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Abstract 

The Leviton absolute optical encoder is an ultra-precise position-measuring device, 

capable of detecting linear and angular displacements as small as 1 nm and 0.006 arc 

seconds, respectively.  We developed the first encoder design that produces position updates 

using the National Semiconductor LM9637 CMOS active pixel sensor, a FPGA, and a DSP.  

We also proved that just a FPGA could be used with the sensor to achieve even faster results, 

thus, reducing the overall cost and complexity of the Leviton Encoder.  
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Executive Summary 

The Leviton Absolute Encoder 
The Leviton absolute optical encoder is an ultra-precise position measuring device.  It is 

capable of detecting linear and angular displacements as small as 1 nm and 0.006 arc seconds, 

respectively.  The encoder achieves its remarkable performance through the use of an active 

pixel sensing device which captures an image of a backlit linear or rotary scale containing an 

absolute code pattern (Fowler, 2001).   

Applications 
The Leviton Encoder has been used for ground support and calibration for numerous 

NASA missions including the Hubble Space telescope (HST), the James Webb Space Telescope 

(JWST), Earth Observing System (EOS), and Sub-Millimeter Probe for the Evolution of Cosmic 

Structures (SPECS) (Jeager, 2002).  The encoder was used for astronomical positioning and 

calibration of sensors that are put onboard satellites.  The encoder allows a satellite to calibrate 

its sensors faster and more precisely.   

Although the Encoder has only been used for NASA science missions, there is a wide 

range of applications for the Leviton Encoder technology in the commercial world.  One major 

application for the encoder is making optical beam steering extremely precise.  This allows for 

improved laser-cutting of metals and glass, accurate output redirection of one optical fiber into 

another, and improved military applications such as laser guided weaponry along with many 

others (Leviton, Personal Communications, 09/02/2004).   

Problem Statement  
Originally the encoder was implemented with a CCD (Charge Coupled Device) sensor to 

capture the image of a backlit scale, which also required an analog front-end.  The 2003 Team 

replaced the CCD sensor with a CMOS (Complementary Metal Oxide Semiconductor) Active 

Pixel sensor, which outputs digital image data, hence, removing the need for the analog front-

end.  Replacing the CCD sensor also increased the maximum speed of the image data available 

to the DSP, from 12MHz compare to the 27MHz pixel data rate of the CMOS Active Pixel 

sensor.  Although, the sensor is sending the data at a much faster rate of 27MHz, the DSP is only 

capable of receiving data at 8MHz. Due to this speed difference, a bottleneck occurs between the 

sensor and the DSP, resulting in data overrun. Consequently, the DSP cannot perform the image 

processing algorithm correctly.  
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Image Processing Algorithm 
To fully understand the reason behind the implementation of our design, it is necessary to 

have a full understanding of the image-processing algorithm.  A detailed explanation of the 

image-processing algorithm can be found in Appendix A.  For our purposes, the actual 

calculation of the position is the same. However, the technique we use to navigate through the 

image is different than the one described in Appendix A.  Our image-processing algorithm 

begins navigating through the image by first locating the pixel columns which contain the 

vertical lines.  These columns are determined by summing, along each pixel column, from the 

top to the bottom of each vertical line.  The summation results in a one-dimensional array, from 

which the vertical lines are located by comparing each element in the array to a threshold value.  

The threshold value is determined to be half of the maximum value of a summed column.  Then 

the centroid is calculated, as described in Appendix A.  After the centroid for each visible 

vertical line is known, the code bits are located through a known pixel offset for that particular 

scale.  Once the code bits are interpreted, the position is calculated as described in Appendix A. 

The row markers are unused in this fashion, which allows for a simpler implementation.   

Implemented Solution 
We discovered that a relatively simple FPGA could perform all the summing functions at 

the speeds we required.  The pixel data of each column coming out of the sensor, at 25MHz—the 

clock speed provided to the sensor—was accumulated. A threshold value was set to determine 

the vertical lines.  Once the number of pixels that contain the vertical lines was determined by 

comparing the summed value to the threshold vale, the FPGA was set to output this accumulated 

data to the DSP.  Then the accumulator was reset and the FPGA summed the part of the column 

that contains the first row of code bits.  After the first row of code bits was determined through 

the same process as the vertical lines, the accumulator was reset for the second row of code bits.  

Although the FPGA part was fully functional, the DSP still did not take in the 

accumulated data at the required speed.  We then stored the accumulated values into a RAM of 

the FPGA.  With increased familiarity with the FPGA, we recognized that the whole image-

processing algorithm can be performed on the FPGA.  Therefore, we changed our focus to 

designing logic for the image-processing algorithm. After completing most of the logic for the 

algorithm, we discovered that 32-bit floating point arithmetic library in VHDL—required for 

computing the position updates—will require another ten weeks, thus making it impossible for us 

to use just an FPGA for the whole image-processing algorithm.   



 xi

On the other hand, the DSP can be easily used to perform 32-bit floating point arithmetic.  

At this point, we had the FPGA logic output three operands (vertical lines, first code bits, and 

second code bits), required for the image-processing algorithm, into an FPGA RAM.  As 

explained in our Results chapter, the block data transfer to the DSP is much faster than sending 

values one at time.  Therefore, we performed a block transfer of the FPGA RAM to the DSP over 

the EMIF.  After each transfer and with simple C code, we obtained the position updates.   

Ideal Solution 
 The ideal solution would be to have the FPGA perform the whole image-processing 

algorithm.  This would mean that the encoder will only consist of a sensor and an FPGA, as two 

main components. Therefore, removing DSP from the encoder, this will significantly reduce the 

overall cost and complexity of the device.  We have proved that the FPGA is capable of 

performing the whole algorithm, provided that a working 32-bit floating point VHDL library is 

available. It must be noted that there are such libraries available that will perform floating point 

operations, however, the lack of time restricted us from getting those libraries to work 

accordingly with our project.  

Encoder Design 
 The Leviton Absolute Encoder now relies on FPGA to perform most of the image-

processing algorithm.  The following is a high level block diagram of the new Leviton Encoder: 

 

 
 

Ideally, the encoder will only have the Image sensor and the FPGA.  However, in the above 

diagram, the DSP is utilized to obtain position updates.  Also, DSP provides various options on 
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collecting position updates and presenting it in a data file, which can later be used in a spread 

sheet program for graphical analysis.   

Position Updates 
 Two of the results we obtained were under the same conditions. One was the encoder just placed 

on the table and the second, in which the encoder scale was moved eighteen times with about a 50 micron 

increment every time.  The condition in which these two results were obtained were the worst case 

conditions, in terms of window size.  Following are the conditions: 

• Sensor Master Clock = 25MHz 

• Window = 640 x 480 

• Row Delay = 8h 

• No lens 

The frame rate under these conditions is 63.2 frames/second.  The Following figure shows 500 position 

updates obtained with the encoder just placed on a table.  

 

Results
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500 Position Updates  

 

The previous chart shows the 500 position values on a 100nm division.  Since the setup was not 

isolated from vibration and noise of other equipment on the table, the resulting position is 

oscillating.  The next figure shows the position updates as the encoder was moved vertically on 

the sensor 18 times by about 50 microns.  
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Increments 

 
It must be noted that each increment was approximately 50 microns.  The four data values, 

number seven through eleven, not shown in the above graph were excluded because of their 

inaccuracy, solely due to the setup of the test.  The next eight values on the graph prove that, in 

fact, the setup of the encoder scale on the sensor caused inaccurate results in those four 

increments.  To further prove that the setup was to be blamed for skewed values, the VGA output 

was obtained which revealed that the code bits were cutoff, thus, the sensor was sending 

incomplete pixel data, in terms of the encoder scale.  

Recommendations 
 The following are the recommendations to further improve the encoder design and also to 
make it more marketable.   
 

• Use FPGA to fully implement the image-processing algorithm 
• Incorporate all window sizes and scale patterns 
• Separate FPGA and the DSP for a PCB design 
• Initialize the sensor using FPGA as described by 2003 team 
• Create a VGA output for the encoder 
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1.0  Introduction 

 The Leviton Encoder technology is in its eighth year of development at the 

Goddard Space Flight Center (GSFC) of the National Aeronautics and Space 

Administration (NASA), located in Greenbelt, Maryland.  Douglas B. Leviton is the 

inventor of this encoding technique.  This chapter will briefly describe the Leviton 

Encoder and its applications along with the problem statement for this project.   

1.1  The Leviton Absolute Encoder 

The Leviton absolute optical encoder is an ultra-precise position measuring 

device.  It is capable of detecting linear and angular displacements as small as 1 nm and 

0.006 arc seconds, respectively.  The encoder achieves its remarkable performance 

through the use of an active pixel sensing device which captures an image of a backlit 

linear or rotary scale containing an absolute code pattern (Fowler, 2001).   

Linear and rotary scales are in many ways similar to a ruler and a protractor, 

respectively.  Both scales contain unique markings corresponding to their position in the 

applicable field of motion, which allows the device to determine its exact absolute 

position even after losing power or upon restart.  

1.2  Problem Statement  

Originally the encoder used a CCD (Charge Coupled Device) sensor to capture 

the image of a backlit scale, which also required an analog front-end.  The 2003 Team 

replaced the CCD sensor with a CMOS (Complementary Metal Oxide Semiconductor) 

Active Pixel sensor, which outputs digital image data, hence, removing the need for the 

analog front-end.  Replacing the CCD sensor also increased the speed of the image data 

available to the DSP because the active pixel sensor produces digital image data at 

27MHz, more than twice as fast as the CCD sensor (12MHz).   

Although, the sensor is sending the data at a much faster rate of 27MHz, the DSP 

is only capable of receiving data at 8MHz. Due to this speed difference, a bottleneck 

occurs between the sensor and the DSP, resulting in data overrun. Consequently, the DSP 
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cannot perform the image processing algorithm correctly. Project goal and tasks set to 

complete this project are discussed in chapter 3. 

1.3 Applications 

The Leviton Encoder has been used for ground support and calibration for 

numerous NASA missions including the Hubble Space telescope (HST), the James Webb 

Space Telescope (JWST), Earth Observing System (EOS), and Sub-Millimeter Probe for 

the Evolution of Cosmic Structures (SPECS) (Jeager, 2002).  The encoder was used for 

astronomical positioning and calibration of sensors that are put onboard satellites.  The 

encoder allows satellite to calibrate its sensors faster and more precisely than before.   

Although the Encoder has only been used for NASA science missions, there is a 

wide range of applications for the Leviton Encoder technology in the commercial world.  

One major application for the encoder is making optical beam steering extremely precise.  

This will allow for improved laser-cutting of metals and glass, accurate output redirection 

of one optical fiber into another, and improved military applications such as laser guided 

weaponry along with many others (Leviton, Personal Communications, 09/02/2004).   

  One more application of the Leviton Encoder would be for wafer steppers used in 

integrated circuit (IC) production.  The Encoder can be used to enhance the accuracy and 

precision of placing extremely small components in the silicon wafer.  Increased 

accuracy and precision will make integrated circuit production more efficient by reducing 

the number of faulty chips (Fowler, 2001).   

1.4 Summary 

The Leviton Encoder has the potential to become a very useful positioning 

measuring device in many fields.  Upon completion of this project, this encoder will 

ideally become a standalone device and be entirely packaged in a 2” cube, thus providing 

NASA with an excellent tool for positioning in various space-related and earthly 

applications along with potentially aiding the commercial world of motion control.  The 

next chapter will provide extensive background information about of this project. 
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2.0  Background 

This chapter begins by providing background information on NASA and its 

Goddard Space Flight Center, along with our mentor Doug B. Leviton who is an optical 

physicist at the GSFC.  In addition, the concept of encoders, in general, and the Leviton 

Absolute Optical Encoder, in particular, is discussed in detail.  This chapter also entails a 

brief summary of the work that was completed by previous WPI project groups in the 

development of Leviton Absolute Optical Encoder.  Moreover, some of the key hardware 

components and their respective functions in the encoder are also explained in detail.  

2.1  National Aeronautics and Space Administration  

 NASA was formed on October 1, 1958 by the United States government under the 

following motto: 

“An Act to provide for research into the problems of flight within and outside the 
Earth’s atmosphere, and for other purposes” (Garber, Launius, 2002)  
 

NASA is responsible of human space flight, aeronautics, space science, and space 

applications.  Since its creation, NASA has made many historical achievements, among 

which are landing on the moon and the Hubble Space Telescope.   

2.1.1 Goddard Space Flight Center 

 The Goddard Space Flight Center is located in Greenbelt, Maryland.  The GSFC 

is named after rocket propulsion pioneer Robert Goddard, who attended Worcester 

Polytechnic Institute.  The GSFC has the following vision statement (GSFC, 1998): 

“We revolutionize knowledge of the Earth and the universe through 
scientific discovery from space to enhance life on Earth.” 
 

The Goddard team consists of America’s premier scientists and engineers who are 

devoted in research of Space Science, Earth Science, and Technology (GSFC, 1998). 

2.1.2 Mentor Information 

Douglas B. Leviton, an optical physicist at the GSFC, received his Bachelors’ 

Degree in 1981 from Emory University, Georgia and obtained his Masters’ Degree in 
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Applied Physics from Georgia Institute of Technology.  His research focus is mainly in 

optics.  His invention, the Leviton Absolute Optical Encoder, was awarded NASA’s 

Government Invention of the Year in 1999.  Mr. Leviton has also worked on numerous 

NASA science missions including the Hubble Space Telescope, Solar and Heliospheric 

Observatory, and Earth Observing System (NTB, 2000). 

2.2  Encoders 

An encoder is a position sensing device that works on either a linear or rotary 

scale.  The scale is similar to a ruler with markings indicating the position.  The encoder 

reads information from this scale to determine its location.  There are two types of 

encoders incremental and absolute.  An incremental encoder uses a scale with 

incremental markings.  This allows the incremental encoder to determine its position 

relative to a certain location.  An absolute encoder has unique markings on its scale that 

allows it to determine its exact location in the applicable field.  This allows an absolute 

encoder to always know where it is on a particular scale.  On the other hand, if an 

incremental encoder was to lose power and upon restarting the encoder would no longer 

know its position in the applicable field (Gieras, 2000).  

2.3  Development History of the Leviton Absolute Encoder 

Prior to WPI’s involvement in the Leviton Encoder, the encoder consisted 

primarily of a PC controlling a CCD (charge coupled device) sensor and then running the 

image processing algorithm.  This design only allowed for speeds of 10Hz–due to the 

limits of the PC data interface and relatively slow computing speeds.  Since this design 

required a PC to run a single image processing algorithm, the size of the encoder was not 

ideal. 

For the past three years, MQP teams from WPI have worked to enhance the 

performance of the encoder and make it marketable.  The following table highlights the 

major achievements of previous three years teams (Fowler, 2001). 
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Team Encoder 
Size 

Data 
Coordination 

Position 
Updates 

(Hz) 
Sensor Major 

Contribution 

Original PC PC 10 CCD - 

2001 5’x8’x1’ FPGA 1529.2 CCD Introduced 
DSP 

2002 5’ x 4’ FIFO 6000 
Theoretical CCD Separated PC 

2003 Not 
completed FIFO Not 

completed 

Active 
pixel 

Sensor 

Introduced 
Active Pixel 

Sensor 
2.1 Major Achievements by the Previous MQP Groups 

 
The next section provides a summary of the work of previous three groups. 

2.3.1 The 2001 Team 

The 2001 WPI project team began to free the encoder from the PC and increase 

the speed of the device.  They introduced a DSP for performing image processing 

algorithm, previously run by a PC.  They used a Texas Instruments TMS320C6711 DSP.  

Although they were able to get the DSP to perform the image processing algorithm, they 

still required a PC to save the algorithm code.  

They were using a CCD sensor, which meant that they had to first develop an 

analog front-end for converting analog data into a digital form for the DSP to read.  The 

2001 project team also used a FPGA (field programmable gate array) to coordinate data 

transfers between the DSP and the CCD sensor.  This new design provided 1259.2 

position updates per second (Fowler, 2001).  

2.3.2 The 2002 Team 

The 2002 WPI project team was able to completely remove the PC from the 

encoder by storing the image processing algorithm on a flash memory.  This allowed for 

a stand alone device that would have a wider range of applications.  They also introduced 

a FIFO (first-in first-out) memory block to the encoder for packing the data before it was 

sent to the DSP.  By packing data, transfer rate bottlenecks were reduced and it allowed 

for theoretical position update speeds greater than 6 KHz (Harvey et al., 2003).  Also, the 

use of a flash memory for storing the image processing algorithm code reduced the size 
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of the Leviton Encoder.  The encoder could now fit onto a single 5”x 4” PCB (Printed 

circuit board) (Jaeger et al., 2002).  

2.3.3 The 2003 Team 

The 2003 WPI team focused on the limitations of the current sensor and began 

implementing a new design using a National Semiconductors LM9637 CMOS active 

pixel sensor.  This sensor outputs digital data so there was no need for an analog front 

end.  This sensor was also less expensive and used much less power than the previous 

CCD device.  The CMOS sensor also has several features which provide greater 

flexibility to the design.   

The 2003 team was successful in initializing the sensor and developed a start up 

routine for it.  Problems arose when transferring data from the sensor to the DSP for 

image processing.  First, the sensor was connected directly to the DSP and used the pixel 

clock for interfacing with the DSP.  Theoretically, it should have worked properly.  

However, in the implementation the digital image data was being lost because the DSP 

was not taking the data in at 12MHz, the minimum speed of the sensor.  One attempt 

involved using a FIFO to buffer data so that the DSP could get data when it wanted rather 

than having it accept data at given intervals.  This method worked better but could not 

achieve the minimum speed of 12MHz required by the sensor (Harvey et al., 2003).  The 

picture of the final design is shown below in figure (2.1). 
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Figure 1:Final Product of the 2003 MQP Group (Harvey, 2003) 

 

2.4  Main Components and Functionality 

 Currently, the Leviton Absolute Encoder uses a back-lit encoder scale, a CMOS 

active pixel sensor, FPGA and a DSP.  This section explains these components in detail 

and how they are used in the overall encoder design.  

2.4.1 The Scale and Image-Processing Algorithm 

The scale used for the Leviton Encoder is vital to the encoder.  The scale is the 

part that the sensor reads to determine the exact position of the object. The scale consists 

primarily of vertical lines and code bits.  The vertical lines are like the markings on a 

ruler and the code bits are like the numbers. Moving along the scale, the sensor captures 

an image of the scale and then sends this image data to the DSP. The DSP then runs the 

image-processing algorithm on this data.  The image-processing algorithm detects the 

vertical lines.  When the algorithm locates a vertical line, it then looks for the code bits, 

which are unique to each position on the scale. 
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The scales that we will be working with come in two forms, the “classical image” 

or the “binnable image”.  The classical image has code bits located at the bottom of each 

line.  The binnable image contains only vertical information where the code bits are 

located between the lines.  Figure 2.2 (Jaeger, et al., 2002) illustrates the differences 

between the classical image and the binnable image. 

 

 
Figure 2:Classical Image (left) and Binnable Image (right) (Jaeger, 2002) 

 

Each type of image has its advantages and disadvantages.  The classical image takes 

longer for the algorithm to interpret but is more accurate than the binnable image due to 

its code bits.  The binnable image can run through the algorithm much quicker but with 

only vertical information it has a higher noise to signal ratio, which reduces accuracy 

(Harvey et al., 2003).  

 The image-processing algorithm developed for reading these scales, gives the 

Leviton Absolute Encoder its nanometer resolution.  The algorithm varies slightly for the 

“classical image” and the vertically “binnable image”.  Essentially, for each image, the 

image-processing algorithm goes through a process of finding all of the vertical lines in 

the image, determining which lines are in the image (interpreting code bits), and then 

calculates the offset of each line compared to the center of the image.  An in depth 

explanation of the image processing algorithm can be found in Appendix A. 
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2.4.2 The Sensor 

The sensor currently used on the Leviton Encoder is National Semiconductors 

LM9637 CMOS active pixel sensor.  This sensor was chosen by the 2003 team due to its 

many configuration options, digital output, low cost, and its low power consumption 

compared to other sensors.  A block diagram of the sensor is shown below in figure 2.3  

 
Figure 3:Sensor LM9637 Block Diagram (National, 2002a) 

  
The active pixel sensor is controlled by a two line serial input more commonly 

known as I2C (Inter-Integrated Circuit Control). Upon start up there are many registers 

that must be programmed on the LM9637 to get the desired operation.  Using the I2C 

interface the 2003 project group were successful in initializing the registers and have 

developed a method for doing so.   

This particular sensor is capable of varying window sizes with the largest being 

640 x 480 pixels.  Smaller windowing sizes can be programmed upon initialization of the 

registers.  Depending on the configuration of the device the sensor will read each pixel 

out as an 8-bit or a 10-bit digital number.  In the standard configuration, the sensor will 

read out the upper left pixel first and then continue on in a similar fashion to reading a 

book.  Also depending on whether the sensor is run in master or slave mode there will be 

horizontal and vertical synchronization signals that will become outputs or inputs 

respectively.  This allows for control over the speed at which the sensor steps through the 

pixels (National Semiconductor, 2002b). 
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2.4.3 The FPGA 

The FPGA used in the Leviton Encoder is the Xilinx Spartan-3 XC3S200.  This 

FPGA was chosen for the flexibility that it can provide to the system.  This FPGA has 

200,000 logic gates, 173 I/O pins, and 216Kb of internal RAM.  The FPGA’s main task is 

to collect the pixel data coming from the sensor, accumulate the data, and then store the 

data for the DSP to access later. The Figure 2.4 shows an overview of the development 

board for the FPGA. 

 The Development board came with many useful features.  It has an on board flash 

memory (2) which provides an easy way to make designs nonvolatile.  It also has three 

40 pin expansion connectors (19-21) which allows direct connection of signals to the I/O 

pins of the FPGA.  This board also contains several buttons (13), switches (11), LED’s 

(12), and four seven segment displays (10).  The buttons and lights take up some of the 

I/O pins of the FPGA but are extremely helpful during the prototyping process.  The 

following figure shows the top view of the FPGA development board. 

 
Figure 4 Spartan-3 Development Board Lay Out (Xilinx, 2004b) 
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2.4.4 The DSP and its Functions 

The DSP currently being used is the Texas Instruments TMS320C6711.  The 

primary functions of the DSP is to initialize the CMOS pixel sensor and perform the 

image-processing algorithm with all the operand for the calculations given by the FPGA, 

and then output the result.  The block diagram for the TMS320C6711x family of 

processors is shown below in figure 2.5(Texas Instrument, 2004c).  

 
Figure 5 Block Diagram of the TMS320C6711x family (Texas, 2004c) 

 

For a detailed explanation of these features see Appendix B. 

2.5  Summary 

This chapter has covered some of the major background information required to 

understand the Leviton Absolute Optical Encoder, in context to this project.  It also 

provides a summary on the development of the encoder over the years.  The next chapter 

will describe the goal of this project and various tasks that are required for this project to 

be successfully completed.  
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3.0  Problem Statement 

This chapter describes the problem being addressed by this MQP and states what 

needs to be accomplished for a successful project.  The following section details the main 

problem that is being addressed.  The rest of the chapter details the main goal and 

objectives of this project along with the tasks that must be completed to achieve the 

project goal. The tasks are divided into primary and secondary tasks.  Primary tasks must 

be completed in order for a successful MQP.  Secondary tasks are not required to solve 

the problem, but with resources permitting, can be done to improve the usefulness and 

marketability of the Leviton Absolute Encoder.   

3.1  Project Problem 

In the ideal system layout of the Leviton encoder, the sensor would send 10-bit of 

digital image data to the DSP at 27MHz. Unfortunately, the DSP is only capable of 

receiving data at 8MHz. Due to the speed difference, a bottleneck occurs between the 

sensor and the DSP, resulting in data overrun. Consequently, the DSP does not get the 

appropriate data to perform the image-processing algorithm. 

3.2  Project Goal 

 The goal of this project is to design and implement a solution that will store the 

data coming out of the sensor at 27MHz and then transfer the data to the DSP at a 

maximum speed of 8MHz, without any data overrun.  This solution must also allow the 

DSP to perform the image processing algorithm and send out at least 1200 position 

updates per second. 

3.3 Objectives 

We set the following objectives to achieve our project goal: 
 
• Separate the sensor from the evaluation kit 
• Initialize the sensor using the DSP 
• Achieve a rate of 1200 position updates per second 
• All scale patterns and window sizes 
• Run the sensor in Master (free-running) mode without data overrun  
• Incorporate the encoder design in a 2-inch cube 
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• Keep production costs under $200 

3.4  Primary task 

To achieve our project goal, the following six tasks needed to be completed: 

• Research the sensor to determine its capabilities and setup.  
• Research the DSP to determine its capabilities and setup. 
• Fully understand the image processing algorithm. 
• Come up with feasible solutions for our problem and evaluate each 

solution 
• Pick the best solution and test it, if successful implement it. 

3.5  Secondary Tasks 

The following goals were set as secondary goals to increase to the quality of the 

Leviton Absolute Optical Encoder: 

• Add more functionality to our design to accommodate different scale 
types and window sizes. 

• Implement the design on a stack of PCB’s which can fit into a two-
inch cube. 

• Research other DSP options that would improve upon the current 
design. 

• Work on an image capturing device for alignment purposes. 
• Research what needs to be done to current design in order for it to read 

a Cartesian scale. 

3.6  Detailed Task Descriptions 

This section will go into more detail on why the primary tasks needed to be 

completed for this project.  

3.6.1 Task 1  

• Research the sensor to determine its capabilities and setup.  
 

The device that captures the image and reads out the digital image data to the DSP 

is the National Semiconductor’s LM9637 CMOS Active Pixel Sensor.  We needed to 

understand how the sensor is initialized and its features.  This also involved learning 

Snaps and Visual Basic programs.  
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3.6.2 Task 2 

• Research the DSP to determine its capabilities and setup. 
 

We needed to educate ourselves on the current DSP and its functions.  We needed 

to familiarize ourselves with all the feature of the DSP, including any clocks, data ports, 

control options, and available memory.  There were also other factors that we had to take 

into account such as power consumption, price, size, and complexity.  

3.6.3 Task 3 

• Fully understand the image processing algorithm. 
 

We needed to understand how the encoder achieved its remarkable accuracy and 

precisions.  This involved learning how the data coming out of the sensor is computed 

and the mathematical reasoning behind it.  

 

3.6.4 Task 4 

• Come up with feasible solutions for our problem and evaluate each 
solution 

 

Our solution had to be within a reasonable price range and not be overly 

complicated so that we can implement our design within our project timeline.  We 

researched numerous devices that would solve our problem and consulted with our 

mentor.  This was on of the most time consuming aspect of the project and involved 

many ours of brainstorming and evaluating datasheets. 

 

3.6.5 Task 5 

• Pick the best solution and test it, if successful implement it. 
 
 Once we decided on our solution, we consulted our mentor.  After the mentor’s 

approval, we implemented our solution.  This required testing and verifying at every 

stage.  When our solution became functional, we presented it to our mentor. 
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3.7  Summary 

This section has defined the project problem and the goal of this project.  It also 

states, in detail, the tasks that were required to complete this project successfully.  The 

next section describes how the tasks were completed and along with covering the various 

implementations of ideas.   
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4.0  Methodology 

This chapter discusses the methodology used and the path taken to complete this 

project.  First, it describes the research that was needed to understand the project and how 

that research was applied to form a solution for the project problem.  Later, this chapter 

explains the experimentation phase of the project by chronologically describing the steps 

taken to achieve the project goal.  It concludes by describing the final implementation of 

our solution for the Leviton Encoder.  

4.1 Research 

 The research phase of this project began in PQP several months before we started 

this project at NASA/GSFC.  The main purpose of the research was to become familiar 

with the encoding concept and the major components of the device, such as the DSP, to 

determine if a new DSP should be bought to replace the old one.  We first began 

researching the previous three years of MQP reports on the Leviton Encoder to fully 

understand the development that the encoder has gone through over the past three years. 

After arriving at NASA, we focused our research on the sensor and the DSP, 

simultaneously, to fully understand their functionality and how we can take advantage of 

their capabilities.   

For the sensor, we followed the procedure that the 2003 team used to interface 

with the sensor. We first familiarized ourselves with the SNAPS EVAL program that 

came with the Sensor Evaluation Kit.  Then we began to learn all the registers that can be 

programmed to obtain the desired settings for running the sensor.  After gaining good 

understanding of the sensors registers, we used the Visual Basic program developed by 

the 2003 team to program the sensor using a digital I/O card.  Using the Visual Basic 

program to initialize the sensors registers provided us freedom from the evaluation kit 

and confirmed that we were programming the registers in the correctly. 

For the DSP, we needed to educate ourselves with the Code Composer software 

from Texas Instruments, which is used to program the DSP.  Code Composer comes with 

many tutorials each on a different function of the software.  These tutorials were most 

helpful in teaching us how to navigate through the Code Composer environment.  



 17 

However, they were not as helpful in providing information on controlling inputs and 

outputs, which was crucial to this project.  

We investigated last year’s code to see how they utilized the inputs and outputs of 

the DSK.  This was extremely helpful in determining how to control the EMIF and other 

various control signals.  Due to the complexity of the DSP, we decided not to limit our 

research to set amount of time. Throughout the project we constantly learned new 

functions of the DSP and how we could utilize them to better our project.  This proved to 

be useful for last years project group and allowed them to initialize the CMOS image 

sensor through the DSP, thus, eliminating unnecessary components (Harvey, 2003).   

 After determining the project problem, we began to look at various different 

options of slowing down the image for the DSP, so it can perform the image-processing 

algorithm.  We also studied the image-processing algorithm to see if it could be changed, 

without compromising the final outcome, to better suit the DSP.  Then we recognized that 

the data coming out of the sensor could be accumulated before it has to go to the DSP, as 

will be explained in detail in the next chapter.  

For accumulating data at the same speed as it comes out of the sensor, we looked 

into FPGA’s.  We began our research to find the best FPGA for our solution.  We 

focused on getting a FPGA that had high processing speed with enough logic gates to do 

this job.  When choosing the FPGA, we also considered the cost of the Evaluation kit and 

the cost of the chip as well.  

Once we obtained the FPGA development board we began writing VHDL code to 

do the accumulation.  To do this we had to relearn the ISE software that we had used in 

school.  This was a fairly quick process since all of us were familiar with the software 

and its interface. There were some major differences however in the actual programming 

of the device.  Unlike the chips we used in school this FPGA had on chip block memory 

that could be used in a variety of ways.  The FPGA also had several other features that 

such as a clock manager that proved to be useful in the end.  Once we had a solid 

understanding of the FPGA and what we wanted to do we began working on the code for 

programming the FPGA. 
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4.2 Experimentation 

After completing significant research on the sensor, we began our 

experimentation phase of the project with the SNAPS program, which came with the 

Sensor Evaluation Kit.  We primarily used the SNAPS program to study the effects of 

changing sensor registers values by observing the effects of the registers on a VGA 

computer monitor.  This experiment provided us with a detailed understanding of the 

sensors registers.  We then used the method described by the 2003 team, in Appendix C, 

to learn how to separate the sensor from the evaluation kit.  

After separating the sensor from the evaluation kit, we used the program 

developed by last years MQP for programming the sensor registers, the code is included 

in the CD.  This Visual Basic program used a digital I/O card to interface with the sensor. 

We again followed 2003’s procedure which is included in Appendix C. After 

successfully programming the registers using the Visual Basic program we moved on to 

programming the registers using the DSP. 

Last years DSP register programming code proved to be well-documented and 

easy to use.  We made a few minor changes to some of the registers according to the 

requirements of our design.  Most notably, the sensor operational mode was changed 

from Slave mode to Master (free-running) mode, which is a requirement of our design.   

This process was fairly short due to excellent documentation in last years MQP.  The 

DSP code for the sensor initialization can be found in Appendix D.  Last year’s MQP 

documents the sensor initialization procedures in detail and can be found in Appendix C. 

Our original solution was to have the FPGA accumulate data and then pass the 

accumulated data piece by piece to the DSP. Once the DSP had all the accumulated data 

it would then perform the image-processing algorithm.  While developing the code for 

the FPGA we designed a simple test that would allow us to confirm that we were in fact 

accumulating data.  To do this we simply tied the top eight bits of the 20 bit accumulated 

data to the LED’s on the development board.  This essentially creates a light intensity 

meter.  We verified that when we put a flashlight in front of the sensor the top eight bits 

represented by the LED’s increased.  We also confirmed that when the sensor was 

covered the 8-bit value decreased.  This proved that the FPGA was capable of 

accumulating the 10-bit sensor data. 
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Once we were sure our FPGA logic was working correctly we then added the 

DSP to the system.  We set up the DSP to take each accumulated value as it was 

generated by the FPGA.  However, while testing this approach we discovered that the 

DSP was not able to handle data transfer in this manner.  We came up with two solutions 

to get around this problem.  We could store a whole image of accumulated data on the 

FPGA and then have the DSP perform a block transfer.  A block transfer allows for much 

higher transfer speeds and eliminates the data transfer problem.  The second solution 

would simply have the FPGA store the accumulated data internally and then perform the 

image-processing algorithm itself.   

We decided to have the FPGA perform the image-processing algorithm.  Due to 

our limited time on the project, there was not enough time left for writing code for the 

FPGA to handle different types of Encoder scales.  However, to prove that the FPGA can 

in fact perform the image-processing algorithm, we decided to implement logic for only 

one encoder scale pattern. The details of the scale are provided in the next chapter.  To 

get the algorithm to work in the FPGA, we stored the 20bit accumulated data into a ram 

created in the FPGA and then found the vertical lines. Once we found the vertical lines it 

was possible to find the code bits.  We began implementing this design but quickly ran 

into a problem that could not easily be solved in the time we had left.  In order to perform 

the image-processing algorithm it is necessary to do some floating point arithmetic.  This 

is very easy to do in the DSP.  On the other hand it is not very easily done in VHDL.  The 

floating point math could be done, but after consulting with our advisors, we found that it 

would take probably ten weeks or so to implement.  This brought us back to using the 

DSP to performing the image-processing algorithm.   

In order to perform a block transfer of accumulated data from the FPGA to the 

DSP we needed to learn more about the EMIF and its modes.  We found that the EMIF is 

essentially controlled by one 32-bit register. This register provided for many different 

EMIF configurations.  We tried different configurations for the EMIF.  After trying 

several times to send data from the FPGA to the DSP we found a set-up that would 

transfer all of the accumulated data flawlessly.  Once we were sure that the data was 

being transferred properly all that was left was to simply write the image-processing code 

for the DSP. 
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Developing the image-processing algorithm was a very rapid process.  It was 

quick because it was very easy to test and confirm that the code was doing what it was 

supposed to.  For example, finding the vertical lines in the image could be easily verified 

by outputting the location of the vertical lines the algorithm found and comparing the 

locations with the actual data.  Looking at the data, it is easy to verify that there is indeed 

a vertical line at the location the algorithm found.  The rest of the image-processing 

algorithm was developed in a similarly by writing some code and then testing.  This 

method proved to be very efficient and allowed us to develop the image-processing code 

in a few hours. 

4.3 System Overview 

 Currently, the encoder is functional but only works for one scale pattern.  Position 

updates are output through the Code Composer software that came with the DSP.  The 

figure 5.1 shows the current setup. 

 

 
Figure 6: Encoder Setup 
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The final system that we implemented worked as follows.  The DSP would first 

initialize the registers of the sensor.  The FPGA then waits till the start of a new frame 

before it begins to accumulate data.  When a new frame starts the FPGA begins 

accumulating the 10-bit data coming from the sensor and storing it as 20-bit accumulated 

data in its internal memory.  Once a whole accumulated image is stored the FPGA tells 

the DSP to perform a block transfer on the data.  The DSP then transfers the entire 

accumulated image into its internal memory.  Once the entire accumulated image is 

stored in the DSP, it then performs the image processing algorithm on the data.  Once it 

completes the image-processing algorithm it outputs the position as a 64-bit floating point 

number.  While the DSP is performing the image-processing algorithm on the first 

accumulated image, the FPGA is accumulating data for the next image and storing this 

data.  Once the FPGA has the next image accumulated and stored the process starts all 

over again. 

4.4 Summary 

This chapter provided details on the research phase, experimentation phase, and 

an overview of where the project stands now.  The next chapters will present project 

solution and the implementation of the solution. Also, the results, obtained from the 

methodology described in this chapter, will be presented.   
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5.0  Results 

This chapter will present the results of the methodology explained in the previous 

chapter.  It will also provide technical perspective and precise functionality of the design.  

We will explain the image processing algorithm, the project solutions, the sensor 

initialization, and the position updates obtained from the new design of the Leviton 

Encoder. 

5.1 Image Processing Algorithm 

To fully understand the reason behind the implementation of our design, it is 

necessary to have a full understanding of the image-processing algorithm.  A detailed 

explanation of the image-processing algorithm can be found in Appendix A.  For our 

purposes, the actual calculation of the position is the same. However, the technique we 

use to navigate through the image is different than the one described in Appendix A.  Our 

image-processing algorithm begins navigating through the image by first locating the 

pixel columns which contain the vertical lines.  These columns are determined by 

summing, along each pixel column, from the top to the bottom of each vertical line.  The 

summation results in a one-dimensional array, from which the vertical lines are located 

by comparing each element in the array to a threshold value.  The threshold value is 

determined to be half of the maximum value of a summed column.  Then the centroid is 

calculated, as described in Appendix A.  After the centroid for each visible vertical line is 

known, the code bits are located through a known pixel offset for that particular scale.  

Once the code bits are interpreted, the position is calculated as described in Appendix A. 

The row markers are unused in this fashion, which allows for a simpler implementation.   

5.2 Project Solutions 

The LM9637 CMOS active pixel sensor sends out pixel data at a maximum speed 

of 27 MHz when operating in the Master mode; also known as free-running mode.  In 

order to run the sensor at top speed in the Master mode, the DSP would have to be able to 

perform the summing operation on the 10 bit pixel data at a rate of 27 MHz.  The DSP 

can perform the summing operation at speeds greater than 27 MHz once that data is in its 
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internal L2 memory.  Unfortunately, the EMIF of the DSP is not meant for high-speed 

real time data transfers.  The EMIF of the DSP is capable of transferring data in block 

transfers at speeds near 100 MHz (Texas Instruments, 2004b).  However, using an 

interrupt to transfer data, one element at a time, is many times slower.  This is due to the 

fact that the DSP requires about 13-15 clock cycles before it responds to an external 

interrupt (Texas Instruments, 2004b).  Sending interrupts at 27 MHz causes the DSP to 

miss data due to the latency caused by each interrupt.  Sending elements one at a time 

using interrupts results in transfer speeds below 1 MHz.  Therefore, it is necessary to 

perform the summing operation before the pixel data is sent to the DSP or to store blocks 

of image data and then perform a block transfer of data into the DSP.   

Last years MQP used the block transfer as a way of buffering part of the image 

and then sending the whole block of data at once.  They implemented a FIFO, which 

would take the data coming out of the sensor and store it until half of the image had been 

transferred.  The DSP would then perform a block transfer on that half of the image while 

the FIFO continued receiving the other half of the image.  Although this method would 

work for this system, in this way, the DSP can only perform the image-processing 

algorithm on sections of the image because the summing operation on the data cannot be 

performed until the block transfer has been completed.  The internal L2 memory of the 

DSP is relatively small so that when operating the sensor in full frame mode (640x480). 

Only about 15% of the image can be stored in memory at any one time before the 

summing process is performed.  This method works well for smaller window sizes 

(240x200 and lower), where a whole frame of data can be transferred into the internal 

memory of the DSP.  However, if larger window sizes are desired, this process becomes 

much more complicated.  

Initially we were going to take this approach to the DSP data transfer problem.  

When researching FIFO’s and various RAM’s that could be used as a data buffer for the 

DSP, we learned that each column of the data coming from the sensor could be summed 

into different sized chunks. The part of the column containing the vertical lines would be 

summed into one value and then each part of the column containing the code bits would 

be summed up into a separate value for each bit.  We researched for a device that could 

do the summing and then feed the preprocessed image data to the DSP.  In the meantime, 
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we also looked at the various FIFO’s on the market in case we were unable to locate a 

device that could perform the desired summing operations.   

In order to perform the image-processing algorithm, the whole frame of data 

should be stored in internal memory of the DSP.  Having a full frame of data stored in a 

memory allows for fast and easy navigation and computation.  The DSP, however, cannot 

hold a full frame, which is 640 x 480 ten-bit pixels or 307200 ten-bit pixel data, in its 

internal L2 memory, which is 64 kilobytes in size and some of it is designated for 

program memory. Realistically, this leaves us with about 48 kilobytes for storing the 

entire image.   

Parts of the image will be summed anyway so if the DSP could sum the data as it 

arrives it would limit number of locations needed to store pixel data.  If we summed the 

parts of the columns that contain the vertical lines, data could be easily accumulated into 

a 20-bit value, which would be stored as a 32-bit value in the L2 memory of the DSP.  

For Instance, if the vertical lines were 450 pixels long then only 19840 32-bit words need 

to be stored after the summing process, as opposed to 307200 16-bit half words without 

summing.  The code bits can also be compressed in a similar fashion without destroying 

the image data.  We know the length of the code bits so we can also sum the code bits 

along each column.  If we have a scale pattern similar to the classical scale pattern shown 

earlier in figure 2 we will be able to sum each column into three chunks (the vertical 

lines, top code bits, and bottom code bits); ignoring the row markers.  For the classical 

scale shown in figure 2 if we sum 450 values for the vertical lines part of the image and 

sum 15 values for each of the two code bit rows, this will result in three 32-bit values per 

column, as opposed to 480 16-bit values.  This summing also reduces the size of our 

image from 307200 16-bit half words down to 1920 32-bit words, which can easily be 

stored into the internal memory of the DSP. 

5.2.1 Implemented Solution 

We discovered that a relatively simple FPGA could perform all the summing 

functions at the speeds we required.  The pixel data of each column coming out of the 

sensor, at 25MHz—the clock speed provided to the sensor—was accumulated. A 

threshold value was set to determine the vertical lines.  Once the number of pixels that 
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contain the vertical lines was determined by comparing the summed value to the 

threshold vale, the FPGA was set to output this accumulated data to the DSP.  Then the 

accumulator was reset and the FPGA summed the part of the column that contains the 

first row of code bits.  After the first row of code bits was determined through the same 

process as the vertical lines, the accumulator was reset for the second row of code bits.  

Although the FPGA part was fully functional, the DSP still did not take in the 

accumulated data at the required speed.  We then stored the accumulated values into a 

RAM of the FPGA.  With increased familiarity with the FPGA’s, we recognized that the 

whole image-processing algorithm can be performed on the FPGA.  Therefore, we 

changed our focus to designing logic for the image-processing algorithm. After 

completing most of the logic for the algorithm, we discovered that 32-bit floating point 

arithmetic library in VHDL—required for computing the position updates—will require 

another ten weeks, thus making it impossible for us to use just an FPGA for the whole 

image-processing algorithm.   

On the other hand, the DSP can be easily used to perform 32-bit floating point 

arithmetic.  At this point, we had the FPGA logic store all of the accumulated values in 

its on chip RAM.  As explained earlier, the block data transfer to the DSP is much faster 

than sending values one at time.  Therefore, we performed a block transfer of the FPGA 

RAM to the DSP over the EMIF.  After each transfer the DSP would then perform the 

image-processing algorithm which is easily written in C code. The C code is in Appendix 

D and the VHDL code is provided in the CD that accompanies this report.  

5.2.2 Ideal Solution 

 The ideal solution would be to have the FPGA perform the whole image-

processing algorithm.  This would mean that the encoder will only consist of a sensor and 

an FPGA, as two main components. Therefore, removing DSP from the encoder, this will 

significantly reduce the overall cost and complexity of the device.  We have proved that 

the FPGA is capable of performing the whole algorithm, provided that a working 32-bit 

floating point VHDL library is available. It must be noted that there are such libraries 

available that can perform floating point operations, however, the lack of time restricted 

us from getting those libraries to work accordingly with our project.  
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5.3 Sensor Initialization 

It was critical that the LM9637 CMOS active pixel sensor is properly initialized 

and that we program the sensor registers correctly to obtain desired results.  We first used 

the SNAPS program to initialize the sensor and obtain a VGA output on a computer 

monitor, which enabled us to visually understand the effects of all the sensors registers.  

Our next step was to use the 2003 team Visual Basic (VB) program which programs the 

sensor registers through a Digital I/O card.  After successfully programming the sensor 

with the VB program, we used the DSP to program the sensor. Detailed documentation 

on sensor initialization can be found in Appendix C.  

During our experimentation, we discovered that the sensor must be initialized 

with a certain register initialization sequence. If the sequence is not followed, the desired 

results cannot be achieved. This sequence is not mentioned in any of the sensor data 

sheets. The SNAPS program uses this sequence to initialize the sensor. This sequence is 

documented in our DSP code and can be seen in Appendix D.  After the sequence is 

followed, other sensor registers can then be programmed in any way.  

5.4 System Design 
 The overall design of the Leviton Encoder is significantly changed from last year.  

For the first time, the FPGA is used to perform most of the image-processing algorithm 

and the DSP is being used to perform simple arithmetic. This section will give a detailed 

description of the FPGA introduced in the device and the new system block diagram.  

5.4.1 FPGA 

 The FPGA was carefully selected for its functionality, low cost, and our 

familiarity with Xilinx products.  Following are the main features of the FPGA in the 

current system.  

• Spartan XC3S200 

– 200k system gates 

– 326MHz system clock 

– 216K bits RAM 

– 173 I/O pins 

– Evaluation board $100 
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• on board Flash memory 

– chip = $ 16 

The Spartan XC3S200 has plenty of system logic gates and internal RAM for the task at 

hand.  There are sufficient amount of I/O pins needed and the evaluation board has a 

Flash Memory, which can be programmed through a JTAG connection.  Therefore, the 

board does not have to be programmed at every startup.  Moreover, the cost of the board 

and the chip is more than acceptable, when compared to the DSP board, which alone 

costs over $400.  

5.4.2 Encoder Design 

 The Leviton Absolute Encoder now relies on FPGA to perform most of the 

image-processing algorithm.  The following is a high level block diagram of the new 

Leviton Encoder: 

 

 
Figure 7: New Block Diagram 

 

Ideally, the encoder will only have the Image sensor and the FPGA.  However, in the 

above diagram, the DSP is utilized to obtain position updates.  Also, DSP provides 

various options on collecting position updates and presenting it in a data file, which can 

later be used in a spread sheet program for graphical analysis.   

5.5 Position Updates 

 We obtained three different position updates under same conditions. One was the encoder 

just placed on the table and the second, in which the encoder scale was moved eighteen times 
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with about 50 microns increment every time.  The condition in which these first two results were 

obtained was the worst case condition, in terms of window size.  Following are the condition: 

 

• Sensor Master Clock = 25MHz 

• Window = 640 x 480 

• Row Delay = 8h 

• No lens 

The frame rate under these conditions is 63.2 frames/second.  The figure 5.3 shows 500 position 

updates obtained with the encoder just placed on a table.  
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Figure 8: Noise Position Updates 
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The previous chart shows the 500 position values on a 100nm division.  Since the setup was not 

isolated from vibration and noise of other equipment on the table, the resulting position is 

oscillating.  The figure 5.4 shows the position updates as the encoder was moved vertically on 

the sensor 18 times by about 50 microns.  

 
Figure 9: Increment Position Updates 

 
It must be noted that each increment was approximately 50 microns.  The four data values, 

number seven through eleven, not shown in the above graph were excluded because of their 

inaccuracy, solely due to the setup of the test.  The next eight values on the graph prove that, in 

fact, the setup of the encoder scale on the sensor caused inaccurate results in those four 

increments.  To further prove that the setup was to be blamed for skewed values, the VGA output 

was obtained which revealed that the code bits were cutoff, thus, the sensor was sending 

incomplete pixel data, in terms of the encoder scale.  

 Our third test was with a small window size of 128 x 480.  Due to lack of time, we were 

only able to run this test once.  With this window size, the frame rate, calculated by the Excel 

Spreadsheet provided in the CD, is 315 Hz.  We were able to get 315 position updates in one 

second.  This test further proved that the encoder settings can be changes to obtain even faster 

frame rate. 
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5.6  Summary 

 The development of our version of the Leviton Absolute Optical Encoder involved tremendous 

amount of research.  We relied on 2003 MQP report to obtain for sensor initialization, which was 

extremely well documented.  We found that an FPGA can be used to perform the whole image-processing 

algorithm, further making the encoder more marketable.  The final results of our project proved that the 

encoder is capable of reliably providing position updates.   
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6.0 Conclusion and Recommendations 

 In this chapter, we conclude our results and discuss the current status of the Leviton 

Encoder.  For future development of the Leviton Encoder, recommendations and their 

explanations are also provided.  These recommendations will enhance the current design and 

make it more marketable. 

6.1 Conclusion 

 Our implemented solution solves the project problem.  For the first time, the Leviton 

Encoder is able to provide position updates using the LM9637 CMOS active pixel sensor.  This 

new encoder design also proved that just an FPGA can be used to perform the image-processing 

algorithm, as mentioned previously in our ideal solution.  Also, this new design reduces the 

overall cost and complexity of the design and increases the marketability of the Leviton Encoder. 

6.2 Recommendations 

 The following are the recommendations for the next MQP group to further improve the 

encoder design and also to make it more marketable. 

 

• Use FPGA to fully implement the image-processing algorithm 

 

Currently the encoder relies on the DSP to perform the image-processing algorithm.  We found 

that the position updates could be obtained, at a much faster rate, if the image-processing 

algorithm was performed entirely in an FPGA.  We could not implement the image-processing 

algorithm in this manner due to the lack of floating point library in VHDL, as discussed 

previously in this report.  Next years MQP group should work on developing a way to perform 

floating point math on the FPGA. 

 

• Incorporate all scale patterns and window sizes in the current system 

 

Once the image-processing algorithm is successfully implemented for one scale pattern and 

window size, work will be need to done to accommodate the other scale patterns and window 
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sizes.  This will involve creating several modes of operation including a high accuracy mode.  In 

this mode, the sensor would use the full window size and then three to four position updates will 

be averaged together to output one position update.  Also, there may be a high speed mode  in 

which a very small window size is used and extreme accuracy is not needed.  For each scale, the 

image-processing algorithm significantly changes, therefore, it the logic should be designed 

accordingly. 

 

• Develop a way to initialize the sensor without using the DSP 

 

With the FPGA performing the image-processing algorithm, there needs to be a way to program 

the sensor without using the DSP, thus completely eliminating the DSP from the system.  Last 

years MQP team (2003) began development of FPGA logic that would initialize the sensor.  

They stopped this development when they found out that the DSP could easily initialize the 

sensor.  Last years work can be used as a starting point to develop FPGA logic, which programs 

the sensors registers.  Other solutions involve using a PIC microcontroller to communicate with 

the sensor. 

 

• Achieve a Rate of 2000 position updates per second 

 

The current encoder set-up was only tested at 60 position updates per second and 300 position 

updates per second.  Unfortunately due to lack of time we were unable to test at higher speeds.  

The current set-up should be tested at the minimum allowable window size to see the top speed 

that can be reached with this encoder design.  With the FPGA performing the image-processing 

algorithm and with the correct sensor settings, achieving a speed of 2000 position updates per 

second should be trivial.   

 

• Create a video output for the encoder for alignment purposes 

 

Currently, there is no easy way to check the alignment of the sensor relative to the scale.  The 

alignment is very important for the image processing algorithm to work properly. There should 

be an easy way to verify that the sensor is indeed aligned properly over the scale.  One way of 
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doing this would be to turn the sensors output into a video signal and then display this onto a 

computer monitor or television screen.  This would allow for quick and easy alignment check. 

 

• Fully implement the design on a PCB 

 

Once the system has been fully developed using the various development boards, the design 

should be moved onto a PCB for further prototyping.  The entire PCB design should be as small 

as possible and ideally fit into a 2-inch cube.  If the DSP is removed from the system the entire 

PCB should fit easily into a 2-inch cube.  The only way the encoder would not be able to meet 

this requirement is if the connectors which communicate the position updates to the host are big.  

A universal serial bus (USB) connector will be a good choice.  It is a small connector and is 

compatible with almost all the computers, nowadays.  Unfortunately, this may not be the 

standard for encoders in the market today.  The connectors and PCB design will need to be 

researched in detail to meet current standards. 
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APPENDIX A: Image Processing Algorithm 

Image processing for new optical pattern recognition encoders 
 

Douglas B. Leviton 
Goddard Space Flight Center 

Code 551 
Greenbelt, MD, 20771 

 
1.  ABSTRACT 

 
An all new type of absolute, optical encoder with ultra-high sensitivity has been developed at 
NASA’s Goddard Space Flight Center.i  These position measuring encoders are unconventional 
in that they rely on computational pattern recognition of high speed, electronic images made of a 
moving, backlit scale which carries absolute position information of either linear or rotary 
format.  The pattern recognition algorithms combine edge detection, threshold level sensing, 
spatial compression, and centroiding along with fault recovery through scale image defect 
detection.  Details of the encoder scale patterns and their design rules and the image processing 
algorithm which gives these encoders their unique and unparalleled performance characteristics 
are discussed. 
 
Keywords: NASA absolute optical encoder; pattern recognition; image processing; algorithm 
 

2.  BACKGROUND 
  

NASA's new pattern recognition encoders use a combination of mature technologies including 
high accuracy microlithography, optical projection, charge-coupled-device (CCD) array image 
detection, and simple image processing.  In most cases, a fixed, light emitting diode (LED) 
backlights a microlithographically patterned scale attached to the moving part of a positioner, 
and a fixed CCD array camera records images of the portion of the scale within the CCD’s field 
of view. The CCD’s electronics rapidly digitize the images of the scale pattern into a memory 
buffer. A pattern recognition algorithm operates on the image buffer contents to derive a numeric 
position based on the known pitch of the glass scale pattern.  This paper focuses on scale design 
flexibility and on the details of that algorithm. 
  
Small format, monochrome CCD’s are ideal for use in these encoders since images can be read 
out at the highest possible frame rates and the amount of image data required to get accurate 
encoder readings can be minimized. The LED’s brightness is automatically controlled as part of 
the image processing algorithm in order to optimize image density to yield the most valid, 
accurate encoder readings.  
 

3.  SCALE PATTERN BASICS AND DESIGN RULES 
 
A section of a linear encoder scale pattern is shown in Figure 1. A typical image of the moving 
scale pattern as seen by the fixed CCD camera is shown in Figure 2.  The narrow vertical bars in 
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the top three quarters or so of the pattern are called fiducials. The long dimension of those scale 
features is arranged perpendicular to the direction of motion in a strictly periodic fashion. The 
large horizontal rectangles at the bottom are called row markers. These are used by the pattern 
recognition software to a) determine the vertical locations of all other image features and b) to 
define the width and location of the window over which fiducial centroids will be computed. The 
small squares just above the row markers are called code bits. These are arranged in a format 
which represents a sequential binary code to uniquely identify each fiducial, thus making the 
encoder absolute versus incremental. A row marker together with its associated code bits and 
fiducial are called a code group 
 
A vertical line drawn down the middle of the image (in line with the arrow at the bottom of 
Figure 2) would demark the center column of pixels on the fixed CCD array. It is the centroid 
position of the image of each fiducial with respect to that pixel column which allows position to 
be determined with ultra-high sensitivity.  The horizontal motion of each fiducial’s centroid as 
seen by the CCD is linear with actual motion in that direction.  
 
The NASA encoder offers extreme design flexibility because the scale pitch (the physical 
distance between adjacent fiducials for a linear encoder or the angular distance for a rotary 
encoder) and optical magnification can be chosen to suit the requirements of essentially any 
application. They are also chosen such that there will always be at least two and sometimes 
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Figure 1 – Negative of photo of typical section of NASA linear, absolute, 
optical  encoder scale (Type I – 2 mm pitch); sequential code groups can 
be seen but not crisply due to hand-held closeup 

Figure 2 -- Sample image of absolute encoder scale pattern as seen by 
fixed CCD camera; arrow at bottom points to center column of pixels 
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just barely three entire code groups in each image. The encoder software is aware of the pitch 
and continuously adjusts its perceived image scale (microns per pixel or degrees per pixel) based 
on measured differences in locations of fiducial image centroids measured in pixels on the CCD. 
This operation requires the presence of at least two code groups in each image. Generally, such 
adjustments are entirely miniscule but this practice tends to average out any errors in placement 
of individual fiducials on the scale.  
 
For an encoder using a CCD array having roughly 200 pixel columns, a few rules of thumb guide 
the selection of scale pitch and imaging optics. Modified rules apply to different CCD formats.  
The first rule of thumb is that the encoder's resolution will be approximately 1/10,000th of the 
scale pitch.  A smaller pitch provides extra resolution for free but requires higher magnification 
from the imaging optics in front of the CCD. The second rule of thumb is that the magnification 
should be nearly equal to the physical width of the CCD array divided by thrice the scale 
pitch. For optimal centroiding of fiducial images, the physical width of the fiducial on the scale 
should be such that its image covers 4 to 6 pixel columns on the CCD.  A few examples illustrate 
these rules of thumb for linear and rotary encoders. 
 
3.1 Linear Scale Design Examples 
An encoder with a resolution of 5 nanometers (0.005 microns) is required.  Thus, the scale pitch 
should be no larger than 50 microns and the optics must image the scale onto a 2.6 mm wide 
CCD with a magnification = 2.6 mm / (3 x 0.05 mm) = 17X.  A 20X microscope objective with 
and scale pitch tweaked to 43 microns would work.  Three rows of code bits containing four bits 
each would encode a range of 4096 x 0.043 mm = 176 mm (7 inches).  This resolution is better 
than that of several commercially available distance measuring interferometers. 
 
An encoder with a resolution of 0.1microns (100 nm or 4 microinches) is required.  The scale 
pitch needs to be no larger than 1 mm, and the optics must image the scale onto a 2.6 mm wide 
CCD with a magnification = 2.6 mm / (3 x 1 mm) = 0.87X.  This is a particularly interesting 
example in that the needed magnification is very close to unity.  This encoder would be designed 
for "shadow" mode, where a scale with 900 micron pitch is backlit with "collimated" light and 
simply casts a shadow on the CCD directly behind it with a small gap.  This configuration is 
compact, simple, has lowest parts count (and no optics per se), and works naturally at unit 
magnification.  Three rows of code bits containing four bits each would encode a range of 4096 x 
0.9 mm = 3,686 mm (145 inches or 12 feet).  To implement this range, multiple scales are joined 
together at their ends, with stitching errors calibrated out.  Scales of this pitch are exceptionally 
immune to scale damage or contamination.  Three rows of five code bits would extend the range 
to 32,768 x 0.9 mm = 30 m (100 feet)!  
 
An encoder with a resolution of 0.0025 mm (2.5 microns or 0.0001 inches) is required.  The 
encoder in the previous example is such a cheap, simple, and convenient configuration that the 
application in this example should probably be built that way and extra resolution provided just 
ignored.  But we go through this example anyway as there might be practical reasons why a 
shadow mode encoder could not be used.  For a 2.6 mm wide CCD, a scale pitch of 25 mm (1 
inch) and optics with a magnification 0.033 would be used.  Here, the scale pitch has grown to a 
degree that the camera views an area on the scale 75 mm (3 inches) on a side, which might pose 
packaging limitations for some applications.  Yet, this design provides enormous travel, 
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exceptional resolution, and is extremely immune to scale damage.  It lends itself to an etched 
metal band scale fabrication technique or other. Intermediate scale pitches such as 5 to 20 mm 
also lend themselves to etched metal band scale fabrication giving resolutions from 0.5 to 2 
microns with scale heights from 15 mm to 60 mm, respectively.  For completeness, we can 
readily see that three rows of code bits containing only four bits each would encode a range of 
4096 x 25 mm = 102 m or the length of a football field!   
 
3.2 Rotary Scale Design Examples 
A full revolution encoder with resolution of 0.01 arcseconds (3 x 10-6 degrees or 50 nanoradians) 
and scale diameter less than 300 mm (12 inches) is required. Having a power of two for the 
number of code groups around the perimeter of the code track is convenient but not essential.  
4096 code groups gives 0.0879 degrees per code with a resulting resolution of 9 x 10-6 degrees 
which is not good quite enough. 15 code bits per group in three rows of five would certainly do 
the trick with 32,768 possible codes.  For convenience, one might wish to have the code groups 
at easy to remember intervals like 0.02 degrees or 18,000 groups around the track, giving a 
resolution just better than the requirement at 2 x 10-6 degrees.  We have enough information to 
compute physical separation of code groups on the scale and to determine the required optical 
magnification.  A 300 mm diameter track has a perimeter of 300 mm x π = 942 mm.  942 mm 
divided by 18,000 codes = 0.052 mm per code.  The optics will be designed to image the scale 
onto a 2.6 mm wide CCD with a magnification of 16X.  
 
A full revolution encoder with a resolution of 0.2 arcseconds (5.6 x 10-5 degrees) is required and 
the scale diameter is required to be less than 75 mm (3 inches).  2048 code groups gives 0.176 
degrees per code with sufficient resolution of 1.8 x 10-5 degrees (<0.1 arcseconds) — the 
equivalent of a 24 bit conventional absolute encoder . The physical separation of code groups on 
the scale will be 75 mm x π / 2048 = 0.115 mm.  The required optical magnification will be 2.6 
mm / (3 x 0.115 mm) = 8X.  This design could just as easily be scaled down with the same 
resolution to use a 50 mm (2 inch) diameter scale with 2048 codes, a separation of about 0.075 
mm between codes, and a magnification of roughly 12X. 
 
Suppose a sector encoder which covers a range of only +/- 10 degrees is required and the 
encoder scale can be mounted with respect to the rotation axis at a radius as large as 500 mm (20 
inches).  What different encoder resolutions can be gotten and what would their packages look 
like?  Let us look at a few different scale pitches and allow those to prescribe magnifying optics 
and achievable resolution.   
 
We first look at a scale with code groups 0.05 mm apart.  From previous examples, the optics 
must provide a magnification around 16X  At a radius of 500 mm, the angular separation of 
codes will be 0.0057 degrees and the resolution will be about 6 x 10-7 degrees (0.002 
arcseconds).  A microscope arrangement or custom-designed, molded lens system could be used, 
depending on package constraints.  Now, let us consider a scale pitch of 0.9 mm for a shadow 
mode design. At a radius of 500 mm, the angular separation of codes will be 0.103 degrees and 
the resolution will be a very respectable 1 x 10-5 degrees (0.04 arcseconds).  The arc length for a 
scale covering 20 degrees at a radius of 500 mm is roughly 175 mm.  Several scales at either 
pitch could be economically recorded on a single, 200 mm square master plate. Other 
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intermediate pitches could be used as well, for example, a pitch of 0.180 mm would suggest a 
magnification of 5X and a resolution of 2 x 10-6 degrees (0.007 arcseconds). 

 
4.  PATTERN RECOGNITION ALGORITHM 

 
Getting a single encoder reading is a sequence of the following steps: 1) exposing the CCD while 
concurrently flashing the LED and reading out the resulting image into a memory buffer with 8 
bits of brightness resolution (one byte per pixel); 2) finding row markers in the image; 3) 
deciphering the pattern of code bits associated with each row marker; 4) computing the centroid 
of the fiducial associated with each row marker; 5) converting the centroid and fiducial identity 
information to a position; and 6) adjusting the exposure conditions (exposure time and LED 
brightness) for the next CCD exposure.  
 
The first image processing routine finds the bottom and top edges, and left and right ends of all 
row markers it can find in each encoder scale image using a simple edge detection process.  
These edges allow us to navigate through the image in the remaining processing steps.  Row 
marker's whose ends are conclusively identified are marked as valid for those steps.  To find 
these edges, entire row contents are summed, starting at the bottom of the image, and compared 
with the sum from the previous row (clearly, row markers can not occupy the first row of image 
pixels).  When the new row sum exceeds the preceding sum by some threshold value, the current 
row is taken as the row which defines the bottoms of the markers.  The process is then continued 
until a row sum dips below the preceding sum by that same threshold value, where the preceding 
row defines the tops of the markers (see Figure 3). 
 
The middle row of the markers is taken to be the average of the row numbers for the top and 
bottom of row markers. This row is now searched for the ends of row markers.  Starting at the 
beginning of the row, each pixel value is compared to a single pixel brightness threshold value of 
about 80 (where maximum brightness for any pixel is 255) looking for low brightness to high 
brightness transitions to denote the start column of row markers and vice versa to denote the stop 
columns. The length of each row marker must be within some tolerance of the expected value for 
the row marker to be considered valid.  A more robust treatment would use all rows between top 
and bottom of row markers, which would help reduce the effects of scale damage or 
contamination in the row marker area, but experience has generally shown this to be 
unnecessary. 
 
Relative pixel grid offsets, well known by design, from the now-known middle and ends of all 
valid row markers are used to pinpoint image pixels where each code group's identifying code 
bits are centered. By convention, code bits are arranged in rows with the least significant bit 
(LSB) at the bottom left and the most significant bit (MSB) at top right. Referring again to 
Figure 2, there are two rows of four bits defining 256 (28) possible fiducials, although  any other 
arrangement will work. (The range of a linear encoder is simply the number of fiducials times 
the scale pitch.)  For each code group, the group's identity is built up from 0 as a running sum of 
binary weighted contributions of each code bit in the grid.  If the brightness of the pixel at a code 
bit location exceeds the single pixel brightness threshold, then that bit is set and contributes to 
the running sum by its binary weighted value. Normally, only individual pixels are considered in 
order to minimize software execution time.  In Figure 2, in which there are only two rows of 
code bits, the leftmost code is deciphered as 96 (bits 2, 3, 4 and 6 are set so the  
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code identity is 4 + 8 + 16 + 64), the center code is 97 (bits 0, 2, 3, 4 and 6 are set so the code 
identity is 1 + 4 + 8 + 16 + 64), and the rightmost code is 98 (bits 1, 2,3 , 4 and 6 are set so the 
code identity it 2 + 4 + 8 + 16 + 64).  These code identities (n, n + 1, n + 2) are used later to 
scale the encoded position result. 
 
An important function of the algorithm is to check to make sure that any code groups identified 
in each image are sequential.  Otherwise, an incorrect position might ultimately be reported.  
This could happen, for instance, if a particle were occluding the central part of a code bit on the 
scale which should appear transparent (bright) but instead appears dark and gets sensed below 
threshold. The deciphered code value would be wrong.  Meanwhile, if other code values in the 
image on either side of this one are okay, this one can either be ignored or re-examined to see if 
it would be sequential but for one bit and thus could be validly recoded. Alternately, at the 
expense of execution speed, the entire code bit group could be reprocessed treating the average 
brightness of the entire cluster of pixels surrounding each single code bit pixel to represent bit 
brightness compared to the single pixel threshold. Such a code group could also be marked as 
suspect in an operational lookup table.  It is clear that this encoder, through its image processing 
algorithm, has numerous possible levels of fault detection and recovery. 
 
As motion of the positioner occurs, images of scale fiducials traverse the fixed field of view of 
the CCD horizontally in a fashion which is linear with that motion. It is the left-to-right centroid 
of each fiducial that encodes position with a resolution given by the noise in determining those 
centroids to small fractions of a pixel column. To first order, the image brightness for the 
fiducials does not vary from row to row but does vary in a characteristic fashion from column to 
column, similarly for each fiducial.  Thus, since the fiducials are parallel to the pixel columns, 
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Figure 3 – Changes in row sums which are greater in magnitude than a selected 
row sum threshold indicate top and bottom edges of row markers 
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the first step in computing the light centroids is to sum together the entire brightness contents of 
each column for all rows starting just above the code bits into a one dimensional array with a 
number of elements equal to the number of CCD pixel columns.  This is what we call a "y-
squunch" and it builds peak signal of the centroid operand from that attainable from a single row 
to a peak signal well over 100 times higher, vastly improving the statistics and execution speed 
of the centroid computation, and giving the encoder its ultra-high sensitivity.  The resulting peak 
column sum is of order 30,000 DN (digital numbers). 
 
The centroid σσσσ  of each fiducial image is computed within a window centered on its respective 
row marker. The width of the window is a parameter which can be specified depending on the 
column extents of the brightness distribution of the fiducials.  Too wide a window reduces 
resolution while too narrow a window introduces random amplitude, small scale non-linearity 
errors.  Each brightness value operand in the centroid computation is radiometrically corrected 
by subtracting an average background brightness value taken from an area between fiducial 
computation windows. The background value represents the sum of the CCD's electronic readout 
bias, dark signal, and signal due to any detector illumination not related to the encoder scale 
image itself.  Typically, uncertainty in computing fiducial centroids is about 0.005 pixels.  Using 
derived centroids for at least two fiducials and the known scale pitch δδδδ, the algorithm can easily 
derive image scale λλλλ, in "microns per pixel" or "degrees per pixel," for example.  
 
Finally, defining absolute "zero position" to occur when the 0th code group is exactly centered 
on the center pixel column of the CCD, absolute position of the scale with respect to the fixed 
CCD camera can now be computed by knowing which fiducials are in the scene, knowing how 
much their centroids are displaced in pixels from the center column of pixels, and knowing the 
image scale. Since only one position is being encoded, the readings from each fiducial taken 
independently must necessarily agree. A fiducial's centroid σσσσn  is considered to be negative if it 
lies to the left of the center column of pixels and positive if it lies to the right.  For each fiducial 
n,  position rn is given by the expression:    
   

rn  =  δδδδ ⋅ n  -  σσσσn  ⋅ λλλλn .           
 [Eq. 1] 

 
The first term is a coarse offset accounting for the fact that the CCD may see other than the 0th 
code. The second term is a fine position offset for that fiducial from the CCD coordinate origin 
defined by the center pixel column. Equation 1 can be rearranged to show that position is, in fact, 
directly proportional to scale pitch δδδδ , since λλλλ is derived from δδδδ in the first place. 
 

rn  =  δδδδ [n  -  σσσσn  / (σσσσn+1  -  σσσσn)].          
 [Eq. 2] 

 
In this form, position is equal to scale pitch times a fiducial cycle offset from zero equal to some 
integer number of cycles plus some phase within a cycle. The reading returned by the encoder 
algorithm is the average of positions determined for all fiducials in the scene. 
 
Image brightness for each CCD exposure is optimized to provide the highest signal-to-noise ratio 
for centroid computations by adjusting CCD exposure time and LED brightness to maintain a 
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peak column sum just below digital saturation. Source brightness is adjusted through software 
control of an 8 bit digital-to-analog converter to moderate LED drive current.  CCD exposure 
time in integer milliseconds is sent as an adjustable parameter to the image collection routine.  If 
the peak column sum goes outside of a certain range, LED brightness is first adjusted, also 
within some range of brightness values.  If the requested brightness value is out of range, 
exposure time is increased or decreased as needed and the brightness value is set to mid-range. 
  

5.  ALGORITHM APPLIED TO EXAMPLE IMAGE 
 
Let us step through the entire image processing algorithm for our sample image whose format is 
165 rows by 192 columns.  In Figure 4a), the algorithm has found the bottoms of row markers at 
row 8, the tops at row 14, and the centers at row 11.  In Figure 4b) it finds the start of row marker 
1 at column 5 and the end of row marker 1 at column 40.  Similarly, it finds the starts and ends of 
row markers 2 and 3 at columns 74, 108, 143, and 178, respectively.  The row markers are 
calculated to have lengths of 36, 35, and 36 pixels, respectively.  The algorithm verifies that the 
apparent length of each row marker is between 32 and 40 pixels, and considers them all to be 
valid. 
 
In Figure 4c), through known row offsets (9 between row marker and first row of code bits and 9 
between rows of code bits) and column offsets (3 from start of marker to first code bit column 
then 9 between subsequent code bit columns) specific to this scale pattern and nominal optical 
magnification of the encoder optics, the pixels for code bits for each row marker are located at 
(column, row) coordinates given as follows: 
 

Row marker 1: {0-7:   (    8, 16) (  17, 16) (  26, 16) (  35, 16)  (    8, 25) (  17, 25) (  
26, 25) (  35, 25)} 

Row marker 2: {0-7:   (  77, 16) (  86, 16) (  95, 16) (  70, 16)  (  77, 25) (  86, 25) (  
95, 25) (104, 25)} 

Row marker 3: {0-7:   (146, 16) (155, 16) (164, 16) (173, 16)  (146, 25) (155, 25) 
(164, 25) (173, 25)}.  

 
As we saw earlier, the algorithm determines that the three fiducials in the scene are numbers 96, 
97, and 98 by examining the brightnesses of the bits with respect to a single pixel threshold value 
to see if each bit is "set" or not.  It realizes that these values are, in fact, sequential and so 
considers all three row markers to still be valid. 
 
Next, in Figure 4d), the algorithm identifies that the fiducials occupy rows 34 to 165 (132 
inclusive).  It now creates a one dimensional array of "super-columns" by adding the row 
contents for all of the latter rows together.  In Figure 5, the regular curve is a plot of the 
brightness distribution of the raw super-column array.  An omnipresent background value (the 
average value in a region between fiducials -- exaggerated in Figure 5) is subtracted from the raw 
distribution to yield a distribution which is due to scale image light only.  The adjusted 
brightness distribution (bold curve in Figure 5) is the data source for computing fiducial 
centroids.  The peak column value is stored for use in adjusting exposure for the next image to be 
taken.  
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Figure 4 – sequential processing steps of encoder algorithm are illustrated: a) bottom, 
top, and middle of row markers are found; b) ends of three row markers are detected 
and lengths of row markers are found to be within range; c) pixels at centers of code 
bits are located through known row and column offsets, and code groups are 
deciphered by looking at those pixels’ brightnesses with associated binary weights; 
d) fiducials are found to occupy rows above code bits; centroiding and background 
windows are defined with respect to ends of row markers, and fiducial centroids are 



 47 

 
The centroids of the fiducials are computed within a window nominally given by the ends of the 
row markers.  The column number of the center column of pixels (we will use 96 in our 
example) is subtracted from each centroid so that centroid values to the left of the center column 
are negative and those to the right are positive.  We find that the centroids of fiducials 1, 2, and 3 
are -74.635 pixels, -5.014 pixels and 64.587 pixels, respectively.  (These numbers were made up 
to include typical uncertainties in determining fiducial centroids.) 
 
So far, the algorithm has not needed to know scale pitch.  But now, we are ready to determine the 
encoded position and scale pitch comes into play.  So, let us assume that the scale is a sector 
scale of rotary format and that the angular spacing of adjacent fiducials is 0.1 degrees.  We 
expected that resolution will be around 0.00001 degrees. First we need to know the image scale 
in degrees per pixel.  This scale is just 0.1 degrees divided by the differences in centroid 
locations of adjacent fiducials. The scale for fiducial 1 is 0.10000 degrees / 69.621 pixels = 
0.001436569 degrees per pixel.  The scale for fiducial 3 is 0.10000 degrees / 69.601 pixels = 
0.001436561 degrees per pixel. The difference in these image scales is actually in the noise.  The 
scale for fiducial 2 is taken to be 0.10000 degrees / 139.222 pixels over two fiducials  =  
0.001436553 degrees per pixel. 
 
Finally, the algorithm calculates the position of each fiducial according to Eq. 1: 
 

Position r1 =  96 x  0.1 - (-74.635) x 0.001436569  =    9.70722 
degrees 
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Position r2 =  97 x  0.1 - (-  5.014) x 0.001436553  =   9.70720 
degrees 

Position r3 =  98 x  0.1 - ( 64.587) x 0.001436561  =   9.70722 
degrees 

         average encoded position   =  9.70721 degrees 
 

Note that the derived position value from the first digit behind the decimal point leftward has 
only to do with correct deciphering of code identities and has nothing to do with the algorithm’s 
centroiding aspects. Effectively, position determination amounts to identifying integer cycle 
values and phase within a cycle. This makes coarse determination of position very fast and fine 
determination of position very sensitive. 
 
A strong distinction between NASA’s pattern recognition encoders and conventional encoders is 
best made here.  The process of centroiding used in NASA’s encoders must not be confused with 
the process of interpolation of quadrature signals — assumed to be  truly sinusoidal — by which 
conventional encoders extend their resolution. While both processes determine phase within a 
cycle of their scale patterns, centroiding is a linear process whose accuracy is limited by 
placement of the centers of scale fiducials, any fixed, geometric anamorphicity in scale imaging, 
and noise. For interpolation in conventional encoders, purity of sinusoidality, phase, and 
amplitude of quadrature signals (among other things) is paramount to accuracy. These signal 
aspects depend ultimately on accuracy of scale pattern edge transitions which depend on details 
and uniformity of scale fabrication — from photo-patterning, through pattern development and 
scale etching. 
 
For these reasons, most encoder practitioners limit interpolation to about 8 bits (1/256 of a 
cycle), and cycle errors which occur tend to be only partially deterministic, complicating 
calibration.  In contrast, exact edge positions of scale markings are quite unimportant to NASA’s 
encoders as long as fiducials’ center placements are accurate.  Since edge locations themselves 
do not matter, pattern development and scale etching uniformity are not critical for NASA’s 
encoders.  For similar encoder resolutions, cycle frequency of a conventional encoder scale, and 
thus the frequency of cyclic errors, is roughly 40 times higher than for NASA’s encoder, whose 
cyclic errors tend to be very low in amplitude and very deterministic, simplifying calibration. 
 
One final operation adjusts the exposure to optimize signal-to-noise ratio in the next image 
taken. The algorithm expects the actual peak column value to be within 1000 DN of that which 
would have occurred if all 132 rows contributing to this peak column value had all been just 5 
LSB's shy of digital saturation (at 250 DN).  This means that the expected signal should have 
been between 32,000 and 34,000 DN.  The peak column for this image was found to be 31,637 
DN. This image just missed the bottom of that ideal window.  So, the brightness value used to 
moderate LED current is incremented for the next exposure which drives the peak column value 
upwards, hopefully landing it within the target window. 
 

6.   REFERENCES 
1 “Recent advances and applications for NASA's new, ultra-high sensitivity, absolute, optical pattern recognition encoders,” D.B. 
Leviton, SPIE 4091-B42, San Diego, August 2000 
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APPENDIX B: DSP Functions 

Digital Signal Processor 
The Digital Signal Processor (DSP) is a processor that is used specifically for signal processing. In this 

case the signal is image data of the encoder scale pattern from the CMOS image sensor. An algorithm 

running on the Digital Signal Processor is used to analyze the image data and then calculate the position 

of the scale pattern with respect to the sensor. The DSP has a unique design in that it has several 

arithmetic logic units (ALU’s) that allow it to perform complex computations to a signal at very high 

rates of speed. These chips are often used in applications where large amounts of processing have to be 

done to a signal in real time such as is needed with Fast Fourier Transform (FFT) or digital filtering 

applications.  

 

The DSP that is used with the current Leviton Encoder is the Texas Instruments TMS320C6211. This 

DSP was new to the encoder design as of last year when it was implemented over the floating-point 

TMS320C6711 DSP due to a speed advantage of 167Mhz compared to 150Mhz. The fixed-point 

processor is able to perform 1333 MIPS (Mega Instructions Per Second, compared to the C6711 that 

preformed only 900 MFLOPS (Mega Floating point Operations per Second). The C6711 and C6211 are 

almost identical in terms of their operation; both have the same instruction set and memory interface 

protocols. These similarities make it possible to easily switch between the DSPs, with only minor changes 

in code to optimize for the unique processor.   

 

In order to aid in development work, the DSP is included on an interface board such as is seen in Figure 

2.8. This setup, known as the Development Starter Kit (DSK), provides a computer interface, additional 

memory, and simplified connectivity to other devices. There are two primary connectors (J1 and J2) on 

the DSK for interfacing with peripherals. These two 80 pin connectors include an EMIF (external 

memory interface) with 32 digital I/O pins, and 22 address pins as well as various hardware interrupts and 

voltage supply pins.  The full pin out of these connectors can be found in the Texas Instruments data sheet 

for this DSK. The DSK also provides for simple programming of the DSP.  System code, such as the 

image-processing algorithm is written using an included software package called Code Composer. This 

programming interface is almost identical to C code, however it provides unique functionality for viewing 

the registers on the DSP as well as controlling internal protocols such as Direct Memory Access (DMA), 

system timer, and serial ports. This interface also makes it possible to directly modify the assembly code 

that is generated by the compiler. When compiled, an output file is created that can be loaded onto the 
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DSK via a parallel interface using the Code Composer software. The Code Composer interface allows for 

debugging of the DSP program by using software interrupts to step through the code and track the output.  

 

 
Figure 2.8 – Texas Instruments TMS320C6711 DSK Board (Graphic by Texas Instruments).  
 
 
Enhanced Direct Memory Access (EDMA) 
Enhanced Direct Memory Access (EDMA) is a memory transfer protocol optimized for moving data 

efficiently to and from external devices. The interface has the capability of transferring up to 1500Mb/s 

using quick direct memory access (QDMA) block transfers (Texas Instruments, 2001). Both the C6211 

and C6711 have 16 EDMA channels that can independently and simultaneously receive requests for data 

transfers. Once an EDMA transfer is requested on a given channel the operation is put in a priority queue 

and waits to be executed. Registers on the DSP are used to set the priority of a given EDMA channel 

 

A transfer request over an EDMA channel is initialized by a trigger event. A specific trigger, that cannot 

be changed, is associated with each channel. Channels 4,5,6 and 7 are important because their events are 

external hardware interrupt pins, meaning that a signal on an external pin triggers the event. When an 

event is detected on a given channel the appropriate data in the event register is set, immediately 

beginning the data transfer. There is also an event clear register that can be set to stop the triggering of 

events from the event register. Information can be transferred over each of the EDMA channels by three 

different methods, element synchronized, frame synchronized, or QDMA block transfer (Texas 

Instruments, 2001). The EDMA protocol also allows for address incrementing, meaning that on each 
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trigger event the destination or source address can be modified to store or retrieve information from 

consecutive memory locations. This is useful if information larger then an array length or element must 

be moved. 

 

EDMA transfers can optimize the performance of the processor because the transfers are performed 

independently of digital signal processor operation. This allows the processor to be used for other events 

while concurrent data transfer is occurring.  EDMA is also nearly three times faster then having the 

processor directly access the external data port.   

 

Multichannel Buffered Serial Port (McBSP) 
McBSP, or Multichannel Buffered Serial Port is based on the standard serial port interface. This serial 

port provides full duplex communication and multichannel transmits and receives of up to 128 channels. 

All data registers are double buffered to allow for continuous data streaming of 8,12,16,20,24, and 32 bit 

data transmit sizes. One of the most useful functions of the McBSP is clock signal generation. The 

McBSP has a sample rate generator that can be programmed by register to produce clock frequency of ½ 

the core clock speed of the DSP, divided by integers between 1 and 255. Several other registers are 

available for configuring the 2 McBSP ports that are provided on the J2 connector. 

 
External Memory Interface (EMIF) 
EMIF (External Memory Interface) is the standard memory interface for the DSP, which includes 32 

standard digital I/O pins and 22 address pins that are designed to interface with external memory such as 

RAM (Random Access Memory). The EMIF bus is a single input and output bus, which means that 

anything connected to the bus, will “see” any data that is being transferred between the DSP and other 

devices. For this reason the address pins are provided to indicate where the data on the data I/O pins is 

supposed to go. The EMIF interface has several control registers associated with it, allowing EMIF to be 

configured to interface with specific types of memory. The control space registers control memory 

interface factors such as setup, strobe, and hold times. This interface also has an output clock pin that can 

be configured to provide a clock control signal to memory. An input clock pin is also available that allows 

for an input clock that can be provided to the DSP externally.  

 

The EMIF I/O pins are mapped through Code Composer’s GEL file to addresses starting at 0xA0000000 

hex. These external pins are capable of addressing up to 256Mb of memory. The mapable memory space 

for the C6711 DSK can be seen below in Figure 2.9. Other mapped memory also depicted in this diagram 

includes the internal 64KB of memory on the DSK; this space is available for Code Composer code, as 
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well as immediate program storage. There is also memory mapped to on chip peripherals, this includes 

addressing locations for the various control registers on the DSP, such as EMIF, EDMA, and McBSP. 

 

 
Figure 2.9 – TMSC6711DSK Memory Map (Texas Instruments). 
 
 
 Values on the left are the hex memory addresses where that memory space begins.  
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APPENDIX C: Sensor Initialization 2004 

The following text for sensor initialization is taken from the MQP Report of the 2003 Team.  In 
initializing the sensor, we followed their procedure and obtained exactly the same results.  
 
Digital I/O Register Programming 

The first design task that had to be accomplished was to research options for communicating with the 

control registers on the CMOS APS independent of the Evaluation Kit provided by National 

Semiconductor. The purpose of this task is to gain a better understanding of the I2C standard and test that 

our understanding of the protocol was sufficient before specific register control hardware was developed. 

To begin this task we had to have an in-depth understanding of the signal that was required to 

communicate with the CMOS image sensor. Research of the I2C compatible serial interface was 

completed and is described in detail in the Background Chapter of this report. With the requirements of 

the I2C interface in mind, we studied the output possibilities that could be achieved using an ISA digital 

input/output card in a PC. The digital I/O card has three different 8-bit ports that can be configured 

independently for either input or output. This capability was sufficient for sending the signals that were 

required to program the registers on the CMOS image sensor. This card was used in preliminary 

development as it could be used to generate the signals that we needed yet did not require any difficult 

hardware design. 

We used several port configurations for the Digital I/O card in testing but the final version used only a 

single 8-bit port. To control the operation of the Digital I/O card we wrote a Visual Basic program that 

reads the required clock and data signal information from a text file and outputs the correct binary 

sequence to the ports of the digital I/O card. The text file containing the signal data was developed in an 

interactive Excel spreadsheet.  The spreadsheet allows the user to input the values for each register and 

then converts these into the proper data stream. The data stream is saved as a text file that can be read in 

by the Visual Basic program. The program initialized the I/O card and fed the data stream to the digital 

output port at the appropriate time.  An example of a portion of a data stream output by the Digital I/O 

card can be seen in Figure 5.2. 
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Figure 5.2 – Serial Data and Clock Signals generated by the digital I/O card. The upper channel is the 

clock signal and the lower channel is the data signal. 
 
Initially we used the two LSBs (least significant bits) on a single output port to create the bit streams.  An 

additional version of the program was written that used two independent ports and allowed the PC to read 

in the acknowledge signal from the sensor by switching the Digital I/O port to an input.  Later we found 

that this extra step was not required for proper operation.  The code required to switch the port between 

input and output was many times longer (and therefore slower) than the simple code used earlier so that 

version code was not used in the final version of the program.  A diagram of the 2 pins used on the single 

output port of the Digital I/O card can be seen below in Figure 5.3. 

 

 
5.3 – Output pins used on the Digital I/O card to create the I2C control signals (Connector Graphic by 

Measurement Computing Corporation). 
  
Since we were using a single output port in our final configuration, the data values ranged from zero to 

three.  The LSB was attached to the clock line and the 2nd LSB was attached to the data line.  The output 

then had four distinct possibilities, which are shown in Table 5.1.  With these possibilities we could 

generate a data string that would create the proper outputs to allow for register programming. A value was 

sent at any point the data or clock lines changed, allowing the entire data stream to be represented.  In this 

manner each bit that was clocked out required a sequence of three data output values. Figure 5.4 shows an 

example of a sample byte clocked to the CMOS image sensor, decimal output to the digital I/O card port 

is shown as well as the corresponding bit received by the sensor.  
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Table 5.1 – Data sent to Digital I/O card for a given data line and clock line value. 

 

 
Figure 5.4 – Digital I/O Card Output, signal on top is the serial clock, signal on the bottom is the serial 

data. 
 

An initial concern was that the output speed of the input/output card would be too high.  However, after 

conducting several tests in the lab, the 400 kHz maximum input speed of the sensor turned out to be 

several times the maximum output speed of the card, thus invalidating the concern (National 

Semiconductor).   

Our first version of the program created a pair of bit streams that appeared correct when displayed on an 

oscilloscope, however the signals failed to program the registers on the sensor. We were concerned that 

the Digital I/O card was supplying dangerously high currents to the CMOS image sensor during the 

acknowledge phase when the sensor tries to ground the high signal sent by the card. In an attempt to 

correct for this, our next version of code allowed the data pin to float after the data stream was sent so that 

the acknowledge signal would not cause a short in the system. This version of the program was successful 

at programming a single register, however the code was inconsistent and unreliable, particularly when 

attempting to program multiple registers.   

At this point we figured that there was something critical that we were missing which was preventing the 

sensor from accepting the programming every time.  We discovered that the output from the card is a 5-

volt TTL signal and the sensor requires a 3.3-volt input.  On occasion the sensor would accept the 5-volt 

signal, but after we setup a simple resistor voltage divider that reduced the signal to 3.3 volts the sensor 

accepted the programming every time.  As a result of the voltage divider configuration that was used to 
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provide the 3.3V signal, the current was also limited, allowing us to operate the card in output mode all 

the time as the sensor had sufficient ability to sink the smaller current source, without being damaged. 

With the voltage mismatch problem solved we resorted to an earlier version of the program and used a 

single output port to create the bit streams.  

 

Register Programming With DSP 

The task to be accomplished in the next stage of development was to use the DSP to program the registers 

on the CMOS active pixel sensor. To program the registers using the DSP, Code Composer was used to 

develop a C program that would send out values 0,1,2, or 3 (in binary) to external pins on the DSK 

similar to the method used with the Digital I/O card and FPGA. These two binary bits represent the clock 

and data signals of the I2C interface, which are needed to program the CMOS image sensor.  

In the first version of the C code developed for register programming, data was output over the EMIF 

(external memory interface) bus, which starts at the mapped address 0xA0000000. In the register control 

program each of the register values were hard coded into an array of unsigned characters. Several 

functions were developed that generate the appropriate values on the EMIF bus for start, end, and 

acknowledge conditions, as well as to increment through these arrays and output the correct values to the 

EMIF pins defined by the address in the header file.  

This version of the DSP register programmer used an addressing process to eliminate the potential of 

other data sent over the EMIF I/O pins affecting the operation of the CMOS image sensor. Each time data 

is sent to the EMIF I/O pins the corresponding address that is defined in the header file is sent to the 

EMIF address pins. This address is sent along with a data pin through an AND gate; another AND gate is 

used for the other bit. The output of these gates is sent to the corresponding I2C control pins on the CMOS 

image sensor. This process of ANDing the data with the address means that the output of the AND gate 

will be zero unless the correct address has been enabled, at which point the data will appear on the output 

of the AND gate which is connected to the sensor. One disadvantage of this gating process is that the 

EMIF address pins are not latched. This means that when data is sent to the data pins at a given address, 

the address on the address pins is not held, only pulsed on the address bus. For this reason the data has to 

be sent to the data pins repeatedly, so that the address is held high sufficiently long for the sensor to 

recognize the data. To accomplish this each function in this version of the register programmer has a loop 

that sends the data 25 times each time a value is sent to the port.  

The process of having to send data to the EMIF I/O pin multiple times is inefficient. To eliminate the 

need for addressing, research was done on the DSK to determine other output pins that are available. We 

found that address 0x90080000 connects to 8 bits of digital I/O pins. The program was modified to send 

the clock and data output to these pins CNTL1 (serial clock) and CNTL0 (serial data). This modification 
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allowed for the removal of the loops that were required to send the data multiple times. The removal of 

addressing from the system also allowed for the removal of the AND gates and support logic that were 

previously required. With this program structure the sensor could be programmed by connecting directly 

to serial clock and data pins on the DSK. This was the final method used for programming the registers 

on the image sensor. 
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APPENDIX D: Final 2004 Code 

The VHDL and Visual Basic codes are provided in the CD. 
 
DSP Image-Processing Code: 
 
#include "ControlReg.h" 
#include "registerspgrm.c" 
 
#include <csl_edma.h> 
#include <csl_emif.h> 
#include <csl.h> 
#include <stdio.h> 
#include <csl_mcbsp.h> 
#include "registerspgrm.h" 
 
//Initializing Global Variables 
 
unsigned int image[1440];    // allocating space for image  
unsigned int default_io; 
unsigned int Fthresh;     // Fiducial Threshold 
unsigned int Cthresh = 0x00034000;   // Code Bit Threshold 
unsigned int Bias;    //Background Black level Bias 
double PosBuff[500]; 
int ColumnNumb[4]; 
double CNUM[4];     //Centroid Numerator 
double CDEN[4];     //Centroid Denominator 
double centroid[4];     
double DegreePerPix[4]; 
unsigned int  Codebits[4]; 
double position[4]; 
double FinalPOS = 0.0;     //Position 
double imagectr = 239.5;     //Center of Window 
double scale = 580E-6;          //Scale pitch 
 
int *CE2CTL_ADDR_ptr = (int *)CE2CTL_ADDR;  
int *EXTPOL_ADDR_ptr  = (int *)EXTPOL_ADDR; 
 
void CONFIG_IO(); 
void CONFIG_Edma(); 
void WAIT_Data(); 
void Mask_Data(); 
void FindCol(); 
void GetBias(); 
void ComputeCentroid(); 
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void ComputeCodebits(); 
void ComputePosition(); 
 
 
 
 
EDMA_Handle hEdmaExtint4; 
 
 
EDMA_Config EDMACfg0 = { 
 0x213A0001,  // OPT Register - 32bit wide, sum=dum=1, using interrupt 10 
 0xA0000000,  // source address- EMIF<- Dual port Memory of FPGA 
 0x000005A0,  // transfer count- 1440 values or 5A0 Hex 
 (unsigned int)&image[0],  // Internal Memory starts at image[0]  
 0x00000000,  // Index update parameter  (index) 
 0x000105A0  // Element count Reload and Link Address (7E0 is Null address)  
}; 
 
 
 
int main() 
{ 
int i;  
FILE *fp; 
fp = fopen("DATA2", "a"); 
 
CSL_init();    //initilize CSL functionality 
//intsen();   //Initilize sensor 
*registers = 0x00000000;  // clear EMIF 
Delay(1000); 
CONFIG_IO();     //Config EMIF for Asynchronous block transfer 
CONFIG_Edma();   // Set up EDMA block transfer 
 
//for (i = 0; i <=500; i++) 
//{ 
WAIT_Data();     // Wait for data to be transferred 
Mask_Data();    // Mask out high 12 bits, remove garbage data 
FindCol();      // Find 4 Column high points 
GetBias();      // Compute background Black level 
ComputeCentroid(); // Compute the 4 Centroids and Degree per Pixel 
ComputeCodebits();  // Compute Codebit Values 
ComputePosition();  // Compute Exact Position 
 
//PosBuff[i] = FinalPOS; 
fprintf(fp,"%e\n", FinalPOS); 
//} 
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//printf("DataBuff =%p\n",&PosBuff[0]); 
printf("FinalPOS =%e\n",FinalPOS); 
EDMA_disableChannel(hEdmaExtint4);  // closing EDMA channel 
EDMA_close(hEdmaExtint4); 
return 0; 
} 
 
 
void CONFIG_IO() 
{ 
 /*************************** 
 Max Read hold, strobe, and setup  
 Write values don't matter 
 ****************************/ 
 default_io = 0x000F3F27; 
 *CE2CTL_ADDR_ptr = default_io; 
   
 return; 
  
}  
 
 
void CONFIG_Edma() 
{ 
 
 *EXTPOL_ADDR_ptr = 0x00000000;   // making interupts active on low to 
high trans 
 hEdmaExtint4 = EDMA_open(EDMA_CHA_EXTINT4,EDMA_OPEN_RESET); 
 EDMA_config(hEdmaExtint4, &EDMACfg0); 
 EDMA_enableChannel(hEdmaExtint4);  // opening EDMA channel 
 return; 
 
} 
 
void WAIT_Data() 
{ 
 
 EDMA_RSET(CIPR,(1<<10)); 
 while (!((Uint32)EDMA_RGET(CIPR) & (1 << 10)));  //Waiting until transfer completes 
 return; 
} 
 
void Mask_Data()   
{ 
 int i; 
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 for (i=0; i<=1439; i++) 
 { 
  image[i] &= 0x000FFFFF; // Masks out top 12 unused bits 
  } 
 return; 
} 
 
void FindCol() 
{ 
 int x; 
 int i; 
 int y; 
 int Max = 0; 
 int prval = 0; 
 for (i= 0; i <=3; i++) 
 { 
 ColumnNumb[i] = 0; 
 } 
 Fthresh = 0; 
   
 //computing threshold 3/4 the max value 
 for (i = 0; i <= 1439; i++) 
 { 
  if (image[i] >= image[Max]) 
  { 
   Max = i; 
  } 
 } 
  
 Fthresh = ((image[Max]*3)/4); 
 
 // Finding 4 Fiducial column values for centroiding  
 for (x=109; x <= 301; x+=3) 
 { 
  if (image[x] > Fthresh) 
  { 
   if (image[x] > image[prval]) 
     prval = x; 
   else  
    { 
      ColumnNumb[0] = prval; 
      break; 
     } 
  }  
 } 
 prval = ColumnNumb[0] + 204;    
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 for (y = (ColumnNumb[0] + 204); y <= (ColumnNumb[0] +300); y+=3) 
 { 
  if (image[y] > Fthresh) 
  { 
   if (image[y] > image[prval]) 
     prval = y; 
   else  
    {ColumnNumb[1] = prval; 
      break; 
     } 
   } 
  } 
 prval = ColumnNumb[1] + 204; 
 for (y = (ColumnNumb[1] + 204); y <= (ColumnNumb[1] +300); y+=3) 
 { 
  if (image[y] > Fthresh) 
  { 
   if (image[y] > image[prval]) 
     prval = y; 
   else  
    {ColumnNumb[2] = prval; 
      break; 
     } 
   } 
  } 
 prval = ColumnNumb[2] + 204;  
 for (y = (ColumnNumb[2] + 204); y <= (ColumnNumb[2] +300); y+=3) 
 { 
  if (image[y] > Fthresh) 
  { 
   if (image[y] > image[prval]) 
     prval = y; 
   else  
    {ColumnNumb[3] = prval; 
      break; 
     } 
   } 
  } 
 return; 
} 
void GetBias() 
{ 
  // Averaging 17 black values to get Background Bias 
  int Dark = 0; 
  int x; 
  int Total = 0; 
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  Dark = ((ColumnNumb[1] - ColumnNumb[0])/2)+ColumnNumb[0]; 
  for (x = Dark-24; x <= Dark+24; x+=3) 
   { 
     Total += image[x]; 
   } 
  Bias = (Total/17);   
return; 
} 
 
void ComputeCentroid() 
{ 
 /*****************************************************\ 
 Computing centroids using a window of 30 from peak fiducial 
 Value.  Also calculating degrees per pixel to ensure proper 
 units 
 \********************************************************/  
  
 int i; 
 int x; 
 int m; 
 for (m = 0; m <=3; m++) 
 { 
 CNUM[m] = 0.0; 
 CDEN[m] = 0.0; 
 centroid[m] = 0.0; 
 DegreePerPix[m] = 0.0; 
 } 
  
 for (i = 0; i<=3; i++) 
 { 
  for (x = (ColumnNumb[i]-45); x <= (ColumnNumb[i]+45); x+=3) 
  { 
   CNUM[i] += ((image[x]-Bias)*((x-1)/3));  
   CDEN[i] += (image[x]-Bias); 
  } 
  centroid[i] = ((CNUM[i]/CDEN[i])-imagectr); 
 } 
  
  DegreePerPix[0] = (scale/(centroid[1]-centroid[0])); 
  DegreePerPix[1] = (scale/(centroid[2]-centroid[0]))*2; 
  DegreePerPix[2] = (scale/(centroid[3]-centroid[1]))*2; 
  DegreePerPix[3] = (scale/(centroid[3]-centroid[2])); 
return; 
} 
 
void ComputeCodebits() 
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{ 
 /*************************************************\ 
 Computing Codebit values.  uses a window of 18 for each. 
 \*************************************************/ 
  
 int x; 
 int i; 
 unsigned int Zero, One, Two, Three; 
 unsigned int Four, Five, Six, Seven; 
  
 for( i = 0; i<=3; i++) 
 { 
  Codebits[i] = 0x00000000; 
   Four = 0; 
   for (x= ((ColumnNumb[i]+1)-108); x <= ((ColumnNumb[i]+1)-54); x+=3) 
    { 
     Four += image[x];   
    } 
     
    if (Four > Cthresh) 
    { 
      Codebits[i] += 0x00000010; 
    } 
   Five =0; 
   for (x= ((ColumnNumb[i]+1)-54); x <= ((ColumnNumb[i]+1)); x+=3) 
    { 
     Five += image[x]; 
    } 
   if (Five > Cthresh) 
   { 
    Codebits[i] += 0x00000020; 
  } 
   Six =0; 
   for (x= ((ColumnNumb[i]+1)); x <= ((ColumnNumb[i]+1)+54); x+=3) 
    { 
     Six += image[x]; 
    } 
   if (Six > Cthresh) 
   { 
    Codebits[i] += 0x00000040; 
   } 
   Seven =0; 
   for (x= ((ColumnNumb[i]+1)+54); x <= ((ColumnNumb[i]+1)+108); x+=3) 
    { 
     Seven += image[x]; 
    } 
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   if (Seven > Cthresh) 
   { 
    Codebits[i] += 0x00000080; 
  } 
   Zero = 0;  
   for (x= ((ColumnNumb[i]+2)-108); x <= ((ColumnNumb[i]+2)-54); x+=3) 
    { 
     Zero += image[x]; 
    } 
   if (Zero > Cthresh) 
   { 
    Codebits[i] += 0x00000001; 
   } 
   One = 0;  
   for (x= ((ColumnNumb[i]+2)-54); x <= ((ColumnNumb[i]+2)); x+=3) 
    { 
     One += image[x]; 
    } 
   if (One > Cthresh) 
   { 
    Codebits[i] += 0x00000002; 
   } 
   Two = 0; 
    
   for (x= ((ColumnNumb[i]+2)); x <= ((ColumnNumb[i]+2)+54); x+=3) 
    { 
     Two += image[x]; 
    } 
   if (Two > Cthresh) 
   { 
    Codebits[i] += 0x00000004; 
   } 
   Three = 0; 
   for (x= ((ColumnNumb[i]+2)+54); x <= ((ColumnNumb[i]+2)+108); x+=3) 
    { 
     Three += image[x]; 
    } 
   if (Three > Cthresh) 
   { 
    Codebits[i] += 0x00000008; 
    } 
} 
/* 
 printf("Codebits0 = %i\n", Codebits[0]); 
 printf("Codebits1 = %i\n", Codebits[1]); 
 printf("Codebits2 = %i\n", Codebits[2]); 
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 printf("Codebits3 = %i\n", Codebits[3]); 
*/ 
return; 
} 
void ComputePosition() 
{ 
 /*********************************************************\ 
 Computing final position.  Each position is averaged to find the 
 Final position. 
 \*********************************************************/ 
 position[0] = (Codebits[0]*scale) - (centroid[0]* DegreePerPix[0]); 
 position[1] = (Codebits[1]*scale) - (centroid[1]* DegreePerPix[1]); 
 position[2] = (Codebits[2]*scale) - (centroid[2]* DegreePerPix[2]); 
 position[3] = (Codebits[3]*scale) - (centroid[3]* DegreePerPix[3]); 
  
 FinalPOS = ((position[0] + position[1] + position[2] + position[3])/4); 
 
  
 return; 
  
} 
 
 
DSP Code for Sensor Initialization 
 
#include <stdio.h> 
#include <time.h> 
#include "registerspgrm.h" 
 
int *output = (int *)OUTPUT; 
int *registers = (int *)REGISTERS; 
 
//Function Definitions 
void Delay(int max); //Creates a delay in proportion to the passed value 
void StartCondition(); //Sends a "Start" condition to the sensor 
void StopCondition(); //Sends a "Stop" condition to the sensor 
void Acknowledge();  //Sends an "ACK" to the sensor 
void outputconv(unsigned char dat); //Outputs the appropriate sequence for the input data 
void OutputRegister(unsigned char deviceadd[8], unsigned char regadd[8], unsigned char 
regdata[8]); //Outputs a complete sequence to a register on the sensor 
void intsen(); 
 
 
void intsen() 
{ 
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unsigned char deviceid[8] = {1,0,1,0,1,0,1,0};  //Loads the Device ID into an array 
//This section loads the device register IDs and values 
//Device ID and Revision 
 
//Configuration and Power Control 
unsigned char r05[8] = {0,0,0,0,0,1,0,1}, d05[8] = {0,0,0,0,0,0,0,0}; //05h = vclkgen = 00h 
unsigned char r06[8] = {0,0,0,0,0,1,1,0}, d06[8] = {0,0,0,0,0,0,0,0}; //06h = pwdnrst = 00h 
unsigned char r07[8] = {0,0,0,0,0,1,1,1}, d07[8] = {1,0,1,0,1,0,1,0}; //07h = I2Cmode = AAh 
 
//video mode 
unsigned char r09[8] = {0,0,0,0,1,0,0,1}, d09[8] = {0,0,0,0,0,1,1,1}; //09h = Optctrl = 07h 
 
//Video and Scan 
unsigned char r10[8] = {0,0,0,1,0,0,0,0}, d10[8] = {0,0,0,0,0,0,0,0}; //10h = Vidconfig = 01h 
unsigned char r11[8] = {0,0,0,1,0,0,0,1}, d11[8] = {0,0,0,0,0,0,0,0}; //11h = Vscan = 00h 
unsigned char r13[8] = {0,0,0,1,0,0,1,1}, d13[8] = {0,0,0,0,0,1,0,0}; //13h = Hscan = 04h 
unsigned char r15[8] = {0,0,0,1,0,1,0,1}, d15[8] = {0,0,0,0,0,0,0,0}; //15h = Itimeconfig = 00h 
 
//Windowing Function 
unsigned char r19[8] = {0,0,0,1,1,0,0,1}, d19[8] = {0,0,0,0,0,0,0,1}; //19h = Wrows = 01h 
unsigned char r1A[8] = {0,0,0,1,1,0,1,0}, d1A[8] = {0,0,1,1,1,1,0,0}; //1Ah = Wrowe = 3Ch 
unsigned char r1B[8] = {0,0,0,1,1,0,1,1}, d1B[8] = {0,0,0,0,0,1,1,1}; //1Bh = Wrowlsb = 07h 
unsigned char r1C[8] = {0,0,0,1,1,1,0,0}, d1C[8] = {0,0,0,0,0,0,0,1}; //1Ch = Wcols = 01h 
unsigned char r1D[8] = {0,0,0,1,1,1,0,1}, d1D[8] = {0,1,0,1,0,0,0,0}; //1Dh = Wcole = 50h 
unsigned char r1E[8] = {0,0,0,1,1,1,1,0}, d1E[8] = {0,0,0,0,0,1,1,1}; //1Eh = Wcollsb = 07h 
 
//Frame Rate 
unsigned char r20[8] = {0,0,1,0,0,0,0,0}, d20[8] = {0,0,0,0,0,0,0,0}; //20h = Fdelayh = 00h 
unsigned char r21[8] = {0,0,1,0,0,0,0,1}, d21[8] = {0,0,0,0,0,0,0,0}; //21h = Fdelayl = 00h 
unsigned char r22[8] = {0,0,1,0,0,0,1,0}, d22[8] = {0,0,0,0,0,0,0,0}; //22h = Rdelayh = 00h 
unsigned char r23[8] = {0,0,1,0,0,0,1,1}, d23[8] = {0,0,0,0,1,0,0,0}; //23h = Rdelayl = 08h 
unsigned char r24[8] = {0,0,1,0,0,1,0,0}, d24[8] = {0,0,0,0,0,0,0,0}; //24h = Itimeh = 00h 
unsigned char r25[8] = {0,0,1,0,0,1,0,1}, d25[8] = {0,0,0,0,0,0,0,0}; //25h = Itimel = 00h 
 
//Black Level 
unsigned char r40[8] = {0,1,0,0,0,0,0,0}, d40[8] = {0,0,0,0,1,0,0,0}; //40h = Blklevconfig = 08h 
unsigned char r41[8] = {0,1,0,0,0,0,0,1}, d41[8] = {0,0,0,0,1,0,1,0}; //41h = Blktarget = 10h 
 
//Programmable Gain Channel 
unsigned char r42[8] = {0,1,0,0,0,0,1,0}, d42[8] = {0,0,0,0,1,1,1,1}; //42h = PGA = 0Fh 
 
//Offset 
unsigned char r46[8] = {0,1,0,0,0,1,1,0}, d46[8] = {0,0,0,0,0,0,0,0}; //46h = Offset = 00h 
unsigned char r4A[8] = {0,1,0,0,1,0,1,0}, d4A[8] = {0,0,0,0,0,0,0,0}; //4Ah = Reserved register, 
set to 0h 
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//Adjustment 
unsigned char r50[8] = {0,1,0,1,0,0,0,0}, d50[8] = {0,0,0,0,1,0,0,0}; //50h = Vsyncadust = 08h 
unsigned char r51[8] = {0,1,0,1,0,0,0,1}, d51[8] = {0,0,0,0,1,0,0,0}; //51h = Hsynadjust = 08h 
unsigned char r52[8] = {0,1,0,1,0,0,1,0}, d52[8] = {0,0,0,0,0,0,0,0}; //52h = Dvbusconfig0 = 00h 
unsigned char r53[8] = {0,1,0,1,0,0,1,1}, d53[8] = {0,0,0,0,1,1,1,1}; //53h = Dvbusconfig1 = 0Fh 
unsigned char r54[8] = {0,1,0,1,0,1,0,0}, d54[8] = {1,0,1,0,0,0,0,0}; //54h = Dvbusconfig2 = 
A0h 
unsigned char r55[8] = {0,1,0,1,0,1,0,1}, d55[8] = {0,0,0,0,0,0,0,0}; //55h = Dvbusconfig3 = 00h 
 
//Factory Test Registers 
unsigned char r80[8] = {1,0,0,0,0,0,0,0}, d80[8] = {0,0,0,0,0,0,0,0}; //80h = intreg1 = 00h 
unsigned char r83[8] = {1,0,0,0,0,0,1,1}, d83[8] = {0,1,0,1,1,1,1,0}; //83h = Pixeloffset = 5Eh 
unsigned char r85[8] = {1,0,0,0,0,1,0,1}, d85[8] = {1,0,0,0,0,0,1,0}; //85h = Pwctrl = 82h 
unsigned char r88[8] = {1,0,0,0,1,0,0,0}, d88[8] = {0,0,0,0,0,0,0,1}; //88h = Intreg2 = 01h 
 
//alternate values 
unsigned char r85a[8] = {1,0,0,0,0,1,0,1}, d85a[8] = {1,0,0,0,0,1,1,0}; //85h = Pwctrl = 86h 
unsigned char r88a[8] = {1,0,0,0,1,0,0,0}, d88a[8] = {0,0,0,0,0,0,0,0}; //88h = Intreg2 = 00h 
 
/* Initialization Sequence 
REGISTERS MUST BE INITIALIZED IN THIS ORDER!! 
ALL OTHER REGISTERS CAN BE PROGRAMMED AFTER!!! 
*/ 
 
OutputRegister(deviceid, r09, d09); 
OutputRegister(deviceid, r05, d05); 
OutputRegister(deviceid, r53, d53); 
OutputRegister(deviceid, r19, d19); 
OutputRegister(deviceid, r1A, d1A); 
OutputRegister(deviceid, r1B, d1B); 
OutputRegister(deviceid, r1C, d1C); 
OutputRegister(deviceid, r1D, d1D); 
OutputRegister(deviceid, r1E, d1E); 
OutputRegister(deviceid, r53, d53); 
OutputRegister(deviceid, r88, d88); 
OutputRegister(deviceid, r85, d85); 
Delay(1000); 
OutputRegister(deviceid, r85a, d85a); 
OutputRegister(deviceid, r88a, d88a); 
OutputRegister(deviceid, r4A, d4A); 
OutputRegister(deviceid, r40, d40); 
 
//ALL OTHER REGISTERS CAN BE PROGRAMMED NOW 
 
OutputRegister(deviceid, r20, d20); 
OutputRegister(deviceid, r21, d21); 
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OutputRegister(deviceid, r22, d22); 
OutputRegister(deviceid, r23, d23); 
OutputRegister(deviceid, r24, d24); 
OutputRegister(deviceid, r25, d25); 
OutputRegister(deviceid, r11, d11); 
OutputRegister(deviceid, r41, d41); 
OutputRegister(deviceid, r42, d42); 
OutputRegister(deviceid, r46, d46); 
OutputRegister(deviceid, r50, d50); 
OutputRegister(deviceid, r51, d51); 
OutputRegister(deviceid, r52, d52); 
OutputRegister(deviceid, r54, d54); 
OutputRegister(deviceid, r55, d55); 
OutputRegister(deviceid, r83, d83); 
 
*registers = 0x00000000; 
 
/* 
OutputRegister(deviceid, r06, d06); 
OutputRegister(deviceid, r07, d07); 
OutputRegister(deviceid, r10, d10); 
OutputRegister(deviceid, r13, d13); 
OutputRegister(deviceid, r15, d15); 
OutputRegister(deviceid, r40, d40); 
OutputRegister(deviceid, r53, d53); 
*/ 
 
} 
 
void Delay(int max) //Causes a delay for "max" cycles 
   { 
 int del = 0; 
 int u=0; 
 while (del != max) 
 { 
 while (u != 1000) 
 { 
 u++; 
 } 
 del++; 
 } 
 } 
void StartCondition() //Sends a "Start" condition to the sensor 
 { 
 *registers =0x18000000; 
 Delay(1); 
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 *registers =0x10000000; 
 Delay(1); 
 *registers =0x00000000;  
 Delay(1); 
 } 
void StopCondition() //Sends a "Stop" condition to the sensor 
 { 
 *registers =0x00000000; 
 Delay(1); 
 *registers =0x10000000; 
 Delay(1); 
 *registers =0x18000000; 
 Delay(1); 
 } 
void Acknowledge() //Sends a "Acknowledge" sequence to the sensor 
 { 
 *registers =0x00000000; 
 Delay(1); 
 *registers =0x10000000; 
 Delay(1); 
 *registers =0x00000000; 
 Delay(1); 
 } 
void outputconv(unsigned char dat) //Outputs the appropriate sequence for each bit read in 
 { 
 if (dat == 0) 
  { 
  *registers =0x00000000; 
  Delay(1000); 
  *registers =0x10000000; 
  Delay(1000); 
  *registers =0x00000000; 
  Delay(1000); 
  } 
 else 
  { 
  *registers =0x08000000; 
  Delay(1000); 
  *registers =0x18000000; 
  Delay(1000); 
  *registers =0x08000000; 
  Delay(1000); 
  } 
 } 
void OutputRegister(unsigned char deviceadd[8], unsigned char regadd[8], unsigned char 
regdata[8]) //Outputs the corrrect data stream to program a register (values are passed in) 
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 { 
 unsigned char temp; 
 unsigned char temp2; 
 StartCondition(); 
 temp = 0; 
 while (temp != 8) 
  { 
  temp2 = deviceadd[temp]; 
  outputconv(temp2); 
  temp++; 
  } 
 Acknowledge(); 
 temp = 0; 
 while (temp != 8) 
  { 
  temp2 = regadd[temp]; 
  outputconv(temp2); 
  temp++; 
  } 
 Acknowledge(); 
 temp = 0; 
 while (temp != 8) 
  { 
  temp2 = regdata[temp]; 
  outputconv(temp2); 
  temp++; 
  } 
 Acknowledge(); 
 StopCondition(); 
 } 
 
  
Header File for the Sensor Register File: 
 
/* Register Locations  
*  Referances: 
*  TI SPRU 190D Peripherals Referance Guide 
*  TI SPRU 401D Chip Support Library API User's Guide 
*/ 
#ifndef ControlReg_H 
#define ControlReg_H 
 
//EDMA Control Register 
// Define Channel Interupt and Sevicing Control Regesters 
#define PQSR_ADDR    0x01A0FFE0 // Priority queue status reg  
#define CIPR_ADDR    0x01A0FFE4 // Channel interrupt pending reg 
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#define CIER_ADDR      0x01A0FFE8 // Channel interrupt enable reg  
#define CCER_ADDR    0x01A0FFEC // Channel chain enable reg  
#define ER_ADDR     0x01A0FFF0 // Event reg  
#define EER_ADDR    0x01A0FFF4 // Event enable reg  
#define ECR_ADDR    0x01A0FFF8 // Event clear reg  
#define ESR_ADDR        0x01A0FFFC // Event set reg  
 
// Define QDMA channel  Register addresses 
#define QDMA_OPTIONS_ADDR       0x02000000 // QDMA, options  
#define QDMA_SRC_ADDR_ADDR            0x02000004 // QDMA, SRC  
#define QDMA_CNT_ADDR        0x02000008 // QDMA, array/frame 
count| QDMA, elment count  
#define QDMA_DST_ADDR_ADDR    0x0200000C // QDMA, DST  
#define QDMA_IDX_ADDR      0x02000010 // QDMA, array/frame 
index| QDMA, elment index   
 
// Define QDMA channel Psuedo Register addresses 
#define QDMA_S_OPTIONS_ADDR       0x02000020 // QDMA, options */ 
#define QDMA_S_SRC_ADDR_ADDR            0x02000024 // QDMA, SRC */ 
#define QDMA_S_CNT_ADDR        0x02000028 // QDMA, array/frame 
count| QDMA, elment count */ 
#define QDMA_S_DST_ADDR_ADDR   0x0200002C // QDMA, DST */ 
#define QDMA_S_IDX_ADDR      0x02000030 // QDMA, 
array/frame index| QDMA, elment index */  
 
// Define EDMA channel addresses (15 channnels w/ 6 registers each) 
#define EDMA0_OPTIONS_ADDR       0x01A00000 /* Event 0, options */ 
#define EDMA0_SRC_ADDR_ADDR              0x01A00004 /* Event 0, SRC */ 
#define EDMA0_ARRYFRAM_ELCNT_ADDR       0x01A00008 /* Event 0, array/frame 
count| Event 0, elment count */ 
#define EDMA0_DST_ADDR_ADDR    0x01A0000C /* Event 0, 
DST */ 
#define EDMA0_ARRYFRAM_ELIDX_ADDR      0x01A00010 /* Event 0, array/frame 
index| Event 0, elment index */  
#define EDMA0_ELCNTRELD_LINKADDR_ADDR 0x01A00014 /* Event 0, element 
count reload| Event 0, link address */ 
 
#define EDMA1_OPTIONS_ADDR       0x01A00018 /* Event 1, options */ 
#define EDMA1_SRC_ADDR_ADDR              0x01A0001C /* Event 1, SRC */ 
#define EDMA1_ARRYFRAM_ELCNT_ADDR       0x01A00020 /* Event 1, array/frame 
count| Event 1, elment count */ 
#define EDMA1_DST_ADDR_ADDR    0x01A00024 /* Event 1, DST 
*/ 
#define EDMA1_ARRYFRAM_ELIDX_ADDR      0x01A00028 /* Event 1, array/frame 
index| Event 1, elment index */  
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#define EDMA1_ELCNTRELD_LINKADDR_ADDR 0x01A0002C /* Event 1, element 
count reload| Event 1, link address */ 
 
#define EDMA2_OPTIONS_ADDR       0x01A00030 /* Event 2, options */ 
#define EDMA2_SRC_ADDR_ADDR       0x01A00034 /* Event 2, SRC */ 
#define EDMA2_ARRYFRAM_ELCNT_ADDR       0x01A00038 /* Event 2, array/frame 
count| Event 2, elment count */ 
#define EDMA2_DST_ADDR_ADDR    0x01A0003C /* Event 2, 
DST */ 
#define EDMA2_ARRYFRAM_ELIDX_ADDR      0x01A00040 /* Event 2, array/frame 
index| Event 2, elment index */  
#define EDMA2_ELCNTRELD_LINKADDR_ADDR 0x01A00044 /* Event 2, element 
count reload| Event 2, link address */ 
 
#define EDMA3_OPTIONS_ADDR       0x01A00048 /* Event 3, options */ 
#define EDMA3_SRC_ADDR_ADDR              0x01A0004C /* Event 3, SRC */ 
#define EDMA3_ARRYFRAM_ELCNT_ADDR       0x01A00050 /* Event 3, array/frame 
count| Event 3, elment count */ 
#define EDMA3_DST_ADDR_ADDR    0x01A00054 /* Event 3, DST 
*/ 
#define EDMA3_ARRYFRAM_ELIDX_ADDR      0x01A00058 /* Event 3, array/frame 
index| Event 3, elment index */  
#define EDMA3_ELCNTRELD_LINKADDR_ADDR 0x01A0005C /* Event 3, element 
count reload| Event 3, link address */ 
 
#define EDMA4_OPTIONS_ADDR       0x01A00060 /* Event 4, options */ 
#define EDMA4_SRC_ADDR_ADDR              0x01A00064 /* Event 4, SRC */ 
#define EDMA4_ARRYFRAM_ELCNT_ADDR       0x01A00068 /* Event 4, array/frame 
count| Event 4, elment count */ 
#define EDMA4_DST_ADDR_ADDR    0x01A0006C /* Event 4, 
DST */ 
#define EDMA4_ARRYFRAM_ELIDX_ADDR      0x01A00070 /* Event 4, array/frame 
index| Event 4, elment index */  
#define EDMA4_ELCNTRELD_LINKADDR_ADDR 0x01A00074 /* Event 4, element 
count reload| Event 4, link address */ 
 
#define EDMA5_OPTIONS_ADDR       0x01A00078 /* Event 5, options */ 
#define EDMA5_SRC_ADDR_ADDR              0x01A0007C /* Event 5, SRC */ 
#define EDMA5_ARRYFRAM_ELCNT_ADDR       0x01A00080 /* Event 5, array/frame 
count| Event 5, elment count */ 
#define EDMA5_DST_ADDR_ADDR    0x01A00084 /* Event 5, DST 
*/ 
#define EDMA5_ARRYFRAM_ELIDX_ADDR      0x01A00088 /* Event 5, array/frame 
index| Event 5, elment index */  
#define EDMA5_ELCNTRELD_LINKADDR_ADDR 0x01A0008C /* Event 5, element 
count reload| Event 5, link address */ 
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#define EDMA6_OPTIONS_ADDR       0x01A00090 /* Event 6, options */ 
#define EDMA6_SRC_ADDR_ADDR              0x01A00094 /* Event 6, SRC */ 
#define EDMA6_ARRYFRAM_ELCNT_ADDR       0x01A00098 /* Event 6, array/frame 
count| Event 6, elment count */ 
#define EDMA6_DST_ADDR_ADDR    0x01A0009C /* Event 6, 
DST */ 
#define EDMA6_ARRYFRAM_ELIDX_ADDR      0x01A000A0 /* Event 6, array/frame 
index| Event 6, elment index */  
#define EDMA6_ELCNTRELD_LINKADDR_ADDR 0x01A000A4 /* Event 6, element 
count reload| Event 6, link address */ 
 
#define EDMA7_OPTIONS_ADDR       0x01A000A8 /* Event 7, options */ 
#define EDMA7_SRC_ADDR_ADDR              0x01A000AC /* Event 7, SRC */ 
#define EDMA7_ARRYFRAM_ELCNT_ADDR       0x01A000B0 /* Event 7, array/frame 
count| Event 7, elment count */ 
#define EDMA7_DST_ADDR_ADDR    0x01A000B4 /* Event 7, 
DST */ 
#define EDMA7_ARRYFRAM_ELIDX_ADDR      0x01A000B8 /* Event 7, array/frame 
index| Event 7, elment index */  
#define EDMA7_ELCNTRELD_LINKADDR_ADDR 0x01A000BC /* Event 7, element 
count reload| Event 7, link address */ 
 
#define EDMA8_OPTIONS_ADDR       0x01A000C0 /* Event 8, options */ 
#define EDMA8_SRC_ADDR_ADDR              0x01A000C4 /* Event 8, SRC */ 
#define EDMA8_ARRYFRAM_ELCNT_ADDR       0x01A000C8 /* Event 8, array/frame 
count| Event 8, elment count */ 
#define EDMA8_DST_ADDR_ADDR    0x01A000CC /* Event 8, 
DST */ 
#define EDMA8_ARRYFRAM_ELIDX_ADDR      0x01A000D0 /* Event 8, array/frame 
index| Event 8, elment index */  
#define EDMA8_ELCNTRELD_LINKADDR_ADDR 0x01A000D4 /* Event 8, element 
count reload| Event 8, link address */ 
 
#define EDMA9_OPTIONS_ADDR       0x01A000D8 /* Event 9, options */ 
#define EDMA9_SRC_ADDR_ADDR              0x01A000DC /* Event 9, SRC */ 
#define EDMA9_ARRYFRAM_ELCNT_ADDR       0x01A000E0 /* Event 9, array/frame 
count| Event 9, elment count */ 
#define EDMA9_DST_ADDR_ADDR    0x01A000E4 /* Event 9, 
DST */ 
#define EDMA9_ARRYFRAM_ELIDX_ADDR      0x01A000E8 /* Event 9, array/frame 
index| Event 9, elment index */  
#define EDMA9_ELCNTRELD_LINKADDR_ADDR 0x01A000EC /* Event 9, element 
count reload| Event 9, link address */ 
 
#define EDMA10_OPTIONS_ADDR       0x01A000F0 /* Event 10, options */ 
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#define EDMA10_SRC_ADDR_ADDR             0x01A000F4 /* Event 10, SRC */ 
#define EDMA10_ARRYFRAM_ELCNT_ADDR      0x01A000F8 /* Event 10, array/frame 
count| Event 10, elment count */ 
#define EDMA10_DST_ADDR_ADDR   0x01A000FC /* Event 10, DST */ 
#define EDMA10_ARRYFRAM_ELIDX_ADDR      0x01A00100 /* Event 10, array/frame 
index| Event 10, elment index */  
#define EDMA10_ELCNTRELD_LINKADDR_ADDR 0x01A00104 /* Event 10, element 
count reload| Event 10, link address */ 
 
#define EDMA11_OPTIONS_ADDR       0x01A00108 /* Event 11, options */ 
#define EDMA11_SRC_ADDR_ADDR             0x01A0010C /* Event 11, SRC */ 
#define EDMA11_ARRYFRAM_ELCNT_ADDR      0x01A00110 /* Event 11, array/frame 
count| Event 11, elment count */ 
#define EDMA11_DST_ADDR_ADDR   0x01A00114 /* Event 11, DST */ 
#define EDMA11_ARRYFRAM_ELIDX_ADDR      0x01A00118 /* Event 11, array/frame 
index| Event 11, elment index */  
#define EDMA11_ELCNTRELD_LINKADDR_ADDR 0x01A0011C /* Event 11, element 
count reload| Event 11, link address */ 
 
#define EDMA12_OPTIONS_ADDR       0x01A00120 /* Event 12, options */ 
#define EDMA12_SRC_ADDR_ADDR             0x01A00124 /* Event 12, SRC */ 
#define EDMA12_ARRYFRAM_ELCNT_ADDR      0x01A00128 /* Event 12, array/frame 
count| Event 12, elment count */ 
#define EDMA12_DST_ADDR_ADDR   0x01A0012C /* Event 12, DST */ 
#define EDMA12_ARRYFRAM_ELIDX_ADDR      0x01A00130 /* Event 12, array/frame 
index| Event 12, elment index */  
#define EDMA12_ELCNTRELD_LINKADDR_ADDR 0x01A00134 /* Event 12, element 
count reload| Event 12, link address */ 
 
#define EDMA13_OPTIONS_ADDR       0x01A00138 /* Event 13, options */ 
#define EDMA13_SRC_ADDR_ADDR             0x01A0013C /* Event 13, SRC */ 
#define EDMA13_ARRYFRAM_ELCNT_ADDR      0x01A00140 /* Event 13, array/frame 
count| Event 13, elment count */ 
#define EDMA13_DST_ADDR_ADDR   0x01A00144 /* Event 13, DST */ 
#define EDMA13_ARRYFRAM_ELIDX_ADDR      0x01A00148 /* Event 13, array/frame 
index| Event 13, elment index */  
#define EDMA13_ELCNTRELD_LINKADDR_ADDR 0x01A0014C /* Event 13, element 
count reload| Event 13, link address */ 
 
#define EDMA14_OPTIONS_ADDR       0x01A00150 /* Event 14, options */ 
#define EDMA14_SRC_ADDR_ADDR             0x01A00154 /* Event 14, SRC */ 
#define EDMA14_ARRYFRAM_ELCNT_ADDR      0x01A00158 /* Event 14, array/frame 
count| Event 14, elment count */ 
#define EDMA14_DST_ADDR_ADDR   0x01A0015C /* Event 14, DST */ 
#define EDMA14_ARRYFRAM_ELIDX_ADDR      0x01A00160 /* Event 14, array/frame 
index| Event 14, elment index */  
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#define EDMA14_ELCNTRELD_LINKADDR_ADDR 0x01A00164 /* Event 14, element 
count reload| Event 14, link address */ 
 
#define EDMA15_OPTIONS_ADDR       0x01A00168 /* Event 15, options */ 
#define EDMA15_SRC_ADDR_ADDR             0x01A0016C /* Event 15, SRC */ 
#define EDMA15_ARRYFRAM_ELCNT_ADDR      0x01A00170 /* Event 15, array/frame 
count| Event 15, elment count */ 
#define EDMA15_DST_ADDR_ADDR   0x01A00174 /* Event 15, DST */ 
#define EDMA15_ARRYFRAM_ELIDX_ADDR      0x01A00178 /* Event 15, array/frame 
index| Event 15, elment index */  
#define EDMA15_ELCNTRELD_LINKADDR_ADDR 0x01A0017C /* Event 15, element 
count reload| Event 15, link address */ 
 
#define EDMA_NULL_PTR1     0x01A007E0 /* Event 15, options */ 
#define EDMA_NULL_PTR2      0x01A007E4 /* Event 15, SRC */ 
#define EDMA_NULL_PTR3      0x01A007E8 /* Event 15, array/frame count| Event 15, elment 
count */ 
#define EDMA_NULL_PTR4  0x01A007EC /* Event 15, DST */ 
#define EDMA_NULL_PTR5      0x01A007F0 /* Event 15, array/frame index| Event 15, 
elment index */  
#define EDMA_NULL_PTR6   0x01A007F4 /* Event 15, element count reload| 
Event 15, link address */ 
 
/***********************************************************/ 
//EMIF Control Register 
#define GBLCTL_ADDR    0x01800000 // Global Control Reg 
#define CE1CTL_ADDR    0x01800004 // EMIF CE1 Space Control 
Reg 
#define CE0CTL_ADDR    0x01800008 // EMIF CE0 Space Control 
Reg 
#define CE2CTL_ADDR    0x01800010 // EMIF CE2 Space Control 
Reg 
#define CE3CTL_ADDR    0x01800014 // EMIF CE3 Space Control 
Reg 
#define SDCTL_ADDR    0x01800018 // EMIF SDRAM Control 
Reg 
#define SDTIM_ADDR    0x0180001C // EMIF SDRAM Refresh 
Control Reg 
 
 
/***********************************************************/ 
// Interupt Control Register */ 
#define MUXH_ADDR    0x019C0000 // Interupt Multyplexer High 
#define MUXL_ADDR    0x019C0004 // Interupt Multyplexer Low 
#define EXTPOL_ADDR    0x019C0008 // External Interupt Polarity 
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/***********************************************************/ 
// Multi-Channel Buffered Serial Port Conrol Register  
// Channel 0 
// RBR   Accessed via CPU/EDMA   Recieve Buffer Reg 
// RSR   Accessed via CPU/EDMA   Resiece shift Rg 
// XSR   Accessed via CPU/EDMA   Transmit Shift Reg 
#define CH_0_DRR_ADDR   0x018C0000 // Channel 0 Data Recieve Reg 
#define CH_0_DXR_ADDR   0x018C0004 // Channel 0 Data Transmit Reg 
#define CH_0_SPCR_ADDR   0x018C0008 // Channel 0 Serial Port Control Reg 
#define CH_0_RCR_ADDR   0x018C000C // Channel 0 Recieve Control Reg 
#define CH_0_XCR_ADDR   0x018C0010 // Channel 0 Transmit Control Reg 
#define CH_0_SRGR_ADDR   0x018C0014 // Channel 0 Sample Rate 
Generator Reg 
#define CH_0_MCR_ADDR   0x018C0018 // Channel 0 Miltichannel Control 
Reg 
#define CH_0_RCER_ADDR   0x018C001C // Channel 0 Recieve Channel 
Enable Reg 
#define CH_0_XCER_ADDR   0x018C0020 // Channel 0 Transmit 
Channel Enable Reg 
#define CH_0_PCR_ADDR   0x018C0024 // Channel 0 Pin Control 
 
// Channel 1 
// Accessed via CPU/EDMA   RBR Recieve Buffer Reg 
// Accessed via CPU/EDMA   RSR Resiece shift Rg 
// Accessed via CPU/EDMA   XSR Transmit Shift Reg 
#define CH_1_DRR_ADDR   0x019C0000 // Channel 1 Data Recieve Reg 
#define CH_1_DXR_ADDR   0x019C0004 // Channel 1 Data Transmit Reg 
#define CH_1_SPCR_ADDR   0x019C0008 // Channel 1 Serial Port Control Reg 
#define CH_1_RCR_ADDR   0x019C000C // Channel 1 Recieve Control Reg 
#define CH_1_XCR_ADDR   0x019C0010 // Channel 1 Transmit Control Reg 
#define CH_1_SRGR_ADDR   0x019C0014 // Channel 1 Sample Rate 
Generator Reg 
#define CH_1_MCR_ADDR   0x019C0018 // Channel 1 Miltichannel Control 
Reg 
#define CH_1_RCER_ADDR   0x019C001C // Channel 1 Recieve Channel 
Enable Reg 
#define CH_1_XCER_ADDR   0x019C0020 // Channel 1 Transmit 
Channel Enable Reg 
#define CH_1_PCR_ADDR   0x019C0024 // Channel 1 Pin Control 
 
/***********************************************************/ 
// Timer Contol Register 
// Timer0 
#define TIMER0_CTL_ADDR   0x01940000 // Timer0 Control Reg 
#define TIMER0_PRD_ADDR   0x01940004 // Timer0 Period Reg 
#define TIMER0_CNT_ADDR   0x01940008 // Timer0 Counter Reg 
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// Timer1 
#define TIMER1_CTL_ADDR   0x01980000 // Timer1 Control Reg 
#define TIMER1_PRD_ADDR   0x01980004 // Timer1 Period Reg 
#define TIMER1_CNT_ADDR   0x01980008 // Timer1 Counter Reg 
 
#endif 
 
                                                 
 


