overhead

of adaptation. One has to find the balance based on the system’s characteristics.

2.5 Partitioned Window Join Operator

By dividing the state of an operator into smaller independent adaptation units, more cost

efficient optimization strategies can be applied at the state level of an operator. We call

these adaptation units partition groups by window (partitioned window group). An oper-

ator with its state split in partitioned window groups is called Partitioned Window Oper-

ator. In this work we focus on the design of a Partitioned Window Join Operator due to

frequent usage of joins in query plans.

The design of a Partitioned Window Join Operator has to be flexible enough to allow

the swapping of states between disk and main memory upon demand while still outputting

complete and accurate query results. No output tuples should be missed nor should extra

data be generated during query processing. Since operatorswithin a query plan affect each

other’s work due to the nature of the query processing, the swapping of tuples between

disk and main memory by an operator at a higher level2 of the query plan ultimately

affects the order in which lower level operators receive tuples. Thus aPartitioned Window

Operator ought to be able to process out of order tuples while still guaranteeing accurate

and complete results.

2In this work we start labeling the levels of operators in a query plan tree starting from the root operator.
The root operator is located at level 0, its children operators and level 1 and so forth.
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As it was already described in Section 2.3, the processing ofout of order tuples re-

quires the presence of an information exchange mechanism among operators in the query

plan. If no such information exchange technique exists, an operator will have no means of

knowing when the last tuple of a window for a specific partition group has been received.

Thus, no longer needed tuples cannot be properly invalidated to release memory for new

data and the system processing the query plan has a very high probability of running

out of memory. To prevent this, we employ the use of punctuation pointers as described

in Section 2.3. Thus, every partitioned window join receives and sends out punctuation

pointers. The information in the punctuation pointers is organized in time ranges by par-

tition group ID. Every operator keeps track of this information as it is needed during data

invalidation.

Figure 2.9: Window map diagram.

Another design consideration is the per window organization of the tuples within the

state of an operator. As main memory is a critical resource that has to be managed very

efficiently in the streaming environment, having data tuples duplicated across overlapping

windows is not desirable. Therefore a partitioned window operator needs a data structure
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which would allow the management of window information per partition group without

the need of duplicating tuples across overlapping continuous windows. Tuples need to

be processed on the fly and only one copy of each tuple should bestored. Such design

considerations are used in the design of the aggregate window operators using window

semantics [18].

As shown in Figure 2.9, this data structure has to contain meta-data about every win-

dow such as beginning and ending time of the window, state of the window per partition

as shown in Figure 2.6, pointers to the tuples which belong tothis window. This data

structure has to be updated every time new tuples are inserted into the operator’s state or

old tuples are invalidated, or tuples are swapped between disk and main memory. We call

this data structure awindow map.

2.6 Definitions of Spilling and Unspilling

In this work we focus on the design of query optimization policies which swap portions

of the states of an operator between disk and main memory as needed based on the avail-

ability of system resources and data arrival rates. We call the process of flushing a portion

of the operator’s state to diskspilling and we call the process of bringing back to main

memory data spilled to diskunspilling. By swapping data between disk and main mem-

ory based on the characteristics of the data rates of input streams, more efficient memory

management can be achieved. By spilling partially processed data to disk during periods

of high data arrival rates, we prevent the system from crashing while still producing com-

plete and accurate results, though at the expense of a delay in outputting the complete

query result.

An implication of swapping data between disk and main memoryis the need of keep-

ing extra information about the data being flushed to disk. This information is needed to
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Figure 2.10: Spilling example.

help prevent duplicate query results. As it was already described in Section 2.4, we use a

partition group as the smallest adaptation unit. Thus we avoid having to keep concurrent

time information per spill. This reduces the complexity of bringing back this data to main

memory. We follow the rule that no tuples spilled to disk haveever been joined with any

data residing in main memory. All tuples spilled to disk havebeen joined with each other.

We do keep extra statistics per spilling such as number of tuples spilled, partition group

id from which tuples are flushed to disk, timestamps of the first and the last tuple spilled.

This statistics is used by our unspilling policies when deciding which data to bring back

to main memory first.

Spilling and unspilling data poses many interesting questions such as:

• How much data to un/spill?

• What data to un/spill first?
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• How often to un/spill?

• When to un/spill?

In this work we look at all the question but our main focus are the first and the second

questions, selecting which windows and partitions to un/spill first while achieving max-

imized query plan throughput given the current state of the system. There are different

interconnections between operators and the states of theseoperators in a multi-operator

query plan. We exploit these interconnections to achieve more synchronized query plan

processing. This will be discussed later when we describe the spilling and unspilling

policies designed for our framework.

Figure 2.10 illustrates the impact of spilling on the order in which operators located at

lower levels of the query plan such as the root receive tuplesfrom their children operators.

The figure illustrates what happens when an upstream operators spills data to disk. At

time t.time = 12 : 22 the root operator may have received all tuples withtuple.time <=

12 : 21, however the root operator still expects tuples with such timestampsto come from

its child operator. As the figure illustrates, tuples with timestamps within the ranges of

12:03-12:06, 12:08-12:14, and 12:19-12:22 have been spilled to disk upstream and are

still to be processed and sent down the query plan. Thus the tuples arrive no longer in

order at the root operator.

As illustrated on Figure 2.10 the ability to spill and unspill data on demand affects also

the invalidation process. Tuples have to be kept in the stateof an operator until all query

results involving these tuples have been produced. Spilling tuples upstream prevents the

affected windows from being invalidated solely based on thetimestamps of the tuples,

as the timestamps are no longer a valid indicator of the orderin which tuples have been

received by the DSMS.

Invalidation in the context of spilling and unspilling . Information such as the par-
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tition ids and the timestamps of the tuples affected by localadaptation processes such as

data spillings or unspillings need to be taken into consideration during tuple invalidation.

If an operator has received all tuples within a window’s timerange but a portion of this

window has been spilled to disk locally, then such an operator has not yet produced all

result tuples for this window. Therefore, before all tuplesresiding on disk and falling

within this window’s range have been brought to main memory and processed, no tuples

can be invalidated from this window.

As it has been already explained in Section 2.1, hopping windows have no overlap-

ping boundaries. Thus spilling tuples from one window locally does not impact other

currently open windows. This simplifies the invalidation process. Once an operator has

received and processed all the tuples within a window’s timerange, given that no tuples

have been locally spilled to disk, the operator can invalidate tuples and close the window,

irrespectively of whether earlier windows have been still open because of tuples locally

spilled to disk or tuples spilled to disk upstream. However,this is not the case when the

state of an operator is divided into continuous windows due to the higher than 0 degree

of window correlation. Thus in the case of continuous windows, when the operator has

received and processed all the tuples falling within a window’s time range, the operator

cannot invalidate tuples from this window before making sure that no tuples contained by

the window are still needed by earlier, open windows. Invalidation punctuation pointers

received from upstream operators provide information about what time ranges it is safe

to invalidate tuples from. Spill punctuation pointers carry information about data spills

that have taken place at upstream operators. The information in both types of punctuation

pointers is organized by partition group ID and the time ranges of tuples either invali-

dated or spilled upstream. Operators also maintain data about the partition groups and

the time ranges of tuples locally spilled to disk. Thus, by using these time ranges and

metadata about the windows, an operator can calculate the range of windows affected by
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any upstream spills and further infer the timestamps of the tuples that is safe to invalidate.

Given locally spilled tuples, Formula 3 can be used to calculate the earliest received

tuple that can be invalidated from a given window. The formula uses the information from

Table 2.1.

Formula 3: tuple.time = maxSpilledW.end + [w.step − ((dwc + 1) ∗ w.step −

w.size)]+1

Variable name Description
maxSpilledW.end This is the end time of the latest window affected by the spill. For example, if tuples with timestamps

ranging from 12:04 to 12:06 have been spilled to disk and the tuple with timestamp 12:06 belongs to
windows 2 and 3. The latest window affected by the spill will be window 3.

dwc+1 This is the maximum number of windows a tuple could be shared by given a window size and a window
sliding step. The maximum number of windows is equal to the degree of window correlation (dwc) plus
1.

Table 2.1: Variables used in the invalidation algorithm.

Algorithm 2 Tuple Invalidation Algorithm.
1: HashtabletimeRanges = calculateSafeToInvalidateT imeranges()
2: List spilledWindows = getSpilledWindows()
3: markProcessedWindows(spilledWindows,timeRanges)
4: List openWindows = getOpenWindows()
5: for (every wi in openWindows)do
6: int dwc=(⌈w.size/w.step⌉ − 1)
7: booleancanInvalidate=true
8: while (dwc >= 1) do
9: if (!wi.state.equals(closed)) then
10: canInvalidate=false
11: endwhile
12: if (canInvalidate)then
13: invalidateTuples(wi.start, w.step)
14: endfor

Algorithm 2 outlines the major steps of the invalidation process. This process takes

into account information about windows and partitions locally spilled to disk and infor-

mation about windows and partitions already processed upstream.

First, the algorithm calculates what time ranges are safe toinvalidate tuples from.

Information provided by the synchronization punctuation pointers- spill and invalidation

punctuation pointers, information kept by operators abouttuples locally spilled to disk, as

well as the timestamps of the latest tuples received from anydirect input streams are used

when calculating these time ranges. The second step is checking the windows’ bounds
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and deciding which windows have already received and processed all the tuples that fall

within their limits. The states of such windows are marked asprocessed. The last step

of the algorithm looks at all the windows whose states have been marked asprocessed

and based on the states of all the windows these windows sharetuples with, the algorithm

either deletes tuples from them and changes their state to invalidated so that they can be

closed later, or it leaves their status unchanged, deletingno tuples from them. Windows

marked as invalidated can be closed. This means that any metainformation kept by the

operator about them can be safely deleted. The last step of the algorithm uses the degree

of window correlation to determine how many windows back it has to look into before it

decides whether tuples can be invalidated or not.

2.7 Content-Based and Time-Based Interconnections in

a Query Plan

As described in Section 2.4, the state of each partitioned window join operator is orga-

nized by partition ids and window ids. Thus two levels of dependency (correlation) can

be observed between partitioned window join operators located at different heights of the

query plan tree:

• content-based dependency-considers the partition groups a tuple belongs to as it

moves downstream the query plan. Thus, this is the correlation among partition

groups of operators located at consecutive levels of the query plan tree.

• time-based dependency-considers the window ids a tuple belongs to as it moves

downstream the query plan. Thus, this is the correlation among windows of opera-

tors located at consecutive levels of the query plan tree. Operators in a query plan

can have completely different window characteristics.
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As it was investigated in [10], a many-to-many relationshipexists between partition

groups. As Figure 2.11 shows, many tuples from partition 1 atoperator one may be poten-

tially hashed to partitions 1 and 2 at operator two. Thus the spilling of tuples to disk from

one partition group upstream may potentially affect many partition groups downstream.

The same holds true for unspilling.

Figure 2.11: Example of content-based dependency between operators.

The same type of correlation is observed regarding the association of tuples to win-

dows. Since at each operator of the query plan tree a tuple will be associated with one

or more windows and since no window can be considered closed unless all tuples within

the window’s range have been received and processed, spilling tuples to disk from one

window upstream will affect the state of the correlated windows downstream. Thus, since

windows of operators located downstream will not be closed and invalidated unless all tu-

ples from the correlated windows upstream have been unspilled first, adaptation strategies

for partitioned window join operators need to account for these interdependencies among

operators in a query plan to achieve optimal query plan processing performance.

Operators need to synchronize with each other the adaptation stages they complete

to achieve optimal performance since they are not completely independent units within

the query plan. The same intuition holds for the construction of production lines in a

manufacturing plant. The work of each station along a production line has to be synchro-
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Figure 2.12: Example of time-based dependency between operators.

nized with the work of the previous stations, otherwise no useful work will be achieved.

In a chocolate production line, for example, unless the chocolate mixture has been pre-

pared, the station responsible for pouring the mixture in the chocolate shape forms will be

blocked. Unless the chocolate has been cut and put in the correct shapes the next station

along the production line where wrapping occurs will be blocked. Unless the chocolate

bars are properly wrapped, the station where the bars are packed in packages and prepared

for shipping out of the company will be blocked. A query plan tree is similar to a produc-

tion line. Each operator can be viewed at as a separate station across this production line,

since every operator provides the input queues for its parent operator and depends on the

output queues of its children operators. Thus our intuitionis that a better synchronization

in the work of operators will provide for optimal query plan performance.
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Chapter 3

Policy Design

3.1 Local Policies versus Global Adaptation Policies

By spilling and unspilling data on demand, a data stream management system can satisfy

the requirements of applications for complete and accuratequery results, while preventing

a system crash during periods of high load and a waste of resources during periods of light

load. As is well known, to achieve optimal performance, every adaptation decision needs

to be fine-tuned based on the current state of the system reflected by the values of collected

statistics. Based on the answers to the most important adaptation questions such as the

ones listed below, different adaptation scenarios and policies are possible.

1. When to start adaptation?

2. How much data to use during each adaptation step?

3. What should be the smallest data unit size we should work with?

4. How to select what partition groups and windows to use during an adaptation step?

In our work, we divide the adaptation polices we have designed into two major groups

based on the type of statistics each policy uses. The two groups are: local adaptation
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policies andglobal adaptation policies.

Local policies use statistics which reflects the status of only a sub-part of the whole

system (query plan). For example, let us assume that the finalgoal of all the adaptation

processes is to achieve maximal throughput. We define as throughput the number of tuples

output by the query plan for the whole time the query plan has run thus far up to timet.

Let us further assume that the statistics collected by each operator is per partition group.

As shown in Figure 3.1, each operator collects data about thesize of each partition

group (number of input tuples) and the output rate of the group (number of output tuples

per unit of time) so that it can keep track of the most productive and least productive par-

tition groups. We define the productivity of a partition group as the ratio of the number of

tuples outputted by the partition group and the size of the partition group. A higher ratio

indicates higher productivity [9]. Thus, during periods ofhigh data rates the operator

can spill to disk the least productive partitions while keeping in main memory the most

productive ones. This would minimize the impact of spillingon the query plan through-

put. Vice versa, during periods of low data rates and given that the system has enough

free main memory, had any data been spilled to disk, the operator can unspill the most

productive partition groups first.

As can be seen in Figure 3.1, each operator updates the measurements of its parti-

tion groups independently of the rest of the operators in thequery plan. Thus, in this

example, the statistical data collected by each operator reflects the productivity of each

partition group relative to the operator itself. In other words, the most productive partition

group for an operator may be the least productive one relative to the final output of the

whole query plan. This may happen, for example, if tuples from this partition group get

dropped at operators located downstream the query plan or ifthey produce less output

tuples at downstream operators. Thus local adaptation policies are completely unaware

of the overall state of the system or of any inter-correlations that may exist among the
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different components (operators) of the streaming system.One of the advantages of local

policies is that they are simplest to implement, thus incurring little overhead. Local poli-

cies work best for query plans with a single stateful operator. Local policies are discussed

in XJoin [32] and Hash-Merge Join [23].

Figure 3.1: Example of a local adaptation policy.
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3.2 Global Policies

On the other hand, decisions of global polices are based on statistical data which reflects

the overall state of the system since it tries to capture any dependencies which may exist

between the different operators in a query plan and their states. Let us go back to our

example and assume the same final goal for the adaptation process: maximal throughput,

and the same measurements collected by each operator exceptfor one difference. Instead

of having each operator update the statistics it collects locally independently of the rest

of the operators in the query plan, we have each operator update its measurements only

when a tuple is outputted by the query plan. When a tuple is outputted, every operator

updates the partition group statistics it collects for the partition group to which the output

tuple belonged to when it was passing through this operator.Thus all partition groups

to which the tuple has belonged to while passing through operators of the query plan

are traced back and their productivity measurements are properly updated. Thus, each

operator knows which partition groups are most productive relative to the final output of

the query plan. So during periods of system overload, each operator will spill to disk

these partitions first which are least likely to contribute to the final output of the query.

Thus global policies are more likely to achieve higher throughput than local policies. For

further details on the statistical data collected in our system refer to [9].

When comparing adaptation policies, an interesting question is whether there exists a

reverse proportional relationship between the number of adaptations triggered by a policy

during query plan execution and the query plan throughput. According to [9] a better

policy is not necessarily the one triggering fewer adaptations or fewer IOs.

40



Figure 3.2: Example of a global adaptation policy.

3.3 Spilling Policies

As it has been already explained in Section 3.1, a good adaptation policy is a policy which

achieves an optimal system performance while incurring minimal overhead. In our work

we measure system performance as number of tuples outputtedover certain time. Thus

the goal of our policies is to achieve a maximal throughput under different types of load

conditions. We have designed five types of spilling policies. Each spilling policy has a

complementing unspilling policy. Thus, we group in the sameadaptation scenario a pair

of matching spilling and unspilling policies to achieve optimal query plan performance.
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The five policies we have designed are:

1. Random Policy

2. Local Policy

3. Global Unsynchronized Policy

4. Global Synchronized Policy

5. Semantic Policy

The most expensive part of our adaptation policies is the actual reading and writing of

data to disk. As is well known, access to secondary storage isslow and tends to consume

a lot of system resources. In fact, most policies discussed in the literature like flush-

largest partition first or flush-all-policy [23], which flushpartitions to disk as a way of

handling periods of high system aim at minimizing the numberof I/Os as this reduces the

policy’s overhead. However, as discussed in [23], a minimized number of I/Os does not

necessarily guarantee maximal query plan throughput. Whenever a partition is flushed to

disk, outputting result tuples for this partition is delayed. As new tuples arrive there will

be fewer tuples in main memory. This decreases the probability of a join between tuples.

Thus in our policies we do consider the number of potential I/Os when deciding what

partition groups to spill to disk first, however, this is not the major factor in selecting these

partition groups. As discussed in Section 3.1, the statistical data collected by our system

which we define asproductivity per partition group reflects both the size of the partition

group and the probability of this partition to produce join results. Furthermore, in an

attempt to minimize the impact of our optimization policieson the query plan throughput,

in our synchronized policies we try to exploit the content-based interdependencies among

the operators in a query plan.
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The Random Spilling Policywas designed to help us compare the effectiveness of

our policies and the overhead they incur. The Random Spilling Policy randomly selects

partition groups for spilling, thus ignoring the size and the productivity of the partition

groups and ignoring any time- and content-based operator interdependencies. As com-

pared to other policies, this policy is the cheapest to implement since it incurs no sta-

tistical overhead and very low computation overhead. However, as the Random Spilling

Policy is blind to the number of I/Os it incurs and the productivity of the partition groups

it spills, it is expected to perform worse than the rest of thepolicies.

The Local Spilling Policywe have designed makes decisions regarding what partition

groups to spill based on the localized statistics collectedby each operator. To maximize

throughput, the policy spills first the least productive partitions. Thus as new tuples arrive

they have higher probability of being joined with tuples residing in main memory. This

increases the probability of achieving higher throughput.As it has been already explained,

though, a problem with this policy is that the collected statistics does not accurately reflect

the productivity of the partition groups on a query plan level. The policy also ignores any

interdependencies existing between operators and the states of operators in a query plan.

The Global Unsynchronized Spilling Policyin our system takes into consideration

globally collected statistics regarding the productivityof the operator’s partition groups

and the size of intermediate results produced by the partition groups. The Global Un-

synchronized Spilling Policy selects the least productivepartitions and spills to disk the

whole state of these partitions. We use the same formula usedby the Global policy with

penalty in [9] to calculate the productivity of an operator.As shown in Figure 3.3, this

policy, however, does not exploit the existing inter-connections among operators and the

states of operators in a query plan tree. Thus, tuples in the states of downstream located

operators which belong to partition groups and windows spilled upstream cannot be inval-

idated until all tuples have been unspilled and processed upstream. Thus, main memory
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is not managed in the most efficient way.

Figure 3.3: Global Unsynchronized Spilling Policy.

The Global Synchronized Spilling Policyis designed to provide for more efficient

memory management than the Global Unsynchronized SpillingPolicy and the Local

Spilling Policy as it is more aware of the intricate connections which exist within a query

plan tree. This optimally synchronized global policy uses the same globally collected

statistical data as the Global Unsynchronized Spilling Policy. However, as shown in Fig-

ure 3.4, the spilling of partitions at operators is done in a synchronized way across the

whole query plan. Whenever partition groups for certain windows are spilled to disk at

an operator, operators at the next level will spill to disk the partition groups affected by

the upstream spilling process.

The spill punctuation pointers carry information about what partition groups and time-

ranges of tuples have been spilled upstream. Statistics, locally collected by each operator,

keeps track of the correlation existing between its partition groups and the partition groups

of its children operators. The locally collected statistics and the data provided by the spill

punctuation pointers provide the necessary information anoperator needs to decide on

44



the partition groups that will be most likely affected by theusptream spill process. Thus

such partition groups are also spilled to disk. In this way, operators do not have to keep

in main memory tuples that first cannot be invalidated because of dependency on spills

which have occurred upstream and second have smaller chanceof being joined in the near

terms, ie, with newly arriving tuples.

To achieve such a level of adaptation synchronization, we use the punctuation pointers

described in Section 2.3 to inform parent operators about the partition groups that have

been spilled to disk upstream. The beginning of the spillingprocess will be controlled

by a Local Adaptation Manager, located at each query processor. The Local Adaptation

Manager will decide which partition groups should be spilled first and by which opera-

tor. After this, the spilling processes at parent operatorswill be triggered by the spilling

pointers sent by children operators. Thus a whole chain of spill processes will be spawned

which will stop at the root operator. The initially selectedpartition groups will be the least

productive ones across the whole query plan. The initial selection is based on the partition

group productivity statistics collected by each operator,as described in Section 3.2.

The Semantic Spilling Policyassigns a different weight per partition group based

on information provided by the query plan administrator. The pre-assigned weights indi-

cate the relative importance of the results produced by these partition groups for the final

application. Partition groups with less important values will be assigned lower weights.

During periods of high data rates and high system load the Local Adaptation Manager

will select for spilling to disk first the least productive partition groups which have been

assigned lower weights. Thus the more important partition groups remain in main mem-

ory and keep producing results. This increases the utility of the streaming system for the

final application. A modified formula is used to measure throughput for these policies.
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Figure 3.4: Global Synchronized Spilling Policy.

3.4 Unspilling Policies

The unspilling policies discussed in this work use the same concepts as defined in Section

3.3. However, as each policy aims to keep on disk the least productive partitions, during

periods of low system load and low data arrival rates the unspilling policies choose to

unspill first the most productive partitions. Thus the leastproductive partitions are always

kept on disk if the system cannot process all tuples it has received so far.

The Random Unspilling Policyis similar to the Random Spilling Policy. It randomly

selects partition groups for unspilling, thus ignoring thesize and the productivity of the

partition groups and ignoring any time- and content-based operator interdependencies.

All partitions currently spilled to disk have an equal chance of being selected for un-

spilling. Thus the currently most productive partitions orthe biggest partitions spilled to

disk, which if unspilled first will incur the least number of disk reads, are not necessarily

the ones brought to main memory first.
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The Local Unspilling Policy uses the same localized statistical data as the Local

Spilling Policy. However, instead of selecting the least productive partitions first, the

policy selects the most productive partitions, as the goal is to bring to main memory the

partition groups which are expected to produce most output tuples. Thus we still aim to

achieve maximal query plan throughput at all times.

The Global Unsynchronized Unspilling Policyuses no content- or time-based syn-

chronization information during the decision process of selecting which partition groups

to unspill from disk first as this policy is similar to the Global Unsynchronized Spilling

Policy. This unspilling policy uses the same globally collected statistics to decide on the

most productive partitions currently spilled on disk whichcan be unspilled first.

The Global Synchronized Unspilling Policyuses global statistics and considers the

content-based interdependencies which exist among operators and the states of operators

in a query plan when selecting partitions for unspilling. Similar to the Global Synchro-

nized Spilling Policy the unspilling of partitions at operators is done in a synchronized

way across the whole query plan. Whenever partition groups for certain windows are

brought to main memory by an operator, punctuation pointersare sent downstream. Upon

receiving such pointers, operators at the next level start unspilling from disk the partition

groups and windows affected by the upstream spilling process. Statistics, locally col-

lected by each operator, helps an operator to keep track of what partition groups need

to be unspilled when such punctuation pointers are received. Thus the processing and

invalidation of windows can be optimized.

Unspilling does not have to start at leaf operators only. Anyoperator of the query plan

can be selected initially.

The Semantic Unspilling Policysimilar to the Semantic Spilling Policy, uses the

weights assigned to the partition groups to decide on which partitions to bring to main

memory first. Partition groups with higher weights and higher productivity have a priority
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during the unspilling processes. Thus the least productiveand least important partition

groups remain on disk providing an opportunity for processing more important and more

productive partition groups first. As already explained, this increases the utility of the

streaming system for the final application. The unspilling policy uses global statistics

when calculating the productivity of the different partition groups.
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Chapter 4

System Architecture

Our experiments have been conducted on a stream processing system written in Java,

which we call CAPE- Continuously Adapting Processing Engine [29]. As shown in Fig-

ure 4.1, a CAPE query engine consists of several modules: an Execution Engine, a Local

Statistics Gatherer, a Local Adaptation Controller, a Stream Receiver, a Stream Distrib-

utor and a Stream Sender. The core of the system is theExecution Engine which is in

charge of the query plan execution. It schedules operators,controls the statistics collec-

tion and calls the Local Adaptation Controller during queryprocessing so that adaptation

decisions can be taken to prevent system crash. The Execution Engine uses information

obtained from the other modules. TheStatistics Gatherer calculates and sorts statistics

about any part of a query plan, such as operators, queues, andentire plan. We use only

light-weight statistics to reduce any statistics overhead. TheLocal Adaptation Controller

is in charge of monitoring the load of the system and decidingwhether adaptation should

start. If the system is overloaded, the Local Adaptation Controller will tell operators to

spill data to disk to prevent memory overflow. Vice versa, if incoming data rates are

low and the system has ample memory, the Local Adaptation Controller will unspill data

previously pushed to disk. Thus the query engine produces complete query results, even

49



though the results may be delayed depending on the characteristics of the incoming data.

TheStream Receiver, the Stream Distributor and the Stream Sender are in charge of re-

ceiving data from the input streams, placing the newly arriving tuples in the correct queues

of the operators and outputting the final results to the end application.

Figure 4.1: System architecture.

To integrate our approach in the existing CAPE framework, wehave extendedthe Lo-

cal Adaptation Controller with two additional sub-components: spilling policies reposi-

tory and unspilling policies repository. The exact policy classes are configurable parame-

ters in CAPE’s initialization file. In theory, any spilling policy can be matched with any

unspilling policy, however, we do not recommend this as not all combinations of policies

will provide for efficient query plan processing. We have further extended CAPE’s query

plan xml schema to allow for the definition of windowed operators with different types of

window constraints specified on their output.
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Chapter 5

Experiments

5.1 Testbed Description

For our experiments we have used two Linux servers with 2 PIIIGHz CPUs and 1 G

main memory each. Figure 5.1 shows the structure of our testbed. One of the servers was

dedicated to query processing. It had installed on it our CAPE query engine. The second

server was running both the Stream Generator and the final application.

5.2 Setup and Methodology

Metrics. To compare the performance and effectiveness of the adaptation polices outlined

in this thesis, we ran one hour long experiments. The main goal of the adaptation policies

is to achieve maximum throughput. We define throughput as theaccumulated number

of tuples output over time by the query plan. Thus a better policy is a policy achieving

higher throughput. Statistical data on throughput as well as other query processing and

system load parameters is collected once a minute.

Data sets.Two different types of data sets were used in our experiments. For clarity,
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Figure 5.1: Experiment setup.

Figure 5.2: Query plans used in the experiments.
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Variable name Notation Definition
throughput Θ Accumulated number of tuples output over time by the query plan.
join ratio τ The number of tuples a tuple will be joined with per partitioned window group.

Table 5.1: Definitions table.

we call them D1 and D2.D1 had approximately the following characteristics per window:

one third of the data and thus data partitions had a join ratioof 1, the second third of the

data had a join ratio of 2, and the last third of the data had a join ratio of 3. D2 had

approximately the following characteristics: one third ofthe data and thus data partitions

had a join ratio of 1, the second third of the data had a join ratio of 2, and the last third of

the data had a join ratio of 4. The definition of join ratio and the notation used to refer to

it in the rest of the paper is defined in Table 5.1. The data setswere streamed to the query

engine in the form of different data streams at data rates varying from slow to fast tuple

arrival using our own stream generator. Tuples were streamed using poisson distribution.

The range of data values in each stream varied from 1 to approximately 150,000.

All adaptation policies were tested on three different query plans. The structure of the

query plans used in our experiments is shown in Figure 5.2. Ascan be seen, every query

plan is composed of partitioned window join operators only.The data at each operator is

partitioned in at least 30 partitions and at most 40 partitions.

Every operator has a window constraint defined on its output.For simplicity, the

windows defined on the different operators of the same query plan had uniform charac-

teristics. Unless otherwise stated, they were: a window size of 60,000 ms and a window

sliding step of 80,000 ms. We set the memory threshold at the query processor to 200

MB. Thus, whenever the memory consumption by the query processor reaches this limit,

the Local Adaptation Controller will initiate data spilling to prevent memory overflow

and potential system crash. If memory consumption at the query processor falls to 170

MB or lower, the Local Adaptation Controller will bring previously spilled to disk data

back to main memory. Thus available system resources are efficiently utilized. During
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data unspilling, only up to 96% of main memory will be filled with tuples. The goal is

to prevent the system from being accidentally overloaded byallowing some room for an

unexpected spurge of new data. The same principle is appliedto network servers whose

load is always kept below a certain threshold limit, lower than 100% server utilization.

How much data will be unspilled during an adaptation processwill depend on the

load of the system at the time the adaptation has been initiated. Unlike unspilling, during

a spilling process we spill approximately 30% of all operators’ states. If the system’s

load is in between the spilling and unspilling thresholds for one or more readaptation

periods so that neither spilling nor unspilling of data occurs and there are tuples residing

on disk, the Local Adaptation Controller will try to unspillas many tuples as possible.

This may happen during periods of idle system times when there is available memory.

The reasoning is to fully utilize all available free resources.

5.3 Empirical Parameter Tuning

Prior to running experiments assessing the relative performance of the different policies,

we ran experiments to determine appropriate values for certain tuning parameters such as

the correlation percentage for the Global Synchronized Policy or the readaptation period

length for the Local Adaptation Controller. Since these parameters were not the main

focus of this thesis, the goal was to find reasonable settingsfor them and keep them fixed.

Below is a discussion of these experiments.

Local Adaptation Controller Readaptation Time. Since data spilling and data un-

spilling have opposite effects on the memory usage of the query processor, if after each

adaptation process the system is not given enough time to adjust there is a risk that the

system may start oscillating between spilling and unspilling with each data spilling trig-

gering an unspilling process and vice versa. This would havea negative impact on the
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processing of data and ultimately on the final query plan throughput. New data will be

processed very slowly, if processed at all. On the other hand, if this system’s adjustment

time, which we call readaptation time, is too long, a sudden spike in the data arrival may

crash the system. Thus, it is important to find a reasonable time range such that the Lo-

cal Adaptation Controller can correctly evaluate the effectiveness of its decision and take

corrective steps in time if this is necessary without jeopardizing the system’s performance

by waiting too long for its previous decision to take effect.

Figure 5.3 shows the results of our experiments using different readaptation periods.

The experiments were conducted using the Linear query plan shown in Figure 5.2 and

data set D1 described in Section 5.2. Every experiment was run for one hour. We started

the experiments with a data rate of 1 tuple every 30 ms, and then we slowed down the data

to 1 tuple every 6000 ms. The tuples’ arrival rates were changed every 15 min alternating

between the fast and slow speed described above. Thus the system had to operate under

fluctuating load conditions allowing us to test both types ofadaptation decisions: data

spilling and data unspilling.

As it can be seen from Figures 5.3 and 5.4 adapting less often characterized by a

longer readaptation period does not necessarily guaranteehigher throughput, that is we

did not notice a significant trend in the impact of the readaptation time on query plan

performance. Within a certain time range, the performance of the query plan seems to be

kept at the same level. At the same time a readaptation time of180,000 ms or more would

result in too few adaptation decisions which may not be the best behavior under certain

load conditions. A readaptation time of 30,000 ms or less causes too much system oscil-

lation as shown in Figures 5.6 and 5.5. Lets look at Figure 5.6. We can infer how many

times the system spilled data to disk by the total number of spilled tuples or unspilled

tuples and the slope of the line. During periods of time when no data spilling occurs, the

slope of the line is 0, the line is flat parallel to the horizontal axis. Each segment of the
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line with slope bigger than 0 indicates a data spilling process has occurred. The same

logic applies to the analysis of Figure 5.5. Thus, unless otherwise stated, we used in our

experiments a readaptation time of 120,000 ms.

Global Synchronized Policy Correlation Percentage Experiments. As described

in Section 3.3 the Global Synchronized Policy aims to provide more efficient memory

management by trying to keep partition groups in main memorysuch that 1) new data is

most likely to arrive for these groups and 2) new data has a higher chance of being joined

with data already received prior by the operator. To achievethis, the policy uses punctu-

ation pointers to inform operators located downstream the query plan of the timestamps

and partition ids of partition groups that have been spilledor unspilled upstream. Details

of this process can be found in Sections 2.3, 3.4 and 3.3. Thus, downstream operators

can spill or unspill the tuples which would be most likely affected by upstream adaptation

actions. Since a tuple can belong to one partition group at one operator and to another

one at the next operator, operators need to keep track of the correlation bond which ex-

ists between their partition groups and the partition groups of their children. We call this

statisticscorrelation percentage. The higher the correlation percentage between two par-

tition groups is, the more tuples partition group one sends downstream to partition group

two. Therefore, if we spill partition group one upstream, then partition group two at the

next operator will most likely keep receiving less tuples for some period of time after the

data spill at operator one. Tuples from partition group one have to start arriving again at

operator one and producing join results before more tuples from this partition group can

reach operator two.

The Global Synchronized Policies utilize correlation percentage statistics to assert that

in their adaptation decisions only partition groups with atleast a certain level of correla-

tion percentage are used. For example, if the correlation percentage for the Synchronized

Policies is set at 0.1 (10%), then only partition groups withcorrelation percentage of 0.1
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Figure 5.3: Impact of readaptation intervals on query plan throughput-QL plan, different
readaptation intervals.

Figure 5.4: Impact of readaptation intervals on query plan throughput. Bar graph.
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Figure 5.5: Impact of readaptation intervals on unspilling. Accumulated number of un-
spilled tuples,QL plan, different readaptation intervals.

Figure 5.6: Impact of readaptation intervals on spilling. Accumulated number of spilled
tuples,QL plan, different readaptation intervals.
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or higher will be considered for spilling or unspilling by the operators which have re-

ceived punctuation pointers. Thus smaller values of the correlation percentage entails the

spilling and unspilling of more data during query plan execution, and vice versa. A cor-

relation percentage of 1 (100%) means that there is a perfectcorrelation bond between

two partition groups of operators located at two consecutive levels of the query plan. This

means that a tuple assigned to partition 1 at operator 1, willalways be assigned to partition

1, for example, at the next operator.

In the experiments described below we tried to determine theeffect of different corre-

lation percentages on the query plan throughput, invalidation rate, spillling and unspilling.

In these experiments we used the Semi Bushy query plan shown in Figure 5.2 and data set

D1 as described in Section 5.2. The window characteristics were as described in Section

5.2, namely the window size was set to 60000 ms and the window sliding step was set to

80000 ms.

To reduce the overhead of collecting correlation percentage statistics, statistics were

collected by each operator with 10% probability. This meansthat an operator would

update its correlation statistics data structure only for one out of ten tuples. The statistical

data for the Semi Bushy Query Plan experiments are provided in Table 5.2. The table

displays summarized information across all partition groups. We calculate correlation

percentage between two partition groups by counting first how many tuples with partition

ID n at a child operator map to partition groupk at a parent operator and second the

total number of tuples with partition ID = n received at the parent operator. Then we

divide the first counter over the second counter. The ”Operator Id” column of Table

5.2 stores id of the operator which has collected correlation percentage statistics. The

”Correlation Percentage” column contains a particular correlation percentage value. The

”Frequency as Percentage” column shows what percentage of the partition groups at that

operator have a correlation percentage with the value specified at the same row in the
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”Correlation Percentage” column. As the table shows, operators connected to streams

only have a correlation percentage of 1 across all partitions because 1) tuples received by

a leaf operator will be always joined on the same column and 2)we do not repartition

data dynamically.

Table 5.2 shows that approximately 30% of the partition groups have a correlation

percentage of 0.02 or less, more than 70% of the partition groups have a correlation

percentage of 0.05 or less. As the table shows very few partition groups, only about 10%

of all sampled partitions have a correlation percentage of 0.1 or more. In the experiments

we varied the correlation percentage values from 0.02 to 0.25. All values are provided in

Table 5.2.

Figures 5.7, 5.8, 5.9 and 5.10 show the results of these experiments. As expected,

higher values of correlation percentage cause less spilling and unspilling than lower val-

ues. Thus due to the overhead of the increased number of disk accesses, the experiments

during which the correlation percentage was set to 0.02 and 0.05 show lower through-

put. At the same time there is not a clear trend that increasing the correlation percentage

values for the Synchronized Policies guarantees higher throughput. As can be seen in

Figure 5.7, highest throughput was achieved when the correlation percentage was set to

0.07. Throughput was 1,044,382 tuples for one hour as opposed to 994,263 tuples when

the correlation percentage was set to 0.25. As Figure 5.10 shows, higher levels of cor-

relation percentage account for more tuples being invalidated as tuples are moved faster

through the query plan. Since experimental results show that the correlation percentage

statistics collected by our operators has on average the values shown in Table 5.2, unless

otherwise stated in our experiments we have used an average value of 10% for the Global

Synchronized Experiments.

Linear Query Plan Dequeue Ratio.We define as dequeue ratio the number of tuples

an operator dequeues from a queue connected to another operator, before dequeuing a
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Figure 5.7: Impact of correlation percentage on throughput. Global Synch Policy,QM

plan.

Figure 5.8: Impact of correlation percentage on spilling. Accumulated number of spilled
tuples, Global Synch Policy,QM plan.
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Figure 5.9: Impact of correlation percentage on unspilling. Accumulated number of un-
spilled tuples, Global Synch Policy,QM plan.

Figure 5.10: Impact of correlation percentage on invalidation. Invalidation rate, Global
Synch Policy,QM plan.
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Operator Id Correlation Percentage Frequency as Percentage
Operator 1 0.02 0.33

0.05 0.83
0.07 0.89
0.10 0.91
0.25 0.95
0.40 0.97
1 1
Mode 0.03

Operator 2 0.02 0.38
0.05 0.74
0.07 0.86
0.10 0.92
0.25 1
0.40 1
1 1
Mode 0.01

Operators 3,4 and 5 are connected directly to streams. Thus all partition groups have a correlation percentage of 1.

Table 5.2:QM plan, correlation percentage statistics.

tuple from a queue connected directly to a stream. For example, if operator 1 has two

input queues. Input queue one is connected to Operator 2 and input queue 2 is connected

to Stream A. A dequeue ratio of five means that Operator 1 will dequeue 5 tuples from

queue 1 before dequeuing a tuple from queue 2. By assigning a higher weight to operator

propagated tuples we try to move punctuation pointers faster through the query plan. This

is achievable since punctuation pointers are actually tuples interleaved in the stream of

output results of an operator. A skewed dequeue ratio will have an impact only on query

plans which are composed mostly of operators with mixed types of input queues, that is

at least one input queue of such operators comes from anotheroperator and at least one

input queue comes directly from a stream.

In the next set of experiments we investigated the effect of faster punctuation pointers

propagation on the query plan throughput of the different policies. The experiments were

conducted using the Linear Query Plan and data set D1. Data rates were changed every 15

min from fast to slow and vice versa. By fast data rate we definea tuple sent every 30 ms,

a slow data rate is a tuple sent every 6000 ms. The results of the experiments are shown

in Figure 5.11. We did not see a significant trend in the impactof different dequeue ratios

on the throughput of different policies. This may be the caseas after one hour we stop
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the experiment leaving any data on disk and in the queues unprocessed, thus to a certain

extent the subsets of the input data stream set processed by the query plan varies.

5.4 Comparative Evaluation of the Different Adaptation

Policies

In these sets of experiments we studied how the different adaptation policies affect query

plan throughput and memory management. Every set of experiments was done by keeping

most parameters such as readaptation time, query plan type,data rates and data sets fixed.

Across experiments from the same set we changed only the adaptation polices. Across

different experiment sets we changed the query plans and thedata sets used, as well as

the data rates. Unless otherwise stated, we kept the readaptation intyerval fixed at 120000

ms.

We studied four different adaptation policies since each spilling policy was paired up

with its counterpart unspilling policy to form one adaptation policy. The four polices are:

Random Adaptation Policy, Local Adaptation Policy, GlobalUnsynchronized Adaptation

Policy and Global Synchronized Adaptation Policy. For eachset of experiments we ran an

experiment without imposing any memory constraints on the query processor. The goal

was to see the optimal query plan throughput for the given setof parameters: query plan,

data set and data rates. Experimental results shown in Figures 5.12 and 5.7 indicate that

Global Adaptation Policies consistently achieve higher query plan throughput than the

others. On average the Global Synch Policy performed 3% to 4%better than the Global

Unsynch Policy, around 8% better than the Local Policy in some case more than 20%

better than the Random Policy. The Random Policy scored worst not only on query plan

throughput but also on data invalidation.

Figure 5.12 shows a summary of the results for some of the experiments we have
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conducted. Other experiments show similar results. As the figure shows, Global Policies

perform consistently better than the Local and the Random Policies. The figure also shows

that Global Synch Policy consistently performs better thanthe Global Unsynch Policy.

Figures 5.13, 5.14, 5.15 and 5.16 show the throughput, invalidation rate, the spill

and the unspill rate of a set of experiments using the Bushy Query Plan. In this set of

experiments the readaptation interval was set to 120000 ms and the correlation percentage

for the Global Synch Policy was set at 10%. Data rates were changing every 15 minutes

from fast to slow. The fast data rate was set to 1 tuple every 45ms and the slow data rate

was set to 1 tuple every 6000 ms. The data had an approximate join ratio per window of

1 for one third of the partitions, 2 for the second third of thepartitions and 3 for the last

third of the partition groups. The window characteristics of window per operator were:

window size of 60000 ms and window sliding step of 80000. As Figure 5.13 shows the

Global Synch Policy performed 2% better than the Global Unsynch Policy. The overhead

of the Global Synch Policy in comparison to other policies does not seem to be much.

Even though as Figure 5.15 indicates that all policies spilled equivalent amounts of data,

the Global Synch Policy output was approximately 10000 tuples more than that of the

Global Unsynch Policy and 30000 tuples more than that of the Local Policy, which is

equivalent to a 5% improvement. The Random Policy produced 14% less tuples than

the Global Synch Policy. The Random Policy also performed worst in terms of tuple

invalidation as shown in Figure 5.14 .

Figures 5.17, 5.18, 5.19 and 5.20 show the throughput, invalidation rate, the spill and

the unspill rate of another set of experiments using. In thisset of experiments we used

the Linear Query Plan. The readaptation time was set to 120000 ms and the correlation

percentage for the Global Synch Policy was set at 10%. Data rates were changing every

15 minutes from fast to slow. The fast data rate was set to 1 tuple every 45 ms and the

slow data rate was set to 1 tuple every 6000 ms. The data had an approximate join ratio
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Figure 5.11: Impact of dequeue ratios on throughput. Different dequeue ratios,QL.

Figure 5.12: Comparative evaluation of throughput across all adaptation policies.
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Figure 5.13: Throughput,QB plan, data rate 45/6000. All adaptation policies.

Figure 5.14: Invalidation rate,QB plan, data rate 45/6000. All adaptation policies.
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Figure 5.15: Spill rate,QB plan, data rate 45/6000. All adaptation policies.

Figure 5.16: Unspill rate,QB plan, data rate 45/6000. All adaptation policies.
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per window of 1 for one third of the partitions, 2 for the second third of the partitions

and 4 for the last third of the partition groups. The window characteristics of window per

operator were changed: window size was set to 40000 ms and thewindow sliding step was

set to 90000. As Figure 5.17 shows the Global Synch Policy performed 4% better than

the Global Unsynch Policy by outputting 50000 tuples more. Even though as Figure 5.19

all policies spilled equivalent amounts of data, the GlobalSynch Policy performed 8%

better than the Local Policy and 18% better than the Random Policy which was equivalent

to more than 200000 more throughput. As Figure 5.20, even though the Local Spill

Policy unspilled more data during the query plan execution it still produced less output

tuples. Figure 5.18 shows that the Random Policy still had the worst invalidation rate in

comparison to the other policies. The Global Synch Policy managed to invalidate most

tuples.

Results from additional experiments are included in Appendix A of the thesis.
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Figure 5.17: Throughput,QL plan, data set D2. All adaptation policies.

Figure 5.18: Invalidation rate,QL plan, data set D2. All adaptation policies.
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Figure 5.19: Spill rate,QL plan, data set D2. All adaptation policies.

Figure 5.20: Unspill rate,QL plan, data set D2. All adaptation policies
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Chapter 6

Related Work

This thesis is based on research on the processing of continuous queries and data partition-

ing in the context of streaming environment. The systems designed to process continuous

queries are called data stream management systems. As is known, data stream manage-

ment systems operate under requirements and constraints different than those imposed on

traditional database systems. Unlike traditional database systems, data stream manage-

ment systems do not deal with finite amount of data, do not answer queries on data that

has been already stored on disk and possibly analyzed, and donot return as query results

exact, finite sets of tuples. The workload a data stream management system has to handle

depends not only on the type and number of queries in has to process but also on the

arrival rates of the incoming data which can be quite unpredictable. Since DSMS and tra-

ditional database systems have to operate under different conditions, adaptation methods

developed for traditional database systems may no longer beapplicable to the streaming

environment. Currently, optimization methods for DSMS include at the operator level

exploiting an operator’s selectivity [3, 29], using operator’s punctuations for state purging

[5, 29]; at the scheduler level various operators’ scheduling techniques [29, 22, 4], and

query approximation methods such as load shedding [35]; at the query plan level the dis-
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tribution of the query plans across multiple machines [29],dynamic query plan migration

[36] and operators reallocation [9, 27].

Efficiently handling critical resources such as main memoryis a major concern in

the design of DSMSs. One way of reducing system load is distributing query processing

over multiple machines. Since the DSMS research field has been developing rapidly for

the past few years many centralized and distributed query processing prototype engines

such as Stream [30], Telegraph [22], Aurora [2, 14], CAPE [36], D-CAPE [28, 21], Au-

rora* and Medusa [35], Borealis [1, 12, 34] and others using different query optimization

techniques have been developed.

STanford stREam datA Manager (STREAM) [30] is a general-purpose system for

processing continuous queries over multiple continuous data streams and stored relations,

which has been designed to handle high-volume and bursty data streams. Telegraph [22]

is a continuously adaptive, continuous query system based on the eddy query process-

ing framework which uses crossquery sharing of system resources such as computation

and storage. Telegraph uses very fine-grained tuple-level adaptation techniques which al-

lows tuples to be dynamically rerouted through operators based on recent operators’ cost

and selectivity statistics. CAPE [36] is a general-purposeDSMS with a heterogeneous-

grained adaptivity that exploits dynamic metadata at all levels in continuous query pro-

cessing, including the query operator execution, memory allocation, operator scheduling,

query plan structuring. Our operator and adaptation policies have been incorporated and

tested using the CAPE framework. D-CAPE [28] is the distributed version of CAPE. It

has a central distributed architecture with a dedicated distribution manager managing a set

of query processors installed on a local cluster of machinesconnected with a high speed

network. Unlike D-CAPE, Aurora*/Medusa [35, 2] focus on research issues related to

the processing of continuous queries over a large network. Aurora* is designed as a dis-

tributed system without a centralized controller to monitor its performance. In Aurora*
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every processor communicates with its neighbors. During periods of high load a proces-

sor tries to offload some of its processing tasks to a less loaded neighbor [13, 35]. Medusa

describes an agoric model [7] for the cooperation of different distributed DSMS operating

under different administrative domains [35]. Borealis [12] is the successor of the Aurora*

and Medusa projects aimed at incorporating features such asfailure-detection and fail-

ure recovery [26], dynamic revision of query results [12], dynamic query modification

and others [12] and QoS-based optimization [12]. Like Medusa, the Borealis system can

operate in federated mode stretching over different administrative domains.

Queries supported by our framework can be written in CQL [25]. CQL is an SQL-

based continuous query language for the expression of general-purpose continuous queries

over streams and updatable relations. It incorporates window semantics. CQL authors

aim at exploiting well researched relational semantics principles. [25] discusses the se-

mantics of CQL, presents a comparison analysis of CQL to other continuous like query

languages and presents the implementation of CQL in STREAM.[25] also presents the

idea ofheartbeats. Heartbeats are an additional meta-input to the system. They represent

timestamps with the semantics that after the arrival of a heartbeatτ the system will re-

ceive no more tuples with timestamp ofτ or lower [25]. Heartbeats can be generated in

different ways. They are needed as CQL semantics ”assumes a discrete, ordered time do-

main T” [25] and network transmission over remote sources has unpredictable character

which does not guarantee in-order data transmission. Heartbeats are discussed in more

details in [33]. In our work we assume that tuples arrive in order from the data sources

either using source synchronization or heartbeats- the mechanism which ensures in-order

tuple arrival is irrelevant to us as it is outside the scope ofthis thesis. The Partitioned Win-

dow Operator we have designed can handle out of order tuple arrival using punctuation

messages.

CQL is based on ”two data types: streams and relations, and onthree classes of opera-
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tors over these types: operators that produce a relation from a stream (stream-to-relation),

operators that produce a relation from other relations (relation-to-relation), and operators

that produce a stream from a relation (stream-to-relation)”. [25] defines a stream S ”as a

(possibly infinite) bag (multiset) of elements< s, τ >, where s is a tuple belonging to the

schema of S andτǫT is the timestamp of the element”, and a relation (R) as: ”a mapping

from T to a finite but unbounded bag of tuples belonging to the schema of R”.

Unlike CQL which assumes slide-by-tuple semantics and usesa predefined timestamp

or tuple order number, [18] introduces new user defined attributes: SLIDE and WATTR,

which can be used to express windows with different sliding steps based on different tuple

attributes.

[18] propose a framework for defining window semantics whichcan be used to express

many window types and a framework which uses their window semantics to evaluate

different types of window aggregate queries. The advantages of their approach is that

each tuple is processed only once as it arrives and at most only one copy of each tuple

is stored if the tuple needs to be buffered. This is similar toour implementation. We

also process each tuple on the fly and we store only one copy of it, no matter how many

windows a tuple belongs to. Unlike [18] who focus on stateless aggregate operators such

as min and max, in this work we focus on the implementation of astateful window join

operator. In our work we use a tuple’s timestamp as the windowattribute, however, this

can be easily changed and other models can be plugged in. As discussed by [18] disorder

in tuples’ arrival can be handled by using punctuations.

[17] further discusses the implementation of window aggregate operators using the

window semantics described in [18].

The design of our Partitioned Window Join Operator is based on prior research on the

implementation of join operators optimized for the streaming environment such as Flux

[27] and Eddy [3]. We have also looked at the implementation of join operators which
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use data spilling and other techniques to handle bursty dataflows such as XJoin [32].

Flux [27], Fault-tolerant Load-balancing eXchange, is a dataflow operator that en-

capsulates adaptive state partitioning and dataflow routing. Flux is inserted between a

partitioned producer-consumer pair in a parallel dataflow pipeline. [27] provides adaptive

repartitioning while the pipeline is still executing. Fluxuses a buffering and reordering

mechanism to handle short-term load imbalances as well as a mechanism for detecting

across cluster imbalances and online repartitioning of state accumulated in lookup-based

operators. Unlike [27], our Partitioned Windowed Join Operator partitions the data at

the beginning of the query plan execution and this partitioning is kept static throughout

the query plan processing. Similar to Flux, however, we use multiple mini-partitions to

reduce the overhead of our state-spilling adaptation technique.

Eddy [3] is a query processing mechanism which allows for a tuple level query plan

adaptation. As eddy encapsulates the scheduling of its participating operators, tuples en-

tering the eddy can flow through operators in a variety of orders allowing for a continuous

run-time operator reordering. Each operator participating in the eddy has one or two in-

puts that are fed tuples by the eddy, and an output stream thatreturns tuples to the eddy.

Each tuple entering an eddy carries its own execution history implemented as bitmaps of

ready and done bits which encode what operators a tuple has been already processed by

and what operators the tuple has to be sent to. An eddy routes each tuple to the next op-

erator based on the tuples execution history and statisticsmaintained by eddy [31]. [31]

focuses on the design, implementation, and performance of adistributed eddies in which

operators themselves decide on where next a tuple should go based on the execution his-

tory of the tuple and statistics maintained at the operator.[31] discusses different routing

policies. Despite allowing for the implementation of very flexible tuple-level adaptation

polices, Eddies seem to incur too much memory and computation overhead per tuple.

Our adaptation approach is completely different than Eddy as it is at the state level of
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operators. We do not do dynamic rerouting of tuples.

XJoin [32] is a non-blocking join operator optimized to produce initial results quickly

and to hide intermittent delays in data arrival by reactively scheduling background pro-

cessing. XJoin is based on symmetric hash join. It is designed to handle data access to

traditional database systems over wide-area networks. XJoin proceeds in three stages.

Stage 1 proceeds as long as both inputs to the operator keep sending data. Stage 2 is

activated when when the first stage is timed out on both of its inputs. Based on different

cost estimates, then data stored on disk is brought to main memory and processed using

memory resident data from the other queue. Stage 3 is the finalclean-up stage which is

activated when all data has been received from both sources.XJoin is designed to work

over traditional database tables accessed across distributed networks.

Similar to XJoin [32] and progressive merge join, the hash-merge join algorithm pre-

sented in [23] focuses on processing join results over finitedatasets accessed across re-

mote networks. The algorithm, which is based on a two-way join operator, aims at out-

putting join results as early as possible. [23] consists of two phases a hashing and a

merging phase. During the hashing phase incoming tuples arestored in in-memory hash

buckets and join results are produced from these in-memory tuples. When the memory

becomes full, hash buckets are sorted and flushed to disk. Disk residing tuples are joined

during the second merging phase of the algorithm. Unlike [32] which pushes to disk

the largest partition of one of the data sources only, [23] uses an Adaptive Flushing Pol-

icy which simultaneously pushes to disk hash buckets from both sources. The Adaptive

Flushing Policy aims at keeping the memory balanced betweenthe two remote sources,

that is the ratio of tuples from the two data sources residingin memory has to be within

some predefined limits. [23] discusses the advantages and disadvantages of several differ-

ent flushing policies such as flush-all policy, flush largest partition first,and flush smallest

partition first policy. While the main drawback of the flush smallest partition first policy
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is the greater number of I/Os incurred during the merging phase since a bigger number

of small data blocks have to be read from disk, the flush largest partition first policy in-

creases the amount of time it takes to output join results during the hashing phase after a

flush–to-disk operation has taken place since there are lesstuples in main memory which

reduces the probability of a join result when a new tuple arrives. The same line of reason-

ing can be applied in the analysis of the impact of spilling todisk policies applied to the

context of continuous query processing.

Accuracy of the received query results is not always as vitalto some final applications

as is the requirement of receiving constant results. When serving such applications, dur-

ing periods when incoming data exceeds the capacity of the DSMS to process it, a DSMS

may decide to discard a certain portion of its load to preventsystem crash. As defined in

[24], the process of dropping excess load is called data shedding. [24] implements data-

shedding as drop operators dynamically inserted or removedinto different levels of the

query plan. The paper discusses two types of drop operators:random drops which simply

drop a dynamically calculated portion of the tuples, and a semantic drop which discards

tuples with the lowest utility. Our semantic policy uses thesame idea of assigning differ-

ent levels of importance to tuples based on their values. However, instead of permanently

discarding the tuples with lowest utility we simply delay their processing by temporarily

spilling them to disk. [24] presents also the idea of QoS (quality of service) associated

with each application served by the DSMS. In [24] is modeled as a ”set of functions that

relate a parameter of the output to its utility”. In Aurora, in which this framework has

been implemented, QoS is expressed in three functions: ”a latency graph, a value-based

graph, and a loss-tolerance graph” [24].

Similar to [19] we use punctuations to optimize the processing of the partitioned win-

dow operator presented in this thesis. However, the punctuation messages which we use

have a broader meaning. [19] defines punctuation as ”an ordered set of patterns, each
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corresponding to an attribute of the tuple”. We overload thepunctuation message with

extra information about the stage of processing which has been just completed by the

sending operator. We use punctuation pointers not only to invalidate no longer needed

tuples from an operator’s state but also to spill or unspill partitioned windows across op-

erators in a synchronized way. Unlike [19] which focuses on the processing of continuous

sliding windows, we focus on the processing of hopping windows. [19] presents join opti-

mization techniques for the processing of data ”with two types of constraints imposed on

it: time-based constraints (sliding windows) and value-based constraints (punctuations)”.

The partitioned window join operator proposed in this thesis focuses on the processing of

data with time-based constraints only imposed on it.

Dynamic plan migration is another technique for optimizingthe processing of con-

tinuous queries. Unlike the techniques proposed in this thesis which work at an operator

level, dynamic plan migration is applied at query plan level. [36] defines dynamic plan

migration as ”the on-the-fly transition from one continuousquery plan to a semantically

equivalent yet more efficient plan”. [36] presents two alternative strategies, called the

moving state strategy and the parallel track strategy, and cost models to analytically com-

pare them. The parallel track strategy continuously keeps outputting results even while

plan migration takes place. The moving state strategy, on the other hand pauses plan

execution during the migration phase.

79



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Query plans with state-intensive operators may consume a lot of system resources when

faced with spikes in the arrival patterns of new data. Thus a data stream management

system needs efficient adaptation policies with minimal overhead so that all data can be

processed and none dropped even during periods of high system load. The requirement for

complete and accurate query results is presented by many applications such as financial

analysis systems, mobile hospital applications and etc. Efficient adaptation policies can

be designed by utilizing the different dependencies which exist among operators in a

query plan.

In this work we have identified two types of such dependencies, namely content- and

time-based dependencies. We have also done the following tasks:

1. A new partitioned window join operator with the ability tospill and unspill data to

disk on demand has been designed.

2. We further extend the semantics of punctuations embeddedin the data stream to

encode information of the processing stages completed by anoperator. Such infor-
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mation is used for the correct processing of out-of-order tuples and for the design

of efficient data invalidation policies.

3. A new adaptation policy to synchronize the work of operators in a query plan has

been designed. The policy uses metadata about the stages of query execution prop-

agated down the query plan tree by operators and partition level statistical data to

make better memory management adaptation decisions.

4. We have designed several different adaptation policies with different levels of query

plan synchronization.

5. All the policies have been implemented and integrated into a data stream manage-

ment system called CAPE.

6. Experiments on the relative performance of the differentadaptation policies have

been carried out using a real software system, not simulation.

Our experiments prove that despite the higher overhead of a more synchronized adap-

tation approach, our consolidate strategy provides for better query plan performance and

higher plan throughput during periods of continuous burstsof high data rates. Such an in-

tegrated policy proves to be more efficient at memory management based on invalidation

rates than a Random Adaptation Policy with very little computational overhead.

7.2 Future Work

Future work may include testing different cost models whichcan be easily plugged in

our framework. Experiments are necessary on the Semantic Adaptation Policy which has

not been tested yet. The experiments in this thesis cover only query plans with hopping

windows imposed on their output. It will be interesting to see what the performance of the
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adaptation policies described in this work will be on query plans with continuous windows

imposed on them. New ”processor overload” strategies as well as new adaptation policies

and other operators besides joins can be also developed and plugged into our framework.

An interesting future task to do will be the integration of our adaptation techniques on

a distributed stream management system. In a distributed environment work can be kept

evenly distributed among processors. During spikes in the arrival of data an overloaded

processor’s work can be offloaded to another less loaded query processor. In such an

environment, a query processor can either spill data or offload work to a different query

processor. How does a processor decide what adaptation technique to apply? Such and

other problems have been already discussed in [9]. It will beinteresting to combine both

[9]’s work and this thesis.
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Appendix A

Figure A.1: Throughput,QL plan, data set D1. All adaptation policies.
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Figure A.2: Invalidation rate,QL plan, data set D1. All adaptation policies.

Figure A.3: Accumulated number of spilled tuples,QL plan, data set D1. All adaptation
policies.
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Figure A.4: Accumulated number of unspilled tuples,QL plan, data set D1. All adapta-
tion policies.

Figure A.5: Throughput,QM plan. All adaptation policies.

89



Figure A.6: Invalidation rate,QM plan. All adaptation policies.

Figure A.7: Accumulated number of spilled tuples,QM plan, data set D1. All adaptation
policies.
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Figure A.8: Accumulated number of unspilled tuples,QM plan, data set D1. All adapta-
tion policies.

Figure A.9: Throughput,QL plan, data set D1, 30/6000 data rate, correlation percentage
5%, dequeue ratio 10. All adaptation policies.
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Figure A.10: Invalidation rate,QL plan, data set D1, 30/6000 data rate, correlation per-
centage 5%, dequeue ratio 10. All adaptation policies.
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