EVOLVING LEGALY SYSTEM FEATURES INTO
FINEGRAINED COMPONENTS

by
Alok Mitta

A Dissertatian
Subenined 10 the Faculty
ofthe
WORUESTER POLY TECHNIC INSTITUTE
in partial falfillment of the requirvarents (o the
Degree of Dottt of Philosophy
in
Cotupuler Seicnio

‘November 2002

i —

AFFROVED:

-

D, Coocqe T Heiorman, Lompaior STRAGE DEpUUataL, WEL, MaT ivise

et
Dr. Alexander L. Wolf, Computt Scimnce, University of Colomdo o Bowder

Abstract

Because many software systems used for business today are considered legacy
systems, the need for software evolution techniques has never been greater. We
propose a novel evolution methodology for legacy systems that integrates the
concepts of features, regression testing, and Component-Based Software
Engineering (CBSE). Regression test suites are untapped resources that contain
important information about the features of a software system. By exercising each
feature with its associated test cases using code profilers and similar tools, code
can be located and refactored to create components. The unique combination of
Feature Engineering and CBSE makes it possible for a legacy system to be
modernized quickly and affordably. We develop a new framework to evolve
legacy software that maps the features to fine-grained software components
refactored from their feature implementation. In this dissertation, we make the
following contributions: First, a new methodology to evolve legacy code is
developed that improves the maintainability of evolved legacy systems. Second,
the technique describes a clear understanding between features and functionality,
and relationships among features using our feature model. Third, the
methodology provides guidelines to construct feature-based reusable components
using our fine-grained component model. Fourth, we bridge the complexity gap
by identifying feature-based test cases and developing feature-based reusable
components. We show how to reuse existing tools to aid the evolution of legacy
systems rather than re-writing specia purpose tools for program slicing and
requirement management. We have validated our approach on the evolution of a
real-world legacy system. By applying this methodology, American Financial
Systems, Inc. (AFS), has successfully restructured its enterprise legacy system

and reduced the costs of future maintenance.

Acknowledgments

Writing a dissertation is a long tedious process. It requires tremendous amount of hard
work, self-discipline, sacrifice and support from others. | have been very fortunate to
have severa people in my life that supported me in many ways to help complete this
dissertation. Without following people's help, | would not have been able to finish this
work:

| am grateful to my advisor Dr. George T. Heineman. It has been serendipitous and
fateful that | have come to know him. His guidance, attention to detail, hard work,
friendly demeanor and ability to motivate has helped me professionally, academically and
personally all these years. | would not have been able to complete this dissertation
without his help, support and valuable input.

| am thankful to AFS for supporting my academic career. AFS has provided partial
funding and a fertile ground to apply research ideas. There are several co-workers at
AFS who have provided valuable input and support in my research endeavors. In
particular, | am grateful to Dan Johnson, Lisa Amaya Price, Mary Mullay and German
Rincon.

| am thankful to my father Dr. M. C. Mehta for being a role model. | wish | were a
medical Dr. like him. | am proud to be his son and | appreciate his support, love and
interest in my academic career. | am also grateful to my parents (both, Indian and
American) and friends for believing in me and constantly providing support. Special
thanks goes to Alex Rose and Suzie Gath for their help and support.

Lastly but certainly not the least, | am so very grateful to my wife Heather. No words can
express my gratitude towards her. She has been a pillar of support for all these years.
Her belief, support, help, patience, sacrifice and love have allowed me to pursue the PhD
program. Heather —“you are the wind beneath my wings’. | dedicate this dissertation to

you and our kids Rani and Amber!

To Heather, Rani and Amber

Vi

Table of Content

1

NEFOQUCTION ..t 1
1.1 Managing Legacy SYSIEIMS.ccuiereriiiieneeie et 2
111 Stz (0o (10 TSP 2
112 Rewrite [egacy SYSteM ..o e 2
113 Replace |egacy SYSEMccvcov e 3
114 Incrementally evolve legacy System ... 3
115 SUMM@IY ..ttt s e sbe e s ne e sbe e e sane e 4
1.2 Problem desCriplion.......cooeoerieneeneee e 4
1.3 MOUVALION ..c.eeeiiiieiieieiesie ettt 7
131 Reduce future maintenance COSES..........covrereererieeseene e 7
132 Reuse components in multiple product lines..........ccocvvvenineniene. 8
133 Reduce the complexity gap.......cccoeerereeneniieneee e 8
100 S O TH gAY oo o o o [RSSO 9
TS oo o TSP UPTURTOTRURRUPR 12
151 Locating System fEatUrES..........ccveeereeee e 13
152 Evolving features into COMPONENLS.........cccoeereererenreenieseesieeias 14
1.6 ASSUMPLIONScoiiiiiiiiienieeiesiee et ee et st be e s sre e e s e nre s 14
1.7 Scopeand ContribULIONS..........cccveeereeie e 15
IS T 0 7= [0 |V - o SRR 17
MethodolOgY OVEN VIEW.......c.eceeiieieceesieesie ettt nee e 19
225 R Y/ [g0 o (o] 1o 0 VRS = o 1< TSR 19
211 EVOIULION FBASONS.......c.ciiiiiriesiesieseee e s 20
212 Identify features with problems...........ccooviiiiiii, 20
21.3 Map test CaseSto fFEAUIEScccveeee e 20
214 Map features to fUNCLIONS.........cccuevereerieeieseeee e 21
215 Identify feature implementation and COREcccccvvvevieennee. 21
216 Refactor and create COMPONENES.........ccvreereriereeneee e 22
217 Plug the component in the legacy system.........ccccoccevievvvceieennen, 22
218 VEIITY FESUILS....ceeieiieiee e e 22
219 REUSE. ...t 23
2100 MEBSUIE FESUILS ...ttt ee s 23
2.2 Factors affecting methodologyccccvererierieeneeie e 23

221 Each legacy sysStem iSUNIQUEcceeveeiienieneeeee e 23

Vii

222 Role of the INtErNetccooiiriee e 25
223 Regression Testing ProCESS.........coviueieerieeieneeseeeeseesse e seeneens 27
224 Source Code Profilers and Coverage TOOlS.........ccoooeveeneeienneenne. 32
225 Refactoring TEChNIQUESc.cccvieerie e 33
2.3 SUMMAIY oottt s b e e s e s ae e e ae e san e e sse e saneesneeannas 34
REIGLEA WOTK ..ot 36
G350 R 111 0o [FTox 1 o o PSR 36
3.2 Locating Program FEAtUNES...........cccveuereereeieeseenreeeesee e eseeseesseeeens 37
3.21 1Yo (A7 4 o] o SO URPR 37
322 IMOOEIS......eeeee e s 39
3.2.3 TECHNIQUE.....c.eeieeee et 43
324 PN o] oo 1 11 VUSSR 44
3.25 Reasons for anew feature model ..., 46
3.3 SOftWAr@ EVOIULION.......c.coeieiiieriieieieie st 50
331 Incremental EVOIULION..........ooeeiiiiiiieeeee e 50
332 Legacy System EVOIULIONcccoveeeiieie e 55
3.3.3 Architectural RECONSIIUCHIONovveeiiriiriiereeeesee e 56
34 Feature ENQINEEIINGcciveieieeieeieeeesteeiesseesseeeesseesseseesneessessessseensens 58
34.1 FEALUIES......eeee e e 58
34.2 Feature INtEraCtion ... verereneeeeese s 60
3.4.3 RequirementS ANalYSISooiiieiieieneeseee e 60
344 FUNCLION POINES ..ot s 61
3.5 Component Based Software Engineering (CBSE)cccovoeeveriencennnns 63
351 EVOIULION......ciiiiiee et 63
3.5.2 LAY = o o1 o SO 64
353 COT S e bbbt e e e 64
354 REUSE......ceei e e 65
355 FEALUIES......ocieeee e e 66
3.5.6 Fine-Grained COMPONENLS..........coeeiereereenienie e neens 67
35.7 ProduCE LINE.......ooiieiiiiieesie e s 68
358 Previous experience with components and evolution................... 69
3.6 ProgramUnderstandingccccceeeeveeneenneiieseeseeee e 71
I A 205 0 (=55 o T = {1 o PSR 72
3.8 Segparation of Concerns and Aspect Oriented Programming............... 73

3.9 SUMMATY e e n e e sne e 75

viii

100 [RO 76
41 FeatUre MOOEccco i 76
41.1 Feature DEfiNItIONcoceiieieee s 78
4.1.2 Feature Implementation (FI)cccovvevevieveeeeecee e, 79
4.1.2.1 Casel: Non-interacting (unrelated) features............ccccoveeenenne. 81
4.1.2.2 Casell: Partialy interacting features...........cccoceveevvreesesennee 81
4.1.2.3 Caselll: Fully interacting featuresccoooeveenerieneenieseee 82
4.1.2.4 CaselV: Interacting SUb-features..........ccccovevvveeneeceseese s 82
4.1.25 CaseV: Interacting super-features..........cooveveeieneeneniee e 83
4.1.2.6 SUMIMEIY ..ooiiiiiiiiieeeiieesieeesieee e s e s sre e sre e sne e ssseesnnneas 84
4.1.27 RegresSiOoN TESHNG.....cccveeerirrieriereerie e see et 84
4.1.3 Features and FUNCLIONSccovviiireiee s 89
4131 Step1l: Maptest case and features.........ccoceverveneeieneesieneeee 91
4.1.3.2 Step 2: Runtest case and profilercccecevveceicenecic e 91
4.1.3.3 Step 3: Develop heuristiCsoocv e 94
SUB-TEAIUINES ... e 95
Feature implementation (F1).........ccoeeriiienieeeeee e 95
CORE ..ottt bbbt 95
Base-1iN€ ArChiteCtUN @eovieiieeeee e 95
Neighboring features (K)veoeeeieeie e ee e 96
Evolution threshold (T)oeoveeeneeeeee e 97
414 Feature INtEractions..........cocovevivenenenere e 100
4.1.4.1 Shared Stateless FUNCion (SS)cccceveriinennenie e 102
4.1.4.2 Shared State-Full FUNCtion (SSF)ccceeovvieveeiese e, 102
4.1.4.3 Dependent Data (DD)cccoceeveieenenienienesee e 102
4.1.4.4 Dependent FUNCLION (DF)ocveveecieeceee e 102
415 Feature RelationShiPs.cccoveriirierierie e e 103
I T A O = [0 =SSR 103
4152 Determining Feature Relationships..........cccooeveeneneeneennnenns 106
4153 Altered and Required ViaDDccccceveevevcieneeieeie e 108
4154 Altered and Required vViaSSF...........ccooooiiiiininiicn e, 108
4155 SharedviaDD and SSF.........ccccviririiinnenene s 109
4156 CompeteViaDD ... 109
4.15.7 Conflict VIASSF.......ccooiiiriceneee e 110
4.1.5.8 SUMIMEIY ...coiiiiiiiieiiei e sae e e sseeereesneeesneesnreea 110
4.2 Fine-Grained Component Modelcccoevieieiienecce e 112
421 Property SEL......oo e 113
422 Property GEL........ueeiieeceeee e 114
4.2.3 Feature Implementation (FI)ccooereeneniineeeeeeeeee e 114
4.2.4 Statel €SS FUNCLION(S) wvvvveveeieeeesieesie e ee e 114

4.2.5 INtErNal SEALE......ccvveeeeceece e 115
4.2.6 External DependenCies.........couevvveereecesieseciee e ee e 115
4.3 Evolving Feature Implementation into Fine-Grained Components... 116
4.3.1 Evolution ConSIderations............cccveeereereesieeseeseseeseeseesses s 121
4311 Scenario | - Understanding T(K,FI,C)oovviiiiiiiienieeeen, 121
4.3.1.2 Scenarioll - Evolving Unrelated Features..............ccoevevieenens 121
4.3.1.3 Scenario lll - Evolving Related Features...........occoveeivneenen, 122
4.3.1.31 Primitive FEALUrES.........ceoeeieceeseee e 123
4.3.1.3.2 Determining Feature Relationships..........cccccevvviiveenienen. 127

4.4 Budget AnalySISMOCEcccceeiieiieiieseee e 133
45 Formal MOGEoooiiiieiee e 134
45.1 Data MOGEL.......ccueieieiee e 136
452 Preliminary Definition ... 145
453 Feature INteraCtionc.coeeveeeeseece e 146
454 Classifying FUNCLIONS..........ccoiiriiiierieeneesee e 147
455 Identifying Interactions within a Functions...........c.cccccecveeveenne. 148
45.6 CORE ... oottt eesnentenneens 148
45.7 TRrESNOI ... s 148
458 SUMIMBIY ...ttt ae e e saeesn e e sneeeneesneeas 149
4.6 Evolution Manager ULtycccovevieiinieseeseee e 151
A7 SUMIMBIY oot see et see e se e be e s e e e sseesaseebesssseesseesaneesneeanseenseens 154
A SIMPIEEXAMPIE....oiieiieeee e 155
(0215 SIS 11 [|V 167
6.1 EVOIULION FEASONS......ccueeieceeesieeie ettt ere s 169
6.1.1 AMS occasionally freezes during Input Processing................... 169
6.1.2 The cost of adding anew item into Input Processing is high..... 170

6.1.3 The lack of code reuse between the desktop and web version of
AMS 171

6.2 ldentify feature(s) with problems...........cocceoiieiniinceneee, 171
6.3 Maptest Casesto fEatUres........oceviriereeie e 172
6.4 Map featuresto FUNCLIONS...........ccoviriinieiiee e 173
6.5 Identify Fl and COREcccociiiiiienieieeee e 175

6.5.1 Variable ANAIYSIS... .o e 180
6.6 Refactor and create COmMpPONENLS..........ccceveereerieeseereeree e e eee e 183

6.6.1 Identify Problems........ccco e 183

6.6.1.1 Circular dependencCies.........ccooverreereriinneese e 183
6.6.1.2 Readiness of dependent items..........cccevvevevieeveniesieeneece e 183

6.6.1.3 Assignments and Suppression intermingled with Error
[000 o 184
6.6.2 REFACLON ... e 185
6.6.2.1 Removed UNREADY aTaycccccceeveeereeeiiesiesieesie e seeeeenns 185
6.6.2.2 Replaced recursive calls with sequential calls...........ccc.c....... 185
6.6.2.3 Separated Assignments, Suppression, and Error Processing code

186

6.6.3 Create Fine-Grained COMPONENLS..........cceeeereeeereereeseeseesennens 186
6.6.3.1 ReE@iONSNIPS....ccciiiiiiiieee e 187
D= 0010 (= o | U 187
REQUITEU.......c.eeeeeee et 188
AEIEU......eeceee e 188
6.6.3.2 INLEITACES.....c.eiiiieeeiieee e 189
I TC T = (0] 0 1 (1= 190
6.6.3.4 Feature Implementationccoceveenenieenennesee e 191
6.6.3.5 StatelesS FUNCLIONS........cccoviiiiinineeee s 192
6.6.3.6 MaintaiNiNg StAte........ccccervirieeiiee e 193
6.6.3.7 Externa DependenCies.........ccooererineneneneninee e 193
6.7 Plug the fine-grained components into AMS...........ccccovierieneenenienne. 198
6.8 VEIITY FESUITS ..o 201
6.9 REUSE.....ccee s 201
6.10 MeEASUrE RESUILS.......ceiiiiiiiieee e 202
6.10.1 Solving the system-locking problemccccveiiniininienenne 202
6.10.2 Cost of adding aNEW ITEMcccveriiriirere e 203
6.10.3 Reusability between AMS and the web version of AMS........... 204
B.11 SUMIMAIY ..eeeiiiiieiiie ettt s sbe e sne e 206
T CONCIUSIONS.....coiiiiieeee e e 208
7.1 LeSSONSLEAINEd......ccooieieiiiiie e 208
711 Methodology Applicability.......cccoceririiiiiieee e 208
7.1.2 Sensitivity relative to Average Coverage (C)oocvveeveececeennnns 210
7.1.3 Selecting Evolvable Features............ocoveeiiieenecie e 213
7.14 Sorting Feature FUNCLION MatriX........ccoveveveeieeeeseeresceeseeseenens 217
7.1.5 Reusable Components and Web Applications...........cccccceveneee. 219
7.1.6 Issues In Reusing Components Across Product Lines................ 221
7.1.6.1 Configuration Managementccceevereereenenieeneeniesee e 221

7.1.6.2 DeploymeNt.......ccceeiieieeiieie et 222

Xi

% O T I =1 o SRR 225
7.1.7 Global Variables ... 226
7.1.7.1 EXPlicit DEfINITON.....ccooiieeee e 226
7.1.7.2 Reducing Global Variables..........cccccevveinriienerieseese e 227
7.1.8 Availability of Regression TEeSES........cccevereereeneniesee e 227
7.1.9 AULOMALING TASKS....ccveieeieeereere e 228
7.1.10 Dead code and COVEIagEccuuurruerriereerieeie e sieeee e sie e e 228
7.1.11 Core and Reducing Dependence on Variables:c.cccoecuennene. 229
7112 PerfOrManCe......cccooiiiiiiieie et e 229
7.1.13 Component Interface ISSUES.........cccovevuereeriesiieseerie e 230
7.1.14 MEESUINNG SUCCESS......coiuieniiireerieeiesieesteeseesseesreessesseesseessesnessseenes 230
7.2 CONIIDULIONS ..ot 231
721 Incremental Evolution Methodologyccoveeveniineencniniee 231
7.2.2 Feature MOdE! ..o 232
7.2.3 Fine-grained Component Modelcccccevineeieninneenese e 232
7.24 COoMPIEXITY GAP....veceeerieeieeeesteee et nne s 233
7.3 FUIUFEWOIK ... oot 233
7.3.1 IMEETTCS ..ttt bbbt nne s 234
7.3.2 TRrESNOId ... s 234
7.3.3 Multi-threaded fEaLUreS..........coveieieeree e 235
7.34 Extending the evolution manager utility.........cccccooeveeiinennenne 235
7.35 Object-Oriented SYStEMS.......cccvceeiierece e 236
7.3.6 Systems whose source codeis unavailable............ccccceeveevieneen. 237
7.3.7 Real-tiMe SYStEMS ..o e 237
7.3.8 Tools to manage feature evolution.............cceceveeneeieeneeninsenee 238
7.39 Tools to automate selection of test Cases.........cvvvvvrvrrererieneenn 238
7.3.10 Extending the budget analysis modeccccoovreiiiniinnnienne 239
7.3.11 Extending the component and formal modelccccoveuenene. 239
7.3.12 Using our methodology with tools other than code profilers...... 240
7.3.13 Application of our methodology for program understanding..... 240
T4 SUMIMBIY oottt st e s e e s e e s seesb e e sneeeneesseesnreeaneeennes 240
LISt Of ACTONYMIS.....eiiiiiiiiieie ettt e 243
(€1 0552 ST 245
REFENBNCES. ... bbbt 256
APPENTICES ...ttt sttt b et se et eesre e be e e snee e s 256
Appendix A: AFS Master SYStEM.........ccceieeieeieseene e seese e seesee e e 256

Appendix B: AMS ArchiteCture ..o 259

Xii

Appendix C: AMS Regression Testing Utilityccccoeevenininnennceiennn, 263
Appendix D: Mathematical Preliminaries.........cccocceveereecnsceeneeie e, 270
Appendix E: List of contemporary coverage and profiletoals................... 272
Appendix F: List of Common Refactoring Techniques............cccccveeverveenee. 274
Appendix G: Evolution Manager ULtycccovriiiinniineneereseseens 278

2] o] oo =10 o Y20 OSSR 283

Xiii

List of Figures

Figure 1.1: An Incremental Evolution Methodology is Needed..............cccceeueeneen. 5
Figure 1.2: TRe BIg PICIUME........covveeeeeee et 12
Figure 2.1: Evolution MethodolOgy.ccoceieeiiiieiie e 19
Figure 2.2: Component Sharing by Two Product Lines.cccovvevvveereeiiesnenne 27
Figure 2.3: Running the System in Balch Mode..........cccooviiniiieniiceee 32
Figure 4.1: Elements of Feature Model.ccooevieienieii e 77
Figure 4.2: Definition Of @ FEaLUIE.cccooiiiiiirieeeee s 78
Figure 4.3: Two Features in Function (fy) but Not Interacting.cccccccvvvennne. 81
Figure 4.4: Two Features Partially Interacting in Function (fx).......cccccvveeerennnnne. 82
Figure 4.5: Two Features Fully-Interacting in Function (fx). ...cccccovevevvneervenenee. 82
Figure 4.6: Interacting Sub-Feature in FUNCtioN (). ..oocoooevveeinneneeeeeeee 83
Figure 4.7: Interacting Super-Features in FUNCLion (fx)......ccccevivviereeiesieenieeeeee. 83
Figure 4.8: Pseudo-code to Determing CIUSENS.cocvveeieeieeienierese e 89
Figure 4.9: A Feature may be Invoked by Several Test Cases.ccccvvverveennene. 90
Figure 4.10: Pseudo-code for HEUNSHICS.ocoviirrireneeeee e 99
Figure 4.11: Classification of Feature Interaction.c.cccecveveveereeceseeseennn. 100
Figure 4.12: Feature Interaction viaFunctions and Data............cccceeeeeverienruennee. 101
Figure 4.13: Feature RelationShiPS.coveveieerieeiesiesieese e sieeee s sae e seeneens 105
Figure 4.14: Fine-Grained Component Model............ccocoieiininnnnenieseeeee, 112
Figure 4.15: Evolving Fl into a Fine-Grained Component...........cccccevveveeeennen. 116
Figure 4.16: Example of Unrelated Featuresin One Function.ccccceueeee. 122
Figure 4.17: Function Implementing Code for Only One Feature. 123
Figure 4.18: Implementation of Dependent Data.cccceeeereererieneeseneeneens 124
Figure 4.19: Feature Updates Global Variable.ccccoveveveececiseececeeee, 124
Figure 4.20: Single Function Implementing Several Features.............cccoccevueeee. 126
Figure 4.21: Example of Required Relationship.........cccccevvevveeseenecce e, 128
Figure 4.22: Example of Required Relationship.........cccccoveeiininneniencienceeen, 129
Figure 4.23: Example of Alteration Relationship.cccccvevveveeneesesieeseeseenn, 130
Figure 4.24: Example of Shared Relationship.ccccvvereeneninneenenie e 131
Figure 4.25. Examples of Conflict Relationships.cccvvevveveseenesce e, 132
Figure 4.26: Example of Compete Relationships.ccooereeneriieneenienieneeens 132
Figure 4.27. DataModel Used as Basisfor Formalism.cccccceevveervennnnen. 140
Figure 4.28: Evolution Manager ULHItY.........ccoviriiiiininieeseee e 153
Figure5.1: ATM Function Implemented in VB.ccccoccvvevvece e 157
Figure 5.2: Summary of Featuresin ATM FUNCLION.cooovreneeienieenceienn, 158
Figure 5.3: CORE Library FUNCLIONS..........cccccverieiesierie e seesie e e seeeens 161
Figure 5.4: Modified ATM using Deposit CoOmponent.ccceveeeereereeneennens 162
Figure 5.5: DePoSit COMPONENT.ccceeiierieeieeeese e see e se e enes 163
Figure 5.6: ATM Function, Withdrawal and Show Balance Components......... 164

Figure 5.7: Integrating Withdrawal and Deposit into Transfer Component........ 166

Xiv

Figure 6.1: Fragment for Validating Valuesfor Item 9........ccccccovvviiviniineenen, 170
Figure 6.2: 1tem 9 (Pre-evolution).ccvecueieeseee e 182
Figure 6.3: Dependent [TEMS.ooeereiiirieie et 184
Figure 6.4: Dependent Feature EXample.ccoeveeiecienecie e 188
Figure 6.5: Required Feature EXample.cccoveiiniinienene e 188
Figure 6.6: Altered Feature EXamPpPIe........cccvecevieiecieenieee e 189
Figure 6.7: Pseudo-code for Assignments Feature Implementation.................... 194
Figure 6.8: Pseudo-code for Error Processing Feature Implementation............ 195
Figure 6.9: Pseudo-code for Suppression Feature Implementation..................... 196
Figure 6.10: Pseudo-code for Error Processing Core Implementation.............. 197
Figure 6.11: Pseudo-code for Suppression Core Implementation. 198
Figure 6.12: Integrating Assignments, Error Processing and Suppression

COMPONENES. ...ttt sae e e sae e b e e s ae e e neesaeesreesneeenneenaes 200
Figure 6.13: Resuing Fine-Grained Componentsin AFS Product Lines............ 202
Figure 6.14: Input Processing Component Infrastructure.cccceeeveenienen. 206
Figure 7.1: Coverage Sensitivity iN AMS........c.coieiice e 212

Figure 7.2: Reusable Components Between Desktop and Internet Application. 220
Figure B.0.1: Interactions Among the Input, Calculation, and Output Engines. 261
Figure B.0.2: AFS Master System — Calculation Processing.cceceveeniennen. 262

XV

List of Tables

Table 2.1: Properties of Evolvable Features.cocvveniniinieneneeeeneens 22
Table 2.2: Legacy System Characteristics where the Methodology is Applied. .. 25
Table 2.3: Regression Testing PrOCESS.coovviiierieie e 29
Table 2.4: Properties of Regression Testing Procedures.cccceeevvecieceenieenen. 31
Table 2.5: Properties of Code Coverage and Profiler TOOIS.cccveereeieninnens 33
Table 2.6: Methodology Showing Input and Output of Each Step.........ccccueee.. 35
Table 3.1: Comparison of Closely Related WOrK.ccoverininnennneeecieens 49
Table 4.1: Feature/Functions ReElationShiPs........ccvevveeeieereseseee e 79
Table 4.2:Test CaSeS VS, [TEMS......ccui et 88
Table 4.3: Test-case and Items before RanNKSOIT.ccoereriririicieiesc e 88
Table 4.4: Clustering after RANKSOIL.cooviiirieiinieseeeeee e 89
Table 4.5:Test Case and Feature Mapping.cccceveeeieeeereeieseesieseeseeseeseeseens 91
Table 4.6: Test Case and Function Relationship by Profiler. ..., 93
Table 4.7: Test Case, Features, Function and LOC.ccocvevierienenene e 93
Table 4.8: UNION of al LOC for a Feature Implementation.cccccceeereennens 9
Table 4.9: Percentage LOC (Feature-Function Relationship).ccccoeevvvvervenen. 9
Table 4.10: Evolution Threshold (T). ..coceveereeeneereeie e 98
Table 4.11: Altered and Required Relationship viaDD.ccccccveeeverciesieenee 108
Table 4.12: Altered and required relationship Via SSF.........ccceieeieienecienene 109
Table 4.13: Shared Relationship ViaDD.ccccvecevieiecie e 109
Table 4.14: Shared Relationship VIia SSF. ..., 109
Table 4.15: Compete Relationship ViaDD.ccceeveieviereece e 110
Table 4.16: Conflict Relationship VIaSSF.cocoiiriinierereseeee e 110
Table 4.17: BUdget ANAIYSIS.......cccccueieereeeeseesie e ese e e e e eee e 134
Table 4.18: DataModel - System INformation.ccceveeveneenenin e 141
Table 4.19: Data Model - Feature/Function Part.ccocvererieninieneneneninn 142
Table 4.20: Data Model - Feature Interaction Part.ccccceeevieenenieneenenene 143
Table 4.21: DataModel - Component Definition...........cceceveeveecesieeseeiesnns 144
Table5.1: ATM Operatioal REQUITEMENLS.cooeeiereerierieneeseesie e 155
Table 5.2: Summary of Test Cases and Featuresin ATM Sub-system. 159
Table 5.3: Profiler Results 0N ATM TeSt CaSeS.c.eevvereeriernieneenee e 160
Table 6.1: An Example Assignments, Suppression and Error Processing. 172
Table 6.2: An Example of Valid Input Combination for Testing Item 9............ 172
Table 6.3: AMS Input Processing Test Case and Feature Mapping (selective

1 1o) RSSO 172
Table 6.4: Profiler Listing of Features and Test Cases (selective listing). 173
Table 6.5: Feature and Function Mapping (selective listing).cccoeeevereenee 174
Table 6.6: Partial AM S Feature FUNCLION MatriX.ccccveverenerieieeiesesie e 177
Table 6.7: Base-Line Architecture of the Three AMS ENngines..........ccccoeeneee. 178

Table 6.8: List of CORE Functions Extracted from AMS........c.ooeeeveeieeeeeeieenen. 179

XVi

Table 6.9: Input Processing Variable AnalySiS.ccooeevenieneninneenienee e 181
Table 6.10: Example of Circular DependencCies.........cooevvveereeceseesiesceeseeeenn 183
Table 6.11: Variable Analysis (Pre/Post evolution partial listing).c....... 186
Table 6.12: Component INtErfaceS.ceovveerieinsieese e 190
Table 6.13: Component ProPErties.ccocueveereneeneeie e 191
Table 6.14: Stepsfor Adding aNew Item.cccccvveierce s 203
Table 6.15: Budget analysis for input processing Project..........cocceveeveereereneens 205
Table 7.1: Coverage Sensitivity Datain AMS.........cccoieieeiereere e 212
Table 7.2: Evolable FEAtUIES..........ooo e e 215
Table 7.3: Heuristics (partial liSting). ...ccooceveereeieeniese e 217

Table 7.4: Unsorted Feature FUNCLION MatriX........ccooeeeereenencenneenieseenens 218
Table 7.5: Sorted Feature-FUNCLioN MatriX.ccccoverirenenenieneeeeeeee e 219
Table 7.6: EBJ and COM COMPAITSON.c.cevueerierieniesieeseesessieesseseessesssesneesseens 225
Table 7.7: Global variable naming conVention.cccvevereeneesesceeseeeeeseens 227

Table G.0.1: Implementation details on Evolution Manager Utility. 279

1 Introduction

Increasingly, organizations view their software assets as investments that grow in
value rather than liabilities whose value depreciates over time [97]. Organizations
are under tremendous pressure to evolve their existing systems to better respond
to marketplace need and stay competitive. This constant pressure to evolve is
driven by escalating expectations of the customer for new enterprise standards,
new products and system features, and improved performance. Evolution is also
necessary to cope with endless new software rel eases.
We borrow the definition of legacy system from [114]:

Any software system that is currently in operation is considered legacy

system.
Legacy systems provide the support for businesses around the world. They
manage vast volumes of data while supporting millions of transactions each day.
The Nationa Science Foundation [54] estimates that legacy systems capture and
manage 75% of the world’s data and that by virtue of their size and importance to
business, they consume at least 80% of available information technology
resources. To effectively evolve legacy systems in such a rapidly changing
environment organizations must answer two questions [31]: What are the critical
success factors of system evolution? How can a system be evolved without

adversely affecting operations and revenue?

When legacy systems are small and involve only a fraction of an organization’s
activities, it is possible to consider redesigning and replacing a system or
subsystem that no longer satisfies that organization’s needs. However, legacy
systems that have grown to be the main source of revenue are often substantial
investments whose replacement is more difficult, if not impossible. These legacy
systems provide a competitive advantage to many organizations but are expensive
to maintain. Thus, these organizations face a dilemma - they cannot afford lose
their competitive advantage nor can they ignore the high maintenance cost. At the
same time, organizations are under pressure to reduce costs. This dissertation is
motivated by these pressing business concerns.

1.1 Managing Legacy Systems

There are many strategies for managing legacy systems [98][64][83]:

1.1.1 Status quo

Do nothing. This is the easiest option and, in reality, most often chosen by an
organization. However, this option is not attractive to many organizations because
it will not improve their competitive edge in the future and leaves legacy systems
mai ntenance costs high.

1.1.2 Rewrite legacy system

Sometimes an organization will embrace new development and deployment
technology to rewrite the legacy system. Apart from using the legacy system to

be retired as a “design guide’, this option does not leverage off the organization’s

substantial investment in the prior system. Redevelopment of large “mission
critical” legacy systems takes a long time, costs a lot of money, and carries a high
degree of risk of falure. In most cases, it is very difficult to build a strong
business case for the redevelopment of alegacy system.

1.1.3 Replace legacy system

Replacing a legacy system with another existing solution can be a practical option
when the proposed solution provides a good functional fit to the business
requirements of an organization. Rarely is this the case, however. Most often, the
existing solution requires considerable enhancement and customization in order
for it to meet business needs. This customization is generaly difficult and
expensive. Alternatively, at the loss of competitive advantage, the organization
can change its business practices to fit the proposed solution, which may be a
risky proposition. Replacement does not leverage off the current investment in
the legacy system(s) to be retired. Finally, adopting a proposed solution can be a
lengthy and expensive exercise.

1.1.4 Incrementally evolve legacy system

Incremental evolution of legacy systems focuses on problems that are most visible
to end-users. Rather than replacing or rewriting the entire legacy system,
incremental evolution directly “fixes” the end-users’ problems “one at a time”.
This option leverages off current investment because it provides a smooth

transition path to new technology and infrastructure in a timely and cost-effective

manner. Importantly, incremental evolution supports the needs of organizations
to continually provide stability and accuracy. Incremental evolution is the only
choice left to many organizations that wish to continue to receive revenue from
software systems and stay competitive. However, many incremental evolution
initiatives do not sufficiently incorporate the end-user’s point of reference (or
features) [111]; such lack of consideration can leave end-users unsatisfied and
frustrated because they may not see the benefit of these initiatives.

1.1.5 Summary

Anayzing all options a hand to manage legacy systems it is clear that
incremental evolution is the best because it considers perspectives of the end-
user's and all stakeholders point of view. Thus, we strongly believe that
incrementally evolving legacy system is the most efficient option for managing
legacy system.

1.2 Problem description

Researchers [116][82][47][3][4] have identified the two domains around which
the entire field of software engineering revolves. the problem domain and the
solution domain. End-users interact with the system by inputting their information
in the form of input files that the system uses or through a direct user interface.
Because these users are directly concerned with system features, their perspective
is dways in the problem domain. Developers (and the software process team) are

primarily concerned with creating and maintaining software development life

cycle artifacts such as components; their perspective is therefore firmly rooted in

the solution domain.

External Evolutionary
Pressures

. Problem

Complexity Gap

Solution
Domain

Internal Evolutionary
Pressures

Figure 1.1: An Incremental Evolution M ethodology is Needed.

A major source of difficulty in developing, delivering, and evolving successful
software is the complexity gap that exists between the problem and the solution
domains (as termed by Raccoon [82]) as shown in Figure 1.1. To view evolution
from a single domain upsets the delicate balance between the two domains.
Evolution focused solely on the problem domain may lead to changes that
degrade the structure of the original code; similarly, evolution based solely on
technical merits could create changes unacceptable to end-users. Externa
evolutionary pressures drive the implementation of new enhancements and
functionality by causing developers to focus on implementing the business logic

that is directly visible to end-users, such as a menu item that spell checks a

document in a word processing application. While responding to externad
pressures, developers often bypass standard processes to meet project deadlines;
this results in inferior coding, such as adding a global variable when one is not
required. Internal evolutionary pressures force the developers to either restructure
or refactor their code so the future enhancement or maintenance becomes
manageable and cost-effective. During such evolution, the code is refactored, and
protocols and standards are reestablished. Furthermore, the end-users should
always benefit from the evolution initiatives.

The repeated modification of a legacy system has a cumulative effect that
increases system complexity because of lack of documentation and implicit
communication between the system’'s components. Eventually, existing
information systems become too fragile to modify and too important to discard;
organizations must consider modernizing these legacy systems so that they remain
viable. Incremental evolution offers an approach to transforming a legacy system
into one that can evolve in a disciplined manner. To be successful, evolution
requires insights from software, managerial, and economic perspectives [114].
Thus, businesses must sponsor and endorse evolution initiatives. Such
endorsement becomes easier if the end-user’ s perspective is kept as primary focus
of the evolution initiative. Y et, another way to secure organization’ s endorsement
is to show that the evolution initiative can result in reusable software assets. In

cases where businesses have multiple product lines, it is desirable to leverage

evolution initiatives from one legacy system to another [87]. One such way of
leveraging is sharing reusabl e software assets such as components.
Simply stated, the problem is that businesses are looking for an incrementa
evolution methodology that can reduce future maintenance cost, bridge the
complexity gap and leverage evolution results across product lines, without
disrupting their operations.
1.3 Motivation
We are motivated by the following three objectives:

* Evolve system features into components to reduce future maintenance

Ccosts.
* Reuse evolved components in multiple product lines.
* Reduce the complexity gap between user expectations and software
functionality.

1.3.1 Reduce future maintenance costs
One objective of this research is to reduce the maintenance cost of features that
are hard to maintain. We identify these system features with the help of end-
users, locate their implementation within the source code and then evolve them
into reusable units. In one of the first dissertations on Feature Engineering,
Turner [25] mentioned the possibility of using Feature Engineering for software
evolution, but he was focused on using features for configuration management.

To the best of our knowledge, there has been no attempt to use Feature

Engineering as the basis for identifying parts of legacy software for evolution
purposes. We have developed techniques for identifying evolvable features with
high maintenance costs to be refactored into reusable software components. In
the accompanying case study discussed in detail in Chapter 6 for this dissertation,
we show that our methodol ogy reduces maintenance costs.

1.3.2 Reuse components in multiple product lines

The Internet makes it possible for an organization to attract potential customers
from the globa marketplace by breaking down communication barriers. The
Internet also increases the need to evolve and refactor legacy systems to new
hardware and software development platforms. Evolving a legacy software
system to become web-enabled is a challenging task for numerous reasons,
including poor documentation and high maintenance costs. One challenge for
evolving a legacy system into a web-enabled system is the need to provide
continuous availability of the system (and thus its revenue-generating income)
during the transition. Often organizations must support the two product lines
(desktop and the Internet) longer than expected, so there is a need for an evolution
methodology that reduces the maintenance cost during the migration period.

1.3.3 Reduce the complexity gap

End-users interact with the system and are directly concerned with its
functionality; their perspective is always in the problem domain. Developers (and

the rest of the software process team) are concerned with the creation and

maintenance of software development life cycle artifacts such as components and
executables; their perspective is rooted in the solution domain. One of the effects
of this gap is that changes are often required to features after software is released
thereby increasing maintenance costs. We are motivated to bridge the complexity
gap by mapping problem-domain features and the solution-domain functions in

the source code.

1.4 Our Approach

Various domain analysis and requirements engineering techniques push the end-
user’s perspective into the solution domain by either working toward design
[77][22][110] or through scenario and use cases [47][85][36]. These solutions
help the developers understand how a system is to be used, but they do not
address the solution domain concerns of software evolution, configuration
management, testing, and documentation. In addition, these techniques certainly
do not address the important issue of reducing the complexity gap [82].

Similarly, many software evolution techniques exist [97][111][64][105][80], but
none considered Feature Engineering as a software evolution driver. Thisis a
serious oversight because Feature Engineering is a promising discipline that can
help to reduce the complexity gap between user expectations and software
functionality. The techniques of software evolution and reengineering either
focus on entire system rewrites [117] or using reverse reengineering for

comprehension purposes [113] rather than incrementally evolving the legacy

10

system. There are other techniques [111][114][64][105][80], but they all explore
the solution domain only. There has been no attempt made to use Feature
Engineering as the basis for identifying parts of legacy software for evolution
purposes. Current software evolution and reengineering techniques continue to
work in the solution domain. The important problem of linking the problem
domain and the solution domain for the purposes of evolution remains unsolved.
Component-Based Software Engineering (CBSE) offers promising techniques to
solve the problem of component construction [2], but CBSE has not yet been
connected to the features that are present in a system; creating this connection
explicitly is one of the contributions of this dissertation. This connection, in
essence, is a mapping problem. The functionality provided by CBSE solutions
must be mapped to the features available to the end-user.

We have developed a novel evolution methodology that integrates the concepts of
features, regression tests, and CBSE. Regression test suites are untapped
resources that contain important information about the features for a software
system. CBSE is one of the best techniques for engineering and reengineering
modular systems. Combining these two disciplines makes it possible for a legacy
system to be modernized quickly and affordably. By combining Feature
Engineering and CBSE to the problem of software evolution, this dissertation will
answer the following questions:

1. How can features be used to create componentsin alegacy system?

11

2. How can the complexity gap be reduced using features and components?
3. What is a feature and how is a feature related to functions within the
source code?

Our methodology answers these questions based on two important goals: (G1)
Identify system features that have already exhibited disproportionate maintenance
costs and are likely to change. (G2) Extract fine-grained components from these
features within the legacy system to share between the original desktop platform

and a planned web application.

< Evolving Legacy Systems Features into Fine-Grained Components >

Following areas of [Software Engineering are

directly involved D

k.

Requirements
Engineering

A 4

Software
Maintenance

k.

CBSE

A 4

Software
Engineering

Within Software Engineering following arep are explored

Features,
Functionality

and
Complexity
Gap

A 4

Software
Evolution

k.

Component
Construction

Testing,
Validation,
Application of
existing tools
and other

Following contributions are made in the ret

spective areas ‘)

Feature Model

A 4

Evolution
Model

v

h.

Fine-Grained
Component

Model

Formal Model,
Regression
Testing,
Profiler and

Budget

Analysis)

Evolution Methodology

D

1.5 Scope

Figure 1.2: TheBig Picture.

12

The overal scope of this dissertation is summarized in Figure 1.2. Our work

revolves around four areas of software engineering, namely requirements

engineering, software maintenance, CBSE, and general software engineering

practice.

Specificaly, we use ideas from Feature Engineering, Testing, and

CBSE to develop an evolution methodology. Our evolution methodology consists

of a feature model and component model and is supported by various software

13

engineering practices such code coverage tools. Furthermore, we provide a solid
foundation for these models using relational calculus and first order logic. The
methodology proposed in this dissertation does not reduce the complexity of a
legacy system, but it will help to clarify that complexity by explicitly defining
component interfaces.

To further increase productivity and demonstrate the immediate usability of the
techniques outlined above, we use several tools that are aready available in the
marketplace, in particular, the NuMega® True Time Code Profiler [56].

While several disciplines of software engineering are related to this dissertation,
we are primarily concerned with developing a software evolution methodology
using Feature Engineering and CBSE. This dissertation will not address al the
issues associated with requirements engineering, CBSE, Testing or Configuration
Management. The two man areas of software engineering that are directly
addressed through this methodology are:

1.5.1 Locating system features

Our methodology enables developers to trace functions within the source code
that implement particular feature(s) by running regression test cases. We
incorporate ideas from Feature Engineering, regression test cases and dynamic
dlicing. This feature-function mapping can be used for program understanding by
identifying and associating structures that were previously ambiguous. However,

program understanding is outside the scope of our work. Likewise, our

14

dissertation is not about issues in testing and dynamic slicing, we simply use
regression test cases to locate feature-based program dslices.

1.5.2 Evolving features into components:

Once feature implementations are located, we evolve them into components using
refactoring and CBSE techniques. We use Fowler’s [86] definition of refactoring
code: “a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable behavior.”
Our methodology is novel because we leverage off existing artifacts such as test
cases and code profiling utilities. While we do not address the issue of
architectura evolution, our methodology does produce better-structured
component-based code that can be evolved/maintained easily. Likewise,
refactoring alone cannot be used to evolve a system. While we make use of some
common refactoring techniques, this dissertation is not ssmply about refactoring
code. The methodology further promotes scheduled evolution in a systematic
way by clarifying the structure of program evolution, and its results are

measurable and can be validated.

1.6 Assumptions

Our methodology has three basic assumptions. First, we assume that the source
code for the legacy system to be evolved is available and that it was developed
using a modern programming language such as Visua Basic, C++, Java, or

Fortran. The reason for this assumption is that we use code-profiling tools for

15

tracing the source that implements a particular feature. If these code-profiling
tools are unavailable, they could be developed, but this is outside the scope of this
dissertation. Second, we assume that the legacy system has regression test suites.
These regression test suites are untapped resources from the evolution point of
view because they can be used to identify the features most important to the end-
users. Third, we assume that some domain knowledge and expertise is available,
although thisis not a binding constraint. The purpose of this dissertation is not to
explore domain analysis, however, as a part of related work, several domain
analysis techniques are discussed.

This methodology is not intended for al legacy systems, neither will all software
evolution initiatives benefit from it. However, legacy systems that have kept up
with their compiler upgrades and maintained over a decade or more will greatly
benefit. We will discuss the characteristics of legacy systems and software

processes that can make use of this methodology and benefit in Chapter 2.

1.7 Scope and Contributions

The overall scope of this dissertation is sketched in Figure 1.2 and the
methodology is summarized in Figure 2.1. The major contribution of this
dissertation is the evolution methodology that integrates Feature Engineering,
software evolution, and CBSE. To validate our methodology, we examine the
evolution of a rea-world legacy system, American Financia Systems (AFS)

Master System. Information about the legacy system’'s features is obtained

16

through interviews with testers, project managers and the end-users of the system.
Researchers use refactoring to isolate the code associated with extracted features
to create components. These components are then inserted back into the legacy
system to continue functioning to verify the results of this technique. Our results
show an innovative use of existing regression test suites and give extra incentives
for designing and maintaining such test suites. In addition to verifying the
integrity of the system, regression test suites can be used to guide refactoring
efforts during software evolution to create reusable software assets (components)
within the enterprise.

In this dissertation, we make the following contributions. First, a new
methodology to evolve legacy code is developed that improves the maintainability
by reducing maintenance costs of evolved legacy systems. Second, the technique
describes a clear understanding between features and functionality, and
relationships among features using our feature model. Understanding the
interactions and relationships among features can bridge the complexity gap and
aid in evolving feature(s) with high maintenance costs. Third, the methodology
provides guidelines to construct feature-based reusable components using our
fine-grained component model. These fine-grained components can then be
reused across multiple product lines. Fourth, we bridge the complexity gap by

identifying feature-based test cases and developing feature-based reusable

17

components. Bridging this gap is important as it aligns user expectations and

software functionality.

1.8 Road Map

Therest of the dissertation is organized as follows:

Chapter 1 outlines the problem and the scope of this work. Chapter 2 provides an
overview of our methodology and discusses how the Internet plays an important
role for reusing components. We aso discuss the role of refactoring and
regression test cases with respect to evolution. Chapter 3 presents a detailed
analysis of related work. We compare our work to other evolution methodol ogies
and techniques to locate program features. Chapter 4 provides the details on our
feature model, fine-grained component model, budget analysis model, and the
formal model. We also discuss Feature Engineering and its role in the evolution
of legacy systems. Feature Engineering addresses the problem of the complexity
gap in an explicit way [26]. Our feature model captures the relationships between
features and functionality. The chapter also addresses traceability and how it can
be used for program understanding within the context of Feature Engineering.
Our fine-grained component model shows how features can be extracted to create
fine-grained components. The budget analysis model provides elements that are
required to show cost benefit of our evolution methodology. Chapter 5 provides
an intuitive example to show the power of our methodology using a feature-based

evolution manager utility that assists in identifying a fine-grained component’s

18

properties and methods. Chapter 6 contains a case study of product evolution in a
software firm using our evolution methodology. Chapter 7 provides conclusions,

lessons learned, and future work.

19

2 Methodology Overview

In this chapter, we present an overview of our methodology and discuss the
factors that influenced its criteria, our methodology will be described in detail in
Chapter 4. Here we briefly outline basic concepts and models that our

methodology uses.

Evolution Reasons Features with problems

“ |

Domain Knowledge

[Map test cases to features

EATU ENGINEERING i | Complexity Gap |

Map features to functions

|Zmrmow~u‘

ti

v Regression Y
T Identify Feature
o ‘[Cost and Reuse Implementation and Core
L) | v
Verify results Refactor and Create
T Components
v

Plug the component in the Legacy System

Figure 2.1: Evolution M ethodology.
2.1 Methodology steps

Any evolution task must first examine the reasons that trigger evolution of a
legacy system; these reasons have been well documented in [97][114] and from
personal experience as a software engineer for over 10 years, the author agrees

that these reasons are sound. We start with recommended changes to end-users

20

features. The reasons for evolving the system are then mapped to their associated
features within the system. The system features are then identified and the code
that implements each feature is identified. The code is then extracted to create a
fine-grained component. The fine-grained component is inserted back into the
legacy system to validate results in three ways. First, we match the output of the
regression tests after the insertion with origina output. Second, we measure the
cost of maintaining the feature after evolution and compare that to the prior costs
(hopefully showing a cost-benefit). Third, the newly created components are
reused in other product lines. The outline of our methodology is shown in Figure
2.1. Specifically, there are ten steps to our methodol ogy.

2.1.1 Evolution reasons

The end-users work with testers and project managers to report the problems they
are facing with a particular feature or a group of features. If features are common
among product lines then they are likely be candidates for reuse.

2.1.2 Identify features with problems

The testers, project managers, and developers work together to identify the
underlying feature that is the source of the maintenance problem(s).

2.1.3 Map test cases to features

Testers and end-users work together to select test cases from the regression test

suite for the feature(s) with problem(s). This step also compares the execution

21

trace of the selected test case with the entire regression test suite to ensure that we
do not miss any critical test cases that may be needed.

2.1.4 Map features to functions

Selected test cases are executed using code profilers to locate source code that
implements features. Features are well known for being “cross-cutting” through
software [87]. Cross-cutting means that a function can implement many features
and these features share the same code/data. A feature may be implemented in
many functions and share code/data with other features. The close relationship
between features and functions means that features will interact with each other.
This interaction is aso defined as the feature-interaction problem in the literature
[87][116]. Our feature model helps to identify where features are located within
the legacy system, how features are related to other features, and how they
interact with each other.

2.1.5 Identify feature implementation and CORE

We anayze the data from the code profiler and the execution traces of the
regression test cases. Using heuristics, we then decide if creating components
will in fact benefit other product lines as well as the existing legacy system.
While a detailed description of the feature model and heuristics is provided in
Section 4.1.5, we briefly present in Table 2.1 the properties a feature should

posses to be a candidate for evolution.

22

Properties Description

Visible to end-user End-user must be able to execute the test case himself and see
the problems

Testable Testers must have test casesin the regression test suite to test
the feature

Exhibit recurring problems Fixing feature inadvertently affects other features

High maintenance cost Due to recurring problems and unwanted side affects the
feature’ s maintenance cost is higher

Feature exists in other product Reuse can be leveraged

line

Table 2.1: Properties of Evolvable Features.

2.1.6 Refactor and create components

Once the location of a feature within the code is identified and we decide to
extract the feature implementation into a component, we must refactor the code to
create component. Our fine-grained component model provides guidelines to
extract feature specific code/data. This code/data is then encapsulated in a fine-
grained component. A detailed description of the feature model is provided in
Section 4.1.5.

2.1.7 Plug the component in the legacy system

The developers integrate the components created in Step 2.1.6 in the target legacy
system. Many common integration techniques can be used for this purpose.

2.1.8 Verify results

The testers ensure that the stability of the newly integrated system is maintained
and that no side effects are introduced. The performance of the system is aso

compared. This step usualy resultsin running afull regression test.

23

2.1.9 Reuse

This is similar to Step 2.1.7 except that integration is now performed in other
product lines of the organization that share the feature that we have evolved.
2.1.10 Measure results

The project manager works with testers and the devel opers to use Budget Analysis
to report results to end-users and management. We show how maintenance costs
of the feature is reduced and how these feature-based components are reused
across product lines. The budget analysis presents the cost and the benefit of
applying the methodol ogy.

2.2 Factors affecting methodology

Although our methodology is programming language-independent and does not
depend on specific code profiler tools, several factors affect our methodology.
These factors are as follows: uniqueness of legacy system, role of the Internet in
evolution, regression testing process, code coverage tools and refactoring
techniques.

2.2.1 Each legacy system is unique

In theory, our methodology is generic and can be applied to any legacy that meets
the list of assumptions discussed in Section 1.6; however we have only applied
this methodology to one large industrial sized application. As we describe this
legacy system throughout this dissertation, we hope to convince the reader that

our approach remains applicable to numerous other systems.

24

We now provide a brief description of the legacy system we used as our case
study. The legacy system used is called The Master System (AMS) a product of
American Financia Systems, Inc. (AFS). AFS, a small (60 employees) software
firm, develops software for the Corporate Owned Life Insurance (COLI) market.
AFS originaly developed AMS in Microsoft DOS BASIC to integrate life
insurance and executive benefits using mathematical and financial modeling.
AFS evolved AMS from its original DOS version to the more modern Microsoft
Windows® operating system. Currently, AMS uses Microsoft Visual Basic 6.0
®. Appendix E contains an overview of the AMS architecture. There are about
500,000 lines of code in AMS. AMS is divided into the three engines described
in Appendix E. The evolution methodology was applied to the Input Engine with
ateam of one project manager, one tester, and one developer.

There are severa benefits in using the above-mentioned legacy system for this
case study. First, there is historical data available on the system’s maintenance
costs, in terms of upgrades and evolution. This data will be used to validate
results from the applied methodology. Second, although the tools and
methodology used are language-independent, our use of a VB case study means
that other legacy systems in VB can immediately benefit from our results.
According to Microsoft, there are about 4 million Visua Basic developers
worldwide as of December 2001 [69]. Third, AFS has a mature software process

where the project manager, tester, and developer work together to manage a

25

software release. Table 2.2 summarizes the characteristics of the legacy code to

which the methodol ogy was applied.

Characteristics Description
1. Age of target legacy system 14 years
2. Lines of code 500,700
3. Lines of code implementing feature being 12,000

evolved

4. Size of the project team

One devel oper, one tester, and one project

manager
5. Size of production team 30
6. Programming language Microsoft Visual Basic™ 6.0
7. Compiletime 1 hour

8. Runtime environment

Windows desktop OS (9.x to 2000)

9. Version control software

Microsoft Source Safe™ 6.0

10. Product lines

AMS AMSWEB, DTS, DTSWEB, SDEV

11. Software Process

Mature, with ability to provide past maintenance
cost and track current costs per release per
individual

12. Past evolution record of target legacy system

System was kept up with compiler and OS
upgrades. It isadesktop system used by over
5000 end-users and many features are added per

year
13. Industry Financial Services
14. Regression Test Time 3 days

Table 2.2: Legacy System Char acteristics where the M ethodology is Applied.

2.2.2 Role of the Internet

There is an increasing need to evolve and refactor legacy systems to new

hardware and software development paradigms [115][104][37] such as the

Internet because the Internet makes it possible for an organization to attract

potential customers from

the global marketplace by breaking down

communication barriers. Agarwal and Mishra identified that web-enabling a

legacy system requires a combination of approaches, such as redevelopment,

wrapping, evolution, reuse, component-off-the-shelf (COTYS) integration, and

26

configuration management [104]. One challenge for evolving a legacy system to
become web-enabled is the need to provide continuous availability of the system
(and thus its revenue-generating income) during the transition. For example, it is
quite natural to continue to support a desktop version of application while its web
counterpart is first launched. Thus, it is inevitable that organizations will
maintain two product lines for an indefinite time-period because the time-period
to migrate may be longer than expected. It is difficult for these organizations to
justify the cost for maintaining more than one platform to the end-users. Thus,
these organizations need an evolution methodology to help them reduce the
maintenance cost during the migration period. One way to reduce this cost is to
share components between the two versions of the application during and post
migration (as shown in

Figure 2.2). Reusing components between the two platforms raises several
interesting issues such as configuration management and deployment as shown in
Figure 2.2. A detailed anaysis of which components can be reused along with

platform issuesis provided in Chapter 6.

27

Legacy

Reuse
Evolution @ Desktop
I— egaCy Methodology Platform)

System Components
(Desktop) @ . W eb
€2 (@3] 4 pred

Configuration M anagement | ssues %’Stern

Change M anagement | ssues
Deployment |ssues

Figure 2.2: Component Sharing by Two Product Lines.

2.2.3 Regression Testing Process

Our methodology depends on regression test cases and a robust regression testing
process. Regression testing has been extensively studied by researchers
[46][127][48][41][40] from atheoretica point of view. Their theories show how
to minimize and prioritize test cases to reduce the time of execution of the
regression test suite. Researchers have also analyzed the source code and
identified the test cases that should be part of the regression test suite in order to
maximize the code coverage. Although test case minimization, prioritization and
automatic-creation is important, we found that organizations primarily use
regression test cases to measure the stability of a legacy system from one version

to another. To the best of our knowledge there has been no investigation on

28

applying regression testing in industrial environments specifically for

evolutionary reasons. Some of the important issues mentioned in [11]:

Regression testing is used extensively. In fact, other than functional
testing (or black-box testing) and software inspection, regression testing is

the most commonly used software testing technique.

The frequent and extensive use of regression testing has led companies to
develop in-house regression testing tools to automate the process.

In some companies, all existing test cases are rerun in regression testing.
In other words, minimizing test cases for rerun has not been a critical issue

for these companies.

New test cases are added to the regression test suite to reflect defects

previously identified by end-users.

End-users often apply their own regression test cases when they receive a
new version of a system to ensure proper functioning of their favored
features. This is a particularly important observation for our research
because we anayze the regression test cases to help identify the

implementation of system featuresin the code.

Different companies use different processes to develop and maintain software,

such as the waterfall model and the spiral model. However, many companies [14]

along with AFS follow certain stepsin regression testing as shown in Table 2.3:

29

Normal Description
1. Modification request An issue is written when a defect is found in the system
2. Source code changes The defect fix may require source code change
3. Test case selection Thefix is confirmed by use of test case(s)
4, Execution of test cases | Test casesareincluded in the regression run and are executed
5. Examine test results Results from regression are analyzed
6. Failure identification Test cases which fail areidentified
7. Fault migration A further fix is required by the developer

Table 2.3: Regression Testing Process.

Modification request: When a defect is found by an end-user and verified

by the organization, a modification request is created.

Source code changes: The required software artifacts (requirement
documentation, design specifications and source code) are changed to

reflect the modification request.

Test case selection: The modifications made to the software must be tested
using test cases. Testers and Engineers work together to develop test cases
to exercise the modified functionality. The selection of test casesis often
amanual, analytical, iterative, and a time-consuming process. The goal in
this step is to obtain the right test cases rather than minimizing the number

of test cases.

Execution of test cases; Test cases are scheduled to run. Since the number
of test-case are often large, this step is usually automated in the form of

batch mode operation that involves little or no user interaction.

30

Examine the test results: The results from one version of the software are
compared to a previous version to ensure that the changes included in a
given version do not disturb the stability of the software in previous
versions. In the case of new functionality, the results must be manually

verified.

Failure identification and fault mitigation: If the source code is suspected
to be faulty, the developer examines and fixes the source code that caused
the test case(s) to fail. In case of failure of the new functionality, this step
often demands that the requirement and design specifications be reviewed

and possibly modified.

Table 2.4 summarizes the requirements of a regression testing process. Figure 2.3

shows how the system isrun in a batch mode. Essentially, the steps are as

following:

Thelist of test cases to be executed are stored in a batch script file

The system isinvoked viaits batch interface

The test cases are executed and system reads test cases information from a
predefined data source

The system processes some initialization functions such as connection to

the database, paint screens and set global variables

31

» Thetest cases execute the features that they represent and store the output

to an external ASCII text file. Thisoutput can be compared to the prior

version’s execution to measure stability

* The system shuts down and executes cleanup tasks such as resetting the

global variables and closing the database connections

Properties

Description

Availability of regression test suite

Regression test suiteis used to measure stability of
the system from one version to another. We assume
that regression test suites are available.

Ability to identify feature-specific test
Cases

Usually testers or project managers have this
information.

Command-line execution of legacy system

Executing the legacy system with command-line
options allows the system to execute the test cases
that belong to the regression test suite the systemin
a batch mode thereby saving time.

Ability to output resultsin an ASCII text
file

Using command-line option to execute the output of
the system should be stored in an ASCI| text file.

Ability to compare text files from one
version to another

The output from one version can be compared to
another to identify any unexpected changes.

Table 2.4: Properties of Regression Testing Procedures.

Running the system in a batch mode is a sign of a mature system because the

system must be programmed to accept test case data in a command line interface.

However, this interface is an efficient way to test the system and we recommend

that a legacy system have such functionality. Many times the test cases may not

be readily available in database or a file but are either manually inputted or an

automated system may not be in place. Our methodology can still be applied in

the absence of the batch interface or an automated testing system in place by

manually entering the input data and executing the system one test case at atime.

32

Batch filelisting test casesto
execute

A 4

Batch i‘nterface
| |

| Execute test case |

Read test case
A inputs

| System initialization

\ Write ASCII text

output
| Execute feature implementation |—>

A

4| System shutdown |

Figure 2.3: Running the System in Batch M ode.

As we can see, legacy systems undergo a fair amount of testing and they have a
rich set of regression test suites and testing in place. While the nature and details
of regression testing will vary from system to system, and organization to
organization, our methodology is independent of the actual details. The sole
dependence is on the availability of test suites. If meta-data about the test suitesis
available, our methodology will be more powerful and precise. Appendix C
describes the AM S regression-testing tool and its batch capability in detail.

2.2.4 Source Code Profilers and Coverage Tools

Code coverage analysis is the process of finding areas of a program not exercised
by a set of test cases, creating additional test cases to increase coverage, and

determining a quantitative measure of code coverage. A code coverage anayzer

33

automates this process. A profiler application provides information about which
lines actually run, how many times a line is run, duration, and variable reference-
use analysis. Coverage and profiling enable a developer to identify problem areas
in an application, especially dead code and performance bottlenecks. Table 2.5
provides alist of features in currently available commercial profiler and coverage
tools, most contemporary tools are able to provide the data needed for our
methodology. The methodology can easily be tailored to use any code profiling

tool that provides the required information in Table 2.5.

Properties Description
Coverage percentage Several commercial products provide this data
when the tool isran with input data. It
represents the percentage of lines covered
within a given function.

Line numbers covered Line numbers are important because our
methodology uses them in identifying which
lines are covered.

Call sequence of function | A stack dump that the tool provides

Number of lines per Total number of lines per function

function

Reference-use of variables | Thislist allow usto see the location of local
and global variables being changed
Table 2.5: Properties of Code Coverage and Prafiler Tools.

2.2.5 Refactoring Techniques

Refactoring is a disciplined process of changing a software system in such a way
as to improve the interna structure of the code while leaving the external
behavior unmodified. Fowler states, refactoring is essentially “improving the

design of the code after it has been written.” [86]. Fowler recommends

refactoring at three points in the coding process: when adding functionality; when
fixing a bug; and when evolving. While refactoring techniques vary from project
to project and depend on programming languages, we strongly agree with
Fowler’s last recommendation. We found that refactoring code into components
in our methodology alows the developers to provide meaning to the data
structures and functions that have lost their meaning over time. We provide a list
of common refactoring techniques in Appendix F that we used in our case study
when applying the methodology. = Whichever refactoring techniques are
applicable, the end result using our methodology is the same, namely, the creation
of afine-grained component.

2.3 Summary

Our methodology can be summarized in one sentence; by exercising each feature
with its associated test cases using code profilers and similar tools, feature
implementations can be located and refactored to create reusable fine-grained
components. In this chapter, we outlined the ten-step methodology that will be
discussed in detail in Chapter 4. We discussed factors that affect our
methodology and hopefully convinced readers of the general applicability of the
methodology to numerous legacy systems. A summary of each step and their
input and output is outlined in Table 2.6. In Chapter 3, we discuss other research
initiatives that are closely related to our work to show the novelty of our

approach.

35

Sequential Input Output
methodology steps
Requir ement Responsibility Deliverables Responsibility
1. Evolution reasons Detailed textual | End-user, tester List of product lines Tester, project
and problem report description and project where the featureis manager and
manager used developer
2. |dentify feature(s) Textua Tester and project | Map problem to Tester and project
with problems descriptionand | manager feature(s). manager
list of product
lines.
3. Map feature(s) and Map problems Tester and end- Select test casesfrom | Tester
test case(s) to feature(s) user regression suite for
the feature. Analyze
and verify test cases.
Regression test suite
cluster compared
with selected test
cases cluster. Add
missing test cases to
selected list
4. Map features to Selected test Developer Feature-function Developer
functions cases, code cluster, feature-
coverage tool variable cluster and
and legacy CORE functions
system report
5. Identify feature Feature- Developers, tester, | Impact analysis, Developer
implementation and function, end-users and evolvable feature,
CORE using Feature feature-variable | project manager and refactoring
Model cluster and decision
CORE
functions report
6. Refactor and create Feature Developer Fine-grained Developer
components using the implementation components and
fine-grained , legacy system CORE library
component model and CORE
7. Plug the component | Fine-grained Developer Integrated legacy Developer
in the legacy system components system
and CORE
library
8. Verify results by Integrated Developer Regression testing Tester
running regression legacy system results. Report
problem fix.
9. Reusefine-grained Fine-grained Developers Run regression after Tester
componentsin other components, integration on all
product lines usage guide and integrated product
other product lines
lines
10. Measure resultsin Past and current | Project manager Budget analysis Project manager
terms of cost and feature report showing the
report fix to end-users | maintenance result of applying the
cost, cost to methodology
apply the
methodology

Table 2.6: Methodology Showing Input and Output of Each Step.

36

3 Related Work

3.1 Introduction

To date, we have found no work that incorporates features, CBSE, and regression
test cases to evolve a legacy system. The novel combination of Feature
Engineering and CBSE presented by this dissertation greatly benefits software
evolution by bridging the complexity gap between the problem domain and the
solution domain.

There are many areas of software engineering that are related to our research:
Software Evolution, Architectural Reconstruction, Feature Engineering,
Product Lines, Requirements Analysis, CBSE, Program Understanding,
Regression Testing, Separation of Concerns and AOP. We feel that work in the
area of locating system features has most directly affected our research. In
Section 3.2, we analyze and document the shortcomings of existing techniques in
the literature for locating program features. After carefully reviewing all the
existing techniques for locating program features, we found that there was a need
for feature model and fine-grained component model for software evolution.
These models will be discussed in Chapter 4. Sections 3.3 through 3.8 present a

broader perspective on the work from areas related to our research activities.

37

3.2 Locating Program Features

There are known techniques [18][6][92][99] to locate program features using
execution glices, however they are predominantly used for system debugging
rather than evolution. As far as identifying program features, there are four
researchers whose work is directly related to ours. Wilde and Scully (WS) [99]
pioneered the use of execution trace to locate the implementation of features,
Wong et. al. (W) [125], Repset. al. (R) [121] and Deprez and Lakhotia (DL) [71]
devel oped techniques that operate on execution traces to collect information about
features. In this section, we compare and contrast their work relative to ours. We
will compare the motivation, models, techniques and applicability of each of their
work. Table 3.1 summarizes our findings.

3.2.1 Motivation

(WS) developed their technique to locate program features for the maintainers of
the private branch telephone exchange (PBX) switch. This switch had several
hundred features that users could use such as ‘speed calling’ or ‘cal waiting'.
Maintainers of the PBX often needed to locate the code that implemented one of
these features. Their motivation is best described in one phrase, software
reconnaissance, which implies “preliminary survey of enemy terrain” where the
software program is considered as an enemy whose secrets must be extracted.
The general idea of software reconnaissance is to aid developers in program

understanding and to debug and enhance program features. Software

38

reconnaissance can also be used to recover some requirements traceability
information from old code.

(W) developed a technique to identify the feature implementation for program
understanding, debugging, and testing. Their study reported how to apply an
execution dlice-based technique to a reliability and performance evauator to
identify the code that is unique to a feature, or is common to a group of features.
Supported by xSuds tools [1], the program features in the source code are tracked
down to files, functions and lines of code. Their study suggests that the technique
provides software devel opers and maintainers with a good starting point for quick
program understanding during debugging and testing.

(R) described techniques to help with testing and debugging, using information
obtained from path profiling. They instrumented a program to collect the path
information for an execution run. With such an instrumented program, each
execution of the program generates a path spectrum. Their technique compares
path spectra from different runs of the program to identify paths in the program
along which control divergesin the two runs. By choosing input datasets to hold
all factors constant but one, the divergence can be attributed to this factor. The
point of divergence itself may not be the cause of the underlying problem, but it
provides a starting place for a developer to begin hig’her exploration. (R) is aso
motivated by program understanding and debugging, specifically in analyzing

year 2000 (Y 2K) problems.

39

Lastly, (DL) were successful in mapping program features to code using input
sets. They extended (WS)' s idea of software reconnaissance after (WS) reported
that, “The most time consuming step, and the one most difficult to automate, is the
preparation and running of test cases’. (DL) present a formalism to automate
mapping from program features to code by partitioning input-sets into invoking
and non-invoking sets. Although their motivation is largely theoretical, (DL)
believe that applying their theory would be used for program understanding.

Our methodology complements and extends the work of the four researchers
mentioned above. We are motivated by the three factors described in Section 1.3.
We know the researchers have had different motivations for locating features
implemented in the source code. Due to these different motivations and the
varying techniques to locate the features, they defined the research elements
differently.

3.2.2 Models

The research elements that concern us most are features, functionality, test case
and components.

(WS) interchangeably used feature, functionalities and functional requirements
for the end-user features. They define a feature to be anything that is testable. (W)
defined a feature as an abstract description of a functionaity given in a
specification. (R) has no formal definition of a feature. (DL) definitions are

formally based on the grammar of a program; they parse the input sets of a

40

program and define features based on language syntax. While both (W) and (WS)
consider the end-user’s perspective, neither provides any insight on evolution or
considers the solution domain’s point of view (POV). (DL) is not practical
because it requires formal automata to represent features, which most maintainers
and programmers performing evolution do not have available; (DL) also avoids
discussing the solution domain’s POV. Our approach (see Chapter 4) defines
features in a comprehensive manner by considering both the problem and the
solution domain.

Our definition for feature is rooted in the problem domain by focusing on the
requirements but shows how a feature can be used in software evolution. For
example, a system might support a feature that performs complex calculations in
batch mode without user interaction. To an end-user, POV this feature is a time
saver because input can be stored in afile or a database to be used at a later time.
At the same time, testers might employ this feature to enable regression testing
between two versions of the system during maintenance; developers might design
a specific set of modules to process user input without user interaction to analyze
code coverage.

(WS) reported that considering a subroutine (i.e., function) is not enough to
address the feature interaction problem. They found that a finer level of
granularity is needed. They solved thisissue by using arc of program flow graphs

as components. According to their work, it is easy to produce the necessary

41

execution data using any test coverage tool that produces branch of decision
coverage. It is important to note that global data is not mentioned in (WS), but
legacy systems have many global variables and usually the global data is shared
between two or more features. Our feature model addresses the issue of shared
global data.

(W) was primarily interested in calculating how close one feature is to the
program component rather than another feature. (W) presented three metrics to
calculate relationships between feature and component namely; disparity between
afeature and a component, the concentration of afeature in a program component
and finally dedication of a program component to a feature. (W) defined a
component to be the source file where the feature was implemented. Because
these metrics are only an approximation, as they do not address the feature
interaction problem directly, they ssmply use set theory and statistics principles to
calculate the intersecting set between the interacting features.

(R) follows the approach of (WS) using program graphs to solve the feature
interaction problem. Using path coverage from different input data sets they were
able to identify code associated with a given feature. They numbered the paths
with a unique source node and sink node. Every cycle contained one back edge,
which can be identified using depth-first search. Since their motivation was only
to solve the year 2000 problem not much attention was paid to the shared global

data or shared code. Additionaly, their approach has not been applied in

42

identifying features other than the year 2000 problem. Their approach leaves the
burden of relating features and program to the programmer.

(DL) identified the feature interaction problem and labeled it as an imprecision
due to feature coupling. Their work identified the code that is executed by
invoking input sets vs. excluding sets; by calculating the difference between the
two sets they determined the execution traces. They attempted to solve the
feature interaction problem by selecting large input sets. They suggested that the
best way to minimize imprecision is to execute a program with large input sets
that invoke different combinations of features. Using such an approach, one
would hope that the compl ete implementation of each feature has been covered by
some of the input sets. While theoretically it is possible to minimize the
imprecision, this solution will be problematic in cases when two or more test
cases invoke the same set of features.

Our solution (see Section 4.1.4) to feature interaction is rigorous and intuitive.
We believe that it overcomes the shortcomings of the four researchers. Unlike
thelr approaches, our approach addresses the issue of global data discussed
earlier. In addition, our work is independent of the type of input sets selected.
We also explore the feature-feature relationships in far more detail than the other
researchers. Our feature model identifies functions that implement more than one
feature but instrumentation does not show any differences between the execution

paths.

3.2.3

43

Technique

Generaly, all four researchers developed techniques to identify program features

using the following generic steps:

1.

2.

Identify or build input sets that invoke the feature.

Identify or build input sets that do not invoke the feature.

Execute the instrumented program with each input sets to create its
execution trace.

Classify each execution trace in the invoking category if its input sets
invoke the feature or in the non-invoking category if it does not.

Apply a method that operates on execution traces to map the feature to the

code.

However, when we look beyond these generic steps to the specifics of the

researchers’ techniques, we see differences. Although there are some similarities

between (WS) and our approach, such as the concept of CCOMPS and [ICOMPS

these similarities remain at different level of granularities. Our model addresses

these sets at a much finer level of detail by considering local and global variables

(and functions) that may be shared between two or more features. (R) does not

assign code to a feature but rather identifies the points of divergence between

several execution traces and the programmer is responsible for determining the

relationship between feature implementation and a feature from this divergent

point. (W) identifies program features in C and C++ programs by running a small,

carefully selected set of tests. While (W) provides metrics to measure a feature's
relationship to the code, there is no explicit discussion of relationships among
features. Furthermore, (W) metrics show severe shortcomings when two or more
features may have the same dlice for different test cases.

3.2.4 Applicability

(WS)’s work has been realized in atool caled TraceGraph. Two case studies on
large-scale systems, written in ‘C’, have been reported in [78]. TraceGraph
provides a visual display of the program's trace that alows changes in execution
to be distinguished. It isimportant to note the limitations that TraceGraph shares
with Software Reconnaissance. First, it may only be used to locate features that
the program’s user can control. Most programs contain a significant amount of
common code that is always executed on every non-trivia test. While a
maintainer may need to locate some specific part of this common code, such as
the symbol table handler in a compiler, neither TraceGraph nor Software
Reconnaissance can help. Second, as for any dynamic analysis technique, the
results depend to some extent on the test cases used. If a feature is sometimes
handled one way and sometimes another, neither technique will find the full
extent of the feature unless the maintainer supplies input that cover both cases. On
the other hand, both techniques will identify unwanted code components if the
“with” tests accidentally include functionality that is absent in the “without”

cases. Finaly, both techniques only provide starting points for the exploration of

45

code. The maintainer still needs to do the hard work of studying each identified
component and understanding how it fitsinto the rest of the target system.

(W)'s work has been realized in a tool suite called xSuds [1]. The tools were
developed in the Telcordia Applied Research laboratories to analyze the dynamic
behavior of software and to alow the user to visualize program data through
graphical user interface. The tasks of determining code coverage, finding a
minimized test set, debugging, identifying what part of the software implements a
specific feature, profiling program performance, and finding static program
relationships are made available to the developer by the various tools. The tool
suite focuses on the testing and maintenance of C and C++ systems. xVue is the
software maintenance tool in xSuds tool suite. To determine where a feature is
implemented in a program, one would run a small, carefully selected, set of tests;
some that involve the feature and others that do not. Such tests are classified into
three categories. invoking tests, excluding tests and don't_know tests. xVue
analyzes traces of program execution to find program components that were
executed in the invoking tests but not in the excluding tests. The xSuds tool suite
is commercially available and has been tested on large C and C++ programs.
However, it faces similar shortcomings as TraceGraph.

(R)'s work has been redlized in atool called DynaDiff [121]. DynaDiff is not a
commercia tool and has been built at the University of Wisconsin. DynaDiff

works on programs that run under Solaris on Sun SPARC dtations. It is a

46

software visualization tool like TraceGraph and xVue. DynaDiff itself is
language independent as long as the compiler (of the target program being
anayzed) can create symbolic debug information. DynaDiff has been tested on
small programs (as prototype case studies.)

(DL)’'s work is theoretical in nature and there are no tools available that realize it
as of yet. Thelr technique itself is an independent programming language but
developers must have advanced knowledge of BNF grammar to develop a tool set
to support their technique.

Although we are working on developing tools, we have applied our methodology
in an industrial strength application, namely AMS (see section 2.2.1). We
focused on evolving the Input Processing (12 KLOC) functionality of AMS. Input
Processing validates and prepares data from user inputs so AMS can perform
complex calculations to generate various reports. After applying our
methodology, AFS is using evolved components in two of their product lines
namely, AMS and the web version of AMS. Our methodology works with any
programming language as long as there are code profilers (or similar) tools
available for that language.

3.2.5 Reasons for a new feature model

The approaches of these four researchers have several shortcomings. In

particular, there are six issues:

a7

How to select input cases: All four rely on the developers to generate the input
cases and then attempts to generate execution traces for all input sets. In industria
strength applications, the size of the input set makes such data collection
impossible. Since regression test cases reflect the end-user feature, they are
aready focused so it is not necessary to collect execution traces on all inputs or to
divide the input sets into invoking or non-invoking category. Thus, we suggest
that regression test cases are the best choice for the input cases.

How to capture relationships between features: We present severa feature
relationships (among features) that can exist within a function that can implement
more than one feature. These relationships are important because; they not only
can be used for traceability purposes but can also lay groundwork for future
evolution. Our heuristics allow developers to quickly determine whether a feature
isevolvable or not.

How to classify functions called from a feature implementation: We classify
whether these functions are Stateless (SS), Stateful (SSF), or Dependant (DF) in
nature. Thisis more than just stack dump or calling sequence because by knowing
the types of the functions, one could implement the component’ s interfaces and its
private/public methods.

How to classify core software: If al related test cases execute SS functions then
it is likely that those functions belong to the core. WS makes no distinction

between the states. We decided to treat the core as a shared reusable library only

48

when the functions are SS while the four researchers focused on calculating the
set differences and manipulating anomalies (because core gets executed with
every execution).

How to manage shared variables: Since large industrial legacy applications are
notorious for having global variables, it isimportant that the technique to identify
feature addresses what to do when two or more features share a single global
variable. Our model also integrates the local variables that are shared among
features.

How to discover feature interactions when code coverage has no apparent
differences. While al four researchers identify the feature implementation, it is
not clear what happens when a single function implements more than one feature
and execution traces do not reveal any differences (i.e., the coverage is exactly the
same for all features in a function). Our approach can help developers understand
how afeatureis related to another feature in such a circumstance.

Although most of these works derive results from execution traces left by the
execution of a program with input sets, none use the methodology we propose.
Based upon our analysis of the locating program features techniques, there was a
distinct need for a more detailed model and definition for features. While all
related models are more-or-less equivalent in expressive power, our work was
motivated by the need to evolve legacy systems which made it infeasible to

simply use many of these existing models.

Approaches Wilde and Scully Wong et al. Repsat al. Deprez and Our Methodology
Lakhotia
Factors
Program Program Y ear 2000 Program Evolution,
Motivation Understanding Understanding and | Solution Understanding and Bridging the
Debugging Testing Complexity Gap
and Software
Reuse
Features are Featureissameas | Featureand Feature is defined to Features, FI and
Key Elementsand their defined to be functionality Component bethelanguageused | componentsare
Definitions entities that must represented in definitionsareleft | infeature syntax. The | defined explicitly
be testable. specification. to the developer. program components | with end-use
Subroutines are Sourcefiles, No definition are defined to be perspectivesin
defined to belines | Subroutines and presented. statements, and mind. Core,
of code as lines of code as procedure asopposed | Execution Traces
components as components as to Fl. Execution are also defined.
opposed to FI. opposed to FI. Traces are defined.
Input sets Difference Input sets are Features are mapped Regression tests
Technique developed by between execution | executed to to input cases. Input used by testers and
maintainers are traces (viainput generate program set isclassified into end-users that
used to identify sets) that invokea | graph and path invoking and represent features
program features featureand donot | spectrumis excluding sets. arerunin
using is calculated. analyzed. Input Finally execution conjunction with
instrumentation setsare varied traces of all input sets | code profiler to
and tracing tools incrementally. are collected so set identify feature
differences can be implementation for
calculated. evolution purpose.
Statistical and Set | Graph theory BNF grammar and Relational Model
Formalism Set theory based Theory based. based Formal Automata and First Order
based Logic based
Usedintwolarge- | Usedinamedium | Usedin solving Theoretic in nature. Used in evolution
Applicability scale C programs | sized C program. Year 2000 No real practical of features of large
for research Appearsto be problem. Cannot application seen. VB program into
purposes but only | scalable. Three be used to identify | Sinceit dependson reusable
as prototype. metrics (approx. specificend-users | largeinput datait components. In
Commercia only) are features as each takes along time to addition, feature
applicationyetto | developed to graph requires identify relevant and component
beseen. Appears | calculatedisparity, | several inputsand | code. Generating model provide
to be scalable. dedication and usually resultsin BNF grammar isalso | sound theoretical
concentration huge permutations. | cumbersome. background.
between features
and program.
Tools TRACEVIEW XxSuds/xVue DYNADIFF None Any Code Profiler
Identify and Identify and Generally ignored Identified and Identify and
Feature Interaction suggested solving | suggested solving but attempted to suggested solving by provide solid
Problem by selecting by selecting proper | solveit implicitly selecting large model to evolve
proper test cases test cases by analyzing number of test cases featuresthat share
program graph via code and datainto
brute force components
Mapping Test Cases and Left to Left to developers. | Brute force. End- Must use large test Regression test
Features developers. End- | End-user user perspectiveis | suite and end-user cases are used as
user perspectiveis | perspectiveis ignored. perspectiveis they represent the
ignored. ignored. ignored. end-user features
Gener ates Reusable
Components No No No No Yes
Programming Language Yes Yes No but compiler No No
Dependent should be able to
generate symbolic
debug info.
Addresses Global Data No No No No Yes
Issuein identifying features
Identifies and addr esses Yes, Partialy No No No Yes
Core
Table 3.1: Comparison of Closely Related Work.

49

50

3.3 Software Evolution

There are many approaches to the general problem of software evolution.

3.3.1 Incremental Evolution

While there is agreement on the importance of evolving legacy systems, it is hard
to find a consensus on what the best model for evolution should be. Many models
have been proposed over time, and these models differ not only in their
approaches, but also in the way they define the deliverables of their
methodologies. Importantly, the discourse among software engineering experts
on the proper approach to legacy system evolution seems to have reached a
stalemate in an old debate between two conflicting ideologies. These ideologies
argue over the main problem of whether it is in the best interests of an
organization if alarge mission-critical legacy system is re-written or replaced all
at oncein its entirety, or isincrementally-evolved.

Over time, academics and industry experts such as Ransom et al.[76], Brodie et
al. [83], and Tilley et a. [114] have introduced a number of names to describe
these two approaches. Two of the most popular ones in use today to describe a
model's persuasion in this dichotomy are the terms "Chicken Little" and "Cold
Turkey." In this section, we discuss various models and approaches associated
with incrementally evolving ("Chicken Little") the legacy systems.

The earliest references to these two terms that can be found date from 1991, and

the pioneering DARWIN project from the University of California, Berkeley. The

51

results of the project introduced "Chicken Little" as an approach to iteratively
(also caled "incrementally") evolve legacy systems [51]. Asthe DARWIN model
was perfected, the incremental nature of the approach was stressed as the model
was drawn out in eleven easy-to-remember "steps,” each of which started with the
word "Incrementally." This approach answers a clear "no" to the all-at-once
guestion. With Chicken Little, "data gateways' are developed and introduced
between the legacy system and the target system to maintain data consistency
throughout a project. The key difference between DARWIN and our
methodologies is that DARWIN addresses incremental evolution at architectural
level rather than end-user feature level. Another important difference between
DARWIN and our methodology is that DARWIN makes use of object-oriented
techniques rather than CBSE.

The SEI at CMU developed a technique for developing an incremental code-
migration strategy for large legacy Common Business-Oriented Language
(COBOL) systems [19]. Specifically, the technical report published by SEI
describes a case study that involves the modernization of a large Supply System
(SS). The system consists of approximately two million lines of COBOL code
operating in a mainframe environment. The SEI developed the System Analysis
and Migration (SAM) tool to generate a code migration strategy based upon
legacy system analysis data. SAM considers a set of factors that includes

minimizing scaffolding code (code that is discarded before the completion of the

52

project), balancing iterations, and grouping related functionality. SAM generates
a cal graph that allows developers to identify program elements with
dependencies. These dependencies can be prioritized for evolution purposes.
While the program elements can be viewed as end-users features, the SAM tool is
dependent on COBOL. Our approach is programming language independent; we
use existing source-code profiler to identify feature implementation. While a call
graph can be used to understand program dependencies, our feature model
provides feature-function matrix that shows an intuitive view of program
dependencies. Finally, there isno mention of the issue of global datain SAM.

The Incremental Software Evolution of Real-Time System (INSERT) project was
started by DARPA, SEI and NASA in 1992 [16]. The goal of INSERT is to
improve war fighting capabilities of F16 fighter jets by incrementally evolving
software systems used in the F16's operating and other software system. While
there are similarities between INSERT and our methodological goals, the two
approaches are different because of following reasons. First, our approach does
not account for real-time systems. Second, the primary objective of INSERT isto
incrementally replace F16’ s software components with COTS. Our methodology
suggests refactoring of problematic feature implementation. Third, our approach
targets identification and refactoring of specific problem areas (end-users

features) while INSERT provides guide to replacing entire sub-system.

53

Entity-Life Modeling (ELM) is a method of software engineering that has
elements in common with both function-oriented and object-oriented methods
[13]. As in object-oriented design methods, the first step is the identification of
objects from the problem domain, the identification of object attributes and
operations belonging to each object, and the design of class structures that
encapsulate state information and export attributes to other objects as needed.
ELM departs from object-oriented methods in its ability to manage the timing and
ordering of events as in some function-oriented methods. Threads of execution are
defined wherein entities exhibit sequentia behavior by operating on objects,
perhaps concurrently with other entities. The application of ELM to evolution
involves the identification of entities and their threads of execution. Some
dynamic slicing may be necessary to identify objects and their behaviors. The
stepsin the application of ELM to incremental evolution may be listed as follows:

1. Identification of entities

2. |dentification of concurrent tasks

3. Creation of Buhr diagrams

4. Design of interface objects

5. Composition of state transition diagrams
The entities in ELM method can be analogous to features in our methodologies.
While ELM is certainly an incremental evolution methodology, the main

difference between our methodology and ELM is that our methodology has not

been tested on object-oriented systems and ELM has not been tested on function-
based system.

The observation that software systems undergo continuing changes was first put
forward by Belady and Lehman [79]. They termed this dynamic behavior of
software systems evolution and carried out empirical research on about 20
releases of the OS/360 operating

system. The investigation led to five “laws’ of software evolution: Continuing
Change; Increasing Complexity; The Fundamental Law of Program Evolution;
Conservation of Organizational Stability; and Conservation of Familiarity. These
laws have been systematically studied by several researchers such as. Lehman
and his colleagues have begun new investigations into software evolution. The
FEAST/1 project (1996-1998) aimed to construct black- and white-box models of
software system evolution, with specia attention to feedback phenomena. The
results of studying several data series from their industrial collaborators support,
or at least do not contradict, the laws of software evolution formulated in the
1970s. Moreover, three new laws have been identified: Continuing Growth,
Declining Quality and Feedback System. The recently completed FEAST/2
project focused on control and exploitation of process behavior.

There is a direct correlation between Lehman et al. third law (The Fundamental
Law of Program Evolution) and sixth law (Continuing Growth) with our notion of

incremental evolution. Both the laws support the hypothesis that focusing on

55

specific problem areas within the legacy system businesses can justify return on
investment (ROI). While there is no direct relationship between the case studies,
we agree with Lehman et a. Furthermore, researchers such as Basili et a. [122],
Coleman et al. [28], Kremerer at al. [21] and Kafura [30] have all used call graph
and similar techniques to identify program dependencies based on Lehman’s third
and sixth laws of evolution to propose incremental evolution methodol ogies.

3.3.2 Legacy System Evolution

Many software evolution techniques exist, [96][64][105] but they focus on
solution domain and do not consider Feature Engineering as a software evolution
driver. In one of the first dissertations on Feature Engineering, Turner [25]
mentioned the possibility of using Feature Engineering for software evolution
purposes in his work, but he concluded that evolution was outside the scope of his
work. The techniques of software evolution and reengineering either focus on
entire system rewrites or simply deal with reverse reengineering for
comprehension purposes.

System evolution is a broad term that covers a continuum from adding afield in a
database to completely re-implementing a system. These system evolution
activities can be divided into three categories: rewrite, evolution, and replacement
[98][96]. Repeated system maintenance supports business needs sufficiently for a
time, but as the system becomes increasingly outdated, maintenance falls behind

the business needs. An evolution effort is then required that represent a greater

56

effort, both in time and functionality, than the maintenance activity. Finaly,
when the old system can no longer be evolved, it must be replaced or rewritten.
Determining the category of evolutionary activity that is most appropriate at
different points in the life cycle is a daunting challenge. Should a system
continue to be maintained or should it be modernized? Should the system be
replaced or rewritten? To make the correct decision, the legacy system must be
fully assessed in order to analyze the implications of each action. Ransom et. al.
describe an assessment technique for determining if a legacy system should be
replaced, modernized, or maintained [76]. Current software evolution and
reengineering techniques continue to work in the solution domain. The important
problem of linking the problem domain and the solution domain for the purposes
of evolution remains unsolved.

3.3.3 Architectural Reconstruction

Architectural reconstruction is the process where the “as-built” architecture of an
implemented system is obtained from the existing legacy system. This is done
through a detailed analysis of the system using tool support. The tools extract
information about the system and aid in building and aggregating successive
levels of abstraction. If the reconstruction is successful, the end result is an
architectural representation of the system that aids in reasoning about the system.
There have been severa efforts in architecture analysis and reconstruction. The

Software Engineering Institute (SEI) has developed Dali [106]. Other examples

57

of architectural reconstruction efforts include Sneed’'s reengineering effort [49],
the software renovation factories of Verhoef et al. [123], and the re-architecting
tool suite by Krikhaar of Philips Research [108]. In amost al the software
architecture reconstruction efforts, the process comprises the following five
phases:
* View extraction phase obtains information from various sources.
» Database construction phase involves converting the extracted information
into arelational database format.
* View fusion phase combines various views of the information stored in
the database.
 The architecture reconstruction phase builds abstractions and
representations and to generate an architectural representation.
* Finaly, the Architecture Analysis phase analyzes the resulting
architecture.
There appear to be several similarities and differences between Architectural
Reconstruction and our work.
Our motivation is to incrementally evolve legacy system features with problems.
Architectural reconstruction attempts to migrate the entire legacy system to a
newer architecture. We rely on code profilersto get information regarding feature
implementation. Likewise, code profilers can aso be used to populate the

database in the fusion phase. It appears that architectural reconstruction can be

58

used to identify feature implementation, not just the architecture. However, there
is no mention of evolving feature implementation into components for reuse.

By considering end-user’s features we bridge the complexity gap between the
problem and the solution domain. Architectural reconstruction works in the
solution domain only by focusing on extracting an architecture from the legacy
system.

The outcome of architectural reconstruction effort is different than ours. We are

focused in creating reusable components as opposed to representing architectures.

3.4 Feature Engineering

3.4.1 Features

There is little reference to the word “feature” or to the practice of “Feature
Engineering” in existing software engineering and other technical literature. For
the most part, the use of the term feature has been used in regard to the research
issue being addressed, such as features of a particular methodology or technique.
One particular research effort, Feature Oriented Domain Anaysis (FODA)
explicitly uses the term [77]. However, FODA referred to a specific feature, not
the concept of feature. There are a few typical examples along the same lines as
FODA in the published work of Kamigaki et. al. and Larrondo-Petrie, et. al.
[129][90]. The SEI FODA feature model ties business models together by
structuring and relating feature sets [87]. The FODA framework explores how this

structured information can be leveraged across the software development effort.

59

Griss extended the FODA methodology to create an explicit feature model of
functionality to facilitate reuse-driven software engineering [87]. We agree with
Griss that a feature model integrates the viewpoint of both the user and the
developer; in this dissertation, we show the practical application of this integrated
perspective.

Cusumano and Selby describe the strong orientation of software development
toward the use of feature teams and feature-driven architectures at Microsoft
Corporation [84]. While this orientation has more to do with project management
than with product life-cycle artifacts and activities, there isa significant interest in
features among many software development teams. Feature enhancements
provide both a competitive tool and a healthy revenue stream from product
upgrades. For requirements, a use-case based method is used to determine the
feature set that should be added to a new product. Using focus group and
automated testing these features are given scores. Features that score highly in
the usage scenarios are most likely to be incorporated into the next product
version. Microsoft’s approach to features concentrates on specific features to be
added to existing products. Feature Engineering, in contrast, is a general set of
approaches geared toward understanding the concept of features and making use

of the feature relationships in a disciplined fashion across the solution domain.

60

3.4.2 Feature Interaction

The feature interaction literature is primarily focused on telecommunications
networks [116]. Telecommunications networks are massive, complex, distributed
systems that incorporates a variety of hardware and software elements. In this
domain, features represent capabilities that are incrementally added to a telephony
network. The presence of multiple independent component providers makes the
feature interaction problem even more difficult. Telecommunications networks
provide many examples of features, such as call waiting, cal forwarding, and
voice mail; the primary focus is on understanding how features interact, rather
than how the features will be evolved. Our feature model and fine-grained
component model addresses evolution of interacting features.

3.4.3 Requirements Analysis

Features are problem space entities, and requirement engineering is the discipline
that is focused on providing a concise, consistent, unambiguous, and complete
definition of the problem domain. Y ears ago, researchers identified features as a
natural organization of the problem space [4][101]. According to Turner et al.
[26], Feature Engineering reemphasizes the need for requirement analysis efforts
to identify the desired Feature set. While there are a few close synonyms for
feature, such as goal and root requirement, surprisingly few approaches in the
research literature concentrate on this organization of a system’s functionality.

Several approaches in requirements engineering approach the Feature

61

identification required by Feature Engineering. Hsia and Gupta [101] have
worked on automated techniques for grouping requirement specifications. Their
purpose is to support incremental delivery of system functionality. The cohesive
structures that Hsia and Gupta search to identify are abstract data types (ADTS). It
is clear that ADTs are a solution domain concept with limited relevance in the
problem domain. In addition, their work requires using a development
methodology based on ADTs. The goa of delivering ADT-based prototypes
transcends analysis and forces a particular design choice. While [101] appears to
reduce the complexity gap via ADTs we differ by reducing the same gap via
regression test cases. Likewise, Karlsson and Ryan [73] seek to prioritize
requirements using a cost-value evaluation of pairs of requirements. Since the
number of requirement pairs grows as the square of the number of requirements,
their approach is suited to high-level requirements identified in the problem
domain. Their techniques can be used to trace artifacts in the solution domain.
While there are similarities in the requirements analysis work regarding mapping
the problem domain to solution domain, we differ mainly by using regression test
cases as the starting point because most legacy systems do not have original
requirements definition.

3.4.4 Function Points

Function point analysis is potentially applicable to Feature Engineering. The basic

notion of this discipline is that the functionality of a software project can be

62

objectively estimated independent of the implementation. Function point analysis
considers five system characteristics. application inputs, application outputs, user
inquiries, data files, and interfaces to other applications. Each application has a
function point rating, which presumably can be determined objectively once the
system specification is created. Capers Jones asserts that function point metrics
have substantially replaced the older lines-of-code metrics for purposes of
economic and productivity analysis [20]. Since the introduction of this metric,
numerous refinements have been introduced, and in 1986, the International
Function Point Users Group was formed to enhance the technique. Despite
advances in function point analysis, subjective judgments remain a difficulty
because of lack of evolutionary initiatives.
Five early goals were identified for the function point metric:

1. Relate to external features of the software

2. Deal with features important to the user base

3. Be applicable early in thelife cycle

4. Relate to economic productivity

5. Be independent of source code or language
These goals are well aigned with, but considerably narrower than, the feature-
engineering ideas identified in this dissertation. Since function point metrics are
based on visible aspects of a software system, they fit naturally within the feature

view of a software system. Function point analysis might be useful for estimating

63

the development effort required to implement a particular feature. It might also be
used to evaluate the complexity of various implementation aternatives during the
feature design phase. By applying the metric to the incremental development
required for adding features to a system, the cost and impact of each feature can

potentially be estimated.

3.5 Component Based Software Engineering (CBSE)

Although Component Based Software Engineering (CBSE) provides viable
techniques to develop modularized software systems, the components are often
designed and implemented from scratch rather than re-engineering them from
within a legacy system. In practice, CBSE is used as a design and construction
tool, not an evolution tool [95][126][94][38]. In this section, we summarize
many of the sub-discipline of CBSE asthey relate to our dissertation.

3.5.1 Evolution

Recent approaches to evolution within CBSE, such as ArchStudio [102], focus on
evolving systems that are aready designed and constructed from well-defined
components and connectors. The emerging discipline of Software Architecture as
defined by Garlan and Shaw is concerned with a level of design that addresses
structural issues of a software system, such as globa control structure,
synchronization and protocols of communication between components [29].
Software Architecture is thus able to address many issues in the development of

large-scale distributed applications by using off-the-shelf components. In

particular, it is a useful vehicle for managing coarse-grained software evolution,
as observed by Medvidovic and Taylor[94]. However, Software Architecture
does not provide an efficient solution for legacy system evolution.

Evolving a legacy system by wrapping it into a component is a common practice
[115]. However, such wrapping results in coarse-grained components and does
not address the issue of complexity gap. Our methodology identifies features that
are a candidate for evolution and incrementaly evolves them at much finer

granularity.

3.5.2 Wrapping

While wrapping is a perfectly viable solution to evolve a legacy system onto a
newer platform, our motivation is rooted in addressing problems associated with

end-user features.

3.5.3 COTS

COTS can certainly provide functionality pertaining to the feature we are
interested in, however we see following major differences in using COTS

compared to our fine-grained components:

Researchers have found that COTS selection is a lengthy and arduous process
[27][112]. Thefirst step of the processisto determine the best COTS components
candidate. The next step in the processis to determine if these components can be

integrated, either directly, or through wrappers or other “glue” code. Determining

65

if components can be integrated is also a complex process, as vendor claims are
not always believable. If these components cannot be easily integrated, it is
necessary to consider aternate products that may not be best choice but are
compatible with other technologies. To make matters worse, the environment is
constantly changing with new components and emerging product versions;
existing products going away or being refocused, and evolving vendor
relationships. This is hardly the case with our fine-grained components as these
fine-grained components are evolved from within the legacy code they integrate

well and provide the specific functionality that is needed.

COTS components are black boxes whose source code is not available for
modification. Since fine-grained components are developed using an existing

legacy system, its source code is readily available.

3.5.4 Reuse

One of the main ideas behind CBSE isto promote software reuse either within the
product line or across multiple product lines [95][23][75]. However, the claim for
such reuse has been challenged because CBSE has not been able to deliver its
promise. Furthermore, the dynamic nature of requirements and software process
pose a big hurdle for CBSE as far as reusability of components is concerned
[126][44][66]. Since our methodology gathers the requirements and the
specifications from an existing legacy system, we can simply refactor feature

implementations into fine-grained components. Avoiding the complex process of

66

gathering requirements to create components from scratch allows us to take the
best of CBSE, namely component model and component specification, without
having to consider time-consuming CBSE activities such as buy vs. build

analysis, selecting a component model, or a component technol ogy.

3.5.5 Features

CBSE offers promising techniques to solve the problem of component
construction [2], but CBSE has not yet been connected to the features that are
present in a system; creating this connection explicitly is one of the contributions
of this dissertation. The functionality provided by CBSE solutions must be
mapped to the Feature available to the end-user.

To the best of our knowledge, features and components have not been studied
together in light of legacy system’s evolution. Two areas that appear to bring the
aspect of features to components are feature-oriented programming (FOP) and
Feature-oriented classification of components (FOCS).

FOP is used for developing new systems [24] and has not been used in evolving
existing legacy systems. However, FOP can be used to create feature-oriented
components, which can possibly be used with our methodology. Integration of
components created using FOP is outside the scope of our work.

FOCS is a component classification scheme using graphs [67]. Components are
described by sets of features, called descriptors. Each feature represents a

property or attribute of the component. To support the understanding and

67

construction of descriptors, features are organized in a classification scheme.
Storage and retrieval of components is done by means of these features sets. A
thesaurus assists in the understanding of features. Searching is done with the help
of descriptors. Users construct a descriptor (using an editor) containing the
features the searched component should provide. This descriptor is interpreted as
a query to the database of classified components. While there appears to be no
direct relation to our work, FOCS can be used to store fine-grained components
created by our methodology.

3.5.6 Fine-Grained Components

Granularity is the word that describes how much functionality is found in a
component, or a set of components that work together. In the literature, two types
of components exist: fine grained and coarse grained [38]. In [38], James Carey
and Brent Carlson describe two types of components based on their many years
with the San-Francisco project. The authors differentiate fine-grained components
from course-grained components. Carey and Carlson make a persuasive case for
the use of fine-grained components; they argue that such components are required
for business domains where well-defined dependencies can be carefully managed.
We strongly agree with Carey and Carlson, as our fine-grained component model
encapsulates the feature we are interested in evolving for reusability across

product lines within the same organization.

68

There are also similarities between our fine-grained components and ability to
modify its code. According to [45], there are three possibilities for modifying a
component:

White box where access to source code alows a component to be significantly
rewritten to operate with other components. Gray box where source code of a
component is not modified but the component provides its own extension
language or Application Programming Interface (API). Black box where only a
binary executable form of the component is available and there is no extension
language or API. Our fine-grained component model is intended to be used
across the product lines with an organization. Since the component may contain
feature-based trade secrets, organizations may decide to not market it but to use
the component exclusively. Since the code is available, technicaly all three
approaches to the modification can be applied. However, we suggest a black box
approach be used since fine-grained components are lightweight and provide
feature specific functionality whose code need not be changed.

3.5.7 Product Line

The general idea of a software product line is that the new product is formed by
taking components from the base of existing legacy code using variation
mechanisms such as parameterization or inheritance. Thus, building a new
product (system) becomes more a matter of assembly or generation than creation;

integration rather than programming. This form of reuse among product lines,

69

have been studied by various researchers such as [87][68][70][74][91][81].
Among all the product line initiatives, the most related work is that of the two
methods developed by the Software Engineering Institute (SEI). These methods
are supposed to extract existing assets from the core of an existing product line.
The Mining Architectures for Product Lines (MAP) method addresses assets at
the architecture level, while the Options Analysis for Reengineering (OAR)
method addresses assets at the component level. While there are similarities in
our motivations and those of MAP and OAR methods in reusing components, we
differ in the following ways.

We are motivated in reducing the complexity gap by considering problem and
solution domain, while MAP and OAR work in the solution domain only. Both
MAP and OAR are not focused on incremental evolution while that is our intent.
One of our goals is to reduce the maintenance cost of the feature to be evolved. It
is not clear from the literature that the MAP and OAR consider this factor. MAP
and OAR are more focused in the new product lines that use the extracted
components from the legacy system while one of our goals is to plug the
component in the original legacy system as well.

3.5.8 Previous experience with components and evolution

We mention two of our previously related works in this subsection, both of which
are experience reports and provided preliminary motivation to work with

components and evolution.

70

First, one of our previous works, carried out as part of the case study on AMS
Output Engine, has contributed to research efforts in Software Architecture and
CBSE [7]. This work sought to evolve earlier legacy systems so that recent ideas
on architectural evolution could be applied. The experience report describes a
simple technique: abstracting the communication between two components into a
connecting-component. Using this abstraction, a stand-alone executable was
easily converted into an ActiveX Component (DLL). This research demonstrated
that architectural analysis helps to achieve business objectives. The methodol ogy
described in [7] forms the basis for our motivation in this dissertation because it
is: 1) isincremental; 2) improves the architectura integrity of the legacy system
by replacing implicit communication between system components with explicit,
documented connecting-components, and 3) results in a better-documented

architecture.

Second, to further stress the importance of CBSE encapsulation and reuse
techniques we briefly describe the concept of component integration and
extension [8], which was applied in the Input Engine of AMS, In [8], we have
shown that new features can be integrated and extended into the original
component by using CBSE techniques. Component integration and extension
techniques improve code reusability among product lines and decrease
maintenance costs for legacy code [8]. Component integration and extension

techniques will encapsulate functions that implement features in context.

71

Encapsulating features into components will improve code reusability and will

thus reduce the maintenance costs for legacy systems.

3.6 Program Understanding

Program dlicing is another area that has potential for Feature Engineering and our
component refactoring isinspired by this research. The notion of program dlicing
began with Weiser [93]. Since then, several researchers have modified and
expanded the concept of a program slice by proposing additional methods for
determining slices. Current research frontiers on program slicing are covered by
Tip [35]. In abstract terms, a program dlice is a subset of a program representation
that is based upon some preset criteria. Traditionally, the criteria are formulated
as program statements that affect the value of avariable at a particular place in the
program text. This formulation of the criterion dictates that a backwards dlice be
computed from the source statement in question. The notion of forward slices has
also been explored. There are severa ways that a program slice can be calcul ated,
with one common technique relying upon program-dependence graphs.

The dlicing described so far is known as static sicing, because it relies only upon
the program text. Researchers have also explored dynamic slicing, which takes
into account program execution on a particular input set. In general, dynamic
glicing produces smaller slices, which is a benefit to the isolation of program
faults. Program dicing is a term used to describe the intersection of multiple

dlices. Sloane expands the traditional notions of program slicing by generalizing

72

the dlicing criteria [12]. His approach relies upon marking an abstract syntax
representation of the program using tree decoration capabilities inherent in
attribute grammars. One of the advantages of Sloane's approach is that it can
easily be used to produce syntactically complete program dlices that could be
executed.

Program dlicing can be expanded to incorporate Feature Engineering. By feature
dicing, one could extract a subset of the system that interacts with a particular
feature. This would be of critical importance in maintaining individual features,
for exploring feature interactions, and for constructing feature relationships in an
existing system. Presumably, the intersecting feature slices would indicate
potential interactions among feature implementations. This notion was carried
out to locate program features and their interactions but mainly for testing and
debugging purposes and not evolving system features.

3.7 Regression Testing

Rothermel and Harrold [42] group a variety of selective regression testing
approaches into three categories. Safe approaches require the selection of every
existing test case that exercises any program element that could possibly be
affected by a given program change. Minimization approaches attempt to select
the smallest set of test cases necessary to test affected program elements at |east
once. Coverage approaches attempt to assure that some structural coverage

criterion is met by the test cases that are selected. All three categories have been

73

extensively studied by researchers [46][127][48][41][40][88][120][43][124] from
atheoretical point of view to either minimize or prioritize test cases.

While minimizing and prioritizing is important, there has been little discussion on
applying regression testing in industria environments, specifically for
evolutionary reasons. While researchers are mostly concerned with reducing the
number of test cases for the testing process, other important issues in using
regression testing in an industrial environment, such as considering regression test
case in identifying feature implementation, remain an oversight. Regression
testing contain important information in the form of input that reflects the end-

user feature and the feature will be invoked.

3.8 Separation of Concerns and Aspect Oriented Programming

Two theories related to our work are the separation of concerns and Aspect-
Oriented Programming (AOP). A software system consists of a set of artifacts,
such as requirement specifications, designs, and code. Each artifact consists of
descriptive materia in some formalism, the purpose of which is to model needed
concepts in a manner appropriate for that artifact. The formalisms differ for
different projects, different phases, and different artifacts perhaps even within an
artifact. Different artifacts often share the same concepts, with each concept
potentially described in a different way, and with different details, in different
artifacts. For example, the word expression in the requirements and the term class

expression in the design.

74

Many kinds of concerns are important during the software lifecycle. Dimensions
of concern help to organize the space of concepts and units. Common dimensions
of concern are data or object (leading to data abstraction) and function (leading to
functional decomposition). Others include feature (both functional, such as
“evaluation,” and cross cutting, such as “persistence”), role, and configuration. As
illustrated by examples in their work, Tarr and Sutton explain that some
dimensions of concern derive from the domain, often aligning with important
domain concepts, while others come from system requirements, from the
development process, and from internal details of the system itself [103]. In short
there are a number of dimensions of concern that might be of importance for
different purposes (e.g., comprehension, traceability, reusability, evolution
potential), for different systems, and at different phases of the life cycle.
However, even Tarr and Sutton admit that a large part of their theory is unproven,
and we believe their approach will encounter great difficulties when applied to an
existing legacy system.

The AOP community has focused on identifying cross-cutting concerns that
appear throughout numerous modules of a system implementation [39][128].
These aspects are treated as first-class entities that are “woven” together into the
primary modularization to create a final working system. We have found it
possible to encapsulate features that are likely to change into fine-grained

components, thus avoiding the code-weaving phase of AOP. Also, our fine-

75

grained components are truly reusable whereas aspects appear to only be usable in
the context of the original modular decomposition.

3.9 Summary

In this chapter, we discussed the related work as it relates to our research. We
looked at several areas such as Software Evolution, Architectural Reconstruction,
Feature Engineering, Product Lines, Requirements Analysis, CBSE, Program
Understanding, Locating Systems Features, Regression Testing, Separation of
Concerns and AOP. Although Turner [25] had identified the problem we are
addressing in our work, that was outside the scope of his work. Furthermore, four
[5][125][121][99] researchers have described points which are related to our work
as far as identifying program features is concerned, however; their motivation is
restricted to program understanding and not to the evolution methodology we
have developed. To date, no software evolution technique has been proposed that
addresses the important issue of evolving legacy code using CBSE and Feature
Engineering. We believe that if legacy code is modernized using Feature
Engineering and CBSE then many organizations can benefit from the resulting
technique.

In Chapter 4, we will discuss the four models that are part of our evolution
methodology namely Feature Model, Fine-Grained Component Model, Budget

Analysis Model and Formal Model.

76

4 Models

Our methodology depends on two important models.
The Feature Model defines what a feature is, how it is
implemented, how it interacts with other features, and how it is
related to other features within the source code.
The Fine-Grained Component Model describes the
constituents of the refactored components using interfaces,
properties, and methods.
To support the results of our dissertation we also rely on two additional models:
The Budget Analysis Model lists and describes the elements
that are necessary for performing the cost-benefit analysis of
our evolution methodol ogy.
The Formal Model provides the theoretical foundation for our
evolution methodology. The formal model is supported by the
data model.
4.1 Feature Model
As we have aready discussed, end-users often view a system in terms of its
provided features. Intuitively, a feature is an identifiable unit of system

functionality from the end-user’s perspective. Examples of features include the

77

ability of aword processor to spell check or the ability of an accounting system to
generate a balance sheet statement for a given fiscal year. Software developers are
expected to trandlate such feature-oriented requests into system design. Feature
Engineering addresses the understanding of features in software systems and
defines mechanisms for carrying a feature from the problem domain into the

solution domain [26].

Definition Interaction

Relationships Implementation

Figure 4.1: Elements of Feature M odel.

Our feature model consists of following four elements as shown in Figure 4.1:
Feature definition, what afeatureis.
Feature implementation, where and how features are implemented within the
source code.
Feature interaction, how afeature interacts with other features.

Feature relationships, how afeatureisrelated to other features.

78

4.1.1 Feature Definition
We developed the following definition by integrating and extending existing

definitions from [82][26]:

A feature is a group of individual requirements that describes a unit of
functionality with respect to a specific point of view relative to a software
development life cycle (Figure 4.2).

SDLC Phases

Req. |Design Coding Test | Maintenance

@

Regression
Feature Test-cases
Description Feature
I mplementation
Problem Solution
Domain Domain

Figure 4.2: Definition of a Feature.

This definition is rooted in the problem domain but shows how a feature can be
used in software evolution. For example, a system might support a feature that

performs complex calculations in batch mode without user interaction. To an end-

79

user, this feature is atime saver because input can be stored in afile or a database
to be used at a later time. At the same time, testers might employ this feature to
enable regression testing between two versions of the system; developers might
design a specific set of modules to process user input without user interaction to
analyze code coverage. A code-profiling tool executing regression test cases
exercising that feature can locate the feature implementation, and evolution of that

feature can commence.

Feature Functions Critical Evolution Viewpoint
1 Many Solution domain
Many 1 Problem domain
1 1 None exists
Many Many N/A — Must be decomposed

Table4.1: Feature/Functions Relationships.

4.1.2 Feature Implementation (FI)

End-users comprehend a system through its features but are unaware of the
specific way in which these features are implemented. Software developers view
the same system in terms of data types, local and global control, reusable
functions, and units of testing and maintenance. Table 4.1 outlines how a feature
might be implemented within function(s). When addressing feature

implementation we must consider following two scenarios:

80

* When function(s) and data (local and/or global variable) implements only
one feature
* When function(s) and data (local and/or global variable) implements more

than one feature
If the function and data implements only one feature than the evolution is trivial.
While our models can certainly address the first scenario mentioned above, we are
more interested in the second scenario because it is more likely that a function is
involved in the implementation of more than one feature. Thus, when we mention
feature implementation we assume that the function implements more than one
feature. We define feature implementation as following:

A feature implementation (FI) is the set of statements (including data)

within all functions that execute when that feature isinvoked. The feature

isinvoked by one or more test cases.
When a single feature implementation contains code from many functions then
the critical viewpoint regarding evolution is the solution domain because the
feature “cross-cuts’ the software [87]. Such code is often highly coupled and
deeply embedded within the legacy system. When many related features are
implemented by a single function then understanding the problem domain is
critical for successful evolution. When a feature is implemented by a single
function, evolution can be straightforward; a many-to-many relationship must be

decomposed further for evolution (Table 4.1).

81

Given that a function(s) implements more than one feature, there are five cases
that capture the essence of feature implementation. In the following example
assume that there is a function fy that is only involved in the implementation of
two features FE; and FE..

4.1.2.1 Case |l: Non-interacting (unrelated) features

Figure 4.3 show a function fy (the large rectangle) implementing two features FE;
and FE; represented as ovals. Even though these two features are implemented in
a single function, they do not share any lines of code (LOC) or variables. That is,
FE:1 n FE; = @. At thislevel of abstraction, it is not important how much of fyis

being executed.

FE; FE,

Figure 4.3: Two Featuresin Function (f,) but Not Interacting.

4.1.2.2 Case ll: Partially interacting features

Figure 4.4 show two features FE; and FE; sharing LOC or variables in a function.
This type of interaction is common and we will discuss this in further detail in

Sections 4.2, and 4.3. That is, FE; n FE, # @.

82

/ f

FE; FE,

Figure 4.4: Two Features Partially Interacting in Function (f,).
4.1.2.3 Case lll: Fully interacting features

Figure 4.5 show two features FE; and FE; are fully interacting by sharing LOC
and variables. These features are tangled, as there is no apparent distinction
between shared LOC and variables using dynamic slicing. Our case study shows
how to identify relationships and interactions among fully interacting features.

That iS, FE; =FE,

Figure 4.5: Two Features Fully-Interacting in Function (f,).

4.1.2.4 Case IV: Interacting sub-features

Figure 4.6 show that FE; is a subset of FE,. This could mean that FE; is sub-

feature of FE; or FE, is composed of FE; There are severa possibilities in this

83

scenario and we will discuss them in section 4.1.5 and 4.3. Dynamic dlicing

cannot fully identify the code of either feature thus a closer look at the feature

relationshipsisrequired. That is, FE1D FE,.

fx

Figure 4.6: Interacting Sub-Featurein Function (f,).

4.1.2.5 Case V: Interacting super-features

Thisisjust the opposite of case IV asshownin Figure4.7. That is, FE; L FEL

Figure 4.7: Interacting Super-Featuresin Function (f,).

4.1.2.6 Summary

At this level of abstraction we ignore the often complicated control flow within a
function fx. Given afunction that isinvolved with no more that two features these
five cases (non-interacting, partial-interacting, fully-interacting, interacting-sub
and interacting-super features) describe the possible interactions among features.
4.1.2.7 Regression Testing
We propose a novel use of dynamic dlicing [18] that uses regression test cases to
identify where a feature is implemented in the legacy system and to incrementally
refactor the code base to create fine-grained components that can be individually
evolved and reused.
Not every feature is evolved during system evolution, nor should each feature be
encapsulated in afine-grained component. We follow a heuristic we call “The law
of two”: if afeature can be used in another system, its implementation becomes a
candidate for reuse. From this candidate set, the organization must still select
specific features to evolve. These features must be associated with the existing
test cases. Once the features are associated with their test cases, our feature
model identifies in which functions the features are implemented and what is the
feature/function interactions exists. We have identified two scenarios to associate
the test case to features:

* Knowledge of the mapping of the test case to the features exists either via

domain knowledge or in testing artifacts.

85

* Knowledge of the mapping of the test case to the features does not exist.
In such a case, the input values of each regression test case can be

analyzed using clustering techniques.

Domain Knowledge

There is no substitute for domain knowledge in legacy systems. Through using
domain knowledge, it is possible to identify test cases that represent a particular
feature or a group of features. It is also possible to construct test cases from
scratch to exercise a feature. Typically, in an industrial environment the testers
have full knowledge of which test cases are used to exercise what features. Our

case study assumes that we have this knowledge.

Documentation
Legacy systems also have rich regression test suites that consist of hundreds of
test cases. In some cases, test suites are well documented so we can identify easily

the test cases used to exercise a given feature.

Clustering and textual pattern analysis

Our simple technique for grouping test cases to find the feature they represent is
based on the premise that related test cases exercise either a feature or closely
related features. We describe a simple technique to cluster these related test cases

in this section. There are several clustering techniques described in the literature.

86

Clustering analysis is the organization of a collection of patterns (usually

represented as a vector of measurements or a point in multidimensional

space) into clusters based on similarity [89].
Although, Jain et al. describes several clustering techniques, they (including other
researchers) have not applied clustering techniques to group related test cases.
The purpose of our research is not to explore the clustering techniques but to use
them to identify the test case and feature mapping in the event that no
documentation of domain knowledge exists. We begin by describing the test
cases used in this case study and then provide a ssmple model that can be used to
cluster or logically arrange the test cases that represent the features that need
evolution. To illustrate the clustering heuristics consider 10 test cases with 5 sets
of items that are considered the most important user inputs (Table 4.2). We
analyze the user input and give an ordinal value to each of the valid user inputs
for agiven Item. For example, if item number 1 had ten valid user inputs then the
user input was given a numeric value of 1 through 10 respectively. We create a
matrix of test cases and Items as shown in Table 3. We then use existing tools
such as Microsoft Excel ™ to calculate statistical measures that can provide some
insight on a group (or cluster) of related test cases. For example, if we consider
two test cases T4 and T6 (assuming that only items 4 and 5 vary while others are
exactly the same) we calculate the regression and standard deviation values to

find the best-fit lines. T4, T6, T8 and T2 can be grouped together because their

regression values are 2.4, 2.3, 2.2 and 2.1, which is much higher than other test

87

cases indicating that they can be grouped together. Similarly, test cases T1, T3,
T5, T7, T9 and T10 can be grouped together because they vary by item 1 and item
5. We can use any of the existing clustering algorithms in this step, but for
simplicity, we use regression and standard deviation as our measure to help us
define the best fit for the lines. It is possible to use just regression as a measure.
However, we suggest that both regression and standard deviation be used because
it is quite possible that in alarge set of data, two unrelated test cases may end up
getting the same value. Using standard deviation as an additional check can help
identify such cases. Using such heuristics we can group the test cases into two
broad groups; group 1 that exercise feature 1 consists of T4, T6, T8 and T2 and
group 2 that exercise feature 2 consists of T1, T3, T5, T7, T9 and T10 in this
example (Table 4.2). Likewise, Table 4.3 and Table 4.4 show the result of
applying a RankSort clustering algorithm on the test case and items matrix. Note
that Table 4.2 and Table 4.4 result in identical clusters as far as mapping test case
and features is concerned. In addition, textual pattern analysis can aso be used to
group these related test cases because test cases often have textua input. Using
some pattern searching and developing a ssimple utility program, one can group
the related test cases based upon pre-defined criteria. We found that grouping
these test cases into broad categories can help identify the mapping between test

cases and features in cases when domain knowledge or documentation is not

88

available. The Pseudo-code for determining clusters for any matrix is shown in

Figure 4.8.
Test Cases Iltem 1 [Item 2 |ltem 3| Item 4 | Item 5| Regression | Std Dev
T4 1 1 1 9 9 2.4 4.38
T6 1 1 1 8 9 2.3 4.12
T8 1 1 1 9 8 2.2 4.12
T2 1 1 1 8 8 2.1 3.83
T1 1 3 3 3 4 0.6 1.1
T5 2 3 3 3 3 0.2 0.45
T3 2 3 3 3 1 -0.2 0.89
T7 3 3 3 3 2 -0.2 0.45
T9 3 3 3 3 1 -0.4 0.89
T10 4 3 3 3 1 -0.6 1.1
Table4.2:Test Casesvs. Items.
Test Cases| Item 1 ltem 2 Iltem 3 ltem 4 ltem 5
T1 1 3 3 3 4
T2 1 1 1 8 8
T3 2 3 3 3 1
T4 1 1 1 9 9
T5 2 3 3 3 3
T6 1 1 1 8 9
T7 3 3 3 3 2
T8 1 1 1 9 8
T9 3 3 3 3 1

Table 4.3: Test-case and |tems before RankSort.

89

Test Cases| Item 1 Iltem 2 Item 3 Item 4 Item 5
T2
T6
T8
T4
T1
T9
T5
T9
T7

=
=
=
(o]
(o]

wWlwlwlw|r ||

WIWININ]|FP |||~
Wlwlw|w|w|Fk |-
WWlww|w|o|wv]|oo
NP |W|FR|R]|O]00|©

3
Table4.4: Clustering after RankSort.

Create Matrix (M):
For (Test Case) 1 to |
For (Input Item) 1to J
M(l,J) =Convert (Input Item) to Valid Numeric Value
Next (Input Item)
Next (Test Case)
Return (M)

Apply Clustering Algorithms on (M):
Choose Any:
Regression + Standard Deviation
RankSort
Any Other

Analyze Modified (M):
Identify Groups (clustered I)

Figure 4.8: Pseudo-code to Deter mine Clusters.

4.1.3 Features and Functions

We need to identify the percentage of lines of code coverage of a specific feature
within a function because this relationship can provide useful information
regarding how and where a feature is implemented. This feature/function

relationship can be achieved via test cases as these test cases represent the

90

features. In order to successfully identify feature implementation within a
function viatest cases, we follow the three-step process.
* ldentify test case(s) that represent that feature.
* Run the profiler to obtain test case and function execution traces in terms
of lines of code.
* Determine UNION of al the lines of code within a function can identify
all the lines of code executed in a function by a test case representing that

feature. We can calculate the percentage coverage.

Test Cases
L2]

/

&8 @

Figure 4.9: A Feature may be Invoked by Several Test Cases.

|T2| |T4| |T5|

The feature/function relationship via test cases is either one:one or one:many.
When afeature is represented by a single test case (one:one relationship) the code
profiler can result in feature/function relationship rather easily as each test case is
run and its execution traces are collected. These execution traces consist of lines
of code executed in a given function. Even though a function itself can
implement more than one feature since each test case represents only a single

feature, the identification of lines of code and the coverage percentage within a

91

function is rather trivia in this case because there is no need for the UNION step
mentioned earlier. This is because most code coverage tools provide the
percentage coverage information.

One:many relationship is more realistic and it is shown in Figure 4.9. It shows
that a feature is invoked by many test cases. This case is non-trivial because we
must first group the test cases that represent the same feature.

To identify the feature/function relationship, we discuss the three-step process in
detail:

4.1.3.1 Step 1: Map test case and features

Test case and feature mapping in a matrix are as shown in Table 4.5. The shaded
portion means that the test case can invoke that feature. The shaded cells ssmply
represent that the feature is invoked by the test case. As discussed in Chapter 2,

we obtain this mapping from the testers and the end-users.

| TestCase |

Features T1

Table4.5:Test Case and Feature M apping.
4.1.3.2 Step 2: Run test case and profiler

Test cases are run with the profiler and the results shown in Table 4.6. Each cell
contains the LOC executed by the profiler in function. The next part of this step
is to identify the LOC exercised by all test cases in a given function. At this

point, we introduce the features that are invoked by all the test cases as shown in

92

Table 4.7. The next sub-step in this process is to eliminate the OR by making a
UNION of al the LOC within the function that implements a feature. The
UNION enables us to determine al the lines of code executed by the feature
within the function. This is shown in Table 4.8. Findly, we caculate the
percentage coverage for the illustration purposes assuming 10 lines of code per

function, as shown in Table 4.9.

Functions/Test
Cases T1 T2 T3 T4 T5 T6 T7
fx 1,2,510 0 0 0 0 1234 1,234
123456789,
fy 1,2,3,5,8,10 10 0 12,345 0 12,34 0
fz 0 0 1,2,3,45 1,2,3,58,10 0 0 0
123,456,789,
fa 0 10 0 0 0 0 0
1,2,3,45,6,7,891,2,3,45,6,7,89,/1,2,3,45,6,7,89,1|1,2,3,45,6,7,8/1,2,3,4,5,6,7,8,9,|1,2,3,4,5,6,7,8{ 1,2,3,4,5,6,7,8,
fb ,10 10 0 9,10 10 9,10 9,10
12,3,456,7,8[1,23456,78,
fC 1,2,3,45,6 1,2,3,4,5,6,10 0 0 1,2,345,6 9,10 9,10
Table4.6: Test Case and Function Relationship by Profiler.
Test Case T1, T4, 75, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features FE; FE, FE; FE,
1,2,5,10 OR
fx 1,25100R 1,234 1,234 1,2,340R 1,234 1,2,3,4
1,2,3,5,8,100R 1,2,3,4,5 1,2,3,4,5,6,7,8,9,10 OR 1,2,3,5,8,10 OR
fy OR 1,234 1,234 1,2,3,45,6,7,8,9,100R 1,2,3,4 1,2,3,4
fZ 1,2,3,5,8,10 1,2,3,4 1,2,3,4 1,2,3,4
fa 0 1,2,3,45,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 0
1,2,3,45,6,7,8,9,10 OR 1,2,3,4,5,6,7,8,9,10 OR 1,2,3,4,5,6,7,8,9,1
1,2,3,45,6,7,8,9,10 OR 1,2,3,4,5,6,7,8,9,10 OR 1,2,3,45,6,7,8,9,10 OR 0OR
1,2,3,4,5,6,7,8,9,10 OR 1,2,3,4,5,6,7,8,9,10 OR 1,23456789100R [1,23456,789,.1
f, 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 0
1,2,3,4,5,6,10 OR
1,2,3,4,5,6,7,8,9,10 OR
1,2,3,45,6,7,8,9,10 OR
fc 1,2,3,4,5,6 1,2,3,4,5,6,10 OR 1,2,3,4,5,6 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6

Table4.7: Test Case, Features, Function and LOC.

93

94

Test Case T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features FE, FE, FE; FE,
f, 1,2,3,4,5,10 1,234 1,234 1,2,3,4,5,10
1,23,45,6,7,8,9)1.2,3,4,56,7,8,
fy 1,2,3,45,8,10 10 9,10 1,2,3,458,10
f, 0 1,234 1,234 1,234
1,2,3,45,6,7,8,9,)12,3,4,56,7,8,
f, 0 10 9,10 1,234
12345,6,789,1.23,4,56,738,(1,23,4,5,6,7,8,9,
fo 1,2,3/4,5,6,7,8,9,10 10 9,10 10
123,456,738,
f. 1,2,3,45,6 1,2,3,4,5,6,10 9,10 1,2,3,45,6

Table4.8: UNION of all LOC for a Feature | mplementation.

Test Case T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features FE, FE, FE; FE,
f, 60% 40% 40% 60%
fy 70% 100% 100% 70%
f, 0 40% 40% 40%
fa 0 100% 100% 40%
fy 100% 100% 100% 100%
f. 60% 70% 100% 60%

Table 4.9: Percentage LOC (Feature-Function Relationship).

4.1.3.3 Step 3: Develop heuristics

Table 4.9 provides information regarding how features and functions may be
related. Similar analysis regarding feature and data will be explored in Section

4.1.5.2. The types of information we can deduce from Table 4.9 are as follows:

95

Sub-features

While features are visible to end-users, they invariably consist of sub-features that
may or may not be visible to the end-user. These sub-features are usually present
when afeature is tested by many test cases.

Feature implementation (FI)

Table 4.9 provides information on implementation of a given feature in many
functions. Thisinformation is very useful for our methodology. FI isthe number
of functions the feature isimplemented in.

CORE

If a function(s) is executed 100% of the time for all features then we define that
function to be part of CORE. Such functions are candidates for a shared library.
Typically, functions that manipulate strings, round numbers, handle database
connections etc. are part of CORE. These functions are most always stateless.
Base-line Architecture

When the system is invoked in a batch mode as discussed in Section 2.2.3, al the
test cases execute 100% of certain functions that are not part of any feature.
These functions are typically part of system initiaization, system shutdown and
setting up global variables. It is important to understand that these functions are
not part of CORE but are part of system architecture and global control structure.
Turner [26] also calls such functions as a base-line architecture. These functions

not shown in Table 4.9. Base-line architecture is product specific and contains

96

specific caller-calee sequence, and is unlikely to be reusable into another
components. We argue that such code does not change often and is not a
candidate for evolution into a component using our methodology. Using domain
expertise and results from the profiler, the base-line architecture is identified and
subtracted from the code to be evolved. However, if the base-line architecture
itself is considered for evolution then it is important to realize that this
architecture is represented at a coarse-grained (not fine-grained) level. Thus, such
evolution activities will result in either wrapping or re-architecting the entire
legacy system, both of which is certainly outside the scope of this dissertation as
discussed in Section 1.5. Table 6.7 shows example of functions that are part of
base-line architecture.

Neighboring features (K)

Using Table 4.9, we see how features may interact within a function. Traversing
through the matrix, one can identify the features that are interacting within a
function. We start with a given feature and traverse down to each function where
the coverage is greater than 0%. Once the feature implementation is identified,
we traverse in the horizontal direction to identify the coverage of other featuresin
that function (greater than 0%). Thus, traversing down, across and then up can
provide which are the neighboring features (see Figure 4.10). These neighboring

features form relationships that we will discussin Section 4.1.5.

97

Evolution threshold (T)

Our methodology can be used to evolve any feature. However we found that
rewriting is preferable to features that cross-cut across many functions and
interact with a lot of features. Using Table 4.9, heuristics concerning threshold
can be developed that can identify features that are good candidates for evolution
and that are not.

We use Table 4.9 to identify neighboring features, the number of functions where
the feature is implemented, and then we calculate the average coverage
percentage within the function. This provides us a threshold regarding evolving
the feature, and provides heuristics on whether to continue with the evolution
methodology or not. We realize that the high and low values used in Table 4.9 to
determine whether or not to continue with our methodology depend on the
particular feature(s) and legacy system(s). In our experience, we found that our
methodology works best when K = 3, FIl = 17 and C = 80% (a more detailed
analysisis provided in Section 7.1.1). As arule-of-thumb, we can say that if K is
high than the feature we are trying to evolve cross-cuts through many other
features. Conversely, if K islow than the feature we are trying to evolveistrivial.
Likewise, if a feature is implemented in many functions (i.e. high FI) than the
feature is likely to be scattered in numerous functions. If Fl islow (perhaps 1 or
2) than it is a trivial case as the feature is totally contained in a low number of

functions. Lastly, if the average coverage of the feature within a function is low

98

than it certainly does not make sense to evolve that feature. However, whether to

continue or not is a function of K, FI and C all of which depend on the feature

being evolved. Figure 4.10 provides Pseudo-code for calculating K, FI, C and

CORE.
Evolution Threshold (T)
Featureto be Neighboring Number of Average
evolved feature functions Coverage Continue?
(K) (F1) ©)

FE, High High High No

FE, High High Low No

FE, High Low Low No

FE, High Low High Possibly
FE, Low High High Possibly
FE, Low High Low No

FE, Low Low High Possibly
FE, Low Low Low No

Table 4.10: Evolution Threshold (T).

Map Test Case and Features:
For Each (Test Case)
I dentify Features Represented
Next (Test Case)
Return Matrix (Test Case and Features)

Run Test Case with Profiler:
For Each (Test Case)
Run Profiler to obtain LOC in Functions
Next (Test Case)
Return Matrix (Test Case and Functions)

Map Features/Functions:
For Each (Feature)
Use Matrix (Test Case and Features) and Matrix (Test Case and Functions)
UNION LOC representing a Feature in Functions
Calculate Percentage Coverage of a Feature in a Function
Next (Feature)
Return Matrix_Features_Functions

Develop Heuristics:
Select Feature Column to Evolve from Matrix_Features_Functions
Calculate F1:
For Row = 1 to MaxRow (Matrix_Features_Functions)
If Matrix_Features_Functions (Row, Column) >0% Then
F1=F1+1
End if
Next Row
Return F1
Calculate K:
For Row = 1 to MaxRow (Matrix_Features_Functions)
If Matrix_Features_Functions (Row, Column) > 0% Then
For Columns = 1 to MaxColumns (Matrix_Features_Functions)
If Columns != Column Then
If Matrix_Features_Functions(Row, Columns) 0% Then
K=K+1
End if
End if
Next Columns
End if
Next Row
Return K
Calculate C:
For Row = 1 to MaxRow (Matrix_Features Functions)
PercentageCoverage = Percentage Coverage +
Matrix_Features _Functions(Row, Column)
Next Row
C = PercentageCoverage / MaxRow (Matrix_Features_Functions)
ReturnC
Calculate CORE:

Array ISCORE(MaxRow (Matrix_Features_Functions))
For Row = 1 to MaxRow (Matrix_Features_Functions)
For Columns = 1 to MaxColumns (Matrix_Features_Functions)
If Matrix_Features Functions(Row, Columns) = 100% Then
ISCORE (Row (Function)) = TRUE
Else
ISCORE (Row (Function)) = FALSE
Break;
End if
Next Columns
Next Row
Return |SCORE(Row(Function))

Figure 4.10: Pseudo-code for Heuristics.

99

100

4.1.4 Feature interactions

A legacy system has many features. These features must interact with each other
to provide wider system functionality. When features interact with each other,
they have an “effect” on the system. Depending upon the state of the legacy
system, this effect can be either positive or negative (resulting in errors). We
must distinguish between intended interactions between features, interactions
between features that are not intentional but don’'t result in errors (or may even
have positive side-effects) and unintended and undesirable feature interaction not
known in advance and leading to faulty applications. Figure 4.11 shows a

classification of feature interaction and their side effects.

Unintentional . Lo
_ _ Positive Negative side
interaction side effect effect
Effect [——————
. Positive Implementation
Intentional interaction error
interaction
Positive Negative
effect effect

Figure 4.11: Classification of Feature I nteraction.

101

Feature
FEs

V1 01

Figure 4.12: Feature Interaction via Functions and Data.

In Figure 4.12, functions are represented as rectangles, variables (both local and
global) as circles, and features as pentagons. Fls are shaded using the same
pattern as their corresponding feature (shown by the lines between pentagon and

rectangle). A feature implementation is the set of shaded regions among the

102

function rectangle. When two or more feature implementations share common
data or functions, there are four key interactions.

4.1.4.1 Shared Stateless Function (SS)

A dstateless function [72] can be shared between two Fls. For example, al
statements in function f; are executed when both FE; and FE; are exercised and f3
does not access any local or global data.

4.1.4.2 Shared State-Full Function (SSF)

A state-full function [72] can be shared between two features. Refactoring may be
complex, involving analyzing global variable access and control structures.
Function f, accesses global variable g; and since f; is part of both FlI; and Fl,
thereis an implicit interaction between FE; and FE,

4.1.4.3 Dependent Data (DD)

An Fl may be dependent on the data that is updated by another FI. For example, f;
and f, access the local variable v, leading to an interaction between FE; and FE..
4.1.4.4 Dependent Function (DF)

An FI may be dependent on a function that is part of another Fl. Function f, calls
function f; (shown by the arrow in Figure 4.12) when FE; is exercised but not
when FE; is exercised (note the consistent shading). The remaining statements in
f1 (shaded white) are associated with another feature not shown and FE; interacts
with that feature. When a feature is fully contained in a single function, the

implementation could be equally complex. Such a function may be stateless or it

103

could depend on global data (asisthe case with f4 in Figure 4.12). As each feature
is exercised, code-profiling (or similar) tools identify the code dlices associated
with each feature, providing the details necessary to identify interactions between
features.
4.1.5 Feature Relationships
Turner identified several relationships among interacting features [26]. In this
section, we integrate and extend Turner’s idea of feature relationships into our
feature model. Understanding feature relationships allows us to better:
1. Interpret feature interactions as feature relationships refine the concept of
interaction by providing specification through calling sequence.
2. Refactor the existing FI into fine-grained component(s).
3. Define the communication among fine-grained component(s) that will
compose the large reusabl e unit.
We will discuss how these relationships are implemented within Fis.
4151 Categories
We expand this concept into direct and indirect relationships among interacting
features and map it into FI. We categorized the feature relationships in two broad
categories as shown in Figure 4.13:
1. Indirect relationships are problem domain relationships and are abstract
in nature. These relationships are important when talking to the end-user

and usually exist at the application level rather than at the function level.

104

The end-user comprehends the system to be composed of several features
and has a perspectives with respect to the software functionality. Within
the indirect relationship, a feature may be a composed, generalized, or
specialized part of another feature. These relationships are usually visible
to the end-user view and reside in the problem domain.

Direct relationships are solution domain entities. These relationships
may be visible to the end-users and typically consist of several sub-
features. These relationships have concrete FIs associated with them. For
example, in an application when the user performs “file open” command,
the data is loaded from a database field and displayed on the screen.
Within the code, the data may pass through series of transformation, such
as error checking, checking dependency on other fields, and change its
appearance. To an end-user, this feature may be that of a ssimple “file
open”, but this feature is composed of several sub-features such as error-
checking, dependency-checking, and transform-view. Both error-
checking and transform-view require dependency-checking to set certain
state. These relationships can be identified by inspecting the feature
implementation. Within the direct feature relationships, a feature
relationship with another feature may be that of shared, altered, required,
conflict, and compete. It is to be noted that both compete and conflict are

example of features that are implemented using multiple operating system

105

threads. In contrast, feature relationships of type required, shared and

altered are examples of features that are implemented using single threads.

Feature Rl ationships

Figure 4.13; Feature Relationships.

We define each one of the feature relationships:

A composed relationship shows how a feature is composed of several sub-
features. An example of a composed relationship is that a bank account
consists of savings and checking accounts.

Generalized and specialized relationships usually co-exist and they
depend of particular point of view and granularity. An example of
generalized feature is an application that can integrate assets and
liabilities. An example of specialized feature is an application that can
integrate executive benefits and life insurance, where executive benefit is
the liability to be funded by the life insurance asset.

106

When a feature is required to be present for other featuresto function, itis
known as required relationship. For example, in order for paste feature
to work, the cut/copy feature must exist.
When a group of feature share resources (global data, objects or other
implementation) with other feature(s) then a shared relationship among
features exists. For example, Windows™ clipboard shares the text copied
to it with other applications.
When a feature's state (global data, object or implementation) is altered
by another feature then there is an altered relationship between features.
For example, a textbox turnsred in color when an error isidentified (inits
content).
Most contemporary programming languages do not allow creating multiple
threads within afunction. Thus, the feature relationships compete and conflict are
found at an application level rather at a function level. Our feature model
addresses feature interaction issues at a finer-granularity (i.e. at a function level).
We suggest that compete and conflict relationships be addressed at a higher level
of abstraction (i.e. a the architectural level) rather than by our feature model.
Furthermore, multithreaded systems probably need to be rewritten rather than
evolved because of the inherent complexity in maintaining them. Direct
relationships are most commonly found in the solution domain.
4.1.5.2 Determining Feature Relationships
While indirect relationships are important, their purpose is mainly to
communicate with end-users. There is no Fl associated with indirect relationships

because these relationships are abstract in nature. Since we are interested in

evolving the Fls into fine-grained components, our methodology is focused on

107

direct relationships. The following three elements are important to understand
how features are related:

1. Granularity identifies any neighboring features associated with the feature
that we are trying to evolve. There are two levels of granularity, inter-
function and intra-function. In the inter-function, the Fl is exclusively in a
function and that function does not implement any other Fl. The
neighboring features communicate via global data. Identification of Fl is
simple as features are already contained in independent functions. These
FI may not need any evolution. In the case of intra-function, the function
may have several FI and these FI may be interacting via global and/or
local data. Our methodology addresses feature interaction at an intra
function level.

2. Order of execution identifies which neighboring feature is executed first.

3. Variable analysis identifies which variables (local and global) are used
among neighboring features and how. Along with the order of execution,
variable analysis identifies which globa or local variables within the
neighboring features changed due to the execution.

We have developed techniques to identify feature relationships based upon

order of execution, change in the state of variables, feature interaction and

feature implementation. Below are five scenarios that allow us to identify

direct feature relationships:

108

4.1.5.3 Altered and Required via DD

Both atered and required relationships have been shown in Table 4.11. The
sequence of execution is shown in the leftmost column. The program declares a
global variable g;. Assume that FE; sets the value of this global variable and FE;
and FE;3 use this variable only after it has been set. Thus, FE, and FE3 require
FE;.

The altered relationship assumes Fl to be in one function (fy). This Fl could be
any of the five cases discussed in Section 4.1.2. FE; declares and sets the

value of alocal variable vi. FE; changes the value of v;. Thus, there is an altered

relationship between FE; and FE,.
Execution Sequence Declare Set Use Change
Program o1
FE; 2 V1,01 2
FE, J1 \41
FE; 01

Table4.11: Altered and Required Relationship via DD.

4.1.5.4 Altered and Required via SSF

Like the scenario shown in Section 4.1.5.3, the alteration of a variable can also
happen in an SSF. Furthermore, the required relationship depends either on a

local or aglobal variable, (also seenin Table 4.12).

109

Execution Sequence Declare Setin f, Usein f, | Changef, orf,
Program 01
FE; Vi V1,01 Vi
FE, 01 Vi
FE; 01

Table4.12: Altered and required relationship via SSF.

4.1.5.5 Shared via DD and SSF

There is a subtle difference between a required and shared relationship. The root

of this difference is in the execution sequence. While it is necessary for a

required relationship to be executed sequentialy, this constraint is not required by

the shared relationship. Thus, FE, and FE3; can execute at any point in time as

long as they simply use (share) the state of either local or global variable set by

FE,. Thisis true for both DD and SSF as shown in Table 4.13 and Table 4.14

respectively.
Execution Sequence Declare Setin f, Usein fy Change f, or f,
Program 01
FE; Vi V1,01 V1,01
FE, OR FE; V1,01

Table 4.13: Shared Relationship via DD.

Execution Sequence Declare Setin f, Usein f, Change f, or f,
Program 01
FE; Vi V1,01 V1,01
FE, OR FEj3 V1,01

Table4.14: Shared Relationship via SSF.

4156 Compete viaDD

Features can compete with each other. In Table 4.15, FE, and FE; compete to

change the values of variables v, and g; that was set by FE;.

The execution

110

sequence of FE; and FEszis not important; only their intent to change the values of

vy and g; is. The scenario shown in Table 4.15 can also exist with SSF and DF.

Execution Sequence Declare Setin f, Usein f, Change f, or f,
Program o1
FE, Vq V1,01
FE, AND FE; V1,01

Table 4.15: Compete Relationship via DD.

4.1.5.7 Conflict via SSF

Features can be in conflict with each other. This conflict happens when they are
trying to set, use and change local/global variables at the same time. This is
shown in Table 4.16. Although, a scenario with SSF is shown DD and DF can

also exhibit the same scenario.

Execution Sequence Declare Setin f, Usein f, Change f, or f,
Program (o]
FE; Vi V1,01 V1,01 V1,01
FE, OR FE, OR FE, V1,01 V1,01

Table 4.16: Conflict Relationship via SSF.
4.1.5.8 Summary

If a feature can be used in another system, its implementation becomes a
candidate for reuse. When features are represented by many test cases, Fl can be
identified by the UNION of lines of code within the function(s). If test case and
feature mapping is unknown, simple clustering techniques such as RankSort can
help. Running the entire regression test case provides severa interesting

heuristics and information on sub-features, Fls, CORE, base-line architecture,

111

neighboring features and threshold. Threshold data provides whether to continue
with the methodology or not. Features interact with each other via global and
local data. There are four ways how features interact; SS, SSF, DD and DF.
Feature interactions alow us to identify relationships among features.
Understanding feature relationships allow us to refactor FlI into explicit fine-
grained components. Our methodology addresses evolution issues with single-

threaded direct relationships of type required, shared and altered.

112

4.2 Fine-Grained Component Model

A
/ v \
External et ropees >
Dependencies
D Variable Aw% F/ari able Provide
Feature Interface
0 FI
O Stateless Encapsulated
Function(s) State
Stateless Interface k /

Figure 4.14: Fine-Grained Component Model.

Our fine-grained component (FGC) model is technology-independent and can be
implemented using any of the contemporary technologies such as Microsoft
ActiveX/COM or SUN JavaBeans. While an FGC can maintain like an EJB
Session Bean, it may require basic data that is passed to it through its Properties.
Since our evolution methodology is incremental, the FGC model encapsulates a
feature implementation that can be invoked by its public interface. A FGC can

provide data back to the legacy system via Property Get. A FGC can dso

113

implement any SS and their interface. Finaly, a FGC can access any external
dependencies (such as SSF, CORE, public functions within the legacy system or
even other components) via specifying the external functions as shown in Figure
4.14. Likewise, the stateless functions can also have externa dependencies (not
shown in the figure).
An Fl is often scattered across many system functions and may access loca or
global data. FIs can be identified and encapsulated into fine-grained components
using the component model shown in Figure 4.14.
We borrow the definition of component and component model from [38]:
A component is a software element that conforms to a component model
and can be independently deployed and composed without modification

according to a composition standard.

A component model defines specific interaction and composition
standards.

Our fine-grained component model has the following aspects Properties, Feature
Implementation, Statel ess Functions, and Encapsulated State:

4.2.1 Property Set

Our feature model explains the importance of global and local variables when
evaluating feature relationships, as discussed in Section 4.1.5. Essentially, when
we refactor the FI code in the legacy code we disable the old code within the

legacy code. This disabled code requires access to severa local and global

114

variables from the legacy system. Property Set is away to pass these variables to
the refactored FI. Thus, Property Set must be called prior to invoking the Fl.

4.2.2 Property Get

Like Property Set, the FI can change the state of certain local and global variables
that the legacy system may need to continue to function properly. Using Property
Get, the legacy system retrieves the values of these local or global variables.

4.2.3 Feature Implementation (FI)

The FI from the legacy code is refactored and encapsulated here. This may
contain several functions, classes, local data and other data structure as the feature
implementation. This implementation provides an interface, which is called by
the legacy system and other product lines. This FI can call other fine-grained
components, CORE or any other externally dependent functions as well. It acts as
the single point of entry for the feature thus providing explicitness to a feature
functionality encapsulated in FGC.

4.2.4 Stateless Function(s)

The FI may need Stateless functions (SS) that are not part of CORE, and other Fl
may not cal that SS. In such cases, this SS can be part of fine-grained
component. Its interface is exposed and can be called by the legacy system (or
any parent application). Like Fl, the SS can aso call other fine-grained

components, CORE or any other externally dependent functions.

115

4.2.5 Internal State

The fine-grained component may maintain its own state. This is analogous to an
EJB Session Bean. This state is maintained by variables local to the component.
Maintaining state has its advantages and disadvantages. It alows for better
performance as the fine-grained component retains the values of its variables from
one call to another. This saves the recalculation/resetting of variables. However,
in a multiple-user environment, maintaining state can overload the server
resources because state is stored in memory. State can also be serialized in a
database, which usually provides a good compromise between performance and
load issues discussed earlier. Our fine-grained component model allows for
maintaining the state but |eaves the implementation to the devel oper.

4.2.6 External Dependencies

SSF, CORE and other components can be called “out” of the fine-grained
component to access any data needed via this interface. This interface can be
implemented using “events’ to access any state set by an SSF. Typically, externa
dependencies are a list of declaration of functions and other components that the

FI or the SS may need within FGC.

116

4.3 Evolving Feature Implementation into Fine-Grained
Components

Once we identify a Fl using code profilers and similar tools such as xSuds [1] and

NuMega's TrueCoverage™[37], we refactor that Fl into a fine-grained

componen.

v 1
Stateless set(g 2 (v,
<
Function f q 4’@ 0 T

— 1 7_0 ‘ Properties
%2

——

Stateless _> lACC@SS Provide
Function f3

IF 3,_
State -full \ FEy Implementation
Function f L @—

Function f implementing FE jand FE |

IF) [
IF
Function f, implementing FE jand FE, 1._- Stateless Function f 4 .V
Function f.implementing FE jand FE, ‘ Statoless Function f
2

2

Function f implemerting FE | and FE, | Cornponent Comp o

Figure 4.15; Evolving FI into a Fine-Grained Component.

In the fine-grained components developed in this dissertation, the interaction
between components is clearly specified by the interfaces. Components can also
access functionality using stateless interfaces. The Fl is shielded from specific
variable implementations by using the interface for external access; over time, the
variable implementation will be replaced with explicit linkages to externa

interfaces.

117

The first step is to isolate each function that contains code belonging to the target
FI. This analysis is often complex if because local variables, global variables, and
dependent functions can be shared between Fls as discussed in Section 4.1.5. Our
component model attempts to “share” the functions as well as the data that is
scattered across various functions through explicit interfaces.
The left part of Figure 4.15 shows a single function fx whose code is shared
between Fl, and Fl,. Similarly function fy is involved in FE3 and FE,. The
purpose of cascading functions is to show that FE; is spread in many functions,
and interacts with other features. This simple example highlights all
characteristics of our model. Common code and variables include: calls to SS f;,
global variable g;, and local variables v; and v, Extracting Fl, into comp,
involves several artifacts. Function f; can easily be extracted because it is
stateless. Double arrowheads on the arrow to g; show that it is both read and
updated by Fl,. Local variables vs and v, are used by both FIs but Fl, only reads
V4 (as shown by arrowhead), while v is both updated and read by Fl; v, is set by
FE; but v, is used by FE,.;. Fl, also accesses globa variable g,, SS function f5,
and SSF f3. There are several important regionsin Figure 4.15.

* FEi: The complete codein f, that belongsto FE;.

* FE2: The complete code in fy that belongs to FE.

* FE2; FE,; is the shared code among FE; and FE, that is responsible for

the cross-cutting problem associated with features that makes evolution of

118

legacy systems extremely difficult. When two or more feature
implementations share variables and functions, as shown above, one must
evaluate how they share code and data. The region FE,; implicitly
defines feature relationships because either global or local variables are
used or changed (see Section 4.1.5.2). It is aso important to understand
the relationships among features during an evolution exercise. A detailed
analysis of feature relationships that can be found in FE,.; is provided later
in this chapter.
* FEiexausve: The complete code in fy that belongs exclusively to FE; and is
not shared with any other Flsincluding FEz..
* FE2exausver The complete code in fy that belongs exclusively to FE, and is
not shared with any other Flsincluding FE,..
Comp; in Figure 4.15 encapsulates Fl, and has several public interfaces,
represented by circles attached by lines to Comp, to enable original code to access
the moved artifacts. Comp, maintains data previously local to fy, replaces global
variable references with an interface that treats such data as properties, and
contains stateless and state-full functions. Public interface 1, is the primary
interface for Comp,. Stateless functions f; and f, are aso encapsulated into
Comp; and they can be accessed via the public interfaces IF; and IF,. SSF f3is
accessed with IF3; through an outgoing interface, it is assumed that f3 is not

located inside Comp, but its state is accessed via IF;. Local and global variables

119

used by Fl, can be accessed via Get/ Set properties. Additionaly, the get
property provides a way to share local and global variables with other feature
implementations. As related features are evolved, the interaction between fine-
grained components will become increasingly specified and all implicit
communication will vanish. Thus, we separate accessing variables from their
implementation. When multiple features are extracted at the same time, many
stateless functions will be common to several feature implementations; these will
be encapsulated within a core component, rather than a fine-grained component,
and will be treated as a shared library.

The interface for Comp; is a result of variables and functions that are needed for
FE, implementation. We now discuss what constitutes the FE, implementation
both at the function and at the component level:

FE, implementation at the function level consists of code in function fy that is
exercised only for FE, (defined as FE, excusive) PIUS the code implementation that
is shared between FE, and FE;, (defined as FE,1). FEzexausve IS Simple to
identify and typically it will be separated by explicit control structures such as
IF...THEN...ELSE or SWITCH...CASE statements because it is unique to a
particular feature implementation. When evolving the exclusive code there are
two possible routes developers can take; they can ssimply cut and paste this code
into the component, or this code can be refactored and then implemented into the

FE, implementation of Comp,. Typically, the challenging part is to understand

120

rather than to identify FE, exqusive beCause as mentioned above code profiling tools
will identify this unique code but understanding remains implicit many times.
The more complicated case arises when we are dealing with FE,.; because the
code is sequentially executed in this shared part of fx making it hard to isolate the
code associated with either FE; or FE,. The net result is that the test cases for
feature 1 and feature 2 will reveal the same code in FE,;. At this point domain
knowledge may be needed to understand the feature relationships for refactoring
and evolution. For example, it is possible that the FE, implementation is
dependent on the presence of FE;. In such instances, it is possible that both
feature implementations be evolved at the same time.
Although there is no substitute for the domain knowledge, our feature model
identifies various relationships that may exist among features and can address the
issue discussed above. Using the results from Section 4.1.5, we can understand
the relationships among the features that can provide the local and the global
variables involved. These variables (as discussed in Sections 4.1.2 and 4.1.5) can
be used to:

1. ldentify FE;, FE;, and FE,;

2. Form the Property Get/Set of Comp,
Evolving a Fl into a component requires identifying the neighbouring features

within a function and code exclusive to the feature to be evolved. The variables

121

that are required to execute (or updated) the FI become the properties of the
component.

4.3.1 Evolution Considerations

To provide heuristics for evolving FE.;, we now discuss three possible scenarios
are discussed:

4.3.1.1 Scenario | - Understanding T(K,FI,C)

If FE, is scattered in Fl functions and its average coverage percentage C in a
given function is less than n in each of the functions, then the feature is probably
not a good candidate for evolution because FE, cannot be encapsulated easily into
a component and the cost of evolution will be relatively higher. Furthermore, the
legacy system will continue to work so there is probably more need for
refactoring than encapsulation in case there is a desire to reduce maintenance cost.
The variables K, C, and FI can be application and/or domain specific. The
application used as a case study in this dissertation usesaK =3 and C = 80%.
4.3.1.2 Scenario Il - Evolving Unrelated Features

If FE; and FE, share a common implementation, and furthermore they are totally
unrelated, then code for FE, can simply be extracted and put in Comp,. FE, will
have to be manually identified. In this case, FE; will remain functioning. Since
the features share a common implementation and usualy there is no control
statement that segregates these unrelated features, the code profiler may identify

that each feature is fully covered as shown below in Pseudo-code (Figure 4.16).

122

Function X (i,b) implements FE; and FE,; there is nothing common between these
two features and they are totally unrelated. However, the code profiler will
identifies 100% coverage when FE; or FE; is analyzed independently. In such
cases, code for FE, will have to be manually identified and then moved into the
component CompFE2. An in-depth analysis of grouping related features is

provided in Section 4.3.1.3.2.

Function X (int i, boolean b) Function X (int i, boolean b)
Code for Feature 1 Code for Feature 1
Usei Usei
Use b Use b
Rest of Feature 1 Code Rest of Feature 1 Code
Code for Feature 2 Call CompFE2.X(i,b)
Usei
Use b End Function
Rest of Feature 2 Code

End Function

Figure 4.16: Example of Unrelated Featuresin One Function.

4.3.1.3 Scenario Il - Evolving Related Features

If FE,.; implements two or more features and they are “related closely” to each
other, then we can make a copy of the function with an understanding that we will
probably evolve other features (shared in Fy) at some later point in time. There
are some configuration management issues with this case and must be handled

carefully. At a given point in time only one feature is extracted and evolved, as

123

the evolution methodology is incremental in nature. More details regarding
feature relationships are discussed below.

4.3.1.31 Primitive Features

Before providing specific examples in Pseudo-code for each of the relationship
types, we discuss simple cases of what happens when a function is not shared
among features. Although these examples are trivial, they do provide background
information on how functions that implement multiple related-features should be
handled. In Figure 4.17, function X1 () implements code for Feature 2 and no
other feature. In addition, this code does not update any local or global variables.
The evolved function simply calls a method in component, CompFE2 (not shown

in the figure). Note that the control flow within the legacy system is not

modified.
Function X1 () Function X1 ()
Code for Feature 2 Call CompFE2.X1
End Function End Function

Figure 4.17: Function I mplementing Code for Only One Feature.

Figure 4.18 describes a dependent data example discussed earlier; Fl, uses the
global variable. Again, the control flow is not modified and code that implements
FE, is smply encapsulated into method X2. An interesting point in this example

is that compFE2 has a property for accepting the variable Y. FE, depends on the

124

global variable Y. The setY property in compFE2 is used to pass the value of the

global variable from the legacy system.

Function X2) Function X2 ()
Code for Feature 2

Use Global Variable Y
Rest for Feature 2 Code

Call CompFE2.SetY(Y)
Call CompFE2.X2

End Function End Function

Figure 4.18: Implementation of Dependent Data.

A more involved example is shown Figure 4.19. When Fl, updates a global
variable Y, a get property is needed to update the state of globa variable in the
legacy system. Note that the legacy system first passes the global variable into

the component before calling X3.

Function X3 () Function X3 ()

Code for Feature 2
Change Global Variable Y
Rest for Feature 2 Code

CompFE2.SetY(Y)
Call CompFE2.X3
Y = CompFE2.GetY

End Function End Function

Figure 4.19: Feature Updates Global Variable.

These examples assumed that the function does not include any other feature
implementation. While these examples are good for showing the concept, in
redity this is hardly the case, as a single function can be included in several
features. One such example is shown in Figure 4.20. Function X4 () isinvolved
in both Fl; and Fl,, furthermore 1sOdd () is used by both features. The value of

the dependent data v determines which feature will be invoked. In addition, Fl,

125

changes the value of global variable Z. In evolving FE,, FE, must be considered
in function X4 (); code that is common to both (and other) features must be
identified and moved to relevant components. For example, function A is moved
inside component compFE2 because it is called only by FE; and FE,. 1sOdd () is
moved into core because it is SS and al the features call it. Note that control flow

that is common to both features remains in the evolved function.

Function X4 (int i, boolean b)

Declare Local Variable v
v= Function A(i)
If b = True Then
v=v+1
Else
v=v+2
End if

If IsOdd(v) Then

Code for Feature 1

Use v,i

Change Global Variable XX

Rest of Feature 1 Code
Else

Use Global Variable Z

Code of Feature 2

Use v,i

Change Global Variable Z

Rest for Feature 2 Code
End if

End Function
Function A (int i)

End Function
Function IsOdd(int v)

End Function

Function X4 (int i, boolean b)

Declare Local Variable v
v=CompFE2.A(i)
If b = True Then
v=v+1
Else
v=v+2
End if

If CORE.IsOdd(v) Then
Code for Feature 1
Use v,i
Change Global Variable XX
Rest for Feature 1 Code
Else
Call CompFE2.SetZ(2)
Call CompFE2.X4(v,i)
Z = CompFE2.GetZ(2)
End if

End Function

Figure 4.20: Single Function | mplementing Several Features.

126

127

4.3.1.3.2 Determining Feature Relationships

Since some of the basic ideas have been described above, the feature relationships
are now discussed. The relationships between features are implemented by
functions. The problem domain relationships are discussed in detail, with
emphasis on required, ateration and shared, since all three of these feature
relationships have a tendency to be implemented in more than one function.
Feature relationships must be clearly understood for the purpose of evolution. As
an example, when a function is to be evolved and it implements more than one
feature, it is quite possible that a code-profiler may not reveal the exact code
associated with a given feature. In fact, the profiler may result in the exact same
code for both features as shown in Figure 4.21. Function X () implements FE;
and FE,. However, the code-profiler results in the exact same lines of code as
seen in the left block. FE; requires FE, because dependent data i is changed by
FE; and used by FE,. The global variablei is passed using Getl and Setl to both
components namely, compFE, and compFE;. When Feature 2 only is evolved,
the Pseudo-code may look like the one in the center block. The right block
represents the code after FE; and FE, both have been evolved. The purpose in
showing all three stages of evolution is to show that the methodology can be

applied to evolve just one or both the features.

128

Function X ()

Use Global i

Code for Feature 1
Change i to Something
Rest of Feature 1 Code

Code for Feature 2

Usei
Rest of Feature 2 Code

End Function

Function X ()

Use Global i

Code for Feature 1
Change i to Something
Rest of Feature 1 Code
Call CompFE2.Setl(i)
Call CompFE2.X

i = CompFE2.Getl

End Function

Function X ()
Call CompFE2.Setl(i)
Call CompFEL.Setl(i)
Call CompFEL.X

Call CompFE2.Setl(CompFE1.Getl
Call CompFE2.X

End Function

Figure 4.21: Example of Required Relationship.

The example below in Figure 4.22 shows a more traditional function that has

more than one feature implemented. Note that code for Feature 2 is implemented

only when the dependent data i is equal to Something.

If i is not equa to

Something, Feature 2 is never invoked. Thus FE; requires FE;. The right block

simply encapsulates the Feature 2 code into a component along with dependent

datai and b.

129

Function X () Function X ()
Declare Local Variable i Declare Local Variable i
Declare Local Variable b Declare Local Variable b
Code for Feature 1 Code for Feature 1
i = Initialize i = Initialize
b = Initialize b = Initialize
Rest of Feature 1 Code Rest of Feature 1 Code
Change i to Something Change i to Something
Change b Change b
More of Feature 1 Code More of Feature 1 Code
If i = Something Then If i = Something Then
Code for Feature 2 Call CompFE2.Set(i)
Use b Call CompFE2.Set(b)
Rest of Feature 2 Code Call CompFE2.X()
End if End if
End Function End Function

Figure 4.22: Example of Required Réationship.

An alteration relationship is similar to required as shown in Figure 4.23. The
function prior to its evolution is the one to focus on because the one on the right
can have similar implementation as the required relationship. FE; aters FE; based
upon SomeSpecificVaue of b. Since, entire code of FE; is encapsulated, the
evolved function in the right block looks similar to the required relationship;

however, they are quite different.

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1

i = Initialize

b = Initialize

Rest of Feature 1 Code
Change i to Something
Change b

More of Feature 1 Code

If i = Something Then
Code for Feature 2

End Function

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1

i = Initialize

b = Initialize

Rest of Feature 1 Code
Change i to Something
Change b

More of Feature 1 Code

If i = Something Then
Call CompFe2.Set (i)

Use b Call CompFe2.Set (b)
If b = SomeSpecificValue Then Call CompFe2..X ()
Do something different for Feature2 End if
Else
Rest of Feature 2 Code End Function
End if
End if

The next example illustrates a shared relationship implementation. In

Figure 4.23: Example of Alteration Relationship.

130

Figure 4.24 this example, the state is shared among the two features via a shared-

state-full function A (). Function A () holds the state in a static variable and that

state is used by FE,. Since FE; and FE; use function A (), the two features are

related; function A () can be some part of component comp FE,. Finally, the code

for FE; is actually moved into amethod called X ().

Function X (int ¢)

Declare Local Variable i
Call A(0)

i = Initialize
i=AQ)

IF ¢ = SomeValue Then
Code for Feature 1
Usei
More of Feature 1 Code

Else
Code for Feature 2
Usei
More of Feature 2 Code

End if

End Function
Function A(int i)

Static Variable K

Ifi=0 Then
Calculation Code for K
K = SomeValue

Else
Return K

End if

End Function

Function X (int ¢)

Declare Local Variable i
Call CompFE2.A(0)

i = Initialize
i = CompFe2.A(1)

IF ¢ = SomeValue Then
Code for Feature 1
Usei
More of Feature 1 Code

Else
Call CompoFe2.Set(i)
Call CompFe2.X

End if

End Function

Figure 4.24; Example of Shared Relationship.

131

Even though conflict and competition are solution domain concerns, they usually
do not share a common function as far as implementation is concerned as shown
in Figure 4.25 and Figure 4.26. As a result, these two types of direct feature
relationships can be profiled easily with the code-profiler; however, evolution
may require configuration level changes at a higher granularity. For example, a
conflict relationship exists when a batch process is trying to change the status of

certain records in the database while the GUI is running. Changing the status is,

132

in fact, a feature but since it can be caled from both batch and GUI there is a
conflict. Since both these features are implemented in separate functions, the
code-profiler will identify them individually based upon the test cases. The
evolution of these two direct relationships (conflict and competition) is outside
the scope of this dissertation. The understanding is that these methods are called

at different times so there will not be a problem.

Function X ()
Update Rows in certain table of a Database Function X ()
via a Batch Process CompFe2.X
End Function End Function
Function Y() Function Y()
Update Same Rows in certain table of a CompFe2.Y
Database via a GUI Process End Function

End Function

Figure 4.25: Examples of Conflict Relationships.

Function X () Function X ()
Trying to access a shared memory region CompFe2.X
attime t
End Function End Function
Function Y() Function Y()
Trying to access the same shared memory CompFe2.X
region at time t (as function X)
End Function End Function

Figure 4.26: Example of Compete Relationships.

133

4.4 Budget Analysis Model

In this section, we describe a simple model that allows the project manager to
quickly calculate the net gain or loss due to the application evolution
methodology. While there are several cost models such as COCOMO and others
[15][17][109][130] that can be used, we show a simple model to track costs
relevant to our methodology. These items can be integrated into other cost
models as well. These costs are evaluated in Chapter 6 using our primary case
study. Other cost savings are also possible so thislist is not exhaustive. Note that
original regression test-suites can be used to test feature-based as well as the
CORE components. It is important to note that testing feature-based and CORE
components are two separate processes. We suggest that CORE be integrated
first and then tested, followed by the feature-based (and CORE) components. The

elements of our cost models are as following:

134

Element

Description

Cost of Mapping Features and Test-
Cases

Time taken by the software team to identify and map features
and test cases.

Cost of identifying code using test cases
and profiler

Time taken by the software team to run the code coverage
tool to identify feature implementation.

Cost of Refactoring

Time taken to analyze heuristics and Fls.

Cost of Developing Components

Time taken to develop feature-based
components

fine-grained

Cost of Developing CORE Component

Time taken to create the shared reusable library

Cost of Configuration Management
(CM)

Time taken to develop CM activities among product lines

Cost of Testing

Time taken to test feature-based and CORE components

Cost of Training and Documentation

Time taken to develop users guide and train other members
of the software process team

Savings from Solving Feature Problems

Time saved from fixing the feature specific problems. It can
be viewed as what would it cost in absence of the
methodology

Savings from improved architecture
(reduced globa variables, more explicit
communication and better understanding
of features)

Time saved in training a new hire. This element is hard to
measure because it is always implied. We were unable to
measureit at AFS.

Savingsin reusing Core

Time saved in re-development efforts in other product lines

Savings in reusing feature specific
component

Time saved in re-devel opment effortsin other product lines

Net Cost (+)/Savings (-)

Sum of all costs and savings. Negative number means a
profit.

Table4.17: Budget Analysis.

45 Formal Model

The feature model and the fine-grained component model are supported by a
formal model that we now describe. We use Relational Calculus as the basis of

our formal model that was introduced by Codd [34].

Relational Calculus Preliminaries.

A feature as described earlier is a group of individual requirements that describes
a unit of functionality. We also established that regression test cases are the way

these features are exercised. The feature model describes how FIs (functions,

local dataand global data) is associated with the features.

Refer to Appendix D for

135

Researchers [5][125][121][99] have proposed several execution dlice-based
heuristics to identify code that is uniquely related to a given feature. Although
code so identified provides an excellent starting point for program understanding
and evolution, it is not sufficient to capture relationships such as SS, SSF, DF and
DD (see Section 4.1.4). To capture these relationships, we need to identify
functions and data that are shared among features. One approach is to use the
union of the FI of related test cases to find a set of functions and data.
Theoretically, we may need to use al test cases for a given legacy system and
feature. In practice, this is often not necessary because the evolution
methodology we describe suggests three ways to group related test cases (see
Section 4.1.3.1).

The reason for using test cases with respect to the feature being examined is to
avoid Fls that have nothing to do with this feature. If this is not possible (i.e.,
every input with respect to this feature also exercises some other feature), we need
to subtract code that is uniquely used to implement the other features from the
code identified by the union of such test cases. A simple example explanation is
as follows. Suppose a feature (say FE;) cannot be exercised without also having
another feature FE, exercised. Also, assume that FE, can be exercised by itself.
Under this situation, away to find code used to implement FE; isto first find code

used to implement FE, and FE;, then subtract the code uniquely related to FE,.

136

The formal model presented in this section forms the mathematical basis for the
Feature and Fine-Grained Component Model discussed earlier. Regression test
cases, feature, feature implementation and fine-grained components are
represented using Relational Calculus and First Order Predicate Logic.

4.5.1 Data Model

Figure 4.27 illustrates the data model that will be used as the basis for formalism
using relational algebra. The data model also provides the basis for the Evolution
Manager Utility described in Section 4.6. The data model contains the
information regarding the legacy system, the feature function relationship, the
feature interactions and finally the component definition. The data model can be
used to trace feature relationships, interactions, and component evolution of a
legacy system.

The data model can be divided into four parts:

* System Information Part: This part consists of the following six tables;
Legacy System, Release, Feature, Test Case Feature Map,
Function_List and Test_Cases. The system information part describes the
information about the legacy system’s release. A release is a production
version of the legacy system. This part of the data model reflects alegacy
system with many releases. Each release may have many associated
features, functions and test cases. A feature can be represented by one or

more test cases. Table 4.18 provides more details on the specific tables

137

and their relationships of system information part of the data model. The
purpose of these tables are to capture information about the legacy system,
the data can be entered manually into the database or import routines can
bring the data from another system/sub-system.

Feature/Function Part: This part of the data model stores the results
from the profiler and is related to the system information. The two parts
are related by Function ID in the tables Function_List and
Feature_Function Map. The feature/function part of the data model
consists of Test_Cases to_Function, Feature_Function_Map,
Function_To_Vars and Variable tables. Essentialy, the test cases and the
Fl is determined by using profiler and Feature/Function mapping is stored
in the Feature_Function_Map table. Information about variables and their
location within the function is kept within the Function_To Vars and
Variable tables. Table 4.19 provides more details on the specific tables
and their relationships of system information part of the data model.
These tables are central to the collection of information for the
methodol ogy.

Feature Interaction Part: This part of the data model contains
information about feature interaction. It consists of Shared Stateful,
Dependent_Data, Dependent_Function and Shared Stateless tables. This

part is related to the feature/function part via the Execution_ID field

138

within the Feature Function_Map and all the four tables listed above.
This part of the data model is populated by the analyzing the feature
interactions among features. The code profiler identifies the FI and data
that is associated with afeature. This FI may call functions (SS, SSF, DD,
and DF, see section 4.1.4 for more details) that may be part of other Fl.
The table Shared_Stateful is populated if Fl calls an SSF that is part of
another Fl. Likewise, Shared Stateless is populated if FI calls an SS that
is part of another FI, and so on. Currently, these tables are manually
populated in the database but code can developed to identify SS, SSF, DD
and DF from the calling Fls to automate this process. Table 4.20 provides
more detaills on the specific tables and their relationships of system
information part of the data model.

Component Definition Part: This part of the data model contains
information regarding the component definition that is the result from
applying the methodology. It consists of Component,
Component_Interface, Component_Property _Set and
Component_Property Get tables. This part is related to the feature
interaction part via the Shared Stateful ID, Dependent Data ID,
Dependent_Function_ID and Shared Stateless ID. Component definition

part stores the information regarding property get, property set and the

139

feature interface. Table 4.21 provides more details on the specific tables

and their relationships of component definition part of the data model.
There are severa purpose of this data model. First, it provides an intuitive
understanding of the evolution process and maps the methodology steps to the
physical tables. Second, it provides the foundation of our formal model (see
Section 4.5). Third, it provides the foundation for the Evolution Manager
Utility (see Section 4.6) that can be used to track the evolution process of our

methodol ogy.

140

’E{Snapshnt Yiewer - [Evolution Manager Data Model.snp] Y | 1 |
@ File wiew Window Help 1= x]
=l

Systermn_ID
[System_Name

Felease Label

odule_Location
Release [0

Release [0

xecltion_Traces_ID
est_Case_Feature_ID

unction_ID full
overage hared_Stateful_ID

xecution_Traces_ID

|
C rt_Function
Dependant_Function_ID
xecution_Traces_ID
hared_SEatefuI_ID
P Dependant_Furnction_ID
tion_Ti D] = -
XECLILON_ races_ Ghared_Stateless_ID
Irterface_MName
Property_ID ared ¢
Dependant_Data_ID s
broperty_Name haredl_State less_ID
et wecUtion_Traces_ID
omponent_ID
Property_ID
[riterface_ 10
omponent_Name
Property_Name
|

PTRY A PP T _ 2

Figure4.27: Data Model Used asBasisfor Formalism.

Table Related Table: Keys Relationship
Relationship Type

Legacy_System Legacy System: System_ID One-To-Many
Release

Release Legacy System: System_ID One-To-Many
Release
Release: Release ID One-To-Many
Feature
Release: Release ID One-To-Many
Test Cases
Release: Release ID One-To-Many
Function_List

Feature Feature: Feature 1D One-To-Many
Test_Case Feature Map
Release: Release ID One-To-Many
Feature

Test_Case_Feature Map Feature: Feature_ID One-To-Many
Test Case Feature Map
Test_Cases: Test_Case ID One-To-Many
Test_Case Feature Map
Test_Case_Feature Map: Test_Case_Feature 1D One-To-Many
Feature Function Map

Test_Cases Test_Cases: Test_Case ID One-To-Many
Test Case Feature Map
Release: Release ID One-To-Many
Test Cases
Test_Cases: Test_Case ID One-To-Many
Test_Cases TO_Function

Function_List Function_List: Function_ID One-To-Many
Test Cases TO Function
Function_List: Function_ID One-To-Many
Feature Function Map
Release: Release ID One-To-Many
Function_List
Function_List: Function_ID One-To-Many

Function_TO_Vars

Table 4.18: Data M oddl - System Infor mation.

141

Table Related Table: Keys Relationship
Relationship Type

Feature_Function_Map Feature_Function_Map: Execution_Traces ID One-To-Many
Shared_Stateless
Feature_Function_Map: Execution_Traces ID One-To-Many
Shared_Stateful
Feature_Function_Map: Execution_Traces ID One-To-Many
Dependent_Data
Function_List: Function_ID One-To-Many
Feature Function_Map
Feature_Function_Map: Execution_Traces ID One-To-Many
Dependent_Function
Test_Case_Feature Map: Test_Case_Feature_ID One-To-Many
Feature Function Map

Function_TO_Vars Variable: Variable ID One-To-Many
Function TO Vars
Function_List: Function_ID One-To-Many
Function_TO_Vars

Test_Cases TO_Function Function_List: Function_ID One-To-Many
Test Cases TO_Function
Test_Cases: Test_Case ID One-To-Many
Test Cases TO Function

Variable Variable: Variable ID One-To-Many

Function_TO Vars

Table 4.19: Data M odd - Feature/Function Part.

142

Table Related Table: Keys Relationship
Relationship Type

Dependent_Data Feature_Function_Map: Execution_Traces ID One-To-Many
Dependent_Data
Dependent_Data: Dependant_Data_ID One-To-Many
Component_Property S
Dependent_Data: Dependant_Data ID One-To-Many
Component_Property G

Dependent_Function Dependent_Function: Dependant_Function_ID One-To-Many
Component_Interface
Feature_Function_Map: Execution_Traces ID One-To-Many
Dependent_Function

Shared_Stateful Shared_Stateful: Shared_Stateful_ID One-To-Many
Component_Interface
Feature_Function_Map: Execution_Traces |ID One-To-Many
Shared_Stateful

Shared_Stateless Feature_Function_Map: Execution_Traces ID One-To-Many
Shared_Stateless
Shared_Stateless: Shared_Stateless ID One-To-Many

Component_Interface

Table 4.20: Data M odel - Feature I nteraction Part.

143

Table Related Table: Keys Relationship
Relationship Type

Component Component_Interface: Interface 1D One-To-Many
Component
Component_Property_G: Property ID One-To-Many
Component
Component_Property_S: Property_ID One-To-Many
Component

Component_Interface Component_Interface: Interface 1D One-To-Many
Component
Shared_Stateful: Shared_Stateful_ID One-To-Many
Component_Interface
Shared_Stateless: Shared_Stateless |D One-To-Many
Component_Interface
Dependent_Function: Dependant_Function_ID One-To-Many
Component_Interface

Component_Property Get Component_Property G: Property ID One-To-Many
Component
Dependent_Data: Dependant_Data_ID One-To-Many
Component_Property_G

Component_Property_Set Component_Property_S: Property_ID One-To-Many
Component
Dependent_Data: Dependant_Data ID One-To-Many

Component_Property S

Table4.21: Data M odel - Component Definition.

144

145

4.5.2 Preliminary Definition

Let:

LS be aLegacy System consists of functions and global data, LS = (F,G).

Define FE to be the set of all featurein LS and F is the set of all functions, f; U F.
FE; represents a specific feature. Let T be the set of regression test case that are
part of LS, T ={ty, tp, t3, t4 ta}, ti refersto a specific test case within T.

The profiling of LS can determine which Fls are executed for any test caset O T.
Thus, we define arelation EXERCISES over T x F such that EXERCISES(t;, f;) is
trueif f; isexercised by test caset;.

We now define a relation that links test cases and features together. There are
many different ways to view the features in FE but we are concerned with
members of FE that can be represented by a subset of T. Thus we can define a
relation REPRESENTS over T x FE such that REPRESENTS(t;, FE) is true if

test case t; represents feature FE;.

Minimal Constraint — [FE; [Jt; Such that REPRESENTS(t;,FE;)

Coverage Constraint — [t; JFE; Such that REPRESENT S(t;,FE;)

Non Pervasive Constraint — (Not [) FE; [J t; Such that REPRESENTS(t;,FE;), this

means that no feature is tested by all test cases.

146

Let Fl; be afeature implementation as defined in the feature model and

FE; be afeature of LS that is exercised when K; is executed, k; is a set of test cases

such that k; LI 1. For example, K = {ty, ts, t11}; note that K; = by the non-

pervasive constraint. We define the USES(f; ;) relation over F x F that identifies
when function f; invokes function f;. We are not ready to provide precise

definition of the term feature implementation. Define Fl; as the implementation

of FE in LS such that FI, - {f | 0t O T, f O F, REPRESENTS(t, FE) [

EXERCISES(t,f)}. Note that Fl; will be the way we refer to the implementation
of FE;

4.5.3 Feature Interaction

Features interact because their underlying feature implementation overlap. Two

features FE; and FE; interact functionally when FI; n FI; # @. Two features can

also interact through data. If we define G to be set of global variables in LS,

LOCALS (fj) to be set of local variables within a function f;, D(fj) = {d |

USES(f;,d) [] (d O {G O LOCALS(f)})}, and DATASCOPE(FE) = { d T D(f))
Lo Fli} then the two features interact through data when DATASCOPE(FI;) n

DATASCOPE(FI)) # @. Note that data interaction model is not powerful to

147

capture alias or pointers to data (such as a SQL statement). We chose to ignore
such details at this time since our methodology is capable of identifying the data
that is required to create components. It is also useful to discuss the concept of

neighboring features, that is, features that share their implementation with the
target (feature to be evolved) feature. NEIGHBOR(FE) = { FE | F§ % FE [
(Fli n FI; # @)}

45.4 Classifying Functions

A function is Shared Stateless (SS) when D(f) = {@ LJOFE FE [f OFl, n f O
FI}

A function is Shared State-Full (SSF) when D(f) = {@ L1 OFE ,FE, | Od O D(f)

[1d 0 DATASCOPE(FE;) [1d O DATASCOPE(FE))}

A function is Dependent Data (DD) when U FE, FE f, d, f, | d O

DATASCOPE(FE) n DATASCOPE(FE) [] uses(.d) U f, 0 F;) U
USES(f,.d) Lf, 0 F, L, £,
A function is Dependent Function (DF) when O FE; FE; fy , fy, f, | fx O Fl)) ny

0 Fy) LJuses, f,) L uses(,, f,) Lf, #f,

148

4.5.5 Identifying Interactions within a Functions

We need to capture the interactions within a function between features. We
define TRACE(t,f) = {N} where N is a natural number representing the lines of
code executed within function f when test case t is exercised. The function
definition can be defined to be Fpg = N X f. Given that there may be a second

feature whose implementation may overlap within f, we need to separate the code

within the function f. We define SCOPE(FE;f) = Ot L] TRACE(,f) LIf OFI;.

This alows us to define the code that is exclusive to the feature as

EXCLUSIVE(FE, f) = SCOPE(FE; f) - L] SCOPE(FE, f) O FE, % FE;

4.5.6 CORE

We assume that all functions that belong to CORE are stateless and that they are
exercised by all test cases. We define CORE = {fIJF;|0 tOT,EXERCISES(t,f) [
SS(1,f); -

4.5.7 Threshold

As defined in Section 4.1.3.3 that Threshold consists of FI, K and C where Fl is
the number of functions (note that this is same as feature implementation), K is
the number of neighboring features and C is the average coverage of a FE across

al Fls.

149

Generalized Feature Set (GFS) for FE; for a given function f,= Cardinality(CIT; |
REPRESENTS(T;, FE) [Ex ERCISES(T,fy)). It means set of features

implemented in agiven function.

When |GFS| = 1 it indicates that the function implements only one features

|GFS| > X represents Evolution Threshhold. It means that if a function
implements more than X featuresin it, then it is probably not a good candidate for
our methodology unless the function belongs to CORE.

Threshold can also be defined as a combination of (|Fl|, |K|, C), where |FI| =
Cardinality(OFl;, FE; | FI;), |K| = Cardinality(OF!;,FE; INEIGHBOR(FE;)) and C =
(Cardinality(OFE; | EXCLUSIVE(FE; f))/|FI|)* 100.

Figure 4.27 illustrates the data model that can be used as the basis for formalism
using relational algebra and first order logic.

45.8 Summary

We presented a formal representation of our methodology in this section. Using
relational calculus and first-order-logic we defined Feature Implementation,
Feature Interactions, Classification of Functions into SS, DD, DF and SSF, and
CORE. Most important aspect of our formal model is the fact that it is based on
relational data model described in Section 4.5.1. We identified a weakness in
representation of data when the data is a pointer or an alias (such as a SQL

statement). We also represented important elements of our methodology such as

150

GFS, Threshold and Neighboring features. The next section describes the
evolution manager utility that is based on the data model and it proved to be a

useful tool in our case study.

151

4.6 Evolution Manager Utility

We developed a utility called evolution manager based upon the data model

discussed in Section 4.5. Figure 4.28 shows an overview of evolution manager

functions. The key features of evolution manager utility are:

Feature function relationships based upon test case and features, and test
case and functions

Feature function relationship in terms of coverage percentage

Exclusive coverage of afeature within afunction

Calculate Threshold T(FI,K,C)

Variable usage (set or use) by afeature within afunction

Feature implementation in terms of which lines of code and variables
implement the feature

Severa tracking reports such as feature lists, function lists, or features

within arelease etc

The following results from the profiler are imported into the evolution manager:

Line(s) of code executed in each function by atest case

Local and global Variables used and updated in each function

In addition to the information imported from the profiler, the evolution manager’s

data model accounts for following data (user input):

152

» Test cases used in each release, provided by testers

» Mapping of test case and features, provided by testers
Using SQL statements and matrix calculations, the evolution manager generates
reports that allow us to identify feature implementation. The feature
implementation is then used to refactor the code to create component. The utility
does not refactor the code but provides tracking and identification of feature
implementation based upon information discussed above. Among the key reports
that the utility provides are feature/function mapping, feature exclusive lines of
code in a function, threshold and recommendation for component’s properties.
The evolution manager utility can be used to help automate the methodology by
taking the following steps:

* Populate the system information part of the data model either by importing
data from another system or by manually entering the data through some
simple user interfaces screens.

* Develop logic to identify feature/function interaction by identifying SS,
SSF, DD and DF; note that this will involve programming language-
dependent logic. Thiswill result in populating the feature interaction part.

* Develop logic to populate the component definition part, this can be

achieved by identifying which variables are set/used by Fl.

153

Appendix G provides detail on the evolution manager utility and implementation

of the example discussed in Chapter 5.

Profiler Results
(Test Case and Function Mapping)
(Function and Variable Usage)

4
) Evolution Manager
Evolution Manager - ;

(Import Process Populate Tables l(Fgature Function N‘;applng by d
Test Case To Functions and Analyzing Test Case and Features an:
- \7ari§b|es) Test Case and Test Case and

Functions)
A
Py
]
1=}
o
—~
h 4
Feature Function
. Mapping Each Cell
Evolution Database Shows LOC and %
Coverage.
A A
Evolution Manager .
. . Evolution Manager
(Fi?rzrrﬁorf&fgﬁggﬁ:ﬁ%ﬂ?&g c (Threshold Calculation and Many other
exclusive for a given Feature) Reports)

uoday
uoday

T(FILK,C) and
Other tracking

Feature Common
reports

and Exlusive

Figure 4.28: Evolution Manager Utility.

154

4.7 Summary

Four models were discussed in this chapter, namely the feature model, fine-
grained component model, the budget analysis model and the forma model. The
feature model describes our definition and understanding of features. It address
the feature interaction problem by considering relationships among features. We
also discussed heuristics using feature implementation. The fine-grained
component model describes our definition and understanding of components and
component model. Both feature and fine-grained component models are used to
evolve feature implementations into reusable components. We also described a
simple budget analysis model and items that should be tracked so the
methodology can be verified. Finally, we provided theoretical foundation of our

feature and fine-grained component model in formal model.

155

5 A Simple Example

To illustrate indirect feature relationships and evolution methodology; we have
extended a small example that first appeared in [5]. We extended the example to
show how our evolution methodology can be used to encapsulate a group of
related features. The purpose of this example is to show how our evolution
methodology can be used to trace source code associated with test cases; how the
traced code can be encapsulated into components; and finaly, how these
components can be reused.

As described in [5] and informally observed, an Automatic Teller Machine's

(ATM) operational requirements are shown in Table 5.1.

ATM Operational Requirements

A customer must be automatically prompted for a Personal Identification Number (PIN).

2. After the input of a PIN, the customer must be offered a set of operations: make a
deposit, make awithdrawal, or check one account balance.

3. After an operation has completed, the customer must have the opportunity to start another
operation.

4. At any point of an operation, the customer must be able to cancel the current operation
and be asked whether to continue with another operation.

5. After the operation is chosen, the customer must select the account on which to perform
the operation: checking or savings.

6. In the case of a withdrawal, the customer must enter a positive humber that represents
the amount to withdraw from the selected account. Furthermore, if the withdrawal is
done on the checking account then the amount must be less than or equal to $300.

7. Inthe case of adeposit, the customer must be able to insert bills of $5, $10, $20, $50 or
$100 into the ATM. The corresponding account must be credited.

8. In the case of a balance operation, the balance of the corresponding account must be
displayed on the screen.

9. When the series of operations is terminated, the customer must decide whether a receipt
should be printed. Given a positive response, a receipt with the balance information of
all accounts that have been affected during the transaction should be printed.

Table5.1: ATM Operatioal Requirements.

=

156

This ATM function was implemented in Visual Basic (See Figure 5.1). In
addition, a feature analysis and test-case analysis was also performed to map
feature and test cases. Note that details of functions such as Make Deposit () and
Make Withdrawal () are omitted for space reasons. Line numbers are used for
reference as they will be utilized when profiling the code using test cases. An
interesting observation regarding the ATM example is that there is an indirect
composition relationship because an Account is comprised of Checking and

Savings.

OND U A WN R

9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
End Function

Global PIN

Global Account_Choice
Global Amount

Global Checking_Flag
Global Savings_Flag
Global Receipt_Choice
Global Customer_Rec

Function ATM ()

Print ("Enter PIN")

Read(PIN)
Customer_Rec = Get_Customer(PIN)
Do

Clear_Screen
Print (1. Deposit, 2. Withdraw, 3. Balance, 0 to End)
Read (Code)
IF Code >0 Then Print (1. Checking, 2. Savings)
IF Code >0 Then Read (Account_Choice)
IF Code =1 Then
Amount = Get_Money(Customer_Rec)
IF Amount> 0 And Account_Choice =1 Then
M ake_Deposit(Customer_Rec, Amount, "C")
Checking_Flag = True
ELSEIF Amount> 0 And Account_Choice =2 Then
M ake_Deposit(Customer_Rec, Amount, "S")
Savings_Flag = True
END IF
ELSEIF Code =2 Then
Clear_Screen
Print ("Enter Amount")
Read(Amount)
IF Account_Choice =1 THEN
IF Amount <= 300 AND Amount>0 THEN
M ake_Withdrawal(Customer_Rec, Amount, "C")
Checking_Flag = True
ELSEIF Amount>300 THEN
Print ("Error: Cannot withdraw more than 300")
END IF
ELSEIF Account_Choice = 2 THEN
M ake_Withdrawal(Customer_Rec, Amount, "S")
Savings_Flag = True
END IF
ELSEIF Code = 3 Then
IF Account_Choice =1 Then
Display_Balance(Customer_Rec,"C")
ELSEIF Account_Choice =2 Then
Display_Balance(Customer_Rec,"S")
END IF
END IF
While (Code isNOT Equal to 0)
Print ("Do you wanta Receipt?, 1. Yes, 2. No")
Read(Receipt_choice)
If Receipt_Choice =1 Then
IF Checking_Flag THEN
Print_INFO(Customer_Rec,"C")
ELSEIF Savings_Flag THEN
Print_INFO(Customer_Rec,"S")
END IF
ENDIF
Eject_Card()

Figure5.1: ATM Function Implemented in VB.

157

There are severa features and sub-features in this example. They are summarized

in Figure 5.2:

FE1:
FE2:
FE3:
FE4:
FE5:
FEG6:
FE7:
FES8:
FE9:

FE18

FE20
FE21
FE22
FE23
FE24
FE25

FE10:
FE11:
FE12:
FE13:
FE14:
FE15:
FE16:
FE17:

FE19:

Customer Session
Enter PIN

ATM Operations
End of ATM

Receipt (Print)

Get Receipt

Skip Receipt
Withdrawal

Checking Withdrawal
Savings Withdrawal
Abort Withdrawal
Deposit

Checking Deposit
Savings Deposit
Abort Deposit
Verify Balance
Checking Balance

: Savings Balance
Abort Balance
:Amount to Withdraw
: Amount to Deposit
‘Verify Limits

: Abort Withdrawal

: Accept Money
Enter Digit

Figure5.2: Summary of Featuresin ATM Function.

158

Again, the deposit feature comprises a deposit either in the checking account or

the savings account. Similarly, withdrawal can aso be viewed as an indirect

relationship of type composition.

exercise the featuresin ATM sub-system.

The next step is to analyze test cases that

159

Test Case Content Mapped Features
t1 123 Deposit Savings 100 Finished Finished No FE1,FE2,FE3,FE4,FES,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25
t2 123 Deposit Checkings 100 Finished Finished No |FE1,FE2,FE3,FE4,FES5,FE7,FE12,FE13,FE21,FE22,F
E23,FE23,FE25

t3 123 Withdraw Checkings 20 Finished Finished No |FE1,FE2,FE3,FE4,FE5,FE7,FE8,FE9,FE20,FE25

t4 123 Withdraw Checkings 500 Finished Finished No| FE1,FE2,FE3,FE4,FES,FE7,FE8,FE9,FE20,FE25

t5 123 Withdraw Savings 200 Finished Finished Yes |FE1,FE2,FE3,FE4,FES5,FE6,FES,FE10,FE20,FE25

t6 123 Balance Checking Finished Y es FE1,FE2,FE3,FE4,FES,FE6,FE16,FE25

t7 123 Balance Savings Finished Yes FE1,FE2,FE3,FE4,FES,FE6,FE18,FE25

t8 123 Deposit Savings 50 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25

Table5.2: Summary of Test Casesand Featuresin ATM Sub-system.

Note that not al features are worth analyzing for the purpose of creating
components. The main features that are of interest are Deposit, Withdrawal and
Balance inquiries of checking and the savings account. The eight test cases are a
complete set of test cases that exercise the three features of interest. For example,
test case number 5 will withdraw $200 from savings account and will generate a
receipt before giving the card back to the customer.

Before the components can be created, code must be located and features must be
analyzed and prioritized. Some features are better candidates than others asfar as
their evolution is concerned. While feature analysis and prioritization can identify
the reasons to evolve features, their implementation in terms of functions and
variables is indeed very important. One such technique, described in this

dissertation is to identify code associated with a feature is to run source-code

profiler with the test cases.

160

In this simple example, the following code was

revealed after running all eight test cases (Table 5.3):

Test Content Linesof Code
Case
t1l 123 Deposit Savings 100 End Finished No 1-9,10,11,12,15-18,41-44,51
t2 123 Deposit Checkings 100 End Finished No 1-9,10,11,12,13-14,41-44,45-46,51
t3 123 Withdraw Checkings 20 End Finished No 1-9
10,19,20,21,22,23,24,25,26,30,33,41,42,43,44,51
t4 123 Withdraw Checkings 500 End Finished No 1-9,
10,19,20,21,22,23,27,28,29,30,33,41,42,43,44,51
t5 123 Withdraw Savings 200 End Finished Yes 1-9,
10,19,20,21,22,23,30,31,32,33,41,42,43,44,45,47,48,
49,50,51
t6 123 Balance Checking Finsihed Yes 1-9,34-36,41,42,43,44,45,46,50,51
t7 123 Balance Savings Finsihed Yes 1-9,34-36,41,42,43,44,45,47,48,49,50,51
t8 123 Deposit Savings 50 Finsihed Finished Yes 1-9,10,11,12,15-18,41-44,47-51

Table5.3: Profiler Resultson ATM Test Cases.

Once the code has been identified, it can then be refactored and evolved. There

are severa refactoring techniques that have been described in the literature. The

purpose of this dissertation is not to describe the refactoring techniques but to use

them in the evolution methodology. Note that there are functions that the ATM

function calls with al the test cases. Since these functions are common to all test

cases and features, they can be collected and bundled into alibrary called CORE,

asshown in Figure 5.3:

161

Function PRINT(s)
End Function

Function Read(s)
End Function

Function Get_Customer(s)
End Function

Function Clear_Screen
End Function

Function Print_Info(Customer_Rec,s)
End Function

Function Send_Back_Card
End Function

Figure5.3: CORE Library Functions.

Assuming that the deposit feature needs evolution, the following code snippet
outlines how the code isidentified, evolved into a component and called from the
legacy function ATM (). Notethat CORE is aso shown as a part of the
incremental evolution. The Deposit component has three set properties, namely
Customer_Rec, Amount and Account Choice. The Customer_Rec isused to
access the customer record, Amount property determines how much to deposit
and Account Choice tells the component into which account (Checking or
Savings) the deposit should be made. Note that the Account Choice variable can
further be refactored into a CONSTANT variable for explicitness. The return
values of the deposit component are represented by the get property. There are

three get properties that the caller of the deposit component can use, Balance,

162

Checking Flag, and Savings Flag. The Balance property tells the caller what the
balance is after making a deposit to either account. The flag properties smply tell
the caller which account was affected. The deposit functionality is encapsulated
in the function deposit() of component deposit as shown below. The calling of
the component is also shown in Figure 5.4 and

Figure5.5.

Function ATM()
CORE.Print ("Enter PIN")
CORE.Read(PIN)
Customer_Rec = CORE.Get_Customer(PIN)
Do
CORE.Clear_Screen
CORE.Print (1. Deposit, 2. Withdraw, 3. Balance, 0 to End)
CORE.Read (Code)
IF Code > 0 Then CORE.Print (1. Checking, 2. Savings, 3. Cancel)
IF Code > 0 Then CORE.Read (Account_Choice)
IF Code=1Then
CORE.Clear_Screen
CORE.Print(“Enter Amount”)
Amount=CORE.Read(Amount)
ComponentDeposit. Amount=Amount
ComponentDeposit.PIN = PIN
ComponentDeposit.Account_Choice = Account_Choice
ComponentDeposit.Deposit
Balance = ComponentDeposit.Balance
Checking_Flag = ComponentDeposit.Checking_Flag
Savings_Flag = ComponentDeposit.Savings Flag
ELSEIF Code =2 Then
Clear_Screen
Print ("Enter Amount")
Read(Amount)
IF Account_Choice = 1 THEN
IF Amount <= 300 AND Amount >0 THEN
Make Withdrawal(Customer_Rec, Amount, "C")
Checking_Flag = True
ELSEIF Amount >300 THEN
Print ("Error: Cannot withdraw more than 300")
END IF
ELSEIF Account_Choice = 2 THEN
Make_Withdrawal(Customer_Rec, Amount, "S")
Savings Flag = True
END IF
ELSEIF Code =3 Then
IF Account_Choice = 1 Then
Display_Balance(Customer_Rec,"C")
ELSEIF Account_Choice = 2 Then
Display_Balance(Customer_Rec,"S")
END IF
END IF
While (Codeis NOT Equal to 0)
CORE.Print ("Do you want a Receipt?, 1. Yes, 2. No")
CORE.Read(Receipt_Choice)
If Receipt_Choice = 1 Then
|F Checking_Flag THEN
CORE.Print_INFO(Customer_Rec,"C")
ELSEIF Savings Flag THEN
CORE.Print_INFO(Customer_Rec,"S")
END IF
ENDIF
CORE.Eject_Card()
End Function

Figure5.4: M odified ATM using Deposit Component.

163

Property Set PIN
Property Set Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Private Function
Make_Deposit(Customer_Rec,Amount,Account_Type)
Balance is Updated here

End Function

Private Function Get_Money(Customer_Rec)
End Function

Public Function Deposit()

Customer_Record = CORE.Get_Customer(PIN)

IF Amount > 0 And Account_Choice =1 Then
Make_Deposit(Customer_Record, Amount, "C")
Checking_Flag = True

ELSEIF Amount > 0 And Account_Choice =2 Then
Make_Deposit(Customer_Record Amount, "S")
Savings Flag = True

END IF

End Function

Figure 5.5: Deposit Component.

To show the power of incremental evolution methodology, Withdrawa and
Display Balance is evolved. Figure 5.6 shows what the evolved function and the
new components look like. Note that properties (get and set) are used to pass the
global variables. The public function provides the interface to the caler. The

private functions encapsul ate the withdrawal functionality.

164

Function ATM()

CORE.Print ("Enter PIN")
CORE.Read(PIN)
Customer_Rec = CORE.Get_Customer(PIN)
Do
CORE.Clear_Screen
CORE.Print (1. Deposit,2.Withdraw,3.Balance, 0 to End)
CORE.Read (Code)
CORE.Print (1. Checking, 2. Savings, 3. Cancel)
CORE.Read (Account_Choice)
IF Code =1 Then
CORE.Clear_Screen
CORE.Print ("Enter Amount")
Amount=CORE.Read(Amount)
CompDeposit.Amount = Amount
CompDeposit.PIN = PIN
CompDeposit.Account_Choice = Account_Choice
CompDeposit.Deposit
Balance = CompDeposit.Balance
Checking_Flag = CompDeposit.Checking_Flag
Savings_Flag = CompDeposit.Savings_Flag
ELSEIF Code = 2 Then
CORE.Clear_Screen
CORE.Print ("Enter Amount")
Amount=CORE.Read(Amount)
CompWithdrawal.Amount = Amount
CompWithdrawal.Max_Amount = 300
CompWithdrawal.PIN = PIN
CompWithdrawal.Account_Choice = Account_Choice
CompWithdrawal.Withdrawal
Balance = CompWithdrwal.Balance
Checking_Flag = CompWithdrawal.Checking_Flag
Savings_Flag = CompWithdrawal.Savings_Flag
ELSEIF Code = 3 Then
CompShowBalance.Pin = PIN
CompShowBalance.Account_Choice
Comp.ShowBalance
END IF
While (Code is NOT Equal to 0)
CORE.Print ("Do you want a Receipt?, 1. Yes, 2. No")
CORE.Read(Receipt_Choice)
If Receipt_Choice = 1 Then
IF Checking_Flag THEN
CORE.Print_INFO(Customer_Rec,"C")
ELSEIF Savings_Flag THEN
CORE.Print_INFO(Customer_Rec,"S")
END IF
ENDIF
CORE.Eject_Card()
End Fucntion

Property Set PIN

Property Set Account_Choice
Property Set Amount
Propert Set Max_Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Private Function
Make_WIthdrawal(Customer_Rec,Amount,Account_Type)
Balance is Updated here

End Function

Private Function Get_Money(PIN)
End Function

Public Function Withdrawal()
Customer_Rec = Core.Get_Customer(PIN)
IF Account_Choice = 1 THEN
IF Amount <= MAX_Amount AND Amount >0 THEN
Make_Withdrawal(Customer_Rec, Amount, "C")
Checking_Flag = True
ELSEIF Amount >MAX_Amount THEN
Core.Print ("Error: Cannot withdraw more than
MAX_Amount
END IF
ELSEIF Account_Choice = 2 THEN
Make_Withdrawal(Customer_Rec, Amount, "S")
Savings_Flag = True
END IF
End Function

Property Set PIN

Private Property Set Account_Choice

Function Display_Balance(Customer_Record,Account_Type)
End Function

Public Function ShowBalance()
Customer_Rec = Core.Get_Customer(PIN)
IF Account_Choice = 1 Then
Display_Balance(Customer_Rec,"C")
ELSEIF Account_Choice = 2 Then
Display_Balance(Customer_Rec,"S")
END IF
End Function

Figure5.6: ATM Function, Withdrawal and Show Balance Components.

165

The last and final part of the example shows how the components can be used to
add new functionality in the old legacy ATM function. In addition to these
components being reused, they also open door for potential use in the platforms
such as Wire Transfer Application or Internet Banking. Note that the new transfer
component is created by integrating the deposit and the withdrawa components

Figure5.7.

Function ATM_Evolved()

CORE.Print ("Enter PIN")
CORE.Read(PIN)
Customer_Rec = CORE.Get_Customer(PIN)
Do
CORE.Clear_Screen
CORE.Print (1. Deposit,2.Withdraw,3.Balance 4.Transfer, 0 to End)
CORE.Read (Code)
CORE.Print (1. Checking, 2. Savings, 3. Cancel)
CORE.Read (Account_Choice)
IF Code =1 Then
CORE.Clear_Screen
CORE.Print ("Enter Amount")
Amount=CORE.Read(Amount)
CompDeposit.Amount = Amount
CompDeposit.PIN = PIN
CompDeposit.Account_Choice = Account_Choice
CompDeposit.Deposit
Balance = CompDeposit.Balance
Checking_Flag = CompDeposit.Checking_Flag
Savings_Flag = CompDeposit.Savings_Flag
ELSEIF Code =2 Then
CORE.Clear_Screen
CORE.Print ("Enter Amount")
Amount=CORE.Read(Amount)
CompWithdrawal.Amount = Amount
CompWithdrawal.Max_Amount = 300
CompWithdrawal.PIN = PIN
CompWithdrawal.Account_Choice = Account_Choice
CompWithdrawal.Withdrawal
Balance = CompWithdrawal.Balance
Checking_Flag = CompWithdrawal.Checking_Flag
Savings_Flag = CompWithdrawal.Savings_Flag
ELSEIF Code =3 Then
CompShowBalance.Pin = PIN
CompShowBalance.Account_Choice
Comp.ShowBalance
ELSEIF Code = 4 Then
[CORE.Print (1. Checking, 2. Savings)
CORE.Read (Destination_Account_Choice)
CompTransfer.PIN = PIN
CompTransfer. Amount = Amount
Transfe Com pTransfer.Sour‘ce__Accoum_Choice = Account_Choice
CompTransfer.Destination_Account_Choice =
- Destination_Account_Choice
CompTransfer.Transfer
If Destination_Account_Choice =1 Or Account_Choice = 2
Checking_Flag = True
End if
If Destination_Account_Choice =2 Or Account_Choice = 2
Savings_Flag = True
End if
END IF
While (Code is NOT Equal to 0)
CORE.Print ("Do you want a Ticket?, Yes, No")
CORE.Read(Ticket_choice)
CompTicket.PIN = PIN
CompTicket.Ticket_Choice = Ticket_Choice
CompTicket.Ticket(Checking_Flag,Savings_Flag)
CORE.Send_Back_Card()
End Function

166

Property Set PIN

Property Set Source_Account_Choice
Property Set Destination_Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Public Function Transfer()
IF Amount > 0

CompWithdrawal.PIN = PIN

CompDeposit.PIN = PIN

CompWithdrawal.Amount = Amount

CompDeposit. Amount = Amount

CompWithdrawal.Account_Choice =
Source_Acount_Choice

CompDeposit.Account_Choice =

Destination_Account_Choice

CompWithdrawal.Withdrawal ()

CompDeposit.Deposit ()

CompBalance.PIN = PIN

CompBalance.Account_Choice=Source_Account_Choice

CompBalance.ShowBalance

CompBalance.Account_Choice=
Destination_Account_Choice

CompBalance.ShowBalance

END IF
End Function

Figure5.7: Integrating Withdrawal and Deposit into Transfer Component.

167

6 Case Study

We applied the ten-step methodology outlined in Section 2.1 to the Master
System (AMS), a product of American Financial Systems (AFS). AFS is a 60-
person software firm that develops software for the corporate-owned life
insurance market. AFS has developed AMS over the past 14 years to integrate life
insurance and executive benefits using mathematical and financial modeling.
AMS weas first developed using Microsoft BASIC. Over the years, Microsoft has
evolved BASIC into the more modern programming language, Visual Basic (VB).
AFS ensured that the latest Microsoft compiler technology was used with each
successive version of AMS. AMSistypica of long-lived software systems in that
it has evolved from its original DOS version to a more modern Windows version.
Appendix A lists the most important features of AMS. Appendix B describes the
overall architecture of AMS. To illustrate the results of our methodology, we
focused on the Input Processing functionality of AMS. Input Processing validates
and prepares data from user inputs (also called items) so AMS can perform
complex calculations to generate various reports. To an end-user, Input
Processing has two purposes, Suppression and Error Processing. Suppression is
a feature that either shows or hides an item in the user interface based upon the

value of another item. Error Processing is a feature that validates item values.

168

There are 450 items in AMS and many of them are interdependent. Upon closer
examination of Input Processing, we found that AMS also makes severa
Assignments (user input is stored as strings and is later assigned to types such as
Integer, Single, Double, or Array). While Assignments are a hidden feature to the
end-user, developers must naturally consider all three features when evolving the
Input Processing of AMS.

The AMS data model for Input Processing is a hierarchy of plan, employee, and
policy level information. A plan can have many employees and an employee can
have many life insurance policies. A database stores a Master File Table that
contains the 450 plan items that constitute a plan. Individual employee items are
stored in a Census File Table and can vary for each employee in the plan. The
Census File Table is associated with the Master File Table. For example, a plan
with 3 employees might store al common information in the Master File Table,
while storing each employee’'s age in the Census File Table. About 75% of the
plan items can vary from employee to employee. An AMS test case is created
from the combination of Master File and Census File data. AFS maintains a
regression test suite (Appendix C) of nearly 450 test cases with an average size of
10 employees per test case. Running all regression tests executes AMS nearly
7,500 times. AMS provides a batch facility for executing regression tests and

storing output to atext file.

169

The interdependencies among plan items are quite complex. For example, the
value of theretirenent age item for an individual cannot be less than the
policy issue age item; Input Processing must enforce this constraint when
either value changes. In addition, if the pol i cy i ssue age item is greater
than 75 then other items should be suppressed because certain policies may not be
issued to persons older than 45 in some states. There are numerous, more
complicated interdependencies within AMS items too detailed to discuss here.
When a user-input in an item invalidates a constraint, AMS must display a
message indicating the specific problem (note that suppressed items are not
involved in Error Processing).

6.1 Evolution reasons

After a series of discussions with AMS project managers, marketers, testers, and
key end-users, we found three reasons to evolve Input Processing.

6.1.1 AMS occasionally freezes during Input Processing

Many plan items are interdependent and so is their shared error-processing code.
For example, Item 9 assigns certain key variables whose value will determine
whether Item 16 is valid. In the code fragment validating values for Item 9,
shown in Figure 6.1, global variablenl t emissetto 16 and Process_Itens is
called to check for errorsin the assignment of the item identified by nl t em(Item
16). Item 16's code section (not shown) sets a global error flag, nError _F, to

indicate whether 1tem 16 has a problem, which in turn means Item 9 is not ready.

170

It is easy for developers to forget to reset the value of nl t emback to the value of
the calling Item number (in this case Item 9) resulting in an unbounded recursion

that freezes the system during user input.

nltem= 16
call Process Itens
nftem= 9
If nError F = 1 then
Set Up Error Variables
End if

Figure 6.1: Fragment for Validating Valuesfor Item 9.

6.1.2 The cost of adding a new item into Input Processing is high

AFS developers required an average of three days to add just a single item
because of implicit communication via global variables and the spaghetti-like
calling process of the dependent items. Developers adding a new plan item must
add a field to the database tables and update the data dictionary. Then it is
necessary to code the complex logic of item dependence across the three features,
namely, Assignments, Error Processing, and Suppression. Developers must
identify the list of items that need to be suppressed based upon the input value of
the new item and any errors must be generated. When adding an item, the
processing of key global variables would often change, causing unexpected side
effects. For example, incorrectly setting the value of nl t embrought back errors

that were previoudly fixed. Adding new items would often require unrelated items

171

to be suppressed since the Suppression and Error Processing features are
dependent on the Assignments feature.

6.1.3 The lack of code reuse between the desktop and web version of

AMS

Since the web-based version of AMS required similar logical processing of plan
items, AFS wanted to extract a reusable component from the legacy system to use
within both systems. AFS wanted to avoid the costs of maintaining two divergent
code bases, so solving this problem proved to be the greatest motivation for this

evolution effort.

6.2 Identify feature(s) with problems

The testers test the Suppression and Error Processing of each item by inputting
the valid entries for the particular item. Due to interdependencies, test cases are
designed to test the combined effect of items. For example Item 9 may have a
valid input of 1 and 2, the result (Suppression and Error Processing) of inputting
1 may be different than inputting 2. End-user views Suppression and Error
Processing of each item (and some valid combinations) when inputting values in
the item fields. Each item and the valid combinations of items can be viewed as a
unit for testing Suppression and Error Processing. For identifying features with
problems, we consider each item to be an independent feature. An example of
how Item 9 handles Error Processing and Suppression of other itemsis shown in

Table 6.1. Table 6.2 shows a partial listing of valid input and their combinations

172

resulting in 4 test cases; any other input combination should generate errors. It is

also to be noted that the rest of the item inputs remain the same for these 4 test

cases.

Input Processing

(each item and valid combinations with other items ar e represented by test cases)

Assignments (hidden)

Error Processing (visible)

Suppression (visible)

Item 9 hasavalid input of 1 and 2.

Any value other than 1 and 2 should
generate error. Certain inputs for
Items 5, 13, and 119 should not be
alowed if Item 9is 2, and they should
generate errors.

An entry of 1 should un-suppress
Items 30, 44 and 144

Table 6.1: An Example Assignments, Suppression and Error Processing.

Item Valid Input

9 1 2

5 1 5 2 3

13 <12/12/1990 >12/12/1990 <1/1/1991 1/12/1991
119 1 2 3 5

Table 6.2: An Example of Valid Input Combination for Testing Item 9.

6.3 Map test cases to features

Each item is representative of Input Processing feature to the end-user. Testers

and end-users work together to provide the test case and feature mapping, shown

in Table 6.3.

Features/Test Case

T1 T2 T3 T4 T5

Item 5

Item 9

Item 13

Item 16

T6| T7 | T8

Item 19

Item 26

Item 119

Item 212

Item 431

Table6.3: AMSInput Processing Test Case and Feature M apping (selective listing).

6.4 Map features to functions

173

Functions/Test Case T1 T2 T3 T4 5 T6
1,2345,6,7,89,90,91,
92,93,94,95,96,97,98,911,2,3,4,5,6,7,89,90,91,92,93,1,2,3/4,5,6,7,8,9,90,91,92,93,9

1,2,3/4,5,6,7,8,9,10|9,100,119,120,121,122| 94,95,96,97,98,99,100,119,1 |1 4,95,96,97,98,99,100,119,120, {1,2,3,4,5,6,7,8,9,
1,2,3/4,5,6,7,89,100,101,1 |0,101,102,103,104, | ,123,124,125,126,130, |20,121,122,123,127,128,129,{121,122,123,130,131,132,133, | 134,135,136,141,
02,105,106,107,108,141,14|141,142,143,145,1 |133,141,142,143,144,1| 130,133,141,142,143,144,15 | 141,142,143,144,145,147,148, | 142,143,144,145,

Process_lItems 2,143,144,151 46,151 51 1 149,150,151 146,150,151

Calc N 123456 123456 123456 123456 123456 123456

Process_Asterisks 12 12 12 12 12 12

123456789,

Year_Values_From_Series 1,2,34,56,7.89,10 123456,7.8910 1,23456,7.8910 1,2,34,56,7.89,10 1,2,345,6,7.89,10 10

COL_EDIT 1 1 1 1 1 1

Census_ltem 12 12 0 0 0 0

\Within_Bounds 1 1 1 1 1 1

Nth_Elem_in_String 0 0 12 0 12 0

Mort_Fnctn 0 0 0 0 0 1,2,3456,789

Adjust_Ages 0 12 0 0 12 12

Query_Check 1 1 1 1 1 1

Table 6.4: Profiler Listing of Featuresand Test Cases (selective listing).

To map features to functions, we instrumented the source code of AMS (only
need to do this once) using code-coverage software and ran all regression tests.
Appendix C describes the AMS regression-testing tool and its capabilities in
detail. We then analyzed the coverage results and grouped related test cases
together that exercised the input-processing feature for each item. A partial list of
our result is shown in Table 6.4 and Table 6.5. Recall that to obtain a feature
function relationship we follow the three-step process (see Section 4.1.3):

1. Obtain afeature and test case matrix as shown in Table 6.3.

2. Run the profiler on each of the test cases as shown in Table 6.4 to obtain
the LOC within each function.
Finally, we obtain feature function relationship by combining steps 1 and
2 as shown in Table 6.5. We used the code-coverage tool TrueCoverage™
from NuMega® which works with many programming languages such as

VB, Java, C++, and some scripting languages. Since AMS uses batch

174

processing for its regression testing, it was easy to produce instrumented
output against al the 250 regression test cases. However, these
instrumented images were stored using TrueCoverage's proprietary file
format, so we had to manually export each file into Excel for further
anaysis. The TrueCoverage tool has a merge utility that aggregated the
results of all 250 test cases that were instrumented. This merge utility
revealed that 95% of AMS was covered using the 250 test cases. We are
currently identifying whether the rest of the code is either unused or if
there are hidden features within the system that are not being exercised.
For each test case, we used TrueCoverage to identify the functions
executed, the percentage of lines covered within each of these functions,

and the variables used.

Features/Functions Process_ltems Calc_ N Process_Asterisks Year Values From Series COL_EDIT Census_ltem
001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1|
26,127,128,129,130,131,132,133,141,142,143,144,145,147,| 001,002,003,

Item_5 148,149,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001
001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1} 001,002,003,

Item_9 26,127,128,129,130,133,141,142,143,144,151 004,005,006 001,002 001,002,003,004,005,006,010 001
001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1} 001,002,003,

Item 13 32,133,141,142,143,144,145,147,148,149,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001
001,002,003,004,005,006,007,008,009,100,101,102,103,10
4,105,106,107,108,115,116,117,118,141,142,143,144,145,1} 001,002,003,

Item 16 46,147,148,149,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001 001,002
001,002,003,004,005,006,007,008,009,100,101,102,103,10] 001,002,003,

Item 19 4,141,142,143,145,146,151 004,005,006 001,002 001,002,003,004,005,006,010 001 001,002
001,002,003,004,005,006,007,008,009,100,101,102,105,10
6,107,108,115,116,117,118,141,142,143,144,147,148,149,1] 001,002,003,

50,151 004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

001,002,003,004,005,006,007,008,009,134,135,136,141,14 | 001,002,003,
2,143,144,145,146,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1 001,002,003,
32,133,141,142,143,144,145,147,148,149,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001

001,002,003,004,005,006,007,008,009,134,135,136,141,14| 001,002,003,
2,143,144,145,147,148,149,150,151 004,005,006 001,002 001,002,003,004,005,006,010 001

Table 6.5: Feature and Function M apping (selective listing).

175

6.5 Identify Fl and CORE

Table 6.5 provides a selective and pre-sorted listing of all the relevant functions
(FI) for the input-processing feature. In order to arrive at feature function listing,
we must identify the base-line architecture and the CORE as these functions are
executed for all test cases at all times. The main difference between the base-line
architecture and the CORE is that the base-line architecture changes the state of
global variables and other sub-systems such as databases, at an architectural level.
CORE on the other hand contains stateless functions that are utility functions. A
list of base-line architectural functions and CORE is shown in Table 6.7 and
Table 6.8 respectively.

Running regression test cases for all items (representing the Input Processing
feature) resulted in following information regarding FI for Input Processing:

» Since each item represented the Input Processing feature we aggregated
the profiler information for all items. The aggregation process was similar
to UNION of al lines of code process discussed in Section 4.1.3.2.
Aggregated information revealed that Input Processing is implemented in
17 functions. A partial listing of those functionsis shown in Table 6.4.

* Many items shared same lines of code indicating either a circular
dependency as mentioned earlier or dependent on some base items (such

asltem 9). The shared lines of code can be seenin Table 6.5.

176

* About 68% of Input Processing isimplemented in Process_Items function.
Another 16 functions were either used in implicit communication or were
stateless in nature. The three neighboring features included Assignment,
Error Processing, and Suppression. The threshold (FI = 17, K =3, C =
80%) suggests that we continue with the refactoring.

We ran all the 250 regression test cases to see how Input Processing measured
relative to the rest of the features. A partia result of the regression test case is
shown in Table 6.6. We will discuss this matrix in more detail in Chapter 7.
However, the interesting region to observe is the shaded area on the top left which
represents part of Input Processing. FE;, FE,, and FE; represent Assignment,
Error Processing and the Suppression sub-features respectively. Process_I t ens
is represented by f, Functions fs, fg and f; are shared stateless but only within the
scope of Input Processing features, such examples being functions query_check,
cal c_n and ast eri sks_i t em(also shown in Table 6.4). Functions f1g, f19, and o
ae CORE functions file_exists, integer_nmaximum and
i nt eger _m ni mumalso shown in the Table 6.8. Comparing Input Processing
features (FE;, FE,, and FEj3) to the rest of the features shown in Table 6.8, we
observe that Input Processing is a natural choice for evolution because of its

threshold value (FI =17, K =3 and C = 80%) relative to the other features.

177

SS

DF

SS

DD
SS
SS
SS

DF

DF

T12
FE 1, | Type

T11
FE 11

T10

FEo

T9

FEg

T8

FEg

T7

FE;

0

T6
FEo

0

75
FE

0

0

90

T4
FE,

0

0

0
0

0

80
100 | 100

T3

FE;

90

80

0

T2

FE,

80

75

Tl

FE,;

100 | 100 | 100

80

100 | 100 | 100

70

100 | 100 | 100
100 | 100 | 100
100 | 100 | 100

Test Cases
Function\Features

fy

f

fs

fy

fs

fs

f7

fs

fo

Table 6.6: Partial AM S Feature Function Matrix.

BASE-LINE ARCHITECTURE Purpose

Input Engine

1 |MAIN Required by the programming language

2 |VERIFY_USER Validate User

3 [LOAD_LICENSE_FORM Display licensing infor mation

4 [SET_RUNTIME_PARAMETERS L oad some key global variables

5 [OPEN_CASE Open Master and Census File

6 [LOAD_MAIN_FORM Master form isloaded in memory

7 |OPEN_ITEM_FILE Meta data isloaded

8 [MERGE_USER_DATA Mergeuser data into new structure

9 [INPUT_PROCESSING Assignment, Error Processing and Suppr ession

10 |SETUP_HELP_FILES Load Help filesin memory

11 |INITIALIZE_DISPLAY_VARIABLES Setup more global variables

12 |SETUP_USER_PROFILES L oad selected user preferences

13 |DISPLAY_BUTTONS L oad and show iconsin the main form

14 |DISPLAY_MASTER_FILE Show screenswith master file data

15 |DISPLAY_CENSUS FILE Show screenswith censusfile data

16 |SETUP_STATUS BAR Show status of current user selection

17 |EXIT_INPUT_ENGINE Close connections, reset variables and end
Calculation Engine

1 |PROCESS CASE Setup global variables

2 [MAIN_CALC Start calculations

3 |[PROCESS EACH_EMPLOYEE L oads assumptions to be calculated

4 [INITIALIZE_EACH_EMPLOYEE Setup global variablesfor Employee

5 [PROCESS EACH_YEAR Calculation for each year

6 [INITIALIZE_EACH_YEAR Setup yearly global variables

7 [MANDATORY_CALCULATIONS PER_YEAR Compulsory calculations per year

8 [PRINT_EACH_YEAR Print stored variables

9 [ACCUMULATE_RESULTS Accumulate certain key variables

10 |STORE_RUNTIME_ERRORS Collect runtimeerrors

11 |CLOSE_RUN Reset variables and database connection

12 |EXIT_CALC_ENGINE Exit engine and return control to Input Engine
Output Engine

1 |PROCESS CASE Setup global variables

2 |OPEN_DATABASE Connect to the database that has data to print

3 |[EVALUATE_REQUESTS Which reportsto print

4 [LOAD_REPORTING_DATA Fetch data to be printed

Table 6.7: Base-Line Architecture of the Three AM S Engines.

178

LIST OF CORE FUNCTIONS

Return Value

1 |APPEND TO_STRING (string source, string newstring) String
2 |[ARRAY_TO_RECORD (string &()) Recor dset
3 |BACKUP_DATABASE (string sour cedatabase, string targetdatabase) |Boolean
4 |BUBBLE_SORT (string a()) Sorted Array
5 |CLOSE_DATABASE (string databasename) Boolean
6 [COMPARE_RECORDS (recordset a, recordset b) Boolean
7 |CONNECT_DATABASE (string databasename) Boolean
8 [DATABASE_EXISTS (string databasename) Boolean
9 |DATE_TO_AGE (date a, date todaysdate) Integer AGE
10|DATE_TO NUMBER (date a) Double
11{DIRECTORY_EXISTS (string pathname) Boolean
12|DOUBLE _MAXIMUM (double a, doubleb) Double
13[DOUBLE_MINIMUM (double a, double b) Double
14|DOUBLE_ROUND (doublea, int n) Double
15[ERROR_L OG (string filename, string message) Boolean
16|EXECUTE_SQL (string sql) Boolean
17{FIELD_EXISTS (string fieldname) Boolean
18|FILE_EXISTS(string a) Boolean
19{INTEGER_MAXIMUM (int a, int b) I nteger
20[INTEGER_MINIMUM (int a, int b) I nteger
21|IS A CURRENCY (string @) Boolean
22|1S A_VALID_USER (string username, string password) Boolean
23|IS _ALPHA (string a) Boolean
24]1S BLANK (string a) Boolean
25|1S DATE (string a) Boolean
26]1S NULL (string a) Boolean
27|1S_ NUMBER (string a) Boolean
28|OPEN_DATABASE (string databasename) Boolean
29|READ_INI_FILE (string filename, object retur ned) Object
30|READ REGISTRY_KEY (string keyname) Boolean
31|RECORD _TO_ARRAY (recordset a) Array
32|REMOVE_FROM _STRING(string source, string target) String
33|SINGLE_MAXIMUM (single a, single b) Single
34|SINGLE_MINIMUM (single a, single b) Single
35|SINGLE_ROUND (singlea, int n) Single
36|STRING_TO_DOUBLE_ARRAY (string a) Double
37[STRING TO_INTEGER_ARRAY (string a) I nteger
38[STRING_TO_SINGLE_ARRAY (string a) Array
39|SWAP (variant a, variant b) VOID
40|TABLE_EXIST S (string tablename) Boolean
A1{WRITE_INI_FILE (string filename, object) Boolean
A2|WRITE_REGISTRY_KEY (string keyname) Boolean

Table 6.8: List of CORE Functions Extracted from AMS.

179

180

6.5.1 Variable Analysis

AMS program architecture has 1,205 global variables. All the global variables
are declared and initialized at the program level. However, these global variables
are shared among features and are changed dynamically to facilitate implicit
communication. A summary of key variables is shown in Table 6.9. The input
values are read into sI$() array which is used by many features within the AMS
system. The sI$() array is converted into its numeric counterpart within the Input
Processing feature by the Assignment sub-features. An example of this
conversion can be seen in the statement nCont ract _Number = Val (sl $(9)) in
Figure 6.2. nContract_Nunber, which is a globa variable, is then used
throughout the AMS system. Each of the items uses, sets, and changes the state
of several global variables thereby increasing coupling between the features.
These global variables are al'so used for implicit communication between features.
For example, UNREADY(), nError_F, nError_ltem andnltemcan be changed
by items other than the ones who set them indicating a possible relationship
among the items and features.

Figure 6.2 suggests that three types of relationships exist among the Input
Processing features:

» Error Processing and Suppression depend on Assignments.

181

* Suppression state of certain items is altered depending upon Assignments

of certain items.

* Error Processing and Suppression share global variables set by
Assignments.
Variable Purpose Declare Set Use Change
Storesitem | Program Program Input

sI$() information Processing
asread and other
from features
database

Numeric Value of Assignment | Program Input Input

sI$(). All itemsare | of string Processing Processing

gned into arraysinto (Assignment | (Error

internal variables numerical Sub-feature) | Processing,

such as variables. Suppression)

nContract_ Number, and

nDB_Option etc. Calculation

Engine

nError_F, Indicatesif | Program Input Input Input

nError_ltem anitemis Processing Processing Processing
in error (Error (Error (Other

Processing) Processing, items)
Suppression)

UNREADY () Indicatesif | Program Input Input Input
anitemis Processing Processing Processing
ready with (Assignment) | (Assignment) | (Other
its items)
numerical
value

nSuppress_F Indicatesif | Program Input Input Input
anitemis Processing Processing Processing
suppressed (Suppression) | (Suppression) | (Other

items)
nitem Indicates Program Input Input Input
which item Processing Processing Processing
isbeing (Assignment) | (Assignment) | (Other
processed items)

Table 6.9: Input Processing Variable Analysis.

182

& OldItemProcessing. TXT - Notepad 101 x]

File Edt Format Help &Send

GASE 8 Policy]
IF KermsinyNEn QUERY=1 AND nCensusFlag=0 THEN
CALL GET_CEMNSUS_ltem(1,1)
IF nErrar_F=8900 THEM EXIT SUB
ENDIF
nContract_Mumber=YAL(SI$E))
Call Set_PAR_MNP_F(nCantract_Number)
IF nCantract_Humber=vALAFSSYSCFG FirstContract) OR nCaontract_Mumber=vALAFSSYSCFG LastContract) THEM
nErtor_ltern=9:nErrar_F=3:nUnreadynvN{3)=nError_F
ELSE
IF nCantract_Number<= OLD.CONTRACT THEN
CALL GET_CONTRACT
OLD.CONTRACT=nCantract_MNumber
END IF
Call ValidateDate
IF nError_F=0 THEN
EXIT SUB
END IF
CALL StrSetSupressi’44,30,144"1)
SELECT CASE nPar_NP_F
CASE 0,1: CALL SET_SUPREGSS(44,0)
CASE 2,3 CALL SET_SUPRESS(30,0)
CASE 4,5 CALL SET_SUPRESS(1 44,0)
EMND SELECT
niterm=16: CALL Process_ltermS:nlterm=4
CALL ProcessAsterisks
IF nError_F=0 THEN
nErrar_ltem=8: nnready{n¥MN{nError_ltem))=2
nitem=1189: IF nUnreadyin¥Miniterny)==0 AND nUnreadyinyMnitemi==2 THEN CALL Process_ltemS: nErrar_F=0: nErrar_ltem=9
nitern=9
nUnready{nMNinltem))=0
EMD IF
EMDIF
IF MOT nEttor_F = 0 THEN
If NOT nhode = 0 Then CALL ERR_MSG{22,2,1008"1,0)
OLD.CONTRACT=nContract_Mumber
MIDEtemsinyMN 0. Prompt, 8)=SPACES(nPromptiidthy
IFMOT nMode = 0 Then CALL QUERY_CHECK
nlnreadyt/M(@0N=9
nError_ltern=9:nError_F=8
EXITSUB
ELSE
nnready/N(@0=0
ENDIF
CALL SET_SUPRESS(160,1-¥ALIC ontract{ly AiApplicF))
IF nReal_Contract=244 OR nPar_MNP_F=0OR nPar_MP_F=2 OR nPar_MNP_F=4 OR nPar_MP_F=5THEM nSupress_F=1 ELSE nSupress_F=0
CALL SET_SUPRESS(25,nSupress_F)
IF nPar_MP_F=2 OR nPar_NF_F=5 THEN nSupress_F=0 ELSE nSupress_F=1
CALL StrSetSupress{’12,174" nSupress_F)
IF nFar_MP_F=2 OR nPar_NF_F==4 THEN nSupress_F=0 ELSE nSupress_F=1
CALL SET_SUPRESS(12,nSupress_F)
IF nPar_NP_F=1 THEN nSupress_F=1 ELSE nSupress_F=0
CALL SET_SUPRESS(261, nSupress_F)
IF nReal_Contract=244 THEM nSupress_F=0 ELSE nSupress_F=1
CALL StrSetSupress('19,188" nSupress_F)

CASE 12, 261
nErrar_F=10

J By

Figure 6.2: Item 9 (Pre-evolution).

183

6.6 Refactor and create components

We identified the following problems in the Input Processing feature of AMS:

6.6.1 Identify problems

This step identifies problems associated with the feature implementation.

6.6.1.1 Circular dependencies

As Table 5 shows, Item 9 is dependent on Item 119 and Item 119 is dependent
on Item 13, which in fact is dependent on Item 9. We found eight such circular
dependencies that were the ultimate cause of system freezes as verified by the

defect tracking system for AMS.

Item Dependencies (in order)
5 9, 56, 119

9 16, 119

13 5,9 22

19 158

119 13

Table 6.10: Example of Circular Dependencies

6.6.1.2 Readiness of dependent items

To solve the circular dependencies and determine an item’s state during
assignment, we found that the original developers used an array called UNREADY:
when an item is dependent on another item that still needs to be evaluated, the
original item is identified as being in the UNREADY state. Each item had a ready

and unready state. The code fragment in Figure 6.3 illustrates this: Item 5 is

184

assumed to be ready by setting UNREADY(5) to 1. The item’s value is then
evaluated and the global nError _F is set to be greater than 1 in case of invalid
input. The UNREADY state for Item 5 will be set to the error flag's value indicating
that the item is not ready. Items are processed sequentialy so if another item
dependent upon Item 5 needs its value then the calling item will use UNREADY(5) .
The implicit setting of item state resulted in bad patches to solve circular

dependencies.

nUnready(5) =1 “ 1 = ready
call Fix_Date(nltem
if nError_ F > 0 Then
nUnready(5) = nError_F
end |f

Figure 6.3: Dependent Items.

6.6.1.3 Assignments and Suppression intermingled with Error Processing

As items were evaluated for dependencies and error conditions the original code
also set the values of internal program variables. AMS often uses atime seriesin
most plan items. An example of a time series is “100,1,200,5" which means that
from years 1 through 5, the value is 100 and from year 5 onwards it is 200. Time
series presents complicated problems because the data needs to be evaluated over
a period of time (or processed via the Input Processing) and errors can be present
in any year. We found that interna Assignments were often used inconsistently

and intermingled with Error Processing and Suppression.

185

Once we identify feature implementations, we refactor the code as outlined in
Section 6.6.2. Refactoring removes globa variables and converts implicit
communication to explicit. Refactoring may require extensive analysis, especialy
if two or more features interact or interfere within a given source function. We
have found that the refactoring results in fine-grained components with low
coupling and high cohesion.

6.6.2 Refactor

For Error Processing, Suppression, and Assignments we refactored the code as
follows:

6.6.2.1 Removed UNREADY array

The UNREADY array forced the Assignments and Suppression code to be highly
coupled. We replaced this global array with a component that accepted a
collection of errors. Then we developed routines (add, display, and delete) to
access the collection for one individual or the entire census data.

6.6.2.2 Replaced recursive calls with sequential calls

In the original system, Error Processing, Suppression and Assignments were
largely recursive. Essentially, a single large routine (Process Items) inspected
each item using a lengthy case statement; when an item needed to check
dependencies for another item, arecursive call was made. After some analysis, we

replaced this function with a simpler more sequential control flow

186

6.6.2.3 Separated Assignments, Suppression, and Error Processing code

After analyzing Input Processing, we were able to remove circular dependencies
by first executing Assignments for certain core items. We found this was
consistent with al three features.

6.6.3 Create Fine-Grained Components

To determine which code artifacts to encapsul ate, we analyzed variable usage for
all three features: Error Processing (EP), Suppression (S), and Assignments (A).

Theresult isshown in Table 6.11. (EP/S means variables involved both in EP and

Pre-Evolution Post-Evolution
(Feature Related Variables) (Component Properties)
Feature Global Loca Stateless | State-full | Relation Component | Component | Local AFS
Interaction | variables | Variables | Functions | Functions | Type Property Property To CORE
GetValue SetValue Component | Parameters
Error 35 5 4 2 N/A 25 10 5 6
Processing
Suppression | 14 8 6 4 N/A 10 12 6 4
Assignment | 50 5 8 5 N/A 55 5 4 4
Error
Processing 11 3 3 3 Dependent | 8 6 2 4
and Required
Suppression
Error
Processing 20 5 4 3 Dependent | 17 8 3 4
and
Assignment
Suppression Dependent
and 25 6 3 2 Alteration | 18 12 4 2
Assignment
Error
Processing, | 8 9 2 2 Required 6 7 4 4
Suppression
and
Assignment

Table6.11: Variable Analysis (Pre/Post evolution partial listing).

187

When creating fine-grained components, these variables and functions become
properties of a component. The first two columns in Table 6 count the global (G)
and local (L) variables involved in a particular feature implementation when
related test cases are executed. Columns three and four show how many functions,
both stateless (SS) and state-full (SSF), are covered. The component makes output
values avalable using GetValue (Parameter). Conversely, SetVal ue
(Parameter) will set the property inside the component. Because we are
refactoring, the sum of the first four columns for each row must equal the sum of
the last four columns.

To define the interface for the fine-grained components, we must identify the
possible relationships between features.

6.6.3.1 Relationships

In Input Processing we find the examples of the following types of direct
relationships among features.

Dependent

In AMS all features share key item values. The code fragment in Figure 6.4 shows
how key items are evaluated first and used in Suppression and Assignments. The
variable Qvar k1l nBPFA is set to true if Item 16 has a“ ?” . We convert this
variable into a read-only property of the Assignments component that can be read

by other components.

188

Di m Qvar kl nBPFA As Bool ean

Di m Qmar kl nUl Prenifype As Bool ean
Di m XI nBPFA As Bool ean

Di m | SBEN As Bool ean

Qvar kIl nBPFA = i sfl oat ed(Val ues(16), Fal se)

Qmar kl nU PrenType = isfl oated(Val ues(174), Fal se)

XI nBPFA = XInltem Val ues(16))

| SBEN = InStr(Values(26), “,BEN,”) > 0 or
InStr(Values(26), “,AT.BEN,") > 0)

Figure 6.4: Dependent Feature Example.

Required

The functionin

Figure 6.5 implements the relationship between Suppression and Error
Processing. If an item is suppressed, then errors associated with it are unnecessary
and can be removed. Because two features can directly interact with each other,

the extracted fine-grained components will have clearly defined interfaces that

Publ i c sub RenoveErr or sFor Suppressedltens (
suppressarray() as Integer, Errors as Coll ection)
dimx, itemNum as | nteger
dims as String
for x = Errors.count to 1 step -1
i temNum = AFSCore. FVAL(M d$(Errors.1tem(x),
InStr(Errors.Itemx), “>*) + 1))
i f suppressarray(ltenNun) <> 0 then
Errors. Renove(x)
end if
next x
End Sub

Figure 6.5: Required Feature Example.
Altered
The state of Suppression of a given item is atered by the entries in another item.

For example, the Suppression state of Item 98 in

189

Figure 6.6 can be modified with the right condition. Note that the Assignments
component’s properties are used to alter the Suppression state. If the Ul changes
the value for any field that can ater Item 98, the Suppression state is also altered.
The global array nSuppr ess() istransformed into a read/write property of the

Suppression component.

i f Assignnments. Qvar kl nBPFA or (Assi gnnents. Xl nBPFA and

Assi gnnents. Si pFl oat) or Assignnents. | SBEN t hen
nSuppress(98) = UnSuppressTheltenm nSuppress(98)) el se
nSuppress(98) = SuppressThel t em(nSuppress(98))

end if

Figure 6.6: Altered Feature Example.

Once feature relationships and properties are determined, we can create the
component’ s interface.

6.6.3.2 Interfaces

Input Processing was refactored into six components: Assignments, Error
Processing, Suppression, Error Processing Core, Suppression Core, and AFS
Core. While Assignments, Error Processing, and Suppression perform specific
duties of the three specified features, the core components manage data structures

and contain stateless functions. In implementing these features, core items were

190

evaluated first and each item was called sequentially instead of recursively.

Feature relationships were identified and coded as shown earlier.

The list of interface for al six components that we created are shown in the Table

6.12. Public interfaces that are available to the client is shown in column 2 and

column 3 lists all the components public methods. The Error Processing core and

the Suppression core components are not important by themselves but they are

important in conjunction with the Error Processing the Suppression components

respectively. “Methods’ column (column 3 in Table 6.12) implements the feature

implementation, which will discussed later in this section.

public methods are listed in column 3.

Component

Interface

M ethods

Assignments

clsAssignment

Assignments

Error Processing

clsErrorProcessing

ErrorChecking

Error Processing clsEProcessingCore AddError

Core ClearError
RemoveError
RemoveErrorForSuppressed
Item
ClearAllErrors

Suppression clsSuppression SetTheSuppressCodes

Suppression Core clsSuppressionCore SuppressTheltem
UnSuppressT heltem

AFS Core clsAFSCore See Table 6.8

6.6.3.3 Properties

Table 6.12: Component I nterfaces.

Once feature relationships were identified, the global variables used in the

implicit communications were used to determine property set and get. The

Note that only the

191

general logic for invoking afeature is to set the components properties, cal its
public method (feature implementation) and finally retrieve the results through the
property get. Itisthe caling program’sresponsibility to set the components
properties (both get and set). A list of properties, get and set for the six
componentsis shown in the Table 6.13. It isto be noted that dictionary and
collection objects are built-in data structures like array. They are used to set

individual items values rather than setting them up individually. AFS CORE does

not need any properties, as al its methods are public and statel ess.

Component Interface.Public M ethod Property Set Property Get
Assignments clsAssignments sI$() Dictionary
Assignments (nltem, Value)
Error Processing clsErrorProcessing Dictionary Collection
.ErrorProcessing (nitem, Value) (nltem, Error_Message,
Error_Code)
Suppression clsSuppression Dictionary Dictionary
.SetTheSuppressCode (nitem, Value) and | (nltem,
Collection SuppressionCode)
(nitem,
Error_Message,
Error_Code)
Error Processing CORE | clsErrorProcessingCORE Dictionary Collection
AddError (nitem, Value) (nltem, Error_Message,
.ClearError Error_Code)
.RemoveError
.RemoveErrorForSuppressitem
.ClearAllErrors
Suppression CORE clsSuppressionCore Dictionary Dictionary
.SuppressTheltem (nltem, Value) and | (nltem,
.UnSuppressTheltem Collection SuppressionCode)
(nitem,
Error_Message,
Error_Code)
AFS cISAFSCORE None None
CORE .AFSCORE

Table 6.13: Component Properties.

6.6.3.4 Feature Implementation

Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 all show how the

I nput

Processing component is

implemented using Error

Processing,

192

Suppression, Assignments and supporting core (AFS CORE, Suppression CORE
and Error Processing CORE) fine-grained components. Assignments
component’ s properties are set by the calling program and then its public method
Sub Assignmentsis called. Sub Assignments has following three tasks:

» tocalculate base-itemsfirst, as these item values are used by other items.

» tosequentially calculate the value of each of theitems.

* to update the local dictionary object which is accessed through the

property get by the calling parent program.

Likewise, Error Processing and Suppression features also follow the similar
implementation. However, their tasks are dlightly different. Error Processing
uses an items dictionary object and sets an internal collection object that can be
accessed through property get. Suppression uses items dictionary object and error
collection object to setup the Suppression state (0 or 1) of each item in an internal
data structure called SuppressionDictionary to be accessed through the get
property. The CORE items do not have any feature implementation. These
components contain statel ess components.
6.6.3.5 Stateless Functions
Figure 6.7, Figure 6.8, and Figure 6.9 all show a partia listing of stateless
functions needed for the feature implementation. These functions can also be
accessed by other components or by the calling parents. An example of a

statel ess function that is encapsulated within the Assignments component is Public

193

Function Set _Ret _Ages(). This function calculates retirement age based upon a
date string that is passed to it. Although these stateless functions are accessible
and can be used by other components and the program, having them encapsulated
with the features provides a clearer understanding of the feature’s scope and
involvement.

6.6.3.6 Maintaining State

Figure 6.7, Figure 6.8, and Figure 6.9 al show that the components maintain their
state for efficiency. For example, if the Assignments component public method is
called a second time (intentionally or unintentionally) and the items values have
not changed, then the public sub Assignments does not recal cul ate the entire set of
item variables because the source (sI$()) has not changed. Similar
implementation characteristics can also be seen in the Error Processing and the
Suppression components.

6.6.3.7 External Dependencies

At the top of Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 we
list al the external components and functions the components are going to use
such as AFS CORE and WindowsFileScripting object. VB provides built-in
programming constructs such as collection and dictionary objects that are like

indexed arrays.

& pssignment. tut - Notepad =101 x|

File Edit Format Help &PSend

Deciare all variablas
Option Exiicif

‘List exfernal depandenceies
D AFSCore As AFSCore
Dim WindowaFlieSenpting As WindowsSheliQhject

Tocal variables
Dimn Dictionary(nitem, value) as Dictionan]

Mainiain State
Stafic Criginal_Diclionang)

‘Set sl8) by parent
Propery Set_siby)

s18(= _s180)
Fnd Propary

Refurm nltern and ifs value fo the parent
Property Gel _Diclionanynifermn, Valua)
Gel Diclionandnliem, Valus) = Dictionangnifem, Valua)
End Property
Public Sub Assignment()

Dim ER_FHeimb Az Single

Dien i Az infegear
i Suppress As infeger
i = Az Siring

Slafic QldPolicyOwner As Infegar
Slafic NumberOfiferms Az Infeger
Dim save n¥r Policy Ag Infeger
Diien GMarkinBPFA As Boolaan
Diien GMarkinATOE As Boolean

Checks for state, Ifali items are same then no need {o recaiulate evendhing
IFOniginal_Diclionand) = Dicfionand) Than Exif Sub

‘Sef hase-ifems

CMarkinBPFA = isfloated(s!§(16), False)
nConlract_Number = FVAL(=IE3))

nége = Sefndge()

Call SELECT_TRUE CONTRACT

Call GET_CONTRACT

nRet_Age = Set_Ret_Age(si§iZ20)

nPlan_DateNum = AFSCORE AFSDate 2Num(sib(5)
Call Fix_Datei1{3)

nDelay = AFSCORE DateDiff "y, CDate(s!E(5)) CDate(stE(113)))
nROP_Rider=Calc_Rop_ Rider(si$(120))

Now saf all lfam's values sequeniially (Dictionandifem, Valus) = Valua)

End Sub
Kl

-

iz

Figure 6.7: Pseudo-code for Assignments Feature | mplementation.

194

ol
File Edit Format Help ¢PSend
‘Daclare ali variables 2

Cplion Explicit

‘List external dependenceies

Dimn AFSCore As AFSCaore

Dim Assignments as AFSAssignments

Dim WindowsFliaSeripiing As WindowsShelfObject
Dim ERP_CORE as ErrorProcassingCore

‘tacal variables
Dim Colfection{nliern, Error_Messaags, Error_Cods) as Collection

‘Mainfain Stale
Stalic Original_Dictionand)

‘Seiifern values by pareni
FProperty Set _Dinchionandnitern, Yalueg)

Diclionansdgnitern, Valus) = Sef_ Diclionanqniferm, Value)
End Praperly

‘Retum nifern and ifs value {o the parent

Froperty Gef _Colslclion{nitern, Error_Msssags, Error_Coda))
Get_Collection = Coltection(nitern, Error_Message, Error_Code)

End Praperty

Pubiic Sub Error_Processing()

“Fnothing changed then no need to process anvihing
If Dictionans) = Qriginal_Diclionany () Then Exit Sub

‘Local Vanables
Divm nError &

‘Pass the emply collection object {o the EF_CORE
EP CORE Colisction = Me.Colisciion

‘Now sef aif fem’s Error Siale
nerrar_F= Fix_Date(Assighments Dictionand5)))
ffnEror F=0Then

Call FF_CORE AddEmor 5" "005" 5)
Endif

‘Now retrieve the collaciion from the EP CORE
Collection = EP_CORE.Colischion

End Sub

‘Stateless Funciions
Fubiic Funclion Fix_Date(s as Sinng)

End Funclion

-

K| 1P

Figure 6.8: Pseudo-code for Error Processing Featur e | mplementation.

195

196

ﬂSuppression.th - Motepad = E Ed
Fle Edit Format Help &PSend

‘Declare alf vanables -
Otion Expiicit

‘List external dependenceles

Dim AFSCore As AFSTore

Dirm Assignments as AFSAssignments

Dim WindowsFileScripting As WindowsShellObject
Dim 5 CORE as Suppressionlote

Local variables
Dim ErrorsCollection{nitern, Error_Message, Eror_Code) as Collection
Dirn SuppressionDictionangnitern, SuppressionCodes) as Dictionany

Maintain State
Static Original_Assignments()

‘Set item values by parent
Property Set _AssignmentsDictionan{Assighiments)

Assignmentsihssignments) = Set_AssignmentsDictionan (A ssighments)
End Froperty

FProperty Set _ ErorsCollectioninltern, Eror_Message Eror_Code)
ErnorsColiection{nltern, Eror_Message_ Enor_Code) =
Set EmorsCollection{nitem, Error_Message Enor_Code)
End Property

‘Return nitermn and its value to the parent

Property Get _ Suppressionlictionangnitem, SuppressionCodes))
Get_SuppressionDictionan(nitern, SuppressionCodes) =
SuppressionDictionandniter, SuppressionCodes)

End Property

Fublic Sub Error_Processing)

"If nothing changed then no need to process anithing
If Assignments() = Original_Assignments () Then Exit Sub

‘Local Variables
Dim nError F

Pass the empty callection object to the EP_CORE
EP_CORE. Dictionany = Me. Dictionany

Now set all ter's Eror State

nError_F= Fig_Date(Assignments. Dictionand5)))
if nEror F =0 Then

Call EP_CORE AddEron("S", "I005", 5)
End if

‘Mow retrieve the collection from the EF CORE
Suppressionlictionany = EF_CORE. Dictionary
End Sub

‘Stateless Functions
Public Function Fix_Date{s as String)

Enef Function

-

[+ H 4
Figure 6.9: Pseudo-code for Suppression Feature | mplementation.

197

4B ErrorProcessing_Coretxt - Notepad =]

Fle Edit Format Help eSend
Option Exficit |

‘Local VVanables
Frivate ErorsColiection as Collaction
Private nltem

Property Set by parent
Property Set _ErrorsColiectionf]
ErrorsCollection = Set_ErorsColiection
Froperty End
‘Return collection valve for parent
Property Get _ErrorsGollection)
Gef]_ErrosCoJ’iechon = ErorsColiection
Property End

‘Add Error to colfection
Fublic Sub AddErors(Erorftem, Erorlfessage, [temNumber)

End Sub

Clear error for the tem
Public Sub RemoveEror)

End Sub

Clears all errors In the coliection
Public Sub ClearAlErors()

End Sub

i the item is suppressed then remove the ewor from collection
Public Sub RemoveErrorForSuppressitem

End Sub

Kl| 4

Figure 6.10: Pseudo-code for Error Processing Core | mplementation.

198

T
File Edt Format Help <%Send
Option Exlicit -

Local Varables
Frivate SuppressionDictionany as Dictionans
Frivate nitem

FProperty Set by parent
Fropesty Set _SuppressionDictionand)

SuppressionDictionany = Set_SuppressionDictionany
Fropety End

Return Dictionany values for parent

Frapetty Get SuppressionDictionand]
Set_SuppressionDictianaty = SuppressionDictionany

FProperty End

Sets the supnression code to T in the dictionary for the term
FPublic Sub Suppress Theltem()

End Sub

Sets the supnression code to 0 in the dictionary for the iterm
Fublic Sub UnSuppressTheltermy) -

End Sub

Kl '

Figure 6.11: Pseudo-code for Suppression Core | mplementation.

6.7 Plug the fine-grained components into AMS

The last and final part of creating the component was to integrate all six
components into one unit that performed Input Processing in an integrated
environment. Using standard configuration management and compiler directives,
old code in AMS was disabled to integrate the new components. Since the code
profiler provides al the relevant functions, it was rather simple to insert the Input
Processing component. The Pseudo-code for integrating the Input Processing

component is shown in Figure 6.12. The compiler directive

199

| nput Processi ng_Evol uti on is used to enable the new components and disable
the old code, including the global variables declared at the program level. This
compiler directive is set at the program level and can be turn off easily in case the
testers report adverse side effects due to the new components. Note that
UNREADY() array is not used in the refactored code. The new components
(AFSCORE, Assignments, Suppression and Error Processing) are declared
globally at the program level so they can be used by other sub programs. The
return value of Assignments components is then passed to other sub programs
such as the calculation engine. Likewise, the return values of Error Processing
components passed to the Error Processing GUI and the return value of the
Suppression component is passed to the Main GUI sub programs respectively.

The integrated component is shown in Figure 6.14.

200

Global sI$(), nitem

#IF InputProcessing_Evolution = True Then
Global AssignmentsDictionary(nitem, Value)
Global ErrorsCollection(nitem, Error_Message, Error_Code)
Global SuppressionDictionary(nitem, Value)
Global AFSCORE as AFSCORE
Global Assignments as Assignments
Global ErrorProcessing as ErrorProcessing
Global Suppression as Suppression

#ELSE

Global nError_F, UNREADY ()

#END IF

Sub InputProcessing()

#IF InputProcessing_Evolution = True Then

#ELSE

#END IF
End Sub

* Assignment Component
Set Assignments.si$() = sI$()
Call Assignments.Assignments
AssignmentsDictionary(item,Value) =
Get Assignments.Dictionary(item,Value)

‘Error Processing Component
Set ErrorProcessing.Dictionary(item,Value) = Dictionary(item,Value)
ErrorProcessing.ErrorProcessing
ErrorsCollection(nltem, Error_Message, Error_Code) =
Get ErrorProcessing.Collection (nltem, Error_Message, Error_Code)

‘ Suppression Component

Set Suppression.Dictionary(item,Value) = Dictionary(item,Value)
Set Suppression.ErrorsCollection(nltem, Error_Message,
Error_Code)=ErrorsCollection(nltem, Error_Message, Error_Code)
Suppression.Suppression

SuppressionDictionary(item,Value) =

Get Suppression.Dictionary(item,Value)

‘Following code will use, set or change global variables declared above
‘Items are called recursively
For nitem = 1 to 450
Call Item_Hub_Code(i)
Next nltem

Figure 6.12: Integrating Assignments, Error Processing and Suppression Components.

201

6.8 Verify results

We performed a regression test of the Input Processing code to gather data pre
and post evolution of these three features. We then compare the results to make
sure we have not broken anything during the evolution process. The regression
was automated by using GUI testing tools, and the AMS system has a built-in
regression utility that sends the output to an ASCII text file. This text file was
compared pre and post evolution to ensure that no side affects were introduced.

In addition, the testers perform several tests to ensure proper working of the Input

Processing.
6.9 Reuse

The Input Processing component is integrated in the WEB AMS in exactly the
same fashion as the desktop AMS. The return value from the collection and
dictionary objects is used by Microsoft server-side scripting language VBScript®
because the WEB version of AMS uses VBScript® as opposed to the desktop
version of AMS that uses VB. VBScript and VB behave similarly as far as
integrating the Input Processing components are concerned. Input Processing
components were deployed on the web server so the user interface layer can use
Assignments, Error Processing and Suppression features. AFS CORE component
was deployed on both servers namely, the web server and the application server.

AFS CORE is also used by other product lines on all servers.

202

AFS Product lines Components Deployment

AMS (Desktop) Assignments, Error Desktop machines
Processing, Suppression,
Error Processing Core,
Suppression Core and AFS
CORE

AFSWEB Assignments, Error Web Server
Processing, Suppression,
Error Processing Core,

Suppression Core and AFS
CORE
AFSWEB AFS CORE Application Server
DTSand DTS WEB AFS CORE Web Server and Application
Server
Sdev AFS CORE Web Server and Application
Server

Figure 6.13: Resuing Fine-Grained Componentsin AFS Product Lines.

6.10 Measure Results

To measure the success of our methodology, we perform a validation against the
evolution reasons. To reiterate, there were three primary reasons why we wanted
to evolve the Input Processing into a component-based solution.

6.10.1 Solving the system-locking problem

The component-based implementation is a linear solution. In all three features,
core items are evaluated first and then each of the itemsisindividually evaluated.
In addition, the communication between items is not done viathe global variables.
This communication is explicitly replaced by implementation of the feature
relationship code discussed earlier. The original design was recursive in nature
with no explicit condition to stop the recursion. The recursion was stopped

implicitly by setting global variables or arrays that became error prone as more

203

and more items with complex hierarchy and relationships were introduced.
Replacing the recursive design with a linear design solved the system-locking
issue.

6.10.2 Cost of adding a new item

The average time to add a new item and code all the relevant Assignment, Error
Processing and Suppression logic took 3 days prior to applying the evolution
methodology. After evolution, we collected data on adding 4 new items and the

average time spent was about 1.25 days. The steps for adding a new item are as

follows (Table 6.14):

Steps— Pre-Evolution

Steps — Post-Evolution

Add Item to Master File Table

Same

Add Item to Data Dictionary and assign
its properties

Same

Create, Initialize and Assign Global
Variable for Assignment

Code GetValuein Assignment Component.

Setup UNREADY Array Not Needed
Code dependent items using recursion for | Code Error Processing Component, but each
Error Processing (mixed with | item has its own spot rather than mixed with

Assignment and Suppression code)

other items. Also, core items may also
evaluated first but not necessarily.

Use Error Flag from Dependent Items to
generate Errors

Errors are added to a collection.
variables are needed.

No global

Add Error Text into look-up tables

Same

Code dependent items using recursion for
Suppression

Code Suppression component just like the Error
Processing component.

Set Suppression code array

Suppression code array is automatically a part
of interface of Suppression component.

Cost of debugging is high due to implicit
communication and poorly implemented
recursive routine

Virtually no debugging is necessary but must
understand component interfaces

Table 6.14: Stepsfor Adding a New Item.

204

6.10.3 Reusability between AMS and the web version of AMS

There were six resulting components from this evolution exercise. Assignment,
Error Processing, Suppression, Error Processing Core, Suppression Core and
AFS Core. AFS Core is used in al of the AFS product lines (comprising 4
different projects), since it contains basic routines such as rounding functions and
file 1/O etc. The other five components are used in the two platforms of the
AMS software, the desktop and the Internet. Table 6.15 shows cost and benefit
involved in reusability. The net cost of the evolution exercise using this
methodology so far has produced no loss or gain, but it is to be noted that there
are certain hidden savings that we have not been able to capture until now, such as
effect on training of new hires. It is expected that average savings identified in
rows 14-16 (See Table 6.15) will eventually result in more favorable savings. We

are currently in the process of gathering the data.

205

Effort Cost (+) /Savings (-)
(M easur ed in months)

Cost of Mapping Features and Test-Cases +1
Cost of identifying code using test cases and profiler +1
Cost of Refactoring +2
Cost of Developing Error Processing Component +1
Cost of Developing Suppression Component +1
Cost of Developing Assignment Component +1
Cost of Developing AFS Core Component +1
Cost of Configuration Management +1
Cost of Testing +2
Cost of Training and Documentation +1
Savings from solving system-locking problem (from 10/1/01 | -1
to 1/2/03)*

Saving from improvement in adding a new Item (from 10/1/01 | -1
to 1/2/03)*

Savings from improved architecture (reduced global variables, | N/A (data is being
more explicit communication and better understanding of | gathered**)
features)

Savings in reusing AFS Core in 4 projects. Including cost of | -4
testing and integration.

Savings in reusing Suppression, Assignment and Error
Processing Component in desktop and Internet version of | -6
AMS. Including cost of testing and integration.

Net Cost (+)/Savings (-) (from 10/1/01 to 1/2/03)* 0

Table 6.15: Budget analysisfor input processing project.

* Calculated as opportunity cost, i.e. time we would have spent otherwise (from

10/1/01 to 1/2/03)

** This datawill be reflected as cost of training a developer before and after the
change. Due to challenging economic environment AFS has not hired a new
trainee as of 1/2/2003. Thus, we will be gathering this data as AFS starts hiring

new trainees.

206

(_) Read Show Ul

MasterFil —»| Input Processing ——P GUI
asterkile ‘
Save

Census File

Policy File

clsSuppression

clsAFSCore clsErrorProcessingCore

Figure 6.14: Input Processing Component I nfrastructure.

clsSuppressionCore

AFS Core

6.11 Summary

We applied our ten-step methodology to identify and refactor the code to create
reusable input processing component at AFS. We applied our feature model to
identify the feature implementation. The original Input Processing feature
represented the fully interacting feature implementation discussed in Section
41.23. The Assignment, Error Processing and Suppression code were
intermingled. The feature relationships between the three features was identified

by analyzing the implicit communication using techniques described in Section

207

4.1.5.2. The input-processing feature is comprised of Assignments, Suppression
and Error Processing features. We created six reusable fine-grained components
namely, clsAssignments, clsSuppression, clsErrorProcessing, clsSuppressionCore,
clsErrorProcessingCore and clSAFSCORE, using our fine-grained component
model. The clsSuppressionCore and clsErrorProcessingCore components support
clsSuppression and clsErrorProcessing respectively. We plugged the components
using compiler directives into AMS. We then verified the evolution reason by
running regression pre and post evolution, reusing the component and fixing the
system-lock problem. AMS and WEB-AMS shared al six components.
AFSCORE component is being shared in al four AFS product lines. Using our
budget model, we monitored and reported the cost/benefit of the entire effort.
Our methodology shows a break-even in terms of costs and benefits incurred so
far. There are some implicit benefits such as better understanding of features and
reduced global variables, for which we are still collecting data. We consider our
evolution initiative a success in applying our methodology to the Input Processing
project. We will discuss lessons learned, our contributions and future work in the

next chapter.

208

7 Conclusions

This chapter discusses the lessons learned in developing and applying our
methodology, contributions made, and what avenues could be taken for future

work.

7.1 Lessons Learned
In this section, based on our case study, we evaluate the benefits and limitations

of our methodology.

7.1.1 Methodology Applicability

Although our methodology is programming language-independent and does not
depend on specific code profiler tools, severa factors affect the applicability of
our methodology. These factors are as follows: organization’s product-lines,
maturity of software process, type of legacy system and refactoring choices.

Our methodology has been applied and tested in a scenario where there was one
primary legacy system and other product-lines were being developed from
scratch. In addition, the existing legacy system was experiencing maintenance
costs of certain key features which were visible to the end-user. Furthermore,
these features were also common across product-lines. While it is certainly
possible to apply our methodology and refactor problematic feature
implementation even in the case when these feature implementation are not

common across product-line,. we argue that businesses will earn most return on

209

investment (ROI) under the scenario when refactored feature implementation can
be reused across multiple product lines. In AFS case, we found that Input
Processing feature implementation was experiencing high maintenance cost which
when refactored was reused across two product AMS lines namely, the desktop
and web-enabl ed.

Organizations that are looking to apply our methodology must have a mature
software process in place. Maturity of software process can be determined by
various factors such as CMM level, 1ISO 9001 level, availability of regression test
process and ability to track costs of making changes to the legacy system. CMM
level Il and above, and 1SO 9001 level | and above, both recommend availability
of regression test process and ability to track costs when making changes. It is
certainly important for organizations to be certified in CMM or 1SO 9001, we
suggest that our methodology will work best when there is a mature software
process in place that has ability to perform regression test with each release and
has ability to track costs of making changes.

Our methodology has been applied and tested in a function-based system with lots
of global variables, functions and subroutines. While the methodology steps are
programming language independent and type of legacy system independent, our
methodology has not been applied on an object-oriented (OO) or a real-time
legacy system. While it is possible to identify feature implementation of an OO

system using a source code profiler, there are several complicated issues in OO

210

such as polymorphism, overloading and inheritance that could result in same
feature implementation of two features which would further complicate
refactoring. Likewise, our methodology has not been tested on the systems with
multiple thread of execution commonly found in real-time systems. We
acknowledge the fact that our methodology will have to be customized in
addressing evolution of OO and real-time legacy systems.

Once feature implementation is identified, our methodology provides atemplate
for identifying lines of code that need refactoring. In addition, this template aso
provides the properties (Get and Set) for the refactored component. However, it
is up to the devel opers to refactor the code into a component using the best
possible design. Our methodology will work the best when the refactored unit has

alower maintenance cost itsalf.

7.1.2 Sensitivity relative to Average Coverage (C)

Not all features are an ideal candidate for this methodology. Using domain
knowledge and enterprise initiatives, it is possible to identify features that either
are agood candidate for reuse or have maintenance problems.

In Table 4.10, we have shown whether to continue with the methodology or not
based upon the Threshold (T). Based upon the data collected from AMS (see
Table 7.3) we believe that generaly the average coverage (C) determines how
sensitive a particular feature is for evolution. The end-users and testers identified

the feature that needed evolution for our AMS case study. However, it is quite

211

possible that selecting a feature for evolution the candidate features (note that the
feature must still satisfy the law of two as discussed in Section 4.1.2.7) the
decision for evolution is solely based on C. In this section, we will discuss how
sensitive the case study Threshold values are. We found that the Input Processing
had the following values for Threshold, Neighbouring Feature (K) = 3, Feature
Implementation (FI) = 17 and Average Coverage (C) = 80%. Analyzing the
feature/function matrix of Input Engine of AMS we found following:

If we reduced the C to be about 50% we found that K was increased to 8 and Fl
was increased to 19. If we reduced the C to be about 25% we found that K was
increased to 21 and Fl was increased to 99. Both the above finding indicates that
we are dealing with less cohesive code, hinting that evolution would take longer
(for a more detail analysis see Section 7.1.3). If C was increased to be greater
than 90% we found that K was decreased to 2 and Fl decreased to 1, indicating a
trivial case. K=0, FI=0 and C=100% represent the CORE. The datais shown in
Table 7.1 and Figure 7.1. Note that Figure 7.1 shows C on the x-axis (represents
the first data point of 10%, 2 means 25%, 3 means 50% and so on) and a scale on
the y-axiswhich is used to plot Fl and K. The values shown in

Table 7.1 are shown plotted in Figure 7.1. We can see from Figure 7.1 as C
decreases the distance between FI and K increases indicating more time to evolve
these features and likewise as C increases distance between Fl and K decreases

indicating lesser time to evolve. We found that C for our case study was best

212

suited around 80%, which is the fourth data point in Figure 7.1 (suggesting an
optimum for AMS's Input Engine given the budget in terms of time/resources).
Note that different parts of the legacy system may be sensitive to C, a more

empirical study is suggested as a part of future work (see Section 7.3.2).

Feature K (Neighboring Feature)| FI (Functions)| C (Avg. Coverage)
Log 125 35 10%
Constraints 99 21 25%
Callback 8 19 50%
Input Processing 3 17 80%
Import/Export 2 1 90%
CORE 0 0 100%
Table 7.1: Coverage Sensitivity Datain AMS.
140 + - 40
120 4 T3
+ 30
100 +
+ 25
80 +
1o —a— K (Neighboring Feature)
—e— FI (Functions)
60 +
+15
40 +
- 10
20 + L5
0 I I I I T = 0
Log Constraints Callback Input Import/Export CORE
Processing

Figure 7.1: Coverage Sensitivity in AMS.

213

7.1.3 Selecting Evolvable Features

In the case of AMS, if a feature is spread out across many functions, and if the
code execution is below 80% using selected test cases within each of the
functions, the feature is not a good candidate. For example, the primary function
of AMS is to integrate executive benefits and life insurance using complex non-
linear algorithms. Life insurance acts as an asset to fund the executive benefits.
There are many legal-, accounting-, insurance- and benefits-related constraints,
which play an important role in the asset/liability match within AMS. Such
constraints are scattered throughout AMS, and make up less than 20-25% in any
given function. Our experience tells us that the constraints themselves will
certainly not be good candidates for evolution because they do not change
frequently, and they probably cannot be reused in other AFS product lines. Good
candidates are those features that change often, are concentrated in fewer
functions, depend on or share global variables as a means of communication and
can be reused across product lines.

Our methodology provides severa heuristics to avoid feature interaction issues by
identifying closely related features. If two feature implementations are highly
correlated, then it is certain that these features are intertwined, and a rewrite is
probably warranted.

Heuristics on features that are evolvable can be further elucidated by close

analysis of Table 7.2. This table displays the results of running the profiler with

214

regression test cases, after the test cases have been mapped to the features. Each
row represents a particular function; each function has been mapped to a pre-
defined function type (SS, DF, DD, SSF — see List of Acronyms and Glossary), as
indicated in the rightmost column. For example, f; is of the type Shared Stateless
Function (SS). Each column represents a regression test case Tn (while our
methodology supports multiple test cases representing a single feature we omit
this detail for the purpose of this discussion); each test case is mapped to afeature
(FE). For example, T1 is mapped to FE;. The numeric value in each cell isthe
percentage of coverage for the specific feature by that function. For example, f;
has 100% coverage for FE 1 in T1.

The concept of threshold is essential in this analysis of evolvability. For a given
feature-function relationship, the threshold is based on the number of functions
(FI), the number of neighboring features (K), and the percentage of coverage (C)
for the feature in each function. The coverage level must be significant; we have
selected 80% as the minimum for evolvability based upon our experience with the
AMS. There are two specia cases. (1) The trivial case: K = 1 and F = 1, the
feature and the function are coterminous; (2) C = 0: zero coverage, hence there is
no feature-function relationship. Optimum values for evolvability, for a given
legacy system (LS), might be K = 3, FI = 17, C = 80%, with no cross-cutting and

no trivial cases.

215

Another important concept in this analysis is traceability. This is the ability,
using a code-profiling tool, to traverse the implementation code path in order to
identify feature-function relationships. Traceability can be used to examine three
types of relationships: (1) function-to-feature; (2) feature-to-function; (3) feature-
to-feature. The NuMega ® True Time Code Profiler [56] was used in this
anaysis.

The following describes feature or function categories in terms of evolvability.

Each category (in upper-case below) corresponds to a colored section in Table

7.2.
Test Cases T1 | T2 [T3 [T4 | T5 | 76| T7 | T8 T9 | T10 | T11 | T12

Function\Features | FE, | FE, | FE3 | FE, | FEs | FEg| FE; | FEg| FEg | FEio | FE 11 | FE 12| Type
fi 100 | 100 | 100 0 0 0 0 0 0 0 0 0 SS
fy 80 80 90 0 0 0 0 0 0 0 0 0 DF
fa 100 | 100 | 100 0 0 0 0 0 0 0 0 0 SS
f4 70 | 75 | 80 0 0 0 0 0 0 0 0 0 DD
fs 100 | 100 [100 (O 0 0 0 0 0 0 0 0 SS
fe 100 | 100 | 100 0 0 0 0 0 0 0 0 0 SS
f7 100 | 100 | 100 0 0 0 0 0 0 0 0 0 SS
fg 0 0 0 80 90 0 0 0 0 0 0 0 DF
fq 0 0 0 |100| 100| O 0 0 0 0 0 0 DF
f10 0 0 0 0 0 0 0 0 0 0 | SSF
f11 0 0 0 0 0 0 0 0 0 0 SSF
1o 0 0 0 0 0 0 0 0 0 0 SSF
fis 0 0 0 0 0 o] o 0 0 0 | ss
f1a 0 0 0 0 0 0 0 0 0 0 SS
fis 0 0 0 0 0 0 0 0 0 0 SS
f16 0 0 0 0 0
f17 0 0 0 0 0
f1g
f1o
f20
a1
fa2
fas

Table 7.2: Evolable Features.

216

Functions that are shared stateless (SS) and have 100% coverage for all test cases
can be shared in acommon library, as CORE. Functions 18-20in Table 7.2 meet
these requirements.

If afeature is contained within afew functions, and if the code execution is above
80% using selected test cases within each of the functions (above threshold), this
feature is a good candidate to be EVOLVABLE. Features 1-3, implemented in
Functions 1-7, and Features 4-5, implemented in Functions 8-12, meet these
requirements.

A CROSS-CUT feature is dispersed in too many functions and the coverage
values are below threshold. Features 6-7 illustrate this category. A cross-cut
feature is not recommended for evolution because the impact of change can create
several unforeseen errors and the cost will exceed the benefits.

The shaded area (Feature 8 through Feature 12, and function fis through f3)
represents the inverse of cross-cutting, another type not recommended for
evolution, NON-EVOLVABLE; while the features are implemented in a
reasonable number of functions, the functions implement a large number of
features, and the coverage values are below threshold.

The ZERO COVERAGE category includes all cells in the feature-function
matrix, which have no coverage. These are the white cellsin Table 7.2.

Our experience with AMS features is shown in Table 7.3 (partial listing). The

Input Processing feature that was evolved, had aK=3, Fl =17 and C = 80%. We

217

also found that there were features within AMS that were implemented within one
function only and no other feature was implemented in that function. An example
of such afeature is importing data from another database. Cash value calculation
is an example of non-evolvable feature because its Fl is shared by nine other
features in a single function which means the impact of change will be
unfavorable. Likewise, a cross-cutting feature, like a constraint to a non-linear
eguation solve, is adso not a favorable candidate for evolution because it is
dispersed in so many different features. Finally, we discovered CORE of 42

functions as shown in Table 7.3.

K FI C
Number of Neighboring Features | Number of Functions | Avg. Coverage Feature Heuristics
3 17 80.00 Input Processing Evolable
1 1 100.00 Import Trivial
10 1 100.00 Cash Value Calc | Not-Evolvable
1 54 35.00 Solve Constraint | Cross-Cut
42 100.00 Core

Table 7.3: Heuristics (partial listing).
7.1.4 Sorting Feature Function Matrix

When regression test suite is run with a profiler, the amount of data can be
overwhelming. AMS has over 250 test case files in its regression test suite.
When the profiler generates the feature function coverage matrix, it is not sorted

and the feature-function coverage data is scattered as shown in Table 7.4.

Unsorted

Features

218

Functions| FE; FE, FE, FE, FE, FE, FE, FE, FE, FEo FE,, FE,,
fg 0 0 0 80 90 0 0 0 0 0 0 0
fq 0 0 0 100 100 0 0 0 0 0 0 0
f1o 0 0 0 0 0 11 12 0 0 0 0 0
f1q 0 0 0 0 0 33 44 0 0 0 0 0
f1o 0 0 0 0 0 12 15 0 0 0 0 0
fis 0 0 0 0 0 15 15 0 0 0 0 0
f14 0 0 0 0 0 22 22 0 0 0 0 0
fi5 0 0 0 0 0 32 38 0 0 0 0 0
f16 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
f1g 100 100 100 100 100 100 100 100 100 100 100 100
fy 100 100 100 0 0 0 0 0 0 0 0 0
f4 70 75 80 0 0 0 0 0 0 0 0 0
f 0 0 0 0 0 32 38 12 56 89 66 63
f, 100 100 100 0 0 0 0 0 0 0 0 0
fg 100 100 100 0 0 0 0 0 0 0 0 0
fay 0 0 0 0 0 22 22 34 52 23 43 34
f1o 100 100 100 100 100 100 100 100 100 100 100 100
f, 80 80 90 0 0 0 0 0 0 0 0 0
fo 100 100 100 0 0 0 0 0 0 0 0 0
f; 100 100 100 0 0 0 0 0 0 0 0 0
f2o 100 100 100 100 100 100 100 100 100 100 100 100
fo3 0 0 0 0 0 32 38 22 44 33 45 32

Table 7.4: Unsorted Feature Function M atrix.

When we look at the evolution threshold, we must cluster the data into group of

related features and their FIs. We make use of RankSort algorithm to cluster the

feature-function matrix.

Ranksort alows sorting over multiple columns.

A

detailed description and analysis of Ranksort can be found in [107]. We have aso

implemented RankSort algorithm in our utility that was discussed in Chapter 5.

The data shown in Table 7.4 is sorted using RankSort that then resembles Table

7.5.

Sorted | Features

Functions| FE, FE, FE, FE, FEs FE, FE, FEq FE, = FE,, FE,,
fy 100 100 100 0 0 0 0 0 0 0 0 0
f, 80 80 90 0 0 0 0 0 0 0 0 0
fs 100 100 100 0 0 0 0 0 0 0 0 0
fy 70 75 80 0 0 0 0 0 0 0 0 0
fs 100 100 100 0 0 0 0 0 0 0 0 0
fo 100 100 100 0 0 0 0 0 0 0 0 0
f; 100 100 100 0 0 0 0 0 0 0 0 0
fg 0 0 0 80 90 0 0 0 0 0 0 0
fq 0 0 0 100 100 0 0 0 0 0 0 0
f10 0 0 0 0 0 11 12 0 0 0 0 0
f1q 0 0 0 0 0 33 44 0 0 0 0 0
f1p 0 0 0 0 0 12 15 0 0 0 0 0
fi3 0 0 0 0 0 15 15 0 0 0 0 0
f1q 0 0 0 0 0 22 22 0 0 0 0 0
f15 0 0 0 0 0 32 38 0 0 0 0 0
f1e 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
fig 100 100 100 100 100 100 100 100 100 100 100 100
f1g 100 100 100 100 100 100 100 100 100 100 100 100
f20 100 100 100 100 100 100 100 100 100 100 100 100
fa1 0 0 0 0 0 32 38 12 56 89 66 63
f2s 0 0 0 0 0 22 22 34 52 23 43 34
fo3 0 0 0 0 0 32 38 22 44 33 45 32

7.1.5 Reusable Components and Web Applications

Table 7.5: Sorted Feature-Function Matrix.

219

Section 2.2.2 discussed the importance of the Internet in evolving legacy systems.

At AFS, while we aready had our flagship product AMS in operation, we were

developing its web counterpart which presented challenges and opportunities. In

our search to reuse components across our product lines, we found that a web

applications forces a system to be composed of smaller stateless units which in

turn forces a monolithic legacy system to be decomposed into smaller more

manageable units. Web applications are typically are comprised of three tiers

namely web server, application server and database server as shown in Figure 7.2.

In evaluating reusability between AMS and AMS-Web, we found that between

the two product lines there were four common indirect features specifically; Input

Processing, Reporting, Business Logic Calculation and Data Access as shown in

220

Figure 7.2. While al four features were converted into reusable units using the
methodology; Input Processing feature was evolved using the methodology,
Reporting and Business Logic features were evolved via wrapping and, Data

Access feature is part of CORE.

| End User |
A
Internet

A

Web Server — Tier | | End User |
Input Processing Components)
(Inpi g Components) 5 _ |

Desktop

(Reporting Components) v \
l T Monolithic Legacy System

(Input Processing Feature)

Application Server —Tier 11 (Reporting Feature)
(Business Logic Components) « » (Business Logic Feature)
(Data Access Components) -« » (Data Access Feature)

A
Database Server — Tier |

Figure 7.2: Reusable Components Between Desktop and Internet Application.

221

7.1.6 Issues In Reusing Components Across Product Lines

While reusing components is an excellent idea across product lines, we found
several inherent problems:

7.1.6.1 Configuration Management

Configuration management and version control are key issues and must be
addressed carefully when a component is shared across product lines. It is aso
important to decide how many versions of reusable components are going to be
maintained and supported. We found that configuration is more complicated in a
product line context for two reasons:

1. A change must be considered not from the point of view of a single
product, but in terms of keeping the changed component used by all of the
products that currently employ it.

2. Itismore likely that it will be necessary to maintain separate versions of
reusable components, as opposed to simply supplying the most recent one,
as may suffice in one-at-a-time devel opment.

At AFS we found that strong, centralized architectural control is key to product
line development, but so is management of change and evolution. In the
development phase, the architect answers to a single set of products, and their
needs are often complex. But in a product line, the architect answers to users of

al versions of the system, and keeping the product line intact is more important

222

than making changes to accommodate a single product's needs. In order to
address the above-mentioned issues we created a team of software developers
whose main job was to manage the versions of the shared components.

7.1.6.2 Deployment

Given that fine-grained components needed to be integrated for use within
product lines, there are two technology alternatives that we considered:

1. For the local component model (for the use within AMS) we compared
Microsoft’s Active X and Sun’s JavaBeans.

2. For distributed component model (for the use within AMS-WEB) we
compared Microsoft COM (COM/DCOM/MTS/COM+) and Sun’
Enterprise JavaBeans (EJB).

We decided to use Microsoft COM for deploying both AMS and AMS-WEB
product lines for the following reasons:

a. Integrating Active X components in our existing enterprise framework is
easier than JavaBeans since not al our developers know Java
programming language.

b. Our enterprise framework and legacy code uses COM as an underlying
technology.

c. We did not want to deal with the bridge technology that would try to
connect COM and JavaBeans [62]. For example, it is possible to raise

events from JavaBeans and catch them in Active X components.

223

However, there are known problems with this integration specifically
when handling exceptions.

d. Our users use Windows operating system at-large so interoperability is not
anissuefor AFS.

e. EJB offers several nifty and powerful features but is quite complex.
Because not all our developers are Object-Oriented literate and we have
aready spent so much in Microsoft technologies, we feel that COM is a
better choice for our server-based implementations as well. We fedl that
COM is simple. Thus, we chose COM for deploying components on the
server side as well.

Table 7.6 summarizes the comparisons. Although, it made good technical and

business sense to use COM as an underlying technology for deploying our fine-

grained components we faced the following challenges in implementing the
reusable unitsin AMS-WEB:

1. Our fine-grained components had to be deployed in MTS

(Microsoft Transaction Server) when using with AMS-WEB.

While the installation of MTS was simple, it did add another |ayer

of complexity for our developers. We aso found that Input

Processing components under MTS' performance was slower than

the AMS version.

224

2. COM'’s deployment data is stored in the Windows registry; thisis
cumbersome and presents severa faults as far as portability is
concerned. Registry entries can be exported and imported if a
server is moved but thisis an error prone procedure.

3. Server-based COM components cannot be configured as stateful or
stateless. They're always stateless. Remote clients use DCOM to
invoke methods in COM objects on server machines. For access
from Internet-enabled clients via HTTP, the COM Executive is
loaded into Internet Information Server (11S) the Web server built
into Windows 2000 OS. We had to enhance our fine-grained
component model to maintain state.

4. The AMS'WEB versions of components had to be configured for
security in the application server. The security settings required
setting several parameters in the registry of Windows 2000 OS,

which is cumbersome and errorprone.

225

Properties H EJB		COM	
Component Language ”Java only		VB, C++, Java, C# and Others	
PI atforms ”AII		Wi ndows 2000	
M iddleware Vendors ”30+		M icrosoft	
Legacy Integration [RMI/INI, CORBA, Connectors	COM TI, MSMQ, OLE DB		
Dep	oyment method ”XML descriptor file		GUI and Registry
Prot0co	”Any		DCOM
C0mponent Persistence ”Serl alization ”No			
State	€ss components ”Y%		Y$
Statefu	components ”Y$ ”No		
Persi stent components ”Y&s ”No			
M ethod-granularity transactions”Yeﬁ ”No			
M iddle-tier load balancing ”M ost vendors ”Supported via app. server			
M iddle-tier data caching ”Some vendors ”No			
Queued components ”No		Y&e	
Si ngle-vendor solution ”No		Yee	
Midd	ewarecomeswith (O] ”No		Y&e
Deve	opment tools ”Choi ce of many		M icrosoft Dev Studio

Table7.6: EBJ and COM Comparison.

7.1.6.3 Training

Fine-grained components deployment on the server and configuration
management required more training to our developers than we had originally
anticipated. While we were successfully able to train our developers on our
methodology and fine-grained components, we found that server-based

deployment of fine-grained components required extra effort. We did not include

226

training time for deployment on the server in our budget analysis model because
this time was not an extra step required by our methodology. In other words, in
absence of our methodol ogy this step would have to be performed anyway.
7.1.7 Global Variables
We were pleasantly surprise to observe following:

1. Better definition of feature-based global variables

2. Reducing global variables when feature relationships are shared and

required.

7.1.7.1 Explicit Definiton
We found that in all cases that the legacy system isfull of global variables. These
global variables are declared and initialized in numerous functions. Typically, FE;
would set the value of a global variable g; and FE, or subsequent feature(s) may
either use (shared/required feature relationship) or change (ater feature
relationship) g;. This implicit communication is common in legacy system. Asa
side effect of our methodology, we renamed the global variables based upon the
neighboring features and their relationships. Providing better name to the global
variables implied two benefits:

1. It suggests explicit relationships among features thereby reducing

confusion.
2. Changing the state of the global variable can provide some clue regarding

the impact it may have on related feature(s).

227

Table 7.7 illustrates the concept discussed above. The new names of global
variables G1 and G2 depends on feature relationships between the two features

that they have been involved in.

Old Global New Global
Variable Program FE, FE, Feature Variable Name
Name Relationship

Gl Declare Set Use Shared Gl FE1 FE2 S
G2 Declare Set Change | Altered G2 FE1 FE2 A

Table 7.7: Global variable naming convention.

7.1.7.2 Reducing Global Variables

We found that the program does not need to declare the global variable if the
relationships between the features is either shared or required. The global
variables can be encapsulated within the feature-based fine-grained components,

and be accessed as needed by the rest of the program.

7.1.8 Availability of Regression Tests

While we have no empirical studies to show that most systems have regression
test suites to measure stability between releases, such test suites are important
from a business perspective [10]. An informal survey of seven legacy systems
revealed that all of them had adequate regression test suites. We therefore believe
it is reasonable to assume that most businesses either have these test suites
(although they may not refer to them as such) or are generating these test suites

manually each time anew release is schedul ed.

228

7.1.9 Automating Tasks

To instrument the source code we compiled the source code image with
TrueCoverage™. Since the regression testing is aready being done in batch
mode, it was easy to get the instrumented output to compare against al 250
regression test cases. However, these instrumented images were in a
TrueCoverage™ gspecific file format. TrueCoverage™ does provide an automated
way to export the specific file format. We had to manually export each file into a
standard file format (comma-separated values) just to import into a spreadsheet
tool for further analysis. This process needs to be better automated and the
TrueCoverage™ vendor has indicated that future releases will have this

functionality.

7.1.10 Dead code and coverage

We assume that a comprehensive set of regression tests is available for identifying
code associated with the given feature(s). In our case study, we found that even
after executing all test cases, not all of the code associated with Input Processing
was executed. We believe that the unexecuted code contained either hidden
features or is dead code. For example, 12 routines were never called at all. Also,
nearly 17% of the code was not executed in the original code. We put al the
unused code in a separate file and documented it. Incremental feature evolution

gives us the implementation of core (AFS Core).

229

7.1.11 Core and Reducing Dependence on Variables:

After refactoring the AFS Core component, we manualy identified the
parameters for each of the 42 stateless functions. Since AFS Coreis being used in
four AFS product lines, this effort was worthwhile because these 42 functions do
not create any side effects and use no global variables. In addition to AFS Core,
there are two additional supporting core components. Suppression Core and Error
Processing Core. These supporting core components encapsulate the worker
functions and states (i.e, business logic) used by Suppression and Error
Processing components. The supporting core components are created to provide
flexibility in future evolution if any underlying data structure is changed for
managing Suppression or Error Processing. For example, Error Processing Core
contains functions to add, remove, and edit errors to a collection object. In the
future, if the collection object is replaced by an array or another structure, such
encapsulation will alow AFS to change only the working functions and the
interface for the business logic will remain the same. Therefore, each of the six
components has well-defined interfaces with no side effects. Their properties and
methods are categorized explicitly using Get Val ue/ Set Val ue.

7.1.12 Performance

In refactoring the recursion into linear functions, the performance of AMS was

unaffected. We observed a 2% decrease in execution time once AFS Core was

230

introduced. We attribute this improvement to the removal of global variables and
in-line code.

7.1.13 Component Interface Issues

Our methodology initially created components with too many interfaces. To
resolve this issue, we used a Collection Object provided in the VB programming
language to hide the list of these variables. Different programming languages may
require a different implementation of methods and properties. Furthermore, the
collection object was divided into two basic types, Get Val ue/ Set Val ue with

the parameter of the variable name as an index key.

7.1.14 Measuring Success

The true measure of a successful evolution methodology is in reduced future
maintenance costs. We have only just begun the long-term task of collecting
maintenance data on the refactored system. We found that the features we evolved
for AMS as components can be reused in two platforms, both desktop and
Internet. Although reuse involves integration, configuration management, and
testing costs, the savings on development costs made this exercise highly
successful. As briefly shown in Table 6.15, the net estimated cost of this project is
one month's salary for the AFS development team. Once long-term cost
reductions are factored in, the resulting savings will be favorable. The

performance of the refactored system is acceptable and it no longer freezes during

231

input. Also, AFS is now using AFS Core in all four of its product lines (an

unexpected side effect).

7.2 Contributions

In this dissertation, we have made the following contributions. First, an
incremental methodology to evolve legacy code is developed that improves the
maintainability of evolved legacy systems. Second, the technique describes a clear
understanding between features and functionality, and relationships among
features using our feature model. Third, the methodology provides guidelines to
construct feature-based reusable components using our fine-grained component
model. Fourth, we bridge the complexity gap by identifying feature-based test
cases and devel oping feature-based reusable components.

7.2.1 Incremental Evolution Methodology

Our ten-step methodology is incremental in nature and can provide rapid results.
Our methodology provides “exit-points’ in case the developers/testers are not
satisfied with any of the results. For example, heuristics discussed in this
dissertation identify which features are good candidate for evolution and which
ones are not. We have identified input and output criteria for each step of our
methodology, and at any step if a parameter is missing the developer can stop the
whole process without any side effect. Although we have not done so, this

methodology can also be used to evolve multiple features at the same time.

232

7.2.2 Feature Model

Our feature model defines featuresin away that considers evolution in mind. Our
feature model provides a guide to identify the feature implementation within the
source code. We have identified and provided solutions to various cases when
features interact with each other and reveal the same code for feature(s) to be
evolved. We provide a simple clustering technique to group test cases, which
represent same indirect features. In addition, our feature model provides ample
description on thorny issue of feature interaction and provides an intuitive way of
addressing the issue by considering feature relationships. Another major
contribution of our feature model is a technique to associate multiple test cases
with a single feature and develop a feature/function relationship. Finaly, our
feature model forms the basis of providing heuristics to the user by providing
insights on sub-features, feature implementation, CORE, neighboring features and
evolution threshold.

7.2.3 Fine-grained Component Model

Feature Implementations (FIs) can be refactored into fine-grained components,
which can then be reused across multiple product lines. Our fine-grained
component model is simple to use and has minimum requirements in the sense
that it allows the developers to provide better definition to the FI and the variables
involved in invoking that FI. We provide guidelines for evolving a Fl into afine-

grained component: A component’s properties can simplify complicated scenarios

233

such as when a code profiler results in same code for more than one feature in a
function.

Finally, our fine-grained component model reduces global variables if feature
relationships are shared or required.

7.2.4 Complexity Gap

We bridge the complexity gap in two ways. First, we map the regression test
cases to the features and create a feature/function matrix. This matrix is used to
select evolvable features. Regression test cases reflect the end-user feature; they
are already focused so it is not necessary to collect execution traces on all inputs
or to divide the input sets into invoking or non-invoking category as proposed by
other researchers. We suggest that regression test cases are the best choice for the
input cases because regression test cases contain information regarding features.
They can be used as a common entity between the end-user and the software
team. Second, the fine-grained components are feature-based components as they
implement a specific feature or a group of related features. Since these
components are focused on specific features, we believe that they can represent
end-user requirements in a much more explicit way thereby bridging the gap
between user expectations and what the software can provide.

7.3 Future Work

American Financia Systems, Inc. has nearly ten years of longitudinal data on

their legacy system. We are currently expanding our evaluation to model the

234

development costs in adding, modifying, or removing system features. Now that
AFS has refactored parts of its legacy system, we will carefully monitor their
development and maintenance teams to determine the impact of the software
evolution methodology. We hope that other organizations will be inspired by the
success of AFS to carefully evaluate their regression test suites to determine the
feasibility of creating their own reusable fine-grained components.
The work carried out in this research effort opens the door for several interesting
as we now describe.
7.3.1 Metrics
The methodology presented in this dissertation can be further enhanced by
including several metrics such as. quantifying the relationships between test
cases, quantifying the relationship between the features, quantifying impact
analysis when a feature implementation is atered, quantifying the relationship
between the fine-grained components and the legacy system and, quantifying the
complexity gap.
7.3.2 Threshold
The concept of threshold can be studied with respect to following:

1. Different parts of the legacy system: We applied our methodology in the

Input Processing. The methodology can be applied to different areas of
AMS (See Appendix B for more detail) such as:

a. Caculation Engine

235

b. Output Engine
c. Utility functions such as import and export
2. Legacy systems with different architecture: Legacy systems can have
various architectural styles such as pipe and filter, event based, implicit
invocation, layered, repository oriented, table driven, blackboard and
object oriented [29]. We applied our methodology in the Input Processing
of AMS, which appears closest to that of pipe and filter. While our
methodology is architectural-style independent, it will be interesting to see
the results of applying our methodology to the legacy system with various
architectural styles.
7.3.3 Multi-threaded features
Our methodology has been developed and tested with single-threaded features.
Our case study included features with relationships shared, required, and altered.
Typically, multi-threaded features implement competition and conflicting
relationships [26]. While we can certainly identify features with these
relationships, our methodology does not provide enough guidance in converting
such Feature Implementations (FIs) into fine-grained components. More work
needs to be donein this area.
7.3.4 Extending the evolution manager utility
The evolution manager utility that we discussed in Section 4.6 can be extended.

The main purpose of our utility isto show that a Feature Implementation (FI) can

236

be identified. This FI typicaly needs local and globa variables, which in turn
becomes the component’s interface. We evaluated various code profilers and
used their output of in the utility. Extending the utility to automatically import
the information on static and dynamic slicing from various code profiles would be
a good improvement. The main purpose of our evolution manager utility is to
identify FI in terms of Lines of Code (LOC) and variable involved. While we are
able to show the power of relational database by modeling LOC and variables
used, this utility does not yet provide any insights into refactoring. Extending the
utility to provide refactoring insights can be helpful. There are severa other
enhancements that can be made to this utility such as maintaining release versions
and adding more reports.

7.3.5 Object-Oriented Systems

The case study presented in this dissertation uses a legacy system that has lots of
globa variable and is not object oriented. It will be interesting to apply our
technique on an object-oriented system with complex class hierarchies. There are
several code profilers that are available for most of the object-oriented languages
such as Java or C++. Indeed, many legacy systems are object-oriented. These
legacy systems can benefit from our methodology if our methodology is extended
to include object-oriented systems. Code profilers can gather information about
the legacy system’s classes that implement features. These classes will have to be

then analyzed using our feature model. Refactoring of these classes can result in

237

some core classes that can then be shared. It appears that analyzing object-
oriented system will be quite challenging and it presents its own research issues.
We |eave this interesting problem to be solved as part of future work.

7.3.6 Systems whose source code is unavailable

At this time it may appear far-fetched but our methodology could be extended to
include techniques to analyze systems whose source code is not available. There
are legacy systems whose source code is either lost or unavailable for one or more
reasons. While our methodology uses source functions to provide heuristics on
evolvable features, this can be changed to ssimply extract features by running
regression test cases. Essentially, input and output can be compared to identify
systems behavior. By comparing the input against the full regression test suite,
the features can be identified and the system can be executed to generate output.
This behavior can be statistically studied to identify features of interest. Once
features are fully understood they can then be rewritten. CBSE techniques can be
used to integrate newly created components into legacy system whose source is
not available.

7.3.7 Real-time Systems

Our methodology has been applied in a legacy system that is used in integrating
executive benefits with life insurance. The AMS legacy system is by no means a
real-time system. If the rea-time systems are instrumented to collect the output

data then desired features could be studies, identified and refactored as needed.

238

This instrumentation can be in many forms such as code profiler, debug lines or
log files. Many real-time systems have advanced logging capabilities. That could
be used to analyze and refactor features of interests.

7.3.8 Tools to manage feature evolution

Figure 4.27 outlines the data model used as a basis for our formal model. We
chose a relationa model because it is intuitive and easily applicable in our
context. The formal model provides a theoretical foundation to our techniques.
While we have successfully applied our methodology, we believe that it is lacking
a tool to manage the feature evolution process. This tool can be built from the
idea presented in our forma model. The formal model is actually based upon the
data model. This data model contains useful information regarding shared
function and data. It can select the functions and data shared among features and
can automatically copy them into the relational model as the devel opers are using
this methodology. As this database grows, it will provide meaningful information
for traceability and future maintenance. We believe that several tools can be
developed that can use the data model presented in this dissertation.

7.3.9 Tools to automate selection of test cases

We have presented two techniques to select the regression test cases in our case
study. These techniques are usage of clustering and textual pattern analysis.
Future work can include development of some tools that can automate this task.

Essentially, these tools can analyze the pool of heterogeneous data that is either

239

part of regression test suite or is associated with the documentation that supports
regression test cases. These tools can group the related test cases (thus related
features) based upon certain rules.

7.3.10 Extending the budget analysis model

The budget analysis model can be extended to include several other variables that
may be interesting from a project management perspective. While the budget
analysis presented in the conclusion Section 6.10 includes variables that are
sufficient to suggest that our approach is indeed worthwhile, it can certainly be
extended to include costs more accurately using COCOMO or COCOTS model
[15][17][109][130]. Furthermore, the budget analysis presented in Section 7.1
can include several other line items such as opportunity cost.

7.3.11 Extending the component and formal model

Our component model considers two features at a given point in time. See Figure
4.15, which shows view of the function being analyzed as fy, fy etc. We feel that
there is an opportunity to analyze more than two features at a given time. This
would increase the complexity of the analysis but we believe that the component
model could be extended to use more than two features at atime.

Similarly, the forma model could be extended to include several metrics such as
provided in Wong et al. [125]. These metrics could provide several interesting
views such as what is the relationship between components properties and

variables used in a feature prior to its evolution or a scattering index indicating

240

how many functions a particular feature is scattered in and what is its relationship
with other features within the function.

7.3.12 Using our methodology with tools other than code profilers

We have developed and used our methodology with source code profilers. There
are other tools that could be used to collect the data we want, such as compilers
with symbolic debug information or user-defined instrumentation.

7.3.13 Application of our methodology for program understanding

Although we argued rather rigorously in the related work section that motivation
of our work is software evolution rather than program understanding, we believe
that our methodology can be used to understand program as well. Using
regression test cases and code profiler, the execution paths can be studied to
understand which part of the program is being used more than the other and so on.
Similarly, functions involved in a particular feature can be traced and watched for
testing and debugging purposes.

7.4 Summary

We discussed lessons learned, our contributions and future work in this chapter.
We presented heuristics for selecting the features that are best suited for
evolution. We discussed the concept of threshold that allows us to select sutable
candidates for evolution. Threshold consists of a function of number of
neighbouring features, number of functions and average coverage. We discussed

the importance of RankSort and clustering. Upgrading existing desktop

241

applications into web-based application allows us to identify features that can be
reused using our methodology. There are several issues in reusing components
among applications such as configuration management, deployment and training
personnel. Legacy systems that have large number of global variables can
benefit from our methodology in two ways, first our methodology provides better
definition of feature-based global variables and, second it reduces global variables
when feature relationships are shared and required. Our methodology assumes
availability of regression test suites and code coverage profilers. We believe that
this constraint is not severe. We successfully applied our methodology in alarge
industrial application. Our contributions consists of an incrementally evolution
methodology, a feature model and a fine-grained component model. These
models are supported by formal model and budget analysis model. We bridge
the complexity gap in two ways; first by mapping the regression test cases to the
features and creating a feature/function matrix, second by creating feature-based
fine-grained components. We have provided several avenues for future research
such as developing metrics to measure feature/function relationships, collecting
information and calculating threshold for various parts of the legacy system,
extending our methodology for multi-threaded features, enhancing the evolution
manager utility, applying our methodology for OO systems and extending our

models.

242

We hope that we have convinced the reader that our methodology is easily
applicable and measurable, incremental in nature and has solid theoretical

foundation.

243

List of Acronyms

ADT
AFS
AMS
AOP
API

C
CBSE
COTS
DD
DF

FE
FE;
FGC
FI

Fl;
FOCS
FODA

FOP

Abstract Data Type

American Financial Systems, Inc.

AFS Master System

Aspect-Oriented Programming

Application Programming Interface

Average Coverage

Component Based Software Engineering
component-off-the-shelf

Dependent Data

Dependent Function

Feature in a Legacy System

afeature of Legacy System that is exercised when k; is executed
Fine-grained component model

Feature implementation as defined in the feature model
Animplementation of FE; inLS

Feature Oriented Classification of System

Feature Oriented Domain Analysis

Feature Oriented Programming

LOC

LS

MAP

OAR

SE|

Vi

A set of global variablesin a Legacy System
Graphical User Interface

The set of global variablesinvolved in Fl;
A set of test cases such that ki J T
Neigboring Features

Lines of Code

Legacy System

Mining Analysis of Product Lines
Options Analysis Re-engineering
Software Engineering Institute

Shared Statel ess Function

The set of shared stateless functionsin Fl;
Shared State-Full Function

Threshold

The set of local variablesin Fl;

The set of local variables directly affected by Fl;

244

245

Glossary

xSuds. A tool developed by Telecordia Technologies where program features in

the source code are tracked down to files, functions and lines of code.

Altered Relationship. When a feature's state (global data, object or
implementation) is altered by another feature then there is an altered relationship

between features.

Architectural reconstruction. Architectural reconstruction is the process where

the “as-built” architecture of an implemented system is obtained from the existing

legacy system.

Aspect Oriented Programming (AOP). An approach in which cross-cutting
concerns that appear throughout numerous modules of a system implementation
are identified and then integrated into the primary modularization to create a final

working system.

Assignments. AMS's Input Processing’s sub-feature which converts user input

from strings to types such as Integer, Single, Double, or Array.

246

Base-line Architecture. Specific caller-callee sequence within a program, and is

unlikely to be reusable into another components.

Black Box Technique: A binary executable form of the component is available

and there is no extension language or API.

Budget Analysis Model: The budget analysis model presents the cost and the

benefit of applying the methodol ogy.

Clustering Analysis. It is the organization of a collection of patterns (usually
represented as a vector of measurements or a point in multidimensiona space)

into clusters based on similarity.

Coar se-grained softwar e evolution. Evolution focused on large-scale structural
issues of a software system, such as global control structure, synchronization and

protocols of communication between components.

Code refactoring. Improving the design of existing software code without

atering the behavior.

247

Code profiler. A tool for analyzing software code which performs functions
such as identification of performance bottlenecks and verification that code

changes have improved performance.

Complexity gap. The gap between the problem domain the solution domain.

Component. A software element that conforms to a component model and can
be independently deployed and composed without modification according to a

composition standard.

Component Based Software Engineering (CBSE). An approach to software

design that utilizes components as the core structural elements.

Component model. A model which defines specific interaction and composition

standards.

Composed relationship. It shows how a feature is composed of several sub-
features. An example of a composed relationship is that a bank account consists

of savings and checking accounts.

248

Configuration management. Application of technica and administrative
controls to characteristics, change processing, and implementation of

configuration itemsin a software system.

CORE. Shared Stateless function(s) that are executed 100% of the time for all
features then we define that function to be part of CORE. Such functions are

candidates for a shared library.

Cross-cutting. Mean that a function can implement many features and these

features share the same code/data.

Data Model. The data model is used to trace feature relationships, interactions

and component evolution of alegacy system.

Dependent Data. An FI may be dependent on the data that is updated by another

FI. Thiscan belocal or global variable.

Dependent Function. An FI may be dependent on a function that is part of

another Fl.

249

Evolution Manager Utility. Utility used in recording and tracing the

methodology steps.

Error Processing. Error Processing is a sub-feature of AMS's Input Processing

feature that validates item values.

External Dependencies. SSF, CORE and other components can be called “out”
of the fine-grained component to access any data needed via this interface.
External Dependenciesis alist of external program/component declaration within

afine-grained component.

Feature. It is a group of individua requirements that describes a unit of
functionality with respect to a specific point of view relative to a software

development life cycle.

Feature Engineering. The area of study that addresses the understanding of
features in software systems and then defines a set of mechanisms for carrying a

Feature from the problem domain into the solution domain (thereby reducing the

complexity gap).

250

Feature Implementation. It is the set of statements (including data) within all
functions that execute when that feature is invoked. The feature is invoked by

one or more test cases.

Feature Interaction. Features must interact with each other to provide wider
system functionality. When features interact with each other, they have an

“effect” on the system. This effect can be positive or negative.

Feature Model. helps to identify where features are located within the legacy
system, how features are related to other features, and how they interact with each

other.

Feature Oriented Domain Analysis (FODA). A method of system analysis
which provides a generic description of the requirements of a class of systems and
a set of approaches for their implementation, based on the feature set of the

system.

Feature Relationships. Feature relationships refine the concept of interaction by
providing specification through calling sequence among features sharing

data/functions.

251

Fine-grained components. Components whose interaction is clearly specified by

the interfaces provided by each feature interface.

Fine-grained component model. It provides guidelines to extract feature specific

code/data.

Formal Mode. It provides the theoretical foundation for our
evolution methodology. The formal model is supported by the data

model.

Function Point Analysis. The basic notion of this discipline is that the
functionality of a software project can be objectively estimated independent of the

implementation.

Gray Box Technique: Source code of a component is not modified but the
component provides its own extension language or Application Programming

Interface (API).

Input Processing. It validates and prepares data from user inputs (also called

items) so AMS can perform complex calculations to generate various reports.

252

Item. Field withinthe AMS system.

Law Of Two, The: If afeature can be used in another system, its implementation

becomes a candidate for reuse.

Legacy Code. A system or application which continues to be used because of the
cost of replacing or redesigning it, often despite its poor competitiveness and

compatibility with modern equivalents.

Legacy System. Any software system that is currently in operation is considered

legacy system.

Methodology: Used for evolving legacy system’s features by exercising each
feature with its associated test cases using code profilers and similar tools, feature
implementations can be located and refactored to create reusable fine-grained

components.

Neighboring Features (K). Number of features interacting within a function

Opportunity Cost.

253

Problem domain. User expectations and concerns, pertaining to software

functionality.

Property Get: It is away to retrieve the values of local or global variables from

the component.

Property Set. It isaway to pass these variables to the refactored FI/component.

Regression Testing. Part of the test phase of software development where, as
new modules are integrated into the system and the added functionality is tested,
previously tested functionality is re-tested to assure that no new module has

corrupted the system.

Required Relationship. When a feature is required to be present for other

features to function is known as Required Relationship.

Requirement Engineering. Requirement Engineering is the discipline that is
focused on providing a concise, consistent, unambiguous, and complete definition

of the problem domain.

254

Shared Relationship. When a group of feature share resources (global data,
objects or other implementation) with other feature(s) then a shared relationship

among features exists.

Software Architecture. The way a system is designed; the way components fit

together.

Softwar e Evolution: See Methodology.

Softwar e Reconnaissance: Implies “preliminary survey of enemy terrain” where

software program is considered as an enemy whose secrets must be extracted.

Solution domain. Developer concerns regarding the creation and maintenance of

software development life cycle artifacts such as components.

State-full Function. A state-full function can be shared between two features. It

maintains state and is used as a means to communicate by features.

Stateless Function. A stateless function can be shared between two Fls and does

not retain any state.

255

Suppression. Suppression is a sub-feature of AMS's Input Processing feature
that either shows or hides an item in the user interface based upon the input for

another item.

Threshold: Optimal number of neighboring features, the number of functions
and the average coverage percentage within the function. It provides heuristics on

whether to continue with the evolution methodology or not.

Traceability. Ability of a code-profiling tool to trace the source code

implementing a specific feature.

White Box Technique. Access to source code allows a component to be

significantly rewritten to operate with other components.

256

References

Appendices

Appendix A: AFS Master System

The AFS Master System (AMS) is used daily by hundreds of top
insurance producers successfully competing in the supplemental benefits
market. Key features include:

True 32-bit power of the latest Windows operating systems, featuring
user-friendly interface, high-quality graphic output, drag-and-drop input
from other applications, and unparalleled presentation capabilities

Quick preparation of illustrations and proposals to support new sales
Ability to re-project plansto adjust for changing plan assumptions

Easy entry and control of all census data and convenient handling of an
infinite number of lives with the Census Manager database, allowing sorts
on any census item and the option to zoom into individual census records

Power to tailor plans to clients complex needs by combining all types of
benefits and insurance products in a single, composite illustration

Flexibility to make as many changes as needed in any design variable in
any illustration, including tax brackets, cost of money, salary increase
rates, term rider amounts, split dollar premium bonuses, etc.

Easy navigation among appropriate sales concepts, advice on accounting
issues and case design, and guidance on the impact of each selection with
hypertext help and the package design wizard

Handles and integrates all types of executive benefits sales, including
SERPs, True Deferral Plans, 162 Bonus Plans, Split Dollar Plans, Death
Benefit Only Plans, and all types of Group Carve-Out Plans

Provides highly flexible Group Carve-Out modeling

257

Solves for appropriate amounts of insurance financing, taking into account
MEC status projections, multiple-target cash values, rollout solves,
maximum withdrawal solves, year-by-year benefit tracking and various
combinations of solves

Demonstrates emerging shortfalls in benefit funding, and solves for
additional insurance

Saves historical values of a case so re-projections can utilize the
accumulated historical data

Accounts for benefits and insurance amounts according to FAS 87, FAS
107, FAS 109, and APB 12

Provides TAMRA analysis, MEC compliance with sophisticated MEC
avoidance options, and in-force re-projections, including illustration of
multiple in-force policies for the same individua

Anticipates financial impact of a program through the use of partial
mortality

Runs universal, variable, traditional, and all types of interest-sensitive
products concurrently on one system

Controls and tests new policy outlay options

Assesses and projects material changes, flags MEC status, and adjusts
policy taxation

Controls and updates flexible term riders; tests for re-projected amounts
and limits

Handles all forms of loans, partial surrenders, and changes in dividend
options

Individual Executive Reports - A wide range of reports on any individual
on agiven run

Composite Reports - An equally wide range of composite reports on a
given run

258

Assumption Page and Report - Lists all assumptions made in the
illustration Census and Master File.

Benefit Report - Provides selected census information and a summary of
insurance and benefit information for each plan participant and calculates
group totals when applicable

New Business Reports - Automatically uploads census data and policy
information to the home office, feeding new business and policy
administration systems

Output to Access and Excel - Sends output directly to database tables and
worksheets for further processing and formatting without having to parse
and reformat ASCII text files

259

Appendix B: AMS Architecture

There are three sub-systems that constitute the AFS Master System © (AMS);, the
Input Engine, the Calculation Engine and the Output Engine. The Input Engineis
an ActiveX executable, the Calculation Engine is also an ActiveX executable and
the Output Engine is a standalone executable. In addition, Microsoft Access ® is
used as the data repository. MS Access ® is used both to manage the user's data
and as a communication vehicle between the three engines (see Figure B.0.1).
ActiveX is part of AMS s COM (Component Object Model) technology. Thus by
creating ActiveX components via VB, COM components are actually created at
the same time. The Input Engine performs input data validation (along with other
functionality such as Import, Export, Menus, /Census Manager) and “prepares’
data for the Calculation Engine. The Calculation Engine performs calculations
(see Figure B.0.1) and dumps the data into an MS Access ® Table. Through MS
Windows ® APl and a “polling” mechanism the Output Engine is instructed to
generate reports. User Data is stored in the Master and Census Tables of MS
Access®.

Figure B.2 provides an overview of the interactions between the three entities
(Input, Calculation and Output). There are two main communication vehicles that
help the communication between entities; the Status Run Table and the Run

Form.

260

Status Run Table is created by the Input Engine; it contains a variety of status
information about the progress of calculation and printing. When the Calculation
Engine is done with calculating, a status of “6” is posted to the record(s). When
the Output Engine reads (polls) that status of “6”, it performs reporting and finally
updates the status to “14” when done. There are many records in the Status Run
Table in a given session. Both the Calculation and Output Engines operate
asynchronously. Run Form is part of the Input Engine. The Input and Calculation
Engines communicate via a “calback mechanism”. The Run Form displays
messages to the user that are sent from the Calculation and Output Engines.
When the Calculation Engine sends messages to the Run Form, they are sent via
the “callbacks’. However, when the Output Engine sends messages to the Run
Form, they are done via the Windows APl (since the Output Engine is a

standalone executable).

Input

Calculation

uRd)

Output

Figure B.0.1: Interactions Among the I nput, Calculation, and Output Engines.

UserData
and File

Status Run

261

Read Help File
Display Help
based onField

Start

Read Configuration Files
Read User Data
Assign Fields
Draw Screen and Sets Menus

F Wait For

User

Determine Census
Fields, Read
Census File,

Display Census

FigureB.0.2: AFS Master System — Calculation Processing.

F3/RUN Button

Process RUN

Anymore EEs
to Process

Anymore
Policies to
Process

Yes

Main Calculator

v

Individual
Processor

Anymore
Durations to
process

. Yes
ext Duration
v

Annual Mandatory Calculation
Output to Access (Y,A,B,C,V,E,F)

262

263

Appendix C: AMS Regression Testing Utility
Overview
AFS Quality Control Analysis is the process of monitoring that interactions and
interdependencies are maintained in proper working order throughout the
implementation of controlled system changes. Simply put, this analysis verifies
that changes between versions occur only where expected and do not adversely
affect other areas of the system.
AMS provides a feature to help address this process through the Batch Processing
Utility. The Batch Processing Utility offers an effective and timesaving method
to generate a series of file-based calculations for a predetermined set of test cases.
As part of your Quality Control effort, the Batch Processing Utility will provide
the necessary information to help analyze the accuracy of the system through a
representative sampling of control cases that illustrate the system's functionality.
Figures C.1 and C.2 show how AMS regression tool is invoked viathe AMS GUI
and the regression tool’ s GUI respectively.
The Batch Utility contains the following features:

» Test cases are organized into a matrix.

* Output may be produced for all or some of the cases.

* QOutput can be sent to ASCII, Excel, Access, or to a Printer.

* Individual test files may be added or del eted.

264

» Groups of test files can be categorized and submitted by category to the
Batch Processor for calculation.

* The Matrix Report can be printed to document the results produced
through the Batch processor.

* The Matrix Report includes the category, master file name, census file
name, CVF file name, file prefix, file description as well as any user
comments concerning the file output.

&5 File View Load Fun [[ESSER 'indow Help

ga\te Case ;ata

Master File Input Verification

LCensus Input Yerification to Palicy History

b

Zoom

[l

minim

Batch Processing Utiliy...

— N

= I

= B8 T
Exel Bmors Package

Palicy lssue Date

Inforze Utility...

Palicy
Wariable Life Interest Rate

Profiles Manager...

Crl+Rt

|

=121 I
§ & | ¥ Proposal
cfa |17 InForce

Agzet Management Fee
Dizability "+ aiver Type

Frrint Utility Error Log
DOptions...

Enhanced DEG Rider

Accounting Benefits Ride,

Compact / Repair Databases
Backup User Database

Dizplay Undenwriting/ O ptions

o]

Figure C.1: Invoking regresssion testing utility via AMS GUI.

[a = Dhiaipal A
Ay 2w gl

| =TT (A = T i (W ae samd i T iOp B
R DR R
bachaed |R F TR =7 n L "= T T R PR
BEE SDET o S
Echoed | L Berch IL-X =1] L-X PR S 1 Opi A
TR S i O
Eabaled |0 B b iLn R Ln F AR HE
ke ! T
o
Eechoid I Laich L L = L F oo anad HT 5 Ot ll 1
B) ¢ R0 T
Echred |W. Barek aL-Is o] " L1z M AR HE I
B sl £ R / Tew
. =
=
11 | dmuh .|—
| |
| |
r.-uuﬂub-. "o T P T, ekl lad P iy Moy E gy e S0]

Figure C.2: AM Sregresssion testing utility user interface.

265

Build a Batch Processing Utility Matrix
Test File Creation:

Create and view each representative master, census and case file in your
‘working’ test database.

This ‘working’ test database will be the basis for your ‘Batch’ database.
Ultimately, the ‘Batch’ database will not be used for any testing apart from Batch
Processing. This strategy will help maintain the integrity of your ‘Batch’ database
and will also bypass any confusion that may arise when the Batch Utility is used
to create output for your file comparisons. In addition, as you create your test
files, be aware of the report columns for these files. It is important to include
appropriate and illustrative column sets.

File Import:

After each file is reviewed, import the representative master, census or case files
into your ‘Batch’ database.

Only files that are in the active database may be added to the Batch Processing
Utility Matrix. The 'Add" function will not create new master, census or case
files, but rather include existing files in the matrix.

<1

Click on the Category drop down and type in a category name. Use the Category
entry as an identifier for groups of cases. This categorization will become helpful
if you decide to either include or exclude groups of cases from the batch run.

From the Master File Drop Down list, select the master file. If applicable, from
the Census Master File Drop Down list, select the censusfile. If the case does not
have a census, select ‘STARTUP from the drop down list.

Add Files to a Batch Processing Utility Matrix:

Enter afive characters prefix for the test case. This prefix will be used if the test
case is sent to Access, Excel, or ASCIl. The Batch Processor takes the five
characters prefix and appends information from the release and version
information that is contained in the executable. For example; if the file prefix
were ‘1L-01" and the executable number was 33.0.11, the system would produce a

266

file with the following name --- 1L-01330.11 It is good practice to verify the
initial file output.

Note:

An dternative to the method described above involves the ‘Add’ icon. This'Add'
function will not create new master, census or case files, but rather includes
existing filesin the matrix.

Only files that are in the active database may be added to the Batch Processing
Utility Matrix. To add files that are not in the current test database, first import
them into the active database.

The STARTUP census file is assumed as the default census for master files that
are added.

Use the Category entry as an identifier for groups of cases. Thisis also helpful in
excluding groups of cases from a batch run.

A file may be added to the matrix once per category.
Delete Files from a Batch Processing Utility Matrix:

<
. _ \
Click the Delete icon.

Using the Record Selector, highlight the file(s) to be deleted.

For multiple file selection, hold down the CTRL key and click on each file that
you want. To select a group of files that are next to each other, click on the first
or last file of the group, and then hold down the SHIFT key while clicking on the
file at the end of the group that you want to select.

Click OK.
In the Confirm Deletion window, click Y esto delete the cases.

You may click No to exit the delete option entirely or click Cancel to return to the
Select one or more box and redefine the files to be del eted.

267

The record(s) corresponding to the deleted file(s) will be deleted from the Batch
Processing Utility Matrix.

Deleting afile from the matrix does not delete if from the database.

You can add a file that has been deleted from the matrix back into the matrix at
later time.

Find Entriesin a Batch Processing Utility Matrix:

On the Tools menu, point to Batch Processing Utility.

In the Case Selection box, click the category that you want to find.
Click Find.

The Record Selector will move to the first entry in the matrix that has the
specified category.

Print a Batch Processing Utility Matrix Report

The Matrix Report includes a detailed list of the cases in the Batch Processing
Utility Matrix which has been sorted by category. The report includes any file
descriptions and comments that have been entered into the grid.

On the Tools menu, point to the Batch Processing Utility.

On the File menu, click Print or Click on the ‘* Printer’ icon.

The Matrix Report will be printed to the default printer specified in the AFS Print
Utility Configuration window.

Direct Batch Run Output to Printer or File

On the Tools menu, point to Batch Processing Utility.

In the Output To box:

Click Printer to print the output to the default printer specified in the AFS Print

268

Utility Configuration window

Click Excel Fileto direct the output to an Excel spreadsheet

Click Accessto direct the output to an Access database

Click ASCII Text to direct the output to atext file

If you choose to direct the output to an Excel file or to an ASCII text file, then in
the Path box, specify the location of the output file. Y ou may type in the full path
name or use the Browse feature.

Run Batch Outpuit:

Prior to arun, make sure that the Run ‘types’ are set correctly for your cases.

All cases with run types of 'In-force’ and 'Proposal’ will be included in the batch
run. Caseswith run type of 'Excluded’ are not included in the run.

To select cases for a Batch Run:

On the Tools menu, point to Batch Processing Utility.

Individually or by category, set the Run Types for the Batch Run.

Direct the Batch Output

Click Submit Run.

Note:

The Status box for each case will reflect where the case isin the run process.
An'X"in the status box signifies that the case has not been selected for the run.

'Run request’ signifies the case is currently being processed, while 'Scheduled'

means that the case has been selected and has not yet been processed.

269

In a batch run, a case with run type of Proposal is run with a normal run (without
a CVF file), while a case with run type of In-force is run with a CVF file. Thisis
equivaent to the Normal Run (F3) and In-force Run (Shift-F3) options in the Run
menu in the Master Control Panel. Figure C.3 shows partial AMS regression test
suite. The AMS system can aso run via command-line executing each of the

records shown in Figure C.3.

I3 Microsoft Access Table] —l8lx|
HgRvsBasiclatuvav|axe@a |0
] £ & wow ot Pt Bomads Toks indon Eels —lal x|
Category T Master [Census | Policy |Tester|Run ID[Run| Description | Comments | Base | Test| Status | Ascii Text Output Prefix| Test CreationDate | Test Gen | Product | Password | 4]
| [Section 1 Packages GWDEFADTT Starup 1 BC 0 Generic packages X P08 /1772001 21042 PM 2834 1 - TransMilleniurn
[|Section 1 Packages GWDEFINCF Startup 1 BC 213000 0 Generic packages no output x 1 x P05 5A7/2001 21042 PM 2834 1 - TransMillenium
| |Section 1 Packages GWGCOCAER Startup 1 BC 21000 O Generic packages x P10 5A7/2001 21042 PM 2834 1 - TransMillenium
| |Section 1 Packages GWGCOCASS Startup 1 BC 215000 O Generic packages x P11 5A7/2001 21042 PM 2834 1 - TransMillenium
[|Section 1 Packages GWGCODEO Startup 1 BC 216000 O Generic packages x PO7 5A7/2001 21042 PM 2834 1 - TransMillenium
| |Section 1 Packages GWGCOESDN Startup 1 BC 217000 O Generic packages x P08 51702001 2:10:42 PM 2834 1 - TransMilleniun
[|Section 1 Packages GWGCOESSD Startup 1 BC 218000 O Generic packages x] 517/2001 210:42 PM 2834 1 - TransMillenium
| |Section 1 Packages GWSDCALLN Startup 1 BC 219000 0 Generic packages X P13 51702001 21042 PM 2834 1 - TransMillenium
[|Section 1 Packages GWSDCPST Startup 1 BC 220000 O Generic packages X P14 51702001 2042 PM 2834 1~ TransMillenium
| |Section 1 Packages GWSDEPST Startup 1 BC 221000 O Generic packages X P12 5A7/001 24042 PM 2834 1 - TransMillenium
[|Section 1 Packages GWSDRSD Startup 1 BC 222000 O Generic packages stopped run 1 x P15 5A7/2001 21042 PM 2834 1 - TransMillenium
| |Section 1 Packages GWSIPST Startup 1 BC 223000 -1 Generic packages Run Request P01 712502001 10:3352 PM 2835 1 - TransMillenium
| |Section 1 Packages GWSIPAISF Startup 1 BC 224000 -1 Generic packages Run Request P02 7252001 10:3352 PM 2838 1 - TransMillenium
[|Section 1 Packages GWSIPDECR Startup 1 BC 225000 O Generic packages X P03 517/2001 21042 PM 2834 1 - TransMillenium
| |Section 1 Packages GWSIPYOST Startup 1 BC 226000 0 Generic packages X P04 5170001 210:42 PM 2834 1 - TransMilleniun
[|Section 2 Values oV Startup 1 BC 100000 O Corporate UL-CYAT x oVt 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|Section 2 Values o2 Startup 1 BC 101000 O Corporate UL-CYAT X o2 5170001 21042 PM 2834 1 - Corporate UL -
[|Section 2 Values CVIIES Startup 1 BC 322000 O Corporate UL-CVAT x cvis 517/2001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values oV Startup 1 BC 103000 O Corporate UL-CYAT x oV 517/2001 2042 PM 2834 1- Corporate UL
[_|Section 2 values VIS Startup 1 BC 104000 O Corporate UL-CYAT x ovs 517/2001 20:42 PM 2834 1 - Corporate UL
[|Section 2 Values CVIE Startup 1 BC 105000 O Corporate UL-CYAT x CcvToB 517/2001 2042 PM 2834 1- Corporate UL
[|Section 2 Values ovI7 Startup 1 BC 106000 O Corporate UL-CYAT X ovT7 5/17/2001 210:42 PM 2834 1~ Corporate UL
[Section 2 Values cvig Startup 1 BC 107000 O Corporate UL-CYAT x cvs 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|Section 2 Values Vg Startup 1 BC 90000 O Corporate UL-CYAT X Vg 570001 241042 PM 2834 1 - Corporate UL
[|Section 2 Values ovTio Startup 1 BC 109000 O Corporate UL-CYAT x ovTio 517/2001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values oV Startup 1 BC 110000 O Corporate UL-CYAT x oVt 517/2001 2042 PM 2834 1- Corporate UL
[_|Section 2 values ovTi2 Startup 1 BC 111000 O Corporate UL-CYAT x ovTi2 517/2001 20:42 PM 2834 1 - Corporate UL
[|Section 2 Values CVTI38 Startup 1 BC 323000 O Corporate UL-CYAT x ovTi3 517/2001 2042 PM 2834 1- Corporate UL
[|Section 2 Values ovTI4 Statup 1 BC 113000 O Corporate UL-CYAT x ovTI4 51702001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values VTS Startup 1 BC 114000 O Corporate UL-CYAT x ovTIS 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|Section 2 Values CVTIB Startup 1 BC 115000 O Cororate UL-CVAT X CVTIB 51702001 21042 PM 2834 1 - Corporate UL
[|Section 2 Values ovTz Startup 1 BC 116000 O Corporate UL-CYAT x ovTz 517/2001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values cvTig Startup 1 BC 117000 O Corporate UL-CYAT x cvTig 517/2001 2042 PM 2834 1- Corporate UL
[Section 2 Values ovTig Startup 1 BC 118000 O Corporate UL-CYAT x ovTig 517/2001 210:42 PM 2834 1 - Corporate UL
[Section 2 Values GPTD! Startup 1 BC 137000 O Comorate UL-GPT x GPTOI 517/2001 2042 PM 2834 1- Corporate UL
[|Section 2 Values GPTD2 Startup 1 BC 138000 Q Corporate UL-GPT X GPTI2 51702001 2:10:42 PM 2834 1- Carporate UL
[|Section 2 Values GPTISS Startup 1 BC 324000 O Comporate UL-GPT x 6P 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI4 Startup 1 BC 140000 O Comorate UL-GPT X GPTI4 51702001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTIS Startup 1 BC 141000 O Comorate UL-GPT X GPTIS 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTB Startup 1 BC 142000 O Comorate UL-GFT X GPTB 5A7/2001 24042 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI7 Startup 1 BC 143000 O Comorate UL-GPT x GPTI7 517/2001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values P18 Startup 1 BC 144000 O Comorate UL-GPT x P18 517/2001 2042 PM 2834 1- Corporate UL
[_|Section 2 values 6P Startup 1 BC 145000 O Comporate UL-GPT x 6P 517/2001 20:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI0 Startup 1 BC 146000 O Comorate UL-GPT x GPTI0 517/2001 2042 PM 2834 1- Corporate UL
[|Section 2 Values GRTI Startup 1 BC 147000 0 Comporate UL-GPT X GRTI 51702001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI2 Startup 1 BC 148000 O Comorate UL-GPT x GPTI2 517/2001 210:42 PM 2834 1 - TransMillenium
[|Section 2 Values GPTI3S Startup 1 BC 25000 0 Comorate UL-GPT X GPT13 51702001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI4 Startup 1 BC 150000 O Comorate UL-GPT x GPTI4 517/2001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTIS Startup 1 BC 151000 O Comorate UL-GPT x GPTIS 517/2001 2042 PM 2834 1- Corporate UL
[_|Section 2 values GPTI6 Startup 1 BC 152000 O Comporate UL-GPT x GPTI6 517/2001 20:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTI7 Startup 1 BC 153000 O Comorate UL-GPT x GPTI7 517/2001 2042 PM 2834 1- Corporate UL
[|Section 2 Values GPTIA Statup 1 BC 154000 O Comporate UL-GPT x GPTIA 51702001 210:42 PM 2834 1 - Corporate UL
[|Section 2 Values GPTIg Startup 1 BC 155000 O Comorate UL-GPT x GPTIg 517/2001 210:42 PM 2834 1 - TransMillenium
[|Section 3 Accounting A1 Startup 1 BC 188000 0O NONE X ADI 5702001 24042 PM 2834 1 - TransMillenium
[|Section 3 Accounting A Startup 1 BC fgE00D O stopped frst un NONE x A2 51702001 21042 PM 2834 1 - TransMillenium
[|Section 3 Accounting A3 Startup 1 BC g0l O NONE x A3 517/2001 2:0:42 PM 2834 1- Corporate UL
[_|Section 3 Accounting AD38 Startup 1 BC 3001 O NONE x AD38 517/2001 2:10:42 PM 2834 1 - Corporate UL
[|section 3 Accounting A4 Startup 1 BC 190000 O nooutputx 2 NONE x AD4 5A7/2001 21042 PM 2834 1 - TransMillenium
Record: 1|27 3 Dnlvel o 141

[patashet view i

Figure C.3: AMS Regression Test Suite.

270

Appendix D: Mathematical Preliminaries

The mathematical concept underlying the relational model is the set-theoretic
relation that is a subset of the Cartesian product of a list of domains. This set-
theoretic relation gives the model its name. Formally a domain is ssmply a set of
values. For example the set of integers is a domain. Also the set of character
strings of length 20 and the real numbers are examples of domains.

The Cartesian product of domains Dy, Dy, ... D, written D; X D, X ... x Dy isthe
set of all k-tuplesva, Vs, ... W, such that vy [0 D1, Vo [Do, ... Vi O D

For example, with k=2, D;={0,1} and D,={a, b, c} then D1 x D, is{(0,a), (0,b),
(0,0, (1,3, (1,b), (1,0)}.

A Relation is any subset of the Cartesian product of one or more domains: R [
D1 x Dy x ... X Dy.

For example {(0,a), (O,b), (1,a)} isarelation; itisin fact asubset of D; x D,

The members of a relation are called tuples. Each relation of some Cartesian
product D; x D, x ... x Dy is said to have arity k and is therefore a set of k-tuples.
A relation can be viewed as atable where every tuple is represented by a row and
every column corresponds to one component of a tuple. Giving names (called
attributes) to the columns leads to the definition of arelation scheme.

A relation scheme R is afinite set of attributes Aq, A, ... A«. Thereisadomain D,
for each attribute A;, 1 < 1 < k, where the values of the attributes are taken from.
We often write arelation scheme as R(Ay, Ay, ... A).

A relation scheme is just a kind of template whereas arelation is an instance of a
relation scheme. The relation consists of tuples (and can therefore be viewed as a
table); not so the relation scheme.

Operations: Relational Algebra consists of a set of operations on relations:
SELECT (Q): extracts tuples from a relation that satisfy a given restriction. Let R

be a table that contains an attribute A. Qa=(R) = {t 0 R ∣ t(A) = a} wheret
denotes atuple of Rand t(A) denotes the value of attribute A of tuplet.

271

PROJECT ([1): extracts specified attributes (columns) from arelation. Let R be a
relation that contains an attribute X. [x(R) = {t(X) ∣ t O R}, where t(X)
denotes the value of attribute X of tuplet.

PRODUCT (%): builds the Cartesian product of two relations. Let R be a table
with arity k; and let S be atable with arity k. R x Sisthe set of al k; + ko-tuples
whose first k; components form atuple in R and whose last k, components form a
tuplein S.

UNION ([): builds the set-theoretic union of two tables. Given the tablesR and S
(both must have the same arity), the union R [Sisthe set of tuplesthat arein R
or Sor both.

INTERSECT (n): builds the set-theoretic intersection of two tables. Given the
tablesR and S, R n Sisthe set of tuplesthat arein R and in S. We again require
that R and S have the same arity.

DIFFERENCE (/ or ∖): builds the set difference of two tables. Let R and S
again be two tables with the same arity. R/ Sisthe set of tuplesin R but not in S.

JOIN (]7): connects two tables by their common attributes. Let R be a table with
the attributes A, B and C and let S be atable with the attributes C, D and E. There
is one attribute common to both relations, the attribute C. R [] S =
HR.A,R.B,R.C,S.D,S.E(H R.C=S'C(R X S)) What are we doi ng here? Wefirst calculate the
Cartesian product R x S. Then we select those tuples whose values for the
common attribute C are equa ([Trc =sc). Now we have atable that contains the
attribute C two times and we correct this by projecting out the duplicate column.

272

Appendix E: List of contemporary coverage and profile tools

The information on coverage tools includes the results of a comparative feature
analysis by Paterson Technology [57].

* C-Cover is a coverage tool made by Bullseye [52] Platforms. Win32,
Unix; languages. C/C++. It is highly customizable and flexible. Among
its features are support for multiple threads, processes, users; support for
DLLs, shared libraries, device drivers, ActiveX, DirectX, COM, and time-
critical applications; and full support for both C++ and C including
templates, exception handling, inline functions, namespace.

» TrueCoverage is a coverage tool made by NuMega [56]. Platform:
Win32; languages:. C/C++, Java, VB. TrueCoverage analyzes and reports
how much of an application’'s code was, or was not executed. This analysis
and reporting can cover an individual testing session or a combination of
“n” number of testing sessions. TrueCoverage reports this data down to
the individual line of code and function levels.

» PureCoverage is a coverage tool produced by Rational [60]. Platforms:
Win32, Unix; languages. C/C++, Java, VB. It automatically pinpoints
areas of code that code that have and have not been exercised during
testing. PureCoverage exposes untested code in the target application,
including components with or without source code such as third party
controls or system DLLSs.

 TCAT is a coverage tool made by Software Research [61]. Platforms:
Win32, Unix; languages. C/C++, Java. It features both static source code
analysis and coverage analysis. It can be either GUI or command-line
driven.

» LiveCoverage is a coverage tool from PatersonTechnology [58].
Platform: Win32; languages: C/C++, VB. The tool is capable of
monitoring multi-threaded and multi-process scenarios, as well as out-of-
process COM servers. Both interactive and automated modes are
available.

* Visua FoxPro Coverage Profiler from Microsoft [50] contains both a
coverage analyzer and a profiler application. The tool consists of a

273

customizable coverage engine and a multiwindow analysis application.
The coverage analyzer can be automated to run without user interaction.

ActiveOptimizer pdProfiler from Hallogram Publishing [55] is a VB
profiler with remote tracing and code coverage. It has minimal effect on
application performance. It gives a complete execution trace of the
application run.

VB-Miner from CAST [53] is a source code analyzer for VB on Win32
platforms. Provides graphic representation of elements internal to the
target module, external elements, and all interactions between these
elements.

274

Appendix F: List of Common Refactoring Techniques

The following technique synopses are taken from Fowler [86]. We found these
useful in our refactoring efforts.

Add Parameter
* Motivation: Method needs more information from caller.

* Technique: Add parameter for object that can pass on this
information.

Change Bidirectional Association to Unidirectional

e Motivation: Two-way association where one class no
longer needs features from other

» Technique: Drop unneeded end of association.

Consolidate Conditional Expression
* Motivation: Sequence of conditional tests with same result

* Technique: Combine into single conditional expression and
extract.

Consolidate Duplicate Conditional Fragments

* Motivation: Same code fragment in al branches of
conditional expression

» Technique: Move it outside of expression.

Convert Procedural Design to Objects

* Motivation: Code written in procedural style

* Technique: Turn data records into objects, break up
behavior, and move the behavior to the objects.

Decompose Conditional

* Motivation: Complicated conditional statement

275

Technique: Extract methods from the condition, the then
part, and the el se parts.

Duplicate Observed Data

Extract Interface

Extract Method

Extract Subclass

Motivation: Domain data available only to GUI, domain
methods need access.

Technique: Copy data to domain object. Create observer to
synchronize the duplicated data.

Motivation: Multiple clients use same subset of class
interface, or two classes have partiad common
interface.

Technique: Extract the subset into an interface.

Motivation: Code fragment can be grouped together.

Technique: Turn fragment into method with self-
explanatory name.

Motivation: Class has features used only in some instances.
Technique: Create subclass for that feature subset.

Introduce Explaining Variable

Motivation: Complicated expression

Technique: Put expression result, or expression parts, in
temporary variable with self-explanatory name.

276

Parameterize Method

* Motivation: Severa methods do similar things with
different values inside the method body.

* Technique: Create one method with parameter for the
different values.

Remove Assignments to Parameters

» Motivation: Code assigns to a parameter.
* Technique: Usetemporary variable instead.
Remove Control Flag

* Motivation: Variable acts as control flag for series of
Boolean expressions.

» Technique: Use break or return instead.

Remove Parameter

* Motivation: Parameter no longer used by method body
* Technique: Remove it.

Rename Method

* Motivation: Method name not indicative of purpose
* Technique: Renameit.

Replace Array with Object

* Motivation: Certain array elements mean different things.

* Technique: Replace array with object with field for each
element.

277

Replace Parameter with Explicit Methods

* Motivation: Method runs different code depending on
values of enumerated parameter.

* Technique: Create separate method for each parameter
value.

Replace Parameter with Method

* Motivation: Object invokes method 1, passes result as
method 2 parameter. Receiver can also invoke method 1.

» Technique: Remove parameter; let recelver invoke method

Split Temporary Variable

* Motivation: Temporary variable assigned more than once,
but is not loop variable or collecting temporary
variable.

* Technique: Make separate temporary variable for each
assignment.

278

Appendix G: Evolution Manager Utility

Figure G.1 shows evolution manager utility list of features:

Feature function relationship based upon test case and features, and test
case and functions (Figure G.2)

Feature function relationship in terms of coverage percentage (Figure G.3)
Exclusive coverage of afeature within afunction (Figure G.4)

Threshold T(FI,K,C) (Figure G.5)

Variable usage (set or use) by afeature within afunction (Figure G.6)
Feature implementation in terms of which lines of code and variables
implement the feature (Figure G.7)

Severa tracking reports such as feature lists, function lists, features within
arelease etc

279

Main Functions with input parameters, return values and SQL statements

used:
Purpose: Thisfunction is used to retrieve and compile data for feature-function
relationships.
Parameters: None

Return Value:

A recordset with the following structure:

. Feature_ID: Uniqueidentifier for each feature

. Function_I D: Unique identifier for each function

. Feature_Name : The name of the feature

. Function_Name : The name of the function

. Total_Lines: Total number of lines of function

. Common_Lines: Comma separated list of lines common to all
test cases for the current feature - function pair

. Test_Cases: Comma separated list of test cases for the current
feature - function pair

. All_Lines: Comma separated list of al linesin all test cases for
the current feature - function pair

. Exclusive_Lines: Comma separated list of exclusivelinesin all
test cases for the current feature - function pair

. Common_Lines_Count : Number of linesin common lines list

. All_Lines Count : Number of linesin ALL lineslist

. Exclusive_Lines Count : Number of linesin exclusive lines list

. Common_Coverage : Common_Lines Count/ Total_Lines* 100

. All_Coverage: All_Lines Count/ Total_Lines* 100

. Exclusive_Coverage: Exclusive Lines Count/ Total_Lines*

100
Expected Initial Status: Any
Expected Final Status: rstRet contains feature-function information for future information requests.
SQL Statements: SELECT DISTINCT Test_Cases TO_Function.Used_Lines,
Test_Cases TO_Function.Test_Case_ID, Function_List.Function_ID,

Feature.Feature_ID, Feature.Feature_Name, Function_List.Function_Name
FROM Function_List RIGHT JOIN (Feature RIGHT JOIN

(Test_Cases TO_Function LEFT JOIN Test_Case_Feature_Map

ON Test_Cases TO_Function.Test_Case ID =

Test_Case_Feature Map.Test_Case |ID)

ON Feature.Feature_ID = Test_Case Feature_Map.Feature_|D)

ON Function_List.Function_ID = Test_Cases TO_Function.Function_ID;

This statement is used to get the properties of the relation feature - function. It
can be anywhere from NO-LINES to ALL-LINES relation. The selection
takes all the test cases related with a feature (Test_Case_Feature_Map), and
then selects all the functions related with each of the test cases

(Test_Cases TO_Function).

SELECT Function_Name, Feature_Name, Feature_ID, Function_ID,
Total_Lines FROM Function_List, Feature ORDER BY Feature_Name

This statement is used to get the function-feature pairs and the information
about them. Thedatais used later to make sure al GRID information is
included. A JOIN is not used between the tables because we want all possible
function-feature combinations.

Table G.0.1: Implementation details on Evolution Manager Utility.

280

WM Evolution Manager Utility 1.0

B

=101.x]
=181

Feature Coverage |
Feature Comnmon Lines |
Feature Common Cvg |

Feature Exclusive Lines |
Feature Exclusive Cvg |

Feature Threshold |

Feature Carnmon Thi. |
Reports |

Figure G.1: Evolution manager list of features.

S [=
=l
tastun -~ fac =] Ltrack El] -
llu'l:r:\. ! Ealarce I HWI:I I'\ufmT \.-'i'li.'::i Lopeat Ilun-'al- Il'il-p:lil |:'rrf-:-\. it _I
et My 1.4 [[
Lot Laiorss 1.2 121 1 120 123 | . | 1243 b |
Tt pay 1 e]
Thea Bibsen 1 1 1 1 1 1
aTH E X TR Pk R TR FA R e b o ol (AR B I E ARTAEAT k] 1:_

3

Saa Y ek | Lvodem

[= =

Figure G.2: Featurefunction relationshipsfor ATM example.

281

volution Manager y 1.0 - [Feature Common Coverage] 10 1'
_181 %l
Features —» Checkin Checkin Checkin g Savings: Savings Savings ?
Functions Balance Ealanceg Depositg Withdraw?al Deposit Ealancge Depngit W’ithdragwal Withdrawal
Send Back Card 100.00 % 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100.00% 100.00 % 100.00 %
Fiead 100.00 % 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100.00% 100.00 % 100.00 %
Fiint Info 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100.00% 100.00 % 100.00 %
Frint 100.00 % 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100.00% 100.00 % 100.00 %
Make Withdrawal 100.00 % 100.00 % 100.00 % 100.00%
Make Deposit 100.00 % 100.00 % 100.00 %
Giet Money 100.00 % 100.00 % 100.00 %
Giet Customer 100.00 % 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100,00 % 100.00 % 100.00%
Dizplay Balance 100.00 % 100.00%
P |Clear Screen 100.00 % 100.00 % 100.00 % 100.00 % 100.00% [100.00%] 100,00 % 100.00 %
ATHM EERERS 56.86 % 38.22% 4314 % EilErE3 4314 % 4.18% 56.86 % 4314%
SeeYariable | Evobve
Figure G.3: Feature function coverage (ATM example).
P[]
P (=]
Fintbons Bree | e [Depest wiane| " | Erca | Debosh s Wihdran
Send Back Card
Read
Print Info
Print
Make 'withdraval 1.2
bake Deposit 12
Get Maney 1.2
Get Customer
Dizplay Balance
Clear Screen
b [ATH F.32 [1374 [B2627 211476 34 [R1E17T] 3152

See Variable Evolve

Figure G.4: Exclusive coverage by withdrawal featurein ATM function.

282

W Evolution Manager Utility 1.0 - [Feature Threshold] =100
=121
Functions K [Meighboring F [Neighbaring ClAverage
|| Features) Functions) Coverage)
B B 240%
Checking Balance |8 g 9461 %
Checking Deposit_ |8 El BhE
Checking Withdrawe| 5 7 FaEE %
Deposit (] E] EEES
Savings Balance |5 g 2%
Savings Deposit |8 El 5434 %
Savings Withchawal |5 B 3961 %
Withdrawal g E] 9608 %
Figure G.5: Threshold in ATM example.
i Evolution Manager Utility 1.0 - [Variable Information for Feature Withdrawal and F 101 x|
=X |Evolution Manager Ulity 1.0 - [varig
Feature Function Lac Mame Type
b |Withdrawal AT 19+ Code i}
Withdrawal ATH 22 Amount S
Withdrawal AT 23 Account_Choice i}
Withdrawal ATH 24 Code 1]
Withdrawal AT 25 Customer_Rec i}
Withdrawal AT 2B Checking_Flag S
Withdrawal ATH 27 Code 1]
Withdrawal AT a0 Account_Choice i}
Withdrawal AT 3 Customer_Rec i}
Withdrawal AT 32 Savings_Flag S
4 | 3

Figure G.6: Variable usage for withdrawal featurein ATM function.

Wi Evolution Manager Utility 1.0 - [Evoflil [u] |

B Evolution Manager Litilit

Public Interface Method
19.20,21,22,23,24,25,26,27 28.29,30,21,32.23 ;I

=l

Mame Type SLI

p [Fode _I
Amount

Custormer_Rec
Checking_Flag

u
E
Account_Choice 1]
u
5

Figure G.7: Withdrwal FI (featurelines of code and variables).

283

Bibliography

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

xSuds User’s Manual. Telecordia Technologies, 1998.

A. Brown, “Component Based Software Engineering” IEEE Computer
Society, 1996, pp. 175-186.

A. Davis and R. Rauscher, “Formal Techniques and Automatic Processing
to Ensure Correctness in Requirements Specifications’, Proceedings, 1%
Conference on Specifications of Reliable Software, IEEE Computer
Society, Cambridge, MA, April 1979, pp. 15-35.

A. Davis, “The Design of a Family of Application-Oriented Requirements
Languages’, IEEE Computer, Val. 15, No. 5, May 1982, pp. 21-28.

A. Lakhotia and J. C. Deprez, “Restructuring Functions with Low
Cohesion”, Proceedings, 6" Working Conference on Reverse Engineering,
London, England, May 1996, pp. 36-46.

A. Maony, D. Hammerslag, and D. Jabalonski, “Traceview: A Trace
Visualization Tool”, IEEE Software, September 1991, pp. 19-28.

A. Mehta and G. Heineman, “Architectural Evolution of Legacy System”,
Proceedings, 23 Annual International Computer Software and
Applications Conference, Phoenix, Arizona, August 1999, pp. 110-119.

A. Mehta and G. Heineman, “COTS Integration and Extension
Workshop”, Continuing Collaborations for Successful COTS
Development, International Conference on Software Engineering,
Limerick, Ireland, May 2000, pp. 67-72.

A. Mehtaand G. Heineman, “Evolving Legacy System Features into Fine-
Grained Components’, ICSE 2002, Orlando, FL, May 2002, pp. 417-427.

A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
Testing in an Industrial Environment”, ACM Communications, Vol. 41,
May 1998, pp. 81-86.

A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
Testing in an Industrial Environment”, Communications of the ACM, Val.
41. No.5, May 1998, pp. 81-86.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

284

A. Sloane and J. Holdsworth, “Beyond Traditional Program Slicing”,
Proceedings, 1996 International Symposium on Software Testing and
Analysis (ISSTA '96), ACM SIGSOFT, San Diego, CA, January 1996, pp.
180-186.

B Sanden, “Designing control systems with Entity-life Modeling”, Journal
of Systems and Software, Vol. 28, No. 4, pp. 225-237.

B. Beizer, Software Testing Techniques, Van Norstrand Reinhold, New
Y ork, 1990.

B. Boehm, Software Engineering Economics, Prentice Hall, 1981, pp.
182-194.

B. Caloni, M. DelPrincipe and K. Littlgjohn, INSERT: A COTS-based
Solution for Building High-Assurance Applications,
"Proceedings, Gateway to the New Millennium; 18" Digital Avionics
Systems Conference’, St Louis, MO, May 1999, pp. 101-112.

B. Kitchenham and N. Taylor, “Software Project Development Cost
Estimation”, The Journal of Systems and Software, May 1985, pp. 267-
278.

B. Kord and J. Laski, “Dynamic Program Slicing”, Information
Processing Letters, Vol. 29, No. 3, 1998, pp. 155-163.

C. Dorda, L. Grace, P. Place, D. Plakosh, and R. Seacord, “Technical
Report - Incremental Modernization for Legacy Systems’, CMU/SEI-
2001-TN-006, July 2001.

C. Jones, Applied Software Measurement: Assuring Productivity and
Quality, McGraw-Hill, 2" Edition, 1996.

C. Kemerer and S. Slaughter, “An empirical approach to studying
software evolution”, IEEE Transaction on Software Engineering, Vol. 25,
No. 6, pp. 493-509.

C. Kop and H. Mayr, “Conceptual Pre-design: Bridging the Gap between
Requirements and Conceptual Design”, Proceedings, 3™ International
Conference on Requirements Engineering, |IEEE Computer Society,
Tucson, AZ, April 1998, pp. 90-98.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]

285

C. Lindig, “Concept-Based Component Retrieval”, Working Notes of the
[JCAI-95 Workshop: Formal Approaches to the Reuse of Plans, Proofs,
and Programs, Montreal, Canada, January 1995, pp. 99-110.

C. Prehofer, "Feature-Oriented Programming: A Fresh Look at Objects”,
European Conference on Object-Oriented Programming (ECOOP), 1997,
pp. 419-443.

C. Turner, “Feature Engineering of Software Systems” , Ph.D. Thesis, May
1999.

C. Turner, A. Fuggetta, L. Lavazza and, A. Wolf, “A Conceptual Basis for
Feature Engineering”, Journal of Systems and Software, Volume 49, Issue
1, December 1999, pp. 3-15.

D. Carney, “Assembling Large Systems from COTS Components:
Opportunities, Cautions and Complexities’, SEI Monograph Series,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, June 1997, pp. 71-82.

D. Coleman, B. Lowther, P. Oman, and D. Ash, “Using metrics to
evaluate software system maintainability”, IEEE Computer, Vol. 27. No.
81 pp 44'49

D. Garlan and M. Shaw, “An Introduction to Software Architecture’,
Advances in Software Engineering and Knowledge Engineering, Val. I,
World Scientific Publishing, January 1993, pp. 1-39.

D. Kafura, “The use of software complexity metrics in software
maintenance”, |EEE Transaction on Software Engineering, Vol. 12, No. 4,
pp. 335-343.

D. Smith, H. Muller, and S. Tilley, “The Year 2000 Problem: Issues and
Implications’, Technical Report CMU/SEI-97-TR-002, Software
Engineering Institute, Pittsburgh, Pennsylvania, 1997.

DevPartner Sudio User Manual, Compuware Corporation, 2000.
E. Buss, “Investigating Reverse Engineering Technologies for the CAS

Program Understanding Project”, IBM Systems Journal, Vol. 33, No. 3,
1994, pp. 477-500.

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

286

E. Codd, Relational Completeness of Data Base Sublanguages, Prentice
Hall, 1972, pp. 65-98.

F. Tip, “A Survey of Program Slicing Techniques’, Technical Report CS
R9428, Centrum voor Wiskunde Informatica, Amsterdam, The
Netherlands, 1994, pp. 35-42.

G. Booch, J. Rumbaugh, and |. Jacobson, “The Unified Modeling
Language User Guide” , 2™ Edition, Addison-Wesley, 1998, pp. 160-165.

G. Bruno and R. Agarwa, “Modeling the Enterprise Engineering
Environment”, IEEE Transactions on Engineering Management, VVol. 44,
No. 1, February 1997, pp. 2-30.

G. Heineman and W. Councill, Component-Based Software Engineering:
Putting The Pieces Together, Addison-Wesley, 2001.

G. Kiczaes, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, JM
Loingtier, and J. Irwin, “Aspect-Oriented Programming”, Proceedings,
11" European Conference on Object-Oriented Programming, Berlin,
Germany, June 1997, pp. 220-242.

G. Rothermel and M. Harrold, “A Comparison of Regression Test
Selection Techniques’, Technical Report, Department of Computer
Science, Clemson University, October 1994, pp. 65-72.

G. Rotherme and M. Harrold, “A Safe, Efficient Algorithm for
Regression Test Selection”, Proceedings, |IEEE Software Maintenance
Conference, Montreal, Canada, September 1993, pp. 358-367.

G. Rothermel and M. Harrold, “Analyzing Regression Test Selection
Techniques,” |EEE Transactions Software Engineering, Vol. 22, No. 8,
August 1996, pp. 529-551.

G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test Case
Prioritization: An Empirical Study”, Proceedings, International
Conference on Software Maintenance, Oxford, UK, August 1999, pp.
179-188.

G. Succi and F. Baruchelli, “The Cost of Standardizing Components for
Software Reuse”, Sandard View, Vol. 5, No. 2, pp. 61-75.

[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]

287

G. Vaetto and G. Kaiser, "Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments', Proceedings, 7™
|EEE International Workshop on CASE, Toronto, Canada, July 1995, pp.
40-48.

H. Agrawal, J. Horgan, E. Krauser, and S.A. London, “Incremental
Regression Testing”, Proceedings, |IEEE Software Maintenance
Conference, Montreal, Quebec, September 1993, pp. 348-357.

H. Kaindl, S. Kramer, and R. Kacsich, “A Case Study of Decomposing
Functional Requirements Using Scenarios’ Proceedings, 3" International
Conference on Requirements Engineering, |IEEE Computer Society,
Vienna, Austria, April 1998, pp. 82-89.

H. Leung and L. White, “Insights into Regression Testing”, Proceedings,
|IEEE Software Maintenance Conference, Los Alamitos, CA, October
1989, pp. 60-69.

H. Sneed, “Architecture and Functions of a Commercial Software
Reengineering Workbench”, Proceedings, 2" Euromicro Conference on
Maintenance and Reengineering, Florence, Italy, March 1998, pp. 2-10.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/fox7help/ntml/newcoverage_profiler_application.asp

http://www.anubex.com/solutions! main.asp
http://www.bullseye.com/ccoverFeature.html
http://www.castsoftware.com/products/Miners/\VV B-Minerdetail s.ntml
http://www.cise.nsf.gov/new/evnt/wksp/presentati ons/software/sl d005.htm
http://www.hallogram.com/pdprofiler/index.html

http://www.numega.com, Numega Corporation.
http://www.patersontech.com/TestCoverage/ Compare.htm
http://www.patersontech.com/TestCoverage/LiveCoverage

http://www.rational .com/

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

288

http://www.rational .com/products/purecoverage nt/prodinfo.jsp
http://www.soft.com/TestWorks/
http://www.sun.com

IEEE Standard Glossary of Software Engineering Terminology, |IEEE
Sandards Collection, Software Engineering, IEEE, New York, NY, 1994,
pp. 54-55.

J. Bergey, L. Northrop, and D. Smith, “Enterprise Framework for the
Disciplined Evolution of Legacy Systems®, CMU/SEI-97-TR-007, ADA
330880, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, July 1997, pp. 12-14.

J. Bishal, “Legacy Information Systems: Issues and Directions’, IEEE
Software, September 1999, pp. 103-111.

J. Borstler, “Feature-oriented Classification for Software Reuse’,
Proceedings, 7" International Conference on Software Engineering and
Knowledge Engineering, Rockville, MD, September 1995, pp. 204-211.

J. Borstler, “FOCS: A Classification System for Software Reuse”,
Proceedings, 11" Pacific Northwest Software Quality Conference,
Portland, OR, October 1993, pp. 201-211.

J. Bosch, “Organizing for Software Product Lines’, Proceedings, 3"
International Workshop on Software Architectures for Product Families,
Las Palmas de Gran Canaria, Spain, March 2000, pp. 60-71.

J. Connell, Coding Techniques for Microsoft® Visual Basic® .NET,
Microsoft Press, December 2001, pp. 77.

J. DeBaud and K. Schmid, “A Systematic Approach to Derive the Scope
of Software Product Lines’, Proceedings, 21% International Conference
on Software Engineering, Los Angeles, CA, May 1999, pp. 34-43.

J. Deprez and A. Lakhotia, “A Formalism to Automate Mapping from
Program Features to Code”, Proceedings, 8" International Workshop on
Program Comprehension, International Conference on Software
Engineering 2000, Limerick, Ireland, May 2000, pp. 72-83.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

289

J. Field, G. Ramalingam, and F. Tip, “Parametric Program Slicing”, 22™
ACM S GPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, CA, January 1995, pp. 379 — 392.

J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing
Requirements’, IEEE Software, Vol. 14, No. 5, September 1997, pp. 67-
74.

J. Kuusela and J. Savolainen, “Requirements Engineering for Product
Families’, Proceedings, 22" of the International Conference on Software
Engineering, Limerick, Ireland, June, 2000, pp. 61-69.

J. Penix and P. Alexander, “Using Formal Specifications for Component
Retrieval and Reuse”, Proceedings, 31% Hawaii International Conference
on System Sciences, Hawaii, November 1995, pp.356-65.

J. Ransom, |. Sommerville and I. Warren, “A Method for Assessing
Legacy Systems for Evolution”, Proceedings, 2™ Euromicro Conference
on Software Maintenance and Reengineering, Palazzo degli Affari, Italy,
March 1998, pp. 46-53.

K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”, Technical Report
CMU/SEI 90 TR 21, Software Engineering Institute, Pittsburgh,
Pennsylvania, 1990.

K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey, “TraceGraph:
Immediate Visual Location of Software Features’, Proceedings,
International Conference on Software Maintenance, San Jose, CA, May
2000, pp. 33 -39.

L. Belady and M. Lehman, “A Model of Large Program Development”,
IBM Systems Journal, Vol. 15, No. 3, pp. 225-252.

L. Brownsword and P. Clements, “A Case Study in Successful Product
Line Development”, CMU/SEI-96-TR-016, ADA 315802, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

L. OBrien and D. Smith, “MAP and OAR Methods: Techniques for
Developing Core Assets for Software Product Lines from EXxisting
Assets’, CMU/SEI-2002-TN-007, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, April 2002.

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

290

L. Raccoon, “The Complexity Gap’, SGSOFT Software Engineering
Notes, Vol. 20, No. 3, July 1995, pp. 37-44.

M. Brodie and M. Stonebraker, “Migrating Legacy Systems. Gateways,
Interfaces and the Incremental Approach”, Morgan Kaufmann Publishers,
1995, pp. 171-185.

M. Cusumano and R. Selby, Microsoft Secrets, The Free Press, New Y ork,
1995, pp. 37-45.

M. Fowler and K. Scott, “UML Distilled - Applying the Sandard Object
Modeling Language”, Object Technology Series, Addison-Wesley, 1997,
pp. 150-172.

M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

M. Griss, “Implementing Product-Line Features with Component Reuse”,
Proceedings, 6™ International Conference on Software Reuse, Springer-
Verlag, Vienna, Austria, June 2000, pp. 134-152.

M. Harrold, R. Gupta, and M. Soffa, “A Methodology for Controlling the
Size of a Test Suite,” ACM Transactions Software Engineering and
Methodology, Val. 2, No. 3, July 1993, pp. 270-285.

M. Jain, M. Murty and P. J. Flynn, “Data Clustering: A Review”, ACM
Computing Surveys, Vol. 31, No. 3, September 1999, pp. 264-323.

M. L. Petrie, K. R. Nair, and G. K. Raghavan, “A Domain Analysis of
Web Browser Architectures, Languages and Features’, Southcon 1996
Conference Record, 1996, pp. 168-174.

M. Svahnberg and J. Bosch, “Issues Concerning Variability in Software
Product Lines’, Proceedings, 3" International Workshop on Software
Architectures for Product Families, Las Palmas de Gran Canaria, Spain,
March 2000, pp. 50-60.

M. Weiser, “Program Slicing’, |IEEE Transactions on Software
Engineering, Vol. 10, No. 4, July 1984, pp. 352-357.

M. Weiser, “Program Slicing”, Proceedings, 5th International Conference
on Software Engineering, IEEE Computer Society, New York, NY, March
1981, pp. 439-449.

291

[94] N. Medvidovic and R. Taylor, “Separating Fact from Fiction in Software
Architecture’, Proceedings, 3 International Workshop on Software
Architecture, Orlando, FL, November 1998, pp. 105-108.

[95] N. Medvidovic, P. Oreizy, and R. Taylor, “Reuse of Off-the-shelf
Components in C2-style Architectures’, Proceedings, 1997 International
Conference on Software Engineering, Boston, MA, June 1997, pp. 692-
700.

[96] N. Weiderman, J. Bergey, D. Smith, and S. Tilley, “Approaches to Legacy
System Evolution”, CMU/SEI-97-TR-014, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, August 1997.

[97] N. Weiderman, J. Bergey, D. Smith, B. Dennis, and S. Tilley,
“Approaches to Legacy System Evolution”, Technical Report CMU/SEI-
97-TR-014, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[98] N. Weiderman, L. Northrop, D. Smith, S. Tilley, and K. Wallnau,
“Implications of Distributed Object Technology for Reengineering”,
CMU/SEI-97-TR-005 ADA326945, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, May 1997.

[99] N. Wilde and M. Scully, “Software Reconnaissance: Mapping Program
Features to Code”, Journal of Software Maintenance: Research &
Practice, Vol. 7, No. 5, May 1995, pp. 49-62.

[100] P. Fingar and J. Stikeleather, “Distributed Objects for Business: Getting
Started With the Next Generation of Computing”, Sunworld Online, Vol.
10, No. 4, March 1999, pp. 6-17.

[101] P. Hsia and A. Gupta, “Incremental Delivery Using Abstract Data Types
and Requirements Clustering”, Proceedings, 2™ International Conference
on Systems Integration, Los Alamitos, CA, June 1992, pp. 137-150.

[102] P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-based Runtime
Software Evolution”, Proceedings, 20" International Conference on
Software Engineering, Kyoto, Japan, April 1998, pp. 62-70.

[103] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, “N Degrees of Separation:
Multi-Dimensional Separation of Concerns’, Proceedings, International
Conference on Software Engineering, May 1999, pp. 107-119.

292

[104] R. Agarwal and N. Mishra, “Renaissance Project — Methods and Tools for
the Evolution and Reengineering of Legacy Systems’, Esprit Project,
Lancaster University, Lancaster, UK, June 1997, pp. 14-20.

[105] R. Bracho, “Integrating the Corporate Computing Environment with
ActiveWeb”, Active Software, Inc., Santa Clara, CA, 1997.
http://www.activesw.com.

[106] R. Kazman and S. Carriere, “Playing Detective: Reconstructing Software
Architecture from Available Evidence”, Journal of Automated Software
Engineering, Vol. 6, No. 2, April 1999, pp. 107-138.

[107] R. Knuth and O. Patashnik, “ Concrete Mathematics’, Addison-Wesley,
1989, pp. 65-72.

[108] R. Krikhaar, Software Architecture Reconstruction, Ph.D. Thesis.
University of Amsterdam, Amsterdam, The Netherlands, 1999.

[109] R. Marwane and A. Mili, “Building Tallor-Made Software Cost Model:
Intermediate TUCOMO”, Information and Software Technology, March
1991, pp. 232-238.

[110] R. W. Krut, “Integrating 001 Tool Support into the Feature-Oriented
Domain Analysis Methodology”, Technical Report CMU/SEI 93 TR 01,
Software Engineering Institute, Pittsburgh, Pennsylvania, July 1993, pp.
12-20.

[111] S. Dorda, K. Wallnau, R. Seacord, and J. Robert, “A Survey of Legacy
System Modernization Approaches’, Technical Note CMU/SEI-00-TN-
003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, April 2000, pp. 37-46.

[112] S. Hissam, “Experience Report: Correcting System Failure in a COTS
Information System”, Proceedings, International Conference on Software
Maintenance, IEEE Computer Society Press, Los Alamitos, CA, 1998, pp.
68-79.

[113] S. Letovsky and E. Soloway, “Delocalized Plans and Program
Comprehension”, |EEE Software, Vol. 19, No. 3, pp. 41-48.

[114] S. Tilley and D. Smith, “Legacy System Reengineering”, Presented at the
International Conference on Software Maintenance, Software Engineering

293

Institute, Carnegie Mellon University, Pittsburgh, PA, November 1996,
pp. 70-81.

[115] S. Tilley and D. Smith, “Perspectives on Legacy System Reengineering’,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, May 1996, pp. 6-13.

[116] S. Tsang and E. Magill, “Learning to Detect and Avoid Run-Time Feature
Interactions in Intelligent Networks’, IEEE Transactions on Software
Engineering, Vol. 24, No. 10, October 1998, pp. 818-830.

[117] S. Woods, S. Carriere, and R. Kazman, “A Semantic Foundation for
Architectural Reengineering”, Proceedings, International Conference on
Software Maintenance (ICSM) 1999, Oxford, UK, September 1999, pp.
391-398.

[118] T. Ball and S. Eick, “ Software Visualization in the Large. IEEE Computer,
Vol. 29, No. 4, April 1996, pp. 33-43.

[119] T. Ball, “Software Visualization in the Large’, Institute of Electrical and
Electronics Engineers (IEEE) Computer, Vol. 29, No. 4, April 1996, pp.
33-43.

[120] T. Chen and M. Lau, “Dividing Strategies for the Optimization of a Test
Suite,” Information Processing Letters, Vol. 60, No. 3, March 1996,
pp. 135-141.

[121] T. Reps, T. Ball, T. M. Das, and J. Larus, “The Use of Program Profiling
for Software Maintenance with Application to the Year 2000 Problem”.
Proceedings, European Software Engineering Conference
(ESEC)/Foundation of Software Engineering (FSE) 1997: 6" ESEC and
5" American Computing Machinery (ACM) SIGSOFT Symposium on the
FSE, Zurich, Switzerland, September 1997, pp. 432-449.

[122] V. Basili and K. Freburger, “Programming measurement and estimation in
the Software Engineering Laboratory”, The Journal of Systems and
Software, Vol. 2 No. 3, pp. 47-57.

[123] V. Brand, M. Sdlink, and C. Verhoef, “Generation of Components for
Software Renovation Factories from Context-Free Grammars’,
Proceedings, 4™ Working Conference on Reverse Engineering,
Amsterdam, The Netherlands, October 1997, pp. 144-153.

294

[124] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of Test Set
Minimization on Fault Detection Effectiveness,” Software—Practice and
Experience, Vol. 28, No. 4, April 1998, pp. 347-369.

[125] W. Wong, S Gokahle, J. Horgan, and K Trivedi, “Locating Program
Features Using Execution Slices”, Proceedings, 2™ IEEE Symposium on
Application-Specific Systems and Software Engineering Technology,
Richardson, TX, March 1999, pp 68-79.

[126] Y. Chen and B. Cheng, “Formalizing and Automating Component Reuse”,
Proceedings, 9" |EEE International Conference on Tools with Artificial
Intelligence, Rockville, MD, August 1998, pp. 94-101.

[127] Y. Chen, D. Rosenblum, and K. Vo, “TestTube: A System for Selective
Regression Testing’, Proceedings, 16™ International Conference on
Software Engineering, IEEE Computer Society, Los Alamitos, CA, May
1994, pp. 211-220.

[128] Y. Coady, G. Kiczaes, M. Feeley, and G. Smolyn, “Using AspectC to
Improve the Modularity of Path-Specific Customization in Operating
System Code”, Joint 8" ESEC and 9" ACM SIGSOFT Symposium on the
FSE, Vienna, Austria, May 2001, pp. 88-98.

[129] Y. Kamigaki, T. Nara, S. Machida, A. Hakata, and K. Y amaguchi, “160
Ghits ATM Switching System for Public Network”, Global
Telecommunications Conference, November 1996, pp. 1380-1387.

[130] Y. Miyazaki and K. Mori, “Constructive Cost Model (COCOMO)
Evaluation and Tailoring”, Proceedings, 8" Conference on Software
Engineering, London, England, August 1985, pp. 292-299.

