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Abstract

In recent years XML[29], the eXtensible Markup Language has become the

de-facto standard for publishing and exchanging information on the web

and in enterprise data integration systems. Materialized views are often

used in information integration systems to present a unified schema for

efficient querying of distributed and possibly heterogenous data sources.

On similar lines, ACE-XQ [4], an XQuery [32] based semantic caching sys-

tem shows the significant performance gains achieved by caching query

results (as materialized views) and using these materialized views along

with query containment techniques for answering future queries over dis-

tributed XML data sources. To keep data in these materialized views of

ACE-XQ up-to-date, the view must be maintained i.e. whenever the base

data changes, the corresponding cached data in the materialized view must

also be updated. This thesis builds on the query containment ideas of ACE-

XQ and proposes an efficient approach for self-maintenance of materialized

views. Our experimental results illustrate the significant performance im-

provement achieved by this strategy over view re-computation for a variety

of situations.
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Introduction

1.1 Motivation

XML has definitely moved from a hype to a mainstream technology in re-

cent years. It is commonly used for information modeling [10] and informa-

tion interchange [31]. It is also supported as a data-type in popular com-

mercial relational databases like Oracle, IBM DB2, Microsoft SQL Server.

With the aim of providing an XML interface to non-XML data sources,

the research community has investigated publishing relational and object

relational data sources [3, 13] as XML views. Commercial products like

BEA WebLogic’s Liquid Data, and the Xyleme Content Management So-

lution also essentially aggregate data from heterogenous sources like Web

services, databases, flat files, XML files, applications, and Web sites and

publish it in XML format. Due to its wide usage in information model-

ing and interchange, XML is an ideal technology for providing a unified

schema over heterogenous and distributed data sources (i.e. information

integration systems). Information integration is an interesting research as

well as a business problem and practical applications of effective informa-
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tion integration abound in various real world domains like finance, health

care etc. The ACE-XQ [4] research project at WPI is aimed at exploring

the effectiveness of using semantic caching techniques for efficient query-

ing of distributed XML data sources using XQuery. ACE-XQ caches user’s

queries and organizes the answers to these queries by their query descrip-

tions. These locally cached query results are materialized views over the

data sources. Based on these descriptions, the semantic caching system

determines if a new input query can be answered either partially 1 or com-

pletely using data cached in the materialized views. The overall perfor-

mance of ACE-XQ is significantly enhanced by keeping frequently required

2 query results (i.e. materialized views) in the local cache thereby improving

the chances of finding answers for future input queries in the local cache

instead of having to query the remote data sources.

In addition to the central issue of determining the semantic containment

of input and cached queries, an important problem in the ACE-XQ system

is that of view maintenance, i.e. the materialized views may need to be re-

freshed when the base data changes. In the absence of view maintenance,

the materialized views may contain stale data and input queries answered

using these cached views may yield incorrect results. These materialized

views can easily be maintained by invalidating and recomputing the views

for each change in the base data sources. Such a brute-force approach is

1In such a case, the input query us decomposed into two queries which query the remote
data and the local data and the results from two queries are coalesced together to form the
input query result.

2The ACE-XQ system maintains a dynamic utility metric for cached query results based
on their usage in answering user queries. This metric is used to isolate the more frequently
used query results from those less frequently used.
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often wasteful in many cases. A batch-oriented approach commonly used

in practice is to periodically refresh all materialized views, say, every six

hours, and/or also provide the ability for users to request a refresh of all

materialized views before submitting their queries. This batch-oriented ap-

proach can improve the overall performance of the caching system, but it

can and does result in input queries returning stale data in many instances.

An ideal approach would be one which efficiently detects relevant updates

and modifies only the affected parts of materialized views without much

delay 3. As an example, consider a base database containing flight informa-

tion from various airlines at an airport. A caching system which has access

to this database may contain a materialized view of all direct flights from

San Francisco to Hawaii. In this scenario, suppose an airline changes the

flight number of its flight from San Francisco to Hawaii. This change can be

achieved by a single update query on the base database, and the material-

ized view can also be maintained via a single update query. Updating just

the affected data in a materialized view via a single update query is much

more efficient than re-computing it. Such intelligent algorithms greatly im-

prove the overall performance of caching systems like ACE-XQ. Our the-

sis proposes an algorithmic 4 solution based on query containment tech-

niques for intelligently maintaining materialized XQuery views in ACE-

XQ. We focus on a subset of XQuery for which deciding containment be-

tween queries is possible. The exact details of are provided later in this

3In this thesis, we do not assume that updates to the base data and the materialized view
happen in the context of a transaction.

4Algebraic approaches [9, 11] to incremental xml view maintenance also exist. The
strength of a view maintenance approach (in terms of cases it can handle) depends on the
amount of information available for view maintenance [16], regardless of the approach.
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thesis.

This thesis report is organized as follows: The remainder of this chap-

ter gives an overview of the problem, and our approach to solve it. Chap-

ter 2 introduces the background concepts necessary to understand our ap-

proach, the details of which are presented in Chapter 3. In Chapter 4 we

discuss our system implementation and experimentation details. Chapter 5

explains the related research from the literature and then we conclude this

thesis in Chapter 6 with a recap of the essential ideas from this thesis and

suggestions for future work in this area.

1.2 Terminology

We first explain the meaning of some terms used throughout this thesis.

XML Database Any repository of XML documents which can be queried

via an XML query language like XQuery [32]. XML documents in such a

database are also called base document(s) or base data.

XML Query Language A language used to query XML documents or

databases. XQuery [32] is now an accepted industry standard as an XML

Query Language.

XML Update Language A language used to update XML documents or

databases. Currently, there is no accepted standard for an XML Update

Language. We present a discussion of some existing XML update lan-

guages in section 2.1.
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XML View A view is a derived XML document defined in terms of base

XML document(s). A view is defined via an XML query language like

XQuery. The view definition query is simply called a view query.

Materialized XML View A materialized view (MV) is similar to a view

but the view query is actually computed and its results are persisted, usu-

ally on disk. Evaluating an XQuery on an XML database results in XML

data. All materialized views in this thesis are, in fact, XML documents.

Materialized views are often used for improving query performance in

databases, integrating data from remote databases, or in some cases to

make a snapshot of a database available on a remote system.

Relevant and Non Relevant Update Queries Data in a materialized view

is derived from that in the base database. An update query on the base

database 5 which requires the materialized view to be refreshed to keep it in

sync with its base data is called a relevant update. Non-relevant updates do

not affect data in materialized views and hence do not result in refreshing

the materialized view. Note that relevant and non-relevant updates are

queries on the base document and not updates to the materialized views.

Incremental Maintenance of Materialized Views Materialized views must

be refreshed when the data in the underlying database is changed. This

process of refreshing the data in a materialized view is called view main-

tenance [16]. This can be achieved by refreshing (i.e. re-computing) the

5We assume that updates to XML data sources are expressed in an XML Update Lan-
guage as described in Section 2.1.
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entire materialized view for every update to the base database. However,

heuristically it has been found that an update to the base data usually af-

fects only a small portion of the view. The process of intelligently detecting

and updating only the affected portions of a materialized view is called In-

cremental View Maintenance. Incremental view maintenance is often more

efficient than view re-computation.

Self Maintainable Materialized Views Views which are maintained us-

ing information that is local to the materialized view, i.e. the view defini-

tion, the update definition, and the materialized view contents are called

self maintainable views. Self maintainable views do not access the base data

for view maintenance. Thus, self-maintenance of materialized view is a

type of incremental maintenance strategy which relies on information local

to the materialized view only.

1.3 Summary of ACE-XQ

An overview of the main concepts of ACE-XQ is essential to the under-

standing of our work. ACE-XQ provides a practical framework for XQuery-

based semantic caching systems. In other words, it gives the general solu-

tions to the main issues involved in building a semantic caching system

for XQuery, namely, answering XQuery queries using cached ones, design-

ing an appropriate replacement strategy that improves the cache space uti-

lization, and efficient cached view maintenance upon data updates. The

heart of the ACE-XQ system lies in determining containment relationships
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between nested conjunctive XQueries. To reason about such containment

relationships, the ACE-XQ system uses hierarchical multivalued dependencies

(HMVD) [6] between the elements of an XML document and the variable

binding dependencies[6] in an XQuery on that document. For an XML docu-

ment D, the HMVDs represent the dependencies among its elements which

have a multiple cardinality relationship with their respective parents. Vari-

able binding dependencies in an XQuery arise when one variable is defined in

terms of another. The main idea of this XQuery containment approach is to

incorporate the checking of the containment of the utilized HMVDs in ad-

dition to the checking of the pattern tree homomorphism (i.e., the embed-

ding of the containing query pattern tree into that of the contained query).

The main steps of this approach depicted in Figure 1.1 are:

� XQuery decomposition. This decompositions separate the variable defini-

tion part from the result construction part and represents each using a tree

structure. The former tree (i.e., VarTree) captures all the preserved HMVDs.

It is different from the navigation pattern tree used in [35], as will be ex-

plained later in this thesis. The latter tree (i.e., TagTree) is used to represent

the result construction template.

� Variable minimization. This step identifies the variables that are neither di-

rectly nor indirectly utilized in the result construction and degrades them to

navigation steps. This way, it is possible to derive a minimal set of variable

binding dependencies on which the containment checking is conducted.

This is a critical step for ensuring the correctness of the containment result.

� Containment mapping. This involves conducting three types of contain-

ment mappings. The first is a minimal VarTree embedding to check the con-
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tainment of the utilized HMVDs. Second, is to check the tree embedding

relationship between the navigation patterns. And lastly, apply a mapping

that deals with the effects of block-structure-induced variable dependen-

cies on the containment of XQuery.

� XQuery rewriting. If the new query Q1 is contained within a cached query

Q2, then the mappingMc established in the containment mapping phase

can be used for rewriting Q1 against the query result structure of Q2. The

basic idea is to substitute each path expression p in Q1 for its corresponding

path expression p0 in the TagTree of Q2 based on p0 = Mc(p) �Mt, where

Mt represents the mapping of path expressions from the VarTree of Q2 to

its TagTree. Namely, p0 is computed by the composition ofMc andMt.

;4XHULHV

4�

&RQWDLQPHQW�0DWFKHU

QHZ�TXHU\ FDFKHG�
TXHU\

;4XHU\ 5HZULWHUPDSSLQJV

YLHZ�VFKHPD

5HZULWWHQ�;4XHULHV

9DU7UHH 7DJJLQJ
7HPSODWH�

;4XHU\ 'HFRPSRVLWLRQ

9DULDEOH�0LQLPL]DWLRQ�	�
;4XHU\ 1RUPDOL]DWLRQ

Figure 1.1: ACE-XQ Overview
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1.4 Thesis Overview

1.4.1 Problem Definition

An XML view is a derived document defined in terms of an existing XML

document. XML views are expressed in a query language like XQuery.

When the view query is actually computed and the results are persisted,

usually on disk, it is a materialized view. To maintain data consistency be-

tween the base document and its materialized views, the views must be

maintained, i.e. when a change is made to the base document, an equiva-

lent change might also be needed for the materialized view. This process of

updating a materialized view whenever a base document changes is called

view maintenance. The brute-force approach of recomputing the material-

ized view for every change made to the base document is often wasteful in

many cases for the following reasons:

1). If an update to the base document does not affect the materialized

view at all, view re-computation is completely unnecessary.

2). If the update operation on the base document affects only a small part

of the materialized view, it is usually more efficient to update only

the affected part of the materialized view (i.e. incremental updates)

instead of re-computing the entire view.

This problem of computing and applying only the incremental updates

to materialized views is called Incremental View Maintenance. In ACE-XQ

query performance over distributed data sources is improved by storing

query results locally and re-using these query results to answer future queries,
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thus avoiding access to the remote data sources. Hence, to maintain these

materialized views in ACE-XQ, it is also very desirable that the view main-

tenance process of ACE-XQ avoid accessing the remote data sources. Such

views which can be maintained without accessing the remote data source

and using only information local to the materialized views are called self

maintainable views. This thesis proposes a solution for the requirement of

self maintainable materialized views in ACE-XQ.

1.4.2 From XQuery Containment to View Maintenance: Our Ap-

proach to View Self Maintenance

For a given XML database D with two queries Q1 and Q2, the query con-

tainment problem determines if the results of one query are contained within

those of the other by analyzing the two queries. In other words, query con-

tainment tries to reason about containment relationship between the result

data sets of the two queries based on their query definitions. Similarly,

given a materialized view MV (defined by view query V1), and an update

query U1 for a database D, let the state of D and MV before and after ex-

ecuting the update query U1 on D be represented by D1, D2, MV1, MV2

respectively. Let the differential data sets of D (diff between D1 and D2)

and MV (diff between MV1, MV2) be represented by 4D and 4MV re-

spectively. Then, by analyzing the two queries V1 and U1, for any contain-

ment relationship between4D and4MV , we can determine if the update

query U1 is relevant to the materialized view defined by V1. In the absence

of any containment relationship, the update query U1 is not relevant to
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materialized view MV. This is our primary motivation for exploring query

containment techniques for view self-maintenance.

We propose an algorithmic approach to View Self Maintenance wherein

we rely solely on the view and update query definitions, and the material-

ized view itself. We do not assume access to the base data for performing

view maintenance. We decompose the view self maintenance problem into

two main sub-problems, viz.

1). Analysis of Update Query for Relevance w.r.t View Query, and

2). Update Query Rewriting

Analysis of Update Query for Relevance w.r.t View Query Henceforth,

we will refer to this relevance analysis as simply Update Query Analysis.

This analysis tries to determine if an update query executed on the base

data is relevant to a materialized view. For update query analysis, we use

the pattern tree (i.e. VarTree) homomorphism techniques developed for

deciding Query Containment between two view queries in the ACE-XQ sys-

tem. Additionally, Update Query Analysis deals with one view query and

one update query which may have insert and delete operations 6. These up-

date operations require additional reasoning to determine their relevance

to a view query. The specifics of the update query analysis, including han-

dling of update operations are provided later in this section.

6We consider replace operations as insert followed by delete and hence do not handle it
separately.
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Update Query Re-writing XML Query languages like XQuery allow out-

put restructuring wherein the structure (i.e. the schema) of the material-

ized view may be different from that of its corresponding base document.

Thus, even after Update Query Analysis determines that an update query

is relevant to a view, applying it as-is on the materialized view may lead to

incorrect results due to differing schemas of the base document and the ma-

terialized view. A relevant update query on the base document must hence

be re-written in terms of the materialized view’s schema. The ACE-XQ

system stores mappings between paths of elements returned in the view

query and their corresponding paths in the materialized view. We use this

mapping information to do correct re-writings of relevant update queries.

Figure 1.2 depicts the flow of our analysis and rewriting process. Below,

we highlight the main steps involved in this process:

1). XQuery Pre-processing: Minimization and Normalization

This step is a precursor to the analysis phase to facilitate query anal-

ysis. In this step, we minimize the variables in the input queries to

obtain an essential minimal set that do not alter query results. The

reason is that, before we can utilize containment mapping of vari-

ables defined in two queries based on their XPath expressions and de-

pendencies, we need to make sure that the variable dependency tree

inclusion is both sufficient and necessary [4] for determining query con-

tainment. Since our analysis builds on the XPath containment based

algorithm for view queries in ACE-XQ, the pre-processing of both

view and update queries is identical to that required in ACE-XQ.
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Variable Minimization and 
Query Normalization

View Query Update Query

Query Decomposition

TagTree View Query
VarTree

Update Query
VarTree

Update Query Analysis

Query Rewriter

Re-written Update Query

Restructuring
Mappings

Relevant Update Query
+

Figure 1.2: Thesis Framework Overview

Next, a normalization technique is taken to simplify the input query

into a canonical form for the following two purposes. One, the flex-

ibility in composing an XQuery using nested FLWR expressions (or

FLWU expressions in case of update queries) imposes difficulties for

reasoning the containment relationship between two given queries.

By sorting out the query constructs and rewriting the input query in

accordance to the pre-defined normalization rules, it may facilitate

the containment reasoning. Two, the canonical form reveals the pat-

tern matching and result construction semantics of the view query
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in a more decoupled way, which allows us to easily decompose and

address the view maintenance problem as two sub problems, viz Up-

date Query Analysis and Update Query Rewriting.

2). Query Decomposition: Pattern Matching and Restructuring

After the normalized form of a given view query is obtained, pattern

matching is represented by the variable bindings and their depen-

dencies in the query’s for clauses. For a view query, the result con-

struction part corresponds to the nested FWR structure, the new ele-

ment constructor and the return expressions at each level in the return

clauses. For an update query, the update operations correspond to the

update clauses at each level in the nested FWU structure. Thus, in the

normalized query form, the pattern matching and result construction

(or update operations) can be clearly separated and captured.

In a view query, the two parts, i.e., pattern matching and result con-

struction, are connected via the essential variables. That is, variables

in XQuery are specified by the for and let clauses to accommodate the

intermediate data bindings that are derived by the respective bound

expressions. Their data bindings can then be used for invoking new

element constructions, or for providing handles for their descendants

to be accessed and returned in the result. This way, both pattern

matching and result construction semantics can be captured by two

tree structures respectively, one of which is constructed based on the

variable binding dependencies and the other reflects the result con-

struction template by utilizing the specified variables. We call the
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former a VarTree and the latter a TagTree.

A normalized update query, unlike a view query, has no result re-

structuring functionality. It only contains pattern matching repre-

sented by variable bindings and their dependencies in the for clauses

and the update operations represented in update clauses. This sim-

plicity allows us to capture both the variable binding dependencies

and update operation semantics of an update query in one single

tree structure. This tree structure is similar to the VarTree structure

of a view query, except that instead of return nodes, it has update

leaf nodes. The update nodes contain details of the update operation

being performed. We call this structure an Update VarTree, or sim-

ply VarTree when there is no chance of confusion with a view query

VarTree.

3). Update Query Analysis

As mentioned in Section 1.3, determining query containment involves

establishing three kinds of mappings, viz., a minimal VarTree embed-

ding to check the containment of the utilized HMVDs, a mapping to

check the tree embedding relationship between the navigation pat-

terns (a.k.a. MAC mapping), and a mapping that deals with the ef-

fects of block-structure-induced variable dependencies on the con-

tainment of XQuery. We use a MAC mapping like VarTree inclusion

approach to determine containment relationships between the vari-

able bindings (i.e. their XPath expressions) of a view query and an

update query. Similar to the MAC mapping for Query Containment,
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our MAC mapping for update query analysis also relies on contain-

ment of XPath expressions in the two queries. Moreover, the direc-

tion of mapping is also from the contained XPath expression to the

container XPath expression. There are, however, some subtle differ-

ences due the fact that query containment MAC mapping is between

two view query VarTrees while update query analysis MAC mapping

is between a view query and an update query VarTree. Sections 3.3.3

and 3.3.4 define and compare these two MAC mapping procedures in

detail. Unlike view queries, and update query does not have block-

structure-induced variable dependencies and the end result of an up-

date query evaluation on a document is independent of the HMVDs

in the document. It is for these reasons that the containment map-

pings based on these concepts does not apply in the Update Query

Analysis context.

Once a MAC mapping is established between a view query and an

update query, we reason about the update operations in the update

query as follows: The location of Delete operations in our XML Up-

date Language is specified via an XPath expression. Hence, checking

for containment between the XPath expression of a delete operation

and those of variable bindings in a view query is sufficient to deter-

mine its relevance to a materialized view 7. Section 3.3 discusses this

analysis in much more details. For insert operations, the relevance of

the update depends not only on the location of the insert operation,
7However, there are cases where the containment of XPath expressions itself is unde-

cidable, in which case determining relevance of delete operation is also undecidable. We
explain this in more detail in Chapter 3.
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but also on the content being inserted. In addition to checking for

XPath containment between view query XPaths and the insert loca-

tion XPath, we use a procedure based on the following distributive

property 8 of view queries:

f(d

4d) = f(d)


f(4d) (1.1)

where

• f is a view query,

• d is an XML document,

• 4d is the new content being inserted into d,

• f(d) is result of evaluating query f on document d, i.e. f(d)

creates a materialized view, and

•  is a special union operation (also called deep union in [22]) on

XML Trees which has the same end result as an insert operation.

Looking at the RHS of the above property, intuitively it can be rea-

soned that evaluating the view query on the new content being in-

serted and then inserting the result of this evaluation into the materi-

alized view will synchronize it with the update to the base document.

We provide the details of achieving this in ACE-XQ in Chapter 3.

4). Update Query Rewriting

8This property is valid only for unordered XML documents.
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A relevant update query may need re-writing in order to be applied

to the corresponding materialized view. This rewriting is essentially

re-writing of XPath expressions in the update query. Such a path

expression rewriting utilizes the tagging template of the view query,

which reveals how the result structure is constructed based on vari-

able bindings in the view query. We explain the tagging template and

its uses in query re-writing in detail in Chapter 3.

1.5 Contributions

The primary contributions of this thesis are:

• We have proposed a unique approach to the self maintenance of ma-

terialized XML views using a query containment approach. To the

best of our knowledge, we are the first to investigate and use query

containment for XQuery view maintenance.

• We have proposed a view maintenance approach that relies solely on

the view and update query definitions, and data in the materialized

view itself. Other view maintenance strategies either require knowl-

edge of schema of the base document, assume the presence of unique

object identifiers [1, 37], or assume access to the base data [9]. While

the amount of information available during view maintenance has an

impact on the cases that can be incrementally maintained, the sim-

plicity of our approach does not restrict its usability. In practice, a

caching system can easily get around some of these restrictions by
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having two layers of views where-in one layer consists of simpler,

self-maintainable materialized views and the second layer uses the

first layer to define complex non-materialized views.

• We believe that the concept of pattern matching used in our approach

can be effectively used for more complicated update and view queries.

This pattern matching can help detect non-relevant queries sooner in

the query analysis process and reduce the number of update queries

for further analysis. This filtering of non-relevant update queries

based entirely on pattern matching of queries can have very signif-

icant benefits for the average case performance of a caching system

like ACE-XQ.
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Chapter 2

Preliminaries



22

Preliminaries

In this chapter we explain several background concepts necessary for un-

derstanding the details of our solution to the view self maintenance prob-

lem. We also introduce an example which will be re-used throughout this

thesis in examples and explanations.

2.1 XML Query and Update Languages

XPath [30], a regular expression based path definition language is the basis

for several XML query languages. The earliest XML Query languages like

XQL, XML-QL, XSL added features like iteration over simple XPath expres-

sions and XSL allowed nested evaluations too. XQuery, the current W3C

standard for XML Queries (and its predecessor Quilt) have a FOR-LET-

WHERE-RETURN (FLWR) based syntax which allows binding variables to

XPath expressions in the FOR and LET clauses, specifying complex pred-

icates using the WHERE clause, and output restructuring within the RE-

TURN clause. The RETURN clause in turn can contain nested queries, and

also supports sorting, aggregation.

There is no standard yet for an XML Update Language. We are aware
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of three efforts to define an update language for XML documents.

XUpdate is a pure descriptive XML update language which is designed

with references to the definition of XSL Transformations (XSLT). Similar to

XSLT, the update query itself is an XML document and uses the expression

language defined by XPath. Those XPath expressions are used in XUpdate

for selecting nodes for processing afterwards. Features of XUpdate include:

• Elements like xupdate:insert-before/after, xupdate:update, xupdate:remove

for XML document modification

• constructor elements like xupdate:element, xupdate:attribute etc. for cre-

ating new elements, attributes, processing instructions, or comments

to be used in update instructions.

• xupdate:variable and xupdate:value-of elements which allow binding a

variable name to a value which can be used later in updates.

• xupdate:if element which allows conditional processing.

A simple XUpdate query which deletes the first closed auction element

in Figure 2.3 would be as follows:

<xupdate:remove select = \

"document("auction.xml")/site/closed_auctions/closed_auction[1]"/>

Microsoft’s SQL Server 2005 database treats XML documents and con-

tent as a new data type for attributes/columns of a relation. For updat-

ing the content of XML columns, Microsoft has extended standard SQL to
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include a modify clause which can specify an XML Update Query. An ex-

ample SQL update query on a table having an XML column would look

like:

UPDATE <TABLENAME> SET

<XML_COLUMN_NAME>.modify(’<XML_UPDATE_QUERY>’) WHERE

<UPDATE_CONDITION>

The XML Update Query language used in the modify clause allows a sin-

gle insert, delete or update operation. The location of this update is specified

via an XPath expression. Subtrees can be inserted before or after a spec-

ified node, or as the leftmost or rightmost child. Furthermore, a subtree

can be inserted into a parent node, in which case it becomes the rightmost

child of the parent. Attribute, element, and text node insertions are sup-

ported. Deletion of subtrees is supported. In this case, the entire subtree is

removed from the XML instance. Scalar values can be replaced with new

scalar values.

I. Tatarinov and A. Halevy [28] have defined an XML Update Language

which is very similar in syntax to XQuery. The general form of an update

query as defined in [28] is shown in Figure 2.1

From figure 2.1 we can see that:

• This update query language allows binding of elements to variables

via the for-let clauses similar to XQuery and also allows filtering in

the where clause.
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FOR $binding1 IN Xpath-expr, …
LET $binding := Xpath-expr, …
WHERE predicate1, …
updateOp, …

where updateOp is defined in EBNF as:
UPDATE $binding1 {subOp {, subOp }* }

and subOp is:
DELETE $child |
RENAME $child TO name |
INSERT content [BEFORE | AFTER $child] |
REPLACE $child WITH content |
FOR $binding2 IN Xpath-subexpr, …
WHERE predicate1, … updateOp

Figure 2.1: Syntax Of XML Update Queries

• Updates can be deletes, inserts, renaming or replacement of XML el-

ements, attributes, comments etc.

1). The variable binding of an update clause is the common ancestor

of XML elements being updated. In other words, all updates

always occur at child elements of the update clause’s variable

binding.

2). Child elements to be Deleted are specified via an XPath expres-

sion.

3). The content to be Inserted can either be explicit XML content or

can be specified via variable bindings. Content can optionally

be inserted before or after a specified child variable binding. In

cases where the order of insert is not specified, the default be-

havior is to appended new content to the existing content.
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4). Replaces and Renames also occur on child elements of the update

clause’s variable binding.

• The update clause itself can further contain nested for-let-where-update

queries, similar to the nested structure of XQuery. The variable bind-

ings in the nested for-let clauses must be sub-expressions of (i.e. de-

rived from) those of the enclosing for-let block.

This update language is designed to be a language in which queries

are concise and easily understood. It is also flexible enough to update

a broad spectrum of XML information sources, including both databases

and documents. Due to its similarity with XQuery, it is easy to under-

stand, learn, and is more likely to be adopted by users of XML. Also, the

SafeXUpdate[18] project at WPI implemented this update query language,

and this system was freely available to us. For all these reasons, we have

chosen the XML Update Language of [28] for this thesis.

2.2 AceXQ

Section 1.3 provides a summary of the AceXQ system. Since our work is

developed in the context of AceXQ, the interested reader should read [4]

for a deeper and clearer understanding of XML Query Containment.

2.3 XPath Containment

The XQuery containment approach of [4] is based on containment of XPath

expressions. The basic constructs of any XPath expression are: child, de-
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scendant, filter, wildcard, disjunction, and variables [/, //, [], *, j, $]. It is

conventional to represent the fragment we use by listing the allowed op-

erators. For example, XP(/, //) denotes an XPath fragment where only

child and descendant operators are allowed. Since the result of an XPath

query is a set of nodes that satisfies the specified pattern, the containment

of two XPath expressions E1 and E2, denoted E1 � E2 means that the re-

sult node set of E1 is a subset of the result node set of E2 assuming the two

expressions are evaluated on the same XML document. For example,

/site/closedAuctions/closedAuction � //closedAuction, and

/site/(africajasia)/item � /site/ � /item, regardless of the presence of

a DTD.

The complexity of determining XPath expression containment depends

on the structure of the XPath expressions involved. The XPath containment

algorithm has attracted significant attention in the recent past. Miklau and

Suciu obtained that containment of XP(//, [], *) is CoNP-Complete. In their

research, they also cite previous works which shows that the problem can

be solved in PTIME if we consider any two of the three operators. More re-

cently, [14] extended this XPath fragment to include disjunction, variables,

and the presence of DTDs and obtained a more complete classification of

the containment problem w.r.t to these fragments. Tables 2.1 and 2.2 sum-

marize important research results about XPath containment with and with-

out DTD constraints.

In this thesis we use the XPath fragment XP(/, //, [], *) i.e. XPath

expressions containing child, descendant, filter, and wildcard operators.

Moreover, to determine containment in PTIME, we restrict the XPath ex-
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DTD / // [] j * Complexity
+ + + + in P
+ + + CoNP-complete
+ + + CoNP-hard
+ + + + + + EXPTIME-complete
+ + + + EXPTIME-complete
+ + + + + EXPTIME-complete
+ + + + + undecidable with nodeset comparisons

Table 2.1: Containment Complexity for Different XPath Fragments With
DTD

/ // [ ] * j Complexity Reference

+ + + PTIME Amer-Yahia et al, 2001
+ + + PTIME Wood, 2001
+ + + PTIME Neven & Schwentick, 2003
+ + + + coNP-complete Miklau & Suciu, 2002
+ + coNP-complete Miklau & Suciu, 2002

+ + coNP-complete Miklau & Suciu, 2002
+ + + + + coNP-complete Neven & Schwentick, 2003

Table 2.2: Containment Complexity for Different XPath Fragments Without
DTD

pressions in queries to contain any two of XP(//, [], *) operators, in ad-

dition to the child (’/’) operator. This is a fairly sound subset of XPath

as most XPath expressions in real life exclusively use these operators and

seldom use other operators like disjunction etc. Our algorithms will work

efficiently for any XPath fragment which is amenable to containment in

PTIME. Also, in general containment of XPath expressions involving node-

set comparisons is undecidable. To keep containment decidable, we restrict
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XPath expressions involving predicate expressions as follows:

• Predicate expressions involve comparison of a nodeset with string or

numeric literals.

• The predicate expression may be a simple expression involving only

one comparison operation or a compound expression composed from

simple expressions. Compound predicate expressions must be ex-

pressed in CNF (Conjunctive Normal Form).

• Predicate expressions where the expression is an arbitrary XPath ex-

pression which can contain any two of XP(//, [], *) operators.

• We require that the Xpaths in predicate expression not contain any

nodes returned by the XQuery. This restriction makes query analysis

and re-writing easier.

2.4 An Example

Consider the XML document in Figure 2.3 which conforms to the XMark[27]

benchmark schema shown graphically in Figure 2.2.

The XMark schema contains information about auctions. Suppose a

user is only interested in buyer and price information of sold items costing

more than $1000. Figure 2.4 shows an XQuery to extract this information

from a database conforming to the XMark [27] benchmark.

The result evaluating this query on the XML document in Figure 2.3 is

shown in Figure 2.5
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Figure 2.2: The XMark Schema

ACE-XQ stores the results of this query locally as a materialized view

to provide faster answers to similar future queries. As the remote database

is updated with new information, this materialized view may need updat-

ing. Figures 2.7 and 2.6 show two such update queries with operate on

the sample document of Figure 2.3. Since the materialized view of Figure

2.5 stores only a portion of the entire document, not all updates to the base

document are relevant to the view. In example 2.6, the update query deletes

the home-page information of a person and does not affect the view in any

way. Such an update query will be detected as non-relevant by our view

maintenance approach.

However, the query in Figure 2.7 which deletes a closed auction element

is relevant to the materialized view of Figure 2.5. We will use these and
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<?xml version="1.0" standalone="yes"?>
<site>

<closed_auctions>
<closed_auction>

<seller> 
<name>Sinisa Farrel</name>
<emailaddress>mailto:Farrel@duke.edu</emailaddress>

</seller>
<buyer>
<name>Lee Tzitzikas</name>
<emailaddress>mailto:Tzitzikas@whizbang.com</emailaddress>
<homepage>http://www.whizbang.com/~Tzitzikas</homepage>
<creditcard>6491 3985 6149 1938</creditcard>

</buyer>
<item>
<name>The Girl From Malabar</name>
<description>Oil painting by Raja Ravi Varma depicting a beautiful native Malabar girl</description>

</item>
<price>2830.20</price>
<date>04/16/2005</date>
<quantity>1</quantity>
<annotation>
<author name="Hiroko Schhwartz"/>
<description><text> Good buy! </text></description>

</annotation>
</closed_auction>

<closed_auction>
<seller><name>Roman Keustermans</name></seller>
<buyer><name>Shavinder Giger</name></buyer>
<item>

<name>Reverse The Curse</name>
<description>Collage of Babe Ruth’s contract and 2004 Red Sox World Series celebration photo</description>

</item>
<price>456.90</price>
<date>04/16/2005</date>
<quantity>1</quantity>

</closed_auction>
</closed_auctions>

</site>

Figure 2.3: An example XML document

similar examples later in this report to explain our approach to view self

maintenance.



2.4. AN EXAMPLE 32

<result>
FOR $item IN doc(“auctions.xml”)/site/close_auctions/closed_auction
WHERE $item/price > 1000
RETURN

<entry>
{

$item/buyer, $item/price, $item/happiness
}
</entry>

</result>

Figure 2.4: View Query

<result>
<entry>

<buyer>
<name>Lee Tzitzikas</name>
<emailaddress>mailto:Tzitzikas@whizbang.com</emailaddress>
<homepage>http://www.whizbang.com/~Tzitzikas</homepage>
<creditcard>6491 3985 6149 1938</creditcard>

</buyer>
<price>2830.20</price>

</entry>
</result>

Figure 2.5: Result of evaluating query in Figure 2.4 on XML document

FOR $p IN doc(“auctions.xml”)/site/people
WHERE $p/person[@id=97]
UPDATE $p
{

DELETE $p/homepage
}

Figure 2.6: Non Relevant Update Query
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FOR $item IN doc(“auctions.xml”)/site/closed_auctions
WHERE $item/closed_auction/price = 1321
UPDATE $item
{

DELETE $item/closed_auction
}

FOR $item IN doc(“auctions.xml”)/site/closed_auctions
UPDATE $item
{

INSERT
<closed_auction>

<buyer>
<name>JP</name>

</buyer>
<item>Water Lillies</item>
<price>2345</price>
<date>Jan 12, 2004</date>

</closed_auction>
}

Figure 2.7: Relevant Update Queries
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Our Approach to View Self

Maintenance

3.1 Overview

As mentioned previously in Chapter 1, we decompose the view self main-

tenance problem into two sub-problems:

• Update Query Analysis: In this phase we determine if an update

query on a base XML document is relevant to an XML view defined

on it. To facilitate analysis, the query is first pre-processed as ex-

plained in Section 3.2.

• Update Query Rewriting: If the Query Analysis procedure deter-

mines that an update query is relevant to a view, we rewrite the up-

date query on the base document into an update query on the mate-

rialized view. This re-written query when executed on a materialized

view synchronizes it with the base document.

The remainder of this chapter explains the details of our approach along

with examples. We first start with an explanation of query pre-processing
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in section 3.2, then explain the details of update query analysis and up-

date query re-writing in sections 3.3 and 3.4. Section 3.5 discusses the com-

plexity analysis of our update query analysis procedure, while section 3.6

concludes this chapter explaining our approach with several examples.

3.1.1 A Query Subset Suitable for View Self Maintenance

We first define the subset of view and update query languages for which

our view self maintenance approach works. Since our view self mainte-

nance approach builds on the XPath containment based query containment

of ACE-XQ, we restrict ourselves to view and update queries containing

XPath expressions for which containment is decidable in PTIME 1. We also

require an unordered XML model and that queries not contain any relative

or absolute order related constructs.

Our approach works for view queries which allow nested blocks, con-

junctive equality based conditions, set and bag semantics and which

• Do not use negation, disjunction, aggregation, universal quantifiers,

tag variables, and

• Do not use pre-defined or user-defined functions.

and for update queries which

• Contain only delete and insert operations, and

• Have insert content specified explicitly in the query, and not via vari-

able bindings.
1See Section 2.3 for additional details on XPath containment and the XPath subset we

use.



3.2. QUERY PRE-PROCESSING 37

3.2 Query Pre-processing

The flexibility in composing an XQuery using nested FLWR expressions (or

FLWU in case of update queries) imposes difficulties for reasoning the con-

tainment relationship between two given queries. We hence pre-process

both the view and update queries and translate them into a canonical form

[4] with certain characteristics which can facilitate our analysis. Our anal-

ysis algorithm builds on the query containment algorithm presented in [4],

and hence the pre-processing of queries is similar to that used in ACE-XQ.

To summarize, there are three pre-processing steps, viz.

1). Variable Minimization

2). Query Normalization

3). Query Decomposition

All these pre-processing steps are required for both view and update

queries. Since the view and update queries are syntactically similar to each

other, the preprocessing steps for an update query resemble those of a view

query, but are not identical. We discuss the similarities and differences in

pre-processing of view and update queries in the following sections.

3.2.1 Variable Minimization

In this step, we delete non-essential variables from the query definition.

Non essential variables are those which can be safely deleted without caus-

ing a change in the query result. For the query in Figure 3.1, the variables

$buyer and $price are non-essential as their usages in the return clause
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can be replaced by variable bindings derived from $item (as $buyer =

$item/buyer and $price = $item/price). Since both view and update queries

use a For-Let-Where syntax for specifying variable bindings, this variable

minimization procedure is identical for both types of queries. For more de-

tails on the algorithm, soundness and completeness of variable minimiza-

tion see [4].

<result>
FOR $item IN doc(“auctions.xml”)/site/closed_auctions/closed_auction
WHERE $item/price > 1000
RETURN
<entry>
{

FOR $buyer IN $item/buyer, $price IN $item/price
RETURN $buyer, $price

}
</entry>
</result>

Figure 3.1: XQuery Before Normalization

3.2.2 Query Normalization

View Query Normalization

Note: The details view query normalization in this subsection have been adapted

from [4].

Our goal is that the normalized query can facilitate the separation of the

path expressions that are to be output in the result from those that are used

for specifying variable bindings, such that the later query decomposition

step is made easy. There are a number of XQuery normalization techniques
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[33, 24, 8] available. They overlap in some commonly used normalization

rules. For example, unnesting the FLWR expression within a for clause (as

illustrated before) is a standard rule shared by many techniques.

We adopt a set of query normalization rules including rules (R2)�(R5),

(R7)�(R10), and (RG1) from [8]. We also apply rules (R1), (R6), (R11), and

(R12), but in their reverse directions. Rule (R13) does not apply in our

context since we exclude disjunctions from our XQuery fragment. Since

we consider the XQuery fragment with no aggregations, we can also apply

the rule that substitutes each let-variable with its definition. After applying

these rules, the query is free of let clauses, empty sequence expressions

and unit expressions. Also, only return clauses may contain nested FWR2

expressions.

<result>
FOR $item IN doc(“auctions.xml”)/site/closed_auctions/closed_auction[price>1000]
RETURN
<entry>
{

$item/buyer, $item/price
}
</entry>
</result>

Figure 3.2: XQuery After Normalization

If we apply the normalization rules to an example query shown in Fig-

ure 3.1, the normalized form is shown in Figure 3.2. Notice that in Figure

3.2, the non-essential variables are deleted as well as the predicate from the

WHERE clause is pushed up into the XPath variable binding of the FOR

clause.
2Letter L for representing let is removed since the normalized query is let-clause free.
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Update Query Normalization

Since update queries have a for-let-where-update (FLWU) syntax very similar

to XQuery’s FLWR syntax, the normalization rules are also very similar, in

fact even simpler. Using normalization rules very similar to those used for

the For, Let, and Where clauses in a view query, we derive a form which sat-

isfies the following conditions: (1) let-clause free; (2) no for-variable bound

to an empty sequence “()” or a unit expression; and (3) only the update-

clauses may contain nested FWU expressions; (4) Local-Where Rule wherein

the predicates in a Where clause are pushed up as filters in the XPath ex-

pression of the corresponding variable binding in the For clause.

If we apply the normalization rules to an example query shown in 3.3,

the normalized form is shown in Figure 3.4.

FOR $p IN doc(“auctions.xml”)/site/people
WHERE $p/person[@id=97]
UPDATE $p
{

DELETE $p/homepage
}

Figure 3.3: Update Query Before Normalization

FOR $p IN doc(“auctions.xml”)/site/people/person[@id=97]
UPDATE $p
{

DELETE $p/homepage
}

Figure 3.4: Update Query After Normalization
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3.2.3 Query Decomposition

View Query Decomposition

Definition 3.1. Given a normalized XQuery Q, a tree structure named VarTree=(V,

E, L) can be constructed based on the extracted variable binding dependencies.

Each defined variable is denoted by a var node v 2 V . Each dependency vi

pj

¤ vj

corresponds to an edge e=(vi, vj)2E labeled pj 2 L. We refer to e as the deriva-

tion edge of vi.

The VarTree is different from the pattern tree concept referred to in other

research [35]. An edge in the pattern tree corresponds to an axis step (/ or

//) and the associated element type test. In contrast, a derivation edge

in VarTree denotes the navigation pattern used for deriving a child vari-

able from its parent. Actually this is indicated by the label on a derivation

edge which is an XPath expression composed of possibly multiple steps

and branches. In this sense, the VarTree can be considered as a nested tree

with each edge encapsulating the navigation pattern corresponding to the

label on it. Figure 3.5 shows the VarTree representation of query in Figure

3.2.

Definition 3.2. For a normalized XQuery Q, a tree structure conforming to its

nested block structure can be constructed to represent the result construction se-

mantics. It is called TagTree=(N,A). Each block node n 2 N is a quadruple

[V̄ , C̄, R̄, T̄ ] and each edge a=(ni, nj)2A denotes that block nj is nested within

block ni. Furthermore,

• V̄ , C̄, R̄, and T̄ respectively represent the variables, where-conditions, re-
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turn expressions, and to-be-constructed new elements specified in the corre-

sponding block;

• C̄ is denoted by a forest of constraint pattern trees each rooted at a variable

defined in the local or an ancestor block. Equality conditions are associated

with the corresponding node(s);

• If unnesting of the bindings of variables in V̄ results in a non-empty set and

conditions C̄ are satisfied, then the construction of a new element denoted

by T̄ will be invoked for each tuple in that unnested binding set;

• T̄ may have either none, one, or a sequence of tag names in the form ht1iht2i . . . htni.
This means that the returns of R̄ will be enclosed by an empty tag, ht1i and

h/t1i, or ht1iht2i . . . htni and h/tni . . . h/t2ih/t1i.

$root

$item/buyer

$item

$item/price

/site/closed_auctions/closed_auction/item[price > 1000]

/buyer /price

Figure 3.5: VarTree Representation of Query in Figure 3.2

In this thesis, we consider a simplified version of TagTree, wherein

each block node in the TagTree is a tuple, [V̄ , T̄ ] instead of the quadruple
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[V̄ , C̄, R̄, T̄ ]. In this simplified version, instead of having R̄ (i.e. the return

nodes) information in the TagTree block nodes, we show them as leaf nodes

in the TagTree itself. The edges represent nesting of elements to be con-

structed and are labeled with the XPaths for deriving the child nodes vari-

able binding from it’s parent node. This simplified version of the TagTree

closely resembles a VarTree in structure but has additional information in

its block nodes. It also allows a simpler algorithm for finding mapping

paths of XML elements, which is used during update query rewriting. The

TagTree structure for the view query in Figure 3.2 is shown in Figure 3.6.

{$root,<result>}

$item/buyer

{$item, <entry>}

$item/price

/site/closed_auctions/closed_auction/item[price > 1000]

/buyer /price

Figure 3.6: TagTree Representation of Query in Figure 3.2

Update Query Decomposition

Definition 3.3. Given a normalized XML Update Query Q, a tree structure

named VarTree=(V, E, L, U) can be constructed based on the extracted variable

binding dependencies and update operations. Each defined variable is denoted by a

var node v2V . Each dependency vi

pj

¤ vj corresponds to an edge e=(vi, vj)2E
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labeled pj 2 L. We refer to e the derivation edge of vi. Each update operation

(insert, or delete) attached to an update clause in the update query is denoted by a

child node u2U of the var node corresponding to the update clause. The deriva-

tion edge of a delete node is the XPath expression of its delete clause in the query.

The incident edge of an insert node has no variable dependency associated with it,

but the update node itself contains the content to be inserted.

Figure 3.7 shows the VarTree representation of update query in Figure

3.4. An update query can be completely represented using a single tree

structure, also called a VarTree 3. Like a view query’s VarTree, an update

query VarTree’s internal nodes also represent the variable bindings and the

edges between variable nodes are labeled with the XPath expressions used

to derive the child variable node from the parent. In addition to these vari-

able nodes, an update query’s VarTree also has update nodes which repre-

sent the actual update operations. From the update query syntax in Figure

2.1, it is clear that updates are attached to the variable binding of an update

clause, or to its child nodes. The variable binding of an update clause is

represented by a variable node in the VarTree. Thus, updates attached to

such a variable node will be its child nodes in the VarTree representation.

It is also easy to see that the update nodes in a VarTree are leaf nodes of the

VarTree.

Update nodes in the VarTree can represent both delete and insert op-

erations. The delete clause of an update query also specifies the XPath

expression (derived from the update clause’s variable binding) of the ele-

3We will explicitly qualify a VarTree as an Update Query VarTree or a View Query
VarTree if there is any chance of confusion.
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ments to delete. Hence the derivation edge from the parent node to a delete

node is labeled with this derived XPath expression. The edge between an

insert operation and its parent is not labeled as there is no variable depen-

dency involved. However, the insert node itself contains the content to be

inserted.

$root

delete

/site/people/person[@id=97]

/homepage

$p

Figure 3.7: VarTree Representation of Update Query in Figure 3.4

3.3 Update Query Analysis

Given VarTree representations of a view query and an update query, it is

possible to determine if the update query is relevant to the view. We achieve

this by introducing containment based mappings between nodes of the

two VarTrees. Recall that the path to each node in a VarTree also defines

the XPath expression of the variable binding corresponding to that node.

We use the containment relationship between these XPath expressions of

view and update queries to establish mappings between nodes of the two
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VarTrees. Section 3.3.5 describes an efficient algorithm to achieve this map-

ping between the nodes of a view query and an update query. To begin

with, sections 3.3.1 and 3.3.2 introduces the usage of XPath containment

for view self maintenance.

3.3.1 Using XPath Containment for View Self Maintenance

Consider the following observations:

• Each delete operation in an update query is essentially specified via an

XPath expression for the XML elements to be deleted. If this delete

operation is relevant to a view query then there must exist a contain-

ment relationship between the XPath specifying this delete operation

and some XPath expression in the view query. In the absence of any

containment relationship, the delete operation is not relevant to the

materialized view.

• Each insert operation in an update query involves adding content at a

specific location in a document. The location of this insert is also spec-

ified by an XPath expression. If this insert is to be relevant to a view

query, then there must exist a containment relationship between the

XPath specifying the insert location and some XPath expression in the

view query. In the absence of any containment relationship, the insert

operation is also not relevant to the materialized view. The relevance

of an insert operation is also additionally dependent on the content

being inserted. In Section 3.3.2 we explain how to reason about this

insert content when deciding relevance of update operations.
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From the above observations, we can elaborate further about XPath con-

tainment between a view query and an update query as follows:

1). For any two variable nodes u and v where u belongs to an update

query VarTree and v belongs to a view query VarTree, and a contain-

ment relationship exists between XPath(u) and XPath(v), then Up-

date Query Analysis is possible only if XPath(v) � XPath(u). In

case of the contrary containment relationship wherein XPath(u) �
XPath(v), Update Query Analysis is not determinable. To under-

stand the reason for this non determinability, consider the contrary

case where the update query XPath is contained in the view query

variable node’s XPath (i.e. XPath(u) � XPath(v)). In this case,

the update query would have to update a subset of elements in the

materialized view. This exact subset of elements from the material-

ized view can only be determined by their parent elements which

are available in the base document and not in the materialized view.

Our view maintenance approach does not assume access to the base

document and hence the contrary case (i.e. XPath(u) � XPath(v))

becomes non determinable for view self maintenance.

2). If the XPath expression for a delete node subsumes, is equivalent to or

is contained in the XPath expression of some return node in the view

query, then the delete operation is relevant to the view. The reason

for this is obvious.

3). If the XPath expression of a delete node subsumes or is equivalent to

the XPath expression of a variable node, then the delete operation is
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relevant to the view.

4). If the XPath expression of the delete node is completely contained in

(but not equivalent to) some non-return (i.e. variable) XPath expres-

sion from the view query, then determining relevance of this delete

operation to the view query is not determinable.

Similar to delete operations, the following observations hold for insert

operations

1). If the XPath expression of an insert node is contained in the XPath

expression of some return node in the view query, then the insert op-

eration is relevant to the view.

2). If the XPath expression of an insert node subsumes or is equivalent

to any XPath expression in the View Query, then the insert operation

may be relevant to the view. We need further analysis of the content

being inserted to determine relevance. This additional processing is

described in section 3.3.2

3). If the XPath expression of the insert node is completely contained in

(but not equivalent to) some non-return (i.e. variable) XPath expres-

sion from the view query then determining relevance of this insert

operation is not determinable.

The above observations may be summarized as follows:

Given the essential VarTree representations V T1 and V T2 of Update

Query and View Query respectively, then



3.3. UPDATE QUERY ANALYSIS 49

1). V T1 is relevant to V T2 and view self maintenance is possible if and

only if

a. XPath(v) � XPath(u) holds for some u, v AND

b. XPath(u) � XPath(v) does not hold for any u, v

where u and v are variable nodes belonging to V T1 and V T2 respec-

tively.

2). For a delete node d in V T1, d is relevant to the view query only if

• XPath(d) � XPath(r) OR XPath(r) � XPath(d), or

• XPath (v) � XPath(d)

where r is a return node in V T2 and v is any variable node in V T2

3). For an insert node i in V T1,

• if XPath(i) � XPath(r) where r is any return node in V T2, then

the insert operation is relevant to the view query.

• if XPath(v) � XPath(i) where v is any variable node in V T2, then

the insert operation may be relevant to the view query.

3.3.2 Handling Insert Operations

The relevance of an insert operation depends not only on the location of

insert, but also on the content being inserted. We solve this problem as

follows:
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Assume that the base XML document has already been updated by this

insert operation 4. If this insert content were relevant to the materialized

view, then the result of evaluating the view query on the updated base

XML document will contain some or all of the content being inserted by

the insert query. If it does not, then the insert operation is not relevant to

the view. The above approach will always be able to determine if an insert

operation is relevant or not. However, it requires accessing the remotely

located base XML document and recomputing the entire view query to de-

termine relevance of insert operations, which defeats the purpose of view

self maintenance. To overcome this problem, we use the distributive prop-

erty 5 of view queries mentioned in Equation 1.1 and repeated here for easy

reference:

f(d
4d) = f(d)


f(4d)

where

• f is a view query,

• d is an XML document,

• 4d is the new content being inserted into d,

• f(d) is result of evaluating query f on document d, i.e. f(d) creates a

materialized view, and

•  is a special union operation (also called deep union in [22]) on XML

Trees which has the same end result as an insert operation.

4Note that our approach only handles insert operations where the content is explicitly
specified via insert content, and not via variable bindings.

5This property is valid only for unordered XML documents
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Thus, for an insert of new content 4d into the base document, a mate-

rialized view defined on it can be maintained as follows:

1). Evaluate the view query on the new content4d.

2). If this evaluation does not return any result, the insert is not relevant

to the materialized view.

3). Else, insert the result of view query evaluation into the the material-

ized view.

The XPath expressions in a view query conform to the document struc-

ture of the base document and hence applying it as-is on the new content

being inserted will yield incorrect results in most cases. We hence use the

document structure information available in XPath expressions of the view

query, and the insert content available in the update node to generate a new

temporary XML document on which the view query can execute. For ex-

ample, the XML document for XPath expression a//b/c will have element

’a’ as the root node, with element ’b’ as its child node, and element ’c’ as its

grand child node. The location of the insert content in this generated docu-

ment is determined by the XPath of the view query’s VarTree node which

maps to the insert node’s parent node 6. This generated XML document has

structural resemblance to the base XML document. The view query is then

evaluated on this newly generated document. If this query evaluation does

not return any results, the insert operation is not relevant to the material-

ized view. This outcome is the same as view re-computation not resulting

6Mapping of View Query and Update Query VarTree nodes is explained in Section 3.3.1
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in any change in the materialized view. If however, the query evaluation

returns some results, the update query is relevant to the view query and

the query evaluation results can be used to update the materialized view.

The size of this generated document is likely to be much smaller than

that of the base XML document. This smaller sized document, along with

the fact that this query execution happens locally within the ACE-XQ cache

does not add any significant overhead to the query analysis procedure as

we show in our experiments later.

3.3.3 VarTree Node Mappings for Query Containment

Note: The contents of this subsection have been adapted from [4].

We extend the traditional tree homomorphism (namely based on root,

label, and ancestor-descendant relationship preserving) to define the MAC

mapping.

Definition 3.4. Suppose V T1 and V T2 are the minimal VarTrees of Q1 and Q2

respectively. For determining Q1v Q2, there must be a MAC mapping from

V T1 to V T2, denoted by Φ(V T1) = V T2, such that the following conditions are

satisfied:

1). C1 : roots(V T1) � roots(V T2),

2). C2 : for any node u2V T1, there is a match Φ(u)2V T2 such that T (u)=

T (Φ(u)) if Φ(u) is a var node, and T (u)<:T (Φ(u)) if Φ(u) is a ret node

(T returns the type of the element, and <: denotes the subtype-supertype

relationship),



3.3. UPDATE QUERY ANALYSIS 53

3). C3 : u is an ancestor of v for all u, v 2 V T1 if and only if Φ(u) is an ancestor

of Φ(v) in V T2, and

4). C4 : if u is a var node in V T1, then Φ(u) is either a var or a ret node; if u is

a ret node, then Φ(u) must be a ret node.

Below we explain each of these required conditions.

C1: Root inclusion7. This condition requires that each source XML doc-

ument referred to in Q1 must also be referred to in Q2. Correspondingly in

the VarTrees, roots(V T1) returns the URLs of the source XML documents

involved in Q1, which should be a subset of those returned by roots(V T2).

C2: Mapping of element types. This condition requires a total but not

necessarily injective mapping from nodes in V T1 to those of V T2. In ad-

dition, a node u in V T1 must be mapped to a node in V T2 that has either

the same type or a supertype8 of u’s depending on if the matched node is

a var node or a ret node. The element type of a node can be inferred from

the XPath expression on its incoming derivation edge. u can be mapped to

a super-type ret node Φ(u) because the associated bindings of Φ(u) are all

deeply returned (due to the semantics of a return expression) to enable the

retrieval of u’s bindings from subtrees of Φ(u)’s bindings in Q2’s result.

C3: Preservation of ancestorships. In a minimal VarTree, nodes repre-

sent essential variables and the HMVDs among them are captured by their

ancestor-descendant relationships. Therefore, if all the ancestor-descendant

7Our technique allows a query to involve more than one XML document. In this case,
the corresponding VarTree is actually a forest of trees, which may be connected by equality
conditions on variables across trees.

8Here the concept of subtype-supertype is not the same as those in the object-oriented
modeling domain. Instead, it corresponds to the element inclusion hierarchy in the DTD.
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relationships in V T1 have correspondence mappings in V T1, then it means

that the to-be-utilized HMVDs required by Q1 are all preserved by Q2 and

also present in Q2’s result.

C4: Correspondence of construct types. This condition checks the cor-

respondence between query construct types. A var node represents a for

expression while a ret node denotes a return expression. The bindings

of a ret node are definitely returned whereas those of a var node may be

used for constructing new elements correspondingly. Therefore, a var node

can be mapped to a ret node and still get the correct bindings, while a ret

node cannot be mapped to a var node since the new elements in Q2’s result

rather than the original bindings would be returned in doing so.

We can see from the above conditions that the MAC mapping ensures

that all the essential variable bindings, the HMVDs among them, and their

attached returns required by Q1 are preserved in the result of Q2.

MIC Mapping

In addition to the MAC mapping, we need to check if the binding set of

each node in V T1 is indeed a subset of that of its match in V T2. This is

guaranteed by the MIC mapping, which essentially checks XPath contain-

ment.

Definition 3.5. Let V T1 and V T2 be the minimal VarTrees of Q1 and Q2 respec-

tively. Suppose Φ(V T1)=V T2 according to the MAC mapping. In MIC map-

ping, tree homomorphism is checked between the encapsulated navigation patterns

for each pair of matched nodes. Two steps are carried out for each node u in V T1:
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1). If u 62 roots(V T1), concatenate the XPath expressions along the path from

Φ(parent(u)) to Φ(u);

2). Assume that the XPath expression on the derivation edge of u is p1 and

the one obtained from step (1) is p2. p1 � p2 is checked with � denoting

XPath containment (i.e., there is a tree homomorphism from the pattern tree

representation of p2 to that of p1
9).

3.3.4 VarTree Node Mappings for View Self Maintenance

Similar to VarTree node mappings for query containment in section 3.3.3,

we define VarTree node mappings for view self maintenance as follows:

Definition 3.6. Suppose V T1 and V T2 are the minimal VarTrees of update query

U1 and view query Q1 respectively. For determining relevance of U1 to Q1, there

must be a MAC mapping from V T2 to V T1, denoted by Φ(V T2) = V T1, such

that the following conditions are satisfied:

1). C1 : roots(V T2) � roots(V T1),

2). C2 : ρ(v) � ρ(Φ(v)) where v 2 V T2, the ρ function returns the XPath

binding of a VarTree node, and the ’�’ operator denotes XPath containment.

3). C3 : v can be either a var node or a ret node in V T2, but Φ(v) is always a

var node in V T1,
9Our XQuery fragment allows XPath(//,*,[]), for which the complexity of containment

is CoNP-complete. However, the XPath containment complexity is reduced to PTIME if
only two out of the three features are included. We refer the readers to [15] for the details
of XPath containment.
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4). C4 : u is an ancestor of v for all u, v 2 V T2 if Φ(u) is an ancestor of Φ(v)

in V T1 or if Φ(u) = Φ(v), and

5). C5 : If Φ(v) exists, then for any descendant node ω of Φ(v), ρ(v) * ρ(ω)

C1: Root inclusion10. This condition requires that each source XML

document referred to in Q1 must also be referred to in U1. Correspondingly

in the VarTrees, roots(V T2) returns the URLs of the source XML documents

involved in Q1, which should be a subset of those returned by roots(V T1).

C2: MIC Mapping. This condition is identical to the condition of MIC

mapping used for query containment. It states that for a MAC mapping

(Φ) to exist between the VarTree nodes of V T2 and V T1, there must also

exist containment between their XPath expressions. Note that the direction

of MAC mapping for view self-maintenance is from the contained XPath

expression to the container XPath expression.

C3: Mapping of element types. In VarTree mappings for view self

maintenance we map the var and ret nodes of the view query VarTree only

to var nodes in the update query VarTree. The update nodes in the update

query VarTree are analyzed separately after this MAC mapping process is

completed.

C4: Preservation of ancestorships. This condition ensures that each

variable node in the view query VarTree is mapped to a node in the subtree

of its parent’s mapping node in the update query VarTree. This is useful

in restricting the scope of the tree to search for a mapping node during

10Our technique allows a query to involve more than one XML document. In this case,
the corresponding VarTree is actually a forest of trees, which may be connected by equality
conditions on variables across trees.
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the analysis algorithm and results in improved performance of the analysis

algorithm from Section 3.3.5.

C3: Depth of mapped node. The MAC mapping process in Figure 3.8

traverses the view query VarTree and tries to map nodes which satisfy the

MIC mapping condition (C2). But because of the variable dependencies

in VarTrees, ρ(v) � ρ(Φ(parent(v))) where v is any node in view query

VarTree. In other words, a node can always be mapped to it’s parent’s

(or any ancestor’s) mapping node. This can result in multiple nodes in

view query VarTree mapping to a single node in the update query VarTree.

To prevent such mappings, we require that a view query VarTree node be

mapped to the deepest possible update query VarTree node for which the

MIC mapping condition (C2) holds true.

We would like to note again that the direction of MAC mapping for

view maintenance is from the view query VarTree to the update query

VarTree, i.e. from the contained nodes to the container nodes. This di-

rection may seem contrary to the direction of MAC mapping used in query

containment in section 3.3.3, but it makes the query analysis algorithm sim-

pler.

3.3.5 The Analysis Algorithm

The analysis algorithm uses the following pre-defined functions:

• Φ(node): Returns the VarTree node to which the specified VarTree node

is mapped. This is the MAC mapping function explained in the pre-

vious section.
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• ρ(node): Returns the XPath expression of the specified VarTree node.

• T (node): Returns type of the specified VarTree node. Possible return

values are ret, var , del, or ins corresponding to return, variable, delete,

or insert nodes respectively in a view or update query’s VarTree.
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Procedure: UpdateQueryAnalysis
Input: Essential VarTrees V T1 and V T2 of update query and view query respectively.
Output: A modified update query VarTree, VT, with only relevant updates, or an empty VarTree for

a non-relevant input update query, or null when relevance analysis is non-determinable.
Begin Procedure:
01: boolean goDeeper = false
02: V T = Copy of V T1 /* Now VT = Update Query VarTree */
03: Map root node of V T2 to root node of V T1

04: foreach node v in preorder traversal of V T2 do
05: if Φ(parent(v)) does not exist then /* Parent of u is not mapped */
06: continue
07: endif
08: foreach var node ω in preorder traversal of subtree of Φ(parent(v)) do
09: if XPath containment between v and ω is undecidable then
10: return null
11: elseif ρ(v) * ρ(ω) then
12: if ρ(ω) * ρ(v) then
13: continue /* Completely separate XPaths, so skip */
14: elseif T (v) == var then
15: return null /*Non determinable case */
16: endif
17: endif
18: foreach child ψ of ω do
19: if ρ(v) � ρ(ψ) then
20: goDeeper = true
21: break
22: end if
23: end foreach
24: if goDeeper == true then
25: continue
26: else
27: Φ(v) = ω /*Mapping found, map u to ω */
28: goDeeper = false
29: break
30: end foreach
31: end foreach
32: Delete all update nodes in VT with parent nodes not mapped
33: foreach update node u in V T do
34: AnalyzeUpdateNode(u)
35: if u.status == non-determinable then
36: return null
37: endif
38: end foreach
39: Delete all non-relevant delete and insert nodes in VT.
40: return V T

End Procedure

Figure 3.8: Update Query Analysis Algorithm
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Procedure: AnalyzeUpdateNode
Input: Update node u in VarTree of update query U1, VarTree representations

V T1 and V T2 of update query U1 and of view query Q2, respectively;
Output: Sets the status of update node as either relevant, notrelevant or

non-determinable
Begin Procedure:
01 if parent(u) is mapping of a ret node in V T1 then
02 u.status = relevant
03 return
04 end if
05 if T (u) == del then
06 foreach node ω in postorder traversal of subtree of Φ�1(parent(u)) do
07 if XPath containment between u and ω is undecidable then
08 u.status = non-determinable
09 return
10 elseif ρ(ω) * ρ(u) then
11 if ρ(u) * ρ(ω) then
12 continue /* Completely separate XPaths, so skip */
13 elseif T (ω) == var then
14 u.status = non-determinable
15 return
16 endif
17 endif
18 u.status = relevant
19 return
20 end foreach
21 if u.status == null then
22 u.status = notrelevant
23 return
24 end if
25 else if T (u) == ins then
26a Generate XML document using XPath expression of

Φ�1(u) and the insert content of u
26b Evaluate XML View query on this generated document.
26c If query evaluation does not return anything, this

insert is not relevant to the view. Else the result of
query evaluation is the content which is relevant to the view.

27 end if
End Procedure

Figure 3.9: Update Node Analysis Algorithm
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The general idea of the algorithm in Figure 3.8 is as follows: For each

node (v) in the view query VarTree find a var node (u) in update query

VarTree such that v � u. If such a node exits, then Φ(v) = u i.e. a MAC

mapping is established from v to u. After such MAC mappings have been

established, the algorithm analyzes each update node in the update query

VarTree individually. The details of the query analysis algorithm in Figure

3.8 are as follows:

• This algorithm takes the VarTree representations of an update query

(V T1) and view query (V T2) as inputs. The output is a modified up-

date query VarTree which is relevant to the view query. If the output

is an empty VarTree it means that the update is not relevant to the

view query. If the output is null, it means that the analysis algorithm

cannot determine if the query is relevant or not.

• Line 02 creates a copy of the original update query VarTree. This

leaves the original VarTree undisturbed.

• Line 03 maps the root nodes of the two VarTrees. Whenever two

queries operate on the same XML document this mapping is valid.

• Lines 04 through 31, iterate and process each variable node (v) in the

view query VarTree as follows:

– Each node in a view query VarTree is derived from its parent

node due to the variable binding dependencies. If the parent

of a variable node has not been mapped, then the child node

also cannot be mapped. We skip processing of such a node and
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continue with the analysis of the next variable node. This is done

in lines 05 through 07.

– We then try to find a mapping node for view query node (v) by

searching each node (ω) in the subtree of the node to which the

parent of v has been mapped. If XPath containment is undecid-

able for any of these nodes, then view self maintenance is not

possible either and we return a null value (line 10). The two if

conditions on lines 11 and 12 check if the Xpaths of ω and v are

completely separate, i.e. there is absolutely no containment rela-

tionship between them. If they are, skip the node and continue

with the analysis of next node in the update query subtree. The

if condition on line 14 checks for non-determinable cases where

the XPath of ω (update query variable node) is contained in the

XPath of v (view query variable node) and returns a null value

for such a case.

– Lines 18 through 30 ensure that we find the deepest possible

mapping node for v from the update query subtree. This satisfies

Condition 5 of the MAC mapping described in section 3.3.4.

• Line 32 deletes all unmapped variable nodes and their children from

the update query VarTree. This leaves only the possibly relevant up-

date nodes in the update query VarTree.

• Lines 33 through 38 analyze all update nodes in the update query

VarTree as explained in procedure in Figure 3.9. If analysis for any of

the nodes is non-determinable, a null value is returned.
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• Finally, we delete all update nodes marked as non-relevant in the

update query VarTree (VT) and return the modified update query

VarTree.

The update node analysis algorithm of Figure 3.9 works as follows:

• The input to the algorithm is the update node (u) to analyze, an up-

date query VarTree (V T1) and a view query VarTree (V T2). This algo-

rithm will set the status of this node as either relevant, notrelevant,

or non-determinable.

• If the parent node of update node u is mapped to a return node in the

view query VarTree, then the update is relevant.

• Determining relevance of delete nodes is very similar to the mapping

of variable nodes in the analysis procedure of Figure 3.8.

• Insert nodes are processed as explained previously in section 3.3.2

3.4 Update Query Rewriting

Query rewriting is generally classified into two types, viz. Syntactic Query

Rewriting, and Semantic Query Rewriting. Syntactic rewriting primarily

involves rewriting the structure of the query, while semantic rewriting in-

volves query rewriting using additional information like schema, indexes,

materialized views, integrity constraints etc.

We define a syntactic query rewriting procedure to convert a relevant

update query on the base document into an update query on a material-

ized view. By replacing path expressions in the original update query with
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Procedure: RewriteUpdateQuery
Input: VarTree Representation of Update Query and TagTree

representation of view query
Output: VarTree Representation of rewritten update query, or null

if re-writing is not possible
Begin Procedure:
01 foreach node n in VarTree do
02 String m = GetMappingPath(tagtree.rootNode(), n.xpath())
03 if m is null then
04 return null
05 else
06 String p = GetMappingPath(tagtree, (parent(n)).xpath())
07 if p.length > 0 then
08 Replace xpath expression of edge incident on n with
09 m.substring(p.length(), m.length())
10 else
11 Replace xpath expression of edge incident on n with
12 empty string
13 end if
14 end if
15 end foreach
16 Delete all nodes with empty xpath labels on edges incident to them
End Procedure

Figure 3.10: Procedure RewriteUpdateQuery

their equivalent paths in the materialized view, we get a new update query

which when executed on a materialized view will synchronize it with the

changes in base document. For performing this rewriting, we make use

of the TagTree data structure which stores the output restructuring infor-

mation of a view query. Figure 3.11 shows an algorithm for calculating

mapping paths from a TagTree. The rewriting algorithm of Figure 3.10 uses

this algorithm to rewrite update query VarTrees.
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Procedure: GetMappingPath
Input: node ω, root node of a TagTree, and xpath the Xpath whose
mapping path is to be found
Output: The mapping XPath for input xpath, or an empty string if none
found, or null if finding mapping path is not possible
Begin Procedure:
01 String newpath = ””
02 if Xpath containment between xpath and ρ(ω) is undecidable then
03 return null /*Undecidable*/
04 else if ρ(ω) * xpath and xpath * ρ(ω) then
05 return newpath /*No mapping exists*/
06 else if ω is a leaf node then
07 if xpath � ρ(ω) then
08 newpath = newpath + ”/” + deepCopy(xpath, ρ(ω))
09 else
10 newpath = newpath + ”/” + ρ(ω)
11 end if
12 else
13 newpath = node.tags /*Add the node’s tags to the xpath*/
14 if ρ(ω) * xpath then
15 foreach child in ω.children()
16 String childpath = GetMappingPath(child, xpath)
17 if childpath is null then
18 return null
19 else if childpath.length > 0 then
20 newpath = newpath + ”/” + childpath
21 end if
22 end foreach
23 end if
24 end if
25 return newpath
End Procedure

Figure 3.11: Algorithm to get mapping paths from a TagTree
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3.5 Complexity Analysis of Analysis Algorithm

We now discuss the time complexity of our Update Query Analysis algo-

rithm. The two primary costs involved in this analysis are

• Cost of MAC Mapping, and

• Cost of analyzing update nodes.

3.5.1 Cost of MAC Mapping

MAC mapping tries to map nodes in the view query VarTree to nodes in

the update query VarTree, based on their XPath containment relationship.

MAC mapping thus involves VarTree traversals and checking for XPath

containment.

VarTree Traversals Due to variable binding dependencies 11 in the VarTree

representations of queries, the traversals during MAC mapping are down-

ward only. This downward-only direction of traversal and mapping pro-

gressively limits the scope of update query VarTree to search for possible

mapping nodes. On an average, each node in the view query and update

query VarTree is traversed only once.

XPath Containment Checking Chapter 2 presents a summary of results

from XPath containment. In this thesis, we use a subset of XPath which is

amenable to PTIME containment checking 12.

11Recall that each variable node in a VarTree is derived from it’s parent node.
12XPath expressions using any two of the the three operators from XP [/.[], //] are

amenable to PTIME containment checking
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From the above two costs, we can easily see that the overall complexity

of the analysis algorithm is polynomial in the number of nodes of the view

query and update query VarTree, i.e. polynomial in the number of essential

variables in the two queries.

3.5.2 Cost of Analyzing Update Nodes

Delete Nodes can be analyzed solely based on XPath containment tech-

niques and hence the only cost involved is that of XPath containment check-

ing of the delete node with view query nodes.

Insert Nodes require additional handling as explained in Section 3.3.2. In

addition to XPath containment, our analysis of insert nodes requires

• Generation of a temporary XML document based on XPath expres-

sion in the view query.

• Evaluating the view query on this temporary XML document.

Due to the small sizes of the XPath used for generating the temporary XML

document and also the size of the document, the cost of this process is neg-

ligible when compared even to the cost of XPath containment. The results

of our experiments in Chapter 4 confirm this analysis. Thus, even for insert

nodes, the cost of analysis is the same as that of XPath containment which

is polynomial in the size of the XPath expressions.

Thus, the complete cost of the analysis algorithm is polynomial in the

size of the essential variables and update operations in the view and update

queries.
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3.6 Examples

We now explain our solution with several examples. In all these exam-

ples, we will use a document conforming to the XMark Schema and the

view query example from Chapter 2. Recall that the view query outputs

the buyer and price information of all sold items costing more than $1000.

The view query definition is repeated in Figure 3.12 for easy reference. We

focus our examples on update operations for elements. Attributes, com-

ments, processing instructions etc. are handled similar to elements and

do not need special explanation. Also, in these examples we explain the

three possible outcomes of query analysis (relevant, notrelevant, and non-

determinable) for both delete and insert operations, i.e. we consider six

possible cases in these examples.

<result>
FOR $item IN doc(“auctions.xml”)/site/closed_auctions/closed_auction[price>1000]
RETURN
<entry>
{

$item/buyer, $item/price
}
</entry>
</result>

Figure 3.12: Normalized View Query used in examples
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3.6.1 Case 1: Relevant Delete Operation

If a user wants to delete home-page information of all buyers of sold items,

the update query for that is shown in Figure 3.13. This update query is

clearly relevant to the view defined in 3.12 because it updates information

returned by the view query.

FOR $solditem IN doc(“auction.xml”)/site/closed_auctions/closed_auction
UPDATE $solditem
{

DELETE $solditem/buyer/homepage
}

Figure 3.13: Relevant Delete Query

The VarTree representation of this update query is as shown in Figure

3.14. In this VarTree the leaf node represents the delete operation, the vari-

able bindings are represented by non-leaf nodes and edges are labeled the

XPath expressions corresponding to the variable nodes. As a convention,

the root node of the VarTree is always bound to the document’s root node.

To determine relevance of this query to the view query, we perform

the MAC mapping procedure outlined in Figure 3.8. This results in three

mappings between the two queries as shown in Figure 3.15.

1). Mapping 1 exists between the two root nodes because the two queries

operate on the same base document

2). Mapping 2 exists because the XPath for $solditem node in the view

query’s VarTree is a subset of the XPath of $solditem node in the up-

date query’s VarTree.
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$root

$solditem

delete

/site/closed_auctions/closed_auction

Doc(“auction.xml”)

/buyer/homepage

Figure 3.14: VarTree representation of query in Figure 3.13
Figure

3). To analyze the delete node, we search the subtree of view query rooted

in $solditem for XPath containment relationship between the sub-

tree nodes and the delete node. In this case, the XPath expression of

delete node is contained in the XPath expression of return node $sol-

ditem/buyer. This containment relationship means that the delete

operation deletes some nodes returned by the view query. Hence this

delete node will be marked as relevant by the analysis procedure.
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$root

$solditem

delete

/site/closed_auctions/closed_auction

Doc(“auction.xml”)

/buyer/homepage

$root

$solditem

$solditem/buyer

/site/closed_auctions/closed_auction[price > 1000]

Doc(“auction.xml”)

$solditem/price

/buyer /price

Mapping 1

Mapping 2

Relevant Delete

Mapping 1: The two queries operate on the same document
Mapping 2: “/site/closed_auctions/closed_auction[price > 1000]” is contained in 
“/site/closed_auctions/closed_auction”

Relevant Delete: “/buyer/homepage” is contained in “/buyer” hence delete is relevant

Update Query VarTree View Query VarTree

Figure 3.15: VarTree mappings for Case 1

3.6.2 Case 2: Non Relevant Delete Operation

Consider an update query which deletes the annotation description for a

sold item. The update query for such a delete is shown in Figure 3.16.

Clearly, this query does not affect any data in the materialized view and is

hence is not relevant.

FOR $solditem IN doc(“auction.xml”)/site/closed_auctions/closed_auction
UPDATE $solditem
{

DELETE $solditem/annotation/description
}

Figure 3.16: Non Relevant Delete Query

This query can be decomposed into its VarTree representation as shown
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in Figure 3.17.

$root

$solditem

delete

/site/closed_auctions/closed_auction

Doc(“auction.xml”)

/annotation/description

Figure 3.17: VarTree representation of query in figure 3.16

To determine relevance of this update query, we again perform an MAC

mapping procedure between the nodes of the view query VarTree and the

update query VarTree. This mapping is shown in Figure 3.18. The variable

node $solditem gets mapped similar to the previous case. Notice that this

time, for the delete node in the update query VarTree:

1). The XPath of the delete node is not contained in the XPath of any

return node path.

2). No XPath in the view query is equivalent to or completely contained

in the XPath of the delete node.

This means that the delete operation does not affect any elements returned

by the view query in the materialized view. Hence the analysis procedure

marks this query as notrelevant.
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$root

$solditem

delete

/site/closed_auctions/closed_auction

Doc(“auction.xml”)

/annotation/description

$root

$solditem

$solditem/buyer

/site/closed_auctions/closed_auction[price > 1000]

Doc(“auction.xml”)

$solditem/price

/buyer /price

Mapping 1

Mapping 2

No containment,
Not Relevant

Mapping 1: The two queries operate on the same document
Mapping 2: “site/closed_auctions/closed_auction[price > 1000]” is contained in
“/site/closed_auctions/closed_auction”. 
Non Relvant Delete: Containment does not exist for delete node, hence not relevant

Update Query VarTree View Query VarTree

Figure 3.18: VarTree mappings for Case 2

3.6.3 Case 3: Non-determinable Delete Operation

Consider an update query similar to that in case 1, except that here we

delete home-page information of all buyers of sold items costing more than

$5000. The update query for such a delete is shown in 3.19.

FOR $solditem IN doc(“auction.xml”)/site/closed_auctions/closed_auction[price > 5000]
UPDATE $solditem
{

DELETE $solditem/buyer/homepage
}

Figure 3.19: Non-Determinable Delete Query

This query can be decomposed into its VarTree representation as shown

in 3.20
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$root

$solditem

delete

/site/closed_auctions/closed_auction[price > 5000]

Doc(“auction.xml”)

/buyer/homepage

Figure 3.20: VarTree representation of query in figure 3.19

Also consider a slightly modified view query which returns the buyer

information and the quantity of items bought instead of price of the item.

To determine relevance of this update query, we again perform a MAC

mapping procedure between the nodes of the view query VarTree and the

update query VarTree. This mapping is shown in 3.21. Notice that due

to the predicates on the price element, the $solditem variable node in the

update query is contained within the $solditem variable node of the view

query. Hence as explained in section 3.3.5 the analysis procedure will not

be able determine the exact elements to delete from the materialized view.

Thus, this specific case becomes non-determinable for the analysis algo-

rithm. The materialized view will have to be recomputed for such an up-

date query.

The original view query used in all other examples contains a filter on

price element in the variable binding of $solditem and price element is re-
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$root

$solditem

delete

/site/closed_auctions/closed_auction[price > 5000]

Doc(“auction.xml”)

/buyer/homepage

$root

$solditem

$solditem/buyer

/site/closed_auctions/closed_auction[price > 1000]

Doc(“auction.xml”)

$solditem/quantity

/buyer /quantity

Mapping 1

Update Query XPath contained in
View Query XPath, no MAC mapping

possible

Mapping 1: The two queries operate on the same document
Non-Determinable Case: “/closed_auctions/closed_auction[price > 5000]” (update query XPath) is contained 
in “/closed_auctions/closed_auction[price > 5000 ]” (view query XPath), hence non-determinable case.

Update Query VarTree View Query VarTree

Figure 3.21: VarTree mappings for Case 3

turned by the view query. In such a case, even if the update query variable

binding is contained in the view query, the materialized view has enough

information for analysis to determine the exact elements to delete. Our

approach can certainly be extended to handle such special cases.

3.6.4 Case 4: Relevant Insert Operation

Figure 3.22 shows an update query which adds a newly closed auction into

the auctions database. The VarTree decomposition of this query is shown

in Figure 3.22. The first step is to establish MAC mappings between the

nodes of the view query and those of the update query VarTree. The queries

operate on the same XML document, the root nodes map. The closeditem

variable node in view query maps to the ca node in the update query since
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there is containment relationship between the XPaths of these nodes.
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FOR $ca IN doc(“auction.xml”)/closed_auctions
UPDATE $ca
{

INSERT
<closed_auction>
<item><name>Ship Starlight</name></item>
<price>1050</price>
<buyer>

<name>Jack Gambini</name>
<creditcard>7657 7675 9786 4592</creditcard>

</buyer>
<seller><name>Assef Muniz</name></seller>
<date>08/29/2005</date>
</closed_auction>

}

Figure 3.22: An Insert Query relevant to View Query in Figure 3.2

$root

$ca

/site/closed_auctions

Doc(“auction.xml”)

insert

<closed_auction>
<item>
<name>Ship Starlight</name>
…
</closed_auction>

Figure 3.23: VarTree representation of query in Figure 3.22
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$root

$solditem

$solditem/buyer

/site/closed_auctions/closed_auction[price > 1000]

Doc(“auction.xml”)

$solditem/price

/buyer /price

$root

$ca

/site/closed_auctions

Doc(“auction.xml”)

<closed_auction>
<item>
<name>Ship Starlight</name>
…
</closed_auction>

insert

Update Query VarTree View Query VarTree

Mapping 1

Mapping 2

Mapping 1: The two queries operate on the same document
Mapping 2: “site/closed_auctions/closed_auction[price > 1000]” is contained in
“/site/closed_auctions”.

Figure 3.24: VarTree mappings for Case 4

These mappings are shown in Figure 3.24. The next step is to determine

the relevance of the insert operation. For this, notice that the content is

being inserted at location

/site/closed auctions

in the document. This XPath location corresponds to the node $sol-

ditem in the view query. We can use this XPath location information from

the view query and the insert content from the update query to generate

a new XML document as shown in Figure 3.25. In this figure, the insert

content from the update query is in the gray box, while the rest of the XML

elements have been generated using the XPath expression of $solditem i.e.

(/site/closed auctions) variable binding in the view query.
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<site>
<closed_auctions>
<closed_auction>

<item><name>Ship Starlight</name></item>
<price>1050</price>
<buyer>

<name>Jack Gambini</name>
<creditcard>7657 7675 9786 4592</creditcard>

</buyer>
<seller><name>Assef Muniz</name></seller>
<date>08/29/2005</date>

</closed_auction>
</closed_auctions>
</site>

Figure 3.25: Generated Document For analyzing insert query in Figure 3.22

Next, we evaluate the view query on this generated document shown

in Figure 3.25. The result of this evaluation is shown in Figure 3.26. Since

the result is not empty, the insert query is relevant to the view and Figure

3.26 shows the actual insert content to update the materialized view

<result>
<entry>
<buyer>

<name>Jack Gambini</name>
<creditcard>7657 7675 9786 4592</creditcard>

</buyer>
<price>1050</price>
</entry>

</result>

Figure 3.26: Result of evaluation view query on the generated document of
Figure 3.25
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3.6.5 Case 5 Non Relevant Insert Operation

An update query could be non-relevant to a materialized view in either of

the following two cases:

• Absence of XPath containment between view query and update query

VarTree nodes

• Insertion of not-relevant content

An example for absence of XPath containment is already considered in

Case 2 for non-relevant delete operation. To understand how we eliminate

queries where the insert content is not-relevant, you can re-work the exam-

ple in Case 4 with price 900 instead of 1050. You will notice that the result

of evaluating the view query on the generated document in this case does

not contain any elements from the original elements being inserted. Hence

we can conclude that such a query is not relevant to the materialized view.

3.6.6 Case 6: Non determinable Insert Operation

Consider an update query which adds a new annotation for a closed auc-

tion where the buyer bought more than 5 items named ”Ship Starlight”.

Such an update query is shown in 3.27. If you work out the MAC mapping

procedure for this example, you will notice that the containment relation-

ship between the XPath expressions of $ca node of the update query and

$item node of the view query is undecidable. Hence it is also not possi-

ble to determine if this update query is relevant to the view or not. The

materialized view will have to be recomputed in this case.
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FOR $ca IN doc(“auction.xml”)/site/closed_auctions
WHERE $ca/item/name=“Ship Starlight” and $ca/quantity>5
UPDATE $ca
{

INSERT
<annotation>

<description>This buyer really likes paintings by Fitz Hugh Lane!</description>
</annotation>

}

Figure 3.27: Non determinable insert query

3.6.7 Case 7: Other Undeterminable Updates

Update queries which modify the parent elements of returned elements

elements thereby causing their child elements to be relevant or not relevant

to the view query cannot be handled by our approach.

3.6.8 Update Query Rewriting Example

In this final example, we explain the update query re-writing procedure.

Figure 3.28 shows the TagTree representation of the View Query in Figure

??. Each internal node in the TagTree represents a new element construction

in the view query, and each leaf node corresponds to a return expression.

Using this TagTree structure, the algorithm in Figure 3.11 can be used to

find paths of elements in the materialized view from their original XPaths

in the base document.

Once an update query is determined relevant to a materialized view,

the query-rewriting algorithm rewrites it into an update query on the ma-

terialized view. The rewriting algorithm replaces each XPath in the original

update query with its corresponding XPath in the materialized view. For
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{$root, <result>}

$item/price$item/buyer

{$item, <entry>}

Doc(“auction.xml”)

/site/closed_auctions/closed_auction[price>1000]

/buyer /price

Figure 3.28: TagTree Representation of View Query in Figure 3.2

example, we repeat the VarTree representation of a relevant delete query in

Figure 3.29

$root

$solditem

delete

/site/closed_auctions/closed_auction

Doc(“auction.xml”)

/buyer/homepage

Figure 3.29: VarTree of relevant Delete operation

The path mappings for this update query are as shown in Table 3.1

Using these path mappings, the re-written update query VarTree is shown

in Figure 3.30. This update query when executed on the materialized view
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Original Path New Path
/site/closed auctions/closed auction(= $a) /result

$a/buyer/homepage /result/entry/buyer/homepage

Table 3.1: Path Mappings for Update Query in Figure 3.29

will synchronize it with the base document.
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$root

$tmp1

delete

/result

Doc(“mv.xml”)

/entry/buyer/homepage

FOR $root in doc(“mv.xml”)
Update $root {

FOR $tmp1 in $root/result
Update $tmp1 {

Delete $tmp1/entry/buyer/homepage
}

}

Figure 3.30: Rewritten Update Query
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Chapter 4

System Implementation and

Experiments
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System Implementation and

Experiments

In this chapter we explain the system we built and the experiments we

conducted to validate our ideas on view self maintenance.

4.1 System Implementation

Our View Self Maintenance system has been built and integrated into the

ACE-XQ semantic caching system. Figure 4.1 shows the ACE-XQ System

Architecture. The various components of this system are:

The Query Parser is responsible for parsing user input X-Queries. ACE-

XQ has been prototyped using two query engines, viz. Kweelt [26] and

IPSI-XQ [17]. The output of the query parser is then intercepted by the

Query Decomposer which does the three steps involved in query pre-precessing,

viz., variable minimization, query normalization, and query decomposition. The

query decomposition process outputs the VarTree and the TagTree repre-

sentations of an input XQuery. The Query Pattern Register associates input
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queries with the cached query results. Various cache operations like cache

invalidation, cache region coalescing and splitting etc. are handled by the

Replacement Manager. The Query Containment Mapper performs the

important function of deciding containment between two queries. Depend-

ing on the result of the query containment mapper, the Query Rewriter

uses the query’s TagTree structure to decompose the input query into a

probe query (to retrieve answers from the cached local views), a remainder

query (to retrieve answers from the remote data sources), and a combining

query to make one complete answer.

Query Parser

Query Pattern
Register

Query Rewriter

View Results

XQueries

query
descriptor

probe query

remainder query

XML XMLXML
…..

Replacement Manager

Query Matcher Cache Manager

Query Interface

Query
Decomposer

Query Containment Mapper

Result Combiner

Region
Coalescer

query/cache
mappings

q1
q2

qn

Semantic Regions

V1 V2 Vn

…

semantics locality

remainder query result

combining  query

rID statistics View XMLDoc

Query Executor

Query Executor
remainder query result

Figure 4.1: The ACE-XQ System Architecture

The ACE-XQ system has been developed using two query engines viz.,
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Kweelt and IPSI-XQ. ACE-XQ uses the query engines’ query parsing ca-

pabilities, intercepts the output of the query parser and then does further

processing like query normalization, decomposition etc. For integrating

our view self-maintenance approach into ACE-XQ, we also need XML Up-

date functionality. The SafeXUpdate [18] project at WPI has implemented

the update query language of [28] into the Kweelt Query engine. We used

this modified version of the Kweelt query engine for our development and

testing.

Figure 4.2 shows the combined ACE-XQ system with both the view self

maintenance and the semantic caching components.

Update Query Parser View Query Parser

Query Decomposer
(View and Update Queries)

Query Pattern 
Register

Query Containment 
Mapper

Update Query 
Analyzer

Query Rewriter 
(View and Update Queries)

Query Interface

Update Query XQuery

Other ACE-XQ
Components

(Replacement Manager,
Semantic Regions and

Cache etc.)

Re-written Update
Query Remainder Query

Probe Query

Figure 4.2: The ACE-XQ Architecture with View Self Maintenance

The primary software components that we developed for view self main-
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tenance are:

1). Query Interface: We improved the Query Interface of ACE-XQ to

accept both view and update queries. Depending on the the user

input, the query interface inputs the user query either to the view

query parser or the update query parser.

2). Update Query Normalizer and Decomposer: Similar to the view

query processing, we intercept the output of the update query parser

to normalize it and decompose it into an update query VarTree. The

normalization and decomposition routines are very similar to those

of the view query.

3). Update Query Analyzer: We developed query analysis engine ac-

cording to the algorithm explained in Section 3.3. The analysis al-

gorithm examines nodes in both the update query and view query

VarTrees for determining containment between their XPath expres-

sions. We re-used the XPath containment routines developed in ACE-

XQ. Also, during analysis of INSERT nodes we construct an XML

document and evaluate the view query on this XML document. We

used the Kweelt Query engine itself for the query evaluation during

this analysis step.

4). Update Query Rewriter: The Query rewriting step utilizes the TagTree

structure of the view query. ACE-XQ Query Decomposer has the ca-

pability to decompose a view query into its equivalent TagTree repre-

sentation. From the TagTree component itself, we can find mapping
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paths in the materialized view and perform query rewriting using the

algorithms described in Section 3.4.

4.2 Experimental Setup and Results

The main objective of our experiments is to measure the performance of

view self maintenance as compared to recomputing the view for every up-

date. We measure these performance enhancements for both insert and

delete operations. The parameters to control and measure in our exper-

iments include the base document size, the size of the update, the view

query selectivity and also the location of update. In our experiments, we

vary one parameter at a time, keeping the others constant. Another pos-

sible factor to consider is the complexity of the view or the update query

(measured in terms of the number of variable binding dependencies and

the number of update operations). Intuitively, query analysis and re-writing

will cost more for complex queries than for simpler ones. However, in our

experimental setup we focus more on simpler view queries which do not

involve more than one level of variable binding dependencies and on up-

date queries which contain only one update operation. View Query pre-

processing is a one-time operation and update query analysis occurs in-

memory. For these reasons, we believe that the complexity of view and up-

date queries will unlikely affect the overall performance of our view main-

tenance strategy in a big way. Hence we do not consider the complexity of

queries as a parameter in these experiments.

In all our tests, we use data generated by the XMark benchmark data
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generator. The base document consists of several auctions related elements,

including ”person” elements which constitute about 10% of the entire doc-

ument size. The view query in all our experiments returns a subset of

”person” elements from the base document. The result of this view query

execution is stored as a materialized view on a local disk, while the base

documents used for querying are located on a remote host.

We conducted our experiments on a host running the Linux OS (RedHat

Linux 9.0, kernel version 2.4) with 256MB RAM and a 1.2 GHz Intel Pen-

tium 4 processor. The Linux OS was booted in run level 3 (multi-user, non

graphical mode) with only the essential OS services running. This setup

allowed a more controlled environment with little chance of interference

from other software services running on the system. In all our experiments,

we ran the tests seven times, discarded the minimum and maximum values

and averaged the remaining five readings.

4.2.1 Cost of single update operation

Figure 4.3 shows the cost of materialized view maintenance for a single

relevant insert or delete operation on the base document is much lesser

than the cost of recomputing the materialized view. In this setup, the base

document is about 1M in size, with 254 person elements.

It is important to understand the major parameters affecting these costs.

The view query engine evaluates queries by reading in the entire base doc-

ument, examining all elements and then selecting only the desired subset of

elements to form the query result. The update query engine also has a simi-

lar evaluation strategy. Thus, the size of the XML document on which these
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queries operate is a major determining factor in the view or update query

performance. Moreover, the I/O cost of reading the XML document from

a local disk or over a network usually outweighs the in-memory filtering

cost during query evaluation. For both disk based I/O and network I/O,

the total time for I/O directly depends on the amount of data transferred.

However, this is not a linear dependency due to one-time setup costs at the

beginning of a network I/O operation, or due to strategies like block-level

reading, buffering, and read-ahead pre-fetching commonly used by disk

drive controllers [25]. For example, doubling the amount of data trans-

ferred over an I/O channel will typically require less than twice the amount

of time, provided other parameters like disk/network queues lengths dur-

ing the I/O operation are similar. These factors explain why view self-

maintenance costs in Figure 4.3 are less than view re-computation. Also,

for view self maintenance, the cost of update query analysis is a small frac-

tion of the total cost as can been seen in Figure 4.8.

4.2.2 Effect of changing the document size

In these experiments, we vary the size of the base document (from 100KB

to 10MB) while keeping view query selectivity at 5% and performing only a

single update operation. Figure 4.4 show that view self maintenance again

outperforms view re-computation. In this figure we see that both the cost of

recomputation as well as view maintenance increase with an increase in the

base document size. However, the cost of view self maintenance is much

less than the cost of re-computation and the increase is also more gradual.

Another aspect to note is that a five-fold increase in the base document size
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Cost of Single Update Operation

0

1000

2000

3000

4000

5000

6000

7000

Recomputation Insert Delete

T
im

e 
(m

s)

Time (ms)

Figure 4.3: Cost of single Update Operation

(from 1M to 5M) does not translate into a five-fold increase in query evalu-

ation time due to the non-linear dependency between document sizes and

query evaluation performance explained in the previous experiment. Be-

yond a certain base document size (around 8MB on our system), the cost of

recomputation shoots up dramatically as the OS cannot allocate any more

main memory to the query engine process and it starts using disk based

virtual memory. We expect similar behavior even for view maintenance

when the materialized view size crosses the threshold size of about 8MB

on our system.



4.2. EXPERIMENTAL SETUP AND RESULTS 94

0

10000

20000

30000

40000

50000

60000

70000

80000

100K (24) 1M (254) 5M (1274) 10M (2499)

Doc Size (# of person elements)

T
im

e 
(m

s)
Recomputation Insert Delete

Figure 4.4: Test for changing document size

4.2.3 Effect of changing the view query selectivity

In these experiments, we measure the effect of changing view query selec-

tivity while keeping the base document size (5M) and update size (single

update) constant. Figure 4.5 shows the results for this test. In both cases,

as the view query selectivity increases, the cost of recomputation and view

maintenance also increases. Again, the cost of view maintenance is signifi-

cantly less than the cost of recomputation for both kinds of update.

4.2.4 Effect of changing the update size

In these experiments, we vary the number of elements affected by the up-

date operation from 5% to 30% for insert queries and from 2% to 8% for

delete queries while keeping other factors , i.e. base document size (5M)
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Figure 4.5: Test for changing view query selectivity

and view query selectivity (5%) constant. Figures 4.6 and 4.7 show the

results of these experiments. In case of insert operations, the cost of re-

computation as well as the cost of view maintenance increases as more ele-

ments are added to the base document. However, the recomputation costs

are much higher than the view maintenance costs. For delete operations,

the cost of recomputation decreases as more person elements are deleted

from the base document. View maintenance continues to outperform re-

computation even as a larger amount of the base document is deleted. The

reason for this is that base document contains some other elements other

than ”person” elements. Even when all the person elements are deleted

from the base document, the query engine we use, parses all these other

elements when recomputing the view. In a smarter query engine with in-
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dexing and query optimization features, we expect that the cost of examin-

ing other elements will be negligible. In such a case, we expect the cost of

view maintenance to be higher than the cost of recomputation when a large

portion of the base document is being deleted.
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Figure 4.6: Test for changing size of delete operation

4.2.5 Cost of Query pre-processing and Query Analysis

Figure 4.8 shows the cost of view query pre-processing and query analysis

(for a delete query) for the experiment in Figure 4.4 for five successive trials.

Query pre-processing cost involves reading and parsing the view query as

well as variable minimization, normalization, and decomposition. This is a

one-time cost for each view query in the ACE-XQ system. (We do not show

the query pre-processing cost for update queries as it is very similar). The
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cost of update query analysis is very small fraction of the overall processing

cost. For most practical queries, we expect the cost of query analysis will

remain a tiny fraction of the overall query processing cost.
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5.1 Related Research

Incremental maintenance of materialized views has been studied in signif-

icant detail in the context of relational databases [7, 19]. [16] presents a tax-

onomy of this problem based upon the class of views considered (Language

Dimension), upon the resources used to maintain the view (Information Di-

mension), upon the types of modifications to the base data that are consid-

ered during maintenance(Modification Dimension), and whether the tech-

nique works for all instances of databases and modifications (Instance Di-

mension). They also discuss several techniques in solving this problem

including the counting algorithms, algebraic differencing algorithms and

also algorithms like the DRed (Derivation and Reduction) algorithm, the

PF (Propagation/Filtration algorithm) and the Kuchenhoff algorithm for

maintaining recursive views.

The MultiView project examines views and their maintenance in ob-

ject oriented databases [20]. They use object oriented concepts like virtual

classes, class types, generalizations etc. to perform view maintenance.
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For XML Views there are two possible approaches to incremental main-

tenance of materialized XML views viz., algebraic[9, 12] and algorithmic [2,

36], The algebraic approach requires the existence of a formal query al-

gebra. In [12] an XML query is decomposed into an XML Algebra Tree

(XAT) consisting of elementary algebra operators like SELECT, TAG, NEST,

UNNEST etc. Operations like query execution, query optimization, as well

as incremental maintenance of materialized views is performed at this al-

gebra tree level.

The algorithmic approaches, by contrast rely on procedures to detect

relevance of updates to data sources and applies a corresponding change

on the materialized view. The approach in [2] is based on the XQL query

language and it maintains an index structure of OID’s affected during view

computation. This index structure is then used for view maintenance. APIX

[5] improves on this index structure to perform more efficient view main-

tenance. However, both these approaches are based on a simpler query

language (XQL) without much expressive power and output restructuring

capabilities. Moreover, they also assume unique Object Identifiers (OIDs)

for each XML element which may not be true for most XML databases. [36]

explain view maintenance of select-project graph structure views defined

as a collection of objects from a graph structured database. Their approach

also assumes unique OIDs and does not allow restructuring of elements in

the view. [21] developed WHAX (Warehouse Architecture for XML) which

uses a variation of XML-QL for view definition. Their approach to view

maintenance is based on the concept of multi-linearity of views which is

conceptually similar to our approach to handling insert operations. How-
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ever, the WHAX approach also uses local keys which can provide unique

object identifiers. More recently, other research projects also have explored

XML caching environments which are likely to require incremental view

maintenance. Both [23] and [34] primarily rely on caching of XPath expres-

sions rather than XQuery results as in ACE-XQ. The approach in [23] is

extended to handle a very limited subset of XQuery. Their caching system

has no support for incremental maintenance of materialized views. Also, in

[34] the term ”incremental maintenance” is used in the context of expiring

unused cached data rather than maintaining the materialized views in the

presence of updates to the base data.

The algebraic and algorithmic approaches require and assume avail-

ability of different amount of information during view maintenance. Hence

the size of the problems addressed by these approaches are different. The

algorithmic approaches tend to be view self maintenance approaches wherein

view maintenance is possible without access to the base documents. The al-

gebraic approach requires the existence of a formal algebra, and access to

the base documents when performing incremental view maintenance.
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Conclusion

We have presented an efficient and novel method for self maintenance of

materialized XML views using a Query Containment approach. We in-

vestigated this problem in the context of a semantic caching system called

ACE-XQ developed at the DSRG labs in WPI. We have exploited and ex-

tended the query containment and re-writing ideas developed for ACE-XQ

to solve this problem. Effective cache coherence can lead to major perfor-

mance improvements in a caching system. Our thesis work has demon-

strated that it is easy to develop and incorporate an effective cache coher-

ence strategy in a semantic caching system.

6.1 Results and Contributions of this Thesis

The primary contributions of this thesis are:

• We have proposed a unique approach to the self maintenance of ma-

terialized XML views using a query containment approach. To the

best of our knowledge, we are the first to investigate and use a query

containment approach for XML view maintenance.
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• We have proposed a view maintenance approach that relies solely on

the view and update query definitions, and data in the materialized

view itself. Other view maintenance strategies either require knowl-

edge of schema of the base document, assume the presence of unique

object identifiers [1, 37], or assume access to the base data [9]. While

the amount of information available during view maintenance has an

impact on the cases that can be incrementally maintained, the sim-

plicity of our approach does not restrict its usability. In practice, a

caching system can easily get around some of these restrictions by

having two layers of views where-in one layer consists of simpler,

self-maintainable materialized views and the other layer, on top of

the first one has complex non-materialized views.

• We believe that the concept of pattern matching used in our approach

can be effectively used for more complicated update and view queries.

This pattern matching can help detect non-relevant queries sooner in

the query analysis process and reduce the number of update queries

for further analysis. This filtering of non-relevant update queries

based entirely on pattern matching of queries can have very signif-

icant benefits for the average case performance of a caching system

like ACE-XQ.

6.2 Ideas for Future Work

Future work using our approach for view maintenance can be in two dif-

ferent directions: One is to improve the view maintenance approach itself
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by handling more cases. The other is to make it more useful by consider-

ing the practical problems involved like update notifications, transactional

updates, batched updates etc.

Currently we support the XPath fragment containing any two of ([],

//, *) operators. Our work eventually relies of the XPath containment and

recent work in this area [14] suggests that a wider fragment of XPath is

amenable for containment. We can use these results from the literature to

allow more types of queries. Moreover, we only consider queries on single

documents without joins, aggregates, or user defined functions. Extending

our approach to handle these queries is an important future step. Another

unique feature of XML is that it is order sensitive. In our approach we have

neglected the order of elements in results. We can investigate approaches

like LexKeys in the context of ACE-XQ for order sensitive view mainte-

nance.

Since each variable node in a VarTree is derived from its parent, it is

possible to re-use the XPath containment results of the parent node and to

do only incremental XPath containment checking for child nodes. Such an

incremental algorithm can greatly improve the performance of the analysis

procedure.

Our current implementation performs analysis of one update at a time.

If several updates occur simultaneously, some of the updates might invali-

date some later updates. If the system can batch the updates, it may detect

such invalid updates which will lead to improved average performance

of the system. Another assumption in this implementation is that the up-

dates to the base document and to the materialized view are not within the
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context of a transaction. Although transactional XML systems are not yet

popular, they will be required in applications where high data integrity is

essential. Exploring view maintenance in the context of transactional XML

systems is also another avenue for future work in this area.
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