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Abstract

The small area analysis of survey data has received a lot of attention. Borrow-

ing information from other areas can provide reliable and accurate estimates when

the sample size of an area is small. In many applications, it is necessary to take

into account possible order restrictions of the unknown parameters of interest, and

it is reasonable to make such an assumption. With the order restriction assumption,

pooling data can provide more accurate estimates, where parameters can increase

up to a point (mode) and decrease thereafter. In this dissertation, we assume uni-

modal order restrictions on parameters of interest. First, we describe Bayesian hier-

archical multinomial-Dirichlet models with order restrictions for count data from

small areas. Second, we incorporate uncertainty into the model with unimodal

order restrictions as an extension. Third, we describe the models with exchange-

ability–nonexchangeability (EXNEX) priors, which allow borrowing information

across similar areas while avoiding too optimistic borrowing for extreme areas.

First, due to the natural characteristics of the data, making unimodal order re-

striction assumptions to parameter spaces is relevant. We present the models with

order restrictions on different parameters of interest to explore how borrowing in-

formation under different order restriction assumptions works differently. In the

simulation, we compare these models with order restrictions under different sce-

narios, where we assume three levels of heterogeneity between areas. In a small

heterogeneity scenario, the model with stronger order restrictions on parameters

borrow more information among areas and has smaller relative bias, posterior
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standard deviation, and higher credible interval coverage than other models. We

develop methods to generate posterior samples for the models with different order

restrictions assumptions.

Second, in our application to body mass index (BMI) data from the NHANES

III, we assume people may have a high chance to have overweight BMI level. We

assume the same unimodal order restriction across all counties, where the mode is

at the third position. But we notice the same unimodal order restriction for all areas

may not hold. To have a more robust model, we incorporate uncertainty into the

unimodal order restriction. We let the modal position for each area be a random

variable and have mixture probabilities for the modal position, which means each

area can have different order restrictions. We provide an approximation of log-

pseudo marginal likelihood as a model diagnostic procedure. In the application to

the BMI data and simulated data, we compare the performance of different models

with or without order restrictions. We show that the performance of the model,

incorporating uncertainty about order restrictions, is consistent and it can provide

relatively accurate estimates of parameters in the application. We demonstrate how

the model with order restrictions can borrow information among areas differently

from the model without order restriction.

Third, when population means are clustered into two or more subgroups, shrink-

ing all the means towards a common weighted average is inappropriate. A useful

substitute for exchangeability in the above situation is partial exchangeability. We

present exchangeability–nonexchangeability (EXNEX) models, which allow bor-

rowing information across similar areas while avoiding too optimistic borrowing

for extreme areas. We present a griddy Gibbs sampler to draw samples from the

joint posterior distribution of the binomial-Beta EXNEX model. In the simula-
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tion, we illustrate the robustness of EXNEX models, which have small relative

bias under different scenarios. Then we extend the approach to a multinomial-

Dirichlet EXNEX model with order restrictions. In the application to BMI data,

we compare the multinomial-Dirichlet EXNEX model with order restrictions and

the multinomial-Dirichlet model with order restrictions. We show that the EXNEX

model with order restrictions can borrow information across similar areas while

avoiding borrowing from very different areas. So the EXNEX model with order

restrictions is preferred in some cases.

Overall, borrowing information among areas is a key idea in small area esti-

mation. The hierarchical structure of the models with order restrictions is easy to

apply to small area estimation problems. The main issue we focus on here is to bor-

row information with the unimodal order restrictions on cell probabilities, which

can borrow more information among areas than the model without order restric-

tions. As extensions of our approach, incorporating uncertainty about the order

restrictions may solve the problem that the same unimodal order restrictions across

areas may not hold. Partial exchangeability of parameters are recommended to

allow borrowing across similar areas and avoid optimistic borrowing for very dif-

ferent areas. Our theoretical and methodological work can help provide accurate

and efficient small area statistics for many national surveys.
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Chapter 1

Introduction

Small area estimation is a statistical technique involving the estimation of pa-

rameters for small sub-populations that is included in a larger survey. Small area

estimation plays a crucial role in sample surveys, which can borrow information

across areas. In the context of small area estimation, hierarchical Bayes approaches

are widely used. One important example is that the multinomial-Dirichlet model

works well for count data. In many cases, such as the age compositions of the

population of Atlantic cod, it is necessary to take into account the order restric-

tions of the unknown parameters of interest. Several studies have been developed

to incorporate different order restriction assumptions into different models. The

hierarchical models with order restrictions can improve the accuracy of estimates.

1.1 Overview of Small Area Estimation

Collecting and analyzing information play important roles in modern society.

Data are regularly collected to satisfy the need for information about specified
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sets of elements, called finite population. One of the most important methods is a

sample survey, which is recognized as cost-effective and scientifically valid. As an

example, it may be desired to know income and poverty in US for distributing funds

and managing federal programs. In this situation, samples from school districts,

counties and states would be obtained via national surveys. Then estimates of

income and poverty would be calculated. A properly conducted sample survey

will support inference from the sample that is valid about the population. It costs

less than a complete enumeration, and it is usually less time consuming and can

be more accurate with regard to the avoidance of non-sampling errors when, for

example, the possibility of response error is a major concern.

Sample surveys provide estimates not only for the entire population of interest

but also for a variety of subpopulation, which may be defined by geographic ar-

eas or socio-demographic groups (Rao and Molina 2015). Example of geographic

areas include a state, county, school district, metropolitan area, and health service

area. An area or subdomain is regarded as “small” if the area or subdomain con-

tains too few ultimate population units to provide a sample of sufficient size and

support direct estimates of adequate precision from the sample survey. For exam-

ple, one aspect of a national survey is to provide proper estimates of poverty in

states. The sample sizes of counties may not be large enough to support direct esti-

mates for subgroups of the state populations, such as persons in each county. Due

to cost considerations, it is often not possible to have a large enough overall sam-

ple size to support those estimates for all domains. It is also impossible to design

another survey only for those small areas.

The use of survey data in developing reliable small area estimation (SAE), pos-

sibly in conjunction with the census and administrative data, has received lots of

2



attention. Demographers have long been using a variety of indirect methods for

SAE of population and other characteristics of interest. In recent years, legisla-

tive acts by national governments have increasingly created a need for small area

statistics and business demand for small area statistics from private sector has also

accelerated the trend. Rao and Molina (2015) provided a very-detailed review on

models and methods of SAE, but this is out of date now because the field is growing

rapidly.

1.1.1 Model Based Approaches

Model based approaches have several advantages. First, model diagnostics can

be used to find proper models to satisfy different needs. Second, area-specific mea-

sures of precision can be associated with each small area estimate, unlike average

over small areas. Third, linear mixed models and nonlinear models can be applied

to complex data structures. Random effects models can achieve accurate small area

inferences.

We can classify model based approaches into two broad types. (1) Area level

models that relate the small area means to area-specific auxiliary variables; and (2)

Unit level models that relate the unit values of the study variable to unit-specific

auxiliary variables.

There are three essential model based approaches for small area estimation,

which are empirical best linear unbiased prediction (EBLUP), parametric empirical

Bayes (EB), and parametric hierarchical Bayes (HB). In the hierarchical Bayes

(HB) approach, a subjective prior distribution f(λ) on the model parameters λ is

3



specified and the posterior distribution f(µ|y) can be obtained from

f(µ|y) =

∫
f(µ, λ|y)dλ =

∫
f(µ|y, λ)f(λ|y)dλ.

Note that f(µ|y, λ̂) is for EB estimators (Rao and Molina 2015).

As a special case in the hierarchical Bayes approach, Bayesian hierarchical

binomial-Beta models are effectively designed for binary data. Assume that given

pi, the number of success, Yi, . . . , Yk, are independent with

Yi|pi ∼ Binomial(ni, pi), for i = 1, 2, . . . , k,

p1, . . . , pk|µ, τ ∼ Beta(µτ, (1− µ)τ),

where p(pi|µ, τ) = Γ(τ)
Γ(µτ)Γ((1−µ)τ)p

µτ−1
i (1− pi)(1−µ)τ−1.

A vague non-informative prior can be used,

π(µ, τ) =
1

(1 + τ)2
, where 0 < µ < 1, τ > 0.

To perform the hierarchical Bayes analysis, Gibbs sampler can be used.

As an extension of the binomial-Beta model, the hierarchical Bayesian multi-

nomial Dirichlet model is appropriate for count data. Nandram (1998) considered

the problem of pooling data from several multinomial populations using a hierar-

chical Bayesian model. He specified a hierarchical multinomial-Dirichlet model

for multinomial data, which allows for the uncertainty in the estimation of all the

hyper-parameters. Letting nij be the cell counts, pij the corresponding cell prob-

abilities, i = 1, . . . , `, j = 1, . . . ,K, ni. =
∑K

j=1 nij , pi = (pi1, . . . , piK)′,

4



∑K
j=1 pij = 1, given pi, ni follow a multinomial distribution,

ni|pi ∼ Multinomial(ni.,pi).

At the second stage, given hyper-parameters µ and τ , the pi follow a Dirichlet

distribution,

pi|µ, τ
ind∼ Dirichlet(µτ),

where µ = (µ1, . . . , µK), 0 < µj < 1, τ > 0, i = 1, . . . , I.

At the third stage, Nandram (1998) assumed that

µ ∼ Dirichlet(µ0τ0),

τ ∼ Gamma(η0, ν0),

where µ0, τ0, η0, ν0 are specified. Or at the third stage, it can be π(µ, τ) = (K−1)!
(1+τ)2

as a vague non-informative prior of µ and τ for the multinomial-Dirichlet model

without any order restriction (Nandram, Kim, and Zhou 2019).

To study the association between bone mineral density and body mass index

(BMI) from several U.S. counties, Nandram, Kim, and Zhou (2019) provided a

clear discussion of the general hierarchical multinomial-Dirichlet model and their

methodology for small area estimation. In their application to the third National

Health and Nutrition Examination Survey (NHANES III), 31 counties have been

used. Pooling the data using small area estimation techniques is necessary since

counts in some cells are very small. Specifically, let ns =
∑r

j=1

∑c
k=1 nsjk be

the cell counts, ps = (ps1, ps2, . . . , psr)
′ and qs = (qs1, qs2, . . . , qsc)

′ are the

marginal probabilities of bone mineral density and BMI in county s, vec(psq′s)

5



be the corresponding cell probabilities for county s, s = 1, 2, . . . , S, row j =

1, 2, . . . , r, column k = 1, 2, . . . , c. The model, which estimates the association

between bone mineral density and BMI, is

ns|ps, qs ∼ Multinomial{ns. , vec(psq′s)}, s = 1, 2, . . . , S,

ps|µ1, τ1 ∼ Dirichlet(µ1τ1),

qs|µ2, τ2 ∼ Dirichlet(µ2τ2),

π(µ1, τ1,µ2, τ2) =
(r − 1)!

(1 + τ1)2

(c− 1)!

(1 + τ2)2
.

Note the π(µ1, τ1, µ2, τ2) is proper.

Without any prior information, they take µ1, µ2, τ1 and τ2 to be independent.

As an interpretation of hyper-parameters, µ are cell means and τ is a prior sample

size. This model features stratification and hyper-parameters to pool information

from different strata.

We assume the same unimodal order restrictions on parameters into the Bayesian

hierarchical multinomial-Dirichlet models. Our proposed models are different

from their work, and can provide accurate estimates of parameters of interest when

the order restriction assumptions hold.

1.2 Order Restriction

In this section, we briefly review some of the existing constrained inference on

the parameters of interest.

6



1.2.1 Order Restrictions for General Statistic Inference

In many statistical problems, it is necessary to take into account the order re-

strictions of the unknown parameters of interest. Sometimes, it is reasonable to as-

sume order restrictions on the parameters. Robertson, Wright, and Dykstra (1998)

provided a comprehensive treatment of the topic of statistical inference under in-

equality constraints, where much of the theory is based on the principles of max-

imum likelihood estimation and likelihood ratio tests. Silvapulle and Sen (2004)

discussed a broad range of inequality-constrained inference problems. They clearly

illustrated concepts with practical examples from a variety of fields, focusing on

sociology, econometrics, and biostatistics. Heck and Davis-Stober (2019) provided

a comprehensive discussion about linear inequality constraints, such as the set of

monotonic order constraints for binary choice probabilities on the parameters of

multinomial distributions for psychological theories. Wu, Meyer and Opsomer

(2016) combined domain estimation and the pooled adjacent violators algorithm to

construct new design-weighted constrained estimators of wage for U.S. National

Compensation Survey. The survey estimates mean wages for many job categories,

and these mean wages are expected to be non-decreasing according to job levels.

They assumed constrained estimators satisfied monotonicity which improved point

estimation and sharpened confidence intervals. Their design-based approach is not

our concern and their constraints are different from our unimodal order restrictions.

Nandram (2005) provided a Bayesian method to obtain the best subset of prod-

ucts and to assess the quality of the products. A priori information about which

subset is the best is incorporated, and a stochastic ordering is modified to select

the best subset of the products. But their constraints are different from our order

7



restrictions.

Nandram and Peiris (2018) developed a robust Bayesian analysis to study count

data obtained from a nine-point hedonic scale at two time points. They robustified

a standard binormal model by modeling skewness to obtain the receiver operating

characteristic (ROC) curve and the area under the curve. They also incorporated a

stochastic ordering to enforce ROC curve with robust measures. But their stochas-

tic ordering on ROC curve is totally different from our unimodal order restrictions

on parameters.

Li (2008) has a nice review about treatment effects models with order restric-

tions, since the treatment effect would be higher for a higher dose. The purpose

of using estimators that take the order restrictions into consideration is to gain ef-

ficiency. He considered different statistical problems in which an order restriction

on the unknown parameters is either natural or reasonable, and discussed methods

of estimation and inference under the restrictions.

There are lots of discussion about how to make inferences with order restric-

tions. They show the importance of incorporating order restrictions into the model,

which can have the considerable improvement in precision. But their approaches

are not aimed for small area estimation.

1.2.2 Order Restrictions for Small Area Estimation

In context of small area estimation, there is a trend considering the order pa-

rameters if one is interested in estimating jointly the best and worst areas’s pa-

rameters, such as the largest multinomial probability and smallest multinomial

probability. Dunson and Neelon (2003) proposed a Bayesian approach for infer-

ence on order-constrained parameters in generalized linear models. They focused

8



on the case where the data consist of normally distributed observations for sub-

jects in k groups and there is prior knowledge of an ordering in the means. For

j = 1, . . . , k group, let yi denote an nj × 1 vector observations of i.i.d. N(µj , σ
2)

random variables. Assuming a conjugate prior density, µj |σ2 ∼ N(µ0j , σ
2/k0j)

and σ2 ∼ IG(a0, b0), instead of choosing a prior distribution with support on the

constrained space, which can result in major computational difficulties, they pro-

posed to map draws from an unconstrained posterior density using an isotonic re-

gression transformation. In particular, they focused inference on µ∗ = g(µ), where

µ is the unconstrained mean, µ∗ is the constrained mean, and g(.) is the isotonic

regression transformation. This approach allows flat regions over which increases

in the level of a predictor have no effect. Bayes factors, which is a Bayesian diag-

nostic criterion, for assessing ordered trends can be computed based on the output

from a Gibbs sampling algorithm.

Malinovsky and Rinott (2010) studied the prediction of ordered random effects

in a basic unit level model for small area estimation. They considered a simplified

Fay-Herriot model as in

yij = µ+ ui + eij , j = 1, . . . , n, i = 1, . . . ,m,

where yij is observed for area i = 1, . . . ,m, µ is an unknown constant, ui ∼

N(0, σ2
u) and eij ∼ N(0, σ2

e/n).

Set θi = µ + ui and θ = (θ1, . . . , θm). The purpose is to predict the ordered

random variables θ = {θ(1) 6 . . . 6 θ(m)} from the observed y. They suggested

shrinkage-type predictors, such as θ̂(i) = γy(i)+(1−γ)ȳ, where y(1) 6 . . . 6 y(m)

denote the order statistics of y1, . . . , ym, with an appropriate amount of shrinkage
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for the particular problem of ordered parameters, are better and close to the optimal

predictors.

But those empirical Bayesian models with order restrictions are not appropriate

for binary or count data. Their order restrictions are not the same as ours.

As a special case of Bayesian hierarchical models for small area estimation,

the multinomial-Dirichlet model with order restrictions can be applied to the count

data where the order restriction about parameters may exist.

Sedransk, Monahan and Chiu (1985) described a Bayesian method for estima-

tion of finite population parameters in general population surveys. A multinomial

distribution is used to model the variable of interest, Y , from a categorical table. A

Dirichlet prior distribution is assigned to the cell probabilities, p = (p1, . . . , pt).

They added order restrictions to the model to capture the unimodal smoothness

relationships among cell probabilities (p1, . . . , pt), such as

p1 6 . . . 6 pk > pk+1 > . . . > pt.

If the modal value, k, is known, then the prior distribution is assumed to be given

by

f(p) = Ck(β1, . . . , βt)

t∏
i=1

pβi−1
i ,

where p ∈ R(k)
t = {p : p1 6 . . . 6 pk > pk+1 > . . . > pt}. They showed how

to use Monte Carlo integration to evaluate the posterior moments or probabilities.

But their model is not designed for small area estimation. The lack of Bayesian

diagnostics for their model suggests that there are a lot of improvement to be made.

Gelfand, Smith and Lee (1992) provided very-detailed Gibbs sampler struc-
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tures for Bayesian analysis of constrained parameters. They suggested that a Dirich-

let prior should be used for ordered multinomial parameters, which are p1 6 p2 6

. . . 6 pt > . . . > pK . A Bayesian model for their problem is given by defining

Yj = # of observations in category j. So the likelihood is

Y |p ∼ Mult(n; p1, . . . , pK),

Given t, they specified a prior

f(p|t) ∝ c(β1, . . . , βK , t)

J∏
j=1

p
βj−1
j ,

where c(β1, . . . , βK , t) is the normalizing constant, andRK = {(p1, . . . , pK)|p1 6

p2 6 . . . 6 pt > . . . > pK , 0 6 pj 6 1,
∑K

j=1 pj = 1}.

Gelfand, Smith and Lee noted that the Gibbs sampler cannot be employed di-

rectly when t is unknown and prior Pr(t = j) = wj , j = 1, . . . ,K. But the

marginal posterior for t can be calculated directly, taking the form

Pr(t = j|Y ) =
c(β1, . . . , βK , j)wj/c(β1 + Y1, . . . , βK + YK , j)∑K
j=1 c(β1, . . . , βK , j)wj/c(β1 + Y1, . . . , βK + YK , j)

.

They showed Bayesian inference on order parameters can have higher preci-

sion. However their Dirichlet multinomial model with the ordered parameters does

not consider stratification and hyper-parameters to borrow information from small

areas.

For a stratified population, Nandram and Sedransk (1995) showed the precision

of inference about πij , which is the proportion of firms in stratum i belonging to
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the sales and receipts class j, can be dramatically increased by using Dirichlet

multinomial model with appropriate order restrictions on πij . They considered

uncertain modal positions to increase their model flexibility. Prior specification of

parameter α in Dirichlet distribution has to be proper and reasonable to the model

inference. Their order restriction is more complicated than the previous model due

to the stratification. They also consider the case where there is uncertainty about

the vector of modal positions L, which can take g possible values, `1, `2, . . . , `g.

The position probabilities are given below,

Pr(L = `s) = ws, s = 1, 2, . . . , g, where ws are specified and
g∑
s=1

ws = 1.

They directly applied Monte Carlo integration to estimate the posterior ws =

Pr(L = `s|n). Adopting a Bayesian view, they showed that the posterior vari-

ances can be dramatically reduced by including order restrictions among πij , both

within and between the strata. But their model does not have hyper-parameters to

borrow information among strata.

Nandram, Sedransk and Smith (1997) improved estimation of the age compo-

sition of the population of Atlantic cod with the help of order-restricted Bayesian

estimation. Let pij denote the cell probability that a fish belongs to length stratum

i and age class j. To simplify the analysis, the likelihood of p is

`(p|n) ∝
I∏
i=1

J∏
j=1

p
nij
ij .
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They took independent Dirichlet distributions as prior; that is

f(p|α) ∝
I∏
i=1

J∏
j=1

p
αij−1
ij ,

where αij > 0 is a fixed quantity, within stratum i, pi1 6 . . . 6 piki > . . . >

piui for some ki ∈ Zi. In the set Zi, the cells labelled (i, `i), (i, `i+ 1), . . . , (i, ui),

where `i and ui are integers such that 1 6 `i 6 ui 6 J . The pij are to be estimated

for each j ∈ Zi.

In their Atlantic cod study, let i = 1 correspond to the stratum with the shortest

fish and j = 1 correspond to the youngest fish. It is expected that as i increases,

the relative values of the {pij : j ∈ Zi} will change. The order restrictions are not

just within strata, but also among strata, such as

pi1 6 . . . 6 pit > . . . > piK ,

pj1 6 . . . 6 pjt∗ > . . . > pjK where i < j and t < t∗.

They also considered the case where there is uncertainty about the modal posi-

tion L,

Pr(L = `s) = ws , s = 1, 2, . . . , g.

They showed the joint posterior distribution of π and L is

f(π, L = `s|n) =
wsC`s(α)

∏I
i=1 gni(πi)∑g

s′=1ws′C`s′ (α)/C`s′ (n)
.

Their model with order restrictions is different from our proposed models, since

their order restrictions are within strata and among strata.
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Overall, making inference with order restrictions for small area estimation is

feasible and necessary.

1.3 Partial Exchangeability

The idea to exploit the similarity and borrow information across strata has a

long tradition. The methods are known to improve estimation accuracy over esti-

mate obtained from stratification or complete pooling. Standard hierarchical mod-

els assume full exchangeability of parameters, which is usually expressed via ran-

dom effects. The multinomial-Dirichlet model with order restrictions can improve

estimation accuracy, since it can borrow more information across small areas than

the model without order restriction. We found the same order restrictions may not

be true for all small areas, which will make the performance of the model with

order restriction worse.

Malec and Sedransk (1992) have pointed out the weakness of Bayesian mod-

els based solely on the exchangeability assumption, where we might have the

same issue in the model for our application. To illustrate their approach, for

i = 1, . . . , L, j = 1, . . . , ni, the Yij are independent with Yij ∼ N(µi, σ
2
i ), where

the σ2
i are assumed to be known. They proposed a flexible prior distribution for

parameter µ = (µ1, . . . , µL) to permit the amount and nature of the pooling to be

influenced by the sample data. They use grouping method to have subsets of µ

such that the µi within each subset are similar, and there is uncertainty about the

composition of such subsets of µ. But our approach to have partial exchangeability

is different from their grouping method.

A useful substitute for exchangeability in the above situation is partial ex-
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changeability, where the components within a subgroup are exchangeable, but

the different subgroups are not. Ghosh and Kim (2002) considered a general

Bayesian model which allows multiple grouping of parameters, where the compo-

nents within a subgroup are exchangeable. In other word, they assumed the model

with partially exchangeability. The general idea is then illustrated for the normal

means estimation problem under priors which are scale mixture of normals. They

discussed also implementation of the Bayes procedure via Markov chain Monte

Carlo integration techniques. They illustrated the proposed methods with a numer-

ical example. But their approach to have partially exchangeability is different from

ours.

Kaizer, Koopmeiners and Hobbs (2017) introduced multisource exchangeabil-

ity models, a general Bayesian approach for integrating multiple, potentially nonex-

changeable, supplemental data sources into the analysis of a primary data source.

They give us the inspiration to construct a model with partially exchangeability.

Neuenschwander et al. (2016) proposed models that allow each stratum-specific

parameter to be exchangeable with parameters from other similar strata, or nonex-

changeable with any of the other strata parameters. In other word, this approach

can automatically borrow information from those similar areas, and borrow much

less information from those very different areas.

These exchangeability-nonexchangeability (EXNEX) models are robust and

can provide accurate estimates of parameters of interest, since they allow borrow-

ing information across similar strata while avoiding too optimistic borrowing from

extremely different strata. However, the EXNEX models proposed by them are de-

signed for clinical trials. First, they use weakly informative or informative priors,

which heavily rely on the previous study or historical data. Second, their models
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for clinical trials are totally different from ours. Third, they do not have any order

restriction assumption on parameters of interest.

Our approach to have partially exchangeability is inspired by their work. To

simply illustrate a EXNEX model, a general hierarchical binomial-beta EXNEX

model is given below. For area i = 1, . . . , `, the number of successes yi in ni trials

are independent with

ri|θi ∼ binomial(ni, θi),

where θi are the corresponding success probabilities in the ith area. With mixture

probabilities pi, we assume fully exchangeability (EX), where the parameter vector

θ is exchangeable and

θi|α, β ∼ Beta(α, β),

and the prior of α and β is π(α, β) = 1.

With mixture probabilities 1−pi, we assume nonexchangeability (NEX), where

θi is nonexchangeable and

θi|α0, β0 ∼ Beta(1, 1).

We notice that the label switching problem arises when taking a Bayesian ap-

proach to parameter estimation and clustering using mixture models. In a Bayesian

context the invariance of the likelihood under relabeling of the mixture components

can lead to the posterior distribution of the parameters being highly symmetric and

multimodal, making it difficult to summarize (Stephens 2000). We consider con-

16



strained parameter spaces to deal with label switching issue in the mixture models,

which are our EXNEX models.

1.4 National Health and Nutrition Examination Survey

The performance of our method is studied using the Third National Health

and Nutrition Examination Survey, NHANES III. NHANES III is a stratified mul-

tistage probability design targeted to obtain a representative sample of the total

civilian noninstitutionalized U.S. population age 2 months and older. The sample

was selected from households across the United States during the period October

1988 through September 1994. Some individuals area selected with different prob-

abilities. Nandram and Choi (2010) emphasized that NHANES III was designed

to oversample the two largest minority groups in the U.S. population: black non-

Hispanic and Hispanic-Americans. For confidentiality reasons, the final data set

for this study uses only the 35 largest counties (from 14 states) with a population

of at least 500,000 for selected age categories by sex (male, female) and race (white

non-Hispanic, black non-Hispanic, Hispanic, other).

One of the variables in this survey is body mass index (BMI; body weight in

kilograms divided by [(height in meters)2]), which is currently used as a measure

to diagnose overweight and obesity in children and adolescents. Specifically, obe-

sity is one of today’s leading public health problems and it increases the risk of

morbidity due to diseases such as diabetes and hypertension.

The purpose of the thesis is to predict the percentile BMI for the finite pop-

ulation of female adults, post-stratified by counties. We use a selected subset of

BMI data from NHANES III, where we only use the female adults older than 20
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years from 35 counties with a population at least 500,000. The final female BMI

data set for this study uses only 3149 samples, which is small relative to the finite

population. So we use methods associated with small area estimation. Our method

can be easily applied to other subsets of BMI data, such as the male BMI data set.

The original sensitive attributes BMI data are transformed to categorical data

based on the criteria defined by the Centers for Disease Control (CDC), which are

underweight, normal, overweight, obese I, and obese II. If BMI is less than 18.5,

it falls within the underweight range. If BMI is from 18.5 to 25, it falls within the

normal. If BMI is from 25.0 to 30, it falls within the overweight range. If BMI is

from 30.0 to 35, it falls within the obese I range. If BMI is 35.0 or higher, it falls

within the obese II range. We can look at small domains, but the cells of the multi-

nomial tables will become sparse. We can eliminate some counties that become

small or we can combine some counties. The hierarchical multinomial-Dirichlet

model is ideal for contingency tables, but the framework of this dissertation does

not cover any covariate. Due to the natural characteristics of BMI, unimodal order

restrictions are reasonable to incorporate. Most people have higher chance to have

normal or overweight BMI, and less likely to be underweight or obese.

1.5 Gibbs Sampler and Convergence Diagnostics

In the hierarchical Bayesian approaches, to evaluate the desired posterior den-

sity f(µ|y) or estimate a parameter of interest by its posterior mean, Θ̂ = E[h(µ|y)],

high-dimensional integrations may be involved. Gibbs sampler, one of Markov

chain Monte Carlo (MCMC) methods, is useful to overcome the computational

difficulties from multi-dimensional integrations.
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The point of Gibbs sampler is that given a multivariate distribution it is simpler

to sample from a conditional distribution than to marginalize by integrating over a

joint distribution. Hobert and Casella (1996) showed how to use Gibbs sampling in

hierarchical linear mixed models even with improper priors. Gibbs sampling output

cannot provide information that the posterior is improper. But the hierarchical

binomial-Beta models and multinomial-Dirichlet models have been widely used.

It is easy to see the propriety of their posterior.

There are three issues associated with Gibbs sampler to be considered. Gibbs

sampler, generate Markov Chains which simulate the posterior distribution π(·).

Early proportion of the chain that may not converge to the target posterior distribu-

tion should be dropped off, which is called burn-in. Thinning samples will reduce

the final autocorrelation in the sample, and provide valid inference on the posterior.

Roy (2020) discussed most widely used MCMC convergence diagnostics tools.

Even most of the proposed diagnostics have shortcomings, we decide to use a few

criteria, such as Geweke’s diagnostic, effective sample size, trace plots to acquire

the converged posterior samples.

Geweke (1992) used spectral analysis to evaluate numerical accuracy formally

and constructed diagnostics for convergence. Geweke’s convergence diagnostic is

a Z test of equality of means where autocorrelation in the samples is taken into

account while calculating the standard error. Let ḡn1 and ḡn2 be the time averages

based the first n1 and the last n2 observations, Ŝg(0) be the estimate of its standard

error. Thus, Geweke’s statistics is

Zn = (ḡn1 − ḡn2)/

√
Ŝg(0)/n1 + Ŝg(0)/n2
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Geweke suggests using n1 = 0.1ntotal and n2 = 0.5ntotal.

The effective sample size (ESS) of MCMC measures the amount by which

autocorrelation in samples increases uncertainty (standard errors) relative to an

independent sample, given by

ESS =
n

1 + 2
∑∞

k=1 ρ(k)
,

where n is the number of samples and ρ(k) is the correlation at lag k. If samples

are independent, the effective sample size equals the actual sample size.

The most common graphical convergence diagnostic method is the trace plot.

The trace plot is a time series plot that shows the realizations of the Markov chain

at each iteration against the iteration numbers. This graphical method is used to

visualize how the Markov chain is moving around the state space, that is, how well

it is mixing. It is often said that a good trace plot should look like a hairy caterpillar,

as in Figure 1.1.

Figure 1.1: Good trace plot
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1.6 Model Diagnostics

Gelfand, Dey and Chang (1992) used predictive distributions to address the

issues of model adequacy and model selection. They proposed the conditional pre-

dictive ordinate for the model determination. The conditional predictive ordinate

(CPO) is based on leave-one-out cross validation. Let n = (n1, . . . , nK) is a set of

data, n(i) are the data omitting the ith observation. CPO estimates the probability

of observing ni in the future if after having already observed n(i), given as

CPOi = f(ni|n(i)),

where f(.|n(i)) is the predictive distribution of a new observation given n(i). The

CPO is a probability, which lies in [0, 1]. Models with larger CPO values provide

better fit to the observed data. Low CPO values suggest possible outliers, high-

leverage and influential observations.

Compared with the marginal likelihood in Bayes factors, CPO can be esti-

mated by taking the inverse of the posterior mean of the inverse density function

value of ni, which is a harmonic mean of the likelihood of ni. Thus, ĈPOi =

[ 1
S

∑S
s=1

1

f(ni|θ
(s)

)
]−1, where θ(s) are posterior samples from f(θ|n). This form

may be computationally unstable though, and some care is needed. Generally, it

is easier to estimate CPO than Bayes factors, since it is easier to have posterior

samples than integrating the marginal likelihood for most cases.

The log-pseudo marginal likelihood LPML =
∑K

i=1 log(CPOi), which is an

estimator for the log marginal likelihood, can be used to quantify the support for a

model over another. The ’best’ model among competing models have the largest
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LPML.

1.7 Contributions of this Research and Dissertation Or-

ganization

We provide a brief introduction about small area estimation and Bayesian hi-

erarchical approach with order restrictions. We introduce body mass index (BMI)

data in NHANES III for later illustration. We have given a comprehensive overview

in Chapter 1.

In Chapter 2, we discuss the Bayesian hierarchical model with order restric-

tions. The multinomial-Dirichlet model with three different order restriction as-

sumptions are discussed as well. Then we show how to draw samples from the

posterior distribution using MCMC method. To compare different order restric-

tions assumptions, we present a simulation study.

In Chapter 3, in order to accommodate the different degrees of heterogeneity

between small areas, we describe a Bayesian hierarchical multinomial-Dirichlet

model with uncertain order restrictions. In particular, we describe the model in-

corporated with the uncertainty about the modal position. We show how to draw

samples from the proposed model using MCMC method with some approxima-

tion approaches because of the complexity of the model structure. Then we apply

our model to the BMI data to provide accurate estimates of the BMI proportions

for each county. We also compare the model incorporated uncertainty with the

multinomial-Dirichlet model with order restrictions.

In Chapter 4, we discuss the partial exchangeability assumption in the Bayesian

hierarchical model. As an introduction, we describe a simple binomial Beta model
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with exchangeability-nonexchangeability (EXNEX) priors. Then we show how to

draw samples from the joint posterior distribution. We present a simple simulation

from different heterogeneity scenarios to show the robustness of the model with

EXNEX priors. We also describe a multinomial-Dirichlet model with EXNEX

priors and how to draw posterior samples from it.

In Chapter 5, we summarize our result that the model with order restrictions

may be necessary for small area estimation. We present concluding remarks to

show the complexity and difficulty of the model with order restrictions and provide

some extensions of the multinomial-Dirichlet model with order restrictions. We

discuss future research work to extend the application of the current method for

small area estimation.
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Chapter 2

Bayesian Hierarchical

Multinomial-Dirichlet Model

We notice that there are benefits to add order restriction assumptions into the

hierarchical models. We also notice that the potential of Bayesian hierarchical

multinomial-Dirichlet model for small area estimation can be elaborated. Due to

the complexity of the multinomial-Dirichlet model with order restrictions, the effi-

cient Bayesian inference and Bayesian diagnostics should be discussed as well.

To be consistent, we use some notations from the general hierarchical multinomial-

Dirichlet model for further reference. As a hierarchical Bayesian approach for

small area estimation, let nij be the cell counts, θij be the corresponding cell prob-

abilities, for areas i = 1, 2, . . . , `, categories j = 1, 2, . . . ,K, and ni. =
∑K

j=1 nij .

The general hierarchical multinomial-Dirichlet model, in Nandram, Kim, and Zhou
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(2019 ) and Nandram (1998), is

ni|θi
ind∼ Multinomial(ni. ,θi),

θi|µ, τ
ind∼ Dirichlet(µτ),

π(µ, τ) =
(K − 1)!

(1 + τ)2
,

where f(θi|µ, τ) = 1
D(µτ)

∏K
j=1 θ

µjτ−1
ij , D(µτ) is the normalization constant

for Dirichlet(µτ), µj > 0,
∑K

j=1 µj = 1 , τ > 0.

Without any prior information, let µ and τ be independent, E(θij) = µj ,∑K
j=1 µj = 1. As an interpretation of hyper-parameters, µ are cell means and

τ is a prior sample size. This model features stratification and hyper-parameters to

pool information from different strata together. In our BMI data application and

simulation, we denote the general multinomial-Dirichlet model as M1.

In the following section, we will provide three models with different order

restriction assumptions.

2.1 The Model with Order Restrictions on µ Only

Let nij be the cell counts, θij be the corresponding cell probabilities, areas

i = 1, 2, . . . , `, categories j = 1, 2, . . . ,K, and ni. =
∑K

j=1 nij . The hierarchical

multinomial-Dirichlet model is

ni|θi
ind∼ Multinomial(ni. ,θi), i = 1, . . . , `.
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At the second stage we assume

θi|µ, τ
ind∼ Dirichlet(µτ), i = 1, . . . , `.

For hyperparameters µ and τ , we consider non-informative prior

π(µ, τ) =
K(m− 1)!(K −m)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, µ ∈ Cµ,

where

Cµ = {µ : µ1 6 . . . 6 µm > . . . > µK}.

There may be an unimodal structure on the cell probabilities θ. SinceE(θij) =

µj , it is reasonable to assume the expectation of cell probabilities have unimodal

order restrictions. We assume an order restriction assumption on the hyperparam-

eter µ, µ ∈ Cµ, and assume the modal position m in Cµ is known,

In our BMI data application and simulation, we denote the multinomial-Dirichlet

model with order restriction on µ as Mµ.

The joint posterior distribution of Mµ is

θ,µ, τ |n ∝
∏̀
i=1

{
K∏
j=1

θ
nij
ij

1

D(µτ)

K∏
j=1

θ
µjτ−1
ij }

K(m− 1)!(K −m)!ICµ
(1 + τ)2

,

whereD(µτ) =
∏K
j=1 Γ(µjτ)

Γ(
∑K
j=1 µjτ)

is the normalization constant of Dirichlet distribution

and ICµ is an indicator function that the constraint that µ ∈ Cµ is satisfied.

In Appendix 2.6.1, we use a griddy Gibbs sampler to draw samples from the

joint posterior distribution for parameters and make statistical inference on those
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posterior samples.

2.2 The Model with Order Restrictions on θ Only

Let nij be the cell counts, θij be the corresponding cell probabilities, areas

i = 1, 2, . . . , `, categories j = 1, 2, . . . ,K, and ni. =
∑K

j=1 nij . The hierarchical

multinomial-Dirichlet model is

ni|θi
ind∼ Multinomial(ni. ,θi), i = 1, . . . , `.

At the second stage we assume

θi|µ, τ
ind∼ Dirichlet(µτ),θi ∈ C, i = 1, . . . , `,

where C = {θi : θi1 6 . . . 6 θim > . . . > θiK , i = 1, . . . , `}, and assume the

modal position m in C is known.

For hyperparameters µ and τ , we consider non-informative prior

π(µ, τ) =
(K − 1)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, .

In our BMI data application and simulation, we denote the multinomial-Dirichlet

model with order restriction on θ as Mθ.

The joint posterior density is

θ,µ, τ |n ∝
∏̀
i=1

{
K∏
j=1

θ
nij
ij

1

D(µτ)C(µτ)

K∏
j=1

θ
µjτ−1
ij } (K − 1)!

(1 + τ)2
,
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where D(µτ) =
∏K
j=1 Γ(µjτ)

Γ(
∑K
j=1 µjτ)

is the normalization constant of Dirichlet distribu-

tion, C(µτ) =
∫
θi∈C

Γ(
∑K
j=1 µjτ)∏K

j=1 Γ(µjτ)

∏K
j=1 θ

µjτ−1
ij dθi is the normalization constant

of the truncated Dirichlet distribution.

In Appendix 2.6.2, we use a griddy Gibbs sampler to draw samples from the

joint posterior distribution for parameters µ and τ . Then in Appendix 2.6.4, we

show how to draw samples from the conditional posterior distribution of θ and

make statistical inference on those posterior samples.

2.3 The Model with Order Restrictions on θ and µ

Chen and Nandram (2019) incorporated the order restriction into the Bayesian

hierarchical Dirichlet multinomial model. Let nij be the cell counts, θij the corre-

sponding cell probabilities, i = 1, 2, . . . , `, j = 1, 2, . . . ,K, ni. =
∑K

j=1 nij and

denote the mode of θis as θim, 1 6 m 6 K.

Specifically, we assume

ni|θi
ind∼ Multinomial(ni. ,θi), i = 1, . . . , `.

At the second stage we assume

θi|µ, τ
ind∼ Dirichlet(µτ), θi ∈ C, i = 1, . . . , `,

where C = {θi : θi1 6 . . . 6 θim > . . . > θiK , i = 1, . . . , `}, and assume the

modal position m in C is known,

π(µ, τ) =
K(m− 1)!(K −m)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, µ ∈ Cµ,
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where

Cµ = {µ : µ1 6 . . . 6 µm > . . . > µK}.

Since E(θij) = µj , µ should have the same order restriction as θi, which is

µ ∈ Cµ. We assume the modal position m in Cµ is known.

A posteriori θi|µ, τ,ni
ind∼ Dirichlet(ni + µτ), θi ∈ C, i = 1, . . . , `,

where

f(θi|µ, τ,n) =

Γ[
∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij∫

θi∈C
Γ[

∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij dθi

=

Γ[
∑K
j=1(nij+µjτ)]∏K

j=1 Γ(nij+µjτ)

∏K
j=1 θ

nij+µjτ−1
ij

C(ni + µτ)
.

In our BMI data application, there are five cells and we use model M2 denote

the model with order restrictions and its mode is at the second position, which is

normal weight. Model M3 denote the model with order restrictions and its mode is

at the third position, which is overweight weight. Here, M2 and M3 are the similar

models but not the same.

The joint posterior distribution of M2 or M3 is

θ,µ, τ |n ∝
∏̀
i=1

{
K∏
j=1

θ
nij
ij

1

D(µτ)C(µτ)

K∏
j=1

θ
µjτ−1
ij }

(K(m− 1)!(K −m)!ICµ
(1 + τ)2

,

where D(µτ) =
∏K
j=1 Γ(µjτ)

Γ(
∑K
j=1 µjτ)

is the normalization constant of Dirichlet distribu-

tion, C(µτ) =
∫
θi∈C

Γ(
∑K
j=1 µjτ)∏K

j=1 Γ(µjτ)

∏K
j=1 θ

µjτ−1
ij dθi, is the normalization constant

of the truncated Dirichlet distribution, θ ∈ C,µ ∈ Cµ and ICµ is an indicator

function that the constraint that µ ∈ Cµ is satisfied.
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In Appendix 2.6.3, we use a griddy Gibbs sampler to draw samples from the

joint posterior distribution for parameters µ, τ . In Appendix 2.6.4, we draw sam-

ples of θ from the conditional posterior distribution and make statistical inference

on those posterior samples.

2.4 Simulation Under Six Scenarios

In this section, we run 100 simulations for each model under six scenarios to

compare models’ order restriction assumptions. We generate tables of true cell

probabilities from a Dirichlet distribution with parameter µ and τ , µ is the expec-

tation value of cell probabilities θi in each area i. Small value of τ in the Dirichlet

means larger variances or covariances. In other word, small value τ means larger

heterogeneity between samples of Dirichlet distribution.

In the first three scenarios, we let µ = (0.1, 0.2, 0.4, 0.2, 0.1), where the uni-

modal order restriction may hold and the mode is at third position. In the last

three scenarios, we let µ = (0.2, 0.2, 0.2, 0.2, 0.2), where the unimodal order

restriction does not hold. We consider three categories of heterogeneity, which

τ = (50, 300, 1000) represents relatively large heterogeneity, moderate hetero-

geneity and small heterogeneity. For the size of each area, we randomly pick ni

from 60 to 150.

We use the following model comparison criteria,

• Relative bias, which is the difference between posterior mean and the true cell prob-

abilities over the posterior mean, is
∑`
i=1

∑K
j=1

|θ̂ij−θtrueij |
θtrueij

/(` ∗ K), where θtrueij

are true cell probabilities and θ̂ij are the posterior means. Smaller is better.

• Root Mean Square Error (RMSE) is
√
bias2 + PSD2, where bias = θ̂ij − θtrueij
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and PSD is the posterior standard deviation of samples. Smaller is better.

• Credible interval coverage rate, which is the true cell probabilities locate in the

credible intervals. Larger coverage rate is better.

• Credible interval length, and shorter length is better.

Table 2.1: Simulation summary for four models under three scenarios

Criteria Models

Scenario

µ = (0.2, 0.2, 0.2, 0.2, 0.2) µ = (0.1, 0.2, 0.4, 0.2, 0.1)

τ = 50 τ = 500 τ = 1000 τ = 50 τ = 500 τ = 1000

M1 0.129 0.078 0.073 0.123 0.107 0.106

Mµ 0.131 0.082 0.080 0.126 0.104 0.104

Mθ 0.223 0.090 0.084 0.134 0.099 0.089
Relative Bias

M3 0.225 0.131 0.124 0.140 0.088 0.077

M1 0.043 0.032 0.031 0.034 0.033 0.033

Mµ 0.044 0.035 0.037 0.035 0.033 0.033

Mθ 0.038 0.032 0.028 0.038 0.031 0.026
RMSE

M3 0.038 0.029 0.027 0.048 0.032 0.028

M1 0.962 0.987 0.992 0.960 0.974 0.978

Mµ 0.950 0.979 0.985 0.960 0.980 0.980

Mθ 0.588 0.781 0.845 0.951 0.981 0.985
CI Coverage

M3 0.627 0.784 0.797 0.949 0.984 0.993

M1 0.111 0.104 0.101 0.103 0.102 0.101

Mµ 0.104 0.098 0.100 0.103 0.095 0.095

Mθ 0.085 0.072 0.079 0.110 0.095 0.096
CI Length

M3 0.098 0.086 0.085 0.111 0.093 0.089

Notation: M1 is the multinomial-Dirichlet model without order restrictions,

Mµ is the multinomial-Dirichlet model with order restrictions on µ,

Mθ is the multinomial-Dirichlet model with order restrictions on θ,

M3 is the multinomial-Dirichlet model with order restrictions on µ and θ.

When µ = (0.2, 0.2, 0.2, 0.2, 0.2) and τ = 50, the unimodal order restriction
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may not hold and the heterogeneity between areas is large. The model with or-

der restrictions, Mθ and M3, have large relative bias and small credible interval

coverage. When µ = (0.1, 0.2, 0.4, 0.2, 0.1) and τ = 1000, the unimodal order

restriction may hold and the heterogeneity between areas is small. The model with

order restrictions, Mθ and M3, have very small relative bias and very high credible

interval coverage.

The model with order restrictions on µ, Mµ, has similar performance to the

model without order restriction, M1. One possible explanation is that the order

restriction assumption in M1 is weak. It will not force the categorical cell proba-

bilities θi to have the unimodal order restrictions. The model with order restrictions

on µ may not borrow much more information among areas than the model without

order restrictions. There is not significant difference between M1 and Mµ.

The model with order restrictions on µ and θ,M3, has smaller relative bias than

the model with order restrictions on µ, Mµ, when the heterogeneity between areas

is small and order restriction assumption may hold. M3 has larger credible interval

coverage thanMµ when order restriction assumption may hold. It is consistent with

the conclusion that the order restriction on µ is weak and borrowing information

is not much different. We want to maximize the advantage of incorporating order

restrictions into the model to have small relative bias and large credible interval

coverage. The model with order restriction on µ and θ, M3, is preferred for the

further study.

With increasing values of τ , the unimodal order restriction holds across areas

and the heterogeneity between areas is getting smaller. The model with order re-

strictions on parameters µ and θ has smaller relative bias, RMSE, and higher cred-

ible interval coverage. Overall, if the order restriction assumption may hold and
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the heterogeneity across areas is relatively small, the model with order restrictions,

M3, is the best model we should use.

2.5 Concluding Remarks

From the outcome of the simulation, the multinomial-Dirichlet model with or-

der restrictions on parameters µ and θ, M3, shows that the model can borrow more

information than the hierarchical model without any order restriction. The model

with order restriction on hyperparameter µ does not have much difference than the

model without any order restriction. If the order restriction assumption holds on

the data we have, we should consider the model with order restrictions to have a

better estimates on parameters. The model with order restrictions on θ only will

not make computation easier than M3. If the order restriction assumption holds for

all areas and heterogeneity is small, M3 is better than other models. If the order

restriction assumption may not hold, the model with order restrictions will have

higher relative bias than the model without order restriction. In practice, it is not

easy to verify the unimodal order restrictions in the data and decide the correct

model we should use. It is worth fitting the model with order restrictions in the

data where the order restriction may hold.
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2.6 Appendix

2.6.1 Griddy Gibbs Sampler for µ, τ in Mµ

In this section we discuss how to obtain samples from the joint posterior density

for each parameter and make statistical inference on those posterior samples. The

joint posterior distribution of Mµ is

θ,µ, τ |n ∝
I∏
i=1

{
K∏
j=1

θ
nij
ij

1

D(µτ)

K∏
j=1

θ
µjτ−1
ij }

K(m− 1)!(K −m)!ICµ
(1 + τ)2

,

whereD(µτ) =
∏K
j=1 Γ(µjτ)

Γ(
∑K
j=1 µjτ)

is the normalization constant of Dirichlet distribution

and ICµ is an indicator function that the constraint that µ ∈ Cµ is satisfied.

Obviously, the conditional posterior distribution of θi is Dirichlet distribution

with parameter ni + µτ ,

θi|µ, τ,n
ind∼ Dirichlet(ni + µτ).

After integrating out θ, the conditional posterior distribution of µ, τ is

π(µ, τ |n) ∝
I∏
i=1

{D(ni + µτ)

D(µτ)
}
K(m− 1)!(K −m)!ICµ

(1 + τ)2
.

We use a griddy Gibbs sampler to draw the posterior samples of µ, τ . Specif-

ically, we use 200 points in the uniformly spaced grid. Since µ ∈ Cµ = {µ =

(µ1, . . . , µK) : µ1 6 . . . 6 µm > . . . > µK , 0 6 µj 6 1}, and for j from m − 1
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to 1 the range of µj is

0 < µj 6 min{µj+1,
1−

∑K
t=1,t 6=m,t 6=j µt

2
},

and for j from m+ 1 to K,

0 < µj 6 min{µj−1,
1−

∑K
t=1,t 6=m,t 6=j µt

2
}.

2.6.2 Griddy Gibbs Sampler for µ and τ in Mθ

In this section we discuss how to obtain samples from the joint posterior density

for each parameter and make statistical inference on those posterior samples.

The joint posterior density is

π(θ,µ, τ |n) ∝
I∏
i=1

{
K∏
j=1

θ
nij
ij

1

D(µτ)C(µτ)

K∏
j=1

θ
µjτ−1
ij }(K − 1)!

(1 + τ)2
,

where D(µτ) =

∏K
j=1 Γ(µjτ)

Γ(
∑K

j=1 µjτ)
is the normalization constant of Dirichlet distribution,

C(µτ) =

∫
θi∈C

Γ(
∑K

j=1 µjτ)∏K
j=1 Γ(µjτ)

K∏
j=1

θ
µjτ−1
ij dθi

is the normalization constant of the truncated Dirichlet distribution.

Obviously, the conditional posterior distribution of θi is Dirichlet distribution

with parameter ni + µτ and θ ∈ C,

θi|µ, τ,n ∼ Dirichlet(ni + µτ), θi ∈ C, i = 1, . . . , I,

where C = {θi : θi1 6 . . . 6 θim > . . . > θiK , i = 1, . . . , I}, and assume the
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modal position m in C is known.

After integrating out θ, the conditional posterior distribution of µ, τ is

π(µ, τ |n) ∝
I∏
i=1

{D(ni + µτ)C(ni + µτ)

D(µτ)C(µτ)
} (K − 1)!

(1 + τ)2

∝
I∏
i=1

{
∫
θi∈Ci

∏K
j=1 θ

nij+µjτ−1
ij dθi∫

θi∈Ci
∏K
j=1 θ

µjτ−1
ij dθi

} (K − 1)!

(1 + τ)2
.

We use a griddy Gibbs sampling method to draw the posterior samples of µ, τ .

Specifically, we use 200 points in the uniformly spaced grid in each interval. Due

to the ratio of the normalization constants with order restrictions, we propose a

Monte Carlo importance sampling method to deal with the ratio, shown as below.

Draw samples of θ: θ(q) ∼ Dirichlet(γn̄j), where θ ∈ Ci and γ is the impor-

tance ratio, n̄j is the average over small areas for each category, the approximate

joint posterior distribution of µ and τ is

π(µ, τ |n) ∝
I∏
i=1

{
∑M
q=1

∏K
j=1 [θ

(q)
j ]

nij−γn̄j+µjτ∑M
q=1

∏K
j=1 [θ

(q)
j ]
−γn̄j+µjτ

} (K − 1)!

(1 + τ)2

∝
I∏
i=1

{
M∑
q=1

K∏
j=1

[θ
(q)
j ]

nij

∏K
j=1 [θ

(q)
j ]
−γn̄j+µjτ∑M

q=1

∏K
j=1 [θ

(q)
j ]
−γn̄j+µjτ

} (K − 1)!

(1 + τ)2

∝
I∏
i=1

{
M∑
q=1

wq

K∏
j=1

[θ
(q)
j ]

nij} (K − 1)!

(1 + τ)2
, where wq =

∏K
j=1 [θ

(q)
j ]
−γn̄j+µjτ∑M

q=1

∏K
j=1 [θ

(q)
j ]
−γn̄j+µjτ

.

Since there is no order restriction aboutµ, the range of µj is 0 6 µj 6
∑K−1

t=1,t6=j µt.

for j = 1, . . . ,K − 1.

2.6.3 Griddy Gibbs Sampler for µ and τ in M2 and M3

In M2 and M3, we use a griddy Gibbs sampler, a Markov chain Monte Carlo

(MCMC) algorithm, for µ ∈ Cµ and τ . Specifically, we use 200 points in the
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uniformly spaced grid in each interval. The joint posterior density is

π(θ,µ, τ |n) ∝
I∏
i=1

{
∏K
j=1 θ

nij+µjτ−1
ij ICICµ

D(µτ)C(µτ)
}

ICµ
(1 + τ)2

,

where

C(µτ) =

∫
θi∈C

Γ(
∑K
j=1 µjτ)∏K

j=1 Γ(µjτ)

K∏
j=1

θ
µjτ−1
ij dθi,

and ICµ is an indicator function that the constraint that µ ∈ Cµ is satisfied.

There is no recognizable conditional distribution of µ and τ to generate sam-

ples. So we use a grid method to draw µ and τ from π(µ, τ |n) after integrating

with respect to θ, we get

π(µ, τ |n) ∝
I∏
i=1

{D(µτ + ni)C(µτ + ni)

D(µτ)C(µτ)
}

ICµ

(1 + τ)2

∝
I∏
i=1

{
∫
θi∈C

∏K
j=1 θ

µjτ+nij−1
ij dθi∫

θi∈C
∏K
j=1 θ

µjτ−1
ij dθi

}
ICµ

(1 + τ)2
.

Chen and Shao (1997) mentioned that importance sampling could be used to esti-

mate the ratio,

∫
θi∈C

∏K
j=1 θ

µjτ+nij−1

ij dθi∫
θi∈C

∏K
j=1 θ

µjτ−1

ij dθi
. We consider Dirichlet(rn̄j) as our impor-

tance function for all counties, where r is an adjustable ratio and n̄j =
∑I
i=1 nij
I .

It combines information together. Since our importance function does not depend

on the unknown parameters, µ and τ , we can generate one set of numbers for all

iterations. In our late application, it has been proved as an efficient way to generate

posterior samples.
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Algorithm 1:

1. Draw τ from π(τ |µ,n);

2. For j from m-1 to 1, draw µj from π(µj |µ(−j), τ,n), where

0 < µj < min{µj+1,
1−

∑K
t=1,t 6=m,t 6=j µt

2 };

3. For j from m+1 to K, draw µj from π(µj |µ(−j), τ,n), where

0 < µj < min{µj−1,
1−

∑K
t=1,t 6=m,t 6=j µt

2 };

4. Get µm = 1 −
∑K

j=1,j 6=m µj , repeat Step 1 to Step 4 to get converged MCMC

samples, µ(−j) = (µ1, . . . , µj−1, µj+1, . . . , µK).

Notice that the upper end of an interval can be small and 200 grids might be an

overkill.

2.6.4 Sampling from Conditional Posterior Distribution of θ in Mθ,

M2, and M3

In models Mθ, M2, and M3, the posterior of θ has a recognizable distribution,

which is the Dirichlet distribution with the order restriction. Instead of drawing

samples directly from the Dirichlet distribution with the order restriction, Chen and

Nandram (2019) present a direct sampling from truncated Gamma distributions,

where Nadarajah and Kotz (2006) offered a method for truncated Gamma.

Algorithm 2 : To draw θ = (θ1, . . . , θK) ∼ Dirichlet(α1, . . . , αK),θ ∈ C,

denote β = (β1, . . . , βK),

If 0 6 θ1 6 θ2 6 . . . 6 θm > . . . > θK , the mode is θm,

0 6 β1 6 β2 6 . . . 6 βm > . . . > βK , the mode is βm,

1. Draw βm ∼ Gamma(αm, 1), where 0 6 βm <∞,

2. Draw βm−1 ∼ Truncated Gamma(αm−1, 1), where 0 6 βm−1 6 βm,
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. . . β1 ∼ Truncated Gamma(α1, 1), where 0 6 β1 6 β2,

3. Draw βm+1 ∼ Truncated Gamma(αm+1, 1), where 0 6 βm+1 6 βm,

. . . βK ∼ Truncated Gamma(αK , 1), where 0 6 βK 6 βK−1.

Then,

θ1 =
β1

β1 + . . .+ βK
, . . . , θK−1 =

βK−1

β1 + . . .+ βK
, θK = 1−

K−1∑
i=1

θi.

Therefore, to draw samples from the conditional posterior distribution of θ in Mθ,

M2, and M3, we draw samples of β = (β1, . . . , βK), where 0 6 β1 6 β2 6 . . . 6

βm > . . . > βK . Each βj follows a truncated Gamma distribution with parameter

αj and 1. Then we can get the posterior samples of θ = (θ1, . . . , θK).
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Chapter 3

Uncertainty about Order

Restrictions

The same unimodal order restriction for all areas may be too strong to be true

for some cases. To increase flexibility, we add uncertainty to the unimodal order

restriction. Each area will have similar unimodal patterns, but not the same. We

use the same notations for model M1, M2, M3 in Chapter 2 for the following

discussion.

3.1 The Model Incorporated Uncertainty

Chen and Nandram (2021) consider adding uncertainty to the model to increase

the robustness and flexibility. Let Lpos be the mode position of cell probabilities.

Thus our new hierarchical multinomial-Dirichlet model, denoted as M4, is given

as below,

ni|θi, Lpos = `
ind∼ Multinomial(ni. ,θi), i = 1, . . . , I, ` = 1, . . . ,K,
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θi|µ, τ, Lpos = `
ind∼ Dirichlet(µτ), i = 1, . . . , I,θi ∈ Cl,

π(µ, τ |Lpos = `) =
K(ml − 1)!(K −m`)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1, µ ∈ Cµ` ,

where

C` = {θi : θi1 6 . . . 6 θim` > . . . > θiK},

Cµ` = {µ : µ1 6 . . . 6 µm` > . . . > µK},

and

P (Lpos = `) = w`,

K∑
`=1

w` = 1, ` = 1, . . . ,K.

Modes are the same for all areas but we are uncertain about where they are.

Then the joint posterior distribution is

π(θ,µ, τ |n) ∝
K∑

Lpos=1

wLpos

I∏
i=1

{
K∏
j=1

θ
nij
ij

∏K
j=1 θ

µjτ−1
ij ICLpos ICµLpos
D(µτ)C(µτ)

} 1

(1 + τ)2

∝
K∑

Lpos=1

wLpos

I∏
i=1

{

∏K
j=1 θ

nij+µjτ−1
ij ICLpos ICµLpos
D(µτ)C(µτ)

} 1

(1 + τ)2
,

where ICLpos and ICµLpos
are the indicator functions under that order restriction.

In Appendix 3.5.1, we present an approximation approach to estimate the pos-

terior of P (Lpos = `) and obtain the posterior samples of parameters θ.

Chen and Nandram (2020a) and Chen and Nandram (2020c) presented a method

to compute the conditional predictive ordinate (CPO) and the log-pseudo marginal

likelihood (LPML) as Bayesian model selection criteria. We present CPO and

LPML of M2, M3, and M4 in Appendix 3.5.2.
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CPO of M2 and M3(similar to M2) are

ĈPOi(M2) =

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

∫
θi∈C

∏K
j=1 θ

µ(h)τ(h)−1

ij∏K
j=1 θ

nij+µ(h)τ(h)−1

ij

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij∫
θi∈C

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij

dθi

−1

,

where
∏K
j=1 θ

nij+µ(h)τ(h)−1

ij∫
θi∈C

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij dθi
is the density function of θi, and θi ∈ C.

Then we get the LPML of M2 and M3 as ̂LPMLM2 =
∑I

i=1 log( ̂CPOiM2
).

and ̂LPMLM3 =
∑I

i=1 log( ̂CPOiM3
).

CPO of M4 is

CPOi(M4) ≈

[
K∑
`=1

̂P (L = `|n)
1

ĈPOi(ML|L=`)

]−1

,

where ĈPOi(ML|L=`) are known, such as ĈPOi(M2) and ĈPOi(M3). Without

extra computation, taking advantage of known CPOs from M2 and M3, and the

estimated P (L = `|n), we can easily acquire the CPO of M4.

Then we get the LPML as ̂LPMLM4 =
∑I

i=1 log( ̂CPOiM4
).

We notice the marginal likelihood of the model with order restrictions is

f(n|M2orM3) =

∫
µ,τ

I∏
i=1

{ ni.!∏K
j=1 nij !

∫
θi∈C

∏K
j=1 θ

nij+µjτ−1

ij dθi∫
θi∈C

∏K
j=1 θ

µjτ−1

ij dθi
}K(m− 1)!(K −m)!

(1 + τ)2
dµdτ.

We cannot utilize the posterior samples to compute Bayes factor directly. Hence

CPOs as Bayesian diagnostic are preferred.
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3.2 Numerical Example: Body Mass Index

3.2.1 Body Mass Index

In our application, we use a selected subset of the body mass index (BMI) data

from NHANES III, where we use only the female BMI data from the 35 largest

counties with a population at least 500,000. For counties with large population,

we assume people randomly fall into five BMI categorical levels, which are un-

derweight, normal, overweight, obese I, and obese II. Our goal is to estimate the

proportions of the BMI levels. Table 3.1 gives an illustration of the female BMI

data of a few counties, where it can be seen that the cell probability is largest for

the normal range and other probabilities roughly tail off on both sides suggest the

unimodal order restriction. Indeed, there are violations in some counties in the

earliest and latest cells.

County ID BMI lvl1 BMI lvl2 BMI lvl3 BMI lvl4 BMI lvl5
1 3 40 37 13 4
2 1 36 38 15 1
3 3 20 49 13 5
...

...
...

...
...

...
35 1 41 41 9 0

Total 45 1201 1318 496 89

Table 3.1: Number of females at five levels of BMI

For each county, the BMI counts can be assumed to follow a multinomial dis-

tribution because each individual person can be assumed to exist independently.

Figure 3.1 shows a histogram of all BMI values for females aggregated into a sin-

gle large sample. It can be clearly seen that the unimodal order restriction holds.

Because the data in the individual counties are generally sparse, it is difficult to
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tell whether the unimodal order restriction holds. However, it is sensible to assume

that the same unimodal restriction holds within all the counties. Therefore, we can

use multinomial distributions to model the female BMI counts.

Figure 3.1: Overall females BMI in five categories

3.2.2 MCMC Convergence Diagnostics

To be convenient, Table 3.2 provides the model notations used in the following

discussion.

Table 3.2: Model notations in Chapter 3

Notation Model Order Restrictions Location
M1 the multinomial-Dirichlet model NA Chapter 2

the multinomial-Dirichlet model
M2 (Normal)

with order restrictions
θ1 6 θ2 > θ3 > θ4 > θ5 Section 2.3

the multinomial-Dirichlet model
M3 (Overweight)

with order restrictions
θ1 6 θ2 6 θ3 > θ4 > θ5 Section 2.3

the multinomial-Dirichlet EXNEX model
M4 with uncertain order restrictions

Uncertainty about the modal position Section 3.1

For each model, we run 20,000 MCMC iterations, take 10,000 as a ‘burn in’

and use every 10th to obtain 1,000 converged posterior samples to maintain con-

sistency. Figure 3.2 shows trace plots of posterior samples of µ. The trace plots

indicate that posterior samples mix well and MCMC is stationary. Table 3.3 gives
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the effective sample sizes of the parameters µ, τ for the model with the order re-

striction and the general model. The effective sample sizes are almost 1,000. Table

3.4 provides p-values of the Geweke test to check the convergence of the param-

eters (Geweke et. al. 1992). All p-values are large enough to not reject the null

hypothesis that the MCMC is stationary. Then posterior samples can be used for

the further inference.

Figure 3.2: Traceplots of µ in M2 and M3

µ1 µ2 µ3 µ4 µ5 τ

M1 1000 1123.7 1000 1000 895.4 1000
M2 (Mode at 2nd) 1000 1000 1000 1000 1150.2 1000
M3 (Mode at 3rd) 1000 887 889 1000 1173.9 1000

Table 3.3: Effective sample sizes of µ and τ

µ1 µ2 µ3 µ4 µ5 τ

M1 0.623 0.558 0.899 0.767 0.959 0.514
M2 (Mode at 2nd) 0.964 0.705 0.507 0.511 0.837 0.999
M3 (Mode at 3rd) 0.817 0.559 0.580 0.557 0.812 0.516

Table 3.4: P-values of Geweke tests for µ and τ
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3.2.3 Model Comparison of M1, M2, M3, and M4

With the approximate mixture probabilities, we mix posterior samples of M2

and M3 together to construct samples of M4.

We provide posterior mean (PM), posterior standard deviation (PSD) and co-

efficient of variation (CV) of θs for all counties, which can be found in Appendix

3.5.3.

To compare model difference visually, we present the posterior densities plots

about different counties in those models as Figure 3.3, Figure 3.4, Figure 3.5 and

Figure 3.6. We use different colors to indicate five BMI levels and dashed lines for

the posterior means. Due to different capability of borrowing information among

areas, we can see different flatness of posterior density curves in the models. With

different order restriction assumptions, those posterior density curves center at dif-

ferent places and may overlap differently. We mainly focus on density curves of

normal BMI and overweight BMI, since the modal position might be second or

third.

In Figure 3.3 has posterior density plots for County 2 applying different mod-

els. The number of observations with normal BMI level, which is 36, is close to

the number of observations with overweight BMI level, which is 38. The unimodal

order restriction may not hold in County 2. Maybe for this reason, there is a sig-

nificant overlap between normal level and overweight level in the first plot after

applying M1 to our BMI data. The second plot and the third plot show much less

overlap in density curves, due to the strong order restriction assumption. The last

plot, which is the density curve from M4, is similar to the density curves in M3.

Based on the observations in County 2, the order restriction that the modal posi-
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tion is at the third may be reasonable. The density curves in M3 and M4 may be

appropriate for County 2.

In Figure 3.4 has posterior density plots for County 3 applying different mod-

els. Unlike in County 2, the density curves of θ from model M1 in County 3

shows a very strong unimodality because we have 49 people in overweight BMI

level which dominates this county. The second plot from M2, which assumes that

the mode is at normal BMI level, has a significant overlap. Its order restriction

assumption that the modal position is at the second position may not hold in this

county. The third plot from M3, which assumes that the mode is at overweight

BMI level, is similar as the density curve in M1. The posterior mean of normal

BMI level probability is higher than in M1. This phenomenon can be considered

as an evidence that M3 has a stronger borrowing ability than M1. Overall, the

modal position among 35 counties may be at the third. M3 can borrow more infor-

mation among those counties than other models. Then the last plot, which is the

density curve from M4, has a little overlap. But the unimodal pattern is still in M4.

In Figure 3.5, they are posterior density plots for County 13 applying different

models. Only M2 with an assumption that the mode is at normal BMI level does

not show a significant overlap. Since more people are at overweight BMI level,

that assumption may be validate in County 13.

Figure 3.6 provides posterior density plots for County 35, which has almost

same amount of people in normal and overweight BMI level. M2 and M3 with

different unimodal assumptions have opposite conclusion about normal and over-

weight probabilities. In this county, M1 and M4 may be better models.
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Figure 3.3: Posterior densities of θ for County 2 showing different order restric-
tions under different models.
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Figure 3.4: Posterior densities of θ for County 3 showing different order restric-
tions under different models.
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Figure 3.5: Posterior densities of θ for County 13 showing different order restric-
tions under different models.
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Figure 3.6: Posterior densities of θ for County 35 showing different order restric-
tions under different models.
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Overall, the model with order restrictions, M2 and M3, can borrow more infor-

mation among areas than the model without order restriction, M1. The model with

uncertain order restriction, M4, borrow less information among areas than M2 or

M3. For this reason, M2 and M3 have sharper posterior density curves than M1,

M4 has slightly flatter posterior density curves than M2 and M3. For the same rea-

son, as shown in Table 3.5, M1 has the largest total variance, which is the sum of

posterior variance of all counties’ cell probabilities. M2 and M3 have the smallest

variance due to its strong unimodal order restriction assumption. M4’s variance is

between M1 and M3(or M2) since M4 is a mixture of M2 and M3.

M1 M2 (mode at normal) M3 (mode at overweight) M4

0.172 0.063 0.069 0.107

Table 3.5: Total posterior standard variance of θ

Figure 3.7 and Figure 3.8 are boxplots of θs’ posterior samples. The first (Un-

derweight) and last (Obese II) blocks show that different models do not have much

difference in estimating the cell probabilities of underweight, normal, and obese I.

In the box plots, short line segments from M2, M3, andM4 and long line segments

from M1 show that the models with order restrictions (M2, M3, M4) have smaller

variances than the model without order restriction (M1). The models with order

restrictions can borrow more information than the model without order restriction.

The differences between each box ofM1 are larger than the differences inM2,M3,

and M4. In other word, the differences between posterior mean of each county in

M1 are larger than other models’. It proves that the models with order restrictions

borrow more information among areas than the model without order restriction.
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Figure 3.7: Boxplot of θ posterior samples: Part I

This is a county-wise comparison for different BMI categories under different models.
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Figure 3.8: Boxplot of θ posterior samples: Part II

This is a county-wise comparison for different BMI categories under different models.
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Figure 3.9: Standard deviation comparison between those models to show im-
provement.

In Figure 3.9, we have some regression lines to show the overall posterior stan-

dard deviation comparison among those models. The black dashed line is a ref-

erence line whose slope is one. The first plot shows a comparison between M1

and M3 (mode at overweight). All of regression lines are above the reference line,

which means that M3 (mode at overweight) has smaller standard deviation. We

gain higher precision on estimation of cell probabilities among 35 counties in M3.

The second plot shows a comparison betweenM2 (mode at normal) andM3 (mode

at overweight). The regression lines about underweight, Obese I and Obese II are

around the reference line. Only the regression line about overweight shows sig-
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nificant difference. It means M3 (mode at overweight) is slightly better than M2

(mode at normal). In other word, the assumption that overweight BMI probability

is the highest may be more reasonable. The last two plots in Figure 3.9 is a com-

parison between M2 (mode at normal) and M4, M3 (mode at overweight) and M4.

M4’s performance is slightly worse than M3 and M2.

Figure 3.10: CPOs for 35 counties under different models

Note: Lower CPO suggests possible outliers, high-leverage and influential observations.

In Figure 3.10, we use different symbols to represent the CPOs in each model

for all 35 counties. For each county, we can see different CPOs because of different

model performance in each county. Small CPO values suggest possible outliers,

high-leverage and influential observations. In our case, small CPO may suggest
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improper order restriction assumption in the model for the county or the county

is very different from the other counties. In BMI data, County 4 has the largest

observations, which shows lowest CPO value among others. Due to the borrowing

feature from the models, County 3 has a low CPO which may be affected by County

4. Another possible explanation for small CPOs in County 3 is that the people

with overweight BMI dominates other categories, which may cause that County

3 is very different from the other counties. For most counties, the model with

order restriction which assumes the mode is at overweight position can have large

CPO, compared with other models. As a summary, in Table 3.6, M3 (mode at

overweight) has the largest LMPL, which should the ‘best’ model for our BMI

data.

M1 M2 (mode at normal) M3 (mode at overweight) M4

-326.76 -331.76 -319.11 -323.17

Table 3.6: LPMLs of model M1, M2, M3, and M4 for BMI

Comparison of the four models using LPML.

3.3 Numerical Example: Smoothed BMI

To have a better comparison between those models, Chen and Nandram (2020b)

construct a simulated data transformed from BMI using the idea of Pool-Adjacent-

Violators Algorithm (PAVA) to have strong order restrictions as θ1 6 . . . 6 θm >

. . . > θK (Mair et al. 2009). It is a simple iterative algorithm for solving the

quadratic problem.

Generally, given a sequence of n data points y1, . . . , yn, we start with y1 on the

left. We move to the right until we encounter the first violation yi > yi+1. Then
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we replace this pair by their average, and back-average to the left as needed, to get

monotonicity. We continue this process to the right, until finally we reach yn. We

can have a reconstructed data set to fit our order restrictions better. Fitting models

to the simulated data, we can discover the advantage of hierarchical multinomial-

Dirichlet model with order restrictions easily.

Figure 3.11: Simulation method to have the unimodal order restriction

Here, for each county, we start from BMI level 1 to the mode using PAVA to

create an increasing sequence. Then from the mode to BMI level 5, we apply PAVA

to create a decreasing sequence. To make sure that each BMI level has an integer

number, we take the nearest integer that is larger than the mode to replace the mode,

and take the nearest integer that is smaller than nij (except the mode) to replace

those non-modes. Now our assembled BMI data have strong order restrictions. But

we also notice that our current approach cannot be used for a general case to create

an unimodal structure. It works for BMI data when the numbers of level 2 and level
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3 are significantly larger than others. Now we have a simulated BMI data which

mode is at the third position (overweight).

M1 M2 (mode at normal) M3 (mode at overweight) M4

-319.83 -330.73 -310.39 -311.26

Table 3.7: LPMLs of model M1, M2, M3, and M4 for simulated data

Comparison of the four models using LPML.

Since the mode is at the third position, the LPML of M3 is significantly larger

than others, which is -310.39. The LPML of M4 is -311.26, due to the robustness

of M4. The LPML of M2 is the smallest, which is -330.73. The LPML of M1

is -319.83. The LMPLs show that the model with order restrictions can have the

best performance if the unimodal assumption is correct. Model M4, which incor-

porates uncertainty about order, has a similar performance as Model M3. In Figure

3.12, M3 and M4 have consistently large CPO values for 35 counties among those

models. M2 have lowest CPO values at County 3 and 4, which suggests possible

outliers, high-leverage and influential observations. For most of counties, M3 has

the largest CPOs and M2 has the smallest CPOs because of the order restriction

assumption may be correct in M3 but not in M2.

In the simulated BMI data, CPO and LMPL are proved to be able to select

more adequate models. Model M4 is robust and consistent for most cases.
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Figure 3.12: CPOs for 35 counties under different models (simulation)

Note: Lower CPO suggests possible outliers, high-leverage and influential observations.

3.4 Concluding Remarks

In the numerical example and simulated example, the multinomial-Dirichlet

model with order restrictions, M3, is the best model which has the largest LPML

among those models. M3 has small posterior standard deviations of parameters of

interest due to borrowing information among areas. It borrows more information

across areas than the model without order restriction, M1, and the model with

uncertain order restriction, M4. It is consistent with the discussion in Chapter 2.

In Figure 3.10, some counties in M3 have the smallest CPO among four mod-
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els, such as County 13 and County 21. In those counties, the unimodal order

restriction that the modal position is at third position may not hold. In Figure 3.12,

M3 does not have small CPO for all areas among those models in the simulated

example, which forces the modal position to be at third. CPO can indicate that

the unimodal order restriction assumption may not hold for some areas. Overall,

LPML and CPO are reasonable Bayesian model selection criteria.

As shown in Figure 3.3 and Figure 3.4, the same unimodal order restriction for

all counties may not hold. Some counties have more people with normal BMI than

people with overweight BMI, such as County 21. Nandram and Sedransk (1995)

and Nandram, Sedransk and Smith (1997) presented a good discussion about uni-

modal order restriction in a stratified population. They pointed out the potential

problem that the same unimodal order restriction may not hold for all areas. They

incorporated the uncertainty about the proportion of firms and fish belonging to

each of several classes when there are unimodal order relations among the propor-

tions. Their work proved that the model with uncertain order restrictions can be

used for cases where the same unimodal order restriction may not hold for all ar-

eas. However, their work cannot be used for small area estimation and their model

cannot borrow information across areas. Our problem is much more difficult than

theirs when we incorporate a similar uncertainty about modal positions into the

model.

The multinomial-Dirichlet model with uncertain order restrictions, M4, is an

extension of M2 and M3, which can be used for the case that the same unimodal

order restriction may not hold for all areas. In the numerical example and the

simulated example, M4 has the second-largest LPML. It shows that the model

with uncertain order restrictions,M4, can provide consistent and accurate inference
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about parameters of interest. For many cases, we may not know the modal position

of all areas and the unimodal order restrictions may not hold. For this reason,

incorporating uncertainty about the modal position into the multinomial-Dirichlet

model is necessary. Since we do not have to assume the known modal position,M4

is more flexible thanM2 andM3. We also notice that because of its complexity, it is

hard to draw posterior samples directly from its joint posterior density and compute

its marginal likelihood for model selection criteria, such as the Bayes factor. We

show a method to estimate the posterior probabilities of the modal position, which

is ̂P (Lpos = `|n). We also show how to obtain the posterior samples of parameters

of interest by mixing posterior samples from M2 and M3 together.
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3.5 Appendix

3.5.1 Sampling Method for Parameter θ, µ, and τ in M4

To generate samples of θ, µ and τ , we have to deal with the uncertainty indi-

cator Lpos. In M4, variable Lpos has prior P (Lpos = `) = wl and posterior

P (Lpos = `|n) =
wLpos

∫
θ,µ,τ

∏I
i=1{

∏K
j=1 θ

nij+µjτ−1

ij ICLpos
ICµLpos

D(µτ)C(µτ)
} 1

(1+τ)2
dθdµdτ

∑K
Lpos=1 wLpos

∫
θ,µ,τ

∏I
i=1{

∏K
j=1 θ

nij+µjτ−1

ij ICLpos
ICµLpos

D(µτ)C(µτ)
} 1

(1+τ)2
dθdµdτ

.

Chen and Nandram (2020) notice the order restrictions will significantly in-

crease the computational difficulty, especially for the marginal likelihood. We

can use the posterior samples from the model without order restriction to obtain

that probability. However, it is difficult for the hierarchical multinomial-Dirichlet

model with order restrictions to obtain the probability correctly. We suggest the

following approximation method,

Computing the Approximation of Mixture Probabilities:

1. Apply M1 model to the entire data set and acquire posterior samples of θ and µ.

2. For each iteration of µ, check the unimodal order restriction and denote its mode

position as m` = 1, . . . ,K.

3. At the same iteration, check θ’s unimodal order restrictions for each i = 1 . . . , `,

where θ is a k × ` matrix and count how many of them have the unimodal order

restriction where the mode is the same as µ’s mode.

4. For each mode position m`, add counts of each cases together and generate the

ratios.

For example, in our application BMI, 6.595% of posterior samples of θ and
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µ has mode at the second position, 93.405% of posterior samples of θ and µ

has mode at the third position. Then we can have ̂P (Lpos = 2|n) ≈ 0.066 and

̂P (Lpos = 3|n) ≈ 0.934 as probabilities to mix samples from M2 (mode at 2nd)

and samples from M3 (mode at 3rd) together.

3.5.2 Bayesian Diagnostics for M2, M3, and M4

We present CPO and LPML of M2, M3, and M4 as Bayesian model selection

criteria in the section.

CPO of M2 and CPO of M3 are very similar to each other. CPO of M2 are

ĈPOi(M2) =

[
1

M

M∑
h=1

∏K
j=1 nij !

ni.!

D(µ(h)τ (h))C(µ(h)τ (h))

D(ni + µ(h)τ (h))C(ni + µ(h)τ (h))

]−1

=

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

∫
θi∈C

∏K
j=1 θ

µ(h)τ(h)−1

ij dθi∫
θi∈C

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij dθi

−1

=

 1

M

M∑
h=1

∏K
j=1 nij !

ni.!

∫
θi∈C

∏K
j=1 θ

µ(h)τ(h)−1

ij∏K
j=1 θ

nij+µ(h)τ(h)−1

ij

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij∫
θi∈C

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij

dθi

−1

,

where
∏K
j=1 θ

nij+µ(h)τ(h)−1

ij∫
θi∈C

∏K
j=1 θ

nij+µ(h)τ(h)−1

ij dθi
is the density function of θi, and θi ∈ C.

We notice µ(h) and τ (h), h = 1, . . . ,M are the posterior samples from section

2.6.3. For each pair ofµ(h) and τ (h), we can draw θi from Dirichlet(ni+µ(h)τ (h)).

ĈPOi(M2) = [
1

M

M∑
h=1

∏K
j=1 nij !

ni.!
(

1

M ′

M ′∑
h′=1

K∏
j=1

θ
(h′)
ij

−nij
)]−1,

where

for h′ = 1, . . . ,M ′θ
(h′)
i ∼ Dirichlet(ni + µ(h)τ (h)) with order restriction.
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Then we get the LPML as L̂PML =
∑I

i=1 log(ĈPOi). As we can see from

the following equation, it is not easy to compute CPOi or ĈPOi of M4.

CPOi = f(ni|n(i)) =

K∑
`=1

[
P (L = `|n(i))f(ni|n(i),L=`)

]
.

While we know f(ni|n(i),L=`) can be computed like CPOs ofM2, it is hard to get

the posterior probability of P (L = `|n(i)). Here,

CPOi(M4) = f(ni|n(i)) =

(
f(n(i))

f(n)

)−1

=

[∑K
`=1 P (L = `)

∫ ∫
f(n(i)|µ, τ, L = `)f(µ, τ |L = `)dµdτ

f(n)

]−1

=

[
K∑
`=1

P (L = `)

∫ ∫
f(n(i)|µ, τ, L = `)f(µ, τ |L = `)

f(n)
dµdτ

]−1

=

[
K∑
`=1

P (L = `)

∫ ∫
f(ni|µ, τ, L = `)f(n(i)|µ, τ, L = `)f(µ, τ |L = `)

f(ni|µ, τ, L = `)f(n)
dµdτ

]−1

=

[
K∑
`=1

P (L = `)

∫ ∫
f(n|µ, τ, L = `)f(µ, τ |L = `)

f(ni|µ, τ, L = `)f(n)
dµdτ

]−1

=

[
K∑
`=1

P (L = `)

∫ ∫
f(n|L = `)

f(ni|µ, τ, L = `)f(n)

f(n|µ, τ, L = `)f(µ, τ |L = `)

f(n|L = `)
dµdτ

]−1

=

[
K∑
`=1

P (L = `)
f(n|L = `)

f(n)

∫ ∫
1

f(ni|µ, τ, L = `)

f(n|µ, τ, L = `)f(µ, τ |L = `)

f(n|L = `)
dµdτ

]−1

=

[
K∑
`=1

P (L = `)f(n|L = `)∑K
`=1 P (L = `)f(n|`)

∫ ∫
1

f(ni|µ, τ, L = `)
f(µ, τ |n,L = `)dµdτ

]−1

=

[
K∑
`=1

P (L = `|n)

∫ ∫
1

f(ni|µ, τ, L = `)
f(µ, τ |n,L = `)dµdτ

]−1

,

then ĈPOi ≈
[∑K

`=1
̂P (L = `|n) 1

ĈPOi(ML|L=`)

]−1

, where ĈPOi(ML|L=`) are

known, such as ĈPOi(M2) fromM2 and ĈPOi(M3) fromM3. Without extra com-

putation, taking advantage of known CPOs from M2 and M3, and the estimated

P (L = `|n) from the previous section, we can easily acquire the CPO of M4.
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3.5.3 Posterior Summary of θ in M1, M2, M3, and M4

Table 3.8: Posterior summary of θ part I: Counties 1-9

Underweight Normal Overweight Obese I Obese IICounty

ID
Model

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV

M1 0.026 0.013 0.501 0.399 0.040 0.101 0.394 0.040 0.102 0.143 0.029 0.206 0.039 0.016 0.408

M2 0.021 0.009 0.425 0.421 0.023 0.056 0.376 0.021 0.056 0.148 0.023 0.153 0.033 0.010 0.316

M3 0.021 0.009 0.431 0.376 0.019 0.051 0.418 0.023 0.055 0.152 0.023 0.153 0.033 0.011 0.323
1

M4 0.021 0.009 0.431 0.393 0.030 0.076 0.404 0.030 0.075 0.150 0.023 0.156 0.033 0.010 0.315

M1 0.014 0.010 0.704 0.390 0.040 0.102 0.417 0.041 0.098 0.160 0.030 0.189 0.019 0.011 0.580

M2 0.015 0.007 0.490 0.422 0.024 0.056 0.381 0.019 0.049 0.159 0.024 0.152 0.023 0.009 0.386

M3 0.015 0.007 0.494 0.375 0.020 0.055 0.426 0.025 0.059 0.161 0.023 0.143 0.023 0.010 0.405
2

M4 0.015 0.007 0.476 0.391 0.031 0.079 0.409 0.031 0.077 0.161 0.024 0.147 0.024 0.010 0.405

M1 0.028 0.014 0.489 0.282 0.039 0.137 0.495 0.042 0.085 0.149 0.029 0.192 0.047 0.017 0.368

M2 0.024 0.011 0.459 0.393 0.021 0.054 0.378 0.018 0.047 0.166 0.028 0.167 0.040 0.015 0.368

M3 0.021 0.009 0.440 0.334 0.035 0.106 0.458 0.036 0.079 0.151 0.022 0.146 0.037 0.012 0.320
3

M4 0.022 0.010 0.452 0.354 0.042 0.118 0.429 0.050 0.117 0.156 0.026 0.163 0.038 0.013 0.342

M1 0.007 0.004 0.543 0.356 0.022 0.062 0.421 0.022 0.053 0.183 0.018 0.096 0.034 0.009 0.252

M2 0.009 0.004 0.461 0.394 0.014 0.035 0.381 0.011 0.029 0.182 0.020 0.112 0.034 0.008 0.224

M3 0.009 0.004 0.451 0.363 0.018 0.050 0.422 0.019 0.046 0.174 0.017 0.098 0.032 0.007 0.220
4

M4 0.009 0.004 0.456 0.374 0.023 0.061 0.407 0.026 0.063 0.177 0.018 0.104 0.032 0.007 0.221

M1 0.016 0.011 0.708 0.370 0.042 0.112 0.400 0.042 0.104 0.180 0.033 0.181 0.035 0.016 0.453

M2 0.015 0.008 0.515 0.413 0.024 0.057 0.372 0.021 0.057 0.168 0.027 0.158 0.032 0.012 0.360

M3 0.015 0.007 0.490 0.366 0.023 0.063 0.419 0.027 0.063 0.169 0.026 0.152 0.032 0.011 0.341
5

M4 0.015 0.008 0.493 0.382 0.032 0.084 0.402 0.033 0.083 0.169 0.026 0.154 0.032 0.011 0.356

M1 0.009 0.009 0.943 0.380 0.045 0.118 0.402 0.044 0.108 0.147 0.032 0.217 0.063 0.021 0.339

M2 0.012 0.007 0.586 0.417 0.025 0.059 0.375 0.020 0.054 0.151 0.024 0.160 0.046 0.017 0.362

M3 0.012 0.007 0.569 0.371 0.023 0.061 0.423 0.026 0.061 0.151 0.023 0.150 0.043 0.015 0.355
6

M4 0.012 0.007 0.590 0.387 0.032 0.083 0.406 0.034 0.083 0.151 0.024 0.158 0.044 0.016 0.370

M1 0.009 0.009 0.943 0.376 0.044 0.117 0.400 0.045 0.113 0.183 0.035 0.191 0.032 0.016 0.502

M2 0.012 0.007 0.575 0.416 0.025 0.059 0.374 0.022 0.058 0.169 0.028 0.163 0.030 0.012 0.389

M3 0.013 0.007 0.578 0.367 0.023 0.062 0.422 0.027 0.065 0.169 0.025 0.150 0.030 0.011 0.359
7

M4 0.012 0.007 0.590 0.384 0.033 0.087 0.405 0.034 0.084 0.169 0.027 0.156 0.030 0.011 0.372

M1 0.019 0.014 0.726 0.387 0.048 0.123 0.443 0.050 0.112 0.126 0.033 0.265 0.025 0.015 0.597

M2 0.017 0.009 0.520 0.426 0.025 0.058 0.386 0.020 0.051 0.143 0.024 0.170 0.027 0.011 0.406

M3 0.016 0.008 0.488 0.376 0.023 0.061 0.437 0.029 0.066 0.144 0.023 0.160 0.027 0.010 0.387
8

M4 0.017 0.009 0.520 0.394 0.035 0.088 0.418 0.035 0.083 0.144 0.023 0.162 0.027 0.011 0.401

M1 0.016 0.011 0.686 0.391 0.045 0.116 0.398 0.044 0.110 0.174 0.035 0.203 0.021 0.012 0.584

M2 0.015 0.008 0.504 0.421 0.027 0.064 0.373 0.021 0.058 0.165 0.025 0.152 0.026 0.010 0.389

M3 0.016 0.008 0.492 0.372 0.021 0.056 0.420 0.025 0.059 0.167 0.025 0.149 0.025 0.010 0.389
9

M4 0.015 0.008 0.496 0.390 0.033 0.084 0.403 0.033 0.081 0.166 0.025 0.148 0.026 0.010 0.383

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.9: Posterior summary of θ part II: Counties 10-18

Underweight Normal Overweight Obese I Obese IICounty

ID
Model

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV

M1 0.008 0.007 0.940 0.396 0.041 0.103 0.403 0.042 0.104 0.180 0.033 0.184 0.013 0.010 0.760

M2 0.011 0.007 0.574 0.423 0.024 0.057 0.377 0.022 0.058 0.167 0.025 0.151 0.021 0.010 0.453

M3 0.012 0.007 0.573 0.376 0.021 0.055 0.422 0.024 0.057 0.169 0.025 0.146 0.021 0.009 0.438
10

M4 0.012 0.007 0.579 0.393 0.033 0.083 0.406 0.032 0.079 0.168 0.025 0.146 0.021 0.009 0.447

M1 0.026 0.013 0.515 0.365 0.037 0.102 0.385 0.038 0.098 0.181 0.030 0.167 0.044 0.016 0.366

M2 0.021 0.009 0.420 0.407 0.024 0.058 0.367 0.021 0.057 0.169 0.025 0.148 0.036 0.012 0.323

M3 0.021 0.009 0.435 0.363 0.022 0.062 0.411 0.026 0.064 0.169 0.024 0.144 0.037 0.012 0.326
11

M4 0.021 0.009 0.440 0.379 0.031 0.081 0.395 0.031 0.078 0.169 0.024 0.140 0.036 0.012 0.322

M1 0.008 0.007 0.937 0.415 0.041 0.099 0.439 0.042 0.095 0.113 0.027 0.235 0.026 0.013 0.507

M2 0.012 0.007 0.581 0.434 0.024 0.055 0.392 0.020 0.050 0.135 0.023 0.171 0.028 0.010 0.360

M3 0.012 0.007 0.557 0.386 0.022 0.056 0.438 0.026 0.059 0.137 0.024 0.173 0.027 0.010 0.355
12

M4 0.012 0.007 0.583 0.403 0.033 0.082 0.422 0.033 0.078 0.135 0.024 0.176 0.028 0.010 0.357

M1 0.012 0.007 0.563 0.432 0.030 0.070 0.378 0.029 0.076 0.142 0.021 0.146 0.036 0.012 0.323

M2 0.013 0.006 0.426 0.434 0.023 0.053 0.375 0.020 0.053 0.146 0.018 0.123 0.033 0.009 0.272

M3 0.013 0.006 0.423 0.388 0.014 0.037 0.413 0.017 0.042 0.152 0.019 0.122 0.034 0.009 0.277
13

M4 0.013 0.006 0.426 0.405 0.028 0.069 0.399 0.025 0.063 0.150 0.019 0.124 0.033 0.009 0.273

M1 0.024 0.013 0.545 0.425 0.045 0.106 0.399 0.044 0.110 0.131 0.030 0.228 0.022 0.012 0.567

M2 0.019 0.009 0.465 0.434 0.027 0.062 0.378 0.023 0.059 0.144 0.023 0.162 0.025 0.010 0.380

M3 0.019 0.009 0.463 0.383 0.021 0.055 0.426 0.024 0.057 0.147 0.024 0.162 0.026 0.010 0.389
14

M4 0.019 0.009 0.465 0.400 0.033 0.082 0.409 0.032 0.078 0.146 0.024 0.162 0.025 0.010 0.378

M1 0.022 0.012 0.532 0.357 0.041 0.114 0.444 0.041 0.093 0.131 0.028 0.214 0.047 0.018 0.384

M2 0.018 0.008 0.438 0.412 0.021 0.050 0.384 0.017 0.045 0.148 0.025 0.166 0.039 0.013 0.334

M3 0.018 0.008 0.462 0.368 0.025 0.068 0.433 0.028 0.064 0.145 0.023 0.155 0.037 0.012 0.325
15

M4 0.018 0.008 0.448 0.383 0.032 0.083 0.416 0.035 0.083 0.146 0.024 0.167 0.037 0.012 0.327

M1 0.013 0.009 0.695 0.372 0.037 0.100 0.439 0.041 0.092 0.158 0.029 0.183 0.018 0.010 0.584

M2 0.015 0.007 0.482 0.416 0.020 0.048 0.386 0.017 0.044 0.160 0.024 0.150 0.023 0.009 0.406

M3 0.014 0.007 0.480 0.371 0.023 0.062 0.436 0.028 0.063 0.157 0.021 0.135 0.023 0.009 0.383
16

M4 0.014 0.007 0.481 0.386 0.031 0.080 0.418 0.035 0.083 0.158 0.023 0.147 0.023 0.009 0.381

M1 0.039 0.016 0.405 0.351 0.039 0.111 0.426 0.041 0.095 0.161 0.030 0.187 0.024 0.012 0.507

M2 0.028 0.012 0.418 0.406 0.021 0.051 0.378 0.017 0.045 0.161 0.025 0.153 0.027 0.010 0.362

M3 0.026 0.011 0.420 0.362 0.024 0.066 0.428 0.028 0.064 0.157 0.021 0.132 0.027 0.009 0.351
17

M4 0.027 0.012 0.425 0.377 0.030 0.080 0.410 0.034 0.083 0.159 0.023 0.142 0.027 0.010 0.365

M1 0.009 0.009 0.964 0.420 0.045 0.108 0.376 0.043 0.114 0.164 0.036 0.220 0.032 0.017 0.519

M2 0.012 0.007 0.581 0.430 0.028 0.065 0.370 0.024 0.066 0.158 0.026 0.163 0.030 0.011 0.373

M3 0.013 0.007 0.552 0.378 0.019 0.051 0.417 0.024 0.056 0.162 0.025 0.153 0.031 0.011 0.362
18

M4 0.013 0.007 0.568 0.396 0.034 0.086 0.400 0.033 0.082 0.161 0.025 0.159 0.031 0.011 0.366

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.10: Posterior summary of θ part III: Counties 19-27

Underweight Normal Overweight Obese I Obese IICounty

ID
Model

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV

M1 0.019 0.013 0.693 0.416 0.048 0.116 0.384 0.047 0.123 0.164 0.035 0.214 0.016 0.012 0.767

M2 0.016 0.008 0.507 0.431 0.030 0.070 0.372 0.025 0.066 0.157 0.026 0.162 0.023 0.010 0.430

M3 0.017 0.009 0.532 0.378 0.020 0.053 0.420 0.025 0.059 0.162 0.025 0.158 0.024 0.010 0.407
19

M4 0.017 0.009 0.533 0.397 0.036 0.091 0.402 0.034 0.085 0.161 0.027 0.166 0.024 0.010 0.422

M1 0.009 0.009 0.935 0.335 0.044 0.132 0.494 0.047 0.095 0.139 0.031 0.225 0.023 0.013 0.564

M2 0.013 0.008 0.610 0.413 0.020 0.048 0.390 0.017 0.043 0.157 0.027 0.171 0.027 0.011 0.406

M3 0.012 0.007 0.551 0.359 0.029 0.082 0.454 0.035 0.077 0.149 0.023 0.156 0.026 0.010 0.380
20

M4 0.012 0.007 0.599 0.378 0.037 0.098 0.432 0.043 0.100 0.152 0.025 0.166 0.026 0.010 0.396

M1 0.048 0.021 0.431 0.431 0.050 0.116 0.353 0.051 0.145 0.123 0.033 0.269 0.046 0.021 0.453

M2 0.029 0.012 0.432 0.436 0.032 0.074 0.363 0.029 0.079 0.138 0.025 0.179 0.035 0.013 0.363

M3 0.029 0.014 0.485 0.377 0.020 0.052 0.412 0.024 0.058 0.146 0.025 0.174 0.036 0.013 0.364
21

M4 0.029 0.014 0.459 0.398 0.038 0.096 0.394 0.035 0.090 0.143 0.026 0.180 0.036 0.013 0.372

M1 0.016 0.010 0.660 0.431 0.044 0.102 0.391 0.043 0.109 0.134 0.030 0.226 0.029 0.015 0.512

M2 0.015 0.008 0.500 0.434 0.027 0.062 0.378 0.023 0.060 0.145 0.024 0.163 0.028 0.010 0.369

M3 0.015 0.008 0.500 0.384 0.019 0.050 0.423 0.023 0.055 0.149 0.023 0.151 0.029 0.011 0.362
22

M4 0.015 0.008 0.508 0.402 0.034 0.083 0.407 0.032 0.078 0.147 0.024 0.160 0.029 0.011 0.376

M1 0.011 0.011 0.979 0.379 0.048 0.126 0.426 0.048 0.112 0.149 0.034 0.230 0.035 0.018 0.516

M2 0.013 0.007 0.560 0.422 0.025 0.060 0.379 0.021 0.055 0.155 0.026 0.171 0.031 0.011 0.352

M3 0.013 0.007 0.568 0.371 0.024 0.064 0.431 0.029 0.068 0.154 0.025 0.162 0.032 0.012 0.378
23

M4 0.013 0.007 0.570 0.388 0.035 0.089 0.413 0.037 0.089 0.155 0.026 0.171 0.032 0.012 0.365

M1 0.008 0.008 1.005 0.375 0.044 0.116 0.397 0.043 0.107 0.182 0.034 0.189 0.038 0.017 0.445

M2 0.012 0.007 0.596 0.414 0.024 0.058 0.373 0.021 0.055 0.167 0.027 0.160 0.033 0.011 0.339

M3 0.012 0.007 0.551 0.368 0.023 0.062 0.418 0.026 0.061 0.169 0.025 0.145 0.033 0.011 0.339
24

M4 0.012 0.007 0.581 0.385 0.033 0.085 0.403 0.032 0.079 0.168 0.026 0.153 0.032 0.011 0.343

M1 0.018 0.012 0.676 0.449 0.047 0.103 0.402 0.045 0.112 0.117 0.029 0.248 0.015 0.011 0.751

M2 0.016 0.008 0.483 0.444 0.030 0.068 0.383 0.023 0.060 0.135 0.025 0.185 0.022 0.010 0.435

M3 0.016 0.008 0.512 0.390 0.020 0.050 0.428 0.024 0.055 0.143 0.025 0.177 0.023 0.010 0.422
25

M4 0.016 0.008 0.510 0.411 0.036 0.087 0.412 0.033 0.080 0.139 0.026 0.188 0.023 0.009 0.421

M1 0.027 0.016 0.595 0.373 0.045 0.120 0.432 0.046 0.107 0.136 0.032 0.232 0.032 0.016 0.514

M2 0.021 0.010 0.483 0.417 0.023 0.056 0.383 0.019 0.050 0.148 0.026 0.173 0.031 0.012 0.378

M3 0.020 0.009 0.477 0.370 0.025 0.066 0.433 0.029 0.066 0.148 0.024 0.161 0.029 0.010 0.357
26

M4 0.020 0.009 0.463 0.387 0.034 0.087 0.415 0.035 0.084 0.148 0.025 0.168 0.030 0.011 0.365

M1 0.030 0.018 0.582 0.302 0.045 0.148 0.473 0.049 0.103 0.170 0.037 0.219 0.026 0.016 0.600

M2 0.022 0.011 0.492 0.401 0.023 0.056 0.378 0.019 0.050 0.171 0.030 0.176 0.028 0.011 0.377

M3 0.020 0.009 0.463 0.346 0.034 0.099 0.446 0.037 0.082 0.160 0.024 0.150 0.027 0.011 0.386
27

M4 0.021 0.010 0.479 0.366 0.041 0.112 0.423 0.046 0.109 0.163 0.027 0.163 0.028 0.011 0.391

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 3.11: Posterior summary of θ part III: Counties 28-35

Underweight Normal Overweight Obese I Obese IICounty

ID
Model

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV

M1 0.019 0.013 0.687 0.410 0.047 0.115 0.389 0.048 0.122 0.156 0.035 0.221 0.025 0.015 0.594

M2 0.017 0.008 0.494 0.429 0.028 0.066 0.374 0.025 0.066 0.154 0.026 0.168 0.027 0.010 0.389

M3 0.017 0.008 0.504 0.377 0.022 0.058 0.421 0.025 0.059 0.159 0.027 0.167 0.027 0.010 0.373
28

M4 0.017 0.009 0.508 0.395 0.034 0.087 0.404 0.035 0.086 0.157 0.026 0.168 0.027 0.011 0.394

M1 0.009 0.008 0.980 0.391 0.042 0.107 0.429 0.041 0.096 0.150 0.032 0.211 0.022 0.013 0.575

M2 0.012 0.007 0.621 0.424 0.023 0.055 0.384 0.020 0.051 0.155 0.024 0.156 0.025 0.010 0.394

M3 0.012 0.007 0.566 0.376 0.023 0.060 0.433 0.027 0.062 0.154 0.023 0.147 0.025 0.009 0.370
29

M4 0.012 0.007 0.591 0.393 0.033 0.083 0.416 0.033 0.081 0.155 0.023 0.149 0.025 0.009 0.372

M1 0.015 0.010 0.702 0.338 0.041 0.121 0.420 0.044 0.104 0.207 0.034 0.166 0.020 0.012 0.590

M2 0.016 0.007 0.471 0.401 0.022 0.055 0.373 0.019 0.052 0.186 0.032 0.171 0.025 0.010 0.380

M3 0.015 0.007 0.466 0.355 0.027 0.075 0.427 0.028 0.066 0.179 0.028 0.155 0.024 0.009 0.386
30

M4 0.015 0.007 0.468 0.371 0.033 0.090 0.407 0.037 0.090 0.183 0.030 0.165 0.025 0.009 0.386

M1 0.023 0.013 0.578 0.399 0.043 0.107 0.391 0.043 0.110 0.158 0.031 0.199 0.030 0.015 0.491

M2 0.019 0.009 0.462 0.423 0.026 0.062 0.373 0.022 0.060 0.156 0.025 0.161 0.029 0.011 0.374

M3 0.019 0.009 0.478 0.373 0.022 0.058 0.420 0.025 0.060 0.160 0.025 0.155 0.028 0.010 0.351
31

M4 0.019 0.009 0.472 0.391 0.033 0.083 0.403 0.033 0.082 0.159 0.025 0.158 0.029 0.010 0.355

M1 0.007 0.007 0.941 0.319 0.037 0.116 0.450 0.039 0.086 0.200 0.032 0.159 0.024 0.012 0.511

M2 0.012 0.007 0.569 0.397 0.020 0.051 0.378 0.016 0.042 0.186 0.031 0.164 0.027 0.010 0.370

M3 0.011 0.006 0.576 0.348 0.029 0.084 0.439 0.030 0.068 0.177 0.026 0.144 0.026 0.009 0.345
32

M4 0.011 0.006 0.579 0.365 0.036 0.097 0.417 0.039 0.094 0.181 0.029 0.159 0.026 0.009 0.352

M1 0.011 0.007 0.662 0.367 0.037 0.101 0.419 0.035 0.084 0.177 0.029 0.164 0.026 0.012 0.458

M2 0.014 0.007 0.510 0.411 0.020 0.049 0.381 0.017 0.044 0.168 0.024 0.140 0.027 0.009 0.331

M3 0.013 0.006 0.502 0.370 0.021 0.058 0.424 0.024 0.056 0.167 0.022 0.133 0.027 0.009 0.346
33

M4 0.013 0.007 0.519 0.384 0.029 0.076 0.408 0.031 0.076 0.169 0.023 0.135 0.027 0.009 0.352

M1 0.015 0.010 0.695 0.373 0.041 0.110 0.452 0.042 0.092 0.134 0.030 0.222 0.026 0.013 0.503

M2 0.015 0.008 0.496 0.420 0.021 0.051 0.389 0.017 0.044 0.148 0.023 0.158 0.028 0.011 0.390

M3 0.015 0.007 0.485 0.372 0.024 0.065 0.443 0.029 0.065 0.144 0.022 0.153 0.027 0.010 0.363
34

M4 0.015 0.007 0.495 0.388 0.033 0.086 0.424 0.036 0.085 0.145 0.023 0.157 0.028 0.011 0.381

M1 0.014 0.010 0.705 0.419 0.040 0.095 0.435 0.040 0.092 0.121 0.028 0.228 0.012 0.010 0.790

M2 0.015 0.007 0.488 0.436 0.024 0.055 0.392 0.020 0.050 0.138 0.022 0.162 0.020 0.009 0.447

M3 0.014 0.007 0.474 0.388 0.021 0.055 0.437 0.026 0.059 0.140 0.023 0.166 0.020 0.009 0.433
35

M4 0.015 0.007 0.486 0.406 0.032 0.080 0.421 0.033 0.077 0.139 0.023 0.167 0.020 0.009 0.439

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Chapter 4

Partial Exchangeability

To avoid borrowing information from the extreme areas, we propose the model

with partially exchangeability, which is the exchangeability-nonexchangeability

(EXNEX) model. EXNEX models allow borrowing information across similar ar-

eas while avoiding too optimistic borrowing from very different areas. We propose

a simple binomial-Beta EXNEX model to illustrate the partial exchangeability in

a simulation study. Then we present a multinomial-Dirichlet EXNEX model with

order restrictions and a numerical example.

4.1 Binomial-Beta EXNEX Model

It is difficult and time-consuming to run simulations for the multinomial-Dirichlet

EXNEX model with order restrictions under several scenarios. To simply demon-

strate the Bayesian hierarchical model with the partial exchangeability, we first

present a binomial-Beta EXNEX model without any order restriction to show that

the EXNEX model can borrow information among areas and avoid borrowing from
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very different areas.

Let yi denote the number of successes in ni independent trials in the ith area,

i = 1, . . . , ` and θi denote the probability of individual success in the ith area. For

example, yi might be the number of people in normal BMI category, and θi might

be the corresponding normal BMI probability in our numerical example.

We assume fully exchangeability in the binomial-Beta model. Denoted as

BBM , the binomial-Beta exchangeability (EX) model is

yi|θi ∼ Binomial(ni, θi), i = . . . , `,

θi|µ, ρ ∼ Beta{µ(
1− ρ
ρ

), (1− µ)(
1− ρ
ρ

)},

π(µ, ρ) ∝ 1, 0 < µ, ρ < 1.

where hyper-parameters µ and ρ = 1/(1 + τ) have a noninformative prior.

We assume partial exchangeability in the binomial-Beta model, which is the

exchangeability-nonexchangeability (EXNEX) model. We can consider that each

area i has its own mixture probability pi of borrowing information. The distribution

of θi is a mixture of two Beta distributions. One component, Beta{µ(1−ρ
ρ ), (1 −

µ)(1−ρ
ρ )}, permits borrowing information from the other areas where we assume

fully exchangeability. The other component is the noninformative Beta(1, 1), per-

mits no borrowing information from the other areas where we assume nonex-

changeability. The binomial-Beta EX model,BBM , is a special case ofBBM exnex

where the mixture probability is 1. Denoted asBBM exnex, the proposed binomial-

Beta EXNEX model is

yi|θi ∼ Binomial(ni, θi), i = . . . , `,
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θi|µ, ρ, pi ∼ piBeta(µ(
1− ρ
ρ

), (1− µ)(
1− ρ
ρ

)) + (1− pi)Beta(1, 1),

pi|φ ∼ Beta(φτ0, (1− φ)τ0),

where τ0 is specified as 1, because it is weakly identified,

π(µ, ρ, φ) ∝ 1, where 1/2 < φ < 1, 0 < µ, ρ < 1.

However, label switching problem in the Bayesian mixture models is a well-

known problem, which is caused by symmetry in the likelihood of the model pa-

rameters (Stephens 2000). In particular, the invariance of the likelihood under

relabeling of the mixture components can lead to the posterior distribution of the

parameters being highly symmetric and multimodal, making it difficult to identify

the posterior distribution of parameters. We want to impose constraints on the mix-

ture probabilities pi, 1/2 < pi < 1, to have pi > 1 − pi. Because we want to use

the exchangeable component for the most of the time. Constraints on pi may cause

other problems, such as computation difficulty. We assume 1/2 < φ < 1 to deal

with label switching in the mixture model, where φ is the expectation of pi, and it

will not increase the computation difficulty.

The joint posterior distribution of BBM exnex is

π(θ,µ, ρ,p, φ|y) ∝
∏̀
i=1

{

(
ni
yi

)
θyii (1− θi)ni−yi{piBeta(µ(

1− ρ
ρ

), (1− µ)(
1− ρ
ρ

))+

(1− pi)Beta(1, 1)}p
φτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0)
},

where B(φτ0, (1− φ)τ0) is the normalization constant of the Beta distribution.

In Appendix 4.6.1, we show how to use a griddy Gibbs sampler to draw sam-

ples of µ, ρ, and φ from the binomial-Beta ENXEX model, BBM exnex. As in

Appendix 4.6.1, we can draw the posterior samples of the mixture probability pi
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easily.

Given the mixture probability pi, we draw posterior samples from the condi-

tional posterior distribution of θ, which is a mixture of Beta distributions,

θi|pi, µ, ρ,y ∼ piBeta{yi + µ(
1− ρ
ρ

), ni − yi + (1− µ)(
1− ρ
ρ

)}+

(1− pi)Beta{yi + 1, ni − yi + 1}.

4.1.1 Simulation Under Three Scenarios

To show the robustness of the model with partial exchangeability, which is

the EXNEX model, denoted as BBM exnex, we consider three simulation scenar-

ios with different heterogeneity. The heterogeneity between areas is related to the

success probabilities θi and the numbers of observations in each area. In the sim-

ulation, we assume the true success probabilities and the range of area size are

known in 7 areas, given in Table 4.1.

Scenario Area Sizes θ Area1 Area2 Area3 Area4 Area5 Area6 Area7 Heterogeneity

1 5∼15 θtruei 0.2 0.2 0.2 0.2 0.2 0.2 0.2 ‘Small’

2 5∼25 θtruei 0.2 0.2 0.2 0.2 0.2 0.6 0.6 ‘Moderate’

3 5∼40 θtruei 0.1 0.1 0.4 0.4 0.4 0.8 0.8 ‘Large’

Table 4.1: True success probabilities θi and area sizes for seven areas under three
scenarios with different heterogeneity

Under Scenario 1, all areas have the same event probabilities and the area size

is between 5 and 15, which means the heterogeneity between areas is relatively

very small. Under Scenario 2, the last two areas have larger event probabilities

than the first five areas, and the each area size is between 5 to 25, which means

the heterogeneity between areas might be moderate. Under Scenario 3, the first
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two areas have smaller event probabilities than the middle areas, the last two areas

have larger event probabilities than the middle areas. We assume the each area

size is beteween 5 to 40. The difference between each area under Scenario 3 is

significantly larger than the difference under Scenario 2. Under Scenario 3, it may

have relatively large heterogeneity. We expect that BBM exnex model might be

better than BBM model under Scenario 3.

We run 50 simulations for BBM exnex and BBM under three scenarios. For

each simulation, we run 15,000 MCMC iterations, take 5,000 as a ‘burn in ’ and use

every 10th to obtain 1,000 converged posterior samples to maintain consistency.

We provide convergence diagnostics for one of simulations, such as Geweke test,

effective sample size. Table 4.2 provides p-values of the Geweke test, which are

large to show the MCMC is stationary. Table 4.3 provides the effective sample sizes

of posterior samples. Our Gibbs sampler method works well in the simulation.

µ ρ φ

BBM 0.541 0.994
BBM exnex 0.413 0.642 0.099

Table 4.2: P-values of Geweke tests for µ, ρ, and φ in the Model BBM and
BBM exnex for one simulation

µ ρ φ

BBM 950 1000
BBM exnex 1000 1054 1000

Table 4.3: Effective sample sizes of µ, ρ, and φ in the Model BBM and
BBM exnex for one simulation
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Scenario Model PSD of θ1 PSD of θ2 PSD of θ3 PSD of θ4 PSD of θ5 PSD of θ6 PSD of θ7

1
BBM 0.083 0.089 0.080 0.071 0.089 0.080 0.101

BBM exnex 0.092 0.098 0.089 0.077 0.100 0.089 0.121

2
BBM 0.063 0.061 0.060 0.071 0.061 0.085 0.072

BBM exnex 0.069 0.069 0.067 0.084 0.067 0.110 0.087

3
BBM 0.064 0.065 0.072 0.053 0.108 0.109 0.070

BBM exnex 0.065 0.071 0.075 0.056 0.119 0.127 0.139

Table 4.4: Posterior standard deviation (PSD) of the success probabilities θi for
seven areas under three scenarios (one simulation)

Table 4.4 provides the posterior standard deviation of the success probabilities

θi for each area in models, BBM and BBM exnex, under three scenarios. Overall,

the binomial-Beta EXNEX model, BBM exnex, has larger posterior standard devi-

ation of the success probabilities θi than the binomial-Beta model,BBM . The pos-

sible explanation is that the mixture structure in the EXNEX model, BBM exnex,

causes the model to borrow less information among areas than the model BBM .

Scenario Heterogeneity Model Relative Bias RMSE

BBM 0.202 0.097
1 ‘Small’

BBM exnex 0.223 0.103

BBM 0.215 0.124
2 ‘Moderate’

BBM exnex 0.212 0.125

BBM 0.346 0.168
3 ‘Large’

BBM exnex 0.305 0.160

Table 4.5: Average relative bias and RMSE of θi in Model BBM and BBM exnex

under three scenarios (relatively different heterogeneity)

In Table 4.5, we compare the relative bias and RMSE of θ in each model under

three scenarios. The relative bias are
∑7

i=1
|θtruei −θ̂i|
θtruei

/7, where θtruei from Table 4.1
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and θ̂i are the posterior means. RMSE is
√
bias2 + PSD2, where bias = θtruei −θ̂i

and PSD is the posterior standard deviation of samples.

Under Scenario 1 with the very small difference between areas, all models have

relatively small absolute bias. But BBM model has the smaller relative bias than

BBM exnex model. However, under Scenario 3,BBM exnex model has the smaller

relative bias than BBM .

One explanation is that BBM model can borrow much more information than

BBM exnex model, which is helpful under Scenario 1. BBM exnex can borrow in-

formation from similar areas and avoid too optimistic borrowing information from

very different areas, which shows smaller relative bias under Scenario 3. For this

reason, BBM exnex model is more robust than BBM model under large hetero-

geneity scenarios. Since the heterogeneity between areas might be hard to assess

in practice, the Bayesian hierarchical EXNEX model is recommended when areas

might be very different from each other.

4.2 Multinomial-Dirichlet EXNEX Model without Order

Restriction

EXNEX models allow for a small number of partial exchangeability structures,

which is that different mixture probabilities pi for each area i represent different

ratio of fully exchangeability and non-exchangeability. The mixture probabilities

are related to the percentage of information borrowed from other areas, which will

be illustrated in a numerical example. This is a useful and more robust method to

avoid pooling from very different areas and borrow from similar areas.

To have EXNEX structures in the multinomial-Dirichlet model without order
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restriction, we have a following model, denoted as M exnex
1 ,

ni|θi
ind∼ Multinomial(ni. ,θi), i = 1, . . . , `.

At the second stage, the distribution of θi is a mixture of two Dirichlet distri-

butions,

θi|µ, τ, pi
ind∼ piDirichlet(µτ) + (1− pi)Dirichlet(1, 1, . . . , 1), i = 1, . . . , `,

where µ = (µ1, . . . , µK), τ are hyper-parameters,

π(µ, τ) =
(K − 1)!

(1 + τ)2
, τ, µj > 0,

K∑
j=1

µj = 1.

One component in the distribution of θi is Dirichlet(µτ), which permits bor-

rowing information from the other areas where we assume fully exchangeability

(EX). The other component is the noninformative Dirichlet(1, 1, . . . , 1), which per-

mits no borrowing information among areas where we assume non-exchangeability

(NEX). In Chapter 2, the modelM1 is a special case ofM exnex
1 , where the mixture

probabilities pi is 1.

The hyper-prior of mixture probabilities pi is

pi|φ, τ0 ∼ Beta(φτ0, (1− φ)τ0), where τ0 is specified as 1,

φ ∼ Beta(1, 1) 1/2 < φ < 1.

We use a constrained parameter space of φ to deal with label switching prob-

lem in the mixture model, where we assume 1/2 < φ < 1. The joint posterior
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distribution is

π(θ,µ, τ,p, φ|n) ∝
∏̀
i=1

{ ni.!∏K
j=1 nij !

K∏
j=1

θ
nij
ij [piDirichlet(µτ)

(K − 1)!

(1 + τ)2
+

(1− pi)Dirichlet(1)]
pφτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0))
}.

In Appendix 4.6.2, we show how to use griddy Gibbs sampler to draw µ, ρ and

φ from the multinomial-Dirichlet EXNEX model. We draw the posterior samples

of the mixture probabilities pi from the conditional posterior distribution. After

having posterior samples of parameters µ, τ = 1/ρ − 1, φ, pi, we can draw the

posterior of θi easily where

θi|pi,µ, τ,n ∼ piDirichlet(ni + µτ) + (1− pi)Dirichlet(ni + 1).

4.3 Multinomial-Dirichlet EXNEX Model with Order Re-

strictions

We present a multinomial-Dirichlet EXNEX model with order restrictions, de-

noted as M exnex
3 ,

ni|θi
ind∼ Multinomial(ni. ,θi), i = 1, . . . , `.

At the second stage, the distribution of θi is a mixture of two Dirichlet distri-
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butions,

θi|µ, τ, pi
ind∼ piDirichlet(µτ)Iθi∈C + (1− pi)Dirichlet(1, 1, . . . , 1),

where Iθi∈C is an indicator that θi ∈ C,µ = (µ1, . . . , µK), τ are hyper-parameters,

π(µ, τ) =
K(m− 1)!(K −m)!

(1 + τ)2
, µj > 0,

K∑
j=1

µj = 1,µ ∈ Cµ,

and C = {θij : θi1 6 θi2 6 . . . 6 θim > θi(m+1) > . . . > θiK},

Cµ = {µj : µ1 6 µ2 6 . . . 6 µm > µ(m+1) > . . . > µK}.

We assume the modal positions m in C and Cµ are known.

One component in the distribution of θi is Dirichlet(µτ)
θi∈C

, which permits bor-

rowing information from the other areas, where we assume fully exchangeability

(EX) and unimodal order restrictions on θi. The other component is the nonin-

formative Dirichlet(1, 1, . . . , 1), which permits no borrowing information among

areas, where we assume non-exchangeability (NEX) and no order restriction. In

Chapter 2, the model M3 is a special case of M exnex
3 where the mixture probabili-

ties pi is 1.

The hyper-prior of mixture probabilities pi is

pi|φ, τ0 ∼ Beta(φτ0, (1− φ)τ0), where τ0 is specified as 1,

φ ∼ Beta(1, 1) 1/2 < φ < 1.

We assume 1/2 < φ < 1 to deal with label switching in the mixture model.
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The joint posterior distribution is

π(θ,µ, τ,p, φ|n) ∝
∏̀
i=1

{ ni.!∏K
j=1 nij !

K∏
j=1

θ
nij
ij [pi

Dirichlet(µτ)∫
θi∈C

Dirichlet(µτ)dθi

K(m− 1)!(K −m)!ICµ
(1 + τ)2

+

(1− pi)Dirichlet(1)]
pφτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0))
}.

When there may be no unimodal order restriction in some small areas, those

areas may have smaller mixture probabilities pi than other areas. For example, in

the following numerical example, County 21 may be considered a very-different

area since the order restriction assumption that the mode is at the third position may

not hold. We expect the mixture probability p21 of County 21 to be small. Then

the EXNEX model with order restrictions, M exnex
3 , will borrow less information

for County 21 from other counties.

In Appendix 4.6.3, we show how to use griddy Gibbs sampler to draw µ, ρ and

φ from the multinomial-Dirichlet EXNEX model. We draw the posterior samples

of the mixture probability pi from the conditional posterior distribution. After

having posterior samples of parameters µ, ρ, φ, pi, we can draw the posterior of θi

easily, where

θi|µ, τ, pi,n ∼ piDirichlet(ni + µτ)Iθi∈C + (1− pi)Dirichlet(ni + 1),

where Iθi∈C is an indicator function that θi ∈ C.
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4.4 Numerical Example: BMI

We use BMI data from NHANES III to illustrate the multinomial-Dirichlet

EXNEX model, denoted asM exnex
1 and the EXNEX model with order restrictions,

denoted as M exnex
3 . Our primary purposes are to show that the EXNEX model

can provide good estimates and borrow information from the similar areas while

avoiding too optimistic borrowing from extreme areas. We fit M1, M3, M exnex
1 ,

M exnex
3 in the numerical example. To be convenient, Table 4.6 provides the model

notations used in the following discussion.

Table 4.6: Model notations in Chapter 4

Notation Model Order Restrictions Location

M1 the multinomial-Dirichlet model NA Chapter 2

the multinomial-Dirichlet model
M3

with order restrictions
θ1 < θ2 < θ3 > θ4 > θ5 Section 2.3

M exnex
1 the multinomial-Dirichlet EXNEX model NA Section 4.2

the multinomial-Dirichlet EXNEX model
M exnex

3
with order restrictions

θ1 < θ2 < θ3 > θ4 > θ5 Section 4.3

For each model, we run 10,000 MCMC iterations, take 5,000 as a ‘burn in’ and

use every 5th to obtain 1000 converged posterior smaples. In Figure 4.1, the trace

plots look like a random scatter around a mean value. There is no distinct jumps

occur in the traces of µ = (µ1, . . . , µ5) as the MCMC scheme moves. In Figure

4.2, they are unimodal distribution densities. We do not have the label switching

problem. We have converged posterior samples and our MCMC is stationary. Ta-

ble 4.7 provides p-values of the Geweke diagnostic to check the convergence of the

parameters (Geweke 1992). All p-values area large to not reject the null hypothesis
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that the MCMC is stationary. Table 4.8 provides the effective sample size of pos-

terior samples. Our samples are independent since the effective sample size equals

the actual sample size. Our Gibbs sampling method works well and the posterior

samples can be used for the further inference.

Figure 4.1: Traceplots of µ in M exnex
3

Figure 4.2: Densities of µ in M exnex
3
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µ1 µ2 µ3 µ4 µ5 ρ φ

M exnex
1 0.241 0.994 0.077 0.047 0.279 0.058 0.921

M exnex
3 0.241 0.150 0.992 0.094 0.273 0.642 0.099

Table 4.7: P-values of Geweke tests for µ, ρ, and φ in the Model M exnex
1 and

M exnex
3

µ1 µ2 µ3 µ4 µ5 ρ φ

M exnex
1 950 1000 1060 866 1000 1025 1000

M exnex
3 1000 1054 1057 1000 1000 1000 1000

Table 4.8: Effective sample sizes of µ, ρ, and φ in the Model M exnex
1 and M exnex

3

In Appendix 4.6.4, we provide the posterior mean (PM) and posterior standard

deviation (PSD), Posterior Coefficient of Variation (CV) of each category proba-

bility θ after fitting four models. We also provide the posterior mean of mixture

probabilities pi in M exnex
1 and M exnex

3 . For mixture probabilities pi, CVs are mis-

leading for proportions.

Overall, the multinomial-Dirichlet EXNEX models,M exnex
1 andM exnex

3 , have

relatively larger PSD than the multinomial-Dirichlet models, M1 and M3, due to

the partially borrowing information from other areas. The average mixture proba-

bilities pi are about 0.9 in M exnex
1 and M exnex

3 , which indicates that M exnex
1 and

M exnex
3 borrow less information than M1 and M3. For some extreme areas, such

as County 3, County 21, County 27, the mixture probabilities pi are smaller than

the average and they borrow much less information from the other areas. Incorpo-

rating order restrictions, M3 has smaller PSD than M1, and M exnex
3 has smaller

PSD than M exnex
1 . But for some extreme areas such as County 21, the model with

order restrictions may not have smaller PSD than the model without order restric-

tions. Incorporating order restrictions may cause those areas to be very different
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from other areas, the mixture probabilities pi may be smaller, and borrow less in-

formation from other areas.

To see the feature of EXNEX model, which is that it can borrow from similar

areas and avoid borrowing from extreme areas, we discuss the posterior summary

for four representative areas, such as County 3, County 9, County 21 and County 27

here. Areas where the unimodal order restrictions may not hold can be considered

as extreme areas, such as County 21. Areas where the unimodal order restrictions

are too good to be true can be considered as extreme areas, such as County 3 and

County 27. In those extreme areas, the mixture probabilities pi will be relatively

small, which borrow less information from other areas.

Table 4.9: Posterior summary of θ in four models for County 3

θ

Underweight Normal Overweight Obese I Obese IIModel pi

PM1 PSD1 PM2 PSD2 PM3 PSD3 PM4 PSD4 PM5 PSD5

M1 0.026 0.013 0.305 0.049 0.477 0.045 0.147 0.027 0.045 0.022

M3 0.024 0.011 0.308 0.034 0.479 0.037 0.148 0.027 0.042 0.015

M exnex
1 0.920 0.041 0.020 0.233 0.042 0.516 0.051 0.162 0.036 0.048 0.021

M exnex
3 0.794 0.024 0.015 0.311 0.056 0.474 0.048 0.152 0.025 0.040 0.018

Note: Mixture Probabilities pi , Posterior Mean (PM), Posterior Standard Deviation (PSD)

In Table 4.9, the mixture probability pi in M exnex
1 is 0.92. However, the mix-

ture probability pi in M exnex
3 is 0.794, which is smaller than 0.92 even the order

restriction may hold in County 3. The cell counts of County 3 are (3, 20, 49, 13, 5).

One possible explanation is that the cell counts of County 3 are much smaller than

the cell counts of County 4, which are (2, 145, 174, 77, 14). The cell counts of

County 2 are (1, 36, 38, 15, 1). We notice that the order restriction assumption

may hold in County 2, County 3, and County 4. But County 3 might be too good
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to be true, since 20 observations in normal BMI level and 49 observations in over-

weight BMI level, which will make County 3 as a very-different area than others.

We also notice the posterior means in M1 and M3 are very close. One possible

explanation is that the unimodal order restrictions that the modal position is at the

third may hold in County 3. But the posterior standard deviation in M3 is smaller

than in M1, due to borrowing information from other areas.

Table 4.10: Posterior summary of θ in four models for County 27

θ

Underweight Normal Overweight Obese I Obese IIModel pi

PM1 PSD1 PM2 PSD2 PM3 PSD3 PM4 PSD4 PM5 PSD5

M1 0.027 0.016 0.322 0.056 0.459 0.049 0.162 0.033 0.030 0.024

M3 0.024 0.013 0.328 0.037 0.460 0.042 0.162 0.031 0.027 0.014

M exnex
1 0.934 0.054 0.030 0.230 0.052 0.491 0.062 0.209 0.051 0.016 0.016

M exnex
3 0.869 0.025 0.020 0.327 0.061 0.455 0.047 0.166 0.031 0.028 0.014

Note: Mixture Probabilities pi, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.10, the mixture probability pi in M exnex
1 is 0.934, where the

count data in County 27 is (2, 10, 26, 9, 1) . However the mixture probability pi in

M exnex
3 is 0.869, which is smaller than 0.934. County 27 has the similar problem as

County 3, which is that the number of overweight dominates the other categories.

The unimodal order restrictions in County 27 may be too good to be true, which

makes County 27 as a very-different area than others. Similar to County3, we also

notice the posterior means inM1 andM3 are very close. But the posterior standard

deviation in M3 is smaller than in M1, due to borrowing information from other

areas.
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Table 4.11: Posterior summary of θ in four models for County 9

θ

Underweight Normal Overweight Obese I Obese IIModel pi

PM1 PSD1 PM2 PSD2 PM3 PSD3 PM4 PSD4 PM5 PSD5

M1 0.017 0.011 0.394 0.04 0.394 0.042 0.171 0.031 0.024 0.019

M3 0.016 0.010 0.368 0.024 0.417 0.029 0.175 0.032 0.023 0.012

M exnex
1 0.945 0.026 0.017 0.385 0.053 0.373 0.053 0.203 0.044 0.012 0.012

M exnex
3 0.914 0.015 0.009 0.373 0.026 0.416 0.034 0.172 0.029 0.025 0.011

Note: Mixture Probabilities pi, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.11, the mixture probability pi inM exnex
1 is 0.945 and the mixture

probability pi in M exnex
3 is 0.914, which are not much different, where the count

data of County 9 is (1, 29, 28, 14, 1). Even the order restriction assumption may not

hold, the number of observations in normal BMI level is very close to the number

of observations in overweight BMI level. County 9 may not be considered as a

very-different area and the mixture proportion pi is 0.914, which is close to other

areas’.

Table 4.12: Posterior summary of θ in four models for County 21

θ

Underweight Normal Overweight Obese I Obese IIModel pi

PM1 PSD1 PM2 PSD2 PM3 PSD3 PM4 PSD4 PM5 PSD5

M1 0.044 0.024 0.426 0.048 0.361 0.053 0.123 0.032 0.046 0.032

M3 0.041 0.017 0.373 0.023 0.405 0.027 0.140 0.033 0.042 0.017

M exnex
1 0.878 0.087 0.036 0.449 0.063 0.292 0.055 0.124 0.042 0.049 0.027

M exnex
3 0.578 0.055 0.042 0.412 0.064 0.356 0.080 0.125 0.043 0.052 0.033

Note: Mixture Probabilities pi, Posterior Mean (PM), Posterior Standard Deviation (PSD)

From Table 4.12, in M exnex
1 , the mixture probability pi is 0.878, which is

smaller than others. In M exnex
3 , the mixture probability pi is 0.578, which is
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extremely smaller than others. The count data in County 21 is (1, 36, 29, 9, 2),

which does not match the third modal position assumption and the order restric-

tion assumption may not hold. It suggested that the EXNEX model can avoid

optimistic borrowing from the very different areas. The posterior mean of θ are

(0.055, 0.412, 0.356, 0.125, 0.052), and the mode is at the second position. In the

EXNEX model with order restriction, M exnex
3 , County 21 should be considered as

a very-different area compared with other counties, since 36 observations in normal

BMI level and 29 observations in overweight BMI level.

In Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6, we provide the posterior

densities of θ in M3 and M exnex
3 for counties 2, 3, 13, and 35, correspondingly.

The difference between M exnex
3 and M3 may be not significant since the mixture

proportions of EXNEX in M exnex
3 are around 0.91.

Figure 4.3: Densities of θ in M3 and M exnex
3 for County 2

87



Figure 4.3 provides the posterior densities of θ for County 2. The density

curves in M exnex
3 are slightly flatter than in M3. But the difference of density

curves between M3 and M exnex
3 is not significant. The model M exnex

3 borrows

almost the same amount of information from other counties as the model M3 does.

Figure 4.4: Densities of θ in M3 and M exnex
3 for County 3

Figure 4.4 provides the posterior densities of θ for County 3. The density

curves in M exnex
3 are flatter than in M3. That is because the mixture probability is

0.794 and the model M exnex
3 borrows much less information than the model M3

does. As discussed in the previous, one possible explanation is that a significant

difference between County 3 and other counties, such as County 2 and County 4,

which causes a small mixture probability.

In Figure 4.5 and Figure 4.6, the posterior density curves inM3 andM exnex
3 for

County 13 and County 35 do not have significant difference. With order restric-
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tions, County 13 and County 35 are similar with other counties where the order

restriction assumption may hold. The mixture probabilities p13 and p35 are around

0.91, which is close to 1. For this reason, the performances of M3 and M exnex
3 are

similar.

Figure 4.5: Densities of θ in M3 and M exnex
3 for County 13
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Figure 4.6: Densities of θ in M3 and M exnex
3 for County 35

Figure 4.7: Densities of θ in M3 and M exnex
3 for County 21

90



Additional to those, Figure 4.7 provide the posterior density curves of θ21 in

M3 and M exnex
3 . Large overlaps between normal BMI level and overweight BMI

level in both models suggest that the unimodal order restriction assumption may

not hold for County 21. We should avoid borrowing too much information from

other counties. Therefore the EXNEX model with order restrictions, M exnex
3 , is a

better fit for this situation than model M3.

4.5 Concluding Remarks

In summary, extending the full exchangeability (EX) model to mixtures that

allow for exchangeability and nonexchangeability looks promising. From the sim-

ulation of binomial-Beta EXNEX model, BBM exnex, the model with partial ex-

changeability will have smaller relative bias and are more robust under different

scenarios than the fully exchangeability model, such as BBM . We present the

multinomial-Dirichlet EXNEX model with order restrictions, M exnex
3 . We notice

the computational difficulties under order restriction assumption.

In the numerical example, the EXNEX model with order restrictions, M exnex
3 ,

can borrow from similar areas and avoid borrowing too much from extreme ar-

eas, since it can have different mixture probabilities pi for each area. Extreme

areas could be the areas where the unimodal order restriction may not hold, such

as County 21, or the areas where the unimodal structure may be too good to be

true, such as County 3. Different mixture probabilities pi are related to different

portions of fully exchangeability and nonexchangeability, which means different

portions of information borrowed from other areas. The mixture probabilities pi

of EXNEX models for ith area are related to the difference between that area and
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others. Large difference causes small mixture probability pi, and causes less infor-

mation borrowed from other areas.

However the simulation of the EXNEX model with order restrictions should

be provided in the future to show the robustness of the EXNEX model under dif-

ferent scenarios. Careful considerations for the specification of prior distributions

and mixture weights are important, which may affect the partial exchangeability

assumption in the model (Neuenschwander et al. 2016). Due to the complexity of

the EXNEX model, we have much more parameters in the EXNEX model for the

same amount of data than the EX model. So over-fitting should be concerned.
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4.6 Appendix

4.6.1 Griddy Gibbs Sampler for the Binomial-Beta EXNEX Model

We show how to use a griddy Gibbs sampler to draw samples of µ, ρ, and

φ from the binomial-Beta ENXEX model, BBM exnex. Specifically, we use 200

points in the uniformly spaced grid. The joint posterior distribution of BBM exnex

is

π(θ,µ, ρ,p, φ|y) ∝
∏̀
I=1

{

(
ni
yi

)
θyii (1− θi)ni−yi{piBeta(µ(

1− ρ
ρ

), (1− µ)(
1− ρ
ρ

))+

(1− pi)Beta(1, 1)}p
φτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0)
},

where B(φτ0, (1− φ)τ0) is the normalization constant of the Beta distribution.

Since E(piA+ (1− pi)B) = Aφ+B(1− φ), we can integrate out pi and θi,

π(µ, ρ, φ|y) ∝
∏̀
i=1

{
∫
pi,θi

(
ni
yi

)
θyii (1− θi)ni−yi{piBeta(µ(

1− ρ
ρ

), (1− µ)(
1− ρ
ρ

))+

(1− pi)Beta(1, 1)}p
φτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0)
dpidθi}

=
∏̀
i=1

{
∫
pi

(
ni
yi

)
θyii (1− θi)ni−yi{φBeta(µ(

1− ρ
ρ

), (1− µ)(
1− ρ
ρ

))+

(1− φ)Beta(1, 1)}dpi}

=
∏̀
i=1

{φ

(
ni
yi

)
B(yi + µ(1/ρ− 1), (ni − yi) + (1− µ)(1/ρ− 1))

B(µ(1/ρ− 1), (1− µ)(1/ρ− 1))
+

(1− φ)

(
ni
yi

)
B(yi + 1, (ni − yi) + 1)

B(1, 1)
}.

Then we use a griddy Gibbs sampler to draw posterior samples of µ, ρ, and φ.

Next, with the help of a latent variable zi, we can draw samples of pi from the

following part,

π(pi, zi|µ, ρ, φ,y) ∝ [pi

(
ni
yi

)
B{yi + µ(1/ρ− 1), (ni − yi) + (1− µ)(1/ρ− 1)}

B{µ(1/ρ− 1), (1− µ)(1/ρ− 1)} ]zi

[(1− pi)
1

ni + 1
]1−zipφτ0−1

i (1− pi)(1−φ)τ0−1,
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then draw zi and pi

zi|pi, µ, ρ,y ∼ Bernoulli{
pi
(
ni
yi

)B[yi+µ(1/ρ−1),(ni−yi)+(1−µ)(1/ρ−1)]
B[µ(1/ρ−1),(1−µ)(1/ρ−1)]

pi
(
ni
yi

)B[yi+µ(1/ρ−1),(ni−yi)+(1−µ)(1/ρ−1)]
B[µ(1/ρ−1),(1−µ)(1/ρ−1)]

+ (1− pi) 1
ni+1

},

pi|zi, φ ∼ Beta{zi + φτ0, (1− zi) + (1− φ)τ0)}.

4.6.2 Griddy Gibbs Sampler for the EXNEX Model M exnex
1

We show how to use griddy Gibbs sampler to draw sample from the multinomial-

Dirichlet EXNEX model. After integrating out pi and θi, the joint posterior of

µ, τ, φ in M exnex
1 is

π(µ, τ, φ|n) ∝
∏̀
i=1

{
∫
pi,θi

ni.!∏K
j=1 nij !

K∏
j=1

θ
nij
ij [piDirichlet(µτ)

(K − 1)!

(1 + τ)2
+

(1− pi)Dirichlet(1)]
pφτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0))
dpidθi}

=
∏̀
i=1

{φ ni.!∏K
j=1 nij !

D(ni + µτ)

D(µτ)

(K − 1)!

(1 + τ)2
+ (1− φ)

ni.!∏K
j=1 nij !

D(ni + 1)

D(1)
},

π(µ, τ, φ|n) ∝
∏̀
i=1

{φ ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+µjτ)

Γ(
∑
j nij+τ)∏K

j=1 Γµjτ)

Γ(τ)

(K − 1)!

(1 + τ)2
+ (1− φ)

ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+1)

Γ(
∑
j nij+K)

1
Γ(K)

}.

Using the transformation ρ = 1
τ+1(τ = 1/ρ− 1),

π(µ, τ, φ|n) ∝
∏̀
i=1

{φ ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+µj(1/ρ−1))

Γ(
∑
j nij+(1/ρ−1))∏K

j=1 Γµj(1/ρ−1))

Γ((1/ρ−1))

(K − 1)! + (1− φ)
ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+1)

Γ(
∑
j nij+K)

1
Γ(K)

}

∝
∏̀
i=1

{φ Γ(ni. + 1)Γ(K)∏K
j=1 Γ(nij + 1)

∏K
j=1 Γ(nij+µj(1/ρ−1))

Γ(
∑
j nij+(1/ρ−1))∏K

j=1 Γµj(1/ρ−1))

Γ((1/ρ−1))

+ (1− φ)
Γ(ni. + 1)Γ(K)

Γ(ni. +K)
}.

We can use griddy Gibbs sampling to draw µ, τ, φ, and 0 6 µj 6
∑K−1

t=1,t6=j µt.,

j = 1, . . . ,K − 1.
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Then we show how to draw the mixture probabilities pi with the help of a latent

variable zi,

π(pi, zi|µ, ρ, φ,n) ∝ {pi
ni.!∏K
j=1 nij !

D(ni + µ(1/ρ− 1))

D(µ(1/ρ− 1))
Γ(K)}zi{(1− pi)

Γ(ni. + 1)Γ(K)

Γ(ni. +K)
}1−zi

× pφτ0−1
i (1− pi)(1−φ)τ0−1,

then we draw sample from the conditional distributions,

zi|pi,µ, ρ,n ∼ Bernoulli(
pi

ni.!∏K
j=1 nij !

D(ni+µ(1/ρ−1))
D(µ(1/ρ−1)) Γ(K)

pi
ni.!∏K
j=1 nij !

D(ni+µ(1/ρ−1))
D(µ(1/ρ−1)) Γ(K) + (1− pi)Γ(ni.+1)Γ(K)

Γ(ni.+K)

),

pi|zi, φ, τ0 = 1 ∼ Beta(zi + φτ0, (1− zi) + (1− φ)τ0).

4.6.3 Griddy Gibbs Sampler for the EXNEX Model with Order Re-

strictions M exnex
3

We show how to use a griddy Gibbs sampler to draw sample from the multinomial-

Dirichlet model with ENXEX prior. Specifically, we use 200 points in the uni-

formly spaced grid. After integrating out pi and θi, the joint posterior of µ, τ, φ in

M exnex
3 is

π(µ, τ, φ|n) ∝
∏̀
i=1

{
∫
pi,θi

ni.!∏K
j=1 nij !

K∏
j=1

θ
nij
ij [pi

Dirichlet(µτ)∫
θi∈C

Dirichlet(µτ)dθi

K(m− 1)!(K −m)!ICµ
(1 + τ)2

+

(1− pi)Dirichlet(1)]
pφτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0))
dpidθi}

=
∏̀
i=1

{φ ni.!∏K
j=1 nij !

D(ni + µτ)C(ni + µτ)

D(µτ)C(µτ)

K(m− 1)!(K −m)!ICµ
(1 + τ)2

+

(1− φ)
ni.!∏K
j=1 nij !

D(ni + 1)

D(1)
},
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where D(µτ) and D(ni + µτ) are the normalization constant of Dirichlet distri-

butions, and C(µτ) and C(ni + µτ) are the adjusted constant of Dirichlet distri-

butions with order restrictions.

π(µ, τ, φ|n) ∝
∏̀
i=1

{φ ni.!∏K
j=1 nij !

∫
θi∈C

∏K
j=1 θ

µjτ+nij−1
ij dθi∫

θi∈C
∏K
j=1 θ

µjτ−1
ij dθi

K(m− 1)!(K −m)!ICµ
(1 + τ)2

+

(1− φ)
ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+1)

Γ(
∑
j nij+K)

1
Γ(K)

}.

After transforming τ into ρ (τ = 1−ρ
ρ ), use Monte Carlo ingetration to deal the

ratio of two integrals, draw samples of θ: θ(q) ∼ Dirichlet(γn̄j), where θ ∈ C

and γ is the importance ratio, n̄j is the average over small areas for each category,

the approximated joint posterior distribution of µ and ρ is

π(µ, ρ, φ|n) ∝
∏̀
i=1

{φ ni.!∏K
j=1 nij !

∫
θi∈C

∏K
j=1 θ

µj
1−ρ
ρ +nij−1

ij dθi∫
θi∈C

∏K
j=1 θ

µj
1−ρ
ρ −1

ij dθi

K(m− 1)!(K −m)!+

(1− φ)
ni.!∏K
j=1 nij !

∏K
j=1 Γ(nij+1)

Γ(
∑
j nij+K)

1
Γ(K)

}

∝
∏̀
i=1

{φΓ(ni. + 1)K(m− 1)!(K −m)!∏K
j=1 Γ(nij + 1)

∑M
q=1

∏K
j=1 [θ

(q)
j ]

nij−γn̄j+µj 1−ρ
ρ

∑M
q=1

∏K
j=1 [θ

(q)
j ]
−γn̄j+µj 1−ρ

ρ

+

(1− φ)
Γ(ni. + 1)Γ(K)

Γ(ni. +K)
}

∝
∏̀
i=1

{φΓ(ni. + 1)K(m− 1)!(K −m)!∏K
j=1 Γ(nij + 1)

{
M∑
q=1

wq

K∏
j=1

[θ
(q)
j ]

nij
}+

(1− φ)
Γ(ni. + 1)Γ(K)

Γ(ni. +K)
},

where wq =

∏K
j=1 [θ

(q)
j ]
−γn̄j+µj 1−ρ

ρ

∑M
q=1

∏K
j=1 [θ

(q)
j ]
−γn̄j+µj 1−ρ

ρ

.

96



We can use griddy Gibbs sampling to draw µ, ρ, φ, and for j from m− 1 to 1 the

range of µj is

0 < µj 6 min{µj+1,
1−

∑K
t=1,t6=m,t 6=j µt

2
},

and for j from m+ 1 to K,

0 < µj 6 min{µj−1,
1−

∑K
t=1,t6=m,t6=j µt

2
}.

Then we draw the mixture probabilities pi with the help of a latent variable zi,

zi|pi,µ, ρ,n ∼ Bernoulli(
pi

Γ(ni.+1)K(m−1)!(K−m)!∏K
j=1 Γ(nij+1)

{
∑M
q=1 wq

∏K
j=1 [θ

(q)
j ]

nij

pi
Γ(ni.+1)K(m−1)!(K−m)!∏K

j=1 Γ(nij+1)
{
∑M
q=1 wq

∏K
j=1 [θ

(q)
j ]

nij}+ (1− pi) Γ(ni.+1)Γ(K)
Γ(ni.+K)

)

pi|zi, φ, τ0 = 1 ∼ Beta(zi + φτ0, (1− zi) + (1− φ)τ0).
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4.6.4 Posterior Summary of Model M1, M3, M exnex
1 , and M exnex

3 for

BMI

Table 4.13: EXNEX posterior summary part I: Counties 1-9

θ
County Models pi

PM1 PSD1 CV1 PM2 PSD2 CV2 PM3 PSD3 CV3 PM4 PSD4 CV4 PM5 PSD5 CV5

M1 0.025 0.012 0.480 0.402 0.038 0.095 0.394 0.038 0.096 0.142 0.025 0.176 0.038 0.021 0.553

M3 0.024 0.012 0.500 0.375 0.023 0.061 0.418 0.026 0.062 0.147 0.028 0.190 0.036 0.014 0.389

M exnex
1 0.946 0.041 0.020 0.488 0.398 0.047 0.118 0.372 0.045 0.121 0.152 0.034 0.224 0.037 0.018 0.486

1

M exnex
3 0.912 0.021 0.011 0.524 0.380 0.023 0.061 0.415 0.031 0.075 0.151 0.025 0.166 0.033 0.013 0.394

M1 0.015 0.009 0.600 0.394 0.038 0.096 0.413 0.039 0.094 0.157 0.026 0.166 0.021 0.017 0.810

M3 0.014 0.009 0.643 0.374 0.024 0.064 0.428 0.027 0.063 0.162 0.028 0.173 0.022 0.012 0.545

M exnex
1 0.942 0.021 0.014 0.667 0.385 0.047 0.122 0.404 0.048 0.119 0.179 0.038 0.212 0.012 0.010 0.833

2

M exnex
3 0.914 0.014 0.008 0.571 0.377 0.027 0.072 0.425 0.031 0.073 0.162 0.026 0.160 0.023 0.010 0.435

M1 0.026 0.013 0.500 0.305 0.049 0.161 0.477 0.045 0.094 0.147 0.027 0.184 0.045 0.022 0.489

M3 0.024 0.011 0.458 0.308 0.034 0.110 0.479 0.037 0.077 0.148 0.027 0.182 0.042 0.015 0.357

M exnex
1 0.920 0.041 0.020 0.488 0.233 0.042 0.180 0.516 0.051 0.099 0.162 0.036 0.222 0.048 0.021 0.438

3

M exnex
3 0.794 0.024 0.015 0.625 0.311 0.056 0.180 0.474 0.048 0.101 0.152 0.025 0.164 0.040 0.018 0.450

M1 0.008 0.004 0.500 0.359 0.022 0.061 0.421 0.021 0.050 0.179 0.018 0.101 0.033 0.010 0.303

M3 0.007 0.004 0.571 0.357 0.020 0.056 0.422 0.021 0.050 0.180 0.018 0.100 0.034 0.008 0.235

M exnex
1 0.941 0.008 0.004 0.500 0.350 0.023 0.066 0.419 0.023 0.055 0.190 0.018 0.095 0.033 0.008 0.242

4

M exnex
3 0.913 0.008 0.004 0.500 0.361 0.020 0.055 0.424 0.020 0.047 0.175 0.018 0.103 0.032 0.008 0.250

M1 0.015 0.010 0.667 0.376 0.041 0.109 0.398 0.041 0.103 0.174 0.031 0.178 0.036 0.022 0.611

M3 0.015 0.009 0.600 0.359 0.025 0.070 0.414 0.030 0.072 0.178 0.030 0.169 0.034 0.014 0.412

M exnex
1 0.939 0.024 0.016 0.667 0.357 0.048 0.134 0.377 0.048 0.127 0.208 0.041 0.197 0.033 0.019 0.576

5

M exnex
3 0.913 0.014 0.008 0.571 0.365 0.027 0.074 0.417 0.031 0.074 0.173 0.029 0.168 0.031 0.012 0.387

M1 0.010 0.009 0.900 0.387 0.044 0.114 0.401 0.043 0.107 0.143 0.031 0.217 0.059 0.031 0.525

M3 0.010 0.008 0.800 0.363 0.028 0.077 0.424 0.031 0.073 0.149 0.030 0.201 0.055 0.018 0.327

M exnex
1 0.942 0.016 0.014 0.875 0.364 0.054 0.148 0.382 0.055 0.144 0.161 0.041 0.255 0.077 0.029 0.377

6

M exnex
3 0.902 0.011 0.007 0.636 0.371 0.027 0.073 0.417 0.035 0.084 0.153 0.028 0.183 0.049 0.024 0.490

M1 0.011 0.009 0.818 0.381 0.042 0.110 0.400 0.042 0.105 0.176 0.033 0.188 0.033 0.023 0.697

M3 0.010 0.008 0.800 0.361 0.027 0.075 0.420 0.031 0.074 0.178 0.033 0.185 0.031 0.014 0.452

M exnex
1 0.942 0.018 0.015 0.833 0.360 0.054 0.150 0.373 0.057 0.153 0.221 0.050 0.226 0.027 0.020 0.741

7

M exnex
3 0.914 0.011 0.007 0.636 0.366 0.029 0.079 0.418 0.032 0.077 0.175 0.030 0.171 0.030 0.013 0.433

M1 0.019 0.013 0.684 0.390 0.045 0.115 0.435 0.045 0.103 0.127 0.033 0.260 0.028 0.023 0.821

M3 0.017 0.011 0.647 0.375 0.029 0.077 0.446 0.034 0.076 0.136 0.030 0.221 0.025 0.013 0.520

M exnex
1 0.944 0.034 0.022 0.647 0.377 0.059 0.156 0.440 0.060 0.136 0.133 0.040 0.301 0.016 0.016 1.000

8

M exnex
3 0.914 0.016 0.012 0.750 0.377 0.029 0.077 0.439 0.035 0.080 0.142 0.029 0.204 0.026 0.012 0.462

M1 0.017 0.011 0.647 0.394 0.040 0.102 0.394 0.042 0.107 0.171 0.031 0.181 0.024 0.019 0.792

M3 0.016 0.010 0.625 0.368 0.024 0.065 0.417 0.029 0.070 0.175 0.032 0.183 0.023 0.012 0.522

M exnex
1 0.945 0.026 0.017 0.654 0.385 0.053 0.138 0.373 0.053 0.142 0.203 0.044 0.217 0.012 0.012 1.000

9

M exnex
3 0.914 0.015 0.009 0.600 0.373 0.026 0.070 0.416 0.034 0.082 0.172 0.029 0.169 0.025 0.011 0.440

Note: Mixture Probabilities pi , Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 4.14: EXNEX posterior summary part II: Counties 10-22

θ
County Models pi

PM1 PSD1 CV1 PM2 PSD2 CV2 PM3 PSD3 CV3 PM4 PSD4 CV4 PM5 PSD5 CV5

M1 0.010 0.009 0.900 0.398 0.040 0.101 0.402 0.039 0.097 0.172 0.031 0.180 0.017 0.017 1.000
M3 0.009 0.007 0.778 0.374 0.023 0.061 0.421 0.027 0.064 0.179 0.030 0.168 0.017 0.010 0.588
M exnex

1 0.946 0.014 0.013 0.929 0.396 0.050 0.126 0.381 0.049 0.129 0.208 0.041 0.197 0.001 0.003 3.000
10

M exnex
3 0.915 0.010 0.007 0.700 0.378 0.027 0.071 0.419 0.033 0.079 0.173 0.029 0.168 0.019 0.010 0.526

M1 0.025 0.012 0.480 0.373 0.039 0.105 0.386 0.040 0.104 0.174 0.030 0.172 0.042 0.022 0.524
M3 0.023 0.011 0.478 0.353 0.024 0.068 0.404 0.028 0.069 0.178 0.029 0.163 0.041 0.015 0.366
M exnex

1 0.944 0.039 0.018 0.462 0.351 0.043 0.123 0.361 0.043 0.119 0.204 0.039 0.191 0.045 0.019 0.422
11

M exnex
3 0.906 0.022 0.012 0.545 0.360 0.026 0.072 0.407 0.033 0.081 0.173 0.027 0.156 0.038 0.015 0.395

M1 0.009 0.008 0.889 0.415 0.042 0.101 0.429 0.040 0.093 0.117 0.029 0.248 0.028 0.019 0.679
M3 0.009 0.007 0.778 0.391 0.024 0.061 0.448 0.028 0.063 0.124 0.026 0.210 0.028 0.013 0.464
M exnex

1 0.940 0.013 0.012 0.923 0.423 0.050 0.118 0.432 0.050 0.116 0.110 0.032 0.291 0.022 0.014 0.636
12

M exnex
3 0.914 0.010 0.007 0.700 0.392 0.028 0.071 0.437 0.030 0.069 0.134 0.028 0.209 0.027 0.011 0.407

M1 0.012 0.007 0.583 0.430 0.030 0.070 0.381 0.030 0.079 0.142 0.019 0.134 0.035 0.013 0.371
M3 0.012 0.006 0.500 0.389 0.015 0.039 0.408 0.018 0.044 0.153 0.024 0.157 0.037 0.012 0.324
M exnex

1 0.942 0.014 0.008 0.571 0.439 0.032 0.073 0.364 0.032 0.088 0.147 0.023 0.156 0.035 0.012 0.343
13

M exnex
3 0.913 0.012 0.006 0.500 0.394 0.023 0.058 0.408 0.023 0.056 0.152 0.021 0.138 0.034 0.010 0.294

M1 0.023 0.013 0.565 0.423 0.045 0.106 0.397 0.041 0.103 0.133 0.030 0.226 0.024 0.019 0.792
M3 0.022 0.012 0.545 0.387 0.023 0.059 0.426 0.027 0.063 0.141 0.030 0.213 0.024 0.012 0.500
M exnex

1 0.947 0.039 0.021 0.538 0.438 0.053 0.121 0.373 0.052 0.139 0.138 0.037 0.268 0.012 0.012 1.000
14

M exnex
3 0.911 0.019 0.012 0.632 0.388 0.028 0.072 0.421 0.033 0.078 0.147 0.028 0.190 0.025 0.012 0.480

M1 0.021 0.011 0.524 0.367 0.041 0.112 0.434 0.040 0.092 0.132 0.027 0.205 0.045 0.023 0.511
M3 0.019 0.010 0.526 0.360 0.030 0.083 0.445 0.033 0.074 0.134 0.025 0.187 0.042 0.015 0.357
M exnex

1 0.942 0.033 0.017 0.515 0.343 0.047 0.137 0.436 0.050 0.115 0.137 0.035 0.255 0.051 0.022 0.431
15

M exnex
3 0.911 0.018 0.010 0.556 0.365 0.030 0.082 0.436 0.033 0.076 0.142 0.026 0.183 0.038 0.016 0.421

M1 0.014 0.009 0.643 0.379 0.038 0.100 0.434 0.038 0.088 0.153 0.027 0.176 0.021 0.016 0.762
M3 0.013 0.008 0.615 0.368 0.028 0.076 0.443 0.030 0.068 0.156 0.027 0.173 0.020 0.010 0.500
M exnex

1 0.941 0.020 0.013 0.650 0.361 0.045 0.125 0.437 0.046 0.105 0.173 0.035 0.202 0.009 0.009 1.000
16

M exnex
3 0.915 0.013 0.008 0.615 0.370 0.026 0.070 0.437 0.030 0.069 0.159 0.024 0.151 0.022 0.009 0.409

M1 0.036 0.015 0.417 0.359 0.038 0.106 0.423 0.037 0.087 0.156 0.027 0.173 0.026 0.017 0.654
M3 0.034 0.013 0.382 0.352 0.028 0.080 0.431 0.033 0.077 0.158 0.028 0.177 0.025 0.011 0.440
M exnex

1 0.944 0.054 0.020 0.370 0.329 0.044 0.134 0.420 0.045 0.107 0.178 0.037 0.208 0.018 0.012 0.667
17

M exnex
3 0.907 0.028 0.015 0.536 0.359 0.029 0.081 0.429 0.032 0.075 0.158 0.024 0.152 0.026 0.010 0.385

M1 0.011 0.010 0.909 0.420 0.046 0.110 0.380 0.044 0.116 0.155 0.031 0.200 0.034 0.024 0.706
M3 0.011 0.008 0.727 0.376 0.023 0.061 0.415 0.027 0.065 0.166 0.032 0.193 0.032 0.015 0.469
M exnex

1 0.940 0.017 0.016 0.941 0.431 0.057 0.132 0.340 0.053 0.156 0.184 0.045 0.245 0.028 0.019 0.679
18

M exnex
3 0.913 0.011 0.008 0.727 0.384 0.032 0.083 0.411 0.038 0.092 0.163 0.030 0.184 0.030 0.013 0.433

M1 0.019 0.013 0.684 0.418 0.047 0.112 0.383 0.046 0.120 0.159 0.033 0.208 0.021 0.020 0.952
M3 0.018 0.012 0.667 0.375 0.025 0.067 0.418 0.029 0.069 0.169 0.035 0.207 0.020 0.013 0.650
M exnex

1 0.941 0.035 0.023 0.657 0.428 0.061 0.143 0.340 0.058 0.171 0.196 0.049 0.250 0.001 0.004 4.000
19

M exnex
3 0.910 0.017 0.013 0.765 0.382 0.030 0.079 0.413 0.038 0.092 0.166 0.031 0.187 0.022 0.011 0.500

M1 0.010 0.009 0.900 0.350 0.047 0.134 0.476 0.050 0.105 0.138 0.030 0.217 0.025 0.020 0.800
M3 0.010 0.008 0.800 0.348 0.034 0.098 0.478 0.039 0.082 0.140 0.028 0.200 0.024 0.012 0.500
M exnex

1 0.944 0.017 0.014 0.824 0.298 0.052 0.174 0.521 0.056 0.107 0.151 0.040 0.265 0.013 0.013 1.000
20

M exnex
3 0.913 0.010 0.007 0.700 0.354 0.038 0.107 0.463 0.046 0.099 0.148 0.027 0.182 0.025 0.012 0.480

M1 0.044 0.024 0.545 0.426 0.048 0.113 0.361 0.053 0.147 0.123 0.032 0.260 0.046 0.032 0.696
M3 0.041 0.017 0.415 0.373 0.023 0.062 0.405 0.027 0.067 0.140 0.033 0.236 0.042 0.017 0.405
M exnex

1 0.878 0.087 0.036 0.414 0.449 0.063 0.140 0.292 0.055 0.188 0.124 0.042 0.339 0.049 0.027 0.551
21

M exnex
3 0.578 0.055 0.042 0.764 0.412 0.064 0.155 0.356 0.080 0.225 0.125 0.043 0.344 0.052 0.033 0.635

M1 0.016 0.010 0.625 0.428 0.043 0.100 0.393 0.041 0.104 0.133 0.028 0.211 0.030 0.020 0.667
M3 0.016 0.010 0.625 0.386 0.022 0.057 0.424 0.026 0.061 0.145 0.029 0.200 0.029 0.014 0.483
M exnex

1 0.941 0.025 0.016 0.640 0.444 0.052 0.117 0.367 0.052 0.142 0.140 0.036 0.257 0.023 0.016 0.696
22

M exnex
3 0.913 0.014 0.009 0.643 0.392 0.031 0.079 0.417 0.033 0.079 0.148 0.027 0.182 0.029 0.012 0.414

Note: Mixture Probabilities pi , Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Table 4.15: EXNEX posterior summary part IV: Counties 23-35

θ
County Models pi

PM1 PSD1 CV1 PM2 PSD2 CV2 PM3 PSD3 CV3 PM4 PSD4 CV4 PM5 PSD5 CV5

M1 0.012 0.010 0.833 0.386 0.045 0.117 0.419 0.043 0.103 0.146 0.032 0.219 0.037 0.027 0.730
M3 0.011 0.009 0.818 0.367 0.028 0.076 0.436 0.034 0.078 0.153 0.032 0.209 0.033 0.015 0.455
M exnex

1 0.940 0.019 0.016 0.842 0.364 0.061 0.168 0.417 0.062 0.149 0.168 0.047 0.280 0.033 0.022 0.667
23

M exnex
3 0.914 0.012 0.009 0.750 0.372 0.030 0.081 0.429 0.034 0.079 0.155 0.030 0.194 0.033 0.016 0.485

M1 0.010 0.009 0.900 0.381 0.041 0.108 0.398 0.042 0.106 0.172 0.032 0.186 0.038 0.024 0.632
M3 0.010 0.008 0.800 0.362 0.027 0.075 0.417 0.030 0.072 0.175 0.031 0.177 0.036 0.014 0.389
M exnex

1 0.945 0.016 0.014 0.875 0.358 0.052 0.145 0.377 0.054 0.143 0.212 0.044 0.208 0.037 0.021 0.568
24

M exnex
3 0.913 0.010 0.007 0.700 0.366 0.029 0.079 0.416 0.035 0.084 0.174 0.030 0.172 0.034 0.015 0.441

M1 0.017 0.011 0.647 0.447 0.050 0.112 0.400 0.043 0.108 0.117 0.031 0.265 0.019 0.019 1.000
M3 0.018 0.011 0.611 0.399 0.022 0.055 0.434 0.025 0.058 0.131 0.030 0.229 0.018 0.011 0.611
M exnex

1 0.946 0.030 0.019 0.633 0.481 0.058 0.121 0.377 0.056 0.149 0.111 0.036 0.324 0.001 0.003 3.000
25

M exnex
3 0.903 0.016 0.010 0.625 0.403 0.043 0.107 0.421 0.035 0.083 0.139 0.031 0.223 0.021 0.011 0.524

M1 0.025 0.014 0.560 0.379 0.043 0.113 0.427 0.043 0.101 0.135 0.029 0.215 0.034 0.024 0.706
M3 0.024 0.013 0.542 0.366 0.028 0.077 0.438 0.033 0.075 0.141 0.028 0.199 0.031 0.014 0.452
M exnex

1 0.941 0.045 0.024 0.533 0.359 0.054 0.150 0.423 0.058 0.137 0.146 0.042 0.288 0.028 0.019 0.679
26

M exnex
3 0.912 0.021 0.015 0.714 0.370 0.028 0.076 0.432 0.034 0.079 0.147 0.029 0.197 0.031 0.014 0.452

M1 0.027 0.016 0.593 0.322 0.056 0.174 0.459 0.049 0.107 0.162 0.033 0.204 0.030 0.024 0.800
M3 0.024 0.013 0.542 0.328 0.037 0.113 0.460 0.042 0.091 0.162 0.031 0.191 0.027 0.014 0.519
M exnex

1 0.934 0.054 0.030 0.556 0.230 0.052 0.226 0.491 0.062 0.126 0.209 0.051 0.244 0.016 0.016 1.000
27

M exnex
3 0.869 0.025 0.020 0.800 0.327 0.061 0.187 0.455 0.047 0.103 0.166 0.031 0.187 0.028 0.014 0.500

M1 0.019 0.013 0.684 0.411 0.047 0.114 0.389 0.045 0.116 0.153 0.032 0.209 0.029 0.022 0.759
M3 0.018 0.011 0.611 0.374 0.025 0.067 0.419 0.029 0.069 0.162 0.034 0.210 0.027 0.014 0.519
M exnex

1 0.948 0.036 0.023 0.639 0.415 0.061 0.147 0.351 0.059 0.168 0.182 0.051 0.280 0.016 0.017 1.063
28

M exnex
3 0.913 0.017 0.011 0.647 0.380 0.032 0.084 0.417 0.036 0.086 0.160 0.029 0.181 0.027 0.012 0.444

M1 0.010 0.009 0.900 0.395 0.041 0.104 0.420 0.041 0.098 0.150 0.028 0.187 0.024 0.019 0.792
M3 0.010 0.008 0.800 0.376 0.026 0.069 0.437 0.030 0.069 0.154 0.029 0.188 0.023 0.012 0.522
M exnex

1 0.940 0.015 0.013 0.867 0.386 0.051 0.132 0.423 0.053 0.125 0.164 0.040 0.244 0.012 0.012 1.000
29

M exnex
3 0.915 0.010 0.007 0.700 0.378 0.028 0.074 0.432 0.032 0.074 0.156 0.026 0.167 0.024 0.011 0.458

M1 0.015 0.010 0.667 0.348 0.042 0.121 0.418 0.039 0.093 0.197 0.036 0.183 0.023 0.018 0.783
M3 0.015 0.009 0.600 0.341 0.029 0.085 0.426 0.034 0.080 0.196 0.032 0.163 0.022 0.011 0.500
M exnex

1 0.943 0.024 0.015 0.625 0.306 0.048 0.157 0.410 0.050 0.122 0.250 0.045 0.180 0.010 0.009 0.900
30

M exnex
3 0.911 0.014 0.008 0.571 0.350 0.034 0.097 0.424 0.032 0.075 0.189 0.034 0.180 0.023 0.011 0.478

M1 0.023 0.012 0.522 0.403 0.039 0.097 0.391 0.040 0.102 0.153 0.027 0.176 0.031 0.021 0.677
M3 0.021 0.011 0.524 0.371 0.022 0.059 0.416 0.027 0.065 0.163 0.030 0.184 0.029 0.013 0.448
M exnex

1 0.939 0.037 0.019 0.514 0.399 0.051 0.128 0.363 0.050 0.138 0.178 0.040 0.225 0.023 0.016 0.696
31

M exnex
3 0.914 0.019 0.011 0.579 0.377 0.028 0.074 0.415 0.036 0.087 0.161 0.027 0.168 0.028 0.010 0.357

M1 0.009 0.007 0.778 0.334 0.041 0.123 0.442 0.039 0.088 0.190 0.032 0.168 0.026 0.017 0.654
M3 0.008 0.006 0.750 0.332 0.031 0.093 0.447 0.034 0.076 0.189 0.029 0.153 0.024 0.011 0.458
M exnex

1 0.936 0.011 0.010 0.909 0.287 0.042 0.146 0.451 0.046 0.102 0.232 0.038 0.164 0.019 0.013 0.684
32

M exnex
3 0.912 0.009 0.006 0.667 0.344 0.035 0.102 0.440 0.032 0.073 0.182 0.030 0.165 0.025 0.011 0.440

M1 0.013 0.008 0.615 0.375 0.034 0.091 0.414 0.035 0.085 0.171 0.026 0.152 0.027 0.016 0.593
M3 0.012 0.007 0.583 0.363 0.024 0.066 0.425 0.028 0.066 0.174 0.027 0.155 0.026 0.011 0.423
M exnex

1 0.938 0.016 0.011 0.688 0.359 0.041 0.114 0.410 0.041 0.100 0.194 0.033 0.170 0.021 0.012 0.571
33

M exnex
3 0.915 0.012 0.007 0.583 0.367 0.025 0.068 0.425 0.028 0.066 0.170 0.024 0.141 0.026 0.010 0.385

M1 0.016 0.009 0.563 0.379 0.039 0.103 0.443 0.040 0.090 0.134 0.027 0.201 0.028 0.019 0.679
M3 0.015 0.010 0.667 0.369 0.028 0.076 0.450 0.034 0.076 0.139 0.027 0.194 0.027 0.012 0.444
M exnex

1 0.945 0.023 0.016 0.696 0.359 0.048 0.134 0.451 0.051 0.113 0.145 0.036 0.248 0.022 0.015 0.682
34

M exnex
3 0.915 0.014 0.009 0.643 0.372 0.028 0.075 0.441 0.033 0.075 0.145 0.025 0.172 0.027 0.011 0.407

M1 0.015 0.009 0.600 0.418 0.039 0.093 0.429 0.038 0.089 0.122 0.027 0.221 0.016 0.016 1.000
M3 0.014 0.009 0.643 0.396 0.024 0.061 0.446 0.027 0.061 0.129 0.027 0.209 0.016 0.010 0.625
M exnex

1 0.946 0.022 0.014 0.636 0.427 0.048 0.112 0.429 0.047 0.110 0.122 0.032 0.262 0.001 0.003 3.000
35

M exnex
3 0.913 0.013 0.008 0.615 0.393 0.027 0.069 0.437 0.030 0.069 0.139 0.027 0.194 0.018 0.009 0.500

Note: Mixture Probabilities pi , Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV)
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Chapter 5

Concluding Remarks and Future

Works

In this dissertation, we study several Bayesian hierarchical multinomial-Dirichlet

models with order restrictions for small area estimation. We provided very-detailed

Bayesian analysis for each model. We have demonstrated our application to body

mass index data from NHANES III.

5.1 Concluding Remarks

First, in Chapter 2, we developed the Bayesian hierarchical multinomial-Dirichlet

model with order restrictions to analyze multinomial data. The unimodal order re-

strictions are necessary when the parameters of interest may have the unimodal

structure. We use griddy Gibbs sampler for each model. We show how the model

with order restrictions can borrow information differently. A simulation study is

presented to compare the different order restriction assumptions, which impact the
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strength of borrowing information. The model with order restrictions on param-

eters µ and θ can have small standard variance when the order restriction holds

and the heterogeneity of small areas is small. In practice, the same unimodal order

restriction for all small areas may not hold. Hence, the performance of model with

order restrictions is not good as expected.

Second, in Chapter 3, we proposed a multinomial-Dirichlet model, where are

incorporated the order restriction uncertainty to allow different unimodal order re-

striction in each small area. We discussed an approximation method to compute

the mixture probabilities of different order restrictions and avoid the computation

difficulty. We proposed a Bayesian diagnostics method, LPML, to compare differ-

ent models. In the application to the BMI data, the model with order restriction

that the mode is at the third position, has the largest LPML, which suggests that

the model is preferable when fitting the NHANES BMI data. The model, which

incorporates the uncertainty, is slightly less-preferable but robust under different

scenarios. It is recommended to use the model, which incorporates the uncertainty,

when the modal position of unimodal order restriction is not known.

Third, in Chapter 4, we proposed an exchangeability-nonexchangeability model

to allow partial exchangeability on parameters. We discussed a Gibbs sampler

method for the EXNEX model. The model can borrow information from the sim-

ilar areas while avoiding borrowing from the very different areas. For example, in

the numerical example, after fitting the multinomial-Dirichlet EXNEX model with

order restrictions, M exnex
3 , the posterior mean of mixture probability p21 is 0.578,

which means that it borrows much less information in County 21 than other coun-

ties. This is an alternative approach when the same unimodal order restriction may

not hold for all areas, which is a preferred approach when the heterogeneity across
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small areas is large.

In summary, the multinomial-Dirichlet model with order restrictions may be

appropriate for many applications. As in the application to BMI data, the model

with order restrictions can have smaller posterior standard deviation and higher

estimation accuracy than the model without order restrictions. The model with

uncertain order restrictions in Chapter 3 and the EXNEX model with order re-

strictions in Chapter 4 are great extensions of our current approach. This disser-

tation provide novel contributions in making inference with order restrictions for

small area estimation. But we notice the computational difficulty may exist in the

multinomial-Dirichlet model with order restrictions. Even assuming partial ex-

changeability is a great alternative approach for the hierarchical models for small

area estimations, the carefully considerations of prior specification should be ad-

dressed (Neuenschwander 2016).

5.2 Future works

In the dissertation, we use a Bayesian hierarchical model with order restrictions

for small area estimation of categorical data in Chapter 2. In Chapters 3 and 4,

we develop two types of models to handle the situation where the same unimodal

order restrictions may not hold for all areas. Exploring different order restriction

assumptions can extend the usage of models with order restrictions. We focus

on parametric statistical models in this dissertation. We can have nonparameteric

Bayesian analysis, see Quintana (1998), to make the procedure more robust. Yin

and Nandram (2020a) propose a two-stage non-parametric Bayesian model with

several independent Dirichlet processes at the first stage that represents the data, to
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take care of the gaps, outliers and ties in the body mass index data, see also Yin

and Nandram (2019), Yin and Nandram (2020b). All these models are Dirichlet

process mixture (DPM) models.

The Dirichlet process mixture model in Nandram and Yin (2016b) is motivated

by Nandram and Choi (2004). Nandram and Yin (2016a) showed how to add a

Dirichlet process prior to do Bayesian predictive inference. Their work is moti-

vated by Binder (1982). We can use the idea of DPM for the model with order

restrictions to relax the parametric assumption. Specifically,

ni|θi ∼ Multinomial(θi),

θi|G ∼ G, i = 1, . . . , `,

G|α,µ, τ ∼ DP{α,Dirichlet(µτ)},θi ∈ C,

π(µ, τ, α) ∝
ICµ

(1 + τ)2

1

(1 + α)2
,µ ∈ Cµ,

where α is a concentration parameter, C = {θi : θi1 6 . . . 6 θim > . . . >

θiK , i = 1, . . . , `}, Cµ = {µ : µ1 6 . . . 6 µm > . . . > µK}, and assume the

modal positions m in C and Cµ are known.

The final BMI data set for this study uses only the 35 largest counties with a

population of at least 500,000 for selected age categories by sex (male, female)

and race (white non-Hispanic, black non-Hispanic, Hispanic, other). We can easily

apply our method to the small domains formed by on age, race, and sex, such as

the young Hispanic-male BMI data. But the cells of the multinomial tables will

become sparse. We can eliminate some counties that become small or we can

combine some counties. However, due to the structures of multinomial-Dirichlet

models with order restrictions, we cannot add race, age and sex as covariates into

the model.
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Since the BMI data are from the survey sampling and individuals are selected

with different probabilities, we should not ignore the survey weights. It is possible

to incorporate the survey weights into our model as well. Let Wig denote the

survey weights, adding up to the population size within each county, i = 1, . . . , `,

sample index g = 1, . . . , ni and cell index j = 1, . . . ,K. Yang (2021) provided

adjusted weights are ωig = n̂i
Wig∑ni
g=1 Wig

, where n̂i =
(
∑ni
g=1 Wig)2∑ni
g=1W

2
ig

and
∑ni

g=1 ωig =∑ni
g=1 ω

2
ig = n̂i. Yang (2021) used weighted likelihood distributions for a single

multinomial model, see also Nandram, Choi, and Liu (2021). Yang (2021) found

out there is a very small difference between normalized and unnormalized weighed

likelihood.

We can transform BMI data using the adjusted weights into adjusted counts.

Let Iigj be the BMI category indicator for individual g in county i, i = 1, . . . , ` at

cell j, j = 1, . . . ,K, where define Iigj = 0 or 1 with
∑K

j=1 Iigj = 1, for example,

if a person responds in cell j, a one is scored and all other cells have zeros. For

simplification, we can have the unnormalized weighted joint posterior distribution

as

π(θ,µ, τ,p, φ|n) ∝
∏̀
i=1

{
(
∑K
j=1

∑ni
g=1 Iigjωig)!∏K

j=1(
∑ni
g=1 Iigjωig)!

K∏
j=1

θ
∑ni
g=1 Iigjωig

ij

[pi
Dirichlet(µτ)∫

θi∈C Dirichlet(µτ)dθi

(K − 1)!

(1 + τ)2
+

(1− pi)Dirichlet(1, . . . , 1)]
pφτ0−1
i (1− pi)(1−φ)τ0−1

B(φτ0, (1− φ)τ0))
}.

Our approaches can be applied to the adjusted counts directly.

The computational burden to fit each of the models is enormous. In Chapter 3,

we would like to know how to provide more efficient algorithms to make posterior

inference and compute the Bayesian diagnostics criterion. Operationalizing the
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Gibbs sampler will make our work more accessible to a much larger audience (e.g.

government agencies).

In Chapter 4, we would like to explore how to incorporate the partial exchange-

ability assumption into the model with order restrictions differently to have differ-

ent levels of borrowing information from all areas. We also would like to see the

performance of the multinomial-Dirichlet EXNEX models in the simulation under

different scenarios.

In the posterior summary of mixture probabilities pi, we can use posterior coef-

ficients of variations (PCV), but these are misleading for the mixture probabilities

pi. Because pi and 1 − pi have different PCVs even they are essentially the same

variables. PCVs do not make sense when the variables are correlated, such as

θij , j = 1, . . . ,K or pi and 1− pi. In the Bayesian paradigm, one needs to present

the entirely posterior density graphically. But when they are too many of these,

we need summaries. Perhaps we can use robust measures of standard deviations

and center, e.g. median and median absolute deviation (MAD) and we can take

PCV=MAD/median.

106



Bibliography

Binder, D. A. (1982). Non-parametric Bayesian models for samples from finite

populations. Journal of the Royal Statistical Society: Series B (Methodological),

44(3):388–393.

Chen, M.-H. and Shao, Q.-M. (1997). On Monte Carlo methods for estimating

ratios of normalizing constants. The Annals of Statistics, 25(4):1563–1594.

Chen, X. and Nandram, B. (2019). Order-restricted Bayesian estimation of multi-

nomial cell counts for small areas. In JSM 2019, Section on Bayesian Statistical

Science, pages 1024–1030. Alexandria, VA: American Statistical Association.

Chen, X. and Nandram, B. (2020). Bayesian model diagnostics with order restric-

tions on cell probabilities. In JSM 2020, Section on Statistical Computing, pages

1754–1766. Alexandria, VA: American Statistical Association.

Chen, X. and Nandram, B. (2021a). Bayesian inference for multinomial data from

small areas incorporating uncertainty about order restriction. Survey Methodol-

ogy. (revising).

Chen, X. and Nandram, B. (2021b). Bayesian order-restricted inference of multi-

nomial counts from small areas. Recent Advances in Applied Statistics. David

107



Hangal, Raosahed Laptate, Hukum Chandra and Girish Chandra, Springer Na-

ture(in press).

Chen, X. and Nandram, B. (2021c). A Bayesian small area model with order

restrictions for contingency table. Communications in Statistics - Theory and

Methods. (in press).

Dunson, D. B. and Neelon, B. (2003). Bayesian inference on order-constrained

parameters in generalized linear models. Biometrics, 59(2):286–295.

Gelfand, A. E., Dey, D. K., and Chang, H. (1992a). Model determination us-

ing predictive distributions with implementation via sampling-based methods.

Technical report, Stanford University, Department of Statistics.

Gelfand, A. E., Smith, A. F. M., and Lee, T.-M. (1992b). Bayesian analysis of con-

strained parameter and truncated data problems using Gibbs sampling. Journal

of the American Statistical Association, 87(418):523–532.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the

calculation of posterior moments. In Bayesian Statistics, pages 169–193. Uni-

versity Press.

Ghosh, M. and Kim, D. H. (2002). Robust Bayesian analysis with partially ex-

changeable priors. Journal of Statistical Planning and Inference, 102(1):99–

107.

Heck, D. W. and Davis-Stober, C. P. (2019). Multinomial models with linear in-

equality constraints: Overview and improvements of computational methods for

Bayesian inference. Journal of Mathematical Psychology, 91:70–87.

108



Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sam-

pling in hierarchical linear mixed models. Journal of the American Statistical

Association, 91(436):1461–1473.

Kaizer, A. M., Koopmeiners, J. S., and Hobbs, B. P. (2017). Bayesian hierarchical

modeling based on multisource exchangeability. Biostatistics, 19(2):169–184.

Li, Z. (2008). Some Problems in Statistical Inference Under Order Restrictions.

PhD thesis, University of Michigan.

Mair, P., Hornik, K., and de Leeuw, J. (2009). Isotone optimization in r: pool-

adjacent-violators algorithm (PAVA) and active set methods. Journal of statisti-

cal software, 32(5):1–24.

Malec, D. and Sedransk, J. (1992). Bayesian methodology for combining the re-

sults from different experiments when the specifications for pooling are uncer-

tain. Biometrika, 79(3):593–601.

Malinovsky, Y. and Rinott, Y. (2010). Prediction of ordered random effects in a

simple small area model. Statistica Sinica, 20(2):697–714.

Nadarajah, S. and Kotz, S. (2006). R programs for truncated distributions. Journal

of Statistical Software, 16(1):1–8.

Nandram, B. (1998). A Bayesian analysis of the three-stage hierarchical multino-

mial model. Journal of Statistical Computation and Simulation, 61(1-2):97–126.

Nandram, B. (2005). A Bayesian subset analysis of sensory evaluation data. Jour-

nal of Modern Applied Statistical Methods, 4(2):13.

109



Nandram, B. and Choi, J. W. (2004). Nonparametric Bayesian analysis of a propor-

tion for a small area under nonignorable nonresponse. Journal of Nonparametric

Statistics, 16(6):821–839.

Nandram, B. and Choi, J. W. (2010). A Bayesian analysis of body mass index data

from small domains under nonignorable nonresponse and selection. Journal of

the American Statistical Association, 105(489):120–135.

Nandram, B., Choi, J. W., and Liu, Y. (2021). Integration of nonprobability and

probability samples via survey weights. International journal of statistics and

probability, 10(6):5–21.

Nandram, B., Kim, D., and Zhou, J. (2019). A pooled Bayes test of independence

for sparse contingency tables from small areas. Journal of Statistical Computa-

tion and Simulation, 89(5):899–926.

Nandram, B. and Peiris, T. B. (2018). Bayesian analysis of a roc curve for categor-

ical data using a skew-binormal model. Statistics and Its Interface, 11(2):369–

384.

Nandram, B. and Sedransk, J. (1995). Bayesian inference for the mean of a strati-

fied population when there are order restrictions. In Gatsonis, C., Hodges, J. S.,

Kass, R. E., and Singpurwalla, N. D., editors, Case Studies in Bayesian Statis-

tics, Volume II, pages 309–322, New York, NY. Springer New York.

Nandram, B., Sedransk, J., and Smith, S. J. (1997). Order-restricted Bayesian

estimation of the age composition of a population of AGibbstlantic cod. Journal

of the American Statistical Association, 92(437):33–40.

110



Nandram, B. and Yin, J. (2016a). Bayesian predictive inference under a Dirichlet

process with sensitivity to the normal baseline. Statistical Methodology, 28:1–

17.

Nandram, B. and Yin, J. (2016b). A nonparametric Bayesian prediction interval

for a finite population mean. Journal of Statistical Computation and Simulation,

86(16):3141–3157.

Nandram, B. and Yin, J. (2019). Hierarchical Bayesian models for small areas with

Dirichlet processes. In JSM 2019, Section on Survey Research Methods, pages

2594–2613. Alexandria, VA: American Statistical Association.

Neuenschwander, B., Wandel, S., Roychoudhury, S., and Bailey, S. (2016). Ro-

bust exchangeability designs for early phase clinical trials with multiple strata.

Pharmaceutical Statistics, 15(2):123–134.

Quintana, F. A. (1998). Nonparametric Bayesian analysis for assessing homogene-

ity in k × i contingency tables with fixed right margin totals. Journal of the

American Statistical Association, 93(443):1140–1149.

Rao, J. and Molina, I. (2015). Small Area Estimation. Wiley Series in Survey

Methodology. Wiley.

Robertson, T. T., Wright, F., and Dykstra, R. (1988). Order restricted statisti-

cal inference. Wiley Series in Probability and Mathematical Statistics. Wiley,

Chichester.

Roy, V. (2020). Convergence diagnostics for Markov chain Monte Carlo. Annual

Review of Statistics and Its Application, 7:387–412.

111



Sedransk, J., Monahan, J., and Chiu, H. Y. (1985). Bayesian estimation of fi-

nite population parameters in categorical data models incorporating order re-

strictions. Journal of the Royal Statistical Society. Series B (Methodological),

47(3):519–527.

Silvapulle, M. and Sen, P. (2004). Constrained Statistical Inference: Order, In-

equality, and Shape Constraints. Wiley Series in Probability and Statistics. Wi-

ley.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 62(4):795–809.

Wu, J., Meyer, M. C., and Opsomer, J. D. (2016). Survey estimation of domain

means that respect natural orderings. Canadian Journal of Statistics, 44(4):431–

444.

Yang, L. (2021). Bayesian predictive inference with survey weights. Master’s

thesis, Department of Mathematical Sciences, Worcester Polytechnic Institute.

Yin, J. and Nandram, B. (2020a). A Bayesian small area model with Dirichlet

processes on the responses. Statistics in Transition, 21(3):1–19.

Yin, J. and Nandram, B. (2020b). A nonparametric Bayesian analysis of response

data with gaps, outliers and ties. Statistics and Applications, 18(2):121–141.

112


