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Abstract 

Myocardial infarctions are the leading cause of death for both men and women in the United 
States. Current treatment techniques return blood flow to the infarcted tissue, but do not replace 
the dead cells with contractile cells. Research pertaining to human mesenchymal stem cells has 
shown promise in the ability to regrow and proliferate cardiac myocytes. Biological microthreads 
have been shown to efficiently deliver cells to the heart. However, a minimally invasive device 
to deliver cell seeded biological threads is needed to move the technology into the clinic. 
Therefore, we developed a cardiac catheterization device to deliver microthreads seeded with 
human mesenchymal stem cells to the left ventricular wall.  
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Executive Summary  
 

Myocardial infarction (MI) is the leading cause of death for both men and women in the 

United States. Each year, an MI affects approximately 1.7 million people with 460,000 cases 

being fatal (NHLBI, 2010). Myocardial infarction occurs when the cells of the heart muscle 

begin to die from inadequate blood supply due to plaque buildup inside the arterial walls. 

 Despite current treatments involving stents and clot buster drugs, over 2,000 people 

require heart transplants, with only 50% of those in need able to receive a heart transplant 

(American Heart Association, 2009). Furthermore, current surgical methods for heart 

transplantation require invasion of the chest cavity at an expensive cost which comes with a 

long-term recovery period. The heart muscle that has died remains inactive and reduces the 

overall functionality of the heart; thus there is a need for new techniques which would allow for 

the rehabilitation of the heart after a myocardial infarction. 

Human mesenchymal stem cells (HMSCs) show great potential for research in the realm 

of cardiac regeneration. Recent research shows evidence that HMSCs can produce the cardiac 

specific protein actinin, which suggests the HMSCs ability to differentiate into cardiac myocytes 

and/or induce existing myocytes to proliferate (Jiang, 2006). Biological microthreads, comprised 

of collagen and/or fibrin, have been shown to improve efficiency of cell retention compared to 

other commonly used techniques (Proulx, 2011). It is the goal of this project to develop a 

catheter system to allow for the minimally invasive delivery of cell-seeded microthreads to the 

left ventricular wall, which may aid in repairing the damaged heart tissue caused by an MI. It is 

the goal of this project to develop a catheter system to allow for the delivery of fibrin 

microthreads to the wall of the left ventricle. A system that is capable of delivering hMSCs to the 
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heart without an invasive surgery will greatly reduce the time needed for the procedure as well as 

the healing time for the patient. 

It was determined that a catheter-based system would efficiently deliver HMSCs to the 

left ventricular wall. This design aimed at correcting multiple problems existing with suturing 

microthreads into the heart wall. Currently, delivery of cell-seeded microthreads relies on an 

epicardial approach to suture the microthreads into the heart wall. This approach can create shear 

stress that removes cells from the microthread at the point of entry on the heart wall. This results 

in dramatically lower engraftment rates. Therefore, reduction of shear stress on cells seeded on a 

microthread was a function considered in this design. Furthermore, a successful design would be 

minimally invasive, able to deliver the catheter and cell-seeded microthreads to the left 

ventricular wall, be visible with current technology, maintain cell viability and be easy to use. 

While navigating through the arterial system, starting at the femoral, the catheter cannot damage 

the vessels. 

With these constraints and functions in mind, preliminary SolidWorks CAD models of 

the device were generated. Pros and cons of each of the designs were weighed so that the device 

could capture all of the most promising aspects in one final design. It was established that a 

capsule type system would be most ideal for this application so that the stem cells could remain 

seeded on the microthreads and encapsulated until the point at which they would be deployed 

inside the flesh of the heart wall. A needle would first be deployed, piercing through the chamber 

and into the heart, then retracting and allowing the microthreads to be inserted completely.  

Using all of these requirements and considerations, the final design incorporates a needle 

and core delivery mechanism protected by an outer sheath lumen. The inner core is capable of 

holding 14mm of biological microthreads for delivery to the endocardial wall. The inner core is 
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placed within a 16gauge needle. The entire assembly is attached to a 9Fr catheter. Materials used 

are of conventional medical grade. The needle is made of 316L stainless steel and the lumens are 

made of nylon and polyethylene terephthalate. This design is compatible with current technology 

for visualizing the catheter within the body, for example fluoroscopy and only the biological 

microthread is left behind within the heart wall. 

The primary goal of this project was to create a minimally invasive device that was 

capable of delivering stem-cell seeded biological microthreads to the left ventricular wall. In 

order to accomplish this, we designed a novel cardiac catheter device which allows the hMSCs to 

be shielded as they enter the heart tissue. Once the entire mechanism was within the wall of the 

ventricle the outer core was safely retracted without any shear stress on the microthreads. Once 

the threads were embedded within the tissue, the entire mechanism was retracted, the needle was 

sheathed, and the entire catheter was removed from the patient. This procedure could be repeated 

as necessary with a singular incision at the groin, rather than requiring the chest wall to be 

opened for open-heart surgery. Thus, this device can serve as a successful minimally invasive 

alternative to current treatments and will provide repair of the damaged heart tissue for people 

suffering from the once thought irreversible effects of myocardial infarctions.  
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Chapter 1: Introduction  
 

Every year more than 450,000 people die from heart attack related deaths in the United 

States (NHLBI, 2010). It has also been reported that myocardial infarctions (heart attacks) are 

the leading cause of death for all Americans, and that 1.2 million will suffer from them each year 

(NHLBI, 2010). Myocardial infarctions (MI) are generally caused by plaque buildup inside the 

arterial walls which creates an inadequate blood supply to the heart tissue. Over time, this 

inadequate blood supply, called ischemia, leads to the death, or infarction, of the cardiac 

myocytes. This problem has been commonly fixed by clot buster drugs and surgical stents being 

placed within the artery. Despite these attempts, over 2,000 people require heart transplants 

every year, and with each year that number increases. Unfortunately, only around half of those in 

need of a viable heart are able to receive one due to the lack of donor supply (American Heart 

Association, 2009). As a result of these statistics, work has been done to discover less invasive 

and more readily available approaches to regenerate damaged tissue caused by MI. 

Advancements in tissue engineering include using human mesenchymal stem cells 

(hMSCs) in the realm of cardiac regeneration as a way to regenerate and propagate the growth of 

new living tissue (Barbash et al., 2003). Human mesenchymal stem cells have the ability to 

differentiate into cardiac myocytes and stimulate existing myocytes to thrive in an area. This 

method allows for an expedient alternative to long-term surgical options which involve higher 

risks and more side-effects (Jiang et al., 2006). One newly discovered approach involves the use 

of fibrin microthreads as a biological cell scaffold to embed these hMSCs directly into the 

epicardial surface of the left ventricle.  Once the stem cells are accurately delivered to the tissue, 
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they are able seed within the dead tissue and differentiate into cardiac myocytes to stimulate new 

cardiac tissue. 

Fibrin microthreads possess a unique ability to promote tissue growth faster than 

traditional materials, like collagen, in that they stimulate cell migration, attachment, and 

proliferation (Cornwell, 2007). In addition to their ability to quickly commence natural tissue 

healing, fibrin microthreads possess exceptional mechanical properties allowing for them to be 

tougher and stronger than traditional fibrin hydrogels (Cornwell, 2007). Fibrin microthreads are 

also biodegradable and biocompatible, making them an excellent cardiac regeneration material 

(DiTroia et al., 2008). Due to all of these properties, it can thus be understood why fibrin 

microthreads are an advantageous material for the regeneration of cardiac tissue.  

Delivery of stem cells via the use of a catheter has proven to be a successful and efficient 

procedure. There are various types of catheters, including various fixed and “hockey-stick” 

catheters; however, steerable catheters prove to be more advantageous in that they allow the user 

to steer to the destination with far more accuracy and precision (Boston Scientific, 2010). With a 

steerable catheter, the fibrin microthreads will be able to precisely reach the left ventricular wall 

and deliver the microthreads to the damaged tissue to promote quick healing and regrowth.  

Due to the increasing number of Americans suffering from myocardial infarctions, it is 

clear that a method to deliver cellular therapies to regenerate damaged cardiac tissue is 

imperative. A catheter that can successfully deliver fibrin microthreads seeded with stem cells to 

the wall of the heart can serve as a minimally invasive alternative to current invasive procedures. 

The stem cells will stimulate proliferation and propagation of cardiac myocyte growth in place of 

the dead tissue. This catheter will be able to remove the long-term side effects of traditional 
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invasive surgeries and can be pursued as a clinically viable option for the delivery of cellular 

therapies.  
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Chapter 2: Background  

2.1 Myocardial Infarction  

 Myocardial infarction (MI), more commonly referred to as a heart attack, is the leading 

cause of death for both men and women in the United States. There is an estimated 460,000 

deaths occurring annually (NHLBI, 2010).  Including survivors, approximately 1.2 million 

Americans will suffer from an MI each year (NHLBI, 2010).  

 Myocardial infarction occurs when the cells of the heart muscle began to die as a result of 

inadequate perfusion of oxygen-carrying blood to the heart, a condition called ischemia. The 

inadequate flow of oxygen-rich blood is a result of plaque or fatty material that can build up 

inside the walls of the arteries. Over time, fat, cholesterol and platelets continue to build up and 

harden. This process is called atherosclerosis and it greatly reduces the area that the blood can 

travel through resulting in impeded flow. In addition, if the fatty buildup breaks open, a 

thrombus can form resulting in the cutting off of the oxygen rich blood supply to the heart. 

 Current methods of treatment for heart failure, including myocardial infarction, require 

that intervention occur as soon as possible. If a myocardial infarction is identified early enough, 

the affected artery must be unclogged immediately. Clot buster drugs can be used to dissolve the 

clot and thereby open the blocked artery. A more permanent fix is to place a stent in the artery. 

The use of an inflatable balloon and stent can be used to further open the artery and to keep it 

open.  

 Each year more than $35 billion is spent in the United States on heart failure cases 

(Cowie, 2000). Approximately 4,000 people at any given time are in need of a heart transplant 

(Mayo). Of these people, only 2,210 heart transplants were performed in 2007 as a result of a 
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limited supply of heart donors as well as an increasing need for heart transplants (American 

Heart Association, 2009). There is an obvious need for an alternative to heart transplants due to 

the limited number of heart donors and the large number of heart failure deaths each year. 

Recently, tissue engineering and regenerative medicine has been researched as an alternative to 

heart transplants. 

2.2 The Heart 

 The heart is a hollow involuntary muscular organ under control of the autonomic nervous system 

made of a specialized muscle tissue called myocardium. This organ has its own electrical system that is 

able to function even without the control of the central nervous system. The myocardium is unique from 

other muscle tissues in that it requires a constant supply of oxygen and nutrients in order for the muscle 

cells to stay viable. The heart must function continuously from birth to death and can only tolerate a 

serious interruption in blood supply for a few minutes before the cells of the heart begin to die (American 

Heart Association, 2009). 

 The heart is divided into four chambers: the left and right atria and the left and right ventricles. 

The left side of the heart pumps blood to the body while the right side of the heart pumps blood to the 

lungs. The right side of the heart receives blood from the veins of the body. The blood enters from the 

inferior and superior vena cava into the right atrium. From here, blood flows through the tricuspid valve 

until the right ventricle is filled at which point the valve closes. Contraction of the right ventricle causes 

the blood to flow out through the pulmonary valve into the pulmonary artery and into the lungs. The left 

side of the heart receives the oxygenated blood from the lungs through the pulmonary veins into the left 

atrium. At this point, the blood flows through the mitral valve into the left ventricle. Contraction of the 

left ventricle expels the blood through the aortic valve into the aorta and finally into the arteries of the 

body (American Heart Association, 2009). Any of the previously described mechanisms cannot function 

effectively if any damage occurs to the heart. Since the heart is unable to regenerate contractile cells on its 
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own, an approach is needed to heal and regenerate damaged heart tissue as a result of MI. Research shows 

that stem cells and regenerative medicine proves to be an effective solution to this problem.  

2.3 Adult Stem Cells and Regenerative Medicine 

Adult stem cells are regarded as a promising possibility in regenerative medicine and 

tissue repair.  Adult stem cells are undifferentiated cells that primarily serve in the maintenance 

and regeneration of their tissue of origin. They exhibit the ability to both renew themselves and 

differentiate into a specialized cell of a particular tissue type or organ (Krause D. et al., 2001). 

For example, research shows that the adult bone marrow cells can differentiate into mature liver 

cells and skeletal muscle. Adult stem cells can be found throughout the human body in bone 

marrow, blood vessels and skeletal muscle (Bethesda, 2010). These cells can be harvested with 

relative ease thus the use of adult stem cells in regenerative medicine avoids the ethical 

controversy as seen with embryonic stem cell research. 

2.4 Human Mesenchymal Stem Cells and Cardiac Regeneration 

A particular type of adult stem cell, human mesnechymal stem cells (hMSCs) show the 

greatest potential for research in the realm of cardiac regeneration. hMSCs can be isolated from 

harvested bone marrow and propagate in vitro exemplifying their convenience as a source for 

cell-based therapies (Barbash et al., 2003).  Recent research shows evidence that hMSCs can 

produce the cardiac specific protein actinin suggesting their propensity to differentiate into 

cardiac myocytes and/or induce existing myocytes to proliferate (Jiang, 2006). Current therapies 

introducing hMSCs extend little beyond myocardial injections of the cells into the infracted 

myocardium, or intravenous injections of cells. These methods however fall short, and display 

low rates of cell engraftment (Freyman et al., 2006). One method that has shown success in past 
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studies and experiments has been the use of microthreads to deliver stem cells into the cardiac 

tissue as a way to regenerate tissue caused by myocardial infarction (DiTroia et al., 2008). 

2.5 Fibrin Microthreads 

Microthreads have many biological advantages as a scaffold for seeding cells. These 

biological materials function with excellent mechanical properties with regards to tissue growth 

and integration into an injury site. Microthreads can also function as advanced hydrogels, 

providing better integration into tissues and more efficient cell adhesion than current 

technologies. Furthermore, microthreads have important delivery potential in cardiac repair. This 

is primarily due to their ability to mimic organic tissues, which give them additional advantages 

when requiring biocompatibility and biodegradability. Lastly, microthreads play a major factor 

in cell migration, orientation, and proliferation; this is integral in tissue regeneration and repair 

(DiTroia et al., 2008). 

2.5.1 Promoting Tissue Growth and Mechanical Properties  
 

Some advantages of microthreads include their ability to promote tissue growth while 

concurrently achieving excellent mechanical properties (Cornwell, 2007). Microthreads are 

commonly made out of a substance known as fibrin, and its structure can been seen in Figure 1 

below: 

 

Figure 1: Fibrin Assembly (Marquette University, 2010). 
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Fibrin is a complex protein, requiring the assembly of double stranded twisting fibrils 

containing lateral sections of fibril links (Marquette University, 2010). This combination of 

components makes the fibers very thick and an ideal material composition for microthreads. 

Additionally, this material is heavily involved in natural wound healing (Cornwell, 2007). Fibrin 

must be slightly altered, however, before it can be used in microthread applications. Altering the 

protein can affect the mechanical stability of the material, decreasing the rigidity and strength. 

By modifying the concentration of natural fibrinogen with fibrin, higher mechanical strengths 

can be achieved (Cornwell, 2007). Cells can be seeded on this fibrin assembly, resulting in better 

mechanical seeding techniques compared to traditional cell delivery methods. In a study done by 

Professor Cornwell, fibrin microthreads proved to be stronger and tougher than fibrin hydrogels 

(Cornwell, 2007). This application benefits the area of tissue regeneration by providing 

mechanical rigidity and strength while also effectively promoting the body’s natural tissue to 

repair its dead and damaged tissue (Cornwell, 2007).  

Promoting tissue regrowth while maintaining sufficient mechanical properties are 

extremely important characteristics of a material used for delivering cells to dead cardiac tissue. 

Allowing for a strong, yet flexible structure that can promote efficient cell growth is crucial to 

the overall success of the tissue regeneration (DiTroia et al., 2008). Microthreads, although 

typically delivered in bundle formation, can be cross-linked and woven into forms that make the 

structure stronger, while providing more available surface area for cell delivery and other such 

applications (DiTrioa, Hassett, Roberts, 2008). Additionally, fibrin structures are advantageous 

in supporting differentiation, propagation, and movement of stem cells. This is important to the 

survival and effectiveness of renewing damaged and dead cardiac tissue. With these fibrin 
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microthreads, a higher engraftment rate of the stem cells potentially yielding better tissue 

regrowth can occur.  

2.5.2 Microthreads as a More Efficient Scaffold 
 

In addition to microthreads providing excellent mechanical properties that can guide 

tissue regrowth in dead and damaged cardiac tissue, microthreads can be used as a cellular 

platform due to their ability to be constructed into larger shapes and sizes and their strengths. A 

study demonstrating this theory was performed with fibrin microthreads acting as a scaffold for 

wound healing (Murphy, 2008). In the experiment, the microthreads were prepared in a gel 

formation, being conducive to attachment of cells (particularly fibroblasts). The microthreads 

proved to be effective in maintaining the overall attachment of the cells, in addition to their 

constant proliferation and viability.  

With this newly developed method of cell delivery, scaffolds can deliver cells to the 

problem site with better mechanical strengths  and control (which is shown below in Figure 2) 

than scaffold methods, making fibrin microthreads far more advantageous than traditional means 

(Murphy, 2008). The threads proved to have high tensile strengths and stiffness, actually being 

enhanced when exposed to ultraviolet light (Cornwell 2006).  
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Figure 2:  Oriented Fibrin Hydrogel (Manufacturing Chemist, 2010). 

Similarly, cross-linked threads show greater values of mechanical properties compared to 

the tested uncross-linked threads.  Even after being seeded with fibroblasts, it has been shown 

that microthreads are capable of cell proliferation.  This study proves that bundled microthreads 

are an acceptable means of tissue regeneration (Cornwell et al., 2006). Fibrin microthreads, as 

compared to fibrin hydrogels, have greater mechanical properties and can support cell adhesion 

and cell proliferation (Cornwell et al., 2006).  

2.5.3 Microthreads Mimicking Tissues 
 

Along with being beneficial as scaffolds, microthreads have a unique ability to mimic 

organic tissues; this provides extra value to using microthreads in that they are both 

biocompatible and biodegradable (DiTroia et al., 2008). The main component of fibrin 

microthreads (fibrin) is an essential component of natural wound healing and, therefore, of 

damaged tissue regrowth (Cornwell, 2007). Collagen, like fibrin, can be assembled into 

structured patterns to allow for more strength and stiffness in biomedical applications. Collagen 
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Type I is a major functioning component of extra-cellular matrix (ECM) in tendons and 

ligaments. Collagen is not a major protein in damaged tissues upon immediate harm, like fibrin. 

Fibrin matrices provide natural regrowth of tissues due to their similarities to collagen and ability 

to repair damaged tissue (Cornwell, 2007).  

In vivo, fibrin gels present a low elastic modulus and a variety of binding sites for 

signaling proteins and integrins in order to stimulate an emergency reaction to the damaged 

tissue site (Flanagan et al., 2009). Additionally, fibrin gels activate an immediate immune 

response to the patient in a reaction to the foreign material.   

2.5.4 Effects on Cell Orientation, Migration, and Proliferation 
 

Additionally, microthreads mimic the functions of scaffolds in that they have the ability 

to direct the movement and direction of the cell in order to properly repair damaged tissue 

(Murphy, 2008). In a study performed by Professor Cornwell and Professor Pins ten fibrin 

microthreads were bundled together and soaked with cells and media (Cornwell, Pins 2007). 

After approximately one week of culturing and incubation, fibroblast attachment and 

proliferation was noticed with recordable data regarding the actual viability of the cells. It was 

noted that the fibroblasts had successful attachment to both cross-linked and uncross-linked 

ultraviolet (UV) stained microthreads. The success of this study proves fibrin an acceptable 

material for scaffolding in tissue engineering studies and applications (Cornwell et al., 2007).  

Furthermore, fibrin microthreads which are organized into a bundled structure stimulate 

cell proliferation and attachment (DiTroia et al., 2008). This structure allows for a tight 

alignment of the scaffold; the scaffold can form into larger structures, which would allow for a 

more accurate and efficient cell migration. The cells align in the longitudinal direction when they 
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are constructed in this fashion, allowing for a stiffer and more rigid scaffold material that could 

promote cell proliferation to regenerate tissue (DiTroia et al., 2008).  

These fibrin microthreads would require a minimally invasive method of delivery in 

order for the patient to have a shorter recovery time. One method of achieving this goal would be 

to use a catheter to deliver the microthreads, due to the fact that it would not require invasive 

surgery. 

2.5.5 Delivery of Cellular Therapies via Microthread Scaffold 

 Recent work has shown success in the delivery of cellular therapies seeded on biological 

microthreads. These studies show cell engraftment rates in the targeted tissue up to 70%, when 

sutured into the epicardial surface of the heart (Fakharzadeh et. al, 2010). One existing technique 

to deliver cellular based therapies is intramyocardial injection where a stem cell solution is 

injected into the epicardial surface (Sherman, 2006). This technique, however, only results in cell 

engraftment rates of up to 10%. The comparison in engraftment rates between the two therapies 

can be seen in Figure 3 below:  
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Figure 3: Delivery efficiency% of Microthread Implantation vs. Intramyocardial Injection (Image courtesy of Gaudette 
lab, 2011). 

 This graph demonstrates the comparison in efficiency of cell engraftment rates of 

microthread implantation versus intramyocardial injection, showing an improvement of 60% 

with the microthread implantation technique.  

2.6 Advantages of a Catheter-Based System 

 A minimally invasive technique for accessing the heart is cardiac catheterization. 

Currently there are many commonly performed procedures completed with the use of a catheter. 

These procedures can be either diagnostic or therapeutic or a combination of both. The 

therapeutic catheterization procedures repair the defects diagnosed such as problems with the 

heart valves or opening blocked arteries. Recent research has looked into delivering cells to the 

heart wall for regenerative purposes (Sherman, 2006). 

2.11 Catheter System Examples 

Tissue damaged by myocardial infarction makes the heart much less effective. Heart 

tissue does not make use of the regenerative properties of the body, and therefore cells must be 
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delivered to the damaged tissue in order for repair to begin. Currently, there are different catheter 

devices in clinical trials which deliver cells to the heart for this purpose. Cardiac catheterization 

is a common procedure performed in today’s healthcare. Catheters were design to perform a 

critical task inside the body while being operated outside of the body. As illustrated in Figure 4 

below, the distal portion of a catheter is the portion which performs the task internally, while the 

proximal portion is the end actuated by the physician.  

 

Figure 4: Standard Catheter (medgadget, 2011). 

 

There are two different methods for cell delivery into the heart: intramyocardial injection 

and intracoronary infusion. The difference between the two delivery mechanisms can be seen in 

Figure 5 below:  

 

Figure 5: Intramyocardial Injection of Cell Suspension (Beeres et. Al, 2008). 
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Both of these methods inject the cells into the heart, but approach the damaged tissue 

from different anatomical structures. Both methods are inherently flawed due to low cell 

retention after the procedure (Sherman, 2006). Even with this problem, it is important to see how 

current technology approaches the problem in order to find a more viable solution. 

Catheters can be constructed in multiple ways; for instance, an integrated system 

combines a core and support catheter to form a single structure. This design allows for repeated 

injections into the heart wall. The disadvantage of an integrated system is that it is unable to use 

a guide wire for navigating to the heart. Therefore, the navigation tools used to navigate the 

catheter to the left ventricle must be dependable. MyoCath and Myostar catheter systems, made 

by Bioheart Inc. © utilize an integrated system (Bioheart, 2009). Straight needles made of either 

stainless steel or nitinol allow for repeated injections of cells into the wall of the left ventricle 

(Sherman, 2006). 

A non-integrated device separates the core catheter from the support catheter thereby 

enabling the use of a guide wire for the navigation to the heart. The core catheter is then inserted 

through the support catheter allowing for the injection of cells. There are two catheters that use 

this kind of assembly: the Helix and the Stiletto (BioCardia ©, 2007-2009). The Helix catheter 

system uses a corkscrew-like needle which increases the stability while inserted into the heart 

tissue and can be seen in Figure 6 below:  

 

Figure 6: Helix catheter (BioCardia, 2007-2009). 
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The Stiletto uses a spring loaded needle which injects to a fixed depth for delivering the 

cells to the heart wall.  A spring loaded system is advantageous in delivering cells through 

fibrotic tissue. A non-integrated system allows for a more complex delivery system with the core 

catheter (Sherman, 2006). 

Currently, the only minimally invasive way of delivering cells to the heart wall is intra 

coronary injection. Another way to deliver cells to the heart is to suture threads seeded with cells 

into the heart through open heart surgery. The procedure of suturing threads is not optimal due to 

the healing time required for such an extensive surgery. The aforementioned benefits of fibrin 

microthreads for cell adhesion and viability make this an approach worthy of further research 

and development. A catheter-based approach for delivering microthreads seeded with cells to the 

heart would combine the advantages of microthreads with the known success of catheter-based 

systems. 

2.12 Visualization and Delivery of the Catheter 

Catheters are non-invasive and therefore require imaging techniques to direct the device’s 

operator through the body and within the heart. There are many different ways that a catheter can 

be tracked in the body. Fluoroscopy is an imaging method that uses x-ray images to guide the 

operator to the correct portions of the heart (Fluoroscopy, 2010). In combination with the 

fluoroscopy, radiopaque dye is used to highlight portions of the heart’s anatomy. The radiopaque 

dye is a contrast material that does not allow x-rays to pass through it. This is helpful to visualize 

arteries, veins or the location of structures like the heart wall. As there is with any procedure that 

involves x-rays there are risks involved with the radiation exposed to the body. While the risk is 

small the duration and intensity of the x-rays can be cause for concern with fluoroscopy 

(Fluoroscopy, 2010). 
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Using fluoroscopy, the catheter can be guided to the heart and provide some imaging 

within the heart. If more defined structures are needed, however, other techniques must be 

explored. For this reason, another way of visualizing the inner anatomy of the heart is the use of 

ultrasound. Ultrasound uses sound waves to identify the structures within the body. One of the 

catheter systems that uses this is the AcuNav catheter developed by Biosense Webster © 

(Biosense Webster Inc., 2010). The use of ultrasound allows the mapping of the heart so that 

different anomalies can be identified (Ren, 2002).  

The company Stereotaxis developed a technology that utilizes magnetic fields to guide 

the catheter through the body and heart. This type of system allows for a more detailed control 

than conventional methods. Since the catheter system is activated by a computer the operators do 

not have to be in the same room as the patient, reducing the amount of radiation they are exposed 

to which is crucial (Stereotaxis, 2010). 

2.13 Fixed Versus Steerable Catheters 

Catheters can either be fixed or steerable. A fixed catheter has a constant defined curve. 

Many different curves can be formed depending on the application of the catheter. Figure 7 

shows multiple examples of possible catheter curves as developed by Boston Scientific (Boston 

Scientific, 2010).  
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Figure 7: Examples of Fixed Catheter Curves (Boston Scientific, 2010). 

A steerable catheter allows for a change in the shape of the distal end while inside the heart. This 

can be done from the proximal end of the catheter and can provide the operator with a greater 

range of motion while navigating to certain structures (Boston Scientific, 2010). Figure 8 shows 

how the curve is capable of changing while inside the heart. The major advantage of a steerable 

catheter is the ability to fix the position more accurately during the procedure. 
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Figure 8: Curves obtainable with a steerable catheter system. (Boston Scientific, 2010) 

Biosense Webster developed the “EZ Steer Bi-Directional Catheters” which utilizes their 

proprietary micro-tensioning system for precise control of the catheter’s distal end (Biosense 

Webster Inc., 2010). Several joints are located at the end of the catheter and by moving a dial at 

the distal end the operator is capable of making fine, incremental adjustments to the catheter’s 

position. This kind of control is important for procedures that require precision and accuracy 

(Boston Scientific, 2010). 
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Chapter 3: Project Approach  

3.1 Project Assumptions  

There were multiple assumptions made in order to simplify the client statement into a 

solvable problem with the time and resources available. All assumptions made were based on 

prior research and have been shown to be reasonable in their respective areas. The following are 

assumed to be true within the scope of this project: 

1. Human Mesenchymal Stem Cells (hMSCs) have been shown to regenerate cardiac 

function. 

2. Microthreads are an appropriate scaffold system for the delivery of cells. 

3. Catheters are an appropriate and accepted system for cardiac therapies. 

4. A bovine heart is an acceptable model for cardiac tissue. 

3.2 Project Stakeholders  

There are multiple stakeholders in the outcome of this project. Stakeholders are the 

people affected by the use or presence of this device either directly or indirectly. The list of 

stakeholders is as follows: 

• Doctors 

• Hospital personnel 

• Patients 

• Patients’ family 

In order for the device to be found useful it must be intuitive for the doctor’s performing 

the procedures. If the device does not function in a similar fashion to other catheters it most 
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likely will not be a success. Therefore, the design must take this into account and create a user 

friendly device. A “user friendly device” means that the device should act as a help not a 

hindrance to the procedure. 

Additionally, it must be understood that doctors will not be the only people handling the 

device. Other staff will need to move the catheter system from a storage place before the 

procedure and dispose of it after it is no longer needed. The device must be durable enough to be 

handled by many people prior to the procedure taking place. The safety of the staff is a necessary 

consideration in the design of the device and the reasoning why the hospital personnel must be 

considered. 

The patients having the procedure performed must be considered in the design of the 

device. The use of the device provides live saving therapy to the patient and must not debilitate 

the person further. For this reason the patients’ family must also be considered. If the device 

results in a recovery time the patients’ family or care giver will most likely be responsible for 

helping the patient with their daily activities. The longer time period in which the person is 

recovering from the procedure the more the family or care giver will be needed.  

3.3 Project Goals  

The overall goal of this project is to restore cardiac function to a patient who has suffered 

from a myocardial infarction. In order to simplify the goal into something obtainable and within 

time and money constraints, it was decided to use a catheter system to deliver the therapy that 

will restore cardiac function. A more specific list of primary and secondary goals is as follows: 

1. Design catheter system for insertion into the femoral artery 
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2. Create device that allows protection of (hMSCs) until delivery 

a. Capsular design to allow for protection of cells during transport and non-use 

b. Capsule design in order to quickly reload catheter to deliver cells to multiple sites 

3. Safely implant cells into the wall of the left ventricle in the target area 

4. Use preexisting technology to guide the catheter to its desired location 

a. Radiopaque dye 

b. Guide wires 

5. Restore cardiac function without increasing injury in the heart or elsewhere in the body 
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Chapter 4: Design 

4.1 Initial Client Statement  

The group received the following initial client statement from client, Glenn R. Gaudette, 

Ph.D.:  

“Design a method to delivery microthreads that are seeded with stem cells. The microthreads 

will be approximately 1 mm in diameter and 17 mm in length.” 

 The client statement was analyzed and discussed with the client to receive more details 

pertaining to the expected device design. It was concluded that in addition to the statement, the 

device needed to be minimally invasive, as good as or better than what is currently out there, and 

cause as little side effects as possible. Additionally, the device must allow for at least 17mm of 

microthreads to be deployed into the heart wall. 

4.2 Objectives, Functions, Constraints, and Specifications  

 After analyzing the initial client statement, the group determined what components of the 

design were crucial for satisfaction of the client, what components would make the design more 

successful and appealing, and what functions would be required for the device to work properly. 

Together, the objectives, functions and constraints act as guidelines for all experimental designs 

that are created and tested. Section 4.5 (Developing Design Alternatives) details all preliminary 

designs that were developed in the brainstorming process and what aspects of each preliminary 

design were extracted and implemented into the final conceptual design.  
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4.2.1 Objectives  
 

In the design process, objectives indicate what exactly the design should do, rather than 

what it must do. Objectives help to make a basic and completely functional design more 

attractive and alluring to the patient and can make a procedure safer, more ergonomic, and 

produce less pain for the patient. Keeping the initial client statement in mind and top priority, the 

group brainstormed all possible design objectives. The objectives were determined based on five 

major components: ease of use, safety, location, maneuverability, and minimal invasiveness.  

Safety is the most important objective our group identified for this device. If the safety of 

the patient or the surgeon is jeopardized, the success of the device is likewise at risk. 

Additionally, if the device is not safe to use on the patient, the reputation of the surgeon using it 

may also be at danger; therefore, a device that is devoid of risks and harm is essential. Sub-

objectives of the objective safety include that the device should not damage the coronary wall, be 

safe for the patient and for the user. With regards to safety for the patient, the device should not 

result in a long recovery time and should not cause harmful side effects.  

Ease of use is an important objective because if it is easy to use for the surgeon then the 

surgeon will be more inclined to select our design rather than one that is complicated and 

perhaps riskier to practice with. Subsets of this objective include making the device easy to load, 

easy to insert, easy to use/handle on proximal end, and ease of making insertion. These four 

subsets ensure that the surgeon will have minimal to no problems initially use the catheter device 

and navigating the device into the left ventricular wall so that the microthreads can successfully 

be delivered and the device can be inserted and removed without flaw.  
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The delivery location of the catheter must be considered as a third objective when 

designing the device. The device must be accurate and arrive at the exact location of the 

infarction in order to effectively place the microthreads for tissue repair. Precision is another 

subset of location and is similar to accuracy; the difference between accuracy and precision is 

that accuracy identifies an exact location whereas precision identifies exactly how often that 

accuracy can be performed. Lastly, repeatability of the device with both accuracy and precision 

make this a required objective.  

A maneuverable and minimally invasive device encompasses the last two design 

objectives that the group established was important for the success of the design. Making the 

devices steerable, contain a bend, and ensuring mechanical stiffness are subsets of making the 

device maneuverable enough to get to the correct destination in the heart. Furthermore, by 

making the device minimally invasive it will make the procedure an outpatient procedure and 

decrease costs, time out of work, recovery time, and surgical risks.   

The objectives of the final conceptual design for the cardiac delivery device can be 

viewed in Appendix B.  

4.2.2 Functions  
 

In order to allow the device to carry out the specific objectives which have been 

determined, functions are required. Functions establish how the device is going carry out certain 

tasks, and with respect to this device, how it will perform effectively and accurately and satisfy 

the client’s demands and needs. The group brainstormed all of the functions the device needed to 

be able to do and established the following list:  
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• Deliver Catheter to Wall 

o Be steerable 

o Be visible  

o Be non-obstructive  

o Be removable  

o Be Safe  

• Deliver Cells to LV Wall  

o Push/Expel cells and thread  

o Be Safe  

• Navigate to Insertion Location 

o Be precise  

o Be accurate  

• Maintain Cell Viability 

o Reduce shear stress 

o Provide nutrients  

o Allow gas exchange 

o Maintain cell adhesion to thread  

o Allow for cell engraftment to heart 

As shown in the above list, the required functions have been categorized into four 

specific groups: deliver catheter to wall, deliver cells to the LV wall, navigate to insertion 

location, and maintain cell viability.  Each category is then divided up into subcategory to 

understand what aspects of that category are important.  
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Delivering the catheter to the wall would be easy with the help of a steerable catheter; 

this means in order to deliver the cells to the wall it should deform with a specific angle, contain 

the necessary degrees of freedom, and the distal end of the catheter should have different 

mechanical properties than the remainder of the catheter in order to steer the catheter properly. 

Delivering the catheter also requires visibility of the device and to be non-obstructive; therefore, 

the visibility resolution and the diameter of the entire catheter are important to the functionality 

of the device. The device must be removable in order to take out all materials from the body, 

with the exception of the microthreads seeded with stem cells. Lastly, safety is another 

component of this function. The needle should not be too sharp and should not be exposed until 

it is user-activated, it should maintain mechanical stability, and it should not impede blood flow. 

Delivering cells to the left-ventricular (LV) wall is the second function that requires 

several sub-components to ensure complete functionality. Both the cells and thread should be 

expelled from the device via a user-interface that can deliver the catheter into the LV from the 

proximal end of the device. This function can be accomplished via a proximal end interface. 

Additionally, the safety of this operation should not be compromised in that the design should 

minimize destruction and the stability of the implantable should be ensured. 

The third function deals with navigating to the insertion location which requires absolute 

precision and accuracy. With regards to precision, repeatable placement of the microthreads must 

be validated and guaranteed simultaneously with accurate placement of the threads in the target 

location.  

Finally, maintaining cell viability of the stem cells requires a reduction of shear stress, 

provision of nutrients, gas exchange, cell adhesion to the thread, and cell engraftment to the 
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heart. For this application, decreasing the shear stress both entering the wall and when the 

microthreads are leaving the delivery device are essential. Providing nutrients for the stem cells 

that are on the microthreads will help to maintain the cell viability, as the cells will need to 

remain at the tip of the catheter until placement inside the cell wall. Likewise, the cells are going 

to need to perform gas exchange. With regards to cell adhesion on the thread, a majority of the 

cells are going to have to maintain viability prior to being injected; therefore, there cannot be a 

large percentage of cells that die prior to placement. 

4.2.3 Constraints  
 
 In addition to determining what functions the device needs to be able to carry out, 

constraints must be set in place. Constraints state exactly what the device must do. If the device 

fails to successfully qualify a constraint, the device will ultimately fail. Below lists the design 

constraints the group developed:  

• Must not exceed time budget (August 27th-April 21st) 

• Must not exceed monetary budget ($624)  

• Must not puncture aortic valve 

• Must not be thrombogenic 

• Must not fully penetrate thickness of ventricle wall 

• Must be biocompatible 

• Must be manufacturable 

• Must not create an immune response 

• Must be seen with current available technology 

• Must release entire microthread into LV wall 
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• Must  be able to retract needle without retracting the thread 

• Catheter must take direct course to LV wall 

• Catheter must not break 

• Thread should be completely embedded in damaged tissue region  

• Cells must remain intact and on microthread  

Once it can be said with confidence that the cardiac delivery device meets all of these 

constraints, the device can then be deemed successful. 

4.2.4 Specifications  
 
 Specifications define exactly what the tolerances are for each established function. Once 

the device has been confirmed to meet the objectives and constraints, specifications are set in 

place to make sure that the device can meet its desired functions; otherwise, the device may be 

unable to fulfill both safety and functional requirements.   

The steerable catheter must have a minimum of two degrees of freedom. The diameter of 

the catheter must not exceed 4 mm to qualify it as non-obstructive. The catheter must not impede 

blood flow up to 30% in order to ensure safety of the patient. In order to expel/push the cells and 

threads into the LV wall, the catheter must have a dual lever interface. To ensure safety, the 

control depth must not exceed 4mm-15mm. The stability of the implantable material must be 

ensured to the extent of the project. The catheter must be precise and accurate in navigating to 

the insertion location. The accuracy of the insertion location must be within 3mm of the target 

location. With regards to maintaining cell viability of the stem cells, there must be a decrease in 

shear stress compared to current technology. Provision of nutrients and gas exchange is crucial 

for maintaining cell viability; therefore, the cells will be able to sit inside the catheter for 24 
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hours before they are no longer living. Cells have no more than a 10% loss during adhesion to 

the thread before injection into the heart. Lastly, there can be no more than a 30% loss of cells 

overall during the cell engraftment to the heart procedure. 

4.3 Revised Client Statement  

  After taking the objectives, constraints, functions and specifications into mind, the 

team worked to develop a more specific and more precise client statement that contained all 

necessary details pertinent to the success of the device:  

The ultimate goal of this project is to create a device that enables the delivery of 

microthreads seeded with stem cells to the wall of the left ventricle. For the procedure to be 

successful the device must be able to deliver microthreads 1mm in diameter and 17mm in length 

to the heart wall. The device must be minimally invasive, allow for a short recovery time, 

maneuverable to enable maximum control, safe for both the user, patient, and heart, and must 

allow for easy loading of microthreads. The device must also allow easy insertion into the heart 

in both an accurate and precise method. Costs to manufacture the device must not exceed the 

department budget of $624 and must be completed by April 21st, 2011. 
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4.4 Pairwise Comparison  

We created a pairwise comparison chart (which can be viewed in Appendix B) in order to 

rank the objectives relative to each other. In this chart, if the objective in the left column is 

determined to be more important than the objective in the top row, it receives a score of “1” 

(one). If it was found to be less important, it received a score of “0” (zero). The numbers in the 

horizontal rows were added up to give each objective a total score. The total scores of each 

objective for each group member and advisor were summed to create a complete pairwise 

comparison chart as shown in Table 1. The objectives were then ranked from most important, 

with the highest score, to least important, with the lowest score.  

Table 1: Filled Out Pairwise Chart 

Objective 
(Ease of Use) Alex Brittany Evan Glenn Trevor Total 

Easy to load 0 0 0 0 0 0 
Easy to insert  

(reach LV) 2 3 2 3 2 12 

Easy to use 
(proximal 

end) 
1 2 3 2 3 11 

Ease of 
making 

insertion 
3 1 1 1 1 7 

 

Objective 
(location) Alex Brittany Evan Glenn Trevor Total 

Accuracy 2 1.5 2 1 0.5 7 

Precision 0 1.5 0 0 1.5 3 

Repeatability 1 0 1 2 1 5 
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Safety 
(Patient) Alex Brittany Evan Glenn Trevor Total 

Does not 
damage 

coronary well 
2 2 2 1 1 8 

Does not 
result in long 
recovery time 

0 0 0 0 1 1 

Does not 
cause 

harmful side 
effects 

1 1 1 2 1 6 

 

4.5 Morphological Chart   

In order to create a variety of design alternatives, a morphological chart was used that 

displayed the desired functions of the cardiac delivery device and different means of obtaining 

each of these functions. Various design alternatives were considered, and the multiple 

combinations can be seen below in Table 2: 
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Table 2: Morphological Chart 

  1 2 3 4 5 6 7 8 

Deliver 
Catheter 
to Wall 

Deflectable 
Guide 

catheter 

Integrated: 
multiple 
curves 

2 guide 
catheters Transvenous Guidewire 

material 
make-up 

for proper 
deflection 

Alex's 
crazy 

suction 
cup idea 

hockey-
stick 

Delivery 
Cells to 
LV Wall 

Syringe 
injection 

Smart 
polymer Smart alloy 

Sewing 
Machine 

mechanism 

Suture 
mechanism at 

end of wire 

Arched 
hollow 
needle 

with 
cradled 
thread 

Biodegrad
able 

polymer 
sheath 

Bundled 
thread 

suspension 
injection 

Naviate 
to 

Insertion 
Location 

Steerable 
catheter 

Nitinol smart 
alloy 

Nonsteerable, 
curved 

catheter tip 
Fiber optic line 

Radio opaque 
imaging/marker 

bands 

Side port 
at 

proximal 
end for 

die 
injection 

  

Keep 
Cells 

Viable 

Expose 
cells to 
blood 

Encase cells 
in cell media 

Procedure 
done quickly 

Arched hollow 
needle would 
protect cells 

Biodegradable 
polymer sheath    

 

4.6 Developing Design Alternatives  

Based on the functions, objectives and specifications that had been previously defined, 

multiple design alternatives were created to solve the problem at hand. The early stages of the 

design focused on the distal tip of the catheter as it was decided to be the most important part of 

the design. The functions the distal tip ultimately ended up performing indicate how the catheter 

lumen would be designed and by extension the proximal end. The following sections define the 

design alternatives that were explored and the advantages and disadvantages of each. The feature 

taken from the design to be implemented in the final design is also indicated. 

4.6.1 Biodegradable Capsule  
 

The first preliminary design incorporated microthreads within a biodegradable capsule. 

The structure of the microthreads sometimes makes them difficult to handle. This design was a 
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way to get around that problem. The capsule would become the item needing to be handled and 

therefore easier to maneuver and deliver.  

 

Figure 9: Biodegradable Capsule with the grey section being left behind in the heart and the dark grey section being 

attached to the catheter. 

The design is depicted in Figure 9. The light grey section found on the right side of the 

device would be made of a biodegradable material and filled with microthreads and cell media, 

while the needle pushes through the heart tissue. The capsule would be injected into the heart 

wall and left there as the biodegradable material dissolved. The threads would then be left behind 

and able to start rehabilitation. There are both advantages and disadvantages to this design. The 

capsular approach allows the threads to be handled in a different way and allows for easy loading 

of the catheter in the procedure room. The problem with this design comes with leaving a foreign 

material inside the heart wall. Multiple problems could have presented themselves, for example, 
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cardiac function could have been impaired or the capsule could have come dislodged from the 

tissue.   

4.6.2 Auto Injector 
 

One way preliminary designs were created was to look at currently existing technologies. 

These technologies could then be modified to solve the current problem. A technology that was 

looked at was an auto injecting syringe as seen in Figure 10. Similar to the first preliminary 

design this approach looked to remove the thread architecture from the problem. The 

microthreads would be tied into balls and injected into the heart wall as a kind of pellet. The size 

constraints of the catheter system would have made this design very difficult to manufacture. 

 

 

Figure 10: Sample Auto Injector Design 
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4.6.3 Suture Needle 

The last preliminary design utilized the microthreads as threads. The symmetrical 

mechanism utilized three needles to deliver the microthreads to the heart wall. As can be seen in 

Figure 11 the green structure was the main needle body and the two blue needles would actually 

deliver the threads to the wall. The thread would be stored in the middle portion of the green 

needle and an end of the thread would be attached to each blue needle. While the needle structure 

was being maneuvered to the heart wall the blue sections would be enclosed within the green. 

Once at the heart wall, the blue needles would be advanced into the wall pulling the thread 

through the heart tissue. The problem with this design was that it would have been very difficult 

to manufacture. There are also many moving parts and therefore a more difficult proximal end 

would need to be designed. 

 

Figure 11: Three Needle Preliminary Design 
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4.7 Initial Design 

After looking through conceptual designs and the revised client statement, it was devised 

that the protection of the patient was the most important aspect of our design. To fill this 

requirement we looked into many ways of reducing sharp edges on the distal end of the catheter. 

From our preliminary and conceptual designs we knew that our delivery mechanism would 

utilize a needle. In order to encapsulate this into a safe structure, a capsule was decided upon.  

A capsule is a sheath like replaceable portion of the distal catheter. By having a distal end 

that is detachable and replaceable the physician would be able to load microthreads easily into 

the device. The premise for the capsule was to provide a physiological environment for the cell-

seeded biological microthreads for a period of about 24 hours. The capsule could be placed at the 

distal end at the time of the procedure. If more than one procedure is needed at one time the used 

capsule can be replaced with a new one and the procedure can be repeated. 

The capsule could provide many benefits to all of the stakeholders involved. First, for the 

cells, an expanded polytetrafluoroethylene (ePTFE) barrier would be placed between the outside 

environment and the cells. This ePTFE barrier would allow for the retention of cell media within 

the capsule and an area for gas exchange. Particulates would be kept out of this environment 

reducing the possibility of destroying the viability of the cells. Second, the patient would also be 

protected. The intricate design of the capsule would provide mechanical safety stops to ensure 

the needle would not be overexposed into the heart wall. These stops would be extruded rings on 

the inside of the capsule that would not allow the needle to move past. The heart wall has a finite 

thickness so under no circumstance would the needle need to be exposed more than that distance. 
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Lastly, the physician is protected by being insured that the needle cannot puncture too far 

beneath the endocardial surface. 

 The delivery mechanism enclosed in the capsule would utilize two primary parts: the 

outer needle and the inner core. This mechanism was meant to reduce the amount of shear placed 

on the cells and microthreads while passing under the endocardial surface. The current technique 

of delivering microthreads to the heart wall is to suture them in place from the epicardial surface. 

As the suture needle pulls the threads the tissue acts as a kind of “squeegee” wiping the cells off 

the threads. Studies have shown that a higher density of cells can be found at the surface of the 

tissue comparatively to the deeper infarcted region (Fakharzadeh, 2010). As can be seen in 

Figure 12, the inner core is placed within the outer needle. The microthreads are draped over the 

inner core and exposed only when the outer needle is retracted. 

 

Figure 12: Close-up of how the distal delivery mechanism is assembled. As shown the device would have just passed 
under the endocardial surface. 
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The actuation of the catheter would take a four step process. This process can be 

visualized in Figure 13: 

 

Figure 13: Distal and Proximal actuation in the initial design. 
 

The four step process would be as follows. Figure 13a depicts the proximal end completely 

retracted at the “starting position” and the distal end located at the heart wall. Notice that both 

slides are moved to the back of the handle casing. Figure 13b has both slides on the handle 
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moved fully forward. The action at the proximal end results in both the outer needle and the 

inner core plunging under the endocardial surface. By moving both the outer needle and inner 

core into the tissue together it is believed that the microthreads will be protected from shear 

stresses produced by the endocardial wall. Figure 13c shows the primary gray slide pulled back 

on the proximal handle which retracts the outer needle. As the outer needle is retracted the inner 

core and threads are exposed to the infarcted heart tissue. Figure 13d shows the final step of 

retracting the inner core by pulling back on the red slide at the proximal end. As the inner core is 

removed from the tissue only the biological microthreads are left behind. After the delivery 

mechanism successfully leaves the microthreads in the infarcted region the catheter is tracked 

back out of the left ventricle and through the incision made in the femoral artery. 

 One of the primary drawbacks to this design was the handle. It was rapid prototyped by a 

three-dimensional printing technique. This manufacturing technique has a limited resolution 

requiring the simplification of the design. What resulted was a non-ergonomic design found to be 

unusable by industry professionals. The handle utilized a two slide mechanism which would 

actuate the outer needle and inner core separately. The handle can be seen as designed in Figure 

14.  

 

Figure 14: The handle found at the proximal end in the "starting position". 
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 Another drawback of this design was the plausibility of machining the required parts. 

One of the constraints set at the beginning of the design process was the ability to create a 

working prototype. This involves all parts being manufacturable within the time and monetary 

budget. Given the scale of the distal end of the catheter it would be necessary to have the parts 

created off campus. This would entail extra costs. For this reason we decided to simplify our 

design by taking the most essential pieces of the initial design into our final design. 

4. 8 Final Design 

  In order to address the flaws in the initial design we created a new final design that 

addressed the concerns expressed by our client as well as industry professionals. After these 

discussions we determined that the handle was the most pressing problem in need of addressing. 

The initial design featured a rectangular handle. A more ergonomic, circular design was used in 

the final design as a result of suggestions from industry professionals. The catheter is comprised 

of five primary components, as shown in Figure 15. The red dotted line running through the 

center of the next series of figures shows the separation of the distal and proximal ends of the 

catheter. 
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Figure 15: Labeled diagram of key components found in the final design. 

 

The first step in using the device is to track the catheter to the left ventricular wall. As 

seen in the detail view of Figure 16, the distal end is sheathed so that the sharp edge of the needle 

is not exposed. The sheath took the place of the capsule for providing a level of safety for both 

the patient and physician.  
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Figure 16: Catheter Actuation Step 1 

Once located at the proper location, the outer needle can be introduced into the infarcted 

tissue region. This is first done by unsheathing the outer needle by pulling back on the sheath 

slide at the proximal handle. The sheath slide is pictured as a blue cylinder in Figure 17. The 

handle is then moved forward by the physician who will plunge the outer needle and complete 

delivery mechanism under the endocardial surface. As can be seen in Figure 17, only a minimal 

portion of the needle is exposed. The sheath slide stop pictured as the light blue cylinder with a 

yellow stripe prevents the needle from being over exposed. Again, this provides a level of safety 

for the patient by limiting the depth the needle is allowed to penetrate the ventricular wall. It also 

provides a means of insurance for the physician not to move too far under the endocardial 

surface. 
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Figure 17: Catheter Actuation Step 2 

Figure 18 depicts the next step of the actuation process, microthread delivery. At the 

proximal end of the catheter the physician moves the inner core slide forward. By doing this, the 

inner core and microthreads are deployed within the infarcted tissue at the distal end. As in the 

initial design, the outer needle/inner core delivery mechanism is believed to reduce shear on the 

microthreads as it passes under and through the endocardial surface.  
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Figure 18: Catheter Actuation Step 3 

Once the inner core has been deployed the biological microthreads have been delivered. 

The next step is the removal of the delivery mechanism from the infarcted tissue region as seen 

in Figure 19. In order to do this, the physician pulls back on the proximal handle thereby 

retracting the delivery mechanism from the tissue. The goal is to leave only the biological 

microthreads behind in the desired tissue region. 
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Figure 19: Catheter Actuation Step 4 

The final step, shown in Figure 20, involves re-sheathing the needle while the distal end 

of the catheter is still located within the left ventricle. The re-sheathing process should take place 

once the delivery mechanism is removed from the ventricular wall. The physician does this by 

pushing forward on the sheath slide in a reversal of step one in this process. Once the sheath is 

covering the outer needle, it is safe for complete device retraction. The procedure is now 

complete, but can be repeated as many times as necessary until the appropriate amount of 

therapeutic cells have been delivered. 
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Figure 20: Catheter Actuation Step 5 
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Chapter 5: Methodology  

5.1 Materials 

The materials used for the device must be rigid enough to withstand the process of 

delivering the catheter into the heart, in addition to delivering the stem cells to the left-

ventricular wall. Manufacturability of the material is important since most medical devices are 

very small and require special manufacturing. In addition to fulfilling mechanical and 

manufacturing conditions, all materials must be biocompatible and safe for the patient. 

Based on the above requirements, materials were selected. Starting at the proximal end 

the handle is created from hard plastic and Delrin. The lumen connecting the proximal handle 

and distal delivery mechanism are created from several different materials. The inner lumen, 

which actuates the inner core, is a polytetrafluoroethylene (PTFE) coated stainless steel wire. 

The center lumen, which creates the main body of the catheter, is made of polyethylene 

terephthalate (PET). The sheath lumen is created of nylon. Lastly, the outer needle found in the 

delivery mechanism is 316L stainless steel. 

5.2 Testing  

5.2.1 Design of Testing  

In order to test the feasibility of some concepts and the functionality of others, testing 

protocols must be devised to obtain reliable data. These protocols are conceived from literature 

and will serve the purpose of validating the final design. The tests should be designed to be a 

binary pass/fail. In the event that the device fails a test the reasoning behind the failure will be 

looked into and the correct course of action taken.  



[61] 

 

5.2.2 Individual Testing  

Testing was conducted to examine and validate the device’s two most critical objectives: 

the ability of the catheter to track easily around the aortic arch, and its ability successfully 

implant fibrin microthreads into the endocardial wall. 

5.2.2.1 Bending Radius Testing  
 

 To test the catheters bending ability we constructed a model aortic arch.  The model was 

made from simple vinyl tubing purchased from a hardware store. An approximately 2 foot length 

of tubing was used. One end of the tubing was bent 180 degrees with a bend radius of 3.5cm, as 

we had previously determined our prototype could not bend significantly more than this without 

kinking or permanently deforming. The distal portion of the bend (where the aortic arch would 

enter the left ventricle) was mounted to a riser whereas the beginning of the arch sat 

approximately 3cm lower; this orientation was similar to the actual aortic arch.  Lubricant was 

applied to the inside of the tube at the location of the bend to better mimic physiological 

conditions and negate the natural tackiness of the vinyl tubing, which can be shown in Figure 21. 

Over the course of testing the device was passed through the model 35 times, and the test was 

conducted on a pass/fail basis centered on its ability to track easily through the model while 

having all of its mechanical components maintain smooth function. 
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Figure 21: Heart Model 

5.3.2.2 Microthread Implantation Test 

The primary goal of our testing was to test the prototype’s ability to successfully inset 

fibrin microthreads into cardiac tissue effectively. We acquired bovine heart tissue and placed a 

section at the end of the model arch to mimic the left ventricle.  The prototype was then loaded 

with length of fibrin microthread approximately 1.5cm long. The threads had been previously 

hydrated for a minimum of 15 min in PBS. Loading of the microthreads into the needle was 

conducted with the aid of forceps. The catheter was then tracked through the model to the tissue 

and deployed, as shown in Figure 22. 35 trials were conducted during this test.  This portion of 

the test was also conducted on a pass/fail basis. A pass was defined as the successful leaving 

behind of the threads in the section of bovine tissue. A fail was classified as the accidental 

pulling out of the threads from the tissue as the device is retracted. 
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Figure 22: Microthread Deployment Testing 
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Chapter 6: Results  

Preliminary Results 

 This section explains all of the preliminary testing results performed on the catheter, stem 

cells, and components of the device necessary to perform the functions essential to the overall 

success of the catheter. The tests that were performed include the bending radius test and the 

microthread implantation tests. 

6.1. Bending Radius Testing Results  

The bending radius test resulted in a 100% success rate.  The catheter, when pushed 

manually, successfully passed through the model arch and the 3.5 cm bending radius.  It was 

noted that a relatively significant amount of force was required to push the catheter around the 

bend.  The force was attributed to the 3.5cm bend being near the non-braided catheter’s 

maximum bending radius. 

6.2 Microthread Implantation Results  

The thread implantation test resulted in a 91% success rate, as can be seen in Figure 23. 

The remaining 9% of failures displayed the same consistent failure mode. The failure resulted 

from the pinching of the microthread between the core and the inner wall of the needle. The 

consistency of the failure mode allowed the team to note that increasing the diameter of the inner 

core would likely prevent this occurrence.  Of the 91% of successful trials there were some 

instances of the thread being partially exposed from the tissue sample. This occurrence, although 

still considered a successful delivery, is believed to be caused by the same “pinching” 

experienced in tests failures. 
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Figure 23: Results of Microthread Implantation Test 
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Chapter 7: Discussion and Conclusions 

The primary goal of this project was to create a minimally invasive device that was 

capable of delivering stem-cell seeded biological microthreads to the left ventricular wall. In 

order to accomplish this, we designed a novel catheter system which, in accordance with 

common, well-established cardiac catheterization procedures, is capable of delivering hMSCs to 

the heart wall. 

The results showed a significant level of success considering it was the first build of a 

prototype.  The success of the prototype testing solidifies that a catheter device such as the one 

created could in fact be a clinically viable means of clinically delivering cellular therapies to the 

heart. The novel needle and core design, perhaps the most critical aspect of the device, 

effectively meets the thread implantation objective.  Further honing and perfecting of the needle 

and core design will likely increase testing success higher than the 91% of the initial prototype.  

For instance, redesign of the shape and profile of the core may prove more effective in ejecting 

the threads in tissue. 

Testing brought forth the need for an effective method for loading threads. Loading was 

accomplished with relative ease using forceps. This process, however, was inconsistent.  The 

loading of the thread also played a role in effectiveness of thread insertion. For instance, if 

loading took more than a few seconds, the thread would begin to dry out and thus be more apt to 

get stuck when deployed. For initial testing, current loading techniques sufficed, but looking 

forward to clinical applications a more effective methodology needs to be developed. 

The overall design of the catheter proved successful. The handle and its mechanism 

functioned well mechanically and were ergonomic and easy to use. The sheath and inner lumen 

portions of the assembly performed as designed and were made from appropriate medical grade 

polymers.  These components’ performance showed little need for redesign. 

In conclusion, we created a successful working prototype of a cardiac catheter. This 

minimally invasive device is an endocardial approach to delivering cell seeded biological 
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microthreads to the heart wall. We believe that our novel needle and core delivery mechanism is 

capable of reducing shear stresses on the biological microthreads comparatively to an epicardial 

suturing approach. It is our strong belief that our device shows great promise in its ability to 

bring cellular therapies to the clinic. 
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Chapter 8: Future Recommendations  

8.1 Enhanced Flexibility 
 

Although our prototype device performed mechanically over a 3.5cm bend, it would not 

be able to perform over much a tighter bend because of the kinking of the catheter tubes or the 

permanent bending of the wire. A natural aortic arch has a bending radius closer to 2cm; this 

means that in physiological conditions our catheter would have difficulty rounding the arch. 

However, there are some common engineering and manufacturing techniques which exceeded 

our budget that if employed would significantly enhance the catheters flexibility. 

A braided catheter involves compliant materials, such as rubber or silicone based 

polymers. The soft polymers are more flexible but lack strength and the ability to maintain their 

shape around a small bending radius.  These compliant polymers are than reinforced by small 

diameter steel coil that is braided over the catheter and then laminated.  This creates a catheter 

that can bend without kinking, yet also maintains its shape and strength.  The pitch, pattern, and 

dimensions of the wire braiding can control the catheters flexion properties. In our particular 

case, only a small length of our catheter needs to have these highly flexible properties (the 

section that needs to pass through the arch). Our catheter could have been manufactured in the 

same manner as our prototype except with addition of a braided portion in the length where the 

catheter needs to bend. This would ensure our catheter could bend around a natural aortic arch. 

The second component of our prototype that needs to have enhanced flexion properties is 

the solid PTFE coated stainless steel wire that acts as our inner core and runs the entire length of 

the device. The solid wire would not be able to bend around a natural aortic arch without 
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permanently deforming. A solution to this design flaw is found in novel hypotube manufacturing. 

Hypotubes, essentially hollow wire, can now be laser cut perpendicular to their lengths to various 

depths to enhance their ability to bend. If we were to replaces our solid wire with a PTFE coated 

and laser cut hypotube that component of the catheter could also bend effectively over an aortic 

arch. 

8.2 Tolerances and Dimensions 
 

Before we proposed a second stage rebuild of our prototype, all the dimensions and 

tolerances would need to be examined and honed.  One of the most important dimensional areas 

of catheter design affecting mechanical function is excess space between coincidental lumen. 

This excess space, even a few thousands of an inch, turns to slack when the catheter is applied 

around a bend and can result in the shortening of the outer most lumen length to a range of even 

multiple millimeters. For example, when the device is straight and the sheath is retracted the 

needle becomes exposed 2.5mm, but when around the bend of the aortic arch the needle is 

exposed 3.5mm. If the sheath were only 2 or 3 thousandths larger than the inner lumen this 

shortening phenomenon would be negated.  This need for tighter dimension also holds true for 

diameter differences between the needled mounted lumen and the inner core wire. In short, the 

honing and tightening of dimensions will enhance the catheter’s function. 

 Additionally, the device’s single failure mode noted in testing was likely attributed to a 

dimensional design flaw. Increasing the diameter of the core would rid the distal portion of the 

catheter of the excess space that the microthread consistently became stuck in. 
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8.3 Thread Morphology  
 
 We would like to perform a study to understand the orientation and shape of a fibrin 

microthread that has been inserted in tissue with our device. Areas of interest would include a 

comparative analysis of thread depth relative to the needle and core depth settings. Likewise, we 

would analyze the shape of the thread, for instance, we would determine if the core pushes the 

thread into a crumpled structure or a longitudinal orientation. Excising a small portion of tissue 

that a thread has been implanted in and processing this histologically could provide these details. 

Specifically, the tissue would be sequentially sectioned via cryostat, mounted and stained, 

examined by microscopy, and then recreated virtually in three dimensions. 

8.4 Shear 
 
 We believe our device reduces shear on the threads and cells in particular when compared 

with the needle and suture approach. To test shear properties we would perform a test similar to 

those that examine thread morphology.  First, hMSC’s loaded with quantum dots are seeded onto 

fibrin microthreads. The threads would be implanted into tissue using the catheter delivery 

device. The tissue would then be processed as previously explained, stained with Hoescht and 

examined with a quantum dot filter. We could then examine and the tissue sections and rebuild 

them three dimensionally with the use of computer software.  The quantum dots would allow for 

the tracking of cells that had been inserted into the tissue, determining if they have sheared off of 

the thread and if so, what location in the tissue. 
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8.5 Thread Loading 
 

 The most difficult aspect of using our device is the loading of the threads into the needle.  

Currently, loading is performed carefully with forceps, and although this worked fine, we 

expressed concern that the process could damage threads loaded with cells. The development of 

tooling or better methodology to more effectively load the threads into the catheter would 

increase its ease of use dramatically. 

8.6 Clinical Trials 
 

 After performing the aforementioned design improvements and testing, the device would 

be validated enough to begin animal testing.  The procedure would be performed on either a 

porcine or sheep model, as they are the common standards in cardiovascular device testing.  

Animal testing would allow us to determine if the device and procedure are clinically viable. 

Animal testing would be performed under fluoroscopy by a cardiologist who could then provide 

crucial feedback for visualization, accuracy, and ease of use. 
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Appendix 

Appendix A: Fibrin Thread Making  

Materials 
 

Stock Solutions: 

 -Fibrinogen (Sigman F 4753) = 70mg/ml in HEPES buffered saline (pH 7.4) 

  -HBSS = 20mM HEPES 0.9% NaCL 

  -1mL aliquots @ -20oC 

 -Thrombin (Sigma T 4648) = 8 U/200 µl in HEPES buffered saline (pH 7.4) 

  -HBSS = 20mM HEPES, 0.9% NaCl 

  -200µL aliquots @ -20oC 

 -CaCl2 = 40mM CaCl2 in diH2O stored at 4oC 

Solutions (warmed to room temp): 

  -Fibrinogen = 1mL in a 1mL syringe from stock fibrinogen 

-Thrombin = 150 µL of thrombin stock solution + 850 µL of 40mM CaCl2 in a 1 
mL syringe. 

Methods 
1. Place blunt end syringe (20 ½ gauge BD) into 0.86 MM I.D. polyethylene tubing of 

length 1- ½ feet. 

2. Place each 1mL syringe of Fibrinogen and Thrombin solutions into the back end of the 
blending connector (Micromedics blending applicator, MN) 

3. Set the syringe pump to: 

-Infusion 

-4.7mm diameter 

- Rate = 0.23mL/min 

4. Place a metal non-stick pan beside the syringe pump and fill with 500mL of 10mM 
HEPES solution (pH 7.4) 

5. Attach the blending connector with the 1mL syringes attached to the syringe pump and 
run the pump. 
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6. Drag the polyethylene tubing consistently against the bottom of the pan, as the thrombin 
and fibrinogen are extruded from the tube. 

7. Wait 7-8 minutes after starting extruding the threads to begin removing and hanging them 
to dry. 
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Appendix B: Design Tools 

 

Figure 24: Objective Tree 
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Table 3: Blank Pairwise Comparison Chart 

Objective 
(Ease of Use) 

Easy to load Easy to insert 
(reach LV) 

Easy to use 
(proximal end) 

Ease of making 
insertion 

Easy to load     

Easy to insert  
(reach LV) 

    

Easy to use 
(proximal end) 

    

Ease of making 
insertion 

    

 

Objective (location) Accuracy Precision Repeatability 
Accuracy    

Precision    

Repeatability    

 

Safety 
(Patient) 

Does not damage 
coronary wall 

Does not result in 
long recovery time 

Does not cause 
harmful side effects 

Does not damage 
coronary well 

   

Does not result in 
long recovery time 

   

Does not cause 
harmful side effects 
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Appendix C: Test Results 
Trial Pass/fail Notes 

1 Pass Perfect 

2 Fail Stuck 
between core 
and needle 

3 Pass perfect 

4 Pass perfect 

5 Pass Apprx 2mm 
of thread 
exposed 

6 Pass Perfect 

7 Pass Perfect had 
to actuate 
core multiple 
times 

8 Fail User error 

9 Pass  Perfect 

10 Fail  Thread 
pinched 

11 Pass  Perfect 

12 Pass  Perfect 

13 Fail  Thread 
pinched 

14 Pass Negligible 
exposure 

15 Pass  Perfect 

16 Pass Partial 
exposure of 
thread 

17 Pass   

18 Pass   
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19 Pass Negligible 
exposure 

20 Pass   

21 Pass   

22 Pass   

23 Pass   

24 Pass   

25 Pass   

26 Pass   

27 Fail Shallow 
needle angle, 
partial 
exposure 

28 Pass   

29 Fail Partial 
exposure 

30 Pass   

31 Pass   

32 Fail Thread stuck 

33 Pass   

34 Pass   

35 Pass   
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Appendix D: Glossary and Acronyms  

Acronyms 
MQP – Major Qualifying Project 

MI – Myocardial Infarction  

hMSCs – human Mesenchymal Stem Cells  

ECM – Extra-Cellular Matrix 

LV- Left Ventricle/Ventricular 

Glossary  
Catheter – a device containing a distal and proximal end, whereby the proximal end is actuated 
outside of the body by the physician, and the distal end is actuated internally performing a 
critical task. 

Microthreads – biological tissue strands comprised of fibrin and/or collagen  

Proliferation – Spreading; Propagation  

Radiopaque – Blocks the penetration of x-rays or other types of radiation 

Shear stress – Stress applied parallel or tangential to the face of a material  

Viability – The ability to maintain a healthy and living state 

Thrombogenic – Tending to produce a blood clot 

Biocompatible – Being compatible with life and not causing health risks or threats to a living 
substance. 
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