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Abstract

The small area analysis of survey data has received a lot of attention. Borrow-
ing information from other areas can provide reliable and accurate estimates when
the sample size of an area is small. In many applications, it is necessary to take
into account possible order restrictions of the unknown parameters of interest, and
it is reasonable to make such an assumption. With the order restriction assumption,
pooling data can provide more accurate estimates, where parameters can increase
up to a point (mode) and decrease thereafter. In this dissertation, we assume uni-
modal order restrictions on parameters of interest. First, we describe Bayesian hier-
archical multinomial-Dirichlet models with order restrictions for count data from
small areas. Second, we incorporate uncertainty into the model with unimodal
order restrictions as an extension. Third, we describe the models with exchange-
ability—nonexchangeability (EXNEX) priors, which allow borrowing information
across similar areas while avoiding too optimistic borrowing for extreme areas.

First, due to the natural characteristics of the data, making unimodal order re-
striction assumptions to parameter spaces is relevant. We present the models with
order restrictions on different parameters of interest to explore how borrowing in-
formation under different order restriction assumptions works differently. In the
simulation, we compare these models with order restrictions under different sce-
narios, where we assume three levels of heterogeneity between areas. In a small
heterogeneity scenario, the model with stronger order restrictions on parameters

borrow more information among areas and has smaller relative bias, posterior
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standard deviation, and higher credible interval coverage than other models. We
develop methods to generate posterior samples for the models with different order
restrictions assumptions.

Second, in our application to body mass index (BMI) data from the NHANES
III, we assume people may have a high chance to have overweight BMI level. We
assume the same unimodal order restriction across all counties, where the mode is
at the third position. But we notice the same unimodal order restriction for all areas
may not hold. To have a more robust model, we incorporate uncertainty into the
unimodal order restriction. We let the modal position for each area be a random
variable and have mixture probabilities for the modal position, which means each
area can have different order restrictions. We provide an approximation of log-
pseudo marginal likelihood as a model diagnostic procedure. In the application to
the BMI data and simulated data, we compare the performance of different models
with or without order restrictions. We show that the performance of the model,
incorporating uncertainty about order restrictions, is consistent and it can provide
relatively accurate estimates of parameters in the application. We demonstrate how
the model with order restrictions can borrow information among areas differently
from the model without order restriction.

Third, when population means are clustered into two or more subgroups, shrink-
ing all the means towards a common weighted average is inappropriate. A useful
substitute for exchangeability in the above situation is partial exchangeability. We
present exchangeability—nonexchangeability (EXNEX) models, which allow bor-
rowing information across similar areas while avoiding too optimistic borrowing
for extreme areas. We present a griddy Gibbs sampler to draw samples from the

joint posterior distribution of the binomial-Beta EXNEX model. In the simula-
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tion, we illustrate the robustness of EXNEX models, which have small relative
bias under different scenarios. Then we extend the approach to a multinomial-
Dirichlet EXNEX model with order restrictions. In the application to BMI data,
we compare the multinomial-Dirichlet EXNEX model with order restrictions and
the multinomial-Dirichlet model with order restrictions. We show that the EXNEX
model with order restrictions can borrow information across similar areas while
avoiding borrowing from very different areas. So the EXNEX model with order
restrictions is preferred in some cases.

Overall, borrowing information among areas is a key idea in small area esti-
mation. The hierarchical structure of the models with order restrictions is easy to
apply to small area estimation problems. The main issue we focus on here is to bor-
row information with the unimodal order restrictions on cell probabilities, which
can borrow more information among areas than the model without order restric-
tions. As extensions of our approach, incorporating uncertainty about the order
restrictions may solve the problem that the same unimodal order restrictions across
areas may not hold. Partial exchangeability of parameters are recommended to
allow borrowing across similar areas and avoid optimistic borrowing for very dif-
ferent areas. Our theoretical and methodological work can help provide accurate

and efficient small area statistics for many national surveys.
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Chapter 1

Introduction

Small area estimation is a statistical technique involving the estimation of pa-
rameters for small sub-populations that is included in a larger survey. Small area
estimation plays a crucial role in sample surveys, which can borrow information
across areas. In the context of small area estimation, hierarchical Bayes approaches
are widely used. One important example is that the multinomial-Dirichlet model
works well for count data. In many cases, such as the age compositions of the
population of Atlantic cod, it is necessary to take into account the order restric-
tions of the unknown parameters of interest. Several studies have been developed
to incorporate different order restriction assumptions into different models. The

hierarchical models with order restrictions can improve the accuracy of estimates.

1.1 Overview of Small Area Estimation

Collecting and analyzing information play important roles in modern society.

Data are regularly collected to satisfy the need for information about specified



sets of elements, called finite population. One of the most important methods is a
sample survey, which is recognized as cost-effective and scientifically valid. As an
example, it may be desired to know income and poverty in US for distributing funds
and managing federal programs. In this situation, samples from school districts,
counties and states would be obtained via national surveys. Then estimates of
income and poverty would be calculated. A properly conducted sample survey
will support inference from the sample that is valid about the population. It costs
less than a complete enumeration, and it is usually less time consuming and can
be more accurate with regard to the avoidance of non-sampling errors when, for
example, the possibility of response error is a major concern.

Sample surveys provide estimates not only for the entire population of interest
but also for a variety of subpopulation, which may be defined by geographic ar-
eas or socio-demographic groups (Rao and Molina 2015). Example of geographic
areas include a state, county, school district, metropolitan area, and health service
area. An area or subdomain is regarded as “small” if the area or subdomain con-
tains too few ultimate population units to provide a sample of sufficient size and
support direct estimates of adequate precision from the sample survey. For exam-
ple, one aspect of a national survey is to provide proper estimates of poverty in
states. The sample sizes of counties may not be large enough to support direct esti-
mates for subgroups of the state populations, such as persons in each county. Due
to cost considerations, it is often not possible to have a large enough overall sam-
ple size to support those estimates for all domains. It is also impossible to design
another survey only for those small areas.

The use of survey data in developing reliable small area estimation (SAE), pos-

sibly in conjunction with the census and administrative data, has received lots of



attention. Demographers have long been using a variety of indirect methods for
SAE of population and other characteristics of interest. In recent years, legisla-
tive acts by national governments have increasingly created a need for small area
statistics and business demand for small area statistics from private sector has also
accelerated the trend. Rao and Molina (2015) provided a very-detailed review on
models and methods of SAE, but this is out of date now because the field is growing

rapidly.

1.1.1 Model Based Approaches

Model based approaches have several advantages. First, model diagnostics can
be used to find proper models to satisfy different needs. Second, area-specific mea-
sures of precision can be associated with each small area estimate, unlike average
over small areas. Third, linear mixed models and nonlinear models can be applied
to complex data structures. Random effects models can achieve accurate small area
inferences.

We can classify model based approaches into two broad types. (1) Area level
models that relate the small area means to area-specific auxiliary variables; and (2)
Unit level models that relate the unit values of the study variable to unit-specific
auxiliary variables.

There are three essential model based approaches for small area estimation,
which are empirical best linear unbiased prediction (EBLUP), parametric empirical
Bayes (EB), and parametric hierarchical Bayes (HB). In the hierarchical Bayes

(HB) approach, a subjective prior distribution f(\) on the model parameters \ is



specified and the posterior distribution f(u|y) can be obtained from

Fuly) = / £ Al = / Faly, N FAly)dr.

Note that f(p|y, \) is for EB estimators (Rao and Molina 2015).
As a special case in the hierarchical Bayes approach, Bayesian hierarchical
binomial-Beta models are effectively designed for binary data. Assume that given

pi, the number of success, Y;, . .., Y, are independent with
Yi|p; ~ Binomial(n;, p;),fori =1,2,... k,

D1y Dp, T ~ Beta(ut, (1 — p)7),

where p(p;|p, ) = mpfpl(l )

A vague non-informative prior can be used,

1
m(p, ) = m,whereo <p<l,7>0.

To perform the hierarchical Bayes analysis, Gibbs sampler can be used.

As an extension of the binomial-Beta model, the hierarchical Bayesian multi-
nomial Dirichlet model is appropriate for count data. Nandram (1998) considered
the problem of pooling data from several multinomial populations using a hierar-
chical Bayesian model. He specified a hierarchical multinomial-Dirichlet model
for multinomial data, which allows for the uncertainty in the estimation of all the
hyper-parameters. Letting n;; be the cell counts, p;; the corresponding cell prob-

abilities, i = 1,...,0, j = 1,..., K, ni, = Y1 nij. p; = (pits .- pix)'-



ZJK:1 pij = 1, given p;, n; follow a multinomial distribution,
n;|p; ~ Multinomial(n; , p;).

At the second stage, given hyper-parameters g and 7, the p; follow a Dirichlet
distribution,

;| T ind Dirichlet(p7),

where pt = (p1,..., 1K), 0 < p; <1,7>0,i=1,...,1.

At the third stage, Nandram (1998) assumed that

p ~ Dirichlet(py7),

7 ~ Gamma(ng, vp),

where g, 70, 10, Vo are specified. Or at the third stage, it can be 7(u, 7) = %
as a vague non-informative prior of y and 7 for the multinomial-Dirichlet model
without any order restriction (Nandram, Kim, and Zhou 2019).

To study the association between bone mineral density and body mass index
(BMI) from several U.S. counties, Nandram, Kim, and Zhou (2019) provided a
clear discussion of the general hierarchical multinomial-Dirichlet model and their
methodology for small area estimation. In their application to the third National
Health and Nutrition Examination Survey (NHANES III), 31 counties have been
used. Pooling the data using small area estimation techniques is necessary since
counts in some cells are very small. Specifically, let n, = > %_; > 7p_ nsjk be

the cell counts, p, = (ps1,ps2,---,Psr) and q, = (¢s1,4s2, - - -, qsc) are the

marginal probabilities of bone mineral density and BMI in county s, vec(psql)



be the corresponding cell probabilities for county s, s = 1,2,...,S5, row j =
1,2,...,r,column £ = 1,2,...,c. The model, which estimates the association

between bone mineral density and BMI, is

ns|ps, g, ~ Multinomial{n;. ,vec(p,qs)},s =1,2,...,5,
ps‘l"’l? ™~ DiriChlet(u’lTl)a

q;s|pg, T2 ~ Dirichlet(p,72),
(r=1)! (c—1)!
L+71)2 (1+72)%

ﬂ-(u’lv’rla “277_2) = (

Note the 7 (1, 71, pi2, T2) is proper.

Without any prior information, they take p;, pt5, 71 and 72 to be independent.
As an interpretation of hyper-parameters, p are cell means and 7 is a prior sample
size. This model features stratification and hyper-parameters to pool information
from different strata.

We assume the same unimodal order restrictions on parameters into the Bayesian
hierarchical multinomial-Dirichlet models. Our proposed models are different
from their work, and can provide accurate estimates of parameters of interest when

the order restriction assumptions hold.

1.2 Order Restriction

In this section, we briefly review some of the existing constrained inference on

the parameters of interest.



1.2.1 Order Restrictions for General Statistic Inference

In many statistical problems, it is necessary to take into account the order re-
strictions of the unknown parameters of interest. Sometimes, it is reasonable to as-
sume order restrictions on the parameters. Robertson, Wright, and Dykstra (1998)
provided a comprehensive treatment of the topic of statistical inference under in-
equality constraints, where much of the theory is based on the principles of max-
imum likelihood estimation and likelihood ratio tests. Silvapulle and Sen (2004)
discussed a broad range of inequality-constrained inference problems. They clearly
illustrated concepts with practical examples from a variety of fields, focusing on
sociology, econometrics, and biostatistics. Heck and Davis-Stober (2019) provided
a comprehensive discussion about linear inequality constraints, such as the set of
monotonic order constraints for binary choice probabilities on the parameters of
multinomial distributions for psychological theories. Wu, Meyer and Opsomer
(2016) combined domain estimation and the pooled adjacent violators algorithm to
construct new design-weighted constrained estimators of wage for U.S. National
Compensation Survey. The survey estimates mean wages for many job categories,
and these mean wages are expected to be non-decreasing according to job levels.
They assumed constrained estimators satisfied monotonicity which improved point
estimation and sharpened confidence intervals. Their design-based approach is not
our concern and their constraints are different from our unimodal order restrictions.

Nandram (2005) provided a Bayesian method to obtain the best subset of prod-
ucts and to assess the quality of the products. A priori information about which
subset is the best is incorporated, and a stochastic ordering is modified to select

the best subset of the products. But their constraints are different from our order



restrictions.

Nandram and Peiris (2018) developed a robust Bayesian analysis to study count
data obtained from a nine-point hedonic scale at two time points. They robustified
a standard binormal model by modeling skewness to obtain the receiver operating
characteristic (ROC) curve and the area under the curve. They also incorporated a
stochastic ordering to enforce ROC curve with robust measures. But their stochas-
tic ordering on ROC curve is totally different from our unimodal order restrictions
on parameters.

Li (2008) has a nice review about treatment effects models with order restric-
tions, since the treatment effect would be higher for a higher dose. The purpose
of using estimators that take the order restrictions into consideration is to gain ef-
ficiency. He considered different statistical problems in which an order restriction
on the unknown parameters is either natural or reasonable, and discussed methods
of estimation and inference under the restrictions.

There are lots of discussion about how to make inferences with order restric-
tions. They show the importance of incorporating order restrictions into the model,
which can have the considerable improvement in precision. But their approaches

are not aimed for small area estimation.

1.2.2 Order Restrictions for Small Area Estimation

In context of small area estimation, there is a trend considering the order pa-
rameters if one is interested in estimating jointly the best and worst areas’s pa-
rameters, such as the largest multinomial probability and smallest multinomial
probability. Dunson and Neelon (2003) proposed a Bayesian approach for infer-

ence on order-constrained parameters in generalized linear models. They focused



on the case where the data consist of normally distributed observations for sub-
jects in k groups and there is prior knowledge of an ordering in the means. For
j=1,...,k group, let y; denote an n; x 1 vector observations of i.i.d. N(u;,o?)
random variables. Assuming a conjugate prior density, f1;|0% ~ N(poj, 0% /koj)
and 02 ~ IG(ag, by), instead of choosing a prior distribution with support on the
constrained space, which can result in major computational difficulties, they pro-
posed to map draws from an unconstrained posterior density using an isotonic re-
gression transformation. In particular, they focused inference on p* = g(u), where
p is the unconstrained mean, p* is the constrained mean, and g(.) is the isotonic
regression transformation. This approach allows flat regions over which increases
in the level of a predictor have no effect. Bayes factors, which is a Bayesian diag-
nostic criterion, for assessing ordered trends can be computed based on the output
from a Gibbs sampling algorithm.

Malinovsky and Rinott (2010) studied the prediction of ordered random effects
in a basic unit level model for small area estimation. They considered a simplified

Fay-Herriot model as in

y@'j:ﬂ+ui+€ij7j:17---7n,i:1,-~';m7

where y;; is observed for area © = 1,...,m, u is an unknown constant, u; ~
N(0,02) and ¢;; ~ N(0,02/n).

Set 0; = u+ u; and @ = (0y,...,60,,). The purpose is to predict the ordered
random variables & = {0(;) < ... < 0(;,)} from the observed y. They suggested

shrinkage-type predictors, such as 0;y = vy(;)+(1—7)y, where y(1) < ... < Y(m)

denote the order statistics of y1, . . ., ym, With an appropriate amount of shrinkage



for the particular problem of ordered parameters, are better and close to the optimal
predictors.

But those empirical Bayesian models with order restrictions are not appropriate
for binary or count data. Their order restrictions are not the same as ours.

As a special case of Bayesian hierarchical models for small area estimation,
the multinomial-Dirichlet model with order restrictions can be applied to the count
data where the order restriction about parameters may exist.

Sedransk, Monahan and Chiu (1985) described a Bayesian method for estima-
tion of finite population parameters in general population surveys. A multinomial
distribution is used to model the variable of interest, Y, from a categorical table. A
Dirichlet prior distribution is assigned to the cell probabilities, p = (p1,...,pt).
They added order restrictions to the model to capture the unimodal smoothness

relationships among cell probabilities (p, . .., p;), such as

N

p1 S Pk Z Pkl Z - 2 D

If the modal value, k, is known, then the prior distribution is assumed to be given
by

t
fP) =Cu(Br, ... 8 [ [ ]
=1

where p € ng) ={p:p1 <... <Pk = Pks1 = ... = pt}. They showed how

to use Monte Carlo integration to evaluate the posterior moments or probabilities.
But their model is not designed for small area estimation. The lack of Bayesian
diagnostics for their model suggests that there are a lot of improvement to be made.

Gelfand, Smith and Lee (1992) provided very-detailed Gibbs sampler struc-

10



tures for Bayesian analysis of constrained parameters. They suggested that a Dirich-
let prior should be used for ordered multinomial parameters, which are p; < pa <
... < pt = ... 2 pr. A Bayesian model for their problem is given by defining

Y; = # of observations in category j. So the likelihood is

Y|p ~Mult(n;p1,...,pK),

Given t, they specified a prior
J 51
f(p‘t)O(C(/BlvaBKat)Hij )
j=1

where ¢(f31, . . ., Bk, t) is the normalizing constant, and RX = {(p1,...,px)|p1 <
pr<. . Spe > 2pr 0<p < LY p =1}

Gelfand, Smith and Lee noted that the Gibbs sampler cannot be employed di-
rectly when ¢ is unknown and prior Pr(t = j) = w;,j = 1,..., K. But the

marginal posterior for ¢ can be calculated directly, taking the form

c(Bi,...,Br,j)wj/c(Pr +Y1,..., Bk + Yk, J)

Pr(t=jY) = e : .
> i1 By By d)wi/e(Br + Y1, .. B + Y, )

They showed Bayesian inference on order parameters can have higher preci-
sion. However their Dirichlet multinomial model with the ordered parameters does
not consider stratification and hyper-parameters to borrow information from small
areas.

For a stratified population, Nandram and Sedransk (1995) showed the precision

of inference about 7;;, which is the proportion of firms in stratum 7 belonging to

11



the sales and receipts class j, can be dramatically increased by using Dirichlet
multinomial model with appropriate order restrictions on 7;;. They considered
uncertain modal positions to increase their model flexibility. Prior specification of
parameter « in Dirichlet distribution has to be proper and reasonable to the model
inference. Their order restriction is more complicated than the previous model due
to the stratification. They also consider the case where there is uncertainty about
the vector of modal positions L, which can take g possible values, £1, /s, ..., {,.

The position probabilities are given below,

g
Pr(L =1{s) =ws,s =1,2,..., g, where w, are specified and Zws =1.
s=1

They directly applied Monte Carlo integration to estimate the posterior ws =
Pr(L = l4|n). Adopting a Bayesian view, they showed that the posterior vari-
ances can be dramatically reduced by including order restrictions among 7;;, both
within and between the strata. But their model does not have hyper-parameters to
borrow information among strata.

Nandram, Sedransk and Smith (1997) improved estimation of the age compo-
sition of the population of Atlantic cod with the help of order-restricted Bayesian
estimation. Let p;; denote the cell probability that a fish belongs to length stratum

¢ and age class j. To simplify the analysis, the likelihood of p is

I J
tpln) o [T T -

i=1j=1
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They took independent Dirichlet distributions as prior; that is

I J
Flpla) < JTTT v

i=1j=1

where «;; > 0 is a fixed quantity, within stratum 7, p;1 < ... < pig; = ... =
iy, for some k; € Z;. In the set Z;, the cells labelled (i, ¢;), (2,4, + 1), ..., (i, u;),
where /; and u; are integers such that 1 < ¢; < u; < J. The p;; are to be estimated
for each j € Z;.

In their Atlantic cod study, let ¢ = 1 correspond to the stratum with the shortest
fish and 7 = 1 correspond to the youngest fish. It is expected that as ¢ increases,
the relative values of the {p;; : j € Z;} will change. The order restrictions are not

just within strata, but also among strata, such as

Pil <. S Dit Z ... 2 DiKs

Pi1 < ... < pj= = ... > pjx wherei < jand t < t*.

They also considered the case where there is uncertainty about the modal posi-
tion L,

Pr(L=1VY5)=ws,s=1,2,...,9.
They showed the joint posterior distribution of 7 and L is

wsCr, () [Tj_y gni ()
25/21 Wg CZS/ (OL)/CKS, (’I’L) .

f(r, L =ts|n) =

Their model with order restrictions is different from our proposed models, since

their order restrictions are within strata and among strata.
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Overall, making inference with order restrictions for small area estimation is

feasible and necessary.

1.3 Partial Exchangeability

The idea to exploit the similarity and borrow information across strata has a
long tradition. The methods are known to improve estimation accuracy over esti-
mate obtained from stratification or complete pooling. Standard hierarchical mod-
els assume full exchangeability of parameters, which is usually expressed via ran-
dom effects. The multinomial-Dirichlet model with order restrictions can improve
estimation accuracy, since it can borrow more information across small areas than
the model without order restriction. We found the same order restrictions may not
be true for all small areas, which will make the performance of the model with
order restriction worse.

Malec and Sedransk (1992) have pointed out the weakness of Bayesian mod-
els based solely on the exchangeability assumption, where we might have the
same issue in the model for our application. To illustrate their approach, for
i=1,...,L,j =1,...,n, the Y;; are independent with Y;; ~ N (u;,c?), where
the o7 are assumed to be known. They proposed a flexible prior distribution for
parameter gt = (p1, ..., ) to permit the amount and nature of the pooling to be
influenced by the sample data. They use grouping method to have subsets of p
such that the p; within each subset are similar, and there is uncertainty about the
composition of such subsets of p. But our approach to have partial exchangeability
is different from their grouping method.

A useful substitute for exchangeability in the above situation is partial ex-
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changeability, where the components within a subgroup are exchangeable, but
the different subgroups are not. Ghosh and Kim (2002) considered a general
Bayesian model which allows multiple grouping of parameters, where the compo-
nents within a subgroup are exchangeable. In other word, they assumed the model
with partially exchangeability. The general idea is then illustrated for the normal
means estimation problem under priors which are scale mixture of normals. They
discussed also implementation of the Bayes procedure via Markov chain Monte
Carlo integration techniques. They illustrated the proposed methods with a numer-
ical example. But their approach to have partially exchangeability is different from
ours.

Kaizer, Koopmeiners and Hobbs (2017) introduced multisource exchangeabil-
ity models, a general Bayesian approach for integrating multiple, potentially nonex-
changeable, supplemental data sources into the analysis of a primary data source.
They give us the inspiration to construct a model with partially exchangeability.

Neuenschwander et al. (2016) proposed models that allow each stratum-specific
parameter to be exchangeable with parameters from other similar strata, or nonex-
changeable with any of the other strata parameters. In other word, this approach
can automatically borrow information from those similar areas, and borrow much
less information from those very different areas.

These exchangeability-nonexchangeability (EXNEX) models are robust and
can provide accurate estimates of parameters of interest, since they allow borrow-
ing information across similar strata while avoiding too optimistic borrowing from
extremely different strata. However, the EXNEX models proposed by them are de-
signed for clinical trials. First, they use weakly informative or informative priors,

which heavily rely on the previous study or historical data. Second, their models
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for clinical trials are totally different from ours. Third, they do not have any order
restriction assumption on parameters of interest.

Our approach to have partially exchangeability is inspired by their work. To
simply illustrate a EXNEX model, a general hierarchical binomial-beta EXNEX
model is given below. For area ¢ = 1, ..., ¢, the number of successes y; in n; trials

are independent with

7i|0; ~ binomial(n;, 6;),

where 6; are the corresponding success probabilities in the ith area. With mixture
probabilities p;, we assume fully exchangeability (EX), where the parameter vector

0 is exchangeable and

02"057 ﬁ ~ Beta(a7 ﬂ)a

and the prior of o and f is w(«, 8) = 1.
With mixture probabilities 1—p;, we assume nonexchangeability (NEX), where

0, is nonexchangeable and

9i|010, By ~ Beta(l, 1)

We notice that the label switching problem arises when taking a Bayesian ap-
proach to parameter estimation and clustering using mixture models. In a Bayesian
context the invariance of the likelihood under relabeling of the mixture components
can lead to the posterior distribution of the parameters being highly symmetric and

multimodal, making it difficult to summarize (Stephens 2000). We consider con-
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strained parameter spaces to deal with label switching issue in the mixture models,

which are our EXNEX models.

1.4 National Health and Nutrition Examination Survey

The performance of our method is studied using the Third National Health
and Nutrition Examination Survey, NHANES IIIl. NHANES III is a stratified mul-
tistage probability design targeted to obtain a representative sample of the total
civilian noninstitutionalized U.S. population age 2 months and older. The sample
was selected from households across the United States during the period October
1988 through September 1994. Some individuals area selected with different prob-
abilities. Nandram and Choi (2010) emphasized that NHANES III was designed
to oversample the two largest minority groups in the U.S. population: black non-
Hispanic and Hispanic-Americans. For confidentiality reasons, the final data set
for this study uses only the 35 largest counties (from 14 states) with a population
of at least 500,000 for selected age categories by sex (male, female) and race (white
non-Hispanic, black non-Hispanic, Hispanic, other).

One of the variables in this survey is body mass index (BMI; body weight in
kilograms divided by [(height in meters)?]), which is currently used as a measure
to diagnose overweight and obesity in children and adolescents. Specifically, obe-
sity is one of today’s leading public health problems and it increases the risk of
morbidity due to diseases such as diabetes and hypertension.

The purpose of the thesis is to predict the percentile BMI for the finite pop-
ulation of female adults, post-stratified by counties. We use a selected subset of

BMI data from NHANES III, where we only use the female adults older than 20
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years from 35 counties with a population at least 500,000. The final female BMI
data set for this study uses only 3149 samples, which is small relative to the finite
population. So we use methods associated with small area estimation. Our method
can be easily applied to other subsets of BMI data, such as the male BMI data set.

The original sensitive attributes BMI data are transformed to categorical data
based on the criteria defined by the Centers for Disease Control (CDC), which are
underweight, normal, overweight, obese I, and obese II. If BMI is less than 18.5,
it falls within the underweight range. If BMI is from 18.5 to 25, it falls within the
normal. If BMI is from 25.0 to 30, it falls within the overweight range. If BMI is
from 30.0 to 35, it falls within the obese I range. If BMI is 35.0 or higher, it falls
within the obese Il range. We can look at small domains, but the cells of the multi-
nomial tables will become sparse. We can eliminate some counties that become
small or we can combine some counties. The hierarchical multinomial-Dirichlet
model is ideal for contingency tables, but the framework of this dissertation does
not cover any covariate. Due to the natural characteristics of BMI, unimodal order
restrictions are reasonable to incorporate. Most people have higher chance to have

normal or overweight BMI, and less likely to be underweight or obese.

1.5 Gibbs Sampler and Convergence Diagnostics

In the hierarchical Bayesian approaches, to evaluate the desired posterior den-
sity f(p|y) or estimate a parameter of interest by its posterior mean, © = E[h(puly)],
high-dimensional integrations may be involved. Gibbs sampler, one of Markov
chain Monte Carlo (MCMC) methods, is useful to overcome the computational

difficulties from multi-dimensional integrations.
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The point of Gibbs sampler is that given a multivariate distribution it is simpler
to sample from a conditional distribution than to marginalize by integrating over a
joint distribution. Hobert and Casella (1996) showed how to use Gibbs sampling in
hierarchical linear mixed models even with improper priors. Gibbs sampling output
cannot provide information that the posterior is improper. But the hierarchical
binomial-Beta models and multinomial-Dirichlet models have been widely used.
It is easy to see the propriety of their posterior.

There are three issues associated with Gibbs sampler to be considered. Gibbs
sampler, generate Markov Chains which simulate the posterior distribution 7(-).
Early proportion of the chain that may not converge to the target posterior distribu-
tion should be dropped off, which is called burn-in. Thinning samples will reduce
the final autocorrelation in the sample, and provide valid inference on the posterior.

Roy (2020) discussed most widely used MCMC convergence diagnostics tools.
Even most of the proposed diagnostics have shortcomings, we decide to use a few
criteria, such as Geweke’s diagnostic, effective sample size, trace plots to acquire
the converged posterior samples.

Geweke (1992) used spectral analysis to evaluate numerical accuracy formally
and constructed diagnostics for convergence. Geweke’s convergence diagnostic is
a Z test of equality of means where autocorrelation in the samples is taken into
account while calculating the standard error. Let ¢, and g, be the time averages
based the first n; and the last ny observations, S/Q(\O) be the estimate of its standard

error. Thus, Geweke’s statistics is

—

Zn = (g1 — G2/ 59(0) /1 + 55 (0)/ma
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Geweke suggests using 11 = 0.1n;04; and no = 0.510441-
The effective sample size (ESS) of MCMC measures the amount by which
autocorrelation in samples increases uncertainty (standard errors) relative to an

independent sample, given by

n

ESS = U
1+23 202 p(k)

where n is the number of samples and p(k) is the correlation at lag k. If samples
are independent, the effective sample size equals the actual sample size.

The most common graphical convergence diagnostic method is the trace plot.
The trace plot is a time series plot that shows the realizations of the Markov chain
at each iteration against the iteration numbers. This graphical method is used to
visualize how the Markov chain is moving around the state space, that is, how well
itis mixing. It is often said that a good trace plot should look like a hairy caterpillar,

as in Figure 1.1.

Trace of var1

T T T T T
0 2000 4000 6000 8000 10000

Iterations

Figure 1.1: Good trace plot

20



1.6 Model Diagnostics

Gelfand, Dey and Chang (1992) used predictive distributions to address the
issues of model adequacy and model selection. They proposed the conditional pre-
dictive ordinate for the model determination. The conditional predictive ordinate
(CPO) is based on leave-one-out cross validation. Let n = (nq,...,ng) is a set of
data, n(;) are the data omitting the ith observation. CPO estimates the probability

of observing n; in the future if after having already observed n;), given as

where f(.[n;) is the predictive distribution of a new observation given n;. The
CPO is a probability, which lies in [0, 1]. Models with larger CPO values provide
better fit to the observed data. Low CPO values suggest possible outliers, high-
leverage and influential observations.

Compared with the marginal likelihood in Bayes factors, CPO can be esti-
mated by taking the inverse of the posterior mean of the inverse density function
value of n;, which is a harmonic mean of the likelihood of n;. Thus, @ =
[+ Zle m]_l, where 8() are posterior samples from f(6|n). This form
may be computationally unstable though, and some care is needed. Generally, it
is easier to estimate CPO than Bayes factors, since it is easier to have posterior
samples than integrating the marginal likelihood for most cases.

The log-pseudo marginal likelihood LPM L = Zfi 1 log(C'PO;), which is an

estimator for the log marginal likelihood, can be used to quantify the support for a

model over another. The ’best’ model among competing models have the largest
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LPML.

1.7 Contributions of this Research and Dissertation Or-

ganization

We provide a brief introduction about small area estimation and Bayesian hi-
erarchical approach with order restrictions. We introduce body mass index (BMI)
data in NHANES III for later illustration. We have given a comprehensive overview
in Chapter 1.

In Chapter 2, we discuss the Bayesian hierarchical model with order restric-
tions. The multinomial-Dirichlet model with three different order restriction as-
sumptions are discussed as well. Then we show how to draw samples from the
posterior distribution using MCMC method. To compare different order restric-
tions assumptions, we present a simulation study.

In Chapter 3, in order to accommodate the different degrees of heterogeneity
between small areas, we describe a Bayesian hierarchical multinomial-Dirichlet
model with uncertain order restrictions. In particular, we describe the model in-
corporated with the uncertainty about the modal position. We show how to draw
samples from the proposed model using MCMC method with some approxima-
tion approaches because of the complexity of the model structure. Then we apply
our model to the BMI data to provide accurate estimates of the BMI proportions
for each county. We also compare the model incorporated uncertainty with the
multinomial-Dirichlet model with order restrictions.

In Chapter 4, we discuss the partial exchangeability assumption in the Bayesian

hierarchical model. As an introduction, we describe a simple binomial Beta model
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with exchangeability-nonexchangeability (EXNEX) priors. Then we show how to
draw samples from the joint posterior distribution. We present a simple simulation
from different heterogeneity scenarios to show the robustness of the model with
EXNEX priors. We also describe a multinomial-Dirichlet model with EXNEX
priors and how to draw posterior samples from it.

In Chapter 5, we summarize our result that the model with order restrictions
may be necessary for small area estimation. We present concluding remarks to
show the complexity and difficulty of the model with order restrictions and provide
some extensions of the multinomial-Dirichlet model with order restrictions. We
discuss future research work to extend the application of the current method for

small area estimation.
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Chapter 2

Bayesian Hierarchical

Multinomial-Dirichlet Model

We notice that there are benefits to add order restriction assumptions into the
hierarchical models. We also notice that the potential of Bayesian hierarchical
multinomial-Dirichlet model for small area estimation can be elaborated. Due to
the complexity of the multinomial-Dirichlet model with order restrictions, the effi-
cient Bayesian inference and Bayesian diagnostics should be discussed as well.

To be consistent, we use some notations from the general hierarchical multinomial-
Dirichlet model for further reference. As a hierarchical Bayesian approach for
small area estimation, let ;; be the cell counts, 6;; be the corresponding cell prob-
abilities, for areas ¢ = 1,2, ..., ¢, categories j = 1,2,..., K,and n; = Eszl Ngj.

The general hierarchical multinomial-Dirichlet model, in Nandram, Kim, and Zhou
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(2019 ) and Nandram (1998), is

n;|0; ind Multinomial(n;. , 6;),

0|, T nd Dirichlet(u7),

(K1)
TI'(lJ,,T) - (1 4 7_)2 ’
where f(0;|p,T) = ﬁ#ﬂ HJKZI 0/ 7! D(ur) is the normalization constant

for Dirichlet(p7), p; >0, Z]K:l pi=1,7>0.

Without any prior information, let ¢ and 7 be independent, E(6;;) = uj,
ZJK: 1 45 = 1. As an interpretation of hyper-parameters, p are cell means and
T is a prior sample size. This model features stratification and hyper-parameters to
pool information from different strata together. In our BMI data application and
simulation, we denote the general multinomial-Dirichlet model as M.

In the following section, we will provide three models with different order

restriction assumptions.

2.1 The Model with Order Restrictions on ;. Only

Let n;; be the cell counts, 0;; be the corresponding cell probabilities, areas

1=1,2,...,/, categories j = 1,2,..., K, and n; = ZK

j=1"ij- The hierarchical

multinomial-Dirichlet model is

I
—_
~

nZ\GZ iﬁfd Multinomial(ni. R 91), 7
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At the second stage we assume
0;|lp, T nd Dirichlet(p7),i = 1,...,£.

For hyperparameters p and 7, we consider non-informative prior

K(m—1)(K —m)!
(1+7)2

K
m(p, ) = ) pi >0, ZU]’ =1, pe C[ln
j=1

where

Cu={p:p<...<pm=...2px}

There may be an unimodal structure on the cell probabilities 8. Since F(0;;) =
{45, it is reasonable to assume the expectation of cell probabilities have unimodal
order restrictions. We assume an order restriction assumption on the hyperparam-
eter p, o € CH’ and assume the modal position m in Cu is known,

In our BMI data application and simulation, we denote the multinomial-Dirichlet

model with order restriction on p as M.

The joint posterior distribution of M, is

¢ K K
ng 1 1. K(m — DK —m)lo
2] | | | I ig | I H o
7/1'77-|'n 0.8 { 013 D(HT) e 9” } (1 + 7_)2 )

i=1 j=1

[T, (k7
F(ZJK:1 5T)

and I¢,, is an indicator function that the constraint that ;1 € C), is satisfied.

where D(ut) = is the normalization constant of Dirichlet distribution

In Appendix 2.6.1, we use a griddy Gibbs sampler to draw samples from the

joint posterior distribution for parameters and make statistical inference on those
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posterior samples.

2.2 The Model with Order Restrictions on § Only

Let n;; be the cell counts, 6;; be the corresponding cell probabilities, areas

1=1,2,...,/¢ categories j = 1,2,..., K, and n; = ZK

j—=1Tij- The hierarchical

multinomial-Dirichlet model is
n;|0; i Multinomial(n;. , 6;), 1=1,...,¢.
At the second stage we assume
0;|lu, T ind Dirichlet(u7),0;, € C, i=1,...,¢,

where C = {0; : 0;; < ... < 0, > ... > bix,i = 1,...,¢}, and assume the
modal position m in C'is known.

For hyperparameters p and 7, we consider non-informative prior

_ (K1)
7T(/J’7T)_ (

K
2 >0, =1,
1+7) K jz;,u]

In our BMI data application and simulation, we denote the multinomial-Dirichlet
model with order restriction on 0 as Mjy.

The joint posterior density is

K

L K
Mg 1 ,U«j‘f‘—l (K - 1)'
0., ln o 1;[1{7[[1 %" DlumyClun) s b
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IS, Ty
D0 )
K ) 1K gy
TS, T(uym) Hj:l eij

of the truncated Dirichlet distribution.

where D(ut) = is the normalization constant of Dirichlet distribu-

tion, C(pur) = fgi cc d@; is the normalization constant

In Appendix 2.6.2, we use a griddy Gibbs sampler to draw samples from the
joint posterior distribution for parameters g and 7. Then in Appendix 2.6.4, we
show how to draw samples from the conditional posterior distribution of 8 and

make statistical inference on those posterior samples.

2.3 The Model with Order Restrictions on ¢ and u

Chen and Nandram (2019) incorporated the order restriction into the Bayesian
hierarchical Dirichlet multinomial model. Let n;; be the cell counts, 6;; the corre-
sponding cell probabilities, : = 1,2,...,¢,7 =1,2,..., K, n; = Zszl n;; and
denote the mode of 6;s as 6;,,,, 1 < m < K.

Specifically, we assume
n;|0; ind Multinomial(n;. , 6;), 1=1,....,¢.
At the second stage we assume
0i|u,7'%d Dirichlet(pu7), 6, €C, i=1,...,¢,

where C = {0; : 01 < ... < 0pp > ... 2 0ix,i = 1,... 4}, and assume the

modal position m in C'is known,

K(m—1DI(K —m)!
(1+7)2 ’

K
(@, 7) = pi>0, > pi=1, peCy,
j=1
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where

Cu={p:ipm <. ..< i 2 ... 2 K}

Since E(#;;) = pj, p should have the same order restriction as 6;, which is

w € Cp. We assume the modal position m in C), is known.

A posteriori 0; |, 7, n; ind Dirichlet(n; + p7), 0,cC,i=1,...,4,
where
M [T, g+
f(@ilp, m,m) = IS D +py7) 2 H=1 0iy

F[27 (nij+p;T)] K nijtp;T—1
0.cc TIE, %(n17+u7 ) IT=1 0 a9

F[Zj:l(”w+“y 7l HK 0"Lij+ﬂj7—_1
IS, Tlnatpgr) Hh=1717

C(n; + pr)

In our BMI data application, there are five cells and we use model Ms denote
the model with order restrictions and its mode is at the second position, which is
normal weight. Model M3 denote the model with order restrictions and its mode is

at the third position, which is overweight weight. Here, M5 and M3 are the similar
models but not the same.

The joint posterior distribution of M5 or M3 is

K

n re1, (K(m = 1K —m)I¢e
0,p,TIn x 91”7 0.7 ' =,
e e e
K
where D(pur) = ll:l(gkil(:?) is the normalization constant of Dirichlet distribu-
p

F(Zf:l #iT) HiT
1 10, L1 %

of the truncated Dirichlet distribution, § € C,u € C), and I, is an indicator

tion, C'(pr) f0 cC d0,~, is the normalization constant

function that the constraint that € C,, is satisfied.
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In Appendix 2.6.3, we use a griddy Gibbs sampler to draw samples from the
joint posterior distribution for parameters pu, 7. In Appendix 2.6.4, we draw sam-
ples of 6 from the conditional posterior distribution and make statistical inference

on those posterior samples.

2.4 Simulation Under Six Scenarios

In this section, we run 100 simulations for each model under six scenarios to
compare models’ order restriction assumptions. We generate tables of true cell
probabilities from a Dirichlet distribution with parameter @ and 7, p is the expec-
tation value of cell probabilities 0; in each area ¢. Small value of 7 in the Dirichlet
means larger variances or covariances. In other word, small value 7 means larger
heterogeneity between samples of Dirichlet distribution.

In the first three scenarios, we let © = (0.1,0.2,0.4,0.2,0.1), where the uni-
modal order restriction may hold and the mode is at third position. In the last
three scenarios, we let © = (0.2,0.2,0.2,0.2,0.2), where the unimodal order
restriction does not hold. We consider three categories of heterogeneity, which
7 = (50,300, 1000) represents relatively large heterogeneity, moderate hetero-
geneity and small heterogeneity. For the size of each area, we randomly pick n;
from 60 to 150.

We use the following model comparison criteria,

 Relative bias, which is the difference between posterior mean and the true cell prob-

[ . . ¥4 K ‘9/7\1—9;;“6‘ true
abilities over the posterior mean, is >7;_; > ;_; T/(é * K'), where 0}

are true cell probabilities and 0;; are the posterior means. Smaller is better.

* Root Mean Square Error (RMSE) is vbias? + PSD?, where bias = 51\3 — Gf]“w
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and PSD is the posterior standard deviation of samples. Smaller is better.

* Credible interval coverage rate, which is the true cell probabilities locate in the

credible intervals. Larger coverage rate is better.

* Credible interval length, and shorter length is better.

Table 2.1: Simulation summary for four models under three scenarios

Scenario

Criteria | Models | = (0.2,0.2,0.2,0.2,0.2) 1= (0.1,0.2,0.4,0.2,0.1)

7=50 7=500 7=1000|7=50 7=500 7 =1000

M, 0.129 0.078 0.073 0.123 0.107 0.106
M, 0.131 0.082 0.080 0.126 0.104 0.104
Relative Bias
My 0.223 0.090 0.084 0.134 0.099 0.089

M3 0.225 0.131 0.124 0.140 0.088 0.077

My 0.043 0.032 0.031 0.034 0.033 0.033
M, 0.044 0.035 0.037 0.035 0.033 0.033

RMSE
My 0.038 0.032 0.028 0.038 0.031 0.026
M3 0.038 0.029 0.027 0.048 0.032 0.028
M, 0.962 0.987 0.992 0.960 0.974 0.978
M, 0.950 0.979 0.985 0.960 0.980 0.980
CI Coverage
My 0.588 0.781 0.845 0.951 0.981 0.985
M3 0.627 0.784 0.797 0.949 0.984 0.993
M, 0.111 0.104 0.101 0.103 0.102 0.101
M, 0.104 0.098 0.100 0.103 0.095 0.095
CI Length

My 0.085 0.072 0.079 0.110 0.095 0.096

M3 0.098 0.086 0.085 0.111 0.093 0.089
Notation: M; is the multinomial-Dirichlet model without order restrictions,

M,, is the multinomial-Dirichlet model with order restrictions on i,
My is the multinomial-Dirichlet model with order restrictions on 6,

M3 is the multinomial-Dirichlet model with order restrictions on p and 6.

When 1 = (0.2,0.2,0.2,0.2,0.2) and 7 = 50, the unimodal order restriction
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may not hold and the heterogeneity between areas is large. The model with or-
der restrictions, My and M3, have large relative bias and small credible interval
coverage. When p = (0.1,0.2,0.4,0.2,0.1) and 7 = 1000, the unimodal order
restriction may hold and the heterogeneity between areas is small. The model with
order restrictions, My and M3, have very small relative bias and very high credible
interval coverage.

The model with order restrictions on i, M), has similar performance to the
model without order restriction, M;. One possible explanation is that the order
restriction assumption in M; is weak. It will not force the categorical cell proba-
bilities 6; to have the unimodal order restrictions. The model with order restrictions
on x4 may not borrow much more information among areas than the model without
order restrictions. There is not significant difference between M7 and M.

The model with order restrictions on y and 6, M3, has smaller relative bias than
the model with order restrictions on y, M, when the heterogeneity between areas
is small and order restriction assumption may hold. M3 has larger credible interval
coverage than M, when order restriction assumption may hold. Itis consistent with
the conclusion that the order restriction on p is weak and borrowing information
is not much different. We want to maximize the advantage of incorporating order
restrictions into the model to have small relative bias and large credible interval
coverage. The model with order restriction on p and 0, Ms, is preferred for the
further study.

With increasing values of 7, the unimodal order restriction holds across areas
and the heterogeneity between areas is getting smaller. The model with order re-
strictions on parameters u and 6 has smaller relative bias, RMSE, and higher cred-

ible interval coverage. Overall, if the order restriction assumption may hold and
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the heterogeneity across areas is relatively small, the model with order restrictions,

M3, is the best model we should use.

2.5 Concluding Remarks

From the outcome of the simulation, the multinomial-Dirichlet model with or-
der restrictions on parameters p and 6, Ms, shows that the model can borrow more
information than the hierarchical model without any order restriction. The model
with order restriction on hyperparameter p does not have much difference than the
model without any order restriction. If the order restriction assumption holds on
the data we have, we should consider the model with order restrictions to have a
better estimates on parameters. The model with order restrictions on 6 only will
not make computation easier than Ms. If the order restriction assumption holds for
all areas and heterogeneity is small, M3 is better than other models. If the order
restriction assumption may not hold, the model with order restrictions will have
higher relative bias than the model without order restriction. In practice, it is not
easy to verify the unimodal order restrictions in the data and decide the correct
model we should use. It is worth fitting the model with order restrictions in the

data where the order restriction may hold.
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2.6 Appendix

2.6.1 Griddy Gibbs Sampler for p, 7 in M,

In this section we discuss how to obtain samples from the joint posterior density
for each parameter and make statistical inference on those posterior samples. The

joint posterior distribution of M), is

m — DI(K —m)!g,
(1+7)2 ’

I K
0,1, TIn H{H 0, D

1
i=1 j=1 pr)

K
o K(
piT—1
H eij] 1
7j=1
1, Ty7)
F(Zle H5T)

and /¢, is an indicator function that the constraint that u € C), is satisfied.

where D(put) = is the normalization constant of Dirichlet distribution

Obviously, the conditional posterior distribution of 6; is Dirichlet distribution

with parameter n; + p7,
0:|p, ,m nd Dirichlet(n; + p7).

After integrating out 8, the conditional posterior distribution of g, 7 is

K(m—1)Y(K —m)lc,
(1+7)2

! D(n; + pt)
rlurlm) o [T 50

We use a griddy Gibbs sampler to draw the posterior samples of p, 7. Specif-
ically, we use 200 points in the uniformly spaced grid. Since p € C), = {p =

(1o pbie) s < oo <y = ... 2 g, 0 < py < 1}, and for j from m — 1
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to 1 the range of y; is

K
1- Zt:l,t;«ém,t;ﬁj Ht }
2 )

0< Hj < min{uj-%—h
and for j fromm + 1to K,

K
L= it i “t}
5 .

0 < pj < min{p;_1,

2.6.2 Griddy Gibbs Sampler for ;. and 7 in M

In this section we discuss how to obtain samples from the joint posterior density
for each parameter and make statistical inference on those posterior samples.

The joint posterior density is

K

-1, (K = 1)!
9 en” 9;'1']7' 1 (
NaT”n X H{H ij D N’T IJ’T) ij } (1 n 7_>2 )
i=1 j=1 J=1
K
Hj:l L(p;7) . .. e
where D (1) = —————— is the normalization constant of Dirichlet distribution,

F(Engl 1;T)
K K
C(pr) :/ M 0" dg,

0.cc [, T(wym) =7 7

is the normalization constant of the truncated Dirichlet distribution.
Obviously, the conditional posterior distribution of 8; is Dirichlet distribution

with parameter nn; + p7 and 8 € C,
0;|p, 7, ~ Dirichlet(n; + p7), 60, €C, i=1,...,1,
where C' = {0; : 0;1 < ... < 0y > ... > 0;x,i =1,...,1}, and assume the
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modal position m in C is known.

After integrating out 6, the conditional posterior distribution of w, 7 is

(ni +p7)C(n; + pr)
D(pur)C(pr)
ij i T—1
H{fe co, Tz 007 A0, (1 - 1)
T—1 :
i=1 fe €C; H] 19ZJ de; (1+7)2

(p,7In) O<H{

We use a griddy Gibbs sampling method to draw the posterior samples of p, 7
Specifically, we use 200 points in the uniformly spaced grid in each interval. Due
to the ratio of the normalization constants with order restrictions, we propose a

Monte Carlo importance sampling method to deal with the ratio, shown as below.
Draw samples of 8: (0 ~ Dirichlet(y1;), where 8 € C; and v is the impor-
tance ratio, 7 ; is the average over small areas for each category, the approximate

joint posterior distribution of g and 7 is

n; j—'yﬁj+ujr

Zq 1 Hg 1 [0(q>] (K -1)!
Z(]Iu:l Hj71 [e(q)] TMj+um 0 (1+7)2

(s, 7ln) <><H{

=N +p T
<IT [Toer )
—T T 2
=1 g=1 o1 23211_[]':1 [954)} Yi+uiT 7 (14 71)
[, o) ™™

(a) ”17 (K -1)! _ J J
T T B 1 werew, = e
=1 g=1 Jj=1 (1+T) Z;Lil Hjil [9](‘7)} T

Since there is no order restriction about g, the range of 1115 0 < g Zt 1 t 25 Mt

fory=1,...,K —1.

2.6.3 Griddy Gibbs Sampler for © and 7 in M, and M5

In My and M3, we use a griddy Gibbs sampler, a Markov chain Monte Carlo
(MCMC) algorithm, for u € Cy, and 7. Specifically, we use 200 points in the
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uniformly spaced grid in each interval. The joint posterior density is

K i 1
[, 077 e cley, o,

D(pr)C(pr) }(1 +17)2’

(0, pu, T|n) H{
where

I K_ ) K
C(m)z/g PRy 157) 1 gy Lde.,

K
€C Hj:l F(/.LjT) j=1 Y

and /¢, is an indicator function that the constraint that 1 € C), is satisfied.
There is no recognizable conditional distribution of @ and 7 to generate sam-
ples. So we use a grid method to draw p and 7 from 7(u, 7|n) after integrating

with respect to 8, we get

n) I~“’+nz )C(pT +n;) ICp,
(i im) H{ NCwn)

GT+n;—1
H{f0 e, HJ 1 953 a0, ICN

GT— 1 :
i=1 fOecH 1HZ de; (1+7)2

Chen and Shao (1997) mentioned that importance sampling could be used to esti-
K ol ae,

fGZEC H] 1%4j

mate the ratio, —
f0 ec H7 1 G”Z] d0;

. We consider Dirichlet(r7;) as our impor-

I ..
tance function for all counties, where r is an adjustable ratio and n; = @

It combines information together. Since our importance function does not depend
on the unknown parameters, p and 7, we can generate one set of numbers for all
iterations. In our late application, it has been proved as an efficient way to generate

posterior samples.
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Algorithm 1:
1. Draw 7 from 7 (7|u, n);

2. For j from m-1 to 1, draw j; from m(u;|p(~7), 7, n), where

. 1— Ii ‘
0<p; < mln{,uﬂh th,t;m,t;@ Ht .

3. For j from m+1 to K, draw s from 7(p; (=7, 7, n), where

i -3 i it
0 < //LJ < mln{l[,LJ_l’ t at;éh’b,t;é] };

4. Get i, = 1 — Zle’#m i, repeat Step 1 to Step 4 to get converged MCMC
samples, M(_j) = (/’Llﬁ sy Hg—1, 41y - - 7lu’K)
Notice that the upper end of an interval can be small and 200 grids might be an

overkill.

2.6.4 Sampling from Conditional Posterior Distribution of 6 in M,

MQ, and M3

In models My, M>, and M3, the posterior of 8 has a recognizable distribution,
which is the Dirichlet distribution with the order restriction. Instead of drawing
samples directly from the Dirichlet distribution with the order restriction, Chen and
Nandram (2019) present a direct sampling from truncated Gamma distributions,

where Nadarajah and Kotz (2006) offered a method for truncated Gamma.

Algorithm 2 : To draw 6 = (6., ...,0x) ~ Dirichlet(as,...,ak),0 € C,
denote 8 = (64, .., 0k),
IfoO<0, <60,<...<60,, >... 20k, themode is 6,,,
0<B <PB<...<Bm >=... > Bk, the mode is [,,,
1. Draw 8, ~ Gamma(cy,, 1), where 0 < 8, < 00,

2. Draw 3,,,—1 ~ Truncated Gamma(c,,—1, 1), where 0 < B;n—1 < B,
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... p1 ~ Truncated Gamma(a, 1), where 0 < 81 < S,
3. Draw f3,,,+1 ~ Truncated Gamma(c, 11, 1), where 0 < Bi1 < B,
... Bk ~ Truncated Gamma(ag, 1), where 0 < Sx < Br-_1.

Then,

K-1

B Br-1
bp=— ok =KL g —1- %0,
Bt BT T T B 4B ;

Therefore, to draw samples from the conditional posterior distribution of 8 in My,
My, and M3, we draw samples of 3 = (f1,...,0k), where 0 < 51 < B2 < ... <
Bm = ... = Br. Bach §; follows a truncated Gamma distribution with parameter

a; and 1. Then we can get the posterior samples of @ = (61, ...,0k).
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Chapter 3

Uncertainty about Order

Restrictions

The same unimodal order restriction for all areas may be too strong to be true
for some cases. To increase flexibility, we add uncertainty to the unimodal order
restriction. Each area will have similar unimodal patterns, but not the same. We
use the same notations for model M;, My, Ms in Chapter 2 for the following

discussion.

3.1 The Model Incorporated Uncertainty

Chen and Nandram (2021) consider adding uncertainty to the model to increase
the robustness and flexibility. Let Ly,s be the mode position of cell probabilities.
Thus our new hierarchical multinomial-Dirichlet model, denoted as My, is given

as below,

n]0:, Lypos = ¢ % Multinomial(n;. ,0,), i=1,....1, (=1,... K,
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0|1, 7, Lyos = £ "' Dirichlet(pr),i =1,...,1,0; € Cy,

(41, | Lpos = £) = 20T (111(71)(2 Mt >0, iw =1, peCy,
Jj=1
where
Co=A{6;:01 <...<bipm, >...20;x},
Cp,={p:pm <. . <pmy > ... 2 pk},
and .
P(Lpos =0) =wg, Y we=1, £=1,....K.
=1

Modes are the same for all areas but we are uncertain about where they are.

Then the joint posterior distribution is

K T, 047 1, I
Jj=1"14j Lpos [75 1
70, p,7in) o< > wi,,, [T{]] 657 =
PR Hl ]H1 D(pur)C(pr) (L+7)?

K n’LJ +.U‘j 71
I
HJ 105 ley,, lc Horpos 1

o Z WL, p0s H{ D(ur)C(pr) }(1—1-7')27

Lpos=1 i=1

where [ CLpos and I T are the indicator functions under that order restriction.

In Appendix 3.5.1, we present an approximation approach to estimate the pos-
terior of P(L,,s = ¢) and obtain the posterior samples of parameters 6.

Chen and Nandram (2020a) and Chen and Nandram (2020c) presented a method
to compute the conditional predictive ordinate (CPO) and the log-pseudo marginal
likelihood (LPML) as Bayesian model selection criteria. We present CPO and
LPML of My, M3, and M, in Appendix 3.5.2.
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CPO of My and M3(similar to Ms) are

M K K pl(r)T(h)—1 K ij TH(R)T(R)—1
OPO ( ) = 1 H] ln'LJ' / H] 192] H] 197,]
) T IR gl TR T~ 1
. 0i€C H] 1 fG eC Hg 1 z]

ngitH(p)T(p)—1
[, o0 T
K 0”1J+“(h)7(h) I 40,

where is the density function of 8;, and 9; € C'.

fG 601_[

Then we get the LPML of M, and M3 as LPT4TM2 =31, 10g(0f071\/[2)-
and L]ﬁ4TM3 = Zle IOg(Cfoz\'Mg)'
CPO of My is

-1
K 1

CPOI(M4) ~ = €|’I7, —_———— s

ZZ:: CPOi (a1, 1—1)
where @( My |L=¢) are known, such as m( Ms,) and m( M;)- Without
extra computation, taking advantage of known CPOs from M5 and M3, and the
estimated P(L = /|n), we can easily acquire the CPO of M.

Then we get the LPML as LP/]\JTM4 = Ele log(C’fOTML).

We notice the marginal likelihood of the model with order restrictions is

+piT—1
' f@iecHJK19”] = de K(m—l)‘(K—m

n; )!

I I dudr.
T—1

el jor 1! fBiechlgff d; (1 +7)

f(n|MaorMs) = /

T

We cannot utilize the posterior samples to compute Bayes factor directly. Hence

CPOs as Bayesian diagnostic are preferred.
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3.2 Numerical Example: Body Mass Index

3.2.1 Body Mass Index

In our application, we use a selected subset of the body mass index (BMI) data
from NHANES III, where we use only the female BMI data from the 35 largest
counties with a population at least 500,000. For counties with large population,
we assume people randomly fall into five BMI categorical levels, which are un-
derweight, normal, overweight, obese I, and obese II. Our goal is to estimate the
proportions of the BMI levels. Table 3.1 gives an illustration of the female BMI
data of a few counties, where it can be seen that the cell probability is largest for
the normal range and other probabilities roughly tail off on both sides suggest the
unimodal order restriction. Indeed, there are violations in some counties in the

earliest and latest cells.

County ID | BMLIvll BMI.lvl2 BMIIvlI3 BMILlIvi4 BMILIvIS
1 3 40 37 13 4
2 1 36 38 15 1
3 3 20 49 13 5
35 1 41 41 9 0
Total 45 1201 1318 496 &9

Table 3.1: Number of females at five levels of BMI

For each county, the BMI counts can be assumed to follow a multinomial dis-
tribution because each individual person can be assumed to exist independently.
Figure 3.1 shows a histogram of all BMI values for females aggregated into a sin-
gle large sample. It can be clearly seen that the unimodal order restriction holds.

Because the data in the individual counties are generally sparse, it is difficult to
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tell whether the unimodal order restriction holds. However, it is sensible to assume
that the same unimodal restriction holds within all the counties. Therefore, we can

use multinomial distributions to model the female BMI counts.

Couns:

Figure 3.1: Overall females BMI in five categories

3.2.2 MCMC Convergence Diagnostics

To be convenient, Table 3.2 provides the model notations used in the following

discussion.
Table 3.2: Model notations in Chapter 3
Notation Model Order Restrictions Location
M, the multinomial-Dirichlet model NA Chapter 2
the multinomial-Dirichlet model .
< > > > .
L Qo) with order restrictions 01<0> 03> 0,205 TS
. the multinomial-Dirichlet model .
M3 (Overweight) with order restrictions 0y <0< 03>04>05 Section 2.3
My the multlnohmlal-Dlrlcl.llet EXNEX ‘m(.)del Uncertainty about the modal position | Section 3.1
with uncertain order restrictions

For each model, we run 20,000 MCMC iterations, take 10,000 as a ‘burn in’
and use every 10th to obtain 1,000 converged posterior samples to maintain con-
sistency. Figure 3.2 shows trace plots of posterior samples of w. The trace plots

indicate that posterior samples mix well and MCMC is stationary. Table 3.3 gives
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the effective sample sizes of the parameters u, 7 for the model with the order re-
striction and the general model. The effective sample sizes are almost 1,000. Table
3.4 provides p-values of the Geweke test to check the convergence of the param-
eters (Geweke et. al. 1992). All p-values are large enough to not reject the null
hypothesis that the MCMC is stationary. Then posterior samples can be used for

the further inference.

s o S

W

m——

]

Figure 3.2: Traceplots of 1 in My and M3

| K1 2 3 Ha Hs | g
My 1000 1123.7 1000 1000 895.4 | 1000
My (Mode at 2nd) | 1000 1000 1000 1000 1150.2 | 1000
M3z (Mode at 3rd) | 1000 887 889 1000 1173.9 | 1000

Table 3.3: Effective sample sizes of p and 7

| g ps e ops |7
M 0.623 0.558 0.899 0.767 0.959 | 0.514
M, (Mode at 2nd) | 0.964 0.705 0.507 0.511 0.837 | 0.999
M; (Mode at 3rd) | 0.817 0.559 0.580 0.557 0.812 | 0.516

Table 3.4: P-values of Geweke tests for p and 7
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3.2.3 Model Comparison of M, M, M3, and M,

With the approximate mixture probabilities, we mix posterior samples of M
and M3 together to construct samples of My.

We provide posterior mean (PM), posterior standard deviation (PSD) and co-
efficient of variation (CV) of s for all counties, which can be found in Appendix
3.5.3.

To compare model difference visually, we present the posterior densities plots
about different counties in those models as Figure 3.3, Figure 3.4, Figure 3.5 and
Figure 3.6. We use different colors to indicate five BMI levels and dashed lines for
the posterior means. Due to different capability of borrowing information among
areas, we can see different flatness of posterior density curves in the models. With
different order restriction assumptions, those posterior density curves center at dif-
ferent places and may overlap differently. We mainly focus on density curves of
normal BMI and overweight BMI, since the modal position might be second or
third.

In Figure 3.3 has posterior density plots for County 2 applying different mod-
els. The number of observations with normal BMI level, which is 36, is close to
the number of observations with overweight BMI level, which is 38. The unimodal
order restriction may not hold in County 2. Maybe for this reason, there is a sig-
nificant overlap between normal level and overweight level in the first plot after
applying M to our BMI data. The second plot and the third plot show much less
overlap in density curves, due to the strong order restriction assumption. The last
plot, which is the density curve from My, is similar to the density curves in Ms.

Based on the observations in County 2, the order restriction that the modal posi-
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tion is at the third may be reasonable. The density curves in M3 and M, may be
appropriate for County 2.

In Figure 3.4 has posterior density plots for County 3 applying different mod-
els. Unlike in County 2, the density curves of 6 from model M; in County 3
shows a very strong unimodality because we have 49 people in overweight BMI
level which dominates this county. The second plot from Ms, which assumes that
the mode is at normal BMI level, has a significant overlap. Its order restriction
assumption that the modal position is at the second position may not hold in this
county. The third plot from M3, which assumes that the mode is at overweight
BMI level, is similar as the density curve in M;. The posterior mean of normal
BMI level probability is higher than in M;. This phenomenon can be considered
as an evidence that M3 has a stronger borrowing ability than M;. Overall, the
modal position among 35 counties may be at the third. M3 can borrow more infor-
mation among those counties than other models. Then the last plot, which is the
density curve from My, has a little overlap. But the unimodal pattern is still in M.

In Figure 3.5, they are posterior density plots for County 13 applying different
models. Only My with an assumption that the mode is at normal BMI level does
not show a significant overlap. Since more people are at overweight BMI level,
that assumption may be validate in County 13.

Figure 3.6 provides posterior density plots for County 35, which has almost
same amount of people in normal and overweight BMI level. M, and M3 with
different unimodal assumptions have opposite conclusion about normal and over-

weight probabilities. In this county, M; and M, may be better models.
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Figure 3.3: Posterior densities of 8 for County 2 showing different order restric-
tions under different models.
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Figure 3.4: Posterior densities of 8 for County 3 showing different order restric-
tions under different models.
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Figure 3.5: Posterior densities of @ for County 13 showing different order restric-
tions under different models.
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Figure 3.6: Posterior densities of @ for County 35 showing different order restric-
tions under different models.
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Overall, the model with order restrictions, Ms and M3, can borrow more infor-
mation among areas than the model without order restriction, M;. The model with
uncertain order restriction, My, borrow less information among areas than My or
Ms. For this reason, M5 and M3 have sharper posterior density curves than My,
My has slightly flatter posterior density curves than M, and M3. For the same rea-
son, as shown in Table 3.5, M; has the largest total variance, which is the sum of
posterior variance of all counties’ cell probabilities. Ms and M3 have the smallest
variance due to its strong unimodal order restriction assumption. M,’s variance is

between M7 and Ms(or M>) since My, is a mixture of My and M3.

M, M5 (mode at normal) | M3 (mode at overweight) | My
0.172 0.063 0.069 0.107

Table 3.5: Total posterior standard variance of

Figure 3.7 and Figure 3.8 are boxplots of #s’ posterior samples. The first (Un-
derweight) and last (Obese II) blocks show that different models do not have much
difference in estimating the cell probabilities of underweight, normal, and obese I.
In the box plots, short line segments from My, M3, and M, and long line segments
from M, show that the models with order restrictions (M», M3, M) have smaller
variances than the model without order restriction (M7). The models with order
restrictions can borrow more information than the model without order restriction.
The differences between each box of M are larger than the differences in Ma, M3,
and My. In other word, the differences between posterior mean of each county in
M are larger than other models’. It proves that the models with order restrictions

borrow more information among areas than the model without order restriction.
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Figure 3.9: Standard deviation comparison between those models to show im-
provement.

In Figure 3.9, we have some regression lines to show the overall posterior stan-
dard deviation comparison among those models. The black dashed line is a ref-
erence line whose slope is one. The first plot shows a comparison between M;
and M3 (mode at overweight). All of regression lines are above the reference line,
which means that M3 (mode at overweight) has smaller standard deviation. We
gain higher precision on estimation of cell probabilities among 35 counties in Ms3.
The second plot shows a comparison between Ms (mode at normal) and M3 (mode
at overweight). The regression lines about underweight, Obese I and Obese II are

around the reference line. Only the regression line about overweight shows sig-
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nificant difference. It means M3 (mode at overweight) is slightly better than M,
(mode at normal). In other word, the assumption that overweight BMI probability
is the highest may be more reasonable. The last two plots in Figure 3.9 is a com-
parison between M> (mode at normal) and My, M3 (mode at overweight) and Mj.

My’s performance is slightly worse than M3 and Ms.
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Figure 3.10: CPOs for 35 counties under different models

Note: Lower CPO suggests possible outliers, high-leverage and influential observations.

In Figure 3.10, we use different symbols to represent the CPOs in each model
for all 35 counties. For each county, we can see different CPOs because of different
model performance in each county. Small CPO values suggest possible outliers,

high-leverage and influential observations. In our case, small CPO may suggest
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improper order restriction assumption in the model for the county or the county
is very different from the other counties. In BMI data, County 4 has the largest
observations, which shows lowest CPO value among others. Due to the borrowing
feature from the models, County 3 has a low CPO which may be affected by County
4. Another possible explanation for small CPOs in County 3 is that the people
with overweight BMI dominates other categories, which may cause that County
3 is very different from the other counties. For most counties, the model with
order restriction which assumes the mode is at overweight position can have large
CPO, compared with other models. As a summary, in Table 3.6, M3 (mode at
overweight) has the largest LMPL, which should the ‘best’” model for our BMI

data.

M, My (mode at normal) | M3 (mode at overweight) My

-326.76 -331.76 -319.11 -323.17

Table 3.6: LPMLs of model M7, M, Ms, and M, for BMI

Comparison of the four models using LPML.

3.3 Numerical Example: Smoothed BMI

To have a better comparison between those models, Chen and Nandram (2020b)
construct a simulated data transformed from BMI using the idea of Pool-Adjacent-
Violators Algorithm (PAVA) to have strong order restrictions as #; < ... < 0, >
... = 0k (Mair et al. 2009). It is a simple iterative algorithm for solving the
quadratic problem.

Generally, given a sequence of n data points yq, . . . , Y, we start with y; on the

left. We move to the right until we encounter the first violation y; > y;4+1. Then
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we replace this pair by their average, and back-average to the left as needed, to get
monotonicity. We continue this process to the right, until finally we reach y,,. We
can have a reconstructed data set to fit our order restrictions better. Fitting models
to the simulated data, we can discover the advantage of hierarchical multinomial-

Dirichlet model with order restrictions easily.

x
Mo > Mni3z

ne = Diatliz w ThatTip
i1 s PH2
2 2

Ny < Nz \
IR Y e—

Figure 3.11: Simulation method to have the unimodal order restriction

Here, for each county, we start from BMI level 1 to the mode using PAVA to
create an increasing sequence. Then from the mode to BMI level 5, we apply PAVA
to create a decreasing sequence. To make sure that each BMI level has an integer
number, we take the nearest integer that is larger than the mode to replace the mode,
and take the nearest integer that is smaller than n;; (except the mode) to replace
those non-modes. Now our assembled BMI data have strong order restrictions. But
we also notice that our current approach cannot be used for a general case to create

an unimodal structure. It works for BMI data when the numbers of level 2 and level
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3 are significantly larger than others. Now we have a simulated BMI data which

mode is at the third position (overweight).

My M5 (mode at normal) | M3 (mode at overweight) My

-319.83 -330.73 -310.39 -311.26

Table 3.7: LPMLs of model M7, M, Ms, and M, for simulated data

Comparison of the four models using LPML.

Since the mode is at the third position, the LPML of M3 is significantly larger
than others, which is -310.39. The LPML of M} is -311.26, due to the robustness
of My. The LPML of M3 is the smallest, which is -330.73. The LPML of M;
is -319.83. The LMPLs show that the model with order restrictions can have the
best performance if the unimodal assumption is correct. Model My, which incor-
porates uncertainty about order, has a similar performance as Model M3. In Figure
3.12, M3 and M, have consistently large CPO values for 35 counties among those
models. M5 have lowest CPO values at County 3 and 4, which suggests possible
outliers, high-leverage and influential observations. For most of counties, M3 has
the largest CPOs and M5 has the smallest CPOs because of the order restriction
assumption may be correct in M3 but not in Mo.

In the simulated BMI data, CPO and LMPL are proved to be able to select

more adequate models. Model My is robust and consistent for most cases.
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Figure 3.12: CPOs for 35 counties under different models (simulation)

Note: Lower CPO suggests possible outliers, high-leverage and influential observations.

3.4 Concluding Remarks

In the numerical example and simulated example, the multinomial-Dirichlet
model with order restrictions, M3, is the best model which has the largest LPML
among those models. M3 has small posterior standard deviations of parameters of
interest due to borrowing information among areas. It borrows more information
across areas than the model without order restriction, M7, and the model with
uncertain order restriction, M. It is consistent with the discussion in Chapter 2.

In Figure 3.10, some counties in M3 have the smallest CPO among four mod-
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els, such as County 13 and County 21. In those counties, the unimodal order
restriction that the modal position is at third position may not hold. In Figure 3.12,
M3 does not have small CPO for all areas among those models in the simulated
example, which forces the modal position to be at third. CPO can indicate that
the unimodal order restriction assumption may not hold for some areas. Overall,
LPML and CPO are reasonable Bayesian model selection criteria.

As shown in Figure 3.3 and Figure 3.4, the same unimodal order restriction for
all counties may not hold. Some counties have more people with normal BMI than
people with overweight BMI, such as County 21. Nandram and Sedransk (1995)
and Nandram, Sedransk and Smith (1997) presented a good discussion about uni-
modal order restriction in a stratified population. They pointed out the potential
problem that the same unimodal order restriction may not hold for all areas. They
incorporated the uncertainty about the proportion of firms and fish belonging to
each of several classes when there are unimodal order relations among the propor-
tions. Their work proved that the model with uncertain order restrictions can be
used for cases where the same unimodal order restriction may not hold for all ar-
eas. However, their work cannot be used for small area estimation and their model
cannot borrow information across areas. Our problem is much more difficult than
theirs when we incorporate a similar uncertainty about modal positions into the
model.

The multinomial-Dirichlet model with uncertain order restrictions, My, is an
extension of My and M3, which can be used for the case that the same unimodal
order restriction may not hold for all areas. In the numerical example and the
simulated example, M, has the second-largest LPML. It shows that the model

with uncertain order restrictions, M, can provide consistent and accurate inference
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about parameters of interest. For many cases, we may not know the modal position
of all areas and the unimodal order restrictions may not hold. For this reason,
incorporating uncertainty about the modal position into the multinomial-Dirichlet
model is necessary. Since we do not have to assume the known modal position, My
is more flexible than M5 and M3. We also notice that because of its complexity, it is
hard to draw posterior samples directly from its joint posterior density and compute
its marginal likelihood for model selection criteria, such as the Bayes factor. We
show a method to estimate the posterior probabilities of the modal position, which
is P(L;;z ¢|n). We also show how to obtain the posterior samples of parameters

of interest by mixing posterior samples from M, and M3 together.
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3.5 Appendix

3.5.1 Sampling Method for Parameter 0, p, and 7 in M/,

To generate samples of 6, p and 7, we have to deal with the uncertainty indi-

cator Lyos. In My, variable Ly, has prior P(Ly,s = £) = w; and posterior

K prijtHiT1

f HI { 5=1Y%; ICL”"SIC“Lpos} L d0dud
P(Lyos = fln) = ———2ror 107 Uizt D ) e d0dpdr
prosq WLpos fe,u,T Hf:l{ D(m)C () ks }(1+17_)2 d@dpdr

Chen and Nandram (2020) notice the order restrictions will significantly in-
crease the computational difficulty, especially for the marginal likelihood. We
can use the posterior samples from the model without order restriction to obtain
that probability. However, it is difficult for the hierarchical multinomial-Dirichlet
model with order restrictions to obtain the probability correctly. We suggest the
following approximation method,

Computing the Approximation of Mixture Probabilities:

1. Apply M; model to the entire data set and acquire posterior samples of 6 and p.

2. For each iteration of u, check the unimodal order restriction and denote its mode

positionas my = 1,..., K.

3. At the same iteration, check @’s unimodal order restrictions for eachi = 1...,¢,
where 0 is a k x ¢ matrix and count how many of them have the unimodal order

restriction where the mode is the same as p’s mode.

4. For each mode position my, add counts of each cases together and generate the

ratios.

For example, in our application BMI, 6.595% of posterior samples of € and
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1+ has mode at the second position, 93.405% of posterior samples of 8 and p
has mode at the third position. Then we can have P(L;; 2|n) ~ 0.066 and
P(LI;Z 3|n) & 0.934 as probabilities to mix samples from M5 (mode at 2nd)

and samples from M3 (mode at 3rd) together.

3.5.2 Bayesian Diagnostics for M5, M3, and M,

We present CPO and LPML of Ms, M3, and M, as Bayesian model selection

criteria in the section.
CPO of M5 and CPO of M3 are very similar to each other. CPO of M5 are

M -1
CPO; ) = Z [- 1”1] D" 7M)C(u™7™)
YM2) T ni + pM7rM)C(n; + pMrm)

-1
K i) T(n)—1
5 nig! feiec [I;=. 0;; de; ]

- *z
L K nii+p T 1
M = n;.! feieCH grETrmTM T g,

Jj=1"1j

K g7~ 1 K 0"1]+#(}L)T(h) 1

-1
_ Z ] 1 /n’lJ H] 174j H] 1745 d0.
T M ! 0, gria THm T T

; €C H 71 n”+u(h)7(h) ' fe cC Hg 1 2]

A O OR

where ] l_JlKl Z”w*“(h)%) T 0. is the density function of 8;, and 9; € C.
6,eC j=1"%ij 4
We notice u,(h) and 7™ _h =1,..., M are the posterior samples from section

2.6.3. For each pair of u(h) and 7™ we can draw 6, from Dirichlet(ni—i—u(h)T(h)).

—_— 1 M H;( 1 nzj h/ —n”
CPOi() = [M Z n ! M’ Z H
h=1 h=1j=1

where

forh/ =1,... ,M’Ogh/) ~ Dirichlet(n; + H(h)T(h)) with order restriction.
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Then we get the LPML as LPML = S 10g(@). As we can see from

the following equation, it is not easy to compute C'PO; or C'/PBz of M.

K

CPO; = f(ning) Z = ln) f(nilngy,=e)] -
—1

While we know f(n;|n;),L—¢) can be computed like C POs of M3, it is hard to get
the posterior probability of P(L = {|n; ). Here,

CPO;i(my) = f(nilng) = (fﬁ;;))‘

_ S P@=0 [l L =0f(u7|L = O)dpdr |
I fn)

_ ZP(L IE)// f(n(i)lﬂ':TvL‘;f;f(uleL :é)dudT

fnilp, 7, L = £)f(n)

_' fnlp, 7, L =0 f(p,7IL = 0)
- ‘”‘// Sl L =05

- -1
B //fmmﬁL—€0umﬁL—@(mﬂL=@d ]
= pndr

'K 1

_ n|L _ ﬁ (n‘”’? T7L = é)f(IJWT‘L = Z) T
= //fmmmL—e<> FlL = 0) dpud

& nw,g folpr L= 0f(urL=0, ]
= _ZP =9 //fnzlu,TL—é’) FnlL = 0) AT

r K —1

- P(L=0f (nIL—E _ i
= ; le P(L f(n]o) // f nz\#ﬂ', =0 flu, 7In, L = £)dpd
[ K

-1
Le=1 (4 AL -

-1
—_— K —_—
then CPO; ~ l:ZE:1 P(L = K\n)m] , where C'PO;(py, =) are
known, such as C POZ-( M) from My and C POZ( M) from Ms. Without extra com-
putation, taking advantage of known CPOs from M, and M3, and the estimated

P(L = {|n) from the previous section, we can easily acquire the CPO of M.
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3.5.3 Posterior Summary of 6 in M, Ms, M3, and M,

Table 3.8: Posterior summary of § part I: Counties 1-9

County s Underweight Normal Overweight Obese I Obese IT
ID PM PSD Cv PM PSD Ccv PM PSD Ccv PM PSD Ccv PM PSD Ccv
My 0.026 0.013 0.501 | 0.399 0.040 0.101 | 0.394 0.040 0.102 | 0.143 0.029 0.206 | 0.039 0.016 0.408
) M, |0.021 0.009 0425|0421 0.023 0.056 | 0376 0.021 0.056 | 0.148 0.023 0.153 | 0.033 0.010 0.316
Ms | 0.021 0.009 0431 | 0.376 0.019 0.051 | 0.418 0.023 0.055 | 0.152 0.023 0.153 | 0.033 0.011 0.323
My 0.021 0.009 0.431 | 0393 0.030 0.076 | 0.404 0.030 0.075 | 0.150 0.023 0.156 | 0.033 0.010 0.315
M,y 0.014 0.010 0.704 | 0.390 0.040 0.102 | 0.417 0.041 0.098 | 0.160 0.030 0.189 | 0.019 0.011 0.580
) M, | 0015 0.007 0490 | 0.422 0.024 0.056 | 0.381 0.019 0.049 | 0.159 0.024 0.152 | 0.023 0.009 0.386
Ms | 0.015 0.007 0.494 | 0.375 0.020 0.055 | 0.426 0.025 0.059 | 0.161 0.023 0.143 | 0.023 0.010 0.405
My 0.015 0.007 0.476 | 0.391 0.031 0.079 | 0.409 0.031 0.077 | 0.161 0.024 0.147 | 0.024 0.010 0.405
M,y 0.028 0.014 0.489 | 0.282 0.039 0.137 | 0.495 0.042 0.085 | 0.149 0.029 0.192 | 0.047 0.017 0.368
3 M, | 0.024 0.011 0459 | 0.393 0.021 0.054 | 0.378 0.018 0.047 | 0.166 0.028 0.167 | 0.040 0.015 0.368
Ms | 0.021 0.009 0.440 | 0.334 0.035 0.106 | 0.458 0.036 0.079 | 0.151 0.022 0.146 | 0.037 0.012 0.320
My 0.022 0.010 0.452 | 0.354 0.042 0.118 | 0429 0.050 0.117 | 0.156 0.026 0.163 | 0.038 0.013 0.342
M,y 0.007 0.004 0.543 | 0.356 0.022 0.062 | 0.421 0.022 0.053 | 0.183 0.018 0.096 | 0.034 0.009 0.252
4 M, | 0.009 0.004 0461 | 0.394 0.014 0.035 | 0.381 0.011 0.029 | 0.182 0.020 0.112 | 0.034 0.008 0.224
Ms | 0.009 0.004 0451 | 0.363 0.018 0.050 | 0.422 0.019 0.046 | 0.174 0.017 0.098 | 0.032 0.007 0.220
My 0.009 0.004 0.456 | 0.374 0.023 0.061 | 0.407 0.026 0.063 | 0.177 0.018 0.104 | 0.032 0.007 0.221
M; | 0016 0.011 0.708 | 0.370 0.042 0.112 | 0.400 0.042 0.104 | 0.180 0.033 0.181 | 0.035 0.016 0.453
P M, | 0.015 0.008 0.515 | 0.413 0.024 0.057 | 0.372 0.021 0.057 | 0.168 0.027 0.158 | 0.032 0.012 0.360
Ms | 0.015 0.007 0.490 | 0.366 0.023 0.063 | 0.419 0.027 0.063 | 0.169 0.026 0.152 | 0.032 0.011 0.341
My | 0015 0.008 0.493 | 0.382 0.032 0.084 | 0.402 0.033 0.083 | 0.169 0.026 0.154 | 0.032 0.011 0.356
M; | 0.009 0.009 0.943 | 0.380 0.045 0.118 | 0.402 0.044 0.108 | 0.147 0.032 0.217 | 0.063 0.021 0.339
6 M, | 0.012 0.007 0.586 | 0.417 0.025 0.059 | 0.375 0.020 0.054 | 0.151 0.024 0.160 | 0.046 0.017 0.362
Mz | 0.012 0.007 0.569 | 0.371 0.023 0.061 | 0.423 0.026 0.061 | 0.151 0.023 0.150 | 0.043 0.015 0.355
M, | 0012 0.007 0.590 | 0.387 0.032 0.083 | 0.406 0.034 0.083 | 0.151 0.024 0.158 | 0.044 0.016 0.370
M; | 0.009 0.009 0.943 | 0.376 0.044 0.117 | 0.400 0.045 0.113 | 0.183 0.035 0.191 | 0.032 0.016 0.502
My 0.012 0.007 0.575 | 0.416 0.025 0.059 | 0.374 0.022 0.058 | 0.169 0.028 0.163 | 0.030 0.012 0.389
! Ms | 0.013 0.007 0.578 | 0.367 0.023 0.062 | 0.422 0.027 0.065 | 0.169 0.025 0.150 | 0.030 0.011 0.359
M, | 0012 0.007 0.590 | 0.384 0.033 0.087 | 0.405 0.034 0.084 | 0.169 0.027 0.156 | 0.030 0.011 0.372
M; | 0019 0.014 0.726 | 0.387 0.048 0.123 | 0.443 0.050 0.112 | 0.126 0.033 0.265 | 0.025 0.015 0.597
g My 0.017 0.009 0.520 | 0.426 0.025 0.058 | 0.386 0.020 0.051 | 0.143 0.024 0.170 | 0.027 0.011 0.406
Ms | 0.016 0.008 0488 | 0.376 0.023 0.061 | 0.437 0.029 0.066 | 0.144 0.023 0.160 | 0.027 0.010 0.387
M, | 0.017 0.009 0.520 | 0.394 0.035 0.088 | 0.418 0.035 0.083 | 0.144 0.023 0.162 | 0.027 0.011 0.401
M, 0.016 0.011 0.686 | 0.391 0.045 0.116 | 0.398 0.044 0.110 | 0.174 0.035 0.203 | 0.021 0.012 0.584
o My 0.015 0.008 0.504 | 0.421 0.027 0.064 | 0.373 0.021 0.058 | 0.165 0.025 0.152 [ 0.026 0.010 0.389
Ms | 0.016 0.008 0492 | 0.372 0.021 0.056 | 0.420 0.025 0.059 | 0.167 0.025 0.149 | 0.025 0.010 0.389
M, 0.015 0.008 0.496 | 0.390 0.033 0.084 | 0.403 0.033 0.081 | 0.166 0.025 0.148 | 0.026 0.010 0.383

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.9: Posterior summary of ¢ part II:

Counties 10-18

County o Underweight Normal Overweight Obese I Obese II
ID PM PSD CV | PM PSD CV [ PM PSD CV | PM PSD CV | PM PSD CV
M; | 0.008 0.007 0.940 | 0.396 0.041 0.103 | 0.403 0.042 0.104 | 0.180 0.033 0.184 | 0.013 0.010 0.760
10 M, | 0.011 0.007 0.574 | 0423 0.024 0.057 | 0.377 0.022 0.058 | 0.167 0.025 0.151]0.021 0.010 0.453
Mz | 0.012 0.007 0.573 | 0.376 0.021 0.055 | 0.422 0.024 0.057 | 0.169 0.025 0.146 | 0.021 0.009 0.438
M, 10012 0.007 0.579|0.393 0.033 0.083 | 0.406 0.032 0.079 | 0.168 0.025 0.146 | 0.021 0.009 0.447
M; |0.026 0.013 0.515|0.365 0.037 0.102 | 0.385 0.038 0.098 | 0.181 0.030 0.167 | 0.044 0.016 0.366
I My 1 0.021 0.009 0.420 [ 0.407 0.024 0.058 | 0.367 0.021 0.057 | 0.169 0.025 0.148 | 0.036 0.012 0.323
M3z [0.021 0.009 0.435|0.363 0.022 0.062 | 0.411 0.026 0.064 | 0.169 0.024 0.144 | 0.037 0.012 0.326
My | 0.021 0.009 0.440 [ 0.379 0.031 0.081 [ 0.395 0.031 0.078 | 0.169 0.024 0.140 | 0.036 0.012 0.322
M; | 0.008 0.007 0.937 | 0415 0.041 0.099 | 0.439 0.042 0.095|0.113 0.027 0.235| 0.026 0.013 0.507
. M, | 0.012 0.007 0.581 [ 0.434 0.024 0.055 | 0.392 0.020 0.050 | 0.135 0.023 0.171]0.028 0.010 0.360
Mz | 0.012 0.007 0.557 | 0.386 0.022 0.056 | 0.438 0.026 0.059 | 0.137 0.024 0.173 | 0.027 0.010 0.355
M, ]0.012 0.007 0.583|0.403 0.033 0.082 | 0.422 0.033 0.078 | 0.135 0.024 0.176 | 0.028 0.010 0.357
M; | 0.012 0.007 0.563 | 0.432 0.030 0.070 | 0.378 0.029 0.076 | 0.142 0.021 0.146 | 0.036 0.012 0.323
My |0.013 0.006 0.426 | 0.434 0.023 0.053 | 0.375 0.020 0.053 | 0.146 0.018 0.123 | 0.033 0.009 0.272
P Mz | 0.013 0.006 0.423|0.388 0.014 0.037 | 0.413 0.017 0.042 | 0.152 0.019 0.122| 0.034 0.009 0.277
My | 0.013 0.006 0.426 [ 0405 0.028 0.069 | 0.399 0.025 0.063 | 0.150 0.019 0.124 | 0.033 0.009 0.273
M; |0.024 0.013 0.545 | 0425 0.045 0.106 | 0.399 0.044 0.110 | 0.131 0.030 0.228 | 0.022 0.012 0.567
4 M, 10.019 0.009 0.465]|0.434 0.027 0.062|0.378 0.023 0.059 | 0.144 0.023 0.162 | 0.025 0.010 0.380
Mz 0.019 0.009 0.463|0.383 0.021 0.055|0.426 0.024 0.057 | 0.147 0.024 0.162 | 0.026 0.010 0.389
My 10.019 0.009 0.465|0.400 0.033 0.082 | 0.409 0.032 0.078 | 0.146 0.024 0.162 | 0.025 0.010 0.378
M; |0.022 0.012 0.532|0.357 0.041 0.114 | 0.444 0.041 0.093 | 0.131 0.028 0.214 | 0.047 0.018 0.384
s M, | 0.018 0.008 0.438 [0.412 0.021 0.050 [ 0.384 0.017 0.045|0.148 0.025 0.166 | 0.039 0.013 0.334
Mz | 0.018 0.008 0.462 |0.368 0.025 0.068 | 0.433 0.028 0.064 | 0.145 0.023 0.155| 0.037 0.012 0.325
My | 0.018 0.008 0.448 [ 0.383 0.032 0.083 [ 0.416 0.035 0.083 | 0.146 0.024 0.167 | 0.037 0.012 0.327
M; ]0.013 0.009 0.695]|0.372 0.037 0.100 | 0439 0.041 0.092 | 0.158 0.029 0.183 | 0.018 0.010 0.584
6 M, 10015 0.007 0.482]0.416 0.020 0.048 | 0.386 0.017 0.044 | 0.160 0.024 0.150 | 0.023 0.009 0.406
Mz 10014 0.007 0.480 | 0.371 0.023 0.062 | 0.436 0.028 0.063 | 0.157 0.021 0.135 | 0.023 0.009 0.383
M, |0.014 0.007 0.481 |0.386 0.031 0.080 [ 0.418 0.035 0.083 | 0.158 0.023 0.147 | 0.023 0.009 0.381
M; |0.039 0.016 0.405|0.351 0.039 0.111 | 0.426 0.041 0.095 | 0.161 0.030 0.187 | 0.024 0.012 0.507
17 M, |0.028 0.012 0418 [ 0406 0.021 0.051 [ 0.378 0.017 0.045|0.161 0.025 0.153]0.027 0.010 0.362
Mz | 0.026 0.011 0.420 | 0.362 0.024 0.066 | 0.428 0.028 0.064 | 0.157 0.021 0.132 | 0.027 0.009 0.351
My | 0.027 0.012 0425 (0.377 0.030 0.080 [ 0.410 0.034 0.083 | 0.159 0.023 0.142] 0.027 0.010 0.365
M; 1 0.009 0.009 0.964|0.420 0.045 0.108 | 0.376 0.043 0.114 | 0.164 0.036 0.220 | 0.032 0.017 0.519
18 M, 10.012 0.007 0.581|0.430 0.028 0.065|0.370 0.024 0.066 | 0.158 0.026 0.163 [ 0.030 0.011 0.373
Mz | 0.013 0.007 0.552|0.378 0.019 0.051 | 0.417 0.024 0.056 | 0.162 0.025 0.153| 0.031 0.011 0.362
M, | 0.013 0.007 0.568 [ 0.396 0.034 0.086 | 0.400 0.033 0.082|0.161 0.025 0.159]0.031 0.011 0.366

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.10: Posterior summary of  part III: Counties 19-27

County o Underweight Normal Overweight Obese I Obese II
ID PM PSD CV | PM PSD CV [ PM PSD CV | PM PSD CV | PM PSD CV
M; |0.019 0.013 0.693 | 0416 0.048 0.116 | 0.384 0.047 0.123 | 0.164 0.035 0.214 | 0.016 0.012 0.767
19 M, | 0.016 0.008 0.507 [0.431 0.030 0.070 [ 0.372 0.025 0.066 | 0.157 0.026 0.162 | 0.023 0.010 0.430
Mz | 0.017 0.009 0.532|0.378 0.020 0.053 | 0.420 0.025 0.059 | 0.162 0.025 0.158 | 0.024 0.010 0.407
M, ]0.017 0.009 0.533]0.397 0.036 0.091 | 0.402 0.034 0.085 | 0.161 0.027 0.166 | 0.024 0.010 0.422
M; | 0.009 0.009 0.935|0.335 0.044 0.132 | 0.494 0.047 0.095| 0.139 0.031 0.225| 0.023 0.013 0.564
20 M | 0.013 0.008 0.610 [ 0.413 0.020 0.048 [ 0.390 0.017 0.043 | 0.157 0.027 0.171]0.027 0.011 0.406
Mz | 0.012 0.007 0.551|0.359 0.029 0.082 | 0.454 0.035 0.077 | 0.149 0.023 0.156 | 0.026 0.010 0.380
My | 0.012 0.007 0.599 [ 0.378 0.037 0.098 [ 0.432 0.043 0.100 | 0.152 0.025 0.166 | 0.026 0.010 0.396
M; |0.048 0.021 0.431 | 0431 0.050 0.116 | 0.353 0.051 0.145|0.123 0.033 0.269 | 0.046 0.021 0.453
. My |0.029 0.012 0432|0436 0.032 0.074 | 0.363 0.029 0.079 | 0.138 0.025 0.179 ] 0.035 0.013 0.363
Mz | 0.029 0.014 0.485|0.377 0.020 0.052 | 0.412 0.024 0.058 | 0.146 0.025 0.174 | 0.036 0.013 0.364
M, 10.029 0.014 0.459]0.398 0.038 0.096 | 0.394 0.035 0.090 | 0.143 0.026 0.180 | 0.036 0.013 0.372
M; | 0.016 0.010 0.660 | 0.431 0.044 0.102 | 0.391 0.043 0.109 | 0.134 0.030 0.226 | 0.029 0.015 0.512
My | 0.015 0.008 0.500 | 0.434 0.027 0.062 | 0.378 0.023 0.060 | 0.145 0.024 0.163 | 0.028 0.010 0.369
2 Ms | 0.015 0.008 0.500 | 0.384 0.019 0.050 | 0.423 0.023 0.055| 0.149 0.023 0.151 | 0.029 0.011 0.362
My | 0.015 0.008 0.508 [ 0.402 0.034 0.083 [ 0.407 0.032 0.078 | 0.147 0.024 0.160 | 0.029 0.011 0.376
M; |0.011 0.011 0.979 | 0.379 0.048 0.126 | 0.426 0.048 0.112 | 0.149 0.034 0.230 | 0.035 0.018 0.516
’ M, 10013 0.007 0.560 | 0.422 0.025 0.060 | 0.379 0.021 0.055 | 0.155 0.026 0.171 | 0.031 0.011 0.352
Mz 0013 0.007 0.568 | 0.371 0.024 0.064 | 0.431 0.029 0.068 | 0.154 0.025 0.162 | 0.032 0.012 0.378
M, 10013 0.007 0.570 | 0.388 0.035 0.089 | 0.413 0.037 0.089 [ 0.155 0.026 0.171 [ 0.032 0.012 0.365
M; | 0.008 0.008 1.005|0.375 0.044 0.116 | 0.397 0.043 0.107 | 0.182 0.034 0.189 | 0.038 0.017 0.445
" M, | 0.012 0.007 0.596 | 0414 0.024 0.058 [ 0.373 0.021 0.055|0.167 0.027 0.160 | 0.033 0.011 0.339
Mz | 0.012 0.007 0.551 | 0.368 0.023 0.062 | 0.418 0.026 0.061 | 0.169 0.025 0.145|0.033 0.011 0.339
M, | 0.012 0.007 0.581 [ 0.385 0.033 0.085 | 0.403 0.032 0.079 | 0.168 0.026 0.153]0.032 0.011 0.343
M; 0018 0.012 0.676 | 0.449 0.047 0.103 | 0.402 0.045 0.112 [ 0.117 0.029 0.248 | 0.015 0.011 0.751
’s M, 10.016 0.008 0.483]0.444 0.030 0.068|0.383 0.023 0.060 | 0.135 0.025 0.185 | 0.022 0.010 0.435
Mz 0016 0.008 0.512]0.390 0.020 0.050 | 0.428 0.024 0.055 | 0.143 0.025 0.177 | 0.023 0.010 0.422
M, |0.016 0.008 0.510 0411 0.036 0.087 [ 0.412 0.033 0.080 | 0.139 0.026 0.188 | 0.023 0.009 0.421
M; |0.027 0.016 0.595|0.373 0.045 0.120 | 0.432 0.046 0.107 | 0.136 0.032 0.232| 0.032 0.016 0.514
% M, |0.021 0.010 0.483 [0.417 0.023 0.056 [ 0.383 0.019 0.050 | 0.148 0.026 0.173]0.031 0.012 0.378
Mz | 0.020 0.009 0.477 | 0.370 0.025 0.066 | 0.433 0.029 0.066 | 0.148 0.024 0.161 | 0.029 0.010 0.357
My | 0.020 0.009 0.463 | 0.387 0.034 0.087 | 0.415 0.035 0.084 | 0.148 0.025 0.168 | 0.030 0.011 0.365
M; ]0.030 0.018 0.582]0.302 0.045 0.148 | 0473 0.049 0.103 | 0.170 0.037 0.219 | 0.026 0.016 0.600
” M, 10.022 0.011 04920401 0.023 0.056 | 0.378 0.019 0.050 | 0.171 0.030 0.176 | 0.028 0.011 0.377
Mz | 0.020 0.009 0.463 | 0.346 0.034 0.099 | 0.446 0.037 0.082 | 0.160 0.024 0.150 | 0.027 0.011 0.386
My | 0.021 0.010 0.479 |0.366 0.041 0.112 [ 0.423 0.046 0.109 | 0.163 0.027 0.163 | 0.028 0.011 0.391

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.11: Posterior summary of 6 part III: Counties 28-35

County o Underweight Normal Overweight Obese I Obese II
ID PM PSD CV | PM PSD CV [ PM PSD CV | PM PSD CV | PM PSD CV
M; |0.019 0.013 0.687 | 0410 0.047 0.115 | 0.389 0.048 0.122 | 0.156 0.035 0.221 | 0.025 0.015 0.594
" My | 0.017 0.008 0.494 [ 0.429 0.028 0.066 | 0.374 0.025 0.066 | 0.154 0.026 0.168 | 0.027 0.010 0.389
Mz | 0.017 0.008 0.504 | 0.377 0.022 0.058 | 0.421 0.025 0.059 | 0.159 0.027 0.167 | 0.027 0.010 0.373
M, ]0.017 0.009 0.508 | 0.395 0.034 0.087 | 0.404 0.035 0.086 | 0.157 0.026 0.168 | 0.027 0.011 0.394
M; | 0.009 0.008 0.980 | 0.391 0.042 0.107 | 0.429 0.041 0.096 | 0.150 0.032 0.211 | 0.022 0.013 0.575
2 M | 0.012 0.007 0.621 [ 0.424 0.023 0.055 | 0.384 0.020 0.051 | 0.155 0.024 0.156 | 0.025 0.010 0.394
M3z | 0.012 0.007 0.566 | 0.376 0.023 0.060 | 0.433 0.027 0.062 | 0.154 0.023 0.147 | 0.025 0.009 0.370
My | 0.012 0.007 0.591 [ 0.393 0.033 0.083 [ 0.416 0.033 0.081 | 0.155 0.023 0.149 | 0.025 0.009 0.372
M; |0.015 0.010 0.702 | 0.338 0.041 0.121 | 0.420 0.044 0.104 | 0.207 0.034 0.166 | 0.020 0.012 0.590
20 M, | 0.016 0.007 0.471 [ 0401 0.022 0.055 | 0.373 0.019 0.052|0.186 0.032 0.171]0.025 0.010 0.380
Mz | 0.015 0.007 0.466 | 0.355 0.027 0.075 | 0.427 0.028 0.066 | 0.179 0.028 0.155| 0.024 0.009 0.386
M, ]0.015 0.007 0468 |0.371 0.033 0.090 | 0.407 0.037 0.090 | 0.183 0.030 0.165 | 0.025 0.009 0.386
M; |0.023 0.013 0.578 | 0.399 0.043 0.107 | 0.391 0.043 0.110 | 0.158 0.031 0.199 | 0.030 0.015 0.491
My |0.019 0.009 0.462|0.423 0.026 0.062 | 0.373 0.022 0.060 | 0.156 0.025 0.161 | 0.029 0.011 0.374
3 Mz | 0.019 0.009 0.478 | 0.373 0.022 0.058 | 0.420 0.025 0.060 | 0.160 0.025 0.155| 0.028 0.010 0.351
My | 0.019 0.009 0472 (0.391 0.033 0.083 | 0.403 0.033 0.082|0.159 0.025 0.158|0.029 0.010 0.355
M; | 0.007 0.007 0.941 | 0.319 0.037 0.116 | 0.450 0.039 0.086 | 0.200 0.032 0.159 | 0.024 0.012 0.511
» M, 10.012 0.007 0.569 | 0.397 0.020 0.051 | 0.378 0.016 0.042 | 0.186 0.031 0.164 | 0.027 0.010 0.370
Mz 10011 0.006 0.576 | 0.348 0.029 0.084 | 0.439 0.030 0.068 | 0.177 0.026 0.144 | 0.026 0.009 0.345
M, 0011 0.006 0.579]0.365 0.036 0.097 | 0.417 0.039 0.094 | 0.181 0.029 0.159 | 0.026 0.009 0.352
M; | 0.011 0.007 0.662 | 0.367 0.037 0.101 | 0.419 0.035 0.084 | 0.177 0.029 0.164 | 0.026 0.012 0.458
3 M, | 0.014 0.007 0.510 | 0411 0.020 0.049 [ 0.381 0.017 0.044 | 0.168 0.024 0.140 | 0.027 0.009 0.331
Msz | 0.013 0.006 0.502 |0.370 0.021 0.058 | 0.424 0.024 0.056 | 0.167 0.022 0.133 | 0.027 0.009 0.346
M, | 0.013 0.007 0.519 [ 0.384 0.029 0.076 [ 0.408 0.031 0.076 | 0.169 0.023 0.135]0.027 0.009 0.352
M; 0015 0.010 0.695|0.373 0.041 0.110 | 0.452 0.042 0.092 | 0.134 0.030 0.222 | 0.026 0.013 0.503
4 My 10015 0.008 0.496|0.420 0.021 0.051|0.389 0.017 0.044 | 0.148 0.023 0.158 | 0.028 0.011 0.390
Mz 10015 0.007 0.485]|0.372 0.024 0.065 | 0.443 0.029 0.065 | 0.144 0.022 0.153 [ 0.027 0.010 0.363
M, | 0.015 0.007 0.495|0.388 0.033 0.086 | 0.424 0.036 0.085|0.145 0.023 0.157 | 0.028 0.011 0.381
M; |0.014 0.010 0.705 | 0419 0.040 0.095 | 0.435 0.040 0.092 | 0.121 0.028 0.228 | 0.012 0.010 0.790
3 M, | 0.015 0.007 0.488 [ 0436 0.024 0.055 | 0.392 0.020 0.050 | 0.138 0.022 0.162 | 0.020 0.009 0.447
Mz | 0.014 0.007 0.474 | 0.388 0.021 0.055 | 0.437 0.026 0.059 | 0.140 0.023 0.166 | 0.020 0.009 0.433
M, | 0.015 0.007 0.486 [ 0.406 0.032 0.080 [ 0.421 0.033 0.077 | 0.139 0.023 0.167 | 0.020 0.009 0.439

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Chapter 4

Partial Exchangeability

To avoid borrowing information from the extreme areas, we propose the model
with partially exchangeability, which is the exchangeability-nonexchangeability
(EXNEX) model. EXNEX models allow borrowing information across similar ar-
eas while avoiding too optimistic borrowing from very different areas. We propose
a simple binomial-Beta EXNEX model to illustrate the partial exchangeability in
a simulation study. Then we present a multinomial-Dirichlet EXNEX model with

order restrictions and a numerical example.

4.1 Binomial-Beta EXNEX Model

It is difficult and time-consuming to run simulations for the multinomial-Dirichlet
EXNEX model with order restrictions under several scenarios. To simply demon-
strate the Bayesian hierarchical model with the partial exchangeability, we first
present a binomial-Beta EXNEX model without any order restriction to show that

the EXNEX model can borrow information among areas and avoid borrowing from
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very different areas.

Let y; denote the number of successes in n; independent trials in the ith area,
i =1,...,¢ and 0; denote the probability of individual success in the ith area. For
example, y; might be the number of people in normal BMI category, and 6; might
be the corresponding normal BMI probability in our numerical example.

We assume fully exchangeability in the binomial-Beta model. Denoted as

BBM, the binomial-Beta exchangeability (EX) model is

yzwz ~ Binomial(ni, 91),71 =... ,f,
L—p
bl p ~ Beta{p(—=), (1 = m(—=)},

m(p,p) < 1,0 < p,p < 1.

where hyper-parameters 1 and p = 1/(1 + 7) have a noninformative prior.

We assume partial exchangeability in the binomial-Beta model, which is the
exchangeability-nonexchangeability (EXNEX) model. We can consider that each
area ¢ has its own mixture probability p; of borrowing information. The distribution
of 6; is a mixture of two Beta distributions. One component, Beta{,u(l—;p), (1—
u)(l;pp)}, permits borrowing information from the other areas where we assume
fully exchangeability. The other component is the noninformative Beta(1, 1), per-
mits no borrowing information from the other areas where we assume nonex-
changeability. The binomial-Beta EX model, BB M, is a special case of BB M “*"¢*
where the mixture probability is 1. Denoted as BB M “*"** the proposed binomial-

Beta EXNEX model is

y;|0; ~ Binomial(n;,0;),i = ... ¢,
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0;l 11, p, pi ~ piBeta(N(I;)a (1= p)(—=)) + (1 — p;)Beta(1, 1),

pz‘¢ ~ Beta(¢707 (1 - ¢)T0)7
where 7 is specified as 1, because it is weakly identified,

w(p, p, ) x 1, where 1/2 < ¢ < 1,0 < p, p < 1.

However, label switching problem in the Bayesian mixture models is a well-
known problem, which is caused by symmetry in the likelihood of the model pa-
rameters (Stephens 2000). In particular, the invariance of the likelihood under
relabeling of the mixture components can lead to the posterior distribution of the
parameters being highly symmetric and multimodal, making it difficult to identify
the posterior distribution of parameters. We want to impose constraints on the mix-
ture probabilities p;, 1/2 < p; < 1, to have p; > 1 — p;. Because we want to use
the exchangeable component for the most of the time. Constraints on p; may cause
other problems, such as computation difficulty. We assume 1/2 < ¢ < 1 to deal
with label switching in the mixture model, where ¢ is the expectation of p;, and it

will not increase the computation difficulty.

The joint posterior distribution of BB M “*"¢* is

4
(6, 1, p, p, 8ly) o [ [{ (ZZ> 07" (1 —0:)™ {piBeta(u(l_Tp)» - “)(1;;)p)H

P p)
Bom, (1= d)m)

(1 —pi)Beta(1,1)}

where B(¢79, (1 — ¢)7) is the normalization constant of the Beta distribution.
In Appendix 4.6.1, we show how to use a griddy Gibbs sampler to draw sam-
ples of p, p, and ¢ from the binomial-Beta ENXEX model, BBM®*"**. As in

Appendix 4.6.1, we can draw the posterior samples of the mixture probability p;
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easily.
Given the mixture probability p;, we draw posterior samples from the condi-

tional posterior distribution of #, which is a mixture of Beta distributions,

1—p 1—p
0i|pi, 11, p,y ~ piBeta{y; + M(T), ni —yi + (1 — M)(T)}—I—

(1 —p;)Beta{y; +1,n; —y; + 1}.
4.1.1 Simulation Under Three Scenarios

To show the robustness of the model with partial exchangeability, which is
the EXNEX model, denoted as BBM “*™¢* we consider three simulation scenar-
ios with different heterogeneity. The heterogeneity between areas is related to the
success probabilities ¢; and the numbers of observations in each area. In the sim-
ulation, we assume the true success probabilities and the range of area size are

known in 7 areas, given in Table 4.1.

Scenario | Area Sizes 0 Areal Area2 Area3 Area4 Area5 Area6 Area7 | Heterogeneity
1 5~15 girue | 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ‘Small’
2 5~25 girve | 0.2 0.2 0.2 0.2 0.2 0.6 0.6 ‘Moderate’
3 5~40 girue | 0.1 0.1 0.4 0.4 0.4 0.8 0.8 ‘Large’

Table 4.1: True success probabilities 6; and area sizes for seven areas under three
scenarios with different heterogeneity

Under Scenario 1, all areas have the same event probabilities and the area size
is between 5 and 15, which means the heterogeneity between areas is relatively
very small. Under Scenario 2, the last two areas have larger event probabilities
than the first five areas, and the each area size is between 5 to 25, which means

the heterogeneity between areas might be moderate. Under Scenario 3, the first

73



two areas have smaller event probabilities than the middle areas, the last two areas
have larger event probabilities than the middle areas. We assume the each area
size is beteween 5 to 40. The difference between each area under Scenario 3 is
significantly larger than the difference under Scenario 2. Under Scenario 3, it may
have relatively large heterogeneity. We expect that BBM **"“* model might be
better than BB M model under Scenario 3.

We run 50 simulations for BBM¢*"*** and BBM under three scenarios. For
each simulation, we run 15,000 MCMC iterations, take 5,000 as a ‘burnin ’ and use
every 10th to obtain 1,000 converged posterior samples to maintain consistency.
We provide convergence diagnostics for one of simulations, such as Geweke test,
effective sample size. Table 4.2 provides p-values of the Geweke test, which are
large to show the MCMC is stationary. Table 4.3 provides the effective sample sizes

of posterior samples. Our Gibbs sampler method works well in the simulation.

p P ¢
BBM 0.541 0.994

BBM®™"™e* 1 0413  0.642 0.099

Table 4.2: P-values of Geweke tests for u, p, and ¢ in the Model BBM and
BBM®™* for one simulation

M P ¢
BBM 950 1000

BBM™* | 1000 1054 1000

Table 4.3: Effective sample sizes of u, p, and ¢ in the Model BBM and
BBM®*™* for one simulation
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Scenario | Model PSDof#; PSDoff; PSDoff; PSDoff, PSDoff; PSDoffs PSD of6;

BBM 0.083 0.089 0.080 0.071 0.089 0.080 0.101

1
BBMe*™er 0.092 0.098 0.089 0.077 0.100 0.089 0.121
BBM 0.063 0.061 0.060 0.071 0.061 0.085 0.072

2
BBMe*ner 0.069 0.069 0.067 0.084 0.067 0.110 0.087
BBM 0.064 0.065 0.072 0.053 0.108 0.109 0.070

3
BBMe*er 0.065 0.071 0.075 0.056 0.119 0.127 0.139

Table 4.4: Posterior standard deviation (PSD) of the success probabilities 8; for
seven areas under three scenarios (one simulation)

Table 4.4 provides the posterior standard deviation of the success probabilities

0; for each area in models, BBM and BBM ™" under three scenarios. Overall,

the binomial-Beta EXNEX model, BBM “"¢* has larger posterior standard devi-

ation of the success probabilities #; than the binomial-Beta model, BB M. The pos-

sible explanation is that the mixture structure in the EXNEX model, BB M “"¢*,

causes the model to borrow less information among areas than the model BB M.

Scenario | Heterogeneity | Model Relative Bias RMSE
BBM 0.202 0.097
1 ‘Small’
BBMe*er 0.223 0.103
BBM 0.215 0.124
2 ‘Moderate’
BBMe*ner 0.212 0.125
BBM 0.346 0.168
3 ‘Large’
BBMe*"er 0.305 0.160

Table 4.5: Average relative bias and RMSE of 6; in Model BBM and BBM®*"¢*
under three scenarios (relatively different heterogeneity)

In Table 4.5, we compare the relative bias and RMSE of 6 in each model under

three scenarios. The relative bias are Zzzl |
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and é, are the posterior means. RMSE is Vbias? + PSD?, where bias = Hfme —él-
and PSD is the posterior standard deviation of samples.

Under Scenario 1 with the very small difference between areas, all models have
relatively small absolute bias. But B BM model has the smaller relative bias than
BBM™** model. However, under Scenario 3, BB M " model has the smaller
relative bias than BBM.

One explanation is that BB M model can borrow much more information than
BBM®*"** model, which is helpful under Scenario 1. BBM “*"** can borrow in-
formation from similar areas and avoid too optimistic borrowing information from
very different areas, which shows smaller relative bias under Scenario 3. For this
reason, BBM®"** model is more robust than BBM model under large hetero-
geneity scenarios. Since the heterogeneity between areas might be hard to assess
in practice, the Bayesian hierarchical EXNEX model is recommended when areas

might be very different from each other.

4.2 Multinomial-Dirichlet EXNEX Model without Order

Restriction

EXNEX models allow for a small number of partial exchangeability structures,
which is that different mixture probabilities p; for each area i represent different
ratio of fully exchangeability and non-exchangeability. The mixture probabilities
are related to the percentage of information borrowed from other areas, which will
be illustrated in a numerical example. This is a useful and more robust method to
avoid pooling from very different areas and borrow from similar areas.

To have EXNEX structures in the multinomial-Dirichlet model without order
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restriction, we have a following model, denoted as M{*"“*,
ind . . .
n;|0; ~ Multinomial(n;. , 6;), i=1,...,0.

At the second stage, the distribution of 6; is a mixture of two Dirichlet distri-

butions,

0;|w, 7, p; ind p;Dirichlet(pe7) 4+ (1 — p; )Dirichlet(1,1,...,1),i =1,...,¢,

where H = (/,Ll, R ,,UK), T are hyper—parameters,
K
(K —1)!
ﬂ-(l*”aT):mv T,Mj>0, JZ;M]:]‘

One component in the distribution of 8; is Dirichlet(g7), which permits bor-
rowing information from the other areas where we assume fully exchangeability
(EX). The other component is the noninformative Dirichlet(1, 1, ..., 1), which per-
mits no borrowing information among areas where we assume non-exchangeability
(NEX). In Chapter 2, the model M is a special case of M[*"“*, where the mixture
probabilities p; is 1.

The hyper-prior of mixture probabilities p; is

pi|o, 70 ~ Beta(¢To, (1 — ¢)70), Where 79 is specified as 1,

¢ ~ Beta(1,1) 1/2<¢<1.

We use a constrained parameter space of ¢ to deal with label switching prob-

lem in the mixture model, where we assume 1/2 < ¢ < 1. The joint posterior
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distribution is

il K-1)!
(0, p, 7, p, p|n) x H{ H 9” pZDII‘IChlet(/,LT)( )2 +
i=1 1lj= 1”%] j=1 (L+7)

dTo—11 _ o \(1—¢)T0—1
.. D; (1 pz)
(=)

In Appendix 4.6.2, we show how to use griddy Gibbs sampler to draw x, p and
¢ from the multinomial-Dirichlet EXNEX model. We draw the posterior samples
of the mixture probabilities p; from the conditional posterior distribution. After
having posterior samples of parameters p, 7 = 1/p — 1, ¢, p;, we can draw the

posterior of @; easily where

0;|pi, p, 7,m ~ p;Dirichlet(n; + 1) + (1 — p;)Dirichlet(n; + 1).

4.3 Multinomial-Dirichlet EXNEX Model with Order Re-

strictions

We present a multinomial-Dirichlet EXNEX model with order restrictions, de-

noted as Mg*"",
ind . . .
n;|0; ~ Multinomial(n;. ,6;), i=1,...,¢.

At the second stage, the distribution of 6; is a mixture of two Dirichlet distri-
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butions,
0;|p2, 7, p; % p;Dirichlet(pr)Ip, e + (1 — p;)Dirichlet(1, 1, ..., 1),

where Iy, ¢ is anindicator that§; € C, p = (1, . .., i), T are hyper-parameters,

K(m— 1K —m)!
(1+7)2 7

K
m(p, ) = pi>0, > pi=1,pcC,,

=1

andC:{eij29i1§9i2<...§9im29i(m+1) 22011(},

Cu={pjm <p2 < oo < 2 fony1) = - 2 K )

We assume the modal positions m in C' and C), are known.

One component in the distribution of 8; is Dirichlet(g7), which permits bor-
rowing information from the other areas, where we%sesime fully exchangeability
(EX) and unimodal order restrictions on 6;. The other component is the nonin-
formative Dirichlet(1,1,...,1), which permits no borrowing information among
areas, where we assume non-exchangeability (NEX) and no order restriction. In
Chapter 2, the model M3 is a special case of M$*"“" where the mixture probabili-
ties p; is 1.

The hyper-prior of mixture probabilities p; is

pi|o, 70 ~ Beta(¢To, (1 — ¢)70), Where 7y is specified as 1,

¢ ~ Beta(1,1) 1/2<¢< 1.

We assume 1/2 < ¢ < 1 to deal with label switching in the mixture model.
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The joint posterior distribution is

’I’Li'

Dirichlet(p7) K(m - 1)(K —m)lic, N

4 K
0 — 116" p,
70 o) o [ = 11057 i e (aryao (4 7)2

1
i=1 Hj:l Nig: 521

<i>7'0*1(1 _ pi)(lﬂb)m*l

)Diri b
(1 — p;)Dirichlet(1)] Bloro. (1 — 9)70))

When there may be no unimodal order restriction in some small areas, those
areas may have smaller mixture probabilities p; than other areas. For example, in
the following numerical example, County 21 may be considered a very-different
area since the order restriction assumption that the mode is at the third position may
not hold. We expect the mixture probability ps; of County 21 to be small. Then
the EXNEX model with order restrictions, M3*"*, will borrow less information
for County 21 from other counties.

In Appendix 4.6.3, we show how to use griddy Gibbs sampler to draw p, p and
¢ from the multinomial-Dirichlet EXNEX model. We draw the posterior samples
of the mixture probability p; from the conditional posterior distribution. After
having posterior samples of parameters p, p, ¢, p;, we can draw the posterior of 0;

easily, where

0;|p, 7, pi, n ~ p;Dirichlet(n; + pu1)Ilg.cc + (1 — p;)Dirichlet(n; + 1),

where Iy, cc is an indicator function that 0; € C.
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4.4 Numerical Example: BMI

We use BMI data from NHANES III to illustrate the multinomial-Dirichlet
EXNEX model, denoted as M{*"“* and the EXNEX model with order restrictions,
denoted as M5*"“*. Our primary purposes are to show that the EXNEX model
can provide good estimates and borrow information from the similar areas while
avoiding too optimistic borrowing from extreme areas. We fit My, M3, M{*"er,
MS3*"“* in the numerical example. To be convenient, Table 4.6 provides the model

notations used in the following discussion.

Table 4.6: Model notations in Chapter 4

Notation | Model Order Restrictions Location

My the multinomial-Dirichlet model NA Chapter 2

the multinomial-Dirichlet model
M; 0 < by < 93 > 04 > 95 Section 2.3
with order restrictions

MpEner | the multinomial-Dirichlet EXNEX model | NA Section 4.2
the multinomial-Dirichlet EXNEX model

ngnem 01 < 60y < 03 > 04> 05 | Section 4.3
with order restrictions

For each model, we run 10,000 MCMC iterations, take 5,000 as a ‘burn in’ and
use every 5th to obtain 1000 converged posterior smaples. In Figure 4.1, the trace
plots look like a random scatter around a mean value. There is no distinct jumps
occur in the traces of g = (p1, ..., us) as the MCMC scheme moves. In Figure
4.2, they are unimodal distribution densities. We do not have the label switching
problem. We have converged posterior samples and our MCMC is stationary. Ta-
ble 4.7 provides p-values of the Geweke diagnostic to check the convergence of the

parameters (Geweke 1992). All p-values area large to not reject the null hypothesis
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that the MCMC is stationary. Table 4.8 provides the effective sample size of pos-
terior samples. Our samples are independent since the effective sample size equals
the actual sample size. Our Gibbs sampling method works well and the posterior

samples can be used for the further inference.

mu
Xanxa
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Figure 4.1: Traceplots of p in Mg*™*
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Figure 4.2: Densities of p in M§*"*

82



1 2 3 pa U5 p [
Mgrrer 10241 0994 0.077 0.047 0.279 | 0.058 | 0.921

M3sTer 1°0.241 0150 0992 0.094 0.273 | 0.642 | 0.099

Table 4.7: P-values of Geweke tests for u, p, and ¢ in the Model M{*"* and
M?G’BZETLECE

p p2 M3 g4 fs | p ¢
M&mez 1950 1000 1060 866 1000 | 1025 | 1000

Mg¥ner 11000 1054 1057 1000 1000 | 1000 | 1000

Table 4.8: Effective sample sizes of u, p, and ¢ in the Model M{*"¢* and Mg*"™*

In Appendix 4.6.4, we provide the posterior mean (PM) and posterior standard
deviation (PSD), Posterior Coefficient of Variation (CV) of each category proba-
bility 6 after fitting four models. We also provide the posterior mean of mixture
probabilities p; in M{*"“* and M5*"*. For mixture probabilities p;, CVs are mis-
leading for proportions.

Opverall, the multinomial-Dirichlet EXNEX models, M{*"“* and M3$*"“*, have
relatively larger PSD than the multinomial-Dirichlet models, M7 and M3, due to
the partially borrowing information from other areas. The average mixture proba-
bilities p; are about 0.9 in M*"** and M$*"“*, which indicates that M7*"“* and
M3*"¢* borrow less information than M7 and M3. For some extreme areas, such
as County 3, County 21, County 27, the mixture probabilities p; are smaller than
the average and they borrow much less information from the other areas. Incorpo-
rating order restrictions, M3 has smaller PSD than M, and MS$*"“* has smaller
PSD than M*"“*. But for some extreme areas such as County 21, the model with
order restrictions may not have smaller PSD than the model without order restric-

tions. Incorporating order restrictions may cause those areas to be very different
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from other areas, the mixture probabilities p; may be smaller, and borrow less in-
formation from other areas.

To see the feature of EXNEX model, which is that it can borrow from similar
areas and avoid borrowing from extreme areas, we discuss the posterior summary
for four representative areas, such as County 3, County 9, County 21 and County 27
here. Areas where the unimodal order restrictions may not hold can be considered
as extreme areas, such as County 21. Areas where the unimodal order restrictions
are too good to be true can be considered as extreme areas, such as County 3 and
County 27. In those extreme areas, the mixture probabilities p; will be relatively

small, which borrow less information from other areas.

Table 4.9: Posterior summary of 8 in four models for County 3

0
Model i Underweight Normal Overweight Obese | Obese 11
PM1 PSDI1 | PM2 PSD2 | PM3 PSD3 | PM4 PSD4 | PM5 PSD5
My 0.026 0.013 | 0.305 0.049 | 0.477 0.045 | 0.147 0.027 | 0.045 0.022
M3 0.024 0.011 | 0.308 0.034 | 0.479 0.037 | 0.148 0.027 | 0.042 0.015
MpEmer 10.920 | 0.041  0.020 | 0.233  0.042 [ 0.516 0.051 | 0.162 0.036 | 0.048 0.021
MgFrer 110.794 1 0.024 0.015 | 0.311 0.056 | 0.474 0.048 | 0.152 0.025 | 0.040 0.018

Note: Mixture Probabilities p; , Posterior Mean (PM), Posterior Standard Deviation (PSD)

In Table 4.9, the mixture probability p; in M7*"¢* is 0.92. However, the mix-
ture probability p; in M$*™" is 0.794, which is smaller than 0.92 even the order
restriction may hold in County 3. The cell counts of County 3 are (3, 20,49, 13, 5).
One possible explanation is that the cell counts of County 3 are much smaller than
the cell counts of County 4, which are (2,145,174,77,14). The cell counts of
County 2 are (1,36,38,15,1). We notice that the order restriction assumption

may hold in County 2, County 3, and County 4. But County 3 might be too good
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to be true, since 20 observations in normal BMI level and 49 observations in over-
weight BMI level, which will make County 3 as a very-different area than others.
We also notice the posterior means in M; and M3 are very close. One possible
explanation is that the unimodal order restrictions that the modal position is at the
third may hold in County 3. But the posterior standard deviation in M3 is smaller

than in M7, due to borrowing information from other areas.

Table 4.10: Posterior summary of 8 in four models for County 27

0
Model i Underweight Normal Overweight Obese | Obese 11
PM1 PSDI1 | PM2 PSD2 | PM3 PSD3 | PM4 PSD4 | PM5 PSD5
My 0.027 0.016 | 0.322 0.056 | 0.459 0.049 | 0.162 0.033 | 0.030 0.024
Ms3 0.024 0.013 | 0.328 0.037 | 0.460 0.042 | 0.162 0.031 | 0.027 0.014
MpErer 10.934 1 0.054  0.030 | 0.230 0.052 | 0.491 0.062 | 0.209 0.051 | 0.016 0.016
MgFrer 110.869 | 0.025 0.020 | 0.327 0.061 | 0.455 0.047 | 0.166 0.031 | 0.028 0.014

Note: Mixture Probabilities p;, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.10, the mixture probability p; in M7*"** is 0.934, where the
count data in County 27 is (2, 10, 26,9, 1) . However the mixture probability p; in
M3T"e* 15 0.869, which is smaller than 0.934. County 27 has the similar problem as
County 3, which is that the number of overweight dominates the other categories.
The unimodal order restrictions in County 27 may be too good to be true, which
makes County 27 as a very-different area than others. Similar to County3, we also
notice the posterior means in M7 and M3 are very close. But the posterior standard
deviation in M3 is smaller than in M;, due to borrowing information from other

areas.
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Table 4.11: Posterior summary of € in four models for County 9

0
Model i Underweight Normal Overweight Obese I Obese I
PM1 PSDI1 | PM2 PSD2 | PM3 PSD3 | PM4 PSD4 | PM5 PSD5
M, 0.017 0.011 [ 0.394 0.04 | 0.394 0.042 | 0.171 0.031 | 0.024 0.019
M3 0.016 0.010 | 0.368 0.024 | 0.417 0.029 | 0.175 0.032 | 0.023 0.012
MpEmer 110.945 1 0.026 0.017 | 0.385 0.053 [ 0.373 0.053 | 0.203 0.044 | 0.012 0.012
Mg*er 10.914 | 0.015 0.009 | 0.373 0.026 | 0.416 0.034 | 0.172 0.029 | 0.025 0.011

Note: Mixture Probabilities p;, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.11, the mixture probability p; in M{*"™* is 0.945 and the mixture
probability p; in M$*"* is 0.914, which are not much different, where the count
data of County 9is (1, 29, 28, 14, 1). Even the order restriction assumption may not
hold, the number of observations in normal BMI level is very close to the number

of observations in overweight BMI level. County 9 may not be considered as a

very-different area and the mixture proportion p; is 0.914, which is close to other

areas’.
Table 4.12: Posterior summary of 8 in four models for County 21
0

Model i Underweight Normal Overweight Obese [ Obese 11
PM1 PSD1 | PM2 PSD2 | PM3 PSD3 | PM4 PSD4 | PM5 PSD5
My 0.044 0.024 | 0.426 0.048 | 0.361 0.053 | 0.123 0.032 | 0.046 0.032
M; 0.041 0.017 | 0.373 0.023 | 0.405 0.027 | 0.140 0.033 | 0.042 0.017
MpEner 110.878 1 0.087 0.036 | 0.449 0.063 [ 0.292 0.055 | 0.124 0.042 | 0.049 0.027
MgEmer 110.578 1 0.055 0.042 | 0.412 0.064 | 0.356 0.080 | 0.125 0.043 | 0.052 0.033

Note: Mixture Probabilities p;, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.12, in M7*"¢*, the mixture probability p; is 0.878, which is

smaller than others. In Mg*"*, the mixture probability p; is 0.578, which is
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extremely smaller than others. The count data in County 21 is (1, 36,29, 9,2),
which does not match the third modal position assumption and the order restric-
tion assumption may not hold. It suggested that the EXNEX model can avoid
optimistic borrowing from the very different areas. The posterior mean of 6 are
(0.055,0.412,0.356,0.125,0.052), and the mode is at the second position. In the
EXNEX model with order restriction, M5*"*“*, County 21 should be considered as
a very-different area compared with other counties, since 36 observations in normal
BMI level and 29 observations in overweight BMI level.

In Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6, we provide the posterior
densities of ¢ in M3 and MS$*"“* for counties 2, 3, 13, and 35, correspondingly.
The difference between M$*"*" and M3 may be not significant since the mixture

proportions of EXNEX in M$*"*** are around 0.91.
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Figure 4.3: Densities of 6 in M3 and M§*"* for County 2
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Figure 4.3 provides the posterior densities of 6 for County 2. The density
curves in Mg*"* are slightly flatter than in M3. But the difference of density
curves between M3 and M3*"“" is not significant. The model MS*"“* borrows

almost the same amount of information from other counties as the model M3 does.
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Figure 4.4: Densities of 6 in M3 and MS$*"“* for County 3

Figure 4.4 provides the posterior densities of 6 for County 3. The density
curves in M$*"* are flatter than in M3. That is because the mixture probability is
0.794 and the model MS*"“* borrows much less information than the model M3
does. As discussed in the previous, one possible explanation is that a significant
difference between County 3 and other counties, such as County 2 and County 4,
which causes a small mixture probability.

In Figure 4.5 and Figure 4.6, the posterior density curves in M3 and M5*"“* for

County 13 and County 35 do not have significant difference. With order restric-
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tions, County 13 and County 35 are similar with other counties where the order
restriction assumption may hold. The mixture probabilities p;3 and pss5 are around
0.91, which is close to 1. For this reason, the performances of M3 and M3*"** are

similar.
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Figure 4.5: Densities of ¢ in M3 and M§*"“* for County 13
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Figure 4.6: Densities of ¢ in M3 and M3 for County 35
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Figure 4.7: Densities of 6 in M3 and M$*"“* for County 21
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Additional to those, Figure 4.7 provide the posterior density curves of f2; in
M3 and M$*"*. Large overlaps between normal BMI level and overweight BMI
level in both models suggest that the unimodal order restriction assumption may
not hold for County 21. We should avoid borrowing too much information from
other counties. Therefore the EXNEX model with order restrictions, M$*"*, is a

better fit for this situation than model Ms3.

4.5 Concluding Remarks

In summary, extending the full exchangeability (EX) model to mixtures that
allow for exchangeability and nonexchangeability looks promising. From the sim-
ulation of binomial-Beta EXNEX model, BBM “*™“*  the model with partial ex-
changeability will have smaller relative bias and are more robust under different
scenarios than the fully exchangeability model, such as BBM. We present the
multinomial-Dirichlet EXNEX model with order restrictions, M$*"*. We notice
the computational difficulties under order restriction assumption.

In the numerical example, the EXNEX model with order restrictions, M™%,
can borrow from similar areas and avoid borrowing too much from extreme ar-
eas, since it can have different mixture probabilities p; for each area. Extreme
areas could be the areas where the unimodal order restriction may not hold, such
as County 21, or the areas where the unimodal structure may be too good to be
true, such as County 3. Different mixture probabilities p; are related to different
portions of fully exchangeability and nonexchangeability, which means different
portions of information borrowed from other areas. The mixture probabilities p;

of EXNEX models for ¢th area are related to the difference between that area and

91



others. Large difference causes small mixture probability p;, and causes less infor-
mation borrowed from other areas.

However the simulation of the EXNEX model with order restrictions should
be provided in the future to show the robustness of the EXNEX model under dif-
ferent scenarios. Careful considerations for the specification of prior distributions
and mixture weights are important, which may affect the partial exchangeability
assumption in the model (Neuenschwander et al. 2016). Due to the complexity of
the EXNEX model, we have much more parameters in the EXNEX model for the

same amount of data than the EX model. So over-fitting should be concerned.
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4.6 Appendix

4.6.1 Griddy Gibbs Sampler for the Binomial-Beta EXNEX Model

We show how to use a griddy Gibbs sampler to draw samples of u, p, and
¢ from the binomial-Beta ENXEX model, BBM®*"**, Specifically, we use 200
points in the uniformly spaced grid. The joint posterior distribution of B BM “*"¢*

is

(07N,P7P7¢\y O( H{( >0y1( _ gqb.)"Lifyi{pl_Beta(M(1_7/))7 (1 _ M)(l_ip))_*_
=1 Yi P P)
pj)ro 1(1 *pi)(l_d))TO_l

(1 — p;)Beta(1,1)}

Bloro, (1 dm)

where B(¢Ty, (1 — ¢)7p) is the normalization constant of the Beta distribution.
Since E(p;A+ (1 —p;)B) = Ap + B(1 — ¢), we can integrate out p; and 0;,

(1. . 9l) mH{/ ( ) (1= 00"~ {piBetal(*—L). (1 = ) (L)
PN (1= )
B(¢o, (1 = ¢)70)

4
1:[ /< >€y 1—9)nl yl{¢BGta( (FTPL(I_H)(Q))_F

p

(1 —ps)Beta(1,1)}

dpz‘ d@z }

(1 — ¢)Beta(1, 1) }dp: }

f[ B(yi + p(1/p = 1), (ni — i) + (1 = p)(1/p — 1))
11 B(u(1/p—1), 1= w(1/p— 1))

ni\ B(yi +1,(ni —y:) + 1)
(1- ¢)<yi> B(1,1) b

+

Then we use a griddy Gibbs sampler to draw posterior samples of p, p, and ¢.
Next, with the help of a latent variable z;, we can draw samples of p; from the

following part,

o (7 Bl + (o= 1,60~ ) + (1= (1 /p = 1)
bzl 0:9) “’Z(y) Blu(/p— 1.0~ m(/o -1}

(1 —pi)

]1 z; $TO— 1(1

P! (1—<J5)7'0—17

1 o
n; +1 pi
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then draw z; and p;

(m) Blyi+p(1/p—1),(ni—yi)+(1—p)(1/p—1)]

Pily; Blu(1/p—1),0—m)(1/p—1)] }
(ni) Blyitup(1/p=1),(ni—yi)+(1—p)(1/p—1)] S | ’

pi(y)) Blu(i/p-1),0-m)(1/p—1] + (1 =pi)

zi|pi, i, p,y ~ Bernoulli{

pilzi, ¢ ~ Beta{z; + ¢70, (1 — 2z:) + (1 — ¢)70)}.

4.6.2 Griddy Gibbs Sampler for the EXNEX Model M{*"**

We show how to use griddy Gibbs sampler to draw sample from the multinomial-
Dirichlet EXNEX model. After integrating out p; and 6;, the joint posterior of
[, T, @ in M7 is

i (K —-1)!
: || ||elﬂ [p:Dirichlet +
w(p, 7, p|ln) x {/;77, ;' [p:Dirichlet(pr) ——F=5 T

1 M5! =1 7)?
P (1 = p)0
B(¢7o, (1 — ¢)70))
¢
:H{¢ n;.! D(n; + pr) (K —1)! (1= ) ni.! D(niJrl)}7

(1 — p;)Dirichlet(1)] dp:d@;}

H]K:1 n;j! D(pr) (1+7)2 a Hszl nij! D(1)
P T3, D(naj+p;m) (K ) | [0S, D(ni+1)
(S, ni;+7) — 1) n;.! I, nii +K)
7T(l"'7 T, ¢|TL) X {¢ ! + (1 - ¢) 1 }
Z’E[ Hszl nij! W (1 + 7‘)2 H]K:I n”' T(K)
. . _ 1 _
Using the transformation p = —15(7 = 1/p — 1),
' TS, D(naj+p,(1/p—1)) ' 15, T(nij+1)
T3, nij+(1/p—1)) n;.! T3, nij+K)
(7, ¢ln) o< [[{o =7 (K - 1)1+ (1-9) -
] ; s TS Ty (1/p-1) K sl 1
i=1 Hj:an W H]:Nl] T(K)
(K) Hf:l T(nij+p;(1/p—1)) I‘( )F(K)
I(ng. +1) T2 nij+(1/p—1)) ni. +1
1—¢)—F—"—F—}.
* HW < D(ni; +1) IS Tes/p-1) +(-9) I(ni. + K) }
r'(1/p—-1))
We can use griddy Gibbs sampling to draw p, 7, ¢, and 0 < p Et 1 t 25 Mt

j=1,...,K—1.
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Then we show how to draw the mixture probabilities p; with the help of a latent
variable z;,
ni.!  D(ni+p(l/p— 1))F

W(Pi,zi“"ﬂv ¢7 n) X {pi HJK:1 nij! D(N(l/p — 1))

L(n;. + HI'(K)

()} {1 —pi)

% p;ﬁ‘rofl(l _ pi)(1*¢>‘ro*1’

then we draw sample from the conditional distributions,

ol Do)
PR bl -y LK) )

1 Dm (1) T )

PR opa/emmy L) + (=) S 3R

Zi|pia My P51~ Bernoulli(

pilzi, ¢, 70 = 1 ~ Beta(z; + ¢710, (1 — 2;) + (1 — ¢)70).

4.6.3 Griddy Gibbs Sampler for the EXNEX Model with Order Re-

strictions M5*"*

We show how to use a griddy Gibbs sampler to draw sample from the multinomial-
Dirichlet model with ENXEX prior. Specifically, we use 200 points in the uni-
formly spaced grid. After integrating out p; and 8;, the joint posterior of y, 7, ¢ in

Mg s

¢ K -
n;.! ngj Dirichlet(p7) K(m—1)(K —m)!c,
R (e § y
ili[l pi,0; Hszl nij! ]1:[1 77" Jp, e Dirichlet(p)do; (1+7)2

oT0—1(1 _ . y(1=9)mo—1
(1 — p;)Dirichlet(1)] 22 B(¢(Tlo (11’_) ool
ni.!  D(ni+ put)C(ni + pr) K(m — 1)!(K—m)!]cu+
K ! D(pur)C(pr) (I14+7)2

dpidei}

-1l

Jj=1
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where D(pu7) and D(n; + p7) are the normalization constant of Dirichlet distri-
butions, and C'(pu7) and C(n; + 1) are the adjusted constant of Dirichlet distri-

butions with order restrictions.

JT+TL7_]71
ni! Joeo L= 0% d0; K (m — 1)!(K —m)lc,

(1, 7, 9n) o H{¢ =y
=1 Hj 17%]' fe eC Hg IGZJ 01 (1+T)2
| [1;S, D(ni+1)
n;.! L2, nij+K)
(1 - ¢) K : . 1 }

[T;=1 naj! T(K)

After transforming 7 into p (7 = 1_7"’), use Monte Carlo ingetration to deal the
ratio of two integrals, draw samples of 8: 89 ~ Dirichlet(y72;), where 8 € C
and y is the importance ratio, 72; is the average over small areas for each category,

the approximated joint posterior distribution of p and p is

oo ip,i—1
n;.! f@ H 1 f] ’ T de;
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i=1 H_] 1 Mg fe ECH I dBZ
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o T 0 D = UK — )t Er T 6]

Hle [(ng +1) SM TR, [9§q>]—m;+m%p
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where w, = — —.
1 =M+ =52
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We can use griddy Gibbs sampling to draw u, p, ¢, and for j from m — 1 to 1 the

range of 1 is

K
1- Zt:l,t;ﬁm,t;ﬁj et
2

b

0 < py < minfpjsa,

and for j from m + 1 to K,

K
1- Zt:l,t;ﬁm,t;&j Mt
2

}.

0 < pj < min{pj—1,

Then we draw the mixture probabilities p; with the help of a latent variable z;,

I(ng +1H)K(m—-1)!(K—m)! M K (q)y"™id
P g 2aam Wa Il (67

I'(n; K(m—-1)!(K—m)! M K Mij I'(n; 'K )
pi ¢ H}( (F(n- ,)+(1) ) {Zqzl Wq Hj:l [9§q)] J} + 1 —p) <r(;:.1421<(> :
j=1 ij

zi|pi, p, p, 1 ~ Bernoulli(

Dilzi, ¢, 70 = 1 ~ Beta(z; + ¢70, (1 — 2;) + (1 — ¢)70).-
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4.6.4 Posterior Summary of Model ), M, M, and Ms*"** for
BMI

Table 4.13: EXNEX posterior summary part I: Counties 1-9

0

County | Models p;
PM1 PSDI CVI1 | PM2 PSD2 CV2 | PM3 PSD3 CV3 | PM4 PSD4 CV4 | PM5 PSD5 CV5

M,y 0.025 0.012 0.480 | 0.402 0.038 0.095 | 0.394 0.038 0.096 | 0.142 0.025 0.176 | 0.038 0.021 0.553
M3 0.024 0.012 0.500 | 0.375 0.023 0.061 | 0.418 0.026 0.062 | 0.147 0.028 0.190 | 0.036 0.014 0.389
MEPer - 0.946 | 0.041 0.020 0.488 [ 0.398 0.047 0.118 [ 0.372 0.045 0.121 [ 0.152 0.034 0.224 | 0.037 0.018 0.486
Mgerer 0912 | 0.021  0.011 0.524 | 0.380 0.023 0.061 | 0.415 0.031 0.075 | 0.151 0.025 0.166 | 0.033 0.013 0.394

My 0.015 0.009 0.600 | 0.394 0.038 0.096 | 0.413 0.039 0.094 | 0.157 0.026 0.166 | 0.021 0.017 0.810
Ms 0.014 0.009 0.643 | 0.374 0.024 0.064 | 0.428 0.027 0.063 | 0.162 0.028 0.173 | 0.022 0.012 0.545
MEPer 0942 1 0.021 0.014 0.667 | 0.385 0.047 0.122 | 0.404 0.048 0.119 [ 0.179 0.038 0.212 | 0.012 0.010 0.833
Mgrer 0914 | 0.014 0.008 0.571|0.377 0.027 0.072 | 0.425 0.031 0.073 | 0.162 0.026 0.160 | 0.023 0.010 0.435

My 0.026 0.013 0.500 | 0.305 0.049 0.161 | 0.477 0.045 0.094 | 0.147 0.027 0.184 | 0.045 0.022 0.489
M3 0.024 0.011 0.458 | 0.308 0.034 0.110 | 0.479 0.037 0.077 | 0.148 0.027 0.182 | 0.042 0.015 0.357
Mperer - 0.920 | 0.041 0.020 0.488 [ 0.233 0.042 0.180 [ 0.516 0.051 0.099 | 0.162 0.036 0.222 | 0.048 0.021 0.438
MgETer 0794 | 0.024  0.015 0.625 | 0.311 0.056 0.180 | 0.474 0.048 0.101 [ 0.152 0.025 0.164 | 0.040 0.018 0.450

M,y 0.008 0.004 0.500 | 0.359 0.022 0.061 | 0.421 0.021 0.050 | 0.179 0.018 0.101 | 0.033 0.010 0.303
M3 0.007 0.004 0.571 | 0.357 0.020 0.056 | 0.422 0.021 0.050 | 0.180 0.018 0.100 | 0.034 0.008 0.235
M{Per - 0.941 | 0.008  0.004 0.500 [ 0.350 0.023 0.066 [ 0.419 0.023 0.055 [ 0.190 0.018 0.095 | 0.033 0.008 0.242
Mgerer0.913 | 0.008  0.004 0.500 | 0.361 0.020 0.055 | 0.424 0.020 0.047 [ 0.175 0.018 0.103 | 0.032 0.008 0.250

M,y 0.015 0.010 0.667 | 0.376 0.041 0.109 | 0.398 0.041 0.103 | 0.174 0.031 0.178 | 0.036 0.022 0.611
M3 0.015 0.009 0.600 | 0.359 0.025 0.070 | 0.414 0.030 0.072 | 0.178 0.030 0.169 | 0.034 0.014 0.412
MEPer - 0.939 1 0.024 0.016 0.667 [ 0.357 0.048 0.134 | 0.377 0.048 0.127 [ 0.208 0.041 0.197 | 0.033 0.019 0.576
Mgrmer 0913 | 0.014 0.008 0.571{0.365 0.027 0.074 | 0.417 0.031 0.074 | 0.173 0.029 0.168 | 0.031 0.012 0.387

My 0.010 0.009 0.900 | 0.387 0.044 0.114 | 0.401 0.043 0.107 | 0.143 0.031 0.217 [ 0.059 0.031 0.525
M3 0.010 0.008 0.800 | 0.363 0.028 0.077 | 0.424 0.031 0.073 | 0.149 0.030 0.201 | 0.055 0.018 0.327
Mpeer 0942 1 0.016 0.014 0.875 [ 0.364 0.054 0.148 [ 0.382 0.055 0.144 | 0.161 0.041 0.255 | 0.077 0.029 0.377
Mgrer - 0.902 | 0.011 0.007 0.636 | 0.371 0.027 0.073 | 0.417 0.035 0.084 | 0.153 0.028 0.183 | 0.049 0.024 0.490

M,y 0.011 0.009 0.818 | 0.381 0.042 0.110 | 0.400 0.042 0.105|0.176 0.033 0.188 | 0.033 0.023 0.697
M 0.010 0.008 0.800 | 0.361 0.027 0.075 | 0.420 0.031 0.074 | 0.178 0.033 0.185 | 0.031 0.014 0.452
Mgrer 0942 1 0.018 0.015 0.833 [ 0.360 0.054 0.150 [ 0.373 0.057 0.153 [ 0.221 0.050 0.226 | 0.027 0.020 0.741
Mger 0914 | 0.011  0.007 0.636 | 0.366 0.029 0.079 | 0.418 0.032 0.077 | 0.175 0.030 0.171 | 0.030 0.013 0.433

M,y 0.019 0.013 0.684 | 0.390 0.045 0.115]0.435 0.045 0.103 | 0.127 0.033 0.260 | 0.028 0.023 0.821
M3 0.017 0.011 0.647 | 0.375 0.029 0.077 | 0.446 0.034 0.076 | 0.136 0.030 0.221 | 0.025 0.013 0.520
MEPer0.944 1 0.034  0.022 0.647 | 0.377 0.059 0.156 | 0.440 0.060 0.136 [ 0.133 0.040 0.301 | 0.016 0.016 1.000
Mgerer 0914 | 0.016  0.012  0.750 | 0.377 0.029 0.077 | 0.439 0.035 0.080 | 0.142 0.029 0.204 | 0.026 0.012 0.462

My 0.017 0.011 0.647 | 0.394 0.040 0.102 | 0.394 0.042 0.107 | 0.171 0.031 0.181 | 0.024 0.019 0.792
Ms 0.016 0.010 0.625 | 0.368 0.024 0.065 | 0.417 0.029 0.070 | 0.175 0.032 0.183 | 0.023 0.012 0.522
M{erer0.945 1 0.026 0.017 0.654 | 0.385 0.053 0.138 | 0.373 0.053 0.142 [ 0.203 0.044 0.217 | 0.012 0.012 1.000

Mgrer 0914 | 0.015 0.009 0.600 | 0.373 0.026 0.070 | 0.416 0.034 0.082 | 0.172 0.029 0.169 | 0.025 0.011 0.440
Note: Mixture Probabilities p; , Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)

98



Table 4.14: EXNEX posterior summary part II: Counties 10-22

County | Models  p; 9
PMI PSDI CVI1 | PM2 PSD2 CV2 | PM3 PSD3 CV3 | PM4 PSD4 CV4 | PM5 PSD5 CV5
M,y 0.010 0.009 0.900 | 0.398 0.040 0.101 | 0.402 0.039 0.097 | 0.172 0.031 0.180 | 0.017 0.017 1.000
10 Ms 0.009 0.007 0.778 | 0.374 0.023 0.061 | 0.421 0.027 0.064 | 0.179 0.030 0.168 | 0.017 0.010 0.588
M{eer0.946 [ 0.014  0.013  0.929 [ 0.396 0.050 0.126 | 0.381 0.049 0.129 [ 0.208 0.041 0.197 | 0.001 0.003 3.000
Mgrmer 0915 | 0.010 0.007 0.700 | 0.378 0.027 0.071 | 0.419 0.033 0.079 | 0.173 0.029 0.168 | 0.019 0.010 0.526
My 0.025 0.012 0.480 | 0.373 0.039 0.105 | 0.386 0.040 0.104 | 0.174 0.030 0.172 | 0.042 0.022 0.524
1 M3 0.023 0.011 0478 | 0.353 0.024 0.068 | 0.404 0.028 0.069 | 0.178 0.029 0.163 | 0.041 0.015 0.366
M{ener 0,944 1 0.039 0.018 0.462 [ 0.351 0.043 0.123 [ 0.361 0.043 0.119 [ 0.204 0.039 0.191 | 0.045 0.019 0.422
MgTer - 0.906 | 0.022 0.012 0.545 | 0.360 0.026 0.072 | 0.407 0.033 0.081 | 0.173 0.027 0.156 | 0.038 0.015 0.395
M,y 0.009 0.008 0.889 | 0.415 0.042 0.101 | 0.429 0.040 0.093 | 0.117 0.029 0.248 | 0.028 0.019 0.679
1 Ms 0.009 0.007 0.778 | 0.391 0.024 0.061 | 0.448 0.028 0.063 | 0.124 0.026 0.210 | 0.028 0.013 0.464
MEPer - 0.940 [ 0.013  0.012 0.923 [ 0423 0.050 0.118 [ 0.432 0.050 0.116 [ 0.110 0.032 0.291 | 0.022 0.014 0.636
Mgrmer 0914 | 0.010 0.007 0.700 | 0.392 0.028 0.071 | 0.437 0.030 0.069 | 0.134 0.028 0.209 | 0.027 0.011 0.407
M,y 0.012 0.007 0.583 | 0.430 0.030 0.070 [ 0.381 0.030 0.079 | 0.142 0.019 0.134 | 0.035 0.013 0.371
13 Ms 0.012 0.006 0.500 | 0.389 0.015 0.039 | 0.408 0.018 0.044 | 0.153 0.024 0.157 | 0.037 0.012 0.324
MpFrer 0942 | 0.014  0.008 0.571 | 0439 0.032 0.073 | 0.364 0.032 0.088 | 0.147 0.023 0.156 | 0.035 0.012 0.343
Mgrmer 0913 | 0.012 0.006 0.500 | 0.394 0.023 0.058 | 0.408 0.023 0.056 | 0.152 0.021 0.138 | 0.034 0.010 0.294
My 0.023 0.013 0.565|0.423 0.045 0.106 | 0.397 0.041 0.103 | 0.133 0.030 0.226 | 0.024 0.019 0.792
14 M3 0.022 0.012 0.545|0.387 0.023 0.059 | 0.426 0.027 0.063 | 0.141 0.030 0.213 | 0.024 0.012 0.500
Mgener0.947 [ 0.039  0.021 0.538 | 0438 0.053 0.121 | 0.373 0.052 0.139 [ 0.138 0.037 0.268 | 0.012 0.012 1.000
MgTrer 0911 | 0.019 0.012 0.632 | 0.388 0.028 0.072 | 0.421 0.033 0.078 | 0.147 0.028 0.190 | 0.025 0.012 0.480
My 0.021 0.011 0.524 | 0.367 0.041 0.112 | 0.434 0.040 0.092 | 0.132 0.027 0.205 | 0.045 0.023 0.511
15 Ms 0.019 0.010 0.526 | 0.360 0.030 0.083 | 0.445 0.033 0.074 | 0.134 0.025 0.187 | 0.042 0.015 0.357
MEPer 0942 1 0.033 0.017 0.515(0.343 0.047 0.137 [ 0436 0.050 0.115 | 0.137 0.035 0.255 | 0.051 0.022 0.431
Mgrer 0911 | 0.018 0.010 0.556 | 0.365 0.030 0.082 | 0.436 0.033 0.076 | 0.142 0.026 0.183 | 0.038 0.016 0.421
M,y 0.014 0.009 0.643 | 0.379 0.038 0.100 | 0.434 0.038 0.088 | 0.153 0.027 0.176 | 0.021 0.016 0.762
16 Ms 0.013 0.008 0.615|0.368 0.028 0.076 | 0.443 0.030 0.068 | 0.156 0.027 0.173 | 0.020 0.010 0.500
M{eEer0.941 1 0.020 0.013  0.650 | 0.361 0.045 0.125 | 0.437 0.046 0.105 [ 0.173 0.035 0.202 | 0.009 0.009 1.000
Mgrer 0915 | 0.013  0.008 0.615 | 0.370 0.026 0.070 | 0.437 0.030 0.069 | 0.159 0.024 0.151 | 0.022 0.009 0.409
M,y 0.036 0.015 0.417|0.359 0.038 0.106 | 0.423 0.037 0.087 | 0.156 0.027 0.173 | 0.026 0.017 0.654
17 M3 0.034 0.013 0.382]0.352 0.028 0.080 | 0.431 0.033 0.077 | 0.158 0.028 0.177 | 0.025 0.011 0.440
M{eer 0,944 1 0.054 0.020 0.370 [ 0.329 0.044 0.134 | 0.420 0.045 0.107 [ 0.178 0.037 0.208 | 0.018 0.012 0.667
mer - 0.907 | 0.028 0.015 0.536 | 0.359 0.029 0.081 | 0.429 0.032 0.075 | 0.158 0.024 0.152 | 0.026 0.010 0.385
0.011 0.010 0.909 | 0.420 0.046 0.110 | 0.380 0.044 0.116 | 0.155 0.031 0.200 | 0.034 0.024 0.706
18 0.011 0.008 0.727 | 0.376 0.023 0.061 | 0.415 0.027 0.065 | 0.166 0.032 0.193 | 0.032 0.015 0.469
0.940 | 0.017 0.016 0.941 [ 0431 0.057 0.132 | 0.340 0.053 0.156 | 0.184 0.045 0.245|0.028 0.019 0.679
0.913 | 0.011 0.008 0.727 | 0.384 0.032 0.083 | 0.411 0.038 0.092 | 0.163 0.030 0.184 | 0.030 0.013 0.433
0.019 0.013 0.684 | 0.418 0.047 0.112 | 0.383 0.046 0.120 | 0.159 0.033 0.208 | 0.021 0.020 0.952
19 0.018 0.012 0.667 | 0.375 0.025 0.067 | 0.418 0.029 0.069 | 0.169 0.035 0.207 | 0.020 0.013 0.650
M{eer0.941 1 0.035 0.023  0.657 | 0428 0.061 0.143 | 0.340 0.058 0.171 [ 0.196 0.049 0.250 | 0.001 0.004 4.000
Mgrer 0910 | 0.017 0.013 0.765 | 0.382 0.030 0.079 | 0.413 0.038 0.092 | 0.166 0.031 0.187 | 0.022 0.011 0.500
My 0.010 0.009 0.900 | 0.350 0.047 0.134 | 0.476 0.050 0.105|0.138 0.030 0.217 | 0.025 0.020 0.800
2 M3 0.010 0.008 0.800 | 0.348 0.034 0.098 | 0.478 0.039 0.082 | 0.140 0.028 0.200 | 0.024 0.012 0.500
M{eer 0944 1 0.017 0.014 0.824 [ 0.298 0.052 0.174 | 0.521 0.056 0.107 [ 0.151 0.040 0.265 | 0.013 0.013 1.000
Mgeer 0913 | 0.010  0.007 0.700 | 0.354 0.038 0.107 | 0.463 0.046 0.099 | 0.148 0.027 0.182 | 0.025 0.012 0.480
My 0.044 0.024 0.545]0.426 0.048 0.113]0.361 0.053 0.147 | 0.123 0.032 0.260 | 0.046 0.032 0.696
21 Ms 0.041 0.017 0.415|0.373 0.023 0.062 | 0.405 0.027 0.067 | 0.140 0.033 0.236 | 0.042 0.017 0.405
MpPrer - 0.878 | 0.087  0.036  0.414 | 0.449 0.063 0.140 [ 0.292 0.055 0.188 | 0.124 0.042 0.339 | 0.049 0.027 0.551
Mgrmer 0578 | 0.055 0.042 0.764 | 0412 0.064 0.155| 0.356 0.080 0.225 | 0.125 0.043 0.344 | 0.052 0.033 0.635
M,y 0.016 0.010 0.625|0.428 0.043 0.100 | 0.393 0.041 0.104 | 0.133 0.028 0.211 | 0.030 0.020 0.667
» Ms 0.016 0.010 0.625 | 0.386 0.022 0.057 | 0.424 0.026 0.061 | 0.145 0.029 0.200 | 0.029 0.014 0.483
MpFrer 0941 [ 0.025 0.016 0.640 | 0.444 0.052 0.117 | 0.367 0.052 0.142 | 0.140 0.036 0.257 | 0.023 0.016 0.696
Mg*er 0913 | 0.014 0.009 0.643 | 0.392 0.031 0.079 | 0.417 0.033 0.079 | 0.148 0.027 0.182 | 0.029 0.012 0.414

Note: Mixture Probabilities p;, Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 4.15: EXNEX posterior summary part IV: Counties 23-35

0

County | Models p;
PMI PSDI CVI1 | PM2 PSD2 CV2 | PM3 PSD3 CV3 | PM4 PSD4 CV4 | PM5 PSD5 CV5

My 0.012 0.010 0.833|0.386 0.045 0.117 | 0.419 0.043 0.103 | 0.146 0.032 0.219 | 0.037 0.027 0.730
Ms 0.011 0.009 0.818 | 0.367 0.028 0.076 | 0.436 0.034 0.078 | 0.153 0.032 0.209 | 0.033 0.015 0.455
M{eer0.940 [ 0.019 0.016 0.842 [ 0.364 0.061 0.168 [ 0.417 0.062 0.149 | 0.168 0.047 0.280 | 0.033 0.022 0.667
Mgrer 0914 | 0.012 0.009 0.750 | 0.372 0.030 0.081 | 0.429 0.034 0.079 | 0.155 0.030 0.194 | 0.033 0.016 0.485

23

M, 0.010 0.009 0.900 | 0.381 0.041 0.108 [ 0.398 0.042 0.106 | 0.172 0.032 0.186 | 0.038 0.024 0.632
M3 0.010 0.008 0.800 | 0.362 0.027 0.075 | 0.417 0.030 0.072 | 0.175 0.031 0.177 | 0.036 0.014 0.389
Mrrer 0945 1 0.016 0.014 0.875|0.358 0.052 0.145| 0.377 0.054 0.143 | 0.212 0.044 0.208 | 0.037 0.021 0.568
MgTer 0913 1 0.010  0.007 0.700 | 0.366 0.029 0.079 | 0.416 0.035 0.084 | 0.174 0.030 0.172 | 0.034 0.015 0.441

24

M,y 0.017 0.011 0.647 | 0.447 0.050 0.112 | 0.400 0.043 0.108 | 0.117 0.031 0.265 | 0.019 0.019 1.000
M3 0.018 0.011 0.611 | 0.399 0.022 0.055 | 0.434 0.025 0.058 | 0.131 0.030 0.229 | 0.018 0.011 0.611
MEPer0.946 | 0.030 0.019 0.633 | 0.481 0.058 0.121 | 0.377 0.056 0.149 [ 0.111 0.036 0.324 | 0.001 0.003 3.000
Mgerer - 0.903 | 0.016 0.010 0.625 | 0.403 0.043 0.107 | 0.421 0.035 0.083 | 0.139 0.031 0.223 | 0.021 0.011 0.524

25

My 0.025 0.014 0.560 | 0.379 0.043 0.113 | 0.427 0.043 0.101 | 0.135 0.029 0.215 | 0.034 0.024 0.706
Ms 0.024 0.013 0.542 | 0.366 0.028 0.077 | 0.438 0.033 0.075 | 0.141 0.028 0.199 | 0.031 0.014 0.452
M{Eer0.941 | 0.045 0.024 0.533 [ 0.359 0.054 0.150 [ 0.423 0.058 0.137 [ 0.146 0.042 0.288 | 0.028 0.019 0.679
Mgrmer 0912 | 0.021 0.015 0.714 | 0.370 0.028 0.076 | 0.432 0.034 0.079 | 0.147 0.029 0.197 | 0.031 0.014 0.452

26

M, 0.027 0.016 0.593 [ 0.322 0.056 0.174 [ 0.459 0.049 0.107 | 0.162 0.033 0.204 | 0.030 0.024 0.800
M3 0.024 0.013 0.542 | 0.328 0.037 0.113 | 0.460 0.042 0.091 | 0.162 0.031 0.191 | 0.027 0.014 0.519
MFrer 0934 1 0.054 0.030 0.556 | 0.230 0.052 0.226 | 0.491 0.062 0.126 | 0.209 0.051 0.244 | 0.016 0.016 1.000
Mger0.869 | 0.025 0.020 0.800 | 0.327 0.061 0.187 | 0.455 0.047 0.103 [ 0.166 0.031 0.187 | 0.028 0.014 0.500

27

M,y 0.019 0.013 0.684 | 0.411 0.047 0.114 | 0.389 0.045 0.116 | 0.153 0.032 0.209 | 0.029 0.022 0.759
M3 0.018 0.011 0.611 | 0.374 0.025 0.067 | 0.419 0.029 0.069 | 0.162 0.034 0.210 | 0.027 0.014 0.519
MEPer0.948 | 0.036 0.023  0.639 | 0.415 0.061 0.147 [ 0.351 0.059 0.168 | 0.182 0.051 0.280 | 0.016 0.017 1.063
Mgerer 0913 | 0.017 0.011 0.647 | 0.380 0.032 0.084 | 0.417 0.036 0.086 | 0.160 0.029 0.181 | 0.027 0.012 0.444

28

My 0.010 0.009 0.900 | 0.395 0.041 0.104 | 0.420 0.041 0.098 | 0.150 0.028 0.187 | 0.024 0.019 0.792
Ms 0.010 0.008 0.800 | 0.376 0.026 0.069 | 0.437 0.030 0.069 | 0.154 0.029 0.188 | 0.023 0.012 0.522
M{eer0.940 [ 0.015 0.013 0.867 [ 0.386 0.051 0.132 | 0.423 0.053 0.125 [ 0.164 0.040 0.244 | 0.012 0.012 1.000
Mgrer 0915 | 0.010 0.007 0.700 | 0.378 0.028 0.074 | 0.432 0.032 0.074 | 0.156 0.026 0.167 | 0.024 0.011 0.458

29

M, 0.015 0.010 0.667 | 0.348 0.042 0.121 [ 0.418 0.039 0.093 | 0.197 0.036 0.183|0.023 0.018 0.783
M3 0.015 0.009 0.600 | 0.341 0.029 0.085| 0.426 0.034 0.080 | 0.196 0.032 0.163 | 0.022 0.011 0.500
MFrer 0943 1 0.024  0.015 0.625 | 0.306 0.048 0.157 | 0.410 0.050 0.122 | 0.250 0.045 0.180 | 0.010 0.009 0.900

ner 0911 | 0.014  0.008 0.571 [ 0.350 0.034 0.097 | 0.424 0.032 0.075 | 0.189 0.034 0.180 | 0.023 0.011 0.478

0.023 0.012 0.522 ] 0.403 0.039 0.097 | 0.391 0.040 0.102 | 0.153 0.027 0.176 | 0.031 0.021 0.677
0.021 0.011 0.524 | 0.371 0.022 0.059 | 0.416 0.027 0.065 | 0.163 0.030 0.184 | 0.029 0.013 0.448
0.939 | 0.037 0.019 0.514 [ 0.399 0.051 0.128 | 0.363 0.050 0.138 [ 0.178 0.040 0.225 | 0.023 0.016 0.696
0.914 | 0.019 0.011 0.579 | 0.377 0.028 0.074 | 0.415 0.036 0.087 | 0.161 0.027 0.168 | 0.028 0.010 0.357

31

0.009 0.007 0.778 | 0.334 0.041 0.123 | 0.442 0.039 0.088 | 0.190 0.032 0.168 | 0.026 0.017 0.654
0.008 0.006 0.750 | 0.332 0.031 0.093 | 0.447 0.034 0.076 | 0.189 0.029 0.153 | 0.024 0.011 0.458
M{eer0.936 | 0.011 0.010 0.909 [ 0.287 0.042 0.146 | 0.451 0.046 0.102 [ 0.232 0.038 0.164 | 0.019 0.013 0.684
Mgrer 0912 | 0.009 0.006 0.667 | 0.344 0.035 0.102 | 0.440 0.032 0.073 | 0.182 0.030 0.165 | 0.025 0.011 0.440

32

M, 0.013 0.008 0.615 [ 0.375 0.034 0.091 [ 0.414 0.035 0.085|0.171 0.026 0.1520.027 0.016 0.593
M3 0.012 0.007 0.583 | 0.363 0.024 0.066 | 0.425 0.028 0.066 | 0.174 0.027 0.155 | 0.026 0.011 0.423
MpFer 0938 [ 0.016 0.011 0.688 | 0.359 0.041 0.114 | 0.410 0.041 0.100 | 0.194 0.033 0.170 | 0.021 0.012 0.571
Mger 0915 | 0.012 0.007 0.583 | 0.367 0.025 0.068 | 0.425 0.028 0.066 | 0.170 0.024 0.141 | 0.026 0.010 0.385

M,y 0.016 0.009 0.563 | 0.379 0.039 0.103 | 0.443 0.040 0.090 | 0.134 0.027 0.201 | 0.028 0.019 0.679
M3 0.015 0.010 0.667 | 0.369 0.028 0.076 | 0.450 0.034 0.076 | 0.139 0.027 0.194 | 0.027 0.012 0.444
MEPer0.945 1 0.023  0.016 0.696 [ 0.359 0.048 0.134 [ 0.451 0.051 0.113 [ 0.145 0.036 0.248 | 0.022 0.015 0.682
Mgerer 0915 | 0.014  0.009 0.643 | 0.372 0.028 0.075 | 0.441 0.033 0.075 | 0.145 0.025 0.172 | 0.027 0.011 0.407

34

My 0.015 0.009 0.600 | 0.418 0.039 0.093 | 0.429 0.038 0.089 | 0.122 0.027 0.221 | 0.016 0.016 1.000
Ms 0.014 0.009 0.643 | 0.396 0.024 0.061 | 0.446 0.027 0.061 | 0.129 0.027 0.209 | 0.016 0.010 0.625
M{eer0.946 [ 0.022 0.014 0.636 | 0427 0.048 0.112 | 0429 0.047 0.110 | 0.122 0.032 0.262 | 0.001 0.003 3.000
Mgrmer 0913 | 0.013 0.008 0.615|0.393 0.027 0.069 | 0.437 0.030 0.069 | 0.139 0.027 0.194 | 0.018 0.009 0.500

35

Note: Mixture Probabilities p;, Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Chapter 5

Concluding Remarks and Future

Works

In this dissertation, we study several Bayesian hierarchical multinomial-Dirichlet
models with order restrictions for small area estimation. We provided very-detailed
Bayesian analysis for each model. We have demonstrated our application to body

mass index data from NHANES III.

5.1 Concluding Remarks

First, in Chapter 2, we developed the Bayesian hierarchical multinomial-Dirichlet
model with order restrictions to analyze multinomial data. The unimodal order re-
strictions are necessary when the parameters of interest may have the unimodal
structure. We use griddy Gibbs sampler for each model. We show how the model
with order restrictions can borrow information differently. A simulation study is

presented to compare the different order restriction assumptions, which impact the

101



strength of borrowing information. The model with order restrictions on param-
eters 1 and 6 can have small standard variance when the order restriction holds
and the heterogeneity of small areas is small. In practice, the same unimodal order
restriction for all small areas may not hold. Hence, the performance of model with
order restrictions is not good as expected.

Second, in Chapter 3, we proposed a multinomial-Dirichlet model, where are
incorporated the order restriction uncertainty to allow different unimodal order re-
striction in each small area. We discussed an approximation method to compute
the mixture probabilities of different order restrictions and avoid the computation
difficulty. We proposed a Bayesian diagnostics method, LPML, to compare differ-
ent models. In the application to the BMI data, the model with order restriction
that the mode is at the third position, has the largest LPML, which suggests that
the model is preferable when fitting the NHANES BMI data. The model, which
incorporates the uncertainty, is slightly less-preferable but robust under different
scenarios. It is recommended to use the model, which incorporates the uncertainty,
when the modal position of unimodal order restriction is not known.

Third, in Chapter 4, we proposed an exchangeability-nonexchangeability model
to allow partial exchangeability on parameters. We discussed a Gibbs sampler
method for the EXNEX model. The model can borrow information from the sim-
ilar areas while avoiding borrowing from the very different areas. For example, in
the numerical example, after fitting the multinomial-Dirichlet EXNEX model with
order restrictions, M$*"“*, the posterior mean of mixture probability ps; is 0.578,
which means that it borrows much less information in County 21 than other coun-
ties. This is an alternative approach when the same unimodal order restriction may

not hold for all areas, which is a preferred approach when the heterogeneity across
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small areas is large.

In summary, the multinomial-Dirichlet model with order restrictions may be
appropriate for many applications. As in the application to BMI data, the model
with order restrictions can have smaller posterior standard deviation and higher
estimation accuracy than the model without order restrictions. The model with
uncertain order restrictions in Chapter 3 and the EXNEX model with order re-
strictions in Chapter 4 are great extensions of our current approach. This disser-
tation provide novel contributions in making inference with order restrictions for
small area estimation. But we notice the computational difficulty may exist in the
multinomial-Dirichlet model with order restrictions. Even assuming partial ex-
changeability is a great alternative approach for the hierarchical models for small
area estimations, the carefully considerations of prior specification should be ad-

dressed (Neuenschwander 2016).

5.2 Future works

In the dissertation, we use a Bayesian hierarchical model with order restrictions
for small area estimation of categorical data in Chapter 2. In Chapters 3 and 4,
we develop two types of models to handle the situation where the same unimodal
order restrictions may not hold for all areas. Exploring different order restriction
assumptions can extend the usage of models with order restrictions. We focus
on parametric statistical models in this dissertation. We can have nonparameteric
Bayesian analysis, see Quintana (1998), to make the procedure more robust. Yin
and Nandram (2020a) propose a two-stage non-parametric Bayesian model with

several independent Dirichlet processes at the first stage that represents the data, to
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take care of the gaps, outliers and ties in the body mass index data, see also Yin
and Nandram (2019), Yin and Nandram (2020b). All these models are Dirichlet

process mixture (DPM) models.

The Dirichlet process mixture model in Nandram and Yin (2016b) is motivated
by Nandram and Choi (2004). Nandram and Yin (2016a) showed how to add a
Dirichlet process prior to do Bayesian predictive inference. Their work is moti-
vated by Binder (1982). We can use the idea of DPM for the model with order

restrictions to relax the parametric assumption. Specifically,

n;|0; ~ Multinomial(6;),
0;,G~G,i=1,...,¢,
G|a, p, T ~ DP{«, Dirichlet(u7)},6; € C,

e ! ecC
T+72 (L+a =

w(p, T, )

where « is a concentration parameter, C' = {6; : 6;; K Oy = >

N

Oirc,i = 1,...,0}, Cpo = {p g1 < ... < i = ... > pux }, and assume the
modal positions m in C' and C), are known.

The final BMI data set for this study uses only the 35 largest counties with a
population of at least 500,000 for selected age categories by sex (male, female)
and race (white non-Hispanic, black non-Hispanic, Hispanic, other). We can easily
apply our method to the small domains formed by on age, race, and sex, such as
the young Hispanic-male BMI data. But the cells of the multinomial tables will
become sparse. We can eliminate some counties that become small or we can
combine some counties. However, due to the structures of multinomial-Dirichlet
models with order restrictions, we cannot add race, age and sex as covariates into

the model.
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Since the BMI data are from the survey sampling and individuals are selected
with different probabilities, we should not ignore the survey weights. It is possible
to incorporate the survey weights into our model as well. Let WW;, denote the
survey weights, adding up to the population size within each county, ¢ = 1,..., ¥,

sample index g = 1,...,n; and cell index j = 1,..., K. Yang (2021) provided

(ot Wzg)

adjusted weights are w;; = where 1; = S and Zg 1 Wig =

Z Wzg’
Z;” 1 w2 = n;. Yang (2021) used weighted likelihood dlstrlbutions for a single

multinomial model, see also Nandram, Choi, and Liu (2021). Yang (2021) found
out there is a very small difference between normalized and unnormalized weighed
likelihood.

We can transform BMI data using the adjusted weights into adjusted counts.
Let I;4; be the BMI category indicator for individual g in county 7,7 = 1,..., ¢ at
cell j,j =1,..., K, where define I;4; = 0 or 1 with Z I;4; = 1, for example,
if a person responds in cell j, a one is scored and all other cells have zeros. For
simplification, we can have the unnormalized weighted joint posterior distribution
as

Zj IZg 1 Ligiwig)! 923211@;‘%9

j

(0,1, 7,p, $n) H{

i=1 1lj= 1(Zg—1 Ligjwig)! j=1

Dirichlet(ze7) (K —1)!

[p: 5+
" Jy,cc Dirichlet(ur)df; (1+7)

¢To—1 1—¢p)T9—1
iy Py (1= py) oI
(1 — p;)Dirichlet(1,...,1)] Bloro. (L= d)70))

Our approaches can be applied to the adjusted counts directly.
The computational burden to fit each of the models is enormous. In Chapter 3,
we would like to know how to provide more efficient algorithms to make posterior

inference and compute the Bayesian diagnostics criterion. Operationalizing the
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Gibbs sampler will make our work more accessible to a much larger audience (e.g.
government agencies).

In Chapter 4, we would like to explore how to incorporate the partial exchange-
ability assumption into the model with order restrictions differently to have differ-
ent levels of borrowing information from all areas. We also would like to see the
performance of the multinomial-Dirichlet EXNEX models in the simulation under
different scenarios.

In the posterior summary of mixture probabilities p;, we can use posterior coef-
ficients of variations (PCV), but these are misleading for the mixture probabilities
pi. Because p; and 1 — p; have different PCVs even they are essentially the same
variables. PCVs do not make sense when the variables are correlated, such as
i, =1,..., K orp; and 1 — p;. In the Bayesian paradigm, one needs to present
the entirely posterior density graphically. But when they are too many of these,
we need summaries. Perhaps we can use robust measures of standard deviations
and center, e.g. median and median absolute deviation (MAD) and we can take

PCV=MAD/median.
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