Augmenting DIAMOND:

A Method for Improving Disease

Networks Among Human Genes

A Major Qualifying Project
submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science,
Mathematical Sciences/Computer Science

Submitted by Kevin Specht

Advised by Dmitry Korkin and Zheyang Wu



ABSTRACT

One of the most significant advancements in modern medicine has been the discovery of
relationships between diseases and certain genes. These “disease genes” enable medical professionals
to pinpoint the exact cause and location of the disease. In 2015, a group of scientists developed an
algorithm known as DIAMOnD (DIseAse MOdule Detection) in order to find more disease genes.
DIAMOnD works by examining the significance of the known connections between genes in a
biological network and the set of disease genes, and then adding the most significantly connected
gene from the network to the set of disease genes. For this project, I sought to improve the
performance of DIAMOnD to more accurately determine the next disease gene to be added. To do
this, I changed the probability distribution used by the algorithm and tested both the original

algorithm and the “augmented” algorithm on certain diseases and networks.



TABLE OF CONTENTS

= 2 S 1 27 O R 2
TABLE OF CONTENT ... ciiiiiiiiiiiiiere s raiera s s s s e s s s nansasa s s s s snanananrnrnrarnnnennnnnnn 3

TABLE OF FIGURES........cociiieiiiiiiiiise e eir e s s s s s s s s s s s nsa s s s s s s s s nnnanansasnrnnnnnen 5

CHAPTER 1: INTRODUCGTION. ...t eree e resr e s s s s s e s s s s e e nsa s s ra s e ennnns 7
CHAPTER 2: BACKGROUND.... .ot rerer s s s s s s s s s s s s nsn s s s s s s nnnannnansan 9

2.1 Components of Biological ProCESSES........ccoviiiiii i, 9

2.1.1 Types of Biological MOIECUIES. ..........c.oiiiii e, 9

2.1.2 Biological Databases. .........ouiuiuieiii 13

2.2 Network MediCing OVEIVIEW. ... ...t 16

2.2.1 Properties of Biological Networks. ..o, 17

2.2.2 Types of Biological Networks. ... 20

2.2.3 Advances in Network MediCine..........ooiiiiii i, 24

CHAPTER 3: METHODOLOGY ... .iuiiiiiiiieiieierarasarssassasanansnsasasasasasasansssnsnsnsnsnsarnnns 27
3.1 The DIAMOND AlGOrithm. ... .. e 28
3.1.1 HOW DIAMOND WOTKS ... ettt e 28

3.1.2 Analysis Of DIAMOND ... ... e 31

3.2 DIAMOND TeStNG. ...ttt 32

3.2.1 Testing Methods. ... e 32

3.2.2 Validation Methods. ....... oo, 33

3.3 Augmenting DIAMORND. ... .. 35
3.3.1 The Augmented DIAMOND Algorithm..........oooiiii e 35

3.3.2 Comparing the AlgOrthmS. ... ..o 37
CHAPTER 4: RESULTS AND ANALYSIS.... .o s s s s s s s s e 38

4.1 DIAMOND Results and ANalysSiS.......ccouiiiiiiiiii e 38

4.2 Augmented DIAMOND Results and ANalySiS. ..........o.oiiiiiiiiie e 46

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS........ccooiiiiiiiininr e 57

ACKNOWLEDGEMENTS.....ciiiiiiiiiiiiiiirr s s s s s s s s s s s e s e s nansnsa s s s rnnnsas 59

BIBLIOGRAPHY ... s st s s s s s s s s s s s s s s s s s s s s s nanansarasares 60

APPENDIX A: LIST OF FILES.......c.ociiiiiiiieiiir s s s s s s s s s s s s s s n s s s nes 62

APPENDIX B: PROGRAMS...... .o s s s s s s s s s s s s s s s s s s nns 70

B.1 DIAMOND AlGOrithm. . ... 70



B.2 Augmented DIAMOND AlOrithm. .. ...

B.3 Parse Annotations
B.4 Random Selection



TABLE OF FIGURES

Figure 1: Three-dimensional structure of a Myoglobin protein..........cccccccceiiiiiinne. 10
Figure 2: Comparison of DNA and RNA structure..............ccccooiiiiiiiiiiiiis 12
Figure 3: Manhattan plot for genome-wide association study..........cccccceeiiiieiiiiiiinnnnne. 15
Figure 4: DAVID functional annotation tool.............cccooooiiiiiiiiiiiiee e 16
Figure 5: Models of a human disease network and disease gene network................... 19
Figure 6: Model of @ PPl NEIWOIK..........cooiiiiiiii e 21
Figure 7: Model of a co-expression NetWOrK...........cccuveiiiiiiiiiiiiiiiiee e 24
Figure 8: Process of finding disease modules............cccooeiiiiiiiiiiiiiiiiiieeccee e 28
Figure 9: Progress of the DIAMOND algorithm...........ooooiiiiiiiiiieeeeeeee e 30
Figure 10: Set of terms obtained by DAVID functional annotation tool.......................... 34
Figure 11: Table of final true positive values for DIAMOND testing.........cccccccvvvvveeeeee..n. 39
Figure 12: Validation of DIAMOND genes for Behcet disease with PPI network........... 41
Figure 13: Validation of DIAMOND genes for Crohn’s disease with PPl network.......... 42
Figure 14: Validation of DIAMOND genes for leukemia with PPl network..................... 42
Figure 15: Validation of DIAMOND genes for sarcoma with PPI network...................... 43
Figure 16: Validation of DIAMOND genes for vasculitis with PPl network..................... 43
Figure 17: Validation of DIAMOND genes for Behcet disease with co-expression
NEIWOTK. ..ot e e e e e e e e e e e e e e e e e e aeaet e e e e e e e e eeeeeeeeenenree 44
Figure 18: Validation of DIAMOND genes for Crohn’s disease with co-expression
NETWOTK. ... e e e e et e e ettt et bbb e e e e e e e e e e e eeeeneeeee 44

Figure 19: Validation of DIAMOND genes for leukemia with co-expression network.... 45
Figure 20: Validation of DIAMOND genes for sarcoma with co-expression network..... 45
Figure 21: Validation of DIAMOND genes for vasculitis with co-expression network.... 46

Figure 22: Table of final true positive values for augmented DIAMOND testing.......... 48
Figure 23: Comparison for Behcet disease of DIAMOND with PPI network and
augmented DIAMOND with supplementary co-expression network.................... 51
Figure 24: Comparison for Crohn’s disease of DIAMOND with PPl network and
augmented DIAMOND with supplementary co-expression network.................... 52
Figure 25: Comparison for leukemia of DIAMOND with PPI network and augmented
DIAMOND with supplementary co-expression network............cccceeeeeeiieeeeeiinnnnns 53
Figure 26: Comparison for sarcoma of DIAMOND with PPI network and augmented
DIAMOND with supplementary co-expression network.............ccccceeeeeeiiiiiiinnnnnn, 54
Figure 27: Comparison for vasculitis of DIAMOND with PPI network and augmented
DIAMOND with supplementary co-expression network............cccceeeeeeiieeeeeiinnnnns 55
Figure 28: Comparison for Behcet disease of DIAMOND with co-expression network
and augmented DIAMOND with supplementary PPl network............................. 56



Figure 29: Comparison for Crohn’s disease of DIAMOND with co-expression network

and augmented DIAMOND with supplementary PPl network............................. 57
Figure 30: Comparison for leukemia of DIAMOND with co-expression network and
augmented DIAMOND with supplementary PPI network..............cccccciiiiinnnis 58
Figure 31: Comparison for sarcoma of DIAMOND with co-expression network and
augmented DIAMOND with supplementary PPl network..............ccccoeeeiiiinnnn. 59
Figure 32: Comparison for vasculitis of DIAMOND with co-expression network and
augmented DIAMOND with supplementary PPI network..............cccccciiiiniiis 60
Figure 33: List of files used during testing...........cccuuuviiiiiiiiiii 73



CHAPTER 1: INTRODUCTION

For the past several years, one of the most rapidly growing areas of medicine has been
network medicine. This relatively new branch of healing involves discovering biological links
between different genes in the human body. Thanks to the Human Genome Project, we know all of
the genes that make up the human body and can tinker with them as needed, like fixing certain parts
of a car. However, in this case we don’t know how all of the parts are wired because we don’t know
what biological links exist between different genes or how they relate to diseases. Therefore, many
biologists and data scientists have taken up the cause to discover as many biological links in the
human body as possible in order to form a network. In the same way that a computer virus spreads
over a network, so can a disease take over all genes in a network if one gene is affected. However,
the genes most associated with a particular disease tend to be gathered together in “neighborhoods”,
forming smaller connected components known as disease modules. If one gene in a disease module
is affected by a particular disease, doctors and scientists can track the disease’s progress by looking at
other genes in the disease module. For this reason, discovering more disease modules may become
crucial to fighting diseases in the years to come.

In recent years, data scientists have developed several algorithms which can be used, with
varying degrees of accuracy, to build disease modules from random links discovered between genes
in the human body. One technique used by data scientists has been to determine the significance of
links between genes using statistical analysis rather than observe how many links there are to a
particular gene. To this end, several scientists, including Susan Ghiassian, Jorg Menche, and
Albert-Laszlo Barabasi, developed an algorithm called DIseAse MOdule Detection (DIAMOnD) in
order to determine additional genes to add to a disease module based on an initial set of genes
(called seed genes) from the module and a biological network containing links between pairs of
genes. The algorithm works by determining the significance of connections between genes in the
network and the set of seed genes and adding the most significantly connected gene not currently in
the disease module for each iteration. Once all iterations are complete, the user will have a set of
new genes to add to the module. However, DIAMOnD does not guarantee that all of the added

genes will be correct, which is why this project sought to improve its accuracy.



Throughout this project, I searched for ways to enhance DIAMOnd, firstly by conducting
tests to replicate the performance of the original creators. This included testing the algorithm with
different diseases and networks and then comparing the results to those of a random test. I changed
the algorithm by altering the degree of probability with which two genes are associated. The new
algorithm examines additional networks to determine if any of them contain any links that also exist
in the original network, and gives these links greater weight if they do. The idea is to bring additional
biological conditions and information into account when determining the probability of a biological
link being in a random network, and then to change the probability distribution used by the
algorithm accordingly. I tested this augmented algorithm against the original DIAMOnD algorithm
to determine whether it provides more correct genes for a disease module than the original
algorithm does. Both algorithms were developed in Python and tested using biological molecules
and networks obtained from a few key databases. I also developed additional Python programs to
find a random selection of genes to add to the disease module and to validate the genes discovered
by each algorithm to see if they actually belong to that module.

This project helps open new doors of experimentation for finding genes in disease modules,
which can help to advance network medicine. The more accurate disease module detection methods
are, the more accurate disease related genes we will find. This process will only improve because as
we discover more biological processes within the human body, we uncover new information about
the functions each molecule connected by the process performs. This means that someday, we may
be able to instantly identify the genes causing any disease, the same way we can identify the parts
causing problems in a car. For this reason, the day may come when network medicine forms the

backbone of all disease treatment.



CHAPTER 2: BACKGROUND

In order to improve the performance of DIAMOnD, it was necessaty to do research on past
work related to disease networks. Although network medicine is a relatively new field, it has already
been used to make significant advances in disease detection and treatment. Using disease networks
requires a good understanding of genetic biology, the underlying structure of general networks, and
how to use statistics and data science to analyze said networks. Enhancing the algorithm also
required the use of several major biological databases and testing methods used to aid researchers in
expanding disease modules. Hopefully, this project will help to contribute to the ongoing search for

better methods of disease network detection and construction.

2.1 Components of Biological Processes

In order to understand how network medicine works, it is necessary to first understand the
different components that make up biological processes in the networks. These nodes can be a wide
range of biological materials, from a single atom to an entire organism. The most common
molecules in biological networks, however, include genes, proteins, and RNA. All of these molecules
perform very important functions in the human body, and problems with any of them can lead to
minor and sometimes major disorders. Because of this, a number of resources exist to store

information on various biological molecules and their relationships.

2.1.1 Types of Biological Molecules

Proteins are some of the most important molecules in the human body, performing a wide
variety of useful functions, including preventing diseases. They are made up of various smaller units
known as amino acids, which are attached to each other in long chains to form proteins. The
arrangement of amino acids determines the structure and function of each protein (Genetics Home
Reference 2017), such as the one in Figure 1. The ubiquity of proteins in organisms makes it
necessary for those organisms to create new ones when they run out. To do this, they take in new
amino acids from other organisms and fitting them together using structures called ribosomes.
There are several types of proteins that all perform essential functions, and problems with any of

them can cause unfortunate complications. Antibodies are proteins that “bind to specific foreign



particles, such as viruses and bacteria, to help protect the body” (Genetics Home Reference 2017),
so they play a big role in disease control. Enzymes, on the other hand, carry out cell chemical
reactions and read genetic information in DNA to form new molecules (Genetics Home Reference
2017). However, they can still cause issues if they malfunction due to chemical reactions gone wrong
or misreading of DNA sequences. Messenger proteins handle signals that “coordinate biological
processes between different cells, tissues, and organs” (Genetics Home Reference 2017), so it is
important for them to keep working in order to keep biological processes running on schedule.
Structural components provide support for cells and allow the body to move, so without them, the
organism may find it harder to function. Transport proteins “bind and carry atoms and small
molecules within cells and throughout the body” (Genetics Home Reference 2017). Therefore, if
one failed to take a molecule where it needed to go, the results could be troublesome for the
organism. The essential nature of proteins in organisms is the reason for their prevalence in many

biological networks, mainly protein-protein networks.

Figure 1: Three-dimensional structure of a Myoglobin protein.

Retrieved from https://en.wikipedia.org/wiki/Protein#/media/File:Myoglobin.png

Genes are the “basic physical and functional unit of heredity” (Genetics Home Reference
2017), the process of determining the traits of a new organism from its parents’ genes. Genes are

made up of many strands of DNA (deoxyribonucleic acid), the molecule responsible for storing

10



genetic information. This information is mainly instructions on how to create proteins that the
organism needs. Any gene can have “from a few hundred DNA bases to more than 2 million bases”
(Genetics Home Reference 2017), depending on the complexity of the genetic information. For a
long time, scientists struggled to determine the number of genes in the human body and their
various types. However, advances in computing technologies enabled them to create the Human
Genome Project, whose mission is to document all genes in the human body. The Human Genome
Project estimates that “humans have between 20,000 and 25,000 genes” (Genetics Home Reference
2017), and has documented much information about human genes. Therefore, scientists now have a
wealth of genetic information at their disposal and can analyze genes more closely. All humans have
roughly the same genes, with only a 1% difference from person to person. However, there are many
different alleles, or “forms of the same gene with small differences in their sequence of DNA bases”
(Genetics Home Reference 2017), throughout the human genome. These have created a large
diversity in human traits, such as unique physical appearances, even though most of our core genes
are the same. These differences can sometimes lead to mutations that either improve certain traits or
create serious disorders, which is why genes are often involved in disease modules. Every person has
two copies of each gene (one per parent), except for sex genes, and numerous genes are combined
to form structures called chromosomes (Genetics Home Reference 2017). Each cell nucleus in the
human body contains 46 chromosomes (23 from each parent, with one copy of each gene per
parent). In order for these genes to express information, they require various interactions with both
other genes and with molecules such as proteins which help them send information and maintain
their structure. This is why genes have such a large role in many biological networks, such as
regulatory networks and co-expression networks.

RNA (ribonucleic acid) is an important molecule whose main function is “to transfer the
genetic code needed for the creation of proteins from the nucleus to the ribosome” (Mandal 2013),
the structure in cells that makes proteins. It is similar to DNA, but it has different bases, a different
structure, and performs different functions, as Figure 2 demonstrates. While DNA stores genetic
information in the nucleus, RNA can move it around, which “keeps the DNA and genetic code
protected from damage (Mandal 2013). RNA molecules can also act as enzymes to stimulate

chemical reactions, which means that like proteins, they can act in many biological processes. RNA

11



is initially formed from DNA via a process called transcription (Mandal 2013), and from there it can
fulfill a variety of functions. Since RNA serves as the bridge between genes and proteins, organisms
can’t function without it. Therefore, problems with RNA can contribute to many problems in
organisms, including diseases. Messenger RNA (mRNA) “carries information from DNA
to...ribosomes” (Mandal 2013), so if it experienced any problems, the information in genes could be
rendered useless. Ribosomal RNA (tRNA) combine with proteins to build ribosomes, so without
them, an organism would not be able to properly manufacture proteins. Transfer RNA (tRNA) is
used to decode the message in mRINA into an actual protein sequence, so without them, all of the
work of the mRNA would be for nothing because no one could read it. Due to all of these issues,

RNA appears frequently throughout biological networks, such as regulatory networks.

AUCG's
i i
c/\u . c/c\n
I | Base Pair I |
1 '\T,/C\‘n “\”/"\\D
A Guanine LW Guanine |
[+]
il H
e Sugar il
i, IT/ St Phosphate <:ﬁ/°“\r"
e . Backbone L
‘“\N/ ! L "/‘l\r,.‘
H
[} <
b i
C
ey o Ny
“_<:" u—<:ﬁ
c\ W . i
= o
7 :
HE. 1
i e H\T/\“,n
NN i T
'|| - \‘u‘/\ﬂ
Replaces Thymine In RHA
Nitro i
Sy g
DNA RNA
Deoxyribonucleic Acid Ribonucleic Acid

Figure 2: Comparison of DNA and RNA structure.
Retrieved from https://cl.staticflickr.com/8/7377/10082811755_d108c78942_b.jpg

12



I note that for this work, I have mostly referred to the search for disease modules in terms
of genes. However, disease modules may contain genes, proteins, RNA, or other molecules
depending on which network is used to obtain them. This is because all of these molecules play an
essential role in the transfer of genetic information throughout the body, to which many diseases can
be traced. Genes carry the DNA structures with all of the information necessary to create an
organism and give it certain characteristics. RNA transports this information all over the cell and
brings it to the ribosomes. Here, the information is used to build proteins, which then perform a
variety of functions throughout the cell. Therefore, while I may only refer to genes when speaking of

disease modules, all of these molecules can be a part of them.

2.1.2 Biological Databases

In order to improve the collection of biological information, several major databases have
been set up to store information about various biological molecules. The main information stored in
these databases is the names and characteristics of various proteins, genes, RNA molecules, and
other materials that are necessary for organisms to function. However, some networks also contain
information about biological processes, as well as the biological networks that result from them.
Some can even be used to run tests on biological networks to learn more about them. Therefore,
such databases make it possible to perform experiments like DIAMOnD, forming the foundation
upon which this project is built.

One of the databases which proved most helpful for this project was OMIM, or Online
Mendelian Inheritance in Man. OMIM is “a comprehensive, authoritative compendium of human
genes and genetic phenotypes that is freely available and updated daily” (McCusick 1960). It contains
information on various human genes obtained from the Human Genome Project, as well as some of
the major functions and disorders that they are associated with. It was originally created “in the early
1960s by Dr. Victor A. McCusick as a catalog of mendelian traits and disorders” (McCusick 1966),
mendelian referring to genetics pioneer Gregor Mendel. It focuses on the relationship between the
genotype (the genetic information in the body) and the phenotype (the physical expression of that
information), which includes physical traits, strengths, and disorders. For instance, the gene

Interleukin 23 Receptor (IL23R) is found to be commonly associated with Crohn’s Disease, which is

13



why in most biological networks, IL23R is part of a set of genes associated with Crohn. This
information provides a good baseline for any scientists studying the genes that make up disease
modules, and proved essential for this project.

Another important database for this project was the Genome-Wide Association (GWAS)
Catalog. A genome-wide association study is “an approach that involves rapidly scanning markers
across the complete sets of DNA, or genomes, of many people to find genetic variations associated
with a particular disease” (National Human Genome Research Institute 2015). Rather than simply
report any disorders that may result from problems with a particular gene, this study performs a
comprehensive search to find issues caused by any genes that are associated with a particular disease,
using statistical tools like the Manhattan Plot in Figure 3 on a large sample of people. This is
possible because “With the completion of the Human Genome Project in 2003...researchers now
have a set of research tools that make it possible to find the genetic contributions to common
diseases” (National Human Genome Research Institute 2015). This test is particularly useful for
building disease modules, since the genes found by this test are often confirmed to be associated
with their given disease by many biological networks. To perform the test, researchers make one
group of people with a disease and one without, and then “obtain DNA from each participant,
usually by drawing a blood sample or by rubbing a cotton swab along the inside of the mouth to
harvest cells” (National Human Genome Research Institute 2015). Then, “if certain genetic variants
are found to be significantly more frequent in people with the disease compared to people without
the disease, the variations are said to be “associated” with the disease” (National Human Genome
Research Institute 2015). The GWAS Catalog is “provided jointly by the National Human Genome
Research Institute (NHGRI) and the European Bioinformatics Institute (EMBL-EBI)” (GWAS
Catalog 2017), so it provides comprehensive information on many GWAS studies. However, GWAS
information is by no means complete, due to the intensive nature of the test, which is why

algorithms like DIAMOnD are still necessary.

14



w4

L)

. ; 1 1 '
i
2 I T %

=

= &

o
~

5

134
154
171
204
214

Figure 3: Manhattan plot for genome-wide association study.

Retrieved from https://upload.wikimedia.org/wikipedia/commons/1/12/Manhattan_Plot.png

The most useful database for this project was probably DAVID, which was designed to
“validate” molecules within biological networks. It was originally developed by the Laboratory of
Human Retrovirology and Immunoinformatics at Leidos Biomedical Research (DAVID 2009). Its
main purpose is to gather all of the biological terms associated with a particular gene or set of genes,
as part of a process called gene ontology. The “Gene Ontology project provides controlled
vocabularies of defined terms representing gene product properties” (Gene Ontology Consortium
1999), meaning that it associates genes with their related biological terms. For instance, the myb
gene is often associated with the term “cell growth”. The first type of GO term is a cellular
component, which describes “a component of a cell that is part of a larger object, such as an
anatomical structure” (Gene Ontology Consortium 1999). The second type is a biological process,
which “describes a series of events accomplished by one or more assemblies of molecular functions”
(Gene Ontology Consortium 1999). The third type is molecular functions, which describe “activities

299>

that occur at the molecular level, such as “catalytic activity” or “binding activity””” (Gene Ontology
Consortium 1999).

While GO information is centered at the Gene Ontology Consortium, DAVID provides a
number of useful features for studying gene ontology. The best of these is the functional annotation
tool, a statistical test that takes a list of genes and determines all of the GO terms that are associated
with them, as shown in Figure 6. The DAVID KnowledgeBase contains “dozens of heterogeneous

public databases that are comprehensively integrated by a unique single linkage method developed

by DAVID team” (DAVID 2009), which means that it can pull information from various databases

15



into one source. This way, it can use multiple types of gene IDs in order to retrieve the
corresponding GO terms from its data repository. Once the test has been run, DAVID compiles the
GO terms into separate lists for cellular components, biological processes, and molecular functions.
Each list contains a set of terms associated with the genes, as well as statistics regarding how many
of the genes are associated with each term. Since biological networks tend to form modules of nodes
that perform similar functions (and therefore share similar GO terms), DAVID is a great resource

for validating such networks.

Functional Annotation Tool

DAVID Bioinformatics Resources 6.7, NIAID/NIH

Home | Start Analysis | Shortcut to DAVID Tools | Technical Center | Downloads & APIs | Term of Service Why DAVID? | About Us
Background
Gene List Manager Annotation Summary Results
Help and Tool Manual
Current Gene List: List_1 270 DAVID IDs
Current Background: Homo sapiens Check Defaults Clear All
E Disease (1 selected)
E Functional_Categories (2 selected)
H Gene_Ontology (3 selected)
i = H General Annotations (0 selected)
Select Species E Literature (0 selected)
E Main_Accessions (0 selected)
List Manager Help B Pathways (2 selected)
List 1 E Protein_Domains (3 selected)
=i E Protein_Interactions (0 selected)

E Tissue_Expression (0 selected)

***Rad annotation categories denote DAVID defined defaults***

Select List to:

- Combined View for Selected Annotation

Use
Combine [ Functional Annatation Clustering ]

T T [ Functional Annotation Chart ]

[ Functional Annatation Table ]

Figure 4: DAVID functional annotation tool.

Retrieved from https://david.nciferf.gov/home.jsp

2.2 Network Medicine Overview

The main idea behind network medicine is that we can learn a great deal about different
components of the human body by observing how they interact with other components, since
“Most cellular components exert their functions through interactions with other cellular

components” (Barabasi 2011). These interactions between components of the human body,

16



including genes, proteins, and RNA molecules, serve as vertices or nodes for a vast network of
connections known as the human interactome. Since “the number of cellular components that serve
as the nodes of the human interactome easily exceeds 100,000 (Barabasi 2011), and “the number of
functionally relevant interactions...is expected to be even larger” (Barabasi 2011), the task of
determining links between these components is daunting. However, a number of advances in
network theory and data science have made it possible for scientists to learn a lot more about the
human interactome in recent years. These discoveries have already made several advances in
medicine possible, and future discoveries will likely cause network medicine to advance at an

exponential rate.

2.2.1 Properties of Biological Networks

Many of the recent advances in network medicine were only possible because of an
understanding of the properties of the underlying networks. If a gene or protein is associated with a
particular disease, then knowing about its interactions can provide valuable information about how
the disease will spread. However, “only about 10% of human genes have a known disease
association; thus, do disease genes have unique, quantifiable characteristics that distinguish them
from other genes?” (Barabasi 2011). For answers, scientists have studied the arrangement of nodes
and links inside biological networks, or network topology, to look for patterns. They found that
several principles of network theory make it possible to analyze disease networks, which are
biological networks that focus on nodes and links related to the spread of diseases.

Every network is made up of nodes and links between the nodes, forming a graph of
interconnected points. Some examples of networks include the Internet (documents and URLs),
power grids (generators and power transmission lines), and the United States Interstate Highway
System (cities and roads). The degree of a node is the number of links it has, and the degree
distribution is the number of nodes containing each degree (Barabasi 2013). When networks were
first discovered, scientists assumed that the distribution of nodes and links in networks was random,
and that there was no likelihood that one node would be more connected than another but that
most nodes would have roughly the same number of connections. However, as more discoveries

were made and networks came into clearer focus, scientists realized that networks were not

17



necessarily random and that some had nodes with much higher degrees than others. Since then,
scientists have used the degree distributions inside of networks to determine the probability that one
node is connected to another. This has led to the formation of several network probability
distributions, such as the hypergeometric distribution used to calculate the connection probability in
the DIAMOnD algorithm.

One aspect of network theory that pops up often in disease networks is the presence of
highly connected nodes, or “hubs”. For example, the Internet is a network containing nodes in the
form of documents which are connected by links in the form of URLs. However, some documents
are much more connected than others due to popularity or usefulness. Such networks are called
scale-free networks, which means that they have a few highly connected nodes and a great many
“smaller” nodes with only a few connections. Most biological networks are scale-free because there
are a few genes or proteins that play a more essential role in biological processes than others, due to
evolution or other factors, and form hubs in the networks. In disease networks, “hub proteins tend
to be encoded by essential genes” (Barabasi 2011), and “genes encoding hubs are older and evolve
more slowly than genes encoding non-hub proteins” (Barabasi 2011).

The tendency of disease networks to focus more links on a few nodes makes them more
robust, which means that if one node is removed, the network will still be able to carry out most of
its basic functions (Barabasi 2013). If a disease hits the human body, then this distribution of a few
bigger nodes connected to many smaller nodes works to its advantage because the majority of nodes
have only a few connections, so if one of them is hit, the network is less likely to go down.
However, if the disease does hit a hub, then it will be able to spread to all of the nodes that the hub
is connected to, which is why they are sometimes referred to as the “Achilles heel” of scale-free
networks (Barabasi 2013). For a scale-free network, the probability that a node 1 is connected to
another node in the network is the degree k of the node divided by the sum of the degrees of all
other nodes in the network. Therefore, when a new node is added to the network, there is a higher
probability that it will be connected to a hub because it has a higher degree, so the network retains

its form. Figure 5 demonstrates the scale-free human-disease network and disease gene network.

18



- L S L
&"hu"?.“' J-at, TR S
=t L] Fae Ry

i h'l.._‘\“.. ‘+
*latee W

|

00000000

T

Figure 5: Models of a human disease network and disease gene network.
Adapted from (Goh, K.-I. The Human Disease Network. Proceedings of the National Academy of
Sciences of the United States of America, 104(21)).

Disease networks also have the tendency to form communities or neighborhoods, which are
groups of nodes which share certain characteristics, in the network (Barabasi 2013). One example of
this clustering pattern is a staff network containing groups of teachers in the same department. This
structuring into different modules of interconnected nodes is known as modularity, and it is one way

to measure how structured a network is. These neighborhoods often have the characteristic that

19



their nodes have more links to nodes inside their community than they do to nodes outside the
community. For instance, documents on the Internet tend to have more URLs to sites with
information about their subject matter because that is what their readers will most likely be
interested in (Barabasi 2013). This characteristic defines disease networks so that “proteins that are
involved with the same disease show a high propensity to interact with each other” (Barabasi 2011).
A topological module represents a locally dense neighborhood inside a network, while a functional
module brings together nodes of similar or related biological function in the same neighborhood.
Using these concepts, scientists have created the “disease module”, a group of
interconnected disease network components that together contribute to a certain function in the
body, which will cause a disease when it is disrupted (Barabasi 2011). For example, the disease
module for Crohn’s Disease contains all of the genes connected with the spread of Crohn’s Disease,
so if one of them stops functioning, Crohn’s Disease could appear and spread to other genes in the
network. Many disease modules can also overlap due to their genes playing a role in more than one
disease. This creates a property called comorbidity, or habit of one disease to cause or be
accompanied by another (Barabasi 2013). This in turn has led to the creation of the diseasome, or
“disease maps whose nodes are diseases and whose links represent various molecular relationships
between the disease-associated cellular components” (Barabasi 2013), to accompany the
interactome. In general, a disease module is made up of the essential genes in the center and
nonessential disease genes on the periphery. This way, the disease will hit the nonessential genes first
before spreading to the essential genes which the body can’t afford to lose. The interconnectedness
among disease genes enables algorithms that use the probability of having a connection among

disease module genes to determine what new genes should be added to the module.

2.2.2 Types of Biological Networks

In order to build disease modules, it is necessary to understand and observe the properties of
different biological networks and determine which of their components and functions are connected
to the spread of diseases. Every biological network represents the complete set of one particular type
of interaction inside a particular organism, in this case humans. A few of the specific types of

networks include protein-protein interaction networks, metabolic networks, regulatory networks,

20



and co-expression networks. These networks provide information about about interactions between
two proteins, between molecules required for cellular metabolism, between molecules involved in
sending regulatory signals to genes, and between genes with the same expression patterns,
respectively. Observing these networks allows us to see which of their functions cause disease,

allowing us to build disease networks and disease modules within them.

& L3
TR o, T NP S
. s

e
', S i

)
e Sa s

Figure 6: Model of a PPI network.
Retrieved from
https:/ /www.mdc-berlin.de/10221541/de/research/research_teams/proteomics_and_molecular_m

echanisms_of_neurodegenerative_diseases/research?cntx=40550219

Protein-protein interactions (PPI) like the one in Figure 6 are necessary for conducting many
processes inside of cells, and refer to specific contacts that occur between two proteins. These
interactions form a protein-protein interaction network (PPIN) in which the nodes represent
proteins and the links represent undirected contacts between them. These contacts are “specific,
occur between defined binding regions in the protein”, and “have a particular biological meaning”
(European Bioinformatics Institute 2017). For example, one protein can carry another protein from
one region of a cell to another region where it is needed. The binding region refers to the section of
the protein that has contact with another, which in many cases is specifically designed for that
purpose. Protein-protein interactions can be either stable, meaning that they interact for a long time,
or transient, meaning that they only interact briefly to prepare the protein for future operations
(European Bioinformatics Institute 2017). Like most biological networks, PPINs are scale-free, so

they have many proteins with only a few interactions and a small amount of hubs with many

21



interactions. They also tend to have a “small-world effect”, which means that most nodes in the
network are very closely linked, with only a few links separating them, allowing for greater speed in
cellular processes. (European Bioinformatics Institute 2017). PPINs also tend to cluster proteins
into neighborhoods based on what functions they perform, such as sending signals, transportation,
ot building compounds. An error in a protein-protein interaction or the removal of a protein from
the network can be a catalyst for a disease, which means that PPINs and disease networks often
overlap. However, many nodes and links in PPINs remain undiscovered, while for others, “only the
existence of an interaction between two proteins is known, but the interaction type...remains
unknown” (Zitnik 2016). In order to make an accurate prediction about the spread of diseases in the
network, it is necessary to have a relatively good understanding of what interactions exist and how
they occur.

Metabolic networks comprise all of the operations necessary for a cell’s metabolism, or
conversion of food into building blocks for the cell. In this case, the networks are “directed
networks where each node represents a metabolite (a molecule) and an edge represents a metabolic
reaction” (Zitnik 2016). For example, several metabolic processes are required to turn the sugars
produced by photosynthesis into usable proteins and other cellular components. A metabolic
pathway is “a connected sub-network of the metabolic network either representing specific
processes or defined by functional boundaries” (Zitnik 2016). Therefore, the metabolic pathways
divide the network into different neighborhoods based on their functionality, which generally means
the transformation of a particular molecule into another. Like PPINs, metabolic networks are both
scale-free, meaning that there are a few heavily connected metabolites and many loosely connected
metabolites, and small-world, meaning that there are only a few links separating each node.
Metabolic networks can also overlap with disease networks because any problems in the metabolic
processes, like a missing metabolite or a failed transformation, can also lead to diseases. However,
like PPINs, metabolic networks are missing some nodes and links, so it may be more difficult to
track the progress of diseases until they are discovered.

Regulatory networks are made up of molecules, like proteins and RNA, that control the
expression of genes in a genome. Gene regulation is usually “the response of a cell to an external

stimulus” (Zitnik 2016). In this case, the nodes in the network are the genes expressed and their

22



regulators and the links (directed) are the actions of the regulatory molecules on them. For example,
a protein called a transcription factor will “control gene expression by directly interacting with
regulatory genomic DNA sequences that are usually located in or around their target genes”
(MacNeil 2011). The main reason that these molecules are needed to regulate genes is so that
organisms have the correct responses to certain situations. For example, “specific transcriptional
programs are required for proper developmental patterning and to ensure appropriate responses to
changing environmental conditions and stresses” (MacNeil 2011). However, these transcription
factors and other molecules do not work alone and require a vast network of interactions to make all
genes perform their functions when they need to. This is why “the TFs that control the expression
of a gene often act together with other TFs” and “the TFs themselves are extensively regulated”
(MacNeil 2011). Just as in other biological networks, GRNs contain many smaller modules based on
a specific genetic function. In this case, “two types of modules can be identified: “gene modules”
which are defined as sets of genes bound by similar TFs, and “TF modules” which are sets of TFs
that share similar target genes” (MacNeil 2011). GRNs also share the properties of being
small-world (only a few links between nodes) and scale-free (only a few links for normal nodes and
many links for a small number of hub nodes). This means that “Biological systems are overall highly
robust because most genes or gene products can be removed without compromising viability”
(MacNeil 2011). The interconnectedness of transcription factors and other gene regulation
molecules means that many genetic disorders can be traced to problems with GRNS, like a missing
molecule or a failed transcription. However, as with other biological networks, the incompleteness

of GRNs makes it more difficult to determine how diseases will act.

23



‘e *o *
-

Figure 7: Model of a co-expression network.

Retrieved from https://en.wikipedia.org/wiki/Gene_co-expression_network

Co-expression networks, like the one in Figure 7 above, are made up of genes that have
co-expression, or “the correlations between the expression of two genes knowing the expressions of
all the other genes” (Villa-Vialaneix 2013). This means that co-expression represents a relationship
between two genes so that when one is expressed in the body, the other is generally expressed also.
For example, when examining eQTLs (genes that influence the expression levels of others), “a
co-expression network is built from the first 272 gene expressions, and the structure of this network
is highlighted, in terms of nodes of particular importance (hubs for instance), and in terms of
decomposition into “communities” or “modules™” (Villa-Vialaneix 2013). In this case, the nodes in
the network are the genes expressed and the links (undirected) signal that the two genes are
expressed simultaneously. The correlation between the two genes can either be total or partial,
meaning that they are co-expressed only some of the time. Co-expression networks share several
similarities with other biological networks, including the tendency of nodes to cluster into specific
neighborhoods. For instance, in the eQTL experiment, “seven clusters were identified that
contained from 28 to 58 genes” (Villa-Vialaneix 2013), in this case relating to certain phenotypes.

Co-expression networks also tend to be small-world (only a few links separate each node) and

24



scale-free (each network contains a few highly-connected hubs and many loosely connected regular
nodes). In the eQTL experiment, “the network contained 21 hubs having a degree larger than 267,
all of which were viewed as very important nodes. Co-expression networks can provide valuable
information as to which genes are closely linked based on how they are expressed, which can be very
useful when one of the genes has a problem. However, as with other biological networks,
co-expression networks are limited by a lack of information, including “a major lack of annotation
of the genomes, and the fact that most associated literature is devoted mainly to only a few

mammalian species” (Villa-Vialaneix 2013).

2.2.3 Advances in Network Medicine

By studying the properties of biological networks to find disease modules, scientists have
already made several advances in the field of network medicine. These include isolating the causes of
disease, providing better targeting for drug development, and making a map of how a disease will
spread throughout the body. Currently, the advances in network medicine fall mainly under network
pharmacology and disease classification. Network pharmacology is the process of designing new
drugs to treat diseases by using biological networks. Disease classification is the process of grouping
diseases into certain categories in order to determine how they are connected so they can be dealt
with simultaneously. Thanks to network medicine, these two fields of study will both play a larger
role in the study of diseases in days to come.

In recent years, scientists have made several advances in network pharmacology, using
biological networks more and more in the treatment of diseases. The first step of this process is to
understand why a disease occurs by determining what is going wrong in each cell. Thanks to
network medicine, we now know that “this dysfunction is limited to the disease module, which
means that one can reduce the search for therapeutic agents to those that induce detectable changes
in module activity” (Barabasi 2011). This is useful to pharmacists and biologists because it allows
them to focus on drugs that specifically affect genes and other molecules within the disease module.
Another discovery is that “a drug might have more than one binding partner such that its efficacy is
determined by its multiple interactions, leading to unwanted side effects” (Barabasi 2011). This

means that by using the processes that form the links in biological networks, scientists can determine

25



how drugs affect not just the molecules they are targeting, but also other molecules throughout the
network. Therefore, scientists will know in advance, through this 7z vive testing, if the drugs have any
unintended side effects, via their biological connections, on other parts of the network. According to
researchers, “the promise of network-based approaches in drug discovery is best illustrated in the
area of bacterial and human metabolism” (Barabasi 2011). This research uses metabolic networks to
predict “flux” changes that occur due to enzymes in bacteria when they are exposed to a particular
drug. It has “led to the identification and testing of potential new antibacterial agents and the
complex system-based responses that they produce (Barabasi 2011). Scientists are also
experimenting with drugs that target multiple nodes in the network in order to bypass network side
effects and just take care of all of the affected nodes, unlike so-called “single-target” drugs. These
studies have led to “combinatorial therapies for AIDS, cancer, and depression” (Barabasi 2011) and
“potentially safer multi-target combinations for inflammatory conditions and to the optimization of
anti-cancer drug combinations” (Barabasi 2011). If advances in network medicine continue at this
rate, then many more discoveries like these may become possible throughout network
pharmacology.

Scientists have had some success in classifying diseases into certain groups, but there are
some fundamental problems with their methodology. It reflects “a lack of sensitivity in identifying
preclinical disease and a lack of specificity in defining disease unequivocally”. This means that
disease classifications often fail to identify characteristics of diseases at different stages and just lump
them together. Classification methodology also tends to “neglect the interconnected nature of many
diseases” (Barabasi 2011). As a counterpoint, some researchers have developed an alternative,
network-based approach to disease classification. This approach starts with “the primary
disease-causing gene, which contains a mutation” (Barabasi 2011), and then examines the other
genes it interacts with, as well as the environmental factors that affect the disease. These factors
combine to “give rise to clinical phenotypes that are highly individual” (Barabasi 2011), providing a
more specific classification for each disease. However, network-based classification is still difficult to
implement since “many of the factors affecting the disease module remain unknown or poortly
mapped” (Barabasi 2011). Nevertheless, as network medicine becomes more advanced, our ability to

model and classify diseases by network will improve.

26



CHAPTER 3: METHODOLOGY

The experimental work of this project begins by testing the DIAMOnD algorithm on a small
number of diseases (seed genes are provided by the creators) and seeing how it performs, first by
using a protein-protein network and then by using other networks. The next component is to build a
new algorithm by changing the probability distribution used to find new genes in order to improve
performance and running the same tests on the new algorithm. The objectives of the project are

stated as follows:

Mission Statement:

The goal of this project is to investigate the DIAMOnD algorithm and work to improve its
performance in terms of finding the correct genes to go into disease modules. For the first part, I
will test the original DIAMOnD algorithm on sets of seed genes and interactions to determine how
many of correct genes it finds for the module and then test it again using different networks. For the
second part, I will modify the probability distribution used in the algorithm and test the new
algorithm on sets of seed genes and interactions to determine how many of the correct genes it finds
for the module. A series of graphs and charts will be made to display the performance of the

algorithms for each data set.

Objectives:

1. Run initial tests on 5 diseases using the DIAMOnD algorithm, using sets of seed genes
provided by the creators and an initial biological network, and see how they perform in
terms of correctness.

2. Run tests on these diseases again using the DIAMOnD algorithm, but this time use different
networks with the same seed genes.

3. Create a new algorithm by changing the probability distribution used in the DIAMOnD
algorithm to improve the performance.

4. Run tests on 5 diseases using the new algorithm, using the same seed genes and networks,

and see how its performance compares to that of DIAMOnD in terms of correctness.

27



3.1 The DIAMOND Algorithm

The DIAMOnD algorithm uses advanced statistical methods to determine new genes and

proteins to be added to a disease module. This involves taking a series of “seed genes”, or genes that

are known to have a significant connection to a particular disease and therefore should be in the

disease module, and using their connections within a biological network (in this case a

protein-protein network) to determine the next genes to be added to the module. The original

creators of the algorithm have provided an implementation in Python that can be used to test it out

(DIAMOnD.py). However, in order to work, the algorithm needs certain information as input, such

as the current network and the list of seed genes. It also needs a way to analyze the genes that are

added to the network and determine which ones are “correct”, meaning that they are believed to

have a strong connection to the disease represented by this module.

3.1.1 How DIAMOnND Works

a Interactome reconstruction € Disease module identification

/ @ Disease 1

protein

X\X\ . @ Disease ?
‘r". -] ks protein
; f d @ Overlapping|

/ \ protein

b Diasease gene (sced)
identification
Potential sources
= DMIM
» GWA study

= Literature " 1 )
: M Disease 1 module Disease 2 module

d Pathway identification

@ Known disease 2 protein
© Predicted disease 2 protein

Figure 8: Process of finding disease modules.

e Validation/prediction

Validation

Prediction

Functional homogeneity
* Cene ontology

* Tissue specificity

* Phenotypic similarity

Dynamic homogeneity
* Co-expression

» Genetic interactions

* Drug response

'« Disease genes
= Disease pathways
* Drug targets

Mature Reviews | Genatics

Adapted from (Barabasi, A.-L. L., Joseph; Gulbahce, Natali. (2011). Network Medicine: A

Network-Based Approach to Human Disease. Nature Reviews Genetics, 12(1)).

Most disease network detection algorithms try to pinpoint the causes of diseases by finding

the genes related to a disease and then using the network to find more, since genes with similar

functions tend to cluster in the same neighborhood within the network. This is demonstrated in

28



Figure 8 above. However, data scientists have had difficulty in determining the exact connectivity
patterns of disease modules, with some methods of detection having more success than others. The
creators of DIAMOnD analyzed several communities inside biological networks to determine
whether or not they were significantly enriched with genes that are often associated with diseases,
but discovered that they generally were not. The creators also found that disease modules had a low
modularity, meaning that “while topological communities may often represent meaningful functional
modules, they are not able to capture disease modules” (Ghiassian 2015), since disease modules are
not as clustered as other modules can be. However, they did discover that “disease associated
proteins do not reside within locally dense networks and instead identify connectivity significance as
the most predictive quality” (Ghiassian 2015). Therefore, instead of evaluating the number of
connections that each gene has with seed genes in the network, the algorithm focuses on the
statistical significance of these connections.

To determine the significance of seed connections, the algorithm’s creators calculated the
p-value, or probability that a gene with k connections to genes in the network has k_connections to
seed genes specifically, for every potential gene in the network. They then summed these p-values to
form the connectivity p-value, or probability that a gene with k connections to genes in the network
has k_or greater connections to seed genes, for every potential gene. To determine the significance
of these values, the creators of the algorithm performed a Kolmogorov-Smirnov test, which “tries to
determine if two datasets differ significantly” (Kirkman 1996). According to their results, “the
connectivity p-values within the sets of known disease modules are very significantly shifted towards
smaller values when compared to the distributions expected for randomly scattered proteins”
(Ghiassian 2015). The Kolmogorov-Smirnov results produced a very small p-value, which “reports
if the numbers differ significantly” (Kirkman 1996), meaning that there is a significant difference
between the random distribution and the disease modules. Therefore, the creators determined that
disease genes are more likely to have a low connectivity p-value because it is less likely to be
obtained by chance and is therefore more significant. This unprecedented conclusion forms the crux

of the DIAMOnD algorithm.

29



@ Sead proteng N Seed - Seed

W Crucial sashdy S - DIAMODSD
DHAMOND profoing CHAMOND -
{firsi S0 ilaraSons) DHAMOD

B O proloirg — glhar

\ | »

O /
b L]
b \ 74

P -

------ .x &

[
Figure 9: Progress of the DIAMOnD algorithm.
Adapted from (Ghiassian, S. D. M., Jorg; Barabasi, Albert-Laszlo. (2015). A DIseAse
MOdule Detection (DIAMOnD) Algorithm Derived from a Systemic Analysis of Disease Proteins

in the Human Interactome. PLoS Computational Biology, 11(4)).

The first steps taken by the DIAMOnD algorithm are to read in a set of input arguments,
including a file containing the links in the biological network being used, a file containing the list of
seed genes, and a number specifying the number of genes to be added to the disease module.
Additional options include giving genes a certain weight in the probability distribution, which can
impact the results in some cases, and providing a name for the output file where the new genes are
listed (otherwise it defaults). Once all of the inputs have been read, the algorithm determines which
seed genes should be included in the probability distribution by determining whether they have any
connections inside the input network, and ignoring them entirely if they don’t. The algorithm then
executes its main loop, which determines the next gene to be added to the disease module by finding
the gene in the network with the lowest connectivity p-value, making it the most significantly
connected gene. The algorithm then adds this gene to the set of seed genes, as well as a list of the

new disease genes, and then moves on to the next iteration, using the revised set of seed genes to

30



find the next gene in the module. This is repeated until the algorithm hits the maximum number of
iterations specified in the input, and then the algorithm finishes by outputting the list of new genes.
DIAMOnD calculates the connectivity p-value for every gene in the network by calling a
function that determines the degrees and neighbors of every gene. In addition, it reduces time by
taking proteins with the same degree and eliminating the one that will produce a larger p-value
(which can be determined from the probability distribution used). The p-value for a gene with n
connections and x seed connections is determined using a hypergeometric distribution. The
hypergeometric experiment is a statistical experiment in which a sample size of n items is selected
from a total of N items without replacement (Ghiassian 2015). In this experiment, k of the N items

are considered successes and N-k items are considered failures, based on a true/false random
variable. The probability that the experiment will have x successes is p:kcx*(N—k)C(n—x) /NCn

(C=choose function). This distribution fits the DIAMOnD p-values perfectly because we start with
N genes in the network, then for each gene, we select a sample size of n genes that represent the
genes connected to that gene in the network. In this case, our random variable considers a
connection to a seed gene a success and a normal connection a failure, so we can use the
hypergeometric distribution to determine the probability that a gene has x links to seed genes if it
has n connections and there are N genes and k seed genes in the network. The algorithm further
reduces time by storing all p-values in an array and simply using them if the p-value with the

specified x, k, n, and N values has already been discovered.

3.1.2 Analysis of DIAMOND

One of the biggest problems posed to scientists studying network medicine is how to
determine whether a particular gene actually belongs to a certain cluster or not. This is the main
issue faced after DIAMOnD is run, for there must be a way to determine whether the new genes are
actually part of the disease module or not. Fortunately, thanks to the modularity of many biological
networks, disease modules tend to be made up of genes that perform similar functions, and are
therefore associated with similar biological terms. Therefore, the best way to validate the genes
obtained by DIAMOnD as being part of the disease module is to run a gene ontology test on them.

As mentioned in the background, gene ontology is the process of determining which terms are

31



associated with particular genes. To validate the DIAMOnD genes, the original creators found the
GO terms associated with the seed genes and then looked through the GO terms of the DIAMOnD
genes to see if they share any of the same terms as the seed genes. If a DIAMOnD gene is
associated with at least one of the GO terms, then it is considered a “true positive”, meaning that it
actually belongs in the disease module.

Based on the creator’s original experiments, it appears that the DIAMOnD algorithm is very
successful at finding new genes to add to biological networks. Based on a graph they made
comparing the number of true positives to the number of DIAMOnD iterations, it appears that
there is a sharp increase in the number of true positives obtained by DIAMOnD compared to those
obtained by a random search. However, they also found that the number of true positives obtained
levels off after about 200 iterations, so there is a limit to how many disease genes DIAMOnD can
find. The creators performed a number of additional tests with DIAMOnD, such as limiting certain
GO terms, removing some of the seed genes from the network to see if DIAMOnD could find
them and adding weights to links connected to seed genes. However, this project was unable to

replicate some of these tests due to time and manpower constraints.

3.2 DIAMOND Testing

The first step in improving the correctness of DIAMOnD was to replicate the results of the
original experiment in order to confirm that the algorithm actually worked. This also provided an
opportunity to see how the algorithm performs depending on the initial information given, the seed
genes and the the network interactions. Therefore, I collected sets of data from my advisors, the
original experiment, and certain databases in order to test the algorithm. I also ran some additional
tests by changing some of the parameters of the experiment. The algorithm runs fairly quickly, and

appears to perform just as well as described.

3.2.1 Testing Methods

To start out, I chose a set of diseases to serve as test modules: Crohn’s Disease, Behcet
Disease, Leukemia B-cell, Sarcoma, and Vasculitis. Next, I ran a DIAMOnD test on each of these

diseases using the Python code (DIAMOnD.py) provided by the original experiment. Each test used

32



200 iterations, since the cutoff for finding more true positives in the original experiment was around
this point. The network used for the initial tests was a PPI network provided by my advisors. The
seed genes for each disease were obtained from OMIM and GWAS and used in the original
experiment, so by using them, I ensured that I would get similar results. I ran each test using a
weight of 1 for each connection and saved each set of new disease genes to a different output file.
Therefore, after performing these tests, each disease module had 200 potential new genes.

Once the tests on the PPI network were complete, I ran an additional set of tests using a
different network, this time a co-expression network (also provided by my advisors). The purpose of
this was to determine whether or not DIAMOnD produces the same level of performance for
different types of biological networks. The set of seed genes for each of the five diseases was the
same, but running them on a different network produced a different set of DIAMOnD genes for
each disease. This process can be repeated for any type of biological network, although the best
results come from networks that are more complete. Once again, I used a cutoff point of 200 genes
and saved each test to a different outfile.

The final step in testing DIAMOnD was to compare it to a random sampling, so as to
confirm that it performs better than the norm. In order to do this, I designed additional program
called random_walk.py to select a random set of genes from the network used for finding
DIAMOnD genes. I did this by simply making a loop in which a random gene is selected from the
network to be part of the disease module, and then removed from the network so it is not selected
again. This way, the random selection can be iterated as many times as DIAMOnD, so as to provide
a fitting comparison (200 times in this case). The genes for DIAMOnD and the random search were

validated the same way for every disease and network used.

3.2.2 Validation Methods

As in the original experiment, this experiment validated the DIAMOnD genes by running a
gene ontology test on them. Therefore, I conducted a search in DAVID to find the GO terms
associated with the seed genes for each disease, as shown in Figure 10. I did this by plugging the list
of seed genes into DIAMOnD (in this case using the regular gene name) and running the test on

them. I then looked through each of the GO lists for cellular components, biological processes, and

33



molecular functions to find all of the GO terms that were strongly associated with each disease. In
this case, a term is considered strongly associated with a set of genes if it has a Bonferroni correction
value (an additional test designed to reduce insignificant data from the GO terms) of less than 0.05

(Ghiassian 2015).

Functional Annotation Chart

Current Gene List: demolist2 Parameter Panel

Current Background: Homo sapie .

394 DAVID IDs Enrichment
Enriched Functional P-values
Annotations

@ Options

[ Rerun Using Options “ Create Sublist J

0O GOTERM_MF_& RI — 4s 11.4 4.08-6
O GOTERM_MF_4 kinase activity RI — 42 10.7 3.1E-5
O GOTERM_MF_4 in Ty RY - 16 4.1 3.66-4
O GOTERM_MF_4 sequence-soecific DNA binding RT - 24 6.1 1.8E-3
0 GOTERM_MF_4 mem i = 20 7.6 3.36-3
O GOTERM_MF_4 r ¢ activi RI = 11 2.8 9.0E-3
0O GOTERM_MF_& m CNA bindin RY M 5 1.3 1.4E-2
O GOTERM_MF_4 -protein- e 4 RY 5 6 1.5 2.56-2
O GOTERM_MF_4 horbol aster ¢ £ activil RY M 3 0.8 3.8€-2
0 GOTERM_MF_4 s s fager oy 3 3 1.5 4.38-2

Figure 10: Set of terms obtained by DAVID functional annotation tool.

Retrieved from https://david.ncifcrf.gov/home.jsp

In order to determine whether the DIAMOnD genes had any of these terms, I downloaded
a complete list of genes in the human genome and their GO terms from the Gene Ontology
Consortium. I also designed additional program in Python called parse_annotations.py to parse the
list and determine if each DIAMOnD gene had any of the same GO terms as the seed genes (by
taking the list of seed gene GO terms and the list of DIAMOnD genes as inputs). The program
finds a list of all the DIAMOnD genes containing at least one of the seed GO terms, which can be
used to determine the number of true positives among the DIAMOnD genes. It outputs the number
of true positives obtained by each iteration of the algorithm by first starting with one DIAMOnD
gene and determining whether it is a true positive. It then adds the next DIAMOnD gene to the list
and determines the number of true positives between the two genes, and continues adding more

until all the iterations are complete. This program works for both the DIAMOnD algorithm and the

34



random selection. Thanks to the data analysis from the original experiment, a reasonable
comparison exists for how many of the DIAMOnD genes should be true positives, so as to verify
that the experiment is working properly. Once all of the new DIAMOnD genes were validated, it

became possible to graph the number of true positives for each of the 5 diseases used.

3.3 Augmenting DIAMOND

The next major part of improving the correctness of DIAMOnD was to find a way to
upgrade the existing algorithm in order to increase its chances of finding the correct genes. In order
to do this, I modified the probability distribution used to calculate the p-values for each of the
network genes. The original DIAMOnD algorithm calculates the p-values by simply using the
number of links each gene is connected to in the network and the total number of links to determine
the probability that the gene is connected. However, the augmented algorithm challenges this
assumption by considering whether that gene’s links also exist in other biological networks. The
hope was that including more biological information in the algorithm would provide a more realistic
idea of how likely each gene is to be connected, since a link that appears in several networks is
considered more likely to exist in a random network. Therefore, I gave such links a greater weight in
the hypergeometric distribution and then normalized the distribution, hoping to provide a more

realistic probability distribution for calculating the p-values.

3.3.1 The Augmented DIAMOND Algorithm

The augmented DIAMOnD algorithm (augmented_ DIAMOnD.py) works by using one
biological network to obtain DIAMOnD genes, but supplementing it with additional networks used
to indicate how rigid the biological links of those genes are. For instance, if one gene in a PPI
network has four connections to other genes in the network, and twenty one genes total, then the
probability that it is connected to any gene is four/twenty, or one fifth. However, in a co-expression
network which contains that same gene, there may be connections to the first two genes but not the
last two. Therefore, in the original PPI network, one might consider the original gene to have a
greater chance (ex. eight/twenty) of being connected to the first two genes and a smaller chance (ex.

two/twenty) of being connected to the last two genes. By taking this information into account, the

35



algorithm indicates how likely one gene is to be connected to another across all biological networks,
not just the one being used to obtain the DIAMOnD genes.

For my augmented DIAMOnD algorithm, I took advantage of the algorithm’s functionality
for adding weights to certain links in the network. The original creators left an option for users to
give additional weight to links connected to seed genes by specifying the weight in a command line
argument. The algorithm then normalizes the hypergeometric distribution for the p-value by adding
this weight to the values of N, n, k, and x for each gene connected to seed genes. It does this by
adding a number of links equal to the additional weight to N, n, k, and x for each seed link. For
example, if one were to specify a weight of 2, then the algorithm would add (2-1)=1 to N and k for
every seed link and to n and x for every seed link connected to the current gene. For the augmented
algorithm, I changed this scheme so that instead of adding additional weight for every seed link, the
algorithm adds additional weight for every link that exists in an additional supplementary network of
my choosing. After determining which links exist in both networks, I went through every gene as
usual, but this time added additional weights to N, n, k, and x if the gene was connected to a link
that existed in both networks. For instance, if I tested the algorithm using a PPI network and used a
regulatory network as the supplementary network, and then specified a weight of 2, then the
algorithm would add (2-1)=1 to N for every link that exists in both networks, to k if that link
contains seeds, and to the n and x values for each gene in the original network depending on
whether the link contains a seed.

For my testing, I used an augmented algorithm that obtains new DIAMOnD genes from the
original network but includes a supplementary network and gives greater weight to links that appear
in both networks. I also used a weight of 2 for links that exist in both networks and a link of 1 for
genes that exist in just the first network. However, since the two networks are specified as
parameters, one could use any network as the main network or the supplementary network. It also
wouldn’t be too difficult to add functionality to consider multiple networks in the algorithm and
then add additional weight to links that exist in three or more networks. One could also experiment
with the weighting scheme by giving even higher weights to genes that exist in multiple networks or
lower ones to genes that exist in just the first network, although this may require altering the way the

algorithm calculates the p-value, since it currently doesn’t accept fractions.

36



3.3.2 Comparing the Algorithms

In order to compare the augmented DIAMOnND algorithm to the original DIAMOnD
algorithm, I used the same tests that I used for the original DIAMOnD algorithm. I ran the new
algorithm using the sets of seed genes for Crohn’s disease, Behcet disease, leukemia, sarcoma, and
vasculitis. For the first set of tests, I used the PPI network as the main network and the
co-expression network as the supplementary network for comparing links. For the second set of
tests, I reversed the process by using the co-expression network as the main network and the PPI
network as the supplementary network for comparing links. Once again, I used a cutoff point of 200
iterations for each test and saved each of the results to a different outfile.

Once I tested the augmented DIAMOnD algorithm, I saw that it produced different results
than the original DIAMOnD algorithm. I also verified that the new algorithm was in fact finding
links that existed in both networks and adding the appropriate weights when computing the p-value
by testing on a simple network of only a few genes. This way, I could calculate for myself what the
values for N, k, etc. were supposed to be and verify that the algorithm was actually getting them.
Therefore, as long as the new algorithm uses two networks that have some of the same links, it
should produce different results than DIAMOnD. If not, then it will perform the same way as the
original DIAMOnD algorithm. In order to verify the results of the new algorithm, I used the same
gene ontology test that I used for the original DIAMOnD algorithm. Therefore, I ran each set of
new disease genes through my GO parsing program to determine the number of true positives for
each DIAMOnD test. I then compared them to the number of true positives obtained for the

original DIAMOnD algorithm to determine if it indeed performs better.

37



CHAPTER 4: RESULTS AND ANALYSIS

In order to determine how successful each algorithm was, I made several graphs to show the
validation of each of the new disease genes. In particular, I made a set of graphs to model the
number of true positives found for each disease module compared to the number of iterations used
for the algorithm. I also included a straight y=x line in the graph to represent the performance of the
seed genes, since any seed genes are already in the disease module and are therefore already
validated. I fit an additional line to the scatter plot representing the DIAMOnD gene data, so that
one can compare the number of DIAMOnD true positives to the number of seed genes for the
same number of iterations (which are all true positives). This comparison of the two lines
demonstrates how successful DIAMOnD was in finding the correct genes for each disease module.
In addition, I included a line representing random gene selection to prove that DIAMOnD performs
better than the norm. I repeated all of these steps when graphing the progress of the augmented
algorithm. I also made a table to compare the final numbers of true positives obtained by each

algorithm.

4.1 DIAMOND Results and Analysis

Primary Network Disease Algorithm Final True Positive
Count (200 iterations)
PPI Behcet DIAMOnD 160
Random 88
Crohn DIAMOnD 137
Random 37
Leukemia DIAMOnD 184
Random 80

38



Sarcoma DIAMOnD 195

Random 127

Vasculitis DIAMOnD 161
Random 91

Co-expression Behcet DIAMOnD 116
Random 82

Crohn DIAMOnD 88
Random 31

Leukemia DIAMOnD 50
Random 74

Sarcoma DIAMOnD 184

Random 142

Vasculitis DIAMOnD 129
Random 93

Figure 11: Table of final true positive values for DIAMOnD testing. Each test has a network (PPI
or co-expression), disease (Behcet, Crohn, leukemia, sarcoma, or vasculitis), algorithm (DIAMOnD

or random) and final count of correct “true positive” disease genes (0 to 200).

In order to analyze the results of the original DIAMOnD algorithm, I took the results of the
gene ontology test performed by my parse_annotations.py program and used them to graph the
number of true positives with a scatter plot. The program calculates the number of true positives for

each iteration of the algorithm, so I graphed using number of iterations as the independent variable

39



and the number of true positives as the dependent variable. Finally, I found a best fit line for each of
the scatter plots and used these to graph the performance of the algorithm. One graph was made for
each of the diseases used (Behcet, Crohn, Leukemia, Sarcoma, and Vasculitis) for each of the
biological networks used (PPI and co-expression) for a total of 10 graphs (see Figures 12-21). Each
graph includes a scatter plot best fit line for seed, DIAMOnD, and random genes, based on the
results I got from parse_annotations.py for all of them. I also made a table comparing the final true
positive values for the DIAMOnD and random genes (see Figure 11).

Based on the graph and table results, it appears that all of the DIAMOnD tests were faitly
successful in finding new genes for all of the disease modules. In almost all of the graphs, the best fit
line for DIAMONnD is higher than the best fit line for random selection, indicating that DIAMOnD
finds more correct disease genes than random selection for almost every iteration. The one
exception is the test for leukemia with the co-expression network, which yielded results worse than
those of the random selection (50 final true positives compared to 74). It is possible that the gene
ontology test for this disease is not entirely accurate, or that the list of terms obtained from DAVID
for the seed genes is incomplete. It also appears that in most cases, the best fit line for the
DIAMOnD algorithm is fairly close to that of the best fit line for seed genes (100% correct). This
means that for most of the tests, the majority of the genes that DIAMOnD obtains have a strong
probability of belonging to the disease module of the disease tested. However, it is possible that the
results would vary somewhat for a different validation test, such as PASCAL.

When comparing the results that DIAMOnD produces between the PPI network and the
co-expression network, it appears that DIAMOnND performs better on the PPI network. For every
disease, the algorithm yields a higher number of true positives for the PPI network than for the
co-expression network for most of the graph iterations. The reasons for this are uncertain, but it
could be that the PPI network is simply more complete than the co-expression network, since many
links are still undiscovered. For the PPI network, the disease for which the algorithm performs best
is sarcoma (195 true positives), and the disease for which the algorithm performs worst is Crohn’s
disease (137 true positives). For the co-expression network, the disease for which the algorithm
performs best is sarcoma (184 true positives), and the disease for which the algorithm performs

worst is leukemia (50 true positives). For the PPI network, the total number of true positives ends

40



up being between 150 to 200 out of 200 for most of the tests, which is an amazing performance. For
the co-expression network, the number of validated genes ends up being somewhat lower, around
50 to 150 out of 200 for most of the tests. However, for both of the networks, the algorithm seems
to be fairly successful at finding new disease genes.

There are a few major findings we can determine from the DIAMOnD tests. Based on the
true positive graphs and table, it appears that DIAMOnD is in fact successful at disease module
detection, since it performs better than the random distribution in most cases. It also seems that
DIAMOnD has an exceptionally high performance for some diseases and networks, since some of
the tests, like the ones for sarcoma, produced a best fit line that was close to 100% successful.
DIAMOnD also performs better on the PPI network than the co-expression network. Based on the
random selections for each of the diseases, it appears that DIAMOnD was successful in improving
disease module detection for all of them, aside from the co-expression test for leukemia. Therefore,
we can conclude that the DIAMOnD algorithm is the algorithm to beat in terms of disease module

detection, which puts a lot of pressure on the augmented algorithm.

Validation of DIAMOND Genes for Behcet
Disease with PPl Network

N
1%
o

]
(=}
o

[y
w
o

sm—=Seed Genes

@m===DIAMOND Genes

=
(=]
o

Random Genes

Number of True Positives Among Validated Genes
w
(=]

o

0 50 100 150 200 250

Number of Iterations

Figure 12: Validation of DIAMOnD genes for Behcet disease with PPI network. Each line
(for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Behcet disease genes obtained by comparing the GO terms of

the seeds genes and algorithm genes.

41



Validation of DIAMOND Genes for Crohn's
Disease with PPl Network

N
v
o

)
(=}
o

=
v
o

sm==Seed Genes

@m===DIAMOND Genes

=
o
o

Random Genes

v
o

Number of True Positives Among Validated Genes

o

0 50 100 150 200 250
Number of Iterations

Figure 13: Validation of DIAMOnD genes for Crohn’s disease with PPI network. Each line
(for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Crohn disease genes obtained by comparing the GO terms of

the seeds genes and algorithm genes..

Validation of DIAMOND Genes for Leukemia with
PPl Network

/ emsSeed Genes
@mm==DIAMOND Genes

Random Genes

N
%Y
o

N
o
o

[,
wu
o

[
(=]
o

Number of True Positives Among Validated Genes
w
o

o
L

0 50 100 150 200 250

Number of Iterations

Figure 14: Validation of DIAMOnD genes for leukemia with PPI network. Each line (for
seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm iterations against
the number of “true positive” leukemia disease genes obtained by comparing the GO terms of the

seeds genes and algorithm genes.

42



Validation of DIAMOND Genes for Sarcoma with
PPl Network

N
v
o

N
o
o

[,
1%
o

m——seed Genes

@m==DIAMOND Genes

[,
(=]
o

Random Genes

Number of True Positives Among Validated Genes
w
o

o
4

0 50 100 150 200 250
Number of Iterations

Figure 15: Validation of DIAMOnD genes for sarcoma with PPI network. Fach line (for
seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm iterations against
the number of “true positive” sarcoma disease genes obtained by comparing the GO terms of the

seeds genes and algorithm genes.

Validation of DIAMOND Genes for Vasculitis with
PPl Network

// s===Seed Genes
@==DIAMOND Genes

Random Genes

N
v
o

)
(=1
o

[
wu
o

=
(=1
o

Number of True Positives Among Validated Genes
wu
o

o
I

0 50 100 150 200 250
Number of Iterations

Figure 16: Validation of DIAMOnD genes for vasculitis with PPI network. Each line (for
seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm iterations against
the number of “true positive” vasculitis disease genes obtained by comparing the GO terms of the

seeds genes and algorithm genes.

43



Validation of DIAMOND Genes for Behcet
Disease with Co-Expression Network

yd

N
w
o

N
o
o

[
w
o

wm==Seed Genes

@==DIAMOND Genes

=
o
o

Random Genes

Number of True Positives Among Validated Genes
w
(=]

o
4

0 50 100 150 200 250
Number of Iterations

Figure 17: Validation of DIAMOnD genes for Behcet disease with co-expression network.
Each line (for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm
iterations against the number of “true positive” Behcet disease genes obtained by comparing the GO

terms of the seeds genes and algorithm genes.

Validation of DIAMOND Genes for Crohn's
Disease with Co-Expression Network

/ wm—=Seed Genes
@m===DIAMOND Genes
/ / Random Genes

N
v
(=]

[
o
o

=
%
o

=
(=]
o

Number of True Positivies Among Validated Genes

o

\

Number of Iterations

Figure 18: Validation of DIAMOnD genes for Crohn’s disease with co-expression network.
Each line (for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm
iterations against the number of “true positive” Crohn disease genes obtained by comparing the GO

terms of the seeds genes and algorithm genes.

44



Validation of DIAMOND Genes for Leukemia with
Co-Expression Network

/ em=sSeed Genes
@m===DIAMOND Genes
/ Random Genes

0 50 100 150 200 250
Number of Iterations

N
U
o

]
(=]
o

[y
wu
o

[
o
o

Number of True Positives Among Validated Genes
wu
o

o

Figure 19: Validation of DIAMOnD genes for leukemia with co-expression network. Each
line (for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm
iterations against the number of “true positive” leukemia disease genes obtained by comparing the

GO terms of the seeds genes and algorithm genes.

Validation of DIAMOND Genes for Sarcoma with
Co-Expression Network

250

150

wm——Seed Genes

100 @m===DIAMOND Genes

Random Genes

Number o True Positives Among Validated Genes
wu
S

o
L

0 50 100 150 200 250

Number of Iterations

Figure 20: Validation of DIAMOnD genes for sarcoma with co-expression network. Each
line (for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm
iterations against the number of “true positive” sarcoma disease genes obtained by comparing the

GO terms of the seeds genes and algorithm genes.

45



Validation of DIAMOND Genes for Vasculitis with
Co-Expression Network

N
v
o

200

[y
ul
o

em==Seed Genes
100 @==DIAMOND Genes

Random Genes

Number of True Positives Among Validated Genes
wu
o

o

0 50 100 150 200 250
Number of Iterations
Figure 21: Validation of DIAMOnD genes for vasculitis with co-expression network. Each
line (for seed genes, DIAMOnD genes, and random genes) graphs the number of algorithm
iterations against the number of “true positive” vasculitis disease genes obtained by comparing the

GO terms of the seeds genes and algorithm genes.

4.2 Augmented DIAMOND Results and Analysis

Primary Network Disease Algorithm Final True Positive
Count (200 iterations)
PPI Behcet DIAMOnD 160
Augmented 155
DIAMOnD
Random 88
Crohn DIAMOnD 137
Augmented 155

46



DIAMOnD

Random 37
Leukemia DIAMOnD 184
Augmented 182
DIAMOnD
Random 80
Sarcoma DIAMOnD 195
Augmented 196
DIAMOnD
Random 127
Vasculitis DIAMOnD 161
Augmented 155
DIAMOnD
Random 91
Co-expression Behcet DIAMOnD 116
Augmented 132
DIAMOnD
Random 32
Crohn DIAMOnD 88
Augmented 81
DIAMOnD

47




Random 31
Leukemia DIAMOnD 50
Augmented 183
DIAMOnD
Random 74
Sarcoma DIAMOnD 184
Augmented 188
DIAMOnD
Random 142
Vasculitis DIAMOnD 129
Augmented 132
DIAMOnD
Random 93

Figure 22: Table of final true positive values for augmented DIAMOnD testing. Each test has a
network (PPI or co-expression), disease (Behcet, Crohn, leukemia, sarcoma, or vasculitis), algorithm
(DIAMOnD, augmented DIAMOnD, or random) and final count of correct “true positive” disease

genes (0 to 200).

In order to analyze the results from the augmented DIAMOnD algorithm, I used the same
graph structure that was used for the regular DIAMOnD algorithm. I also used the same
parse_annotations.py program to validate the augmented DIAMOnD genes, so I could graph the
number of iterations against the number of true positives for the new algorithm, just as I did for the
original. However, this time I included scatter plot best fit lines for both the original DIAMOnD
algorithm and the augmented DIAMOnD algorithm, so I could compare the performance of the

two. I kept the lines for seed genes and random selection also, just to see how the augmented

48



algorithm does compared to them. Once again, I performed a test for each of the 5 diseases with
two different networks, for a total of 10 tests. For the first set of tests, I used the PPI network as my
main network and used the co-expression network as a supplementary network to increase the
weights. For the second set of tests, I used the co-expression network as my main network and used
the PPI network as a supplementary network to increase the weights. I made an additional set of 10
graphs (see Figures 23-32) and another table showing the final numbers of true positives among the
DIAMOnD, augmented DIAMOnD, and random genes (see Figure 22).

Based on the graph and table results, it appears that all of the augmented DIAMOnD tests
were also fairly successful in finding new genes for all of the disease modules. All of the augmented
DIAMOnND tests produced a higher best fit line than the random selection of genes. This includes
the test for leukemia with the co-expression network, which produced a best fit line below the one
for the random selection during the original algorithm tests. In addition, it appears that the new
algorithm does outperform the original algorithm for some of the tests. There are several tests for
which the augmented best fit line is higher than that of the original best fit line. It also appears that
in most cases, the best fit line for the augmented algorithm is fairly close to the best fit line for the
seed genes (100% correct). This means that the majority of the genes collected by the augmented
DIAMOnD algorithm for each disease have a strong chance of belonging to the disease module for
this disease, although more validation tests may be needed to verify this.

It appears that just as with the original DIAMOnD algorithm, the augmented algorithm
performs better when using the PPI network as the main network than it does when using the
co-expression network as the main network. For most of the diseases, the best fit line for the
augmented algorithm is higher for the PPI network than it is for the co-expression network. The
disease with the greatest number of true positives for the new algorithm with the PPI network was
sarcoma (196 ture positives), while the one with the smallest number of true positives was a
three-way tie between Behcet disease, Crohn’s disease, and vasculitis (155 true positives). The
disease with the greatest number of true positives for the new algorithm with the co-expression
network was sarcoma (188 true positives), while the one with the smallest number of true positives
was Crohn’s disease (81 true positives). For both networks, the total number of true positives mostly

ends up being between 100 and 200 genes out of 200, suggesting more parity between the networks

49



than with the original algorithm. Therefore, for both orderings of the main and supplementary
networks, the algorithm appears to be fairly successful at finding disease genes.

It appears that in general, the augmented algorithm does produce a slightly higher number of
true positives than the original algorithm does. Of the 10 tests with the augmented algorithm, 6 of
them produce final true positive numbers that are higher than those of the original algorithm. In
addition, in all of the tests, the best fit line for the augmented algorithm is either much higher than
that of the original algorithm or runs along roughly the same points that it does. However, the
co-expression network tests showed a greater improvement, in general, in the number of true
positives discovered from the old algorithm to the new one than the PPI network did. The greatest
change was in the number of true positives for leukemia when tested with the co-expression
network, which rocketed upwards from 50 to 183 after being tested with the new algorithm.
Therefore, it appears that the new algorithm does indeed perform better than the original algorithm,
or at least as well as it does.

There are a few major findings we can determine from the augmented DIAMOnD tests.
Based on the random selections for each of the diseases, it appears that the augmented DIAMOnD
algorithm was successful in improving disease module detection for all of them. In addition, based
on the true positive graphs, it appears that the augmented algorithm performs at least as well as, or
better than, the original algorithm does, since its best fit line is close to or higher than that of the
original algorithm for all of the diseases. It also appears that the augmented algorithm has an
exceptionally high performance for some of the diseases, like leukemia, and performs significantly
better than the original algorithm in these cases. Furthermore, it appears that while the augmented
algorithm performs better on the PPI network than the co-expression network, it produces a higher
improvement over the original algorithm for the co-expression network than the PPI network.
Based on this information, we can conclude that changing the probability distribution of
DIAMOnD to add weights to links that exist in additional networks does improve the algorithm’s
ability to find correct genes to add to the disease network.

While these results provide good supportt for the augmented algorithm, it is important to
consider their limitations. I only tested the algorithms on five diseases, so further testing may be

needed to see if the results hold for a larger sample size. I also only used two types of biological

50



networks, so it is possible that other types will produce different results. To further complicate
matters, I didn’t have time to fully experiment with the augmented DIAMOnD algorithm, as I only
tested it with a weight of 2 for genes in both networks and a weight of 1 for genes in one network.
In addition, it is difficult to determine how accurate the gene ontology test is, since it relies on
having a fixed statistical significance limit for biological terms connected to the seed genes. This
significance restriction can be overestimated or underestimated, and the lists of biological terms in
DAVID and other databases may not be entirely accurate. It is also possible that my own program
to validate the genes overlooks certain factors when determining the number of true positives.
However, these results do at least suggest that the augmented algorithm can sometimes perform

better than the original algorithm.

Comparison for Behcet Disease of DIAMOND with
PPI Network and Augmented DIAMOND with
Supplementary Co-Expression Network

200

150
wm=Seed Genes

@m—=DIAMOND Genes
100 Augmented DIAMOND Genes

====Random Genes

50

Number of True Positives Among Validated Genes

0 50 100 150 200 250

Number of Iterations

Figure 23: Comparison for Behcet disease of DIAMOnD with PPI network and augmented
DIAMOnD with supplementary co-expression network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Behcet disease genes obtained by comparing the GO terms of
the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

51



Comparison for Crohn's Disease of DIAMOND with
PPl Network and Augmented DIAMOND with
Supplementary Co-Expression Network

250
200

150
sm—=Seed Genes

@m===DIAMOND Genes

b Augmented DIAMOND Genes

/ e==Random Genes
50
. p—'_’_/

0 50 100 150 200 250

Number of Iterations

Number of True Positives Among Validated Genes

Figure 24: Comparison for Crohn’s disease of DIAMOnD with PPI network and augmented
DIAMOnD with supplementary co-expression network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Crohn disease genes obtained by comparing the GO terms of
the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

52



Comparison for Leukemia of DIAMOND with PPI
Network and Augmented DIAMOND with
Supplementary Co-Expression Network

N
w
[=]

[
[=]
[=]

150
wm==Seed Genes

@w==DIAMOND Genes

=
o
[=]

Augmented DIAMOND Genes

@s===Random Genes

w
o

Number of True Positives Among Validated Genes

o

0 50 100 150 200 250
Number of Iterations

Figure 25: Comparison for leukemia of DIAMOnD with PPI network and augmented
DIAMOnD with supplementary co-expression network. Each line (for seed genes, DIAMOnD

genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations

against the number of “true positive” leukemia disease genes obtained by comparing the GO terms

of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

53



Comparison for Sarcoma of DIAMOND with PPI
Network and Augmented DIAMOND with
Supplementary Co-Expression Network

250

200

/s

150
—=Seed Genes

s—=D|AMOND Genes
100 Augmented DIAMOND Genes
sm==Random Genes

50

Number of True Positives Among Validated Genes

0 50 100 150 200 250
Number of Iterations
Figure 26: Comparison for sarcoma of DIAMOnD with PPI network and augmented
DIAMOnD with supplementary co-expression network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” sarcoma disease genes obtained by comparing the GO terms
of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

54



Comparison for Vasculitis of DIAMOND with PPI
Network and Augmented DIAMOND with
Supplementary Co-Expression Network

250
200

150
emm=Seed Genes

@m===DIAMOND Genes
100 Augmented DIAMOND Genes
s===Random Genes

50

Number of True Positives Among Validated Genes

0 50 100 150 200 250
Number of Iterations
Figure 27: Comparison for vasculitis of DIAMOnD with PPI network and augmented
DIAMOnD with supplementary co-expression network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” vasculitis disease genes obtained by comparing the GO terms
of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

55



Comparison for Behcet Disease of DIAMOND with
Co-Expression Network and Augmented DIAMOND
with Supplementary PPl Network

250

sm==Seed Genes
@mm==DIAMOND Genes
Augmented DIAMOND Genes

wm===Random Genes

Number of True Positives Among Validated Genes

0 50 100 150 200 250
Number of Iterations
Figure 28: Comparison for Behcet disease of DIAMOnND with co-expression network and
augmented DIAMOnD with supplementary PPI network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Behcet disease genes obtained by comparing the GO terms of
the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

56



Comparison for Crohn's Disease of DIAMOND with
Co-Expression Network and Augmented DIAMOND
with Supplementary PPl Network

250

200 /

150
sm==Seed Genes
@m==D|AMORND Genes

100 Augmented DIAMOND Genes

sm==Random Genes

50

o-ﬂ/

!
0 50 100 150 200 250

Number of True Positives Among Validated Genes

Number of Iterations

Figure 29: Comparison for Crohn’s disease of DIAMOnD with co-expression network and
augmented DIAMOnD with supplementary PPI network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” Crohn disease genes obtained by comparing the GO terms of
the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

57



Comparison for Leukemia of DIAMOND with Co-
Expression Network and Augmented DIAMOND with
Supplementary PPl Network

250
200

150
em=Seed Genes

@m==DIAMOND Genes
100 Augmented DIAMOND Genes
w==Random Genes

50

Number of True Positives Among Validated Genes

0 50 100 150 200 250
Number of Iterations
Figure 30: Comparison for leukemia of DIAMOnD with co-expression network and
augmented DIAMOnD with supplementary PPI network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” leukemia disease genes obtained by comparing the GO terms
of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

58



Comparison for Sarcoma of DIAMOND with Co-
Expression Network and Augmented DIAMOND with
Supplementary PPl Network

250
200

150
w==Seed Genes

em==D|AMOND Genes
100 Augmented DIAMOND Genes
sm==Random Genes

50

Number of True Positives Among Validated Genes

0 50 100 150 200 250
Number of Iterations
Figure 31: Comparison for sarcoma of DIAMOnD with co-expression network and
augmented DIAMOnD with supplementary PPI network. Each line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” sarcoma disease genes obtained by comparing the GO terms
of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

59



Comparison for Vasculitis of DIAMOND with Co-
Expression Network and Augmented DIAMOND with
Supplementary PPl Network

250
200 /
150

wm—=Seed Genes

g~

@mm==DIAMOND Genes
400 Augmented DIAMOND Genes
/ @s==Random Genes

0 50 100 150 200 250

Number of Iterations

50 7

Number of True Positives Among Validated Genes

Figure 32: Comparison for vasculitis of DIAMOnD with co-expression network and
augmented DIAMOnD with supplementary PPI network. Fach line (for seed genes, DIAMOnD
genes, augmented DIAMOnD genes, and random genes) graphs the number of algorithm iterations
against the number of “true positive” vasculitis disease genes obtained by comparing the GO terms
of the seeds genes and algorithm genes. This allows us to see whether the new algorithm, which

compares links in the main and supplementary networks, has a better performance.

60



CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

When I began this project, I knew very little about bioinformatics and biological networks.
However, over the course of the project, I have learned a great deal about biological structures and
how interconnected they are. I realized that networks and probability both played a major role in
how our genes function, and sometimes go wrong. This understanding has enabled biologists and
data scientists to make great strides in linking diseases to genes, including the DIAMOnD algorithm.
Improving this algorithm mixed my biological knowledge, my programming skills, and my
mathematical analysis to apply probabilistic methods to bioinformatics. As far as I know, this
augmented algorithm represents one of the first major attempts to improve DIAMOnD. By
comparing it to the original DIAMOnD algorithm, I can start to push the algorithm further and
continue to explore the interconnected networks of disease genes.

After analyzing both the DIAMOnD algorithm and the upgraded algorithm, I can draw
several conclusions about both algorithms. It appears that the DIAMOnD algorithm works as well
as in the original experiment, always performing better than the random distribution and almost as
well as the seed genes (a perfect score). For the augmented algorithm, it appears that the
performance is somewhat better than the original algorithm, although the results are somewhat
inconclusive. It also appears that the DIAMOnD algorithm and augmented algorithm both perform
better when tested using the PPI network then they do when tested using the co-expression
network. However, the new algorithm produces a greater improvement in the co-expression
network than in the PPI network. Therefore, it appears that changing the weighting scheme of
DIAMOnD could potentially improve its performance. However, due to time and resource
constraints, I was unable to fully experiment with the parameters of the new algorithm.

In the future, there are a number of steps that can be taken to improve the results of this
project. One step would be to test the DIAMOnD algorithm with additional diseases and networks,
such as metabolic or regulatory networks, in order to determine how it performs on those. There are
also a number of ways in which future experiments could improve the augmented algorithm. They
could try experimenting with the weighting scheme used when calculating the p-values, such as
giving genes in both networks a weight of 3 and genes only in the first network a weight of 0.5 (the

current setup of the algorithm makes it difficult to use fractions). It also wouldn’t be too difficult to

61



add a functionality to include additional supplementary networks in the algorithm, which would
allow for even more experimentation with the weighting scheme. For instance, if I tested the
algorithm with a PPI network but also included supplementary co-expression and regulatory
networks, then I could assign a link that exists in all three networks a weight of 3. Furthermore, the
gene ontology test that I used may not be entirely accurate, so future experiments could try using a
test with less error. For instance, PASCAL (Pathway Scoring Algorithm) is used to analyze the
validity of disease genes obtained by the GWAS database. Any of these steps could provide new
information that would improve the scope of the experiment.

As there are still many questions around the performance of this augmented algorithm, it is
difficult to determine how stable my conclusions are. However, one thing that this project
definitively confirms is that it is possible to affect the performance of DIAMOnD by changing the
weights of its network links based on the information available in additional networks. Therefore,
even if this project doesn’t conclusively prove that the new algorithm is an improvement over
DIAMOnD, it at least demonstrates that messing with its probability distribution can produce a
higher number of correct disease genes than the original network. This means that future
experiments can build on what I have done with better testing and methodology, determining
conclusively whether the algorithm has been improved and continuing to enhance it. Hopefully,
these discoveries will contribute to the field of network medicine and make it easier to associate
diseases with genes. That way, a day may come when I or someone I know will get a disease and a
doctor will, just like finding a malfunctioning car part, simply point out the gene causing the

problem and fix it.

62



ACKNOWLEDGEMENTS

I would like to thank certain people for their help throughout this project. Thank you to

Professors Dmitry Korkin and Zheyang Wu for sponsoring this project and giving me the

opportunity to fulfill the MQP requirement for both of my majors. You introduced me to the field

of bioinformatics and helped me grasp the major concepts enough for me to do something
meaningful with this project. Thank you to Hongzhu Cui for helping me throughout this project
with advice and instructions about how to run the tests and search the databases, among other
things. Without your help, I would not have been able to design a coherent experiment. Finally, I
would like to thank my academic advisors for helping me to get involved in this project and for

guiding me throughout my academic career at WPI.

63



BIBLIOGRAPHY

Barabasi, A.-L. L., Joseph; Gulbahce, Natali. (2011). Network Medicine: A Network-Based
Approach to Human Disease. Nature Reviews Genetics, 12(1).

Barabasi, A.-L. (2013). Network Medicine: From Cellular Interactions to Human Diseases. Retrieved

from https://www.youtube.com/watch?v=qedoldZsIDM
DAVID. (2009). Rettieved from https://david.ncifcrf.gov/home.jsp

European Bioinformatics Institute. Protein-Protein Interaction Networks. (2017). Retrieved from

https:/ /www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-int

roduction/protein-protein-interaction-networks
Gene Ontology Consortium. (1999). Retrieved from http://www.geneontology.org/

Genetics Home Reference. What Are Proteins and What Do They Do? (2017). Retrieved from
https://ghr.nlm.nih.gov/primer/howgeneswork/protein

Genetics Home Reference. What Is a Gene? (2017). Retrieved from

https://ght.nlm.nih.gov/primer/basics/gene

Ghiassian, S. D. M., Jorg; Barabasi, Albert-Laszlo. (2015). A DIseAse MOdule Detection
(DIAMOnD) Algorithm Derived from a Systemic Analysis of Disease Proteins in the
Human Interactome. PLoS Computational Biology, 11(4).

GWAS Catalog. (2017). Retrieved from https://www.ebi.ac.uk/gwas/

Kirkman, T. W. (1996). Kolmogorov-Smirnov Test. Retrieved from
http:/ /www.physics.csbsju.edu/stats /KS-test.html

MacNeil, L. T. W., Albertha J. M. (2011). Gene Regulatory Networks and the Role of Robustness
and Stochasticity in the Control of Gene Expression. Genome Research, 21(5), 645-657.

Mandal, A. (2013). What is RNA? Retrieved from
http:/ /www.news-medical.net/life-sciences/What-is-RNA.aspx

64



McKusick, V. (1966). OMIM - Online Mendelian Inheritance in Man. Retrieved from
https://www.omim.org/

National Human Genome Research Institute. Genome-Wide Association Studies. (2015). Retrieved
from https://www.genome.gov/20019523/

Villa-Vialaneix, N. L., Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanChristobal,
Magali. (2013). The Structure of A Gene Co-Expression Network Reveals Biological
Functions Underlying eQTLs. PLoS One, 8(4).

Zitnik, M. (20106). Types of Biological Networks. Retrieved from
https:/ /web.stanford.edu/class/cs224w/slides /handout-bionets.pdf

65



APPENDIX A: LIST OF FILES

In this appendix, I included a list of all the files in my project folder and their uses. The files

can all be found in DIAMOnD-mastet.

File

Purpose

all_seed_genes.txt

List of seed genes used by original DIAMOnD

creators

augmented_ DIAMOnD.py

Implementation of the upgraded DIAMOnD
algorithm

behcet_correct_genes_augmented_coex.txt

Set of true positive numbers for each iteration
of augmented algorithm for Behcet disease with
main co-expression network

behcet_correct_genes_augmented_ppi.txt

Set of true positive numbers for each iteration
of augmented algorithm for Behcet disease with
main PPI network

behcet_correct_genes_coex.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for Behcet disease
with co-expression network

behcet_correct_genes_ppi.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for Behcet disease
with PPI network

behcet_correct_random_coex.txt

Set of true positive numbers for each iteration
of random selection for Behcet disease with
co-expression network

behcet_correct_random_ppi.txt

Set of true positive numbers for each iteration
of random selection for Behcet disease with
PPI network

behcet_genes_augmented_coex.txt

Set of genes obtained by augmented algorithm
for Behcet disease with main PPI network

behcet_genes_augmented_ppi.txt

Set of genes obtained by augmented algorithm
for Behcet disease with main co-expression
network

behcet_genes_coex.txt

Set of genes obtained by DIAMOnD algorithm

66




for Behcet disease with co-expression network

behcet_genes_ppi.txt

Set of genes obtained by DIAMOnD algorithm
for Behcet disease with PPI network

behcet_go_terms.txt

Set of GO terms associated with Behcet seed
genes

behcet_random_walk coex.txt

Set of genes obtained by random selection for
Behcet disease with co-expression network

behcet_random_walk_ppi.txt

Set of genes obtained by random selection for
Behcet disease with PPI network

behcet_seed_genes.txt

Set of seed genes for Behcet disease

coex_network.txt

Co-expression network used for testing

crohn_correct_genes_augmented_coex.txt

Set of true positive numbers for each iteration
of augmented algorithm for Crohn’s disease
with main co-expression network

crohn_correct_genes_augmented_ppi.txt

Set of true positive numbers for each iteration
of augmented algorithm for Crohn’s disease
with main PPI network

crohn_correct_genes_coex.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for Crohn’s disease
with co-expression network

crohn_correct_genes_ppi.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for Crohn’s disease
with PPI network

crohn_correct_random_coex.txt

Set of true positive numbers for each iteration
of random selection for Crohn’s disease with
co-expression network

crohn_correct_random_ppi.txt

Set of true positive numbers for each iteration
of random selection for Crohn’s disease with
PPI network

crohn_genes_augmented_coex.txt

Set of genes obtained by augmented algorithm
for Crohn’s disease with main PPI network

crohn_genes_augmented_ppi.txt

Set of genes obtained by augmented algorithm
for Crohn’s disease with main co-expression

67




network

crohn_genes_coex.txt

Set of genes obtained by DIAMOnD algorithm
for Crohn’s disease with co-expression network

crohn_genes_ppi.txt

Set of genes obtained by DIAMOnD algorithm
for Crohn’s disease with PPI network

crohn_go_terms.txt

Set of GO terms associated with Crohn seed
genes

crohn_random_walk coex.txt

Set of genes obtained by random selection for
Crohn’s disease with co-expression network

crohn_random_walk_ppi.txt

Set of genes obtained by random selection for
Crohn’s disease with PPI network

crohn_seed_genes.txt

Set of seed genes for Crohn’s disease

DIAMOnD.py

Implementation of the DIAMOnD algorithm

first_200_for_behcet_augmented_coex.txt

Results of augmented DIAMOnND test with 200
iterations for Behcet disease with main
co-expression network

first_200_for_behcet_augmented_ppi.txt

Results of augmented DIAMOnND test with 200
iterations for Behcet disease with main PPI
network

first 200_for behcet_coex.txt

Results of DIAMOnD test with 200 iterations
for Behcet disease with co-expression network

tirst_200_for_behcet_ppi.txt

Results of DIAMOnND test with 200 iterations
for Behcet disease with PPI network

first200_for_crohn_augmented_coex.txt

Results of augmented DIAMOnND test with 200
iterations for Crohn’s disease with main
co-expression network

first_200_for_crohn_augmented_ppi.txt

Results of augmented DIAMOnND test with 200
iterations for Crohn’s disease with main PPI
network

first_ 200_for crohn_coex.txt

Results of DIAMOnND test with 200 iterations
for Crohn’s disease with co-expression network

tirst_200_for_crohn_ppi.txt

Results of DIAMOnD test with 200 iterations

68




for Crohn’s disease with PPI network

first 200_for_leukemia_augmented_coex.txt

Results of augmented DIAMOND test with 200
iterations for leukemia with main co-expression
network

first 200_for_leukemia_augmented_ppi.txt

Results of augmented DIAMOnND test with 200
iterations for leukemia with main PPI network

first 200_for leukemia_coex.txt

Results of DIAMOnD test with 200 iterations
for leukemia with co-expression network

tirst_200_for_leukemia_ppi.txt

Results of DIAMOnND test with 200 iterations
for leukemia with PPI network

first_200_for_sarcoma_augmented_coex.txt

Results of augmented DIAMOnND test with 200
iterations for sarcoma with main co-expression
network

first_200_for_sarcoma_augmented_ppi.txt

Results of augmented DIAMOnND test with 200
iterations for sarcoma with main PPI network

first_ 200_for sarcoma_coex.txt

Results of DIAMOnD test with 200 iterations
for sarcoma with co-expression network

tirst_200_for_sarcoma_ppi.txt

Results of DIAMOnD test with 200 iterations
for sarcoma with PPI network

first_200_for_vasculitis_augmented_coex.txt

Results of augmented DIAMOnND test with 200
iterations for vasculitis with main co-expression
network

first_200_for_vasculitis_augmented_ppi.txt

Results of augmented DIAMOnND test with 200
iterations for vasculitis with main PPI network

first_ 200_for wvasculitis_coex.txt

Results of DIAMOnND test with 200 iterations
for vasculitis with co-expression network

first 200_for_vasculitis_ppi.txt

Results of DIAMOnD test with 200 iterations
for vasculitis with PPI network

goa_human.txt

Complete set of human GO terms and their
associated genes (used in parse_annotations.py)

leukemia_correct_genes_augmented_coex.txt

Set of true positive numbers for each iteration
of augmented algorithm for leukemia with main
co-expression network

69




leukemia_correct_genes_augmented_ppi.txt

Set of true positive numbers for each iteration
of augmented algorithm for leukemia with main
PPI network

leukemia_correct_genes_coex.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for leukemia with
co-expression network

leukemia_correct_genes_ppi.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for leukemia with PPI
network

leukemia_correct_random_coex.txt

Set of true positive numbers for each iteration
of random selection for leukemia with
co-expression network

leukemia_correct_random_ppi.txt

Set of true positive numbers for each iteration
of random selection for leukemia with PPI
network

leukemia_genes_augmented_coex.txt

Set of genes obtained by augmented algorithm
for leukemia with main PPI network

leukemia_genes_augmented_ppi.txt

Set of genes obtained by augmented algorithm
for leukemia with main co-expression network

leukemia_genes_coex.txt

Set of genes obtained by DIAMOnD algorithm
for leukemia with co-expression network

leukemia_genes_ppi.txt

Set of genes obtained by DIAMOnD algorithm
for leukemia with PPI network

leukemia_go_terms.txt

Set of GO terms associated with leukemia seed
genes

leukemia_random_walk coex.txt

Set of genes obtained by random selection for
leukemia with co-expression network

leukemia_random_walk_ppi.txt

Set of genes obtained by random selection for
leukemia with PPI network

leukemia_seed_genes.txt

Set of seed genes for leukemia

parse_annotations.py

Program that parses through complete set of
gene annotations and discovers which genes
obtained by algorithm have the same gene
annotations as a set of seed genes

70




ppi_network.txt

PPI network used for testing

PPI.txt

PPI network used by original DIAMOnD

creators

random_walk.py

Program that selects a certain number of
random genes from a network

README.md

Readme file for programs

sarcoma_correct_genes_augmented_coex.txt

Set of true positive numbers for each iteration
of augmented algorithm for sarcoma with main
co-expression network

sarcoma_correct_genes_augmented_ppi.txt

Set of true positive numbers for each iteration
of augmented algorithm for sarcoma with main
PPI netwotrk

sarcoma_correct_genes_coex.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for sarcoma with
co-expression network

sarcoma_correct_genes_ppi.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for sarcoma with PPI
network

sarcoma_correct_random_ coex.txt

Set of true positive numbers for each iteration
of random selection for sarcoma with
co-expression network

sarcoma_correct_random_ppi.txt

Set of true positive numbers for each iteration
of random selection for sarcoma with PPI
network

sarcoma_genes_augmented_coex.txt

Set of genes obtained by augmented algorithm
for sarcoma with main PPI network

sarcoma_genes_augmented_ppi.txt

Set of genes obtained by augmented algorithm
for sarcoma with main co-expression network

sarcoma_genes_coex.txt

Set of genes obtained by DIAMOnD algorithm
for sarcoma with co-expression network

sarcoma_genes_ppi.txt

Set of genes obtained by DIAMOnD algorithm
for sarcoma with PPI network

sarcoma_go_terms.txt

Set of GO terms associated with Behcet seed

71




genes

sarcoma_random_walk coex.txt

Set of genes obtained by random selection for
Behcet disease with co-expression network

sarcoma_random_walk_ppi.txt

Set of genes obtained by random selection for
Behcet disease with PPI network

sarcoma_seed_genes.txt

Set of seed genes for Behcet disease

test_augDIAMOnD.txt

Results of augmented DIAMOnD with test
data

test_mainlist.txt

Test main network for augmented algorithm

test_otherlist.txt

Test supplementary network for augmented
algorithm

test_seed.txt

Test seed genes for augmented algorithm

vasculitis_correct_genes_augmented_coex.txt

Set of true positive numbers for each iteration
of augmented algorithm for vasculitis with main
co-expression network

vasculitis_correct_genes_augmented_ppi.txt

Set of true positive numbers for each iteration
of augmented algorithm for vasculitis with main
PPI network

vasculitis_correct_genes_coex.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for vasculitis with
co-expression network

vasculitis_correct_genes_ppi.txt

Set of true positive numbers for each iteration
of DIAMOnD algorithm for vasculitis with PPI
network

vasculitis_correct_random_coex.txt

Set of true positive numbers for each iteration
of random selection for vasculitis with
co-expression network

vasculitis_correct_random_ppi.txt

Set of true positive numbers for each iteration
of random selection for vasculitis with PPI
network

vasculitis_genes_augmented_coex.txt

Set of genes obtained by augmented algorithm
for vasculitis with main PPI network

72




vasculitis_genes_augmented_ppi.txt

Set of genes obtained by augmented algorithm
for vasculitis with main co-expression network

vasculitis_genes_coex.txt

Set of genes obtained by DIAMOnD algorithm
for vasculitis with co-expression network

vasculitis_genes_ppi.txt

Set of genes obtained by DIAMOnD algorithm
for vasculitis with PPI network

vasculitis_go_terms.txt

Set of GO terms associated with vasculitis seed
genes

vasculitis_random_walk_coex.txt

Set of genes obtained by random selection for
vasculitis with co-expression network

vasculitis_random_walk_ppi.txt

Set of genes obtained by random selection for
vasculitis with PPI network

vasculitis_seed_genes.txt

Set of seed genes for vasculitis

Figure 33: List of files used during testing. This includes the original DIAMOnD algorithm and its

test files, the main Python programs, the lists of seed genes for each disease, the lists of gene

ontology terms obtained by DAVID for the sets of seed genes, the output files showing the results

of each algorithm, the output files showing the number of true positives for the algorithms, and a

few test files which I used to make sure the algorithms worked.

73




APPENDIX B: PROGRAMS

In this appendix, I included the Python code for the programs I used: the DIAMOnD
algorithm, the augmented DIAMOnD algorithm, the program for parsing the gene ontology terms,
and the program that chooses a random selection of genes. It should be noted that the DIAMOnD
algorithm was originally created by Susan Ghiassian, Jorg Menche, and Albert-Laszlo Barabasi, and
that my code for the augmented DIAMOnD algorithm is based on it. Also, note that the augmented
algorithm has to compare the links in two different networks and then determine what the weighted
links are in the main algorithm, so it may take several hours to run. I also included a Readme file for

the programs in the list of files.

B.1 DIAMOND Algorithm
#! /usr/bin/env python

#
# encoding: utf-8

# DIAMOND.py
# Joerg Menche, Susan D. Ghiassian
# Last Modified: 2014-12-05

# This code runs the DIAMOND algorithm as described in

#

# A DIseAse MOdule Detection (DIAMOND) Algorithm derived from a
# systematic analysis of connectivity patterns of disease proteins in
# the Human Interactome

#

# by Susan Dina Ghiassian, Joerg Menche & Albert-Laszlo Barabasi
#
#
#

import time

import cPickle

import networkx as nx
import numpy as np
import copy

74



import scipy.stats

from collections import defaultdict

import csv
import sys

def print_usage():

print "'
print'
(optional)'
print'
print '
print'
print '
print'
print '
print'
print '
print'
print '
print'
print '
print'
print '
print'

usage: ./DIAMOND network_file seed_file n alpha(optional) outfile_name

network_file : The edgelist must be provided as any delimiter-separated'

table. Make sure the delimiter does not exit in gene IDs'
and is consistent across the file.'
The first two columns of the table will be'
interpreted as an interaction gene1 <==> gene2'

seed_file : table containing the seed genes (if table contains'
more than one column they must be tab-separated;’
the first column will be used only)'

n : desired number of DIAMOND genes, 200 is a reasonable'
starting point.'
alpha : an integer representing weight of the seeds,default’

value is set to 1'
outfile_name : results will be saved under this file name'
by default the outfile_name is set to

"first_n_added_nodes_weight_alpha.txt"

print"'

def check_input_style(input_list):

try:

network_edgelist_file = input_list[1]

seeds_file = input_list[2]

max_number_of added_nodes = int(input_list[3])

# if no input is given, print out a usage message and exit

except:

75



print_usage()

sys.exit(0)
return
alpha =1

outfile_name =
'first_%d_added_nodes_weight_%d.txt'%(max_number_of added_nodes,alpha)

if len(input_list)==>5:

try:
alpha = int(input_list[4])

outfile_name = 'first_%d_added_weight_%d.txt'%(max_number_of added_nodes,alpha)

except:
outfile_name = input_list[4]

if len(input_list)==6:

try:

alpha = int(input_list[4])

outfile_name = input_list[5]

except:

print_usage()

sys.exit(0)

return

return
network_edgelist_file,seeds_file,max_number_of added nodes,alpha,outfile_name

def read_input(network_file,seed_file):

Reads the network and the list of seed genes from external files.

* The edgelist must be provided as a tab-separated table. The
first two columns of the table will be interpreted as an
interaction gene1 <==> gene2

* The seed genes mus be provided as a table. If the table has more
than one column, they must be tab-separated. The first column will
be used only.

* Lines that start with '#' will be ignored in both cases

76



sniffer = csv.Sniffer()
line_delimiter = None

for line in open(network_file,'r'):
if line[0]=="#"

continue

else:

dialect = sniffer.sniff(line)
line_delimiter = dialect.delimiter
break

if line_delimiter == None:

print 'network_file format not correct'
sys.exit(0)

# read the network:

G = nx.Graph()

for line in open(network_file,'r'):

# lines starting with '# will be ignored

if line[0]=="#"

continue

# The first two columns in the line will be interpreted as an
# interaction gene1 <=> gene2
#line_data = line.strip().split("\t")
line_data = line.strip().split(line_delimiter)
node1 = line_data[0]

node2 = line_data[1]
G.add_edge(node1,node?2)

# read the seed genes:

seed_genes = sef()

for line in open(seed_file,'r'):

# lines starting with '# will be ignored
if line[0]=="#"

continue

# the first column in the line will be interpreted as a seed
# gene:

line_data = line.strip().split(\t")
seed_gene = line_data[0]
seed_genes.add(seed_gene)

return G,seed_genes

7



def compute_all_gamma_In(N):

precomputes all logarithmic gammas

gamma_In = {}
foriin range(1,N+1):
gamma_In[i] = scipy.special.gammaln(i)

return gamma_In

def logchoose(n, k, gamma_In):
if n-k+1 <= 0:
return scipy.infty
Ign1 = gamma_In[n+1]
Igk1 = gamma_In[k+1]
Ignk1 = gamma_In[n-k+1]
return Ign1 - [Ilgnk1 + Igk1]

def gauss_hypergeom(x, r, b, n, gamma_lIn):
return np.exp(logchoose(r, x, gamma_In) +
logchoose(b, n-x, gamma_In) -
logchoose(r+b, n, gamma_lIn))

def pvalue(kb, k, N, s, gamma_In):

Computes the p-value for a node that has kb out of k links to

seeds, given that there's a total of s sees in a network of N nodes.

p-val =\sum_{n=kb}*k} HypergemetricPDF(n,k,N,s)

78



p=0.0

for nin range(kb,k+1):

if n>s:

break

prob = gauss_hypergeom(n, s, N-s, k, gamma_In)
# print prob

p += prob

ifp>1:
return 1
else:

return p

def get_neighbors_and_degrees(G):

neighbors,all_degrees = {}.{}

for node in G.nodes():

nn = set(G.neighbors(node))
neighbors[node] = nn
all_degrees[node] = G.degree(node)

return neighbors,all_degrees

def reduce_not_in_cluster_nodes(all_degrees,neighbors,G,not_in_cluster,cluster_nodes,alpha):
reduced_not_in_cluster = {}
kb2k = defaultdict(dict)
for node in not_in_cluster:

k = all_degrees[node]
kb=0
# Going through all neighbors and counting the number of module neighbors

79



for neighbor in neighbors[node]:
if neighbor in cluster_nodes:
kb +=1

#adding wights to the the edges connected to seeds
k += (alpha-1)*kb

kb += (alpha-1)*kb

kb2k[kb][k] =node

# Going to choose the node with largest kb, given k
k2kb = defaultdict(dict)

for kb,k2node in kb2k.iteritems():

min_k = min(k2node.keys())

node = k2node[min_K]

k2kb[min_k][kb] = node

for k,kb2node in k2kb.iteritems():

max_kb = max(kb2node.keys())

node = kb2node[max_kb]
reduced_not_in_cluster[node] =(max_kb,k)

return reduced_not_in_cluster

def diamond_iteration_of first X nodes(G,S,X,alpha):

Parameters:

- X:  the number of iterations, i.e only the first X gened will be
pulled in
- alpha: seeds weight

Returns:

80



- added_nodes: ordered list of nodes in the order by which they
are agglomerated. Each entry has 4 info:

* name : dito

*k : degree of the node
* kb : number of +1 neighbors
*p : p-value at agglomeration

N = G.number_of nodes()

added_nodes =[]

#
# Setting up dictionaries with all neighbor lists
# and all degrees

#
neighbors,all_degrees = get_neighbors_and_degrees(G)

#
# Setting up initial set of nodes in cluster
#

cluster_nodes = set(S)
not_in_cluster = sef()
s0 = len(cluster_nodes)

s0 += (alpha-1)*s0
N +=(alpha-1)*s0

#
# precompute the logarithmic gamma functions
#
gamma_lIn = compute_all_gamma_In(N+1)

#
# Setting initial set of nodes not in cluster
#
for node in cluster_nodes:
not_in_cluster |= neighbors[node]
not_in_cluster -= cluster_nodes

81



#
#MAIN LOOP
#

#

all_p = {}

while len(added_nodes) < X:

#
#
# Going through all nodes that are not in the cluster yet and
# record k, kb and p

#
#

info = {}

pmin =10

next_node = 'nix'

reduced_not_in_cluster = reduce_not_in_cluster_nodes(all_degrees,
neighbors,G,
not_in_cluster,
cluster_nodes,alpha)

for node,kbk in reduced_not_in_cluster.iteritems():
# Getting the p-value of this kb,k
# combination and save it in all_p, so computing it only once!
kb,k = kbk
try:
p = all_p[(k,kb,s0)]
except KeyError:
p = pvalue(kb, k, N, sO, gamma_In)
all_p[(k,kb,s0)] = p

# recording the node with smallest p-value
if p < pmin:

pmin =p

next_node = node

82



info[node] = (k,kb,p)

#
# Adding node with smallest p-value to the list of aaglomerated nodes
#
added_nodes.append((next_node,
info[next_node][0],
info[next_node][1],
info[next_node][2]))

# Updating the list of cluster nodes and sO
cluster_nodes.add(next_node)

s0 = len(cluster_nodes)

not_in_cluster |= ( neighbors[next_node] - cluster_nodes )
not_in_cluster.remove(next_node)

return added_nodes

def DIAMOND(G_original,seed_genes,max_number_of added_nodes,alpha,outfile = None):

Runs the DIAMOND algorithm

- G_original :

The network

- seed_genes :

a set of seed genes

- max_number_of added nodes:

after how many added nodes should the algorithm stop
- alpha:

given weight to the sees

- ouffile:

83



filename for the output generates by the algorithm,
if not given the program will name it 'first_ x_added_nodes.txt'

Returns:

- added_nodes: A list with 4 entries at each element:
* name : name of the node

*k : degree of the node
* kb : number of neighbors that are part of the module (at agglomeration)
*p : connectivity p-value at agglomeration

# 1. throwing away the seed genes that are not in the network
all_genes_in_network = set(G_original.nodes())

seed_genes = set(seed_genes)

disease genes = seed_genes & all_genes_in_network

if len(disease_genes) != len(seed_genes):

print "DIAMORND(): ignoring %s of %s seed genes that are not in the network" %(

len(seed_genes - all_genes_in_network), len(seed_genes))

# 2. agglomeration algorithm.

added_nodes = diamond_iteration_of first X nodes(G_original,
disease_genes,
max_number_of added nodes,alpha)

# 3. saving the results

with open(outfile,'w') as fout:

print>>fout,'\t".join(['#rank’,'DIAMOND _node")

rank = 0

for DIAMOND_node_info in added_nodes:

rank += 1

DIAMOND_node = DIAMOND node_info[0]

p = float(DIAMOND _node _info[3])

print>>fout,\t'.join(map(str,([rank,DIAMOND _node]))))

return added_nodes

84



if _name__=='_main__"
#
# Checking for input from the command line:
#
#
# [1] file providing the network in the form of an edgelist
# (tab-separated table, columns 1 & 2 will be used)
#
# [2] file with the seed genes (if table contains more than one
# column they must be tab-separated; the first column will be
# used only)
#
# [3] number of desired iterations
#

# [4] (optional) seeds weight (integer), default value is 1
# [5] (optional) name for the results file

#check if input style is correct

input_list = sys.argv

network_edgelist_file,seeds_file,max_number_of added nodes,alpha,outfile_name=
check_input_style(input_list)

# read the network and the seed genes:
G_original,seed_genes = read_input(network_edgelist_file,seeds_file)

# run DIAMOND

added_nodes = DIAMOND(G_original,
seed_genes,
max_number_of added nodes,alpha,
outfile=outfile_name)

85



print "\n results have been saved to '%s' \n" %outfile_name

B.2 Augmented DIAMOND Algorithm
#! /usr/bin/env python

#
# encoding: utf-8

# augmented_DIAMOND.py
# Kevin Specht
# Last Modified: 2017-04-27

# This code runs the augmented DIAMOND algorithm
# as described in Augmenting DIAMOND: A Method for Improving
# Disease Networks Among Human Genes

# Based on

#

# A DIseAse MOdule Detection (DIAMOND) Algorithm derived from a
# systematic analysis of connectivity patterns of disease proteins in
# the Human Interactome

#

# by Susan Dina Ghiassian, Joerg Menche & Albert-Laszlo Barabasi
#
#
#

import time

import cPickle

import networkx as nx

import numpy as np

import copy

import scipy.stats

from collections import defaultdict
import csv

import sys

86



def print_usage():

print "'
print'
(optional)'
print'
print '
delimiter-separated’
print '
print'
print '
print'
print '
delimiter-separated’
print '
print'
print '
print'
print '
print'
print '
print'
reasonable’
print'
print '
networks,default’
print '
print'
print '

usage: ./DIAMOND network_file seed_file n alpha(optional) outfile_name

network_edgelList_file1 : The edgelist must be provided as any

table. Make sure the delimiter does not exit in gene IDs'

and is consistent across the file.'

The first two columns of the table will be'

interpreted as an interaction gene1 <==> gene2'
network_edgelList_file2 : The edgelist must be provided as any

table. Make sure the delimiter does not exit in gene IDs'
and is consistent across the file.'
The first two columns of the table will be'
interpreted as an interaction gene1 <==> gene2'

seed_file : table containing the seed genes (if table contains'
more than one column they must be tab-separated;’
the first column will be used only)'

n : desired number of augmented DIAMOND genes, 200 is a

starting point.'
alpha : an integer representing weight of the links in multiple

value is set to 1'
outfile_name : results will be saved under this file name'
by default the outfile_name is set to

"first_n_added_nodes_weight_alpha.txt"

print "'

def check_input_style(input_list):

try:

network_edgelist_file1 = input_list[1]
network_edgelist_file2 = input_list[2]

87



seeds_file = input_list[3]

max_number_of added_nodes = int(input_list[4])

# if no input is given, print out a usage message and exit
except:

print_usage()

sys.exit(0)

return

alpha =1
outfile_name =
'first_%d_added_nodes_weight_%d.txt'%(max_number_of added_nodes,alpha)

if len(input_list)==6:

try:

alpha = int(input_list[5])

outfile_name = 'first_%d_added_weight_%d.txt'%(max_number_of added_nodes,alpha)
except:

outfile_name = input_list[5]

if len(input_list)==7:

try:

alpha = int(input_list[5])

outfile_name = input_list[6]

except:

print_usage()

sys.exit(0)

return

return
network_edgelist_file1,network _edgelist_file2,seeds_file,max_number_of added nodes,alpha,o
utfile_name

def read_input(network_file,seed_file):

Reads the main network and the list of seed genes from external files.

* The edgelist must be provided as a tab-separated table. The
first two columns of the table will be interpreted as an
interaction gene1 <==> gene2

* The seed genes mus be provided as a table. If the table has more

88



than one column, they must be tab-separated. The first column will
be used only.

* Lines that start with '#' will be ignored in both cases

sniffer = csv.Sniffer()
line_delimiter = None

for line in open(network_file,'r'):
if line[0]=="#"

continue

else:

dialect = sniffer.sniff(line)
line_delimiter = dialect.delimiter
break

if line_delimiter == None:

print 'network_file format not correct'
sys.exit(0)

# read network:

G = nx.Graph()

for line in open(network_file,'r"):

# lines starting with '#' will be ignored

if line[0]=="#"

continue

# The first two columns in the line will be interpreted as an
# interaction gene1 <=> gene2
#line_data = line.strip().split("\t")
line_data = line.strip().split(line_delimiter)
node1 = line_data[0]

node2 = line_data[1]
G.add_edge(node1,node2)

# read the seed genes:

seed_genes = set()

for line in open(seed_file,'r'):

# lines starting with '#' will be ignored

if line[0]=="#"

continue

# the first column in the line will be interpreted as a seed
# gene:

line_data = line.strip().split(\t')

89



seed_gene = line_data[0]
seed_genes.add(seed_gene)

return G,seed_genes

def compare_lists(network1, network2, seedsFile):
Determines which links from the main network also exist in the
secondary network in order to determine the weights of each link

mainList=set() #links in main network

otherList=set() #links in supplementary network

seedList=set() #seed genes

all_genes=set() #all eligible disease genes in main network (not seeds)

main=[] #temporary main network

other=[] #temporary supplementary network

for line in open(network1):

main.append(line.rstrip()) #get main links

for line in open(network?2):

other.append(line.rstrip()) #get supplementary lins

for line in open(seedsFile):

seedList.add(line.rstrip()) #get seed genes

for line in main: #get all eligible disease genes from main network

genes=line.split()

if genes[0] not in all_genes:

if genes[0] not in seedList:
all_genes.add(genes[0])

if genes[1] not in all_genes:

if genes[1] not in seedList:
all_genes.add(genes[1])

good_links=[] #links in both networks (weighted)

#sort genes in each link of main list alphabetically
for link in main:

genes=link.split()
newlink=sorted([genes[0],genes[1]])

str="

90



for i in newlink:
str+=i

str+="\t'
mainList.add(str)

#sort genes in each link of supplementary list alphabetically
for link in other:

genes=link.split()

newlink=sorted([genes[0],genes[1]])

str="

for i in newlink:

str+=i

str+="\t'

otherList.add(str)

#find all links that appear in both lists
good_links=mainList.intersection(otherList)

#return list of weighted links
return good_links

def compute_all_gamma_In(N):

precomputes all logarithmic gammas
gamma_In = {}

foriin range(1,N+1):

gamma_In[i] = scipy.special.gammaln(i)

return gamma_In

def logchoose(n, k, gamma_In):
if n-k+1 <=0:
return scipy.infty
Ign1 = gamma_In[n+1]
Igk1 = gamma_In[k+1]
Ignk1 = gamma_In[n-k+1]

91



return Ign1 - [Ignk1 + Igk1]

def gauss_hypergeom(x, r, b, n, gamma_lIn):
return np.exp(logchoose(r, x, gamma_In) +
logchoose(b, n-x, gamma_lIn) -
logchoose(r+b, n, gamma_In))

def pvalue(kb, k, N, s, gamma_In):

Computes the p-value for a node that has kb out of k links to

seeds, given that there's a total of s sees in a network of N nodes.

p-val =\sum_{n=kb}"k} HypergemetricPDF(n,k,N,s)

p=0.0

for nin range(kb,k+1):

if n>s:

break

prob = gauss_hypergeom(n, s, N-s, k, gamma_In)

p += prob

ifp>1:
return 1
else:

return p

def get_neighbors_and_degrees(G):

neighbors,all_degrees = {}.{}
for node in G.nodes():
nn = set(G.neighbors(node))

92



neighbors[node] = nn
all_degrees[node] = G.degree(node)

return neighbors,all_degrees

def

reduce_not_in_cluster_nodes(all_degrees,neighbors,G,not_in_cluster,cluster_nodes,alpha,goo
d_links):

reduced_not_in_cluster = {}
kb2k = defaultdict(dict)

i=0

for node in not_in_cluster:

k = all_degrees[node]
kb=0

# Going through all neighbors and counting the number of module neighbors

for neighbor in neighbors[node]:
if neighbor in cluster_nodes:
kb += 1

#loop through the weighted links
for link in good_links:
#if either gene is the current gene in the network
# add extra weight to its connections, if the other
# gene is a seed gene add extra weight to seed connections
genes=link.split()
if node==genes|[0]:
k += (alpha-1)
if genes[1] in cluster_nodes:
kb += (alpha-1)
elif node==genes[1]:
k += (alpha-1)
if genes[0] in cluster_nodes:
kb += (alpha-1)
kb2k[kb][k] =node
i=i+1

93



# Going to choose the node with largest kb, given k
k2kb = defaultdict(dict)

for kb,k2node in kb2k.iteritems():

min_k = min(k2node.keys())

node = k2node[min_K]

k2kb[min_k][kb] = node

for k,kb2node in k2kb.iteritems():

max_kb = max(kb2node.keys())

node = kb2node[max_kb]
reduced_not_in_cluster[node] =(max_kb,k)

return reduced_not_in_cluster

def diamond_iteration_of first X nodes(G,S,X,alpha,good_links):

Parameters:

-G: graph

-S: seeds

-X:  the number of iterations, i.e only the first X genes will be
pulled in

- alpha: seeds weight

- good_links: set of weighted links in the main network

Returns:

- added_nodes: ordered list of nodes in the order by which they
are agglomerated. Each entry has 4 info:

* name : dito

*k : degree of the node

* kb : number of +1 neighbors
*p : p-value at agglomeration

94



N = G.number_of nodes()
added _nodes =[]

#
# Setting up dictionaries with all neighbor lists
# and all degrees

#
neighbors,all_degrees = get_neighbors_and_degrees(G)

#
# Setting up initial set of nodes in cluster
#

cluster_nodes = set(S)
not_in_cluster = set()
s0 = len(cluster_nodes)

#loop through the weighted links
for link in good_links:
genes=link.split()

#if either gene is a seed gene add extra weight to seed genes

if genes[0] in cluster_nodes:

s0 += (alpha-1)

if genes[1] in cluster_nodes:

s0 += (alpha-1)

#add extra weight to total genes
N +=(alpha-1)

#
# precompute the logarithmic gamma functions
#
gamma_In = compute_all_ gamma_In(N+1)

#
# Setting initial set of nodes not in cluster

# (non-seed nodes connected to seed nodes)
#
for node in cluster_nodes:
not_in_cluster |= neighbors[node]
not_in_cluster -= cluster_nodes

95



#

#MAIN LOOP
#

#

all_p = {}

while len(added_nodes) < X:

#
#
# Going through all nodes that are not in the cluster yet and
# record k, kb and p

#
#

info = {}

pmin =10

next_node = 'nix'

reduced_not_in_cluster = reduce_not_in_cluster_nodes(all_degrees,
neighbors,G,
not_in_cluster,
cluster_nodes,alpha,good_links)

for node,kbk in reduced_not_in_cluster.iteritems():
# Getting the p-value of this kb,k
# combination and save it in all_p, so computing it only once!

#print(node)
kb,k = kbk
try:

p = all_p[(k,kb,s0)]

except KeyError:
p = pvalue(kb, k, N, sO, gamma_In)
all_p[(k,kb,s0)] = p

# recording the node with smallest p-value
if p < pmin:

pmin =p

next_node = node

96



info[node] = (k,kb,p)

#
# Adding node with smallest p-value to the list of aaglomerated nodes
#
added_nodes.append((next_node,
info[next_node][0],
info[next_node][1],
info[next_node][2]))

# Updating the list of cluster nodes and sO
cluster_nodes.add(next_node)

s0 = len(cluster_nodes)

not_in_cluster |= ( neighbors[next_node] - cluster_nodes )
not_in_cluster.remove(next_node)

return added_nodes

def
augDIAMOND(G_original,seed_genes,max_number_of added nodes,alpha,good_links,outfile =
None):

Runs the augmented DIAMOND algorithm

- G_original :

The network

- seed_genes :

a set of seed genes

- max_number_of added nodes:

after how many added nodes should the algorithm stop
- alpha:

97



given weight to the sees

- good_links:

set of weighted links in the main network

- ouftfile:

filename for the output generates by the algorithm,

if not given the program will name it 'first_ x_added_nodes.txt'

Returns:

- added_nodes: A list with 4 entries at each element:
* name : name of the node

*k : degree of the node
* kb : number of neighbors that are part of the module (at agglomeration)
*p : connectivity p-value at agglomeration

# 1. throwing away the seed genes that are not in the network
all_genes_in_network = set(G_original.nodes())

seed_genes = set(seed_genes)

disease genes = seed_genes & all_genes_in_network

if len(disease_genes) != len(seed_genes):
print "augDIAMOND(): ignoring %s of %s seed genes that are not in the network" %(
len(seed_genes - all_genes_in_network), len(seed_genes))

# 2. agglomeration algorithm.

added_nodes = diamond_iteration_of first X nodes(G_original,
disease_genes,
max_number_of added nodes,alpha,good_links)

# 3. saving the results

with open(outfile,'w') as fout:

print>>fout,'\t".join(['#rank’,'DIAMOND _node")

rank = 0

for DIAMOND_node_info in added_nodes:

rank += 1

DIAMOND_node = DIAMOND node_info[0]

p = float(DIAMOND _node _info[3])

print>>fout,\t'.join(map(str,([rank,DIAMOND _node]))))

98



return added_nodes

if _name__==' main__"

#

# Checking for input from the command line:

#

#

# [1] file providing the main network in the form of an edgelist

# (tab-separated table, columns 1 & 2 will be used)

#

# [2] file providing the secondary network in the form of an edgelist
# (tab-separated table, columns 1 & 2 will be used)

#

# [3] file with the seed genes (if table contains more than one

# column they must be tab-separated; the first column will be
# used only)

#

# [4] number of desired iterations

#

# [5] (optional) weight of links in multiple networks (integer), default value is 1
# [6] (optional) name for the results file

#check if input style is correct
input_list = sys.argv

network_edgelist_file1,network_edgelist_file2,seeds_file,max_number_of added_nodes,alpha,o
utfile_name= check_input_style(input_list)

# read the networks and the seed genes:

99



G_original,seed_genes = read_input(network_edgelist file1,seeds_file)
good_links=compare_lists(network_edgelist_file1, network_edgelist_file2, seeds_file)

# run augmented DIAMOND

added_nodes = augDIAMOND(G_original,
seed_genes,
max_number_of added_nodes,alpha,good_links,
outfile=outfile_name)

print "\n results have been saved to '%s' \n" %outfile_name

B.3 Parse Annotations

#! /usr/bin/env python

#
# encoding: utf-8

# parse_annotations.py
# Kevin Specht
# Last Modified: 2017-04-27

# This code takes a set of GO terms associated with a set of seed genes

# for a partiular disease and a set of potential disease genes obtained

# by an algorithm and determines which of them belong to the disease module
#

#
# Checking for input from the command line:
#
#
# [1] file with the seed GO terms (if table contains more than one
# column they must be tab-separated; the first column will be
# used only)
#
# [2] file with the potential disease genes from the algorithm
# (if table contains more than one column they must be
# tab-separated; the first column will be used only)
#

# [3] name for the results file

100



import sys
import time
import copy
import csv

Gets the list of GO terms associated with seed genes
def get_annotations():

f = open(sys.argv[1],'r")

termList=[]

for line in f:

termList.append(line.rstrip())

return termList

Gets the list of potential disease genes obtained from the algorithm
def get_genes():

f = open(sys.argv[2],'r")

genelist=[]

for line in f:

genelList.append(line.rstrip())

return genelList

Parses the complete list of gene annotations to determine which of the
potential disease genes is associated with any of the terms that the
seed genes are associated with
def parse_annotations(termList, geneList):
f = open("goa_human.txt",'r')
list=[] #list of true positives
for gene in genelist: #loop through every potential gene
for line in f: #parse every line in gene annotations
if gene in line: #if the potential gene is on the line
for term in termList:
if term in line: #if the gene is associated with one of the seed terms
if gene not in list: #if the gene is not yet in the true positive list
list.append(gene) #add gene to true positive list
f.seek(0) #return to the beginning of the list of gene annotations
return list

101



Main program
f=open(sys.argv[3],'w') #write to outfile
=1

while(j<=len(get_genes())): #perform a validation for every iteration of the algorithm
s=parse_annotations(get_annotations(), get_genes()[:j]) #perform GO test

f.write(str(len(s))) #record number of true positives for this iteration
print(str(len(s)))
f.write("\n")
=it
print("Check file") #loop until iterations are done
f.close()

B.4 Random Selection

#! /usr/bin/env python

#
# encoding: utf-8

# parse_annotations.py
# Kevin Specht
# Last Modified: 2017-04-27

# This code takes a network and a number and outputs a set of that
# number of random genes

#
#
# Checking for input from the command line:
#
#
# [1] file with the seed genes (if table contains more than one
# column they must be tab-separated; the first column will be
# used only)
#
# [2] file providing the network in the form of an edgelist
# (tab-separated table, columns 1 & 2 will be used)
#

102



# [3] number of desired iterations
#
# [4] name for the results file

import sys
import time
import copy
import csv
import random

Gets the set of seed genes

def get_seed_genes():
f = open(sys.argv[1],'r")
seedList=[]
for line in f:
seedList.append(line.rstrip())
f.close()
return seedList

Gets the links from the network
def get_links(list):
f=open(list,'r')
linkList=[]
for line in f:
linkList.append(line.rstrip())
f.close()
return linkList

Gets all eligible disease genes in the network (not seed genes)

def get_all_genes(list, seed_genes):
all_genes=[]
for line in list:
genes=line.split()
if genes[0] not in all_genes:
if genes[0] not in seed_genes:

all_genes.append(genes[0])

if genes[1] not in all_genes:

103



if genes[1] not in seed_genes:
all_genes.append(genes|[1])
return all_genes

Main program

seedList=get_seed_genes() #get inputs

network=get_links(sys.argv[2])

genelist=get_all_genes(network, seedList)

randomList=[] #list of randomly selected genes

for i in range(int(sys.argv[3])): #loop through specified iterations
choice=random.choice(geneList) #choose a random gene from the network
randomList.append(choice) #add gene to list of random genes
genelist.remove(choice) #remove gene from the network

f=open(sys.argv[4],'w') #write to outfile
for rand in randomList:

f.write(rand)

f.write("\n")
f.close()

104



