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Abstract

High quality automated electromyogram (EMG) decomposition algorithms are necessary to insure
the reliability of clinical and scientific information derived from them. In this work, we used
experimental and simulated data to analyze the decomposition performance of three publicly available
algorithms—EMGLAB [McGill et al., 2005] (single-channel data only), Fuzzy Expert [Erim and Lin,
2008] and Montreal [Florestal et al., 2009]. Comparison data consisted of quadrifilar needle EMG from
the tibialis anterior of 12 subjects (young and elderly) at three contraction levels (10, 20 and 50%
MVC), single-channel clinical EMG from the biceps brachii of 10 subjects, and matched simulation data
for both electrode types. Performance was assessed via agreement between pairs of algorithms for
experimental data and accuracy with respect to the known decomposition for simulated data. For the
quadrifilar data, median agreements between the Montreal and Fuzzy Expert algorithms at 10, 20 and
50% MVC were 95.7, 86.4 and 64.8%, respectively. For the single-channel data, median agreements
between pairs of algorithms were 94.9% (Montreal vs. Fuzzy Expert) and 100% (EMGLAB vs. either
Montreal or Fuzzy Expert). Accuracy on the simulated data exceeded this performance.
Agreement/accuracy was strongly related to trial Complexity, as was motor unit signal to noise ratio,
Dissimilarity and Decomposability Index. When agreement was high between algorithm pairs applied to

the simulated data, so was the individual accuracy of each algorithm.
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CHAPTER 1—INTRODUCTION

Contribution: This whole project is a team project. Coauthors Christie, Clancy and McGill of the
two enclosed papers provided experimental data and the three EMG decomposition algorithms (via the
MATLAB toolbox “EMGlab™). I mainly focused on running different algorithms on experimental data
and simulated data and also generated the simulator EMG signal. Lejin Li, my research partner, mainly
focused on result fitting and analysis. Most of the work, in fact, was finished together under the direction
of Dr. Clancy. Yejin and | wrote the entire Appendix, which details the research methods and results.
Dr. Clancy drafted the journal paper based on this report. Yejin and | drafted the conference paper based
on our report and an early draft of the journal paper. Drs. McGill, Christie and Bonato advised the
project remotely and edited the conference and journal manuscripts. Dr. MGill is the primary author of
one of the decomposition algorithms and Dr. Christie had previously collected one of the data sets. Dr.

Bonato provided an additional data set that was not included in the final project.

Main contents of thesis: During my Master’s study, my major is electrical and computer
engineering and the field I focus on is biomedical signal processing. All study and research are under the
instruction from my advisor Dr. Edward Clancy. Human tissues can generate very weak voltages; a goal
of biomedical signal processing is to collect and analyze such weak signals. Most of my work is related
with electromyogram (EMG) signal processing. The electromyogram is the electrical activity of human
skeletal muscles and has several important functions for diagnosing and treating muscle diseases. This

thesis mainly focuses on the performance and reliability of EMG signal decomposition results.

EMG signal generation: Our muscle consists of many small units called motor units (MU). The
motor unit includes two parts—one is the motor nerve and another is innervated muscle fibers (see
Figure 1). When a muscle contracts, individual motor units in our muscles electrically discharge (see
Figure 2). An electrical “motor unit action potential (MUAP)” can be recorded. The average frequency

of discharging is called the firing rate. If one motor unit is activated, its initial firing rate is about 4-10
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pulses/sec. When force increases, the firing rates can increase up to 20 pulses/sec, or higher. EMG signal
recordings are the sum of voltages due to each active motor unit. Typically, many motor units can be
active at the same time. Firing times are generally uncorrelated in time within one motor unit and
uncorrelated across motor units. Since different motor units generate signals with different shapes and
each (healthy) motor unit generates similar shapes each excitation, EMG signal decomposition becomes
possible and useful. The purpose of EMG signal decomposition is to separate the composite interference
pattern into its constituent motor unit (MU) firing times, permitting the evaluation and study of

individual MU firing patterns and action potential shapes (see Figure 3).
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EMG data collection: Since the signal from our body is always very weak and with high
background noise, we need to collect and process raw EMG signals carefully. The data used in this

paper come from two parts: experimental data and simulated data:

1. For experimental data, we used both multi-channel data previously acquired at the University of

Massachusetts (UMass) and single channel data available from EMGlab.net.

For the UMass data, recordings were acquired from a total of 16 subjects covering a variety of ages
(classified as young and old), genders and contraction levels—210%, 20% and 50% of maximum
voluntary contraction (MVC). Three channels data of EMG data were simultaneously acquired using a
quadrifilar needle electrode and multi-channel decomposition was utilized. Exclusion criteria were first
applied for all data, based on the level of noise and duration of stable activity. Finally 12 subjects——7
young (3 males and 4 females) and 5 old (2 males and 3 females) were retained as the usable recordings

for further processing.

For EMGIab.net data, we had available the N2001 database of clinical signals which consisted of
various subject groups such as one normal control group, one group of patients with myopathy and one
group of ALS patients. We only used data from the normal control group for our single channel
decomposition. Our sample group consisted of 10 normal subjects aged from 21 to 37 years old, 4
females and 6 males. Each subject had 15 recordings at low-level contraction and another 15 at
moderate level. Since the low level recordings were at a very low contraction level and too easy to
analyze, we only chose one moderate level data recording from each subject according to background

noise and complexity.



mO®wO

__ 200 _,_\
m 50 pm diam.

Figure (4): two different types of needles -concentric (single-channel) needle (left) and quadrifilar

needle (right).

2. A physiologically based simulation of clinical EMG signals had been developed and was
publically available. We designed the simulated data to be similar to the UMass data for multi-channel

analysis and similar to the EMGlab.net data for single channel analysis.

The application of decomposition: Decomposition is useful in a wide range of clinical and
scientific studies of the neuromuscular system. The number of motor units for a normal muscle in
general does not change. And the shape of a healthy motor unit action potential of a muscle also does
not change (always similar, but not exact), excluding changes due to fatigue. (Fatigue was avoided
when data for this study were collected.) However, if a muscle is diseased (example.g., myopathic
diseases), the number of motor units can be reduced and the average diameter of the fibers in motor
units can decrease. Disease will change the structure of motor units so that the shapes of motor unit
action potentials detected and recorded will change. Not only muscle diseases, but also other effects,
such as age and fatigue can cause a similar change in action potential shape. Thus, if we can decompose
the original EMG signals into different motor units and characterize the changes of these motor units,
corresponding diagnosis and treatment can be implemented. For most decomposition-based studies, an
automated algorithm is utilized to perform most of the decomposition, with expert manual editing often
completed thereafter. Methods for automated decomposition were pioneered by DelLuca and colleagues
[11]. Since that time, a number of other significant approaches and variations have been developed and

refined.



General algorithm for EMG decomposition: Since signals generated from our human body are
weak and acquired in the presence of high background noise, we need to process raw signals carefully
before we decompose. When and EMG signal is acquired, amplification and filtering are common and
efficient ways to eliminate background noise and to enlarge the power of the weak signal. All such work
is called preprocessing. However all parameters of the preprocessing should be chosen in a very careful
way since too much filtering may not lead to an expected high SNR (Signal-to-Noise Ratio). Another
challenge is that different motor units are usually active at the same time. This will cause
superimposition in the recorded signal. How to deal with superimposition and how to separate the
interference signal into several small motor units is the most challenging issue of decomposition. The
core concept of most decomposition algorithms is to classify different motor units into clusters based on
templates. Like all other algorithms, there is always a trade-off between the performance and the
computing time. In this project, different settings such as firing rates statistics and possible combinations
(possible number of concurrently active motor units considered when resolving a superimposition) had a

great impact on the computing time especially for the Fuzzy Expert algorithm of Erim and Lin.

The primary steps to a classical decomposition algorithm are: pre-processing, detection, clustering
and superimposition resolution [1-3, 11]. As noted above, the primary preprocessing step is the
application of a highpass filter. The goal of this filter is to accentuate the differences between motor
unit spikes, which primarily are found in the higher frequencies. For detection, a simple threshold
detector is most common. If the threshold is set too high, motor unit spikes can be missed; if the
threshold is set too low, noise spikes can be detected. Clustering is then used to associate the various
spikes with motor units. Generally, spikes are only clustered if their shape sufficiently matches the
template shape, so as to limit clustering of noise spikes. In addition, every superimposed spike tends to
have a different shape. Thus, the general clustering stage tends to purposely not desire to classify
superimposed shapes. Many algorithms perform clustering in multiple passes. During the first pass, the
most similar spikes are clustered, after which robust templates are formed. During subsequent passes,
the templates are improved as more units are added. Finally, superimposition resolution is performed on

the unclustered spikes. Several techniques are possible. The simplest technique is an exhaustive search
—_ 9



method of trying all combinations of two or more templates at all possible relative time displacements.
Unfortunately, this technique tends to be prohibitively time intensive, particularly when testing
superimpositions of three or more templates. Note that most algorithms will not classify all detected

spikes. Many variants to this classical algorithm have been developed.

In this project, three of the major decomposition algorithms are now publically available within the
MATLAB software environment—the McGill algorithm [1], the Fuzzy Expert algorithm [2] and the
Montreal (MTL) algorithm [3]. In addition, a detailed indwelling EMG simulator is also publically
available [4]. Hence, we cross-compared the performance of these three algorithms utilizing a variety of

experimental and simulated EMG needle data.

Before decomposition, each signal was high-pass filtered in order to improve the accuracy of
results. The reason to use a high-pass filter is that the signal information at frequencies less than 500 Hz
to 1000 Hz tends to look rather similar for all motor units. But, the higher frequency content is more
discriminable. When the shapes of different motor units are different, decomposition algorithms can
distinguish them much more easily. Therefore, we eliminate the lower frequency portion of the signal.
However, after we filter this low frequency part, the spikes of the motor units become smaller, which
decreases the SNR. Thus, we need to choose a suitable cut-off frequency between 500 Hz and 1000 Hz
carefully to keep both good SNR and distinguishability. For the UMass multi-channel data, an analog
high-pass filter (1000 Hz) had been applied before digitizing/ Since some residual low frequency
background noise existed, a 1st-order zero-phase Butterworth digital high-pass filter with 100 Hz cut off
frequency was used. For the EMGlab.net database, the single channel signal was processed in analog
hardware (prior to sampling) by a first-order high-pass filter with 2 Hz cut off and low-pass filter with

10 kHz cut off. We then used a 500 Hz first-order zero-phase Butterworth high-pass digital filter.

Each single channel signal was decomposed separately by three algorithms and each multi-channel
signal by MTL (Montreal) and Fuzzy Expert. All three algorithms automatically detected spikes of
motor units and established their discharge times in the signal. In order to compare different algorithms

under the same circumstance, the results of these algorithms after decomposition were saved in a
— 10—



uniform format, including discharging time, motor unit ID number and channel for each spike in the

signal in an annotation file (.eaf file).

The parameters of Fuzzy Expert should be set carefully or the computing time would be long and
inefficient. Most of the parameters can be chosen as default settings. We modified some key parameters
as below: a) passes =10; b) Min Template to Fill = 0.2; ¢c) Max MU Combo for super-position: 3 for 1st
and 2nd pass, 5 for 3rd pass and 6 for the rest.

The performance of automated decomposition algorithms (emphasis of thesis): The
performance of automated decomposition algorithms has primarily been evaluated in a few manners [5].
First, “reference” or “truth” annotations have been achieved via manual expert editing of an
experimental data set [3], [4], [6], [7]. This technique can be extremely time consuming (e.g., one hour
per second of data for Fuzzy Expert) and its own accuracy is difficult to assess. Nonetheless, assessment
on experimental data guarantees signal conditions representative of actual use. Second, some
experimental data sets have been evaluated manually, but the evaluation has been limited to clinical
classification of each MU as normal vs. abnormal [8], [9]. This manual evaluation is much more time
efficient, but does not quantitatively assess the intermediate algorithm steps of spike detection and spike
classification. Third, EMG signals have been simulated [3], [7], [8], [L0]-[12]. In this case, the truth
annotations are known to be correct. However, even highly detailed simulations cannot guarantee all of
the complexities of an actual signal. Fourth, a few studies have recorded EMG from multiple indwelling
needles, each of which is decomposed [7], [13]-[15]. Some of the MUs recorded from the distinct
electrodes are common. Agreement in their firing times is strong evidence of correct detection and
classification of those firings. Recent studies have also compared indwelling decomposition to that
accomplished by surface EMG arrays [16]-[18]. Most commonly, a combination of evidence—
experimental and simulation—is used to evaluate an algorithm, as each evaluation technique has its own

strengths and weaknesses.

To date, very little direct comparison has been made between the performances of various

automated algorithms [19]. Such comparison is important, since the reported performance of an



algorithm is a strong function of the data used for evaluation. Recordings are known to be more difficult
to decompose, for example, when: more spikes occur per second, distinct MUs exhibit similar shape, the
signal-to-noise ratio (SNR) is low, MU shapes change over time and firing times are irregular [7].
Hence, direct comparison between reported algorithm accuracies is confounded. In addition, further
support is given to the efficacy of decomposition, in general, if multiple algorithms are able to arrive at

common solutions.

For experimental data and simulated data, we developed comparison based on agreement among
different algorithms and accuracy based on truth annotations, respectively. We also computed four
measures of decomposition difficulty. High agreement and accuracy versus these measures would
reflect the reliability of the automated decomposition algorithms. Details of the difficulty measures—

SNR, DI, Dissimilarity and Complexity—are provided in the journal paper draft (below).

The remainder of this thesis is structured as follows. Chapter 2 is the conference paper draft
accepted to the 2013 IEEE 39" Annual Northeast Bioengineering Conference [20], which only presents
the cross-comparison between the two multi-channel EMG decomposition algorithms based on DI, due
to the page limitation. Chapter 3 is the draft of the journal paper, which includes a broader range of the
work including both multi-channel and single channel comparison using all three decomposition
algorithms. Appendix is the report regarding EMG decomposition, which presents all the detailed

information, such as intermediate steps of the processing results and unmodified figures.
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CHAPTER 2 Conference paper (in press)

Cross-Comparison Between Two Multi-Channel EMG Decomposition Algorithms
Assessed with Experimental and Simulated data

Yejin Li, Chenyun Dai, Edward A. Clancy
ECE Dept., Worcester Polytechnic Institute, USA
vlil@wpi.edu, cdai@wpi.edu, ted@wpi.edu

Paolo Bonato, Dept. Phys. Med. Rehab.,
Harvard Med. School, USA, pbonato(@partners.org

Abstract—The reliability of automated electromyogram (EMG)
decomposition algorithms is important in clinical and scientific
studies. In this paper, we analyzed the performance of two
multi-channel decomposition algorithms—Montreal [1] and
Fuzzy Expert [2] using both experimental and simulated data.
Comparison data consisted of quadrifiler needle EMG from
the tibialis anterior muscle of 12 subjects (young and elderly)
at three contraction levels (10, 20 and 50% MVC), and
matched simulation data. Performance was assessed via
agreement between the two algorithms for experimental data
and accuracy with respect to the known decomposition for
simulated data. For the experimental data, median agreement
between the Montreal and Fuzzy Expert algorithms at 10, 20
and 50% MVC was 95.7, 86.4 and 64.8%, respectively. For the
simulation data, median accuracy was 99.8%, 100% and
95.9% for Montreal, and 100%, 98% and 93.5% for Fuzzy
Expert at the different contraction levels.

Keywords-EMG; Motor unit potential; Decomposition; SNR;
Composite Decomposability Index (CDI) ; Cross-comparison.

L INTRODUCTION

Decomposition of EMG signals separates the composite
signal into its constituent motor unit (MU) firing times and
action potential shapes. Decomposition is used in many

clinical and research studies of the neuromuscular system [3].

In most cases, an automatic algorithm and expert manual
editing are combined to produce a more reliable result [4].
Evaluating the performance between multiple automated
algorithms is crucial, since EMG recordings can be
extremely difficult to decompose under conditions of low
signal to noise ratio (SNR) and/or high similarity of MU
shapes. Hence, if high agreement is achieved between

algorithms, more confidence is gained in each decomposition.

Two major multi-channel decomposition algorithms are
now publically available within the MATLAB software
environment [ 1], [2]. In addition, a detailed indwelling EMG
simulator is also publically available [5]. Hence, we cross-
compared the performance of these two algorithms, utilizing
a variety of experimental and simulated data at different
contraction levels.

Anita Christie, Dept. Human Physiology,
U. Oregon, USA, adcl(@uoregon.edu

Kevin C. McGill, Rehab. R&D Center
VA Palo Alto, USA, kemegill43@gmail.com

II. METHODS

A.  Experimental and Simulated Data

The data used in this paper consisted of two parts: the
experimental data were recorded at the University of
Massachusetts and simulated data were generated. The data
reanalysis was approved and supervised by the WPI
Institutional Review Board.

Three-channel quadrifiler needle EMG signals were
acquired from the tibialis anterior muscle of the dominant leg
of seven young (three male, four female) and five elderly
(two male, three female), healthy subjects during isometric
contractions of 10%, 20% and 50% MVC. Four 50-um
diameter wires with 200 pm distance between electrode pairs
comprised the recording surfaces. The signals were bandpass
filtered from 1,000-10,000 Hz and sampled at 51,200 Hz at
16-bit resolution. One 5s segment of each signal was
analyzed. Thus, 36 recordings of 5 s duration each were used
(12 subjects x 3 levels of contraction).

Quadrifiler data were simulated using the EMG needle
simulator of Hamilton-Wright [5]. The resulting signals
resembled those acquired experimentally as closely as
possible including electrode configuration and shape,
recording duration, contraction levels and background noise.

B.  Automated Decomposition Algorithms

Before decomposition, each recording was highpass
filtered. For the experimental data, the acquisition hardware
already provided some filtering. Thus, a 1st-order zero-phase
Butterworth high-pass filter with 100 Hz cut off frequency
was applied digitally. For the simulated data, the same
process was implemented, except that the cut off frequency
was 500 Hz.

Both algorithms detected EMG spikes, classified spikes
with similar shapes and patterns, and resolved
superimpositions. The first algorithm was the “Montreal”
algorithm [1]. This algorithm has no adjustable parameters.
The second algorithm was the “Fuzzy Expert” algorithm [2].
We utilized ten passes and limited resolution of
superimpositions to three MUs on the first two passes, five
MUs on the third pass and six MUs thereafter.
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C. Methods of Analysis

The experimental data were analyzed separately from the
simulated data. After highpass filtering, all experimental and
simulated quadrifiler data were automatically decomposed
by the Fuzzy Expert and Montreal algorithms.

For each MU in the experimental signals that was
identified by both algorithms, the agreement rate was
calculated as the percentage of the MU firings on which the
two algorithms agreed to within + 1 ms [6]. For each MU in
the simulated signals, the accuracy of each algorithm was
calculated as the percentage of firings which the algorithm
correctly identified to within + 1 ms. The "decomposability
index" [1] of each MU was calculated as the minimum RMS
difference between that MU and any other MU or the
baseline, divided by the RMS value of the entire signal. The
index was computed from each channel and the norm of the
individual indexes reported.

1IT.

Average performance results vs. contraction level are
listed in the Abstract. Fig. 1 shows the relationship between
agreement rate and decomposability index for the
experimental data at each contraction level. For 10% MVC,
the number of matched MUs ranged from 7-10 per subject
(total of 103 MUs). For 20% MVC, the number ranged from
7-13 (total 110). For 50% MVC, the number ranged from 7—
12 (total 120). Fig. 2 shows the accuracy vs. decomposability
index for the simulated data at 20% MVC. The number of
matched MUs identified by Fuzzy Expert for each subject
ranged from 7-13 (total of 117 MUs) and from 7-15 by
Montreal (total of 114 MUs).
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Figure 2. The relationship between Decomposability Index and accuracy
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The relationship between Decomposability Index and agreement at MVC 10%, 20% and 50% (Montreal vs. Fuzzy Expert).

The data from each plot were then fit to the exponential
model: Agreement =100—a-e > , where x is the
Decomposability index of each motor unit.

IV. DISCUSSION

This study evaluated two automated decomposition
algorithms when applied to experimental and simulated data.
The results show good accuracy and substantial agreement
between the algorithms, especially for MUs with a larger
decomposability index at lower levels of contraction. These
results provide a measure of confidence that the algorithms
perform reliably on real EMG signals.

Performance was poorer for MUs with lower
decomposability indices and in signals from higher levels of
contraction (Figs. 1 and 2). This result is expected, as MU
recruitment and firing rates rise with contraction level,
producing more overlapping discharges and increasing the
likelthood of MU shape similarity.
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CHAPTER 3 Draft ofa journal paper (under review)

Cross-Comparison of Three Electromyogram
Decomposition Algorithms Assessed with
Experimental and Simulated Data

Chenyun Dai, Yejin Li, Anita Christie, Paolo Bonato, Senior Member, IEEE, Kevin C. McGill, M ember,
IEEE, and Edward A. Clancy, Senior Member, IEEE

Abstract— High quality automated electromyogram (EMG)
decomposition algorithms are necessary toinsure the reliability of
clinical and scientific information derived from them. We used
experimental and simulated data to analyze the performance of
three publicly available decomposition algorithms—EMGLAB [1]
(singe channel data only), Fuzzy Expert [2] and Montreal [3].
Comparison data consisted of quadrifilar needle EMG from the
tibialis anterior of 12 subjects at 10%, 20% and 50% maximum
voluntary contraction (MVC), singde chamnel needle EMG from
the biceps brachii of 10 subjects, and matched simulation data for
both electrode types. Performance was assessed via agreement
between pairs of algorithms for experimental data and accuracy
with respect to the known decomposition for simulated data. For
the quadrifilar experimental data, median agreements between
the Montreal and Fuzzy Expert algorithms at 10%, 20% and 50%
MYVC were 95.7%, 86.4% and 64.8%, respectively. For the single
channel experimental data, median agreements were 94.9%
(Montreal vs. Fuzzy Expert) and 100% (EMGLAB vs. Montreal
or Fuzzy Expert). Accuracy on the simulated data exceeded this
perfor Agreement/: acy was strongly related to motor
unit signal to noise ratio. When agreement was high between
algorithm pairs applied to the simulated data, so was the accuracy
of each algorithm.

Index Terms—Flectromyography (EMG), motor units,
decomposition, intramuscular EMG, biomedical signal analysis.

I. INTRODUCTION

DECOMPOSIT ION of mdwelling electromyogram (EMG)
recordings is the process of separating the composite
interference pattemn into its constituent motor unit (MU) firing
times, permitting the evaluation and study of individual MU
firing patterns and action potential shapes. Decomposition is
useful in a wide range of clinical and scientific studies of the
neuromuscular system (for reviews, see [4]-[6]. For most
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decomposition-based studies, an automated algorithm is
utilized to perform most of the decomposition, with expert
manual editing often completed thereafter. Methods for
automated decomposition were pioneered by DeLuca and
colleagues [7], [8] Since that time, a number of other
significant approaches and variations have been developed and
refined [2], [4], [9]-[17].

The performance of automated decomposition algorithms
has primarily been evaluated in a few manners [18]. First,
“reference” or “truth” annotations have been achieved via
manual expert editing of an experimental data set [2], [4], [12],
[13], [17]. This technique can be extremely time consuming
(e.g., one hour per second of data [2]) and the accuracy of the
reference annotations can be difficult to assess. Nonetheless,
assessment on experimental data guarantees signal conditions
representative of actual use. Second, EMG signals have been
simulated [8], [9], [11]-[13], [15], [17]. In this case, the truth
annotations are known to be correct. However, even highly
detailed simulations cannot guarantee all of the complexities of
an actual signal. Third, a few studies have recorded EM G from
multiple indwelling needles, each of which is decomposed [4],
[19]-[21]. Some of the MUs recorded from the distinct
electrodes are common. Agreement in their firing times is
strong evidence of correct detection and classification of those
firngs. Recent studies have also compared ndwelling
decomposition to that accomplished by surface EMG arrays
[22]-{24]. Most  commonly, a combmation of
evidence—experimental and simulation—is used to evaluate an
algorithm, as each evaluation technique has its own strengths
and weaknesses.

Todate, very little direct comparis on has been made between
the performance of various automated algornthms [25]. Since
algorithm performance depends on the characteristics of the
signal being analyzed, the same set of signals should be used
when comparing different algorithms. Signals are known to be
more difficult to decompose, for example, when: more spikes
occur per second, distinct MUs exhibit similar shape, the signal
to noise ratio (SNR) is low, MU shapes change over time and
firing times are irregular [4]. Moreover, when multiple
algorithms are able to agree on the annotation of a particular
signal, it increases confidence that the annotation is objectively
correct. Three of the major decomposition algorithms are now

publically available within the MATLAB software

16—
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environment [1]-[3]. In addition, a detailed indwellng EMG
simulator is also publically available [26]. Hence, we
cross-compared the performance of these three algorithms
utilizing a variety of experimental and simulated EM G needle
data.

II. METHODS
A. Experimental Data

Portions of experimental data from two prior studies were
reanalyzed, and simulated data were generated. No new subject
data were collected. The data reanalysis was approved and
supervised by the WPI Institutional Review Committee.

Three-channel quadrifilar needle EMG had been acquired
from the dominant leg of seven young (three male, four female;
aged 18-30 years) and five elderly (two male, three female;
aged 65 years or older), healthy subjects at the University of
Massachusetts. Subjects were seated, the upper leg of their
preferred limb restrained and the ipsilateral foot secured to a
stiff transducer that measured ankle dorsiflexion force. The
skin over the tibialis anterior (TA) muscle was cleaned with
rubbing alcohol and a 27-gauge four-wire quadrifilar needle
electrode was mnserted into the belly of the TA muscle,avoiding
the mnervation zone. The needle was maneuvered into a
position from which activity from several MUs could be
obtaned. Four 50-pm diameter platnum-iridium wires
terminating at a side port 7.5 mm from the tip of the electrode
comprised the recording surfaces [27]. The four wires m this
electrode were arranged in a square array with approximately
200 pm on each side. The signals detected with this needle were
connected to three differential amplifiers (10'* Q input
resistance, 25 pA bias current), bandpass filtered from
1,000-10,000 Hz and sampled at 25,600 Hz at 16-bit
resolution. These data were upsampled off-line by a factor of
two to a samplng rate of 51,200 Hz. Lower leg skin
temperature was maintained at approximately 34.C° C. Prior to
electrode msertion, maximum voluntary contraction (MVC)
dorsiflexion force was measured as the average of 3-5
maximum contractions of 5 s duration each. Following
electrode msertion, subjects performed contractions at 10%,
20% and 50% MVC, with target force levels displayed on a
video monitor. Subjects slowly increased ther force to the
target level, and then mamtamed the force while a 30 s
recording was made. A rest period of three minutes was
provided between each contraction to prevent fatigue. One, 5-s
segment of each recording was analyzed. Thus, 36 recordings
of 5 s duration each were used (12 subjects x 3 levels of
contraction).

Single channel needle EM G were reanalyzed fromten control
subjects (6 males, 4 females; aged 21-37 years) m the
publically-available “N2001” database of Nikolic [28].
Recordings were acquired from the biceps brachii muscles
during “moderate” level contractions using a concentric needle
electrode m accordance with standard clinical recording
procedures. The signals were bandpess filtered between
2-10,000 Hzand sampled at 23,437.5 Hz with 1 6 bit resolution.
Ten 5-s recordings (ten subjects xone recording/subject) were

used for analysis.

For each experimental signal, a “Complexity” measure was
computed, expressing the number of MU firings per second.
Within the analyzed 5 s segment of each recording, the number
of pulses exceeding the background noise was manually
counted. Spikes of duration greater than 3 ms, representing
superimpositions, were counted as two pulses. Those with
duration greaterthan 6 ms were counted as three pulses, etc. For
multiple-channel data, all three channels were simultaneously
viewed. The Complexity measure was expressed in pulses per
second (pps). Complexity measures from the experimental data
were used to guide generation of the simulation data.

B. Sinulation Data

Quadrifilar and single channel data were simulated using the
publically-available EMG needle simulator of
Hamilton-Wright and Stashuk [26]. The resulting signals
closely resembled those acquired experimentally. The
simulation parameters modeled the physical layout of the
muscle, MU firing pattems, action potential propagation and
type of EM G electrode. To emulate quadrifilar recordings, four
noise-free monopolar tip electrodes (50 pm diameter) were
simultaneously simulated in a square array configuration at 200
um distances. This configuration mimics a quadrifilar needle.
The three differential voltages were then computed offline n
MATLAB, and 20 dB of white Gaussian noise was added. For
each experimental contraction level to be simulated, trial and
error was used to determine the contraction level parameter
mput value of the simulator software such that the average
Complexity of the simulated data matched the average
Complexity of the comesponding experimental data.
Five-second recording segments were created at force levels
representing 10%, 20% and 50% MVC. Simulation was
iterated 12 times, providing 12 realizations, to give the same
number of subjects as with the quadrifiler experimental data.
The truth time instances and identities of each MU firing (i.e.,
MU annotations ), which are fully known in a simulation, were
recorded along with the simulated signals (sampled at 31,250
Hz 16-bit resolution). To emulate single channel recordings,
one 10 mm concentric electrode was simulated with 20 dB of
white Gaussian noise added. The Complexity of these
simulations was matched to the average Complexity of the
single channel needle (N2001) data set, again via selection of
the contraction level parameter nput value of the simulator
software. Ten recordings, each of 5s duration, were created at a
sampling rate of 31,250 Hz with 16-bit resolution, along with
the truth MU annotations.

C. Automated Decomposition Algorithms

Three publically-available decomposition algorithms were
compared. Each is implemented in MATLAB, which was used
for all computation. Each algorithm was used without manual
editing, although such editing is the norm in scientific studies.
Prior to automated decomposition, the quadrifilar experimental
data were highpass filtered at 100 Hz and the single channel
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experimental data at 500 Hz Different filters were used
because the hardware filtering differed between the data sets.
Both simulated data sets were highpass filtered at 1,000 Hz. In
all cases, a first-order Butterworth filter was designed, and then
applied in the forward and reverse time directions to achieve
zero phase shift.

All three algorithms detected EM G spikes, classified spikes
with similar shapes and resolved superimpositions. The first
automated decomposition algorithm was the default algorithm
implemented in the publically-available “EM GLA B” software
[1]. This algorithm can only analyze single channel EM G data
and thus was only used for our single channel data. The second
algorithm was the “Montreal” algorithm [3]. This algorithmhas
no adjustable parameters. The third algorithm was the “Fuzzy
Expert” algorithm [2]. With Fuzzy Expert, we utilized ten
algorithm passes and limited resolution of superimpositions to
three MUs on the first two passes, five MUs on the third pass
and six M Us thereafter.

D. Methods of Analysis

After highpass filtering (described above), all experimental
and simulated quadrifilar data were automatically decomposed
by the Fuzzy Expert and Montreal algorithms. The single
channel experimental and simulated data were decomposed by
all three automated algorithms. Decompositions of
experimental signals were compared pair-wise between
algonthms for each signal Each MU annotation was said to
match if both algorithms found the same MU within a 1 ms
match window, after adjusting for the difference m MU
registration locations between the different algorithms [18],
[24]. “Agreement” was measured as the number of matched
annotations, divided by the sum of: (1) matched annotations
and (2) unmatched annotations from either algorithm.
Agreement results were expressed in percent. Results are only
presented for those MUk that exhibited a minimum of 20
matches (average of 4 matches per second overa 5s recording
duration). Decompositions of simulated signals were also
compared directly to the truth annotations n a similar manner,
this result being denoted “Accuracy,” since the true annotations
were known.

For each identified MU, a signal to noise ratio (SNRy) was
computed from one EM Gchannelas the peak-to-peak height of
the MU divided by the RMS value of the entire signal [21]. A
ten-bin histogram of all (negative/positive) peak values fromall
firings of a MU was computed. A peak value was estimated as
the average height of all values contributing to the histogram
mode bm. This selection helps to reject peak values that might
be unrepresentative due to MU superimpositions. For
multiple-channel data, the SNRym; was computed separately for
each channel and then averaged. The SNRygm is
non-dimensional. For experimental signals, SNRyy was
computed multiple times, using the amnotations from each
respective decomposition algorithm. For simulated signals, the
measures were also computed using the truth annotations.
Cross-plots of SNRyy vs. agreement (oraccuracy) were created
for each contraction level for each data set. The data from each
plot were then least squares fit to the exponential model:

Agreement =100— q-¢ "%« . Performance differences were

tested statistically using one-way ANOVA, with ANOVAs also
used for pair-wise post hoc testing.

IoI. RESULTS

Table I lists the number of MUs analyzed in the four data
sets. General statistical comparis ons of agreement and accuracy
are shown in Fig. 1 for each of the four data sets. Fig. 1 also
indicates statistically significant differences mn results from
one-way ANOVA comparisons. Agreement/accuracy generally
decreased with MVC level for the multiple-channel data.

Complexity values for the quadnfilar experimental data at
10%, 20% and 50% MVC were 100.1+49.8, 119.3446.4 and
211.8+54.6 pps, respectively. An ANOVA showed a
significant difference n Complexity between MVC levels
[F(2,33)=16.9, p<107], with pair-wise post hoc ANOVAs
showing that Complexity was significantly higherat 50% M VC
(p<2xl o, Complexity values for the comresponding
quadrifilar simulationsignals at 10%, 20% and 50% M VC were
99.2421.3, 120.7£25.5 and 215.9459.4 pps, respectively.
Complexity values for the single channel experimental data
were 61.8+19.8 pps, while the corresponding values for the
single channel simulations were 62.6+12.3 pps. Hence, the
average experimental and simulation Complexity values were
quite well matched, as designed.

Fig. 2 shows agreementresults (Montreal vs. Fuzzy Expert)
vs. SNRyw for the experimental quadrifilar data. Figs. 3 and 4
show accuracy vs. SNRyu for the simulated quadnfiler data,
both as a function of MVC level and combined across levels.
Similarly, agreement and accuracy results for experimental and
simulated single channel data are shown vs. SNRy in Fig. 5.
Each plot also shows the best-fit exponential model.
Quantitatively, it is desired that SNRyy provide an association
with agreement/accuracy. Here, that relation is expressed by
the goodness-of-fit of the exponential model, also listed in the
figures. In general, agree ment/accuracy mcreased with SNRy,
as shown by the decaying exponent in the exponential model.

Fmally, Fig. 6 shows agreement between algorithm pairs and
their individual accuracies for the quadrifilar simulations and,
separately, for the single channel simulations. Each paired
agreement value (paired between decomposition algorithms ) is
plotted twice, once corresponding to each individual accuracy
value. The vast majority of accuracy values are higher than
their corresponding agreement values. Note that most of the
plotted values are clustered in the upper right comer of each
plot, with multiple values over-plotted. The “tails” extending
towards the origin primarily depict the limited number of low
accuracy/agreement values.

IV. DISCUSSION

This study evaluated the agreement between pairs of
automated decomposition algorithms when applied to
experimental data, as well as the accuracy of these algorithms
when applied to simulated data. A large subject pool and wide
range of contraction levels (10%, 20% and 50% MVC) was
considered, as well as quadrifilar and single channel electrode
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recordings. Only the automated portion of the algorithms was
evaluated—algorithm parameters, when available, were not
varied. In research practice, algorithm parameters may be tuned
as a function of the data set and decomposition results are
manually edited. As such, it is likely that the
agreements/accuracies listed herein represent a lower bound on
those that might be found in practice [23]. In particular, cursory
examination of the results showed that one common source of
errors occurred when one algorithm created two or more
distinct (often non-overlapping) MU trains that really
corresponded to the same MU. In our analyses, the partial MU
train with the larger number of firings would tend to be
correctly paired, but the unit with the smaller number of firings
would produce an error at each firing. Manual editing tends to
find and correct this issue, with a single “merging” of MUs
correcting a large number of agree ment/accuracy errors. Hence,
improved automated merging of distinct MUs might
substantially improve the automated performance of these
algorithms.

Forthe multiple channel data, there was a clear performance
decrement as contraction level mncreased (Fig. 1). This result is
expected, as MU recruitment and firing rates rise with
contraction level, producing more overlapping discharges and
mecreasing the likelthood of MU shape similanty. Both of these
issues are known challenges to decomposition algorithms [3],
[4], [8]. Additionally, median simulation accuracy exceeded
experimental agreement, particularly at higher MVC levels. Of
course, agreement between two algorithms counts an error
whenever either algorithm errs, whereas accuracy with respect
to the known firings of simulated data only counts an ermor
when the test algorithm produces a mistaken firing.
Additionally, the decomposition difficulty may have differed
between the experimental and simulation data. Even though
their Complexity values were matched, this one measure may
not adequately capture all factors that affect decomposition
difficulty. Note that most experimental validation studies are
based on data from relatively low contraction levels. Thus, the
95.7% median agreement for the 10% MVC quadrfilar
experimental data, as well as the near-perfect accuracies for the
quadrifilar simulation results are consistent with prior
performance assessments of these and other mature
decomposition algorithms [1]-[4]. Anecdotally, it was noted
that the Montreal algorithm more frequently produced MU
decompositions with very high accuracy (e.g., 25th percentile
accuracy of 9%%), but occasionally failed to detect MUs with
high SNRyw.

The experimental single channel data led to perfect and
near-perfect median agreement results between all three pairs
of algorthms. Agreement was not statistically different
between any algorithm pair. These data were recorded at much
lower contraction levels (described as clinically “moderate™),
thus were likely a less challenging data set. For the single
channel simulation, the Montreal and EMGLAB algorithms
out-performed Fuzzy Expert.

Fig. 6 compared agreement vs. accuracy for the two
simulations. Accuracy nearly always exceeded agreement,
perhaps again reflecting that accuracy performance is only

influenced by errors mn the test algorithm while agreement is
nfluenced by errors m both algorithms. Most important,
whenever agreement was high (e.g., above 90-95%), accuracy
was similarly high—suggesting that each algorithm was
comrectly detecting the same MU discharges and properly
classifying them. Fig. 6 also seems to indicate that agreement is
largely determmed by the algorithm with the weaker
performance. The weaker algorthm has many values along the
diagonal (line of agreement).

Figs. 2-5 show a rather clear relationship between SNRyu
and agreement/accuracy. By combining the data from the three
MVC levels (as shown in the figures), it appeared that SNRymy
captured most of the Complexity information that varies with
contraction level These figures also show that the RMS errors
from the best fit exponential model between
agreement/accuracy and SNRyy were in the range of 6-20%,
depending on MVC level and electrode recording type. This
RMS error seems moderately high, suggesting that SNRyy i3
useful but not necessarily defmitive. Although not shown here
(see [29] for additional results), we similarly analyzed the
relations hip between agreement/accuracy and Complexity, and
also the Decomposability Index of Florestal et al. [3]. Result
trends were not distinguishable from thos e found using SNRyy.
These measures are population-based statistical models of
performance vs. quality measure. McGill and Marateb [30]
developed a quality measure based on the properties of each
ndividual recording.

The evidence found herem did not support universal
selection of one algorithm over the other. In fact, the high
agreement/accuracy at lower contraction levels suggests that
each of the three algorithms is largely detecting and similarly
classifying the same MU discharges. Further, Fig. 6 strongly
suggests that when two algorithms are n strong agreement,
then they are each likely to also be highly accurate.
Additionally, Figs. 2-5 suggest that high accuracy is most
probably achieved whenever the SNRyy is high.

Reliable assessment of EM G decomposition algorithms is an
important, yet difficult, challenge with many mherent
limitations. In simulation studies, known true decompositions
exist, but the simu lator cannot fully capture the character of real
EMG. In experimental studies, the true decomposition is not
known. Thus, it is common to study decomposition algorithm
performance with both real and simulated data. Some
algorithms focus on decomposition of only those MUs
exhibiting a large SNR. Algorithms that decompose all detected
spikes—even those corres ponding to low SNR units—might be
penalized with a lower average accuracy/agreement
performance, even though they perform as well on those units
with high SNR. Anecdotally, this type of detection error was
observed from the Fuzzy Expert algorithm, whose default
settings tended to detect more low-SNR MUs compared to the
other algorithms. False positive noise spike detections seemed
more prevalent in these low-SNR MUs. And, of course, dstinct
algorithms should be compared using the same data, since
algorithm performance is mfluenced by the characteristics of
the signal recordings. Accordingly, some algorithms may
perform better on certan signals as compared to other
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algonthms, and vice versa.

To our knowledge, this study is the first systematic
comparison of performance across algorithms commonly used
for MU decomposition. Each of the algonthms that we
compared is publicly available. Our comparison information is
important to the mterpretation of results across studies using
different analysis techniques. For the quadrifilar experimental
data, median agreement between the Montreal and Fuzzy
Expert algorithms at 10%, 20% and 50% MVC were 95.7, 86.4
and 64.8%, respectively. For the single channel data, median
agreement between pairs of the three algorithms was 94.9%
(Montreal vs. Fuzzy Expert) and 100% (EMGLAB vs. either
Montreal or Fuzzy Expert). Agreement across algorithms and
accuracy within algorithms were strongly related to SNRy.
When agreement was high between algorithm pairs applied to
the simulated data, so was the individual accuracy of each
algorithm. These results, therefore, provide confidence that the
algorithms perform reliably on experimental quadrifiler and
single channel ndwelling EM G signals.
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TABLE I
NUMBEROFMOTOR UNITS (MUS) ANALY ZED . NUMBER OF MATCHES
SHOWN FOR EXPERMENTAL DATA SETS. NUMBER OF TRUTH MUS SHOWN
FOR SIMULATION DATA SETS.

Number of Total Number of MUs

MUSs per 10% 20% 50%

Data Set Signal MVC MVC MVC
Quadrifilar Experiment 3-11 78 90 81
Quadrifilar Simulaion 7-13 103 110 120

Montreal Montreal EMGLAB

vs. vs. vs.

Fuzzy EMGLAB Fuzzy
Single Channel Experiment 3-10 51 63 52

Single Channel Simulation 6-9 51 73 68
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Data Sct 10% MVC 20% MVC S0% MVC
e = 1
Quadrifilar Experiment (Agreement) 95.7 [80.9, 100] 86.1171.6,97.3] 51.8[35.3, 83.8]
Quadrifilar Simukation: i = 2
1 T 1
Montreal (4ccuracy) 98 198, 100] 100 196.2. 100] 95.91739.100]
r = T 1
Yuzzy Expert (Accuracy) 100 [$7.9.100) 98 169.5, 100] 95.5162.1.97.5]
Montrealvs. Montrealvs. EMGLABYvs.
Fuzzy EMCLAB Fuzzy
Single Channel Experiment (dgreemenr) 949 [782, 100] 100 [98, 100] 100 [97.3, 160]
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Fig. 1. Summary statistics of decomposition agreement and accuracy. Each
cell ligs“x [y, z]”, where x is the median agreement (or accuracy), y isthe
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agreement/accuracy. Allvaluesexclude outliers. Sample sizes are provided by
Table I. Symbol*“*” denct es marginally significant difference (0.01<p<0.05),
symbol“*** denotes significant difference (p<0.01).
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Appendix A: Informal Report Regarding EMG Decomposition

1. Introduction

The most important thing we need to consider about EMG decomposition is to evaluate the
performance of decomposition algorithms. The purpose of this paper is to compare the accuracy of
different EMG signal decomposition algorithms——MTL, FuzzyExpert and Emglab. Three algorithms
were tested on single channel. Only MTL and FuzzyExpert were used on multi-channel decomposition,
since Emglab only can decompose one channel signal. Two main approaches to evaluate the

performance have been proposed in this paper:

1. For the real data which have no accurate results, we built agreement to reflect the performance between the two
instead.

2. Simulated data can be used as a reference. The huge advantage of simulated data is that it has truth annotation and
accuracy can be computed. Besides, agreement was also computed in order to set up a relationship between
agreement and accuracy. This can help evaluate accuracy from the agreement of real data.

2. Method
2.1 EMG signal recording

The data used in this paper come from two parts: real data recorded in the hospital and simulated

data generated by the simulator:

1. For real data, we used both Multi-channel data from UMass and single channel data from EMGlab.net.

For UMass data, a total number of 16 subjects covered a variety of age (classified as young and
old), gender and MVC contraction level (including 10%, 20% and 50%) were three channel data and
used as multi-channel decomposition. An excluding criteria was first applied for all data which
based on the level of noise and duration of stable activity. Finally 12 subjects——7 young including
3 males and 4 females and 5 old including 2 males and 3 females were judged as the usable
recording for further processing. The data were recorded simultaneously using three bipolar

electrodes called quadrifilar (? based on Anita’s Email) and the ADC resolution is 16-bit.
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2.

For EMGlab.net data, we used N2001 database of clinical signals which consisted of a various
groups such as one normal control group, one group of patients with myopathy and one group of
ALS patients. Here we only used the normal control group for our single channel decomposition.
The group consisted of 10 normal subjects aged from 21 to 37 years old, 4 females and 6 males.
Each subject had 15 recordings at low- level contraction and another 15 at moderate level. Since the
low level recordings were just above the threshold and too easy to analyze, we only chose one
moderate level data from each subject according to background noise and complexity. The data was
sampled at 23437.5 Hz and 16-bit ADC. The electrode type was concentric needle and the muscle

type was biceps brachii.

* Please cite this data as:

Mikelic M. Detailed Analysis of Clinical Electromyography Signals EMG
Decomposition, Findings and Firing Pattern Analysis in Controls and
Patients with Myopathy and Amytrophic Lateral 5clerosis. PhD
Thesis, Faculty of Health Science, University of Copenhagen, 2001.
[The data are available as dataset N2001 at
http:/fwww.emglab.net]

A physiologically based simulation of clinical EMG signals had been developed. We want the simulated data we
generate are similar to UMass data for multi-channel and EMGlab.net data for single channel. The sampling rate of
both data was 31250 Hz and ADC resolution is 16-bit. There are different key parameters for simulator setting such
as:
1. litter
The shape of a same motor unit from different firing times often has some difference. Jitter is used to measure
this kind of diversity.
2. Muscle setting

Muscle setting includes number of motor units in muscle, muscle fiber density, muscle
fiber area and motor unit diameter. Most of the parameters here were used default setting which

was calculated by the average human main muscle activity.

3. Electrode type and position

There are different electrode types can be selected: concentric, monopolar and bipolar.
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For multi-channel UMass data, the electrode type is bipolar which basically consists of
two adjacent monopolar electrodes and records the differential voltage between the two but
here we used one pair of monopolar electrodes to mimic each bipolar electrode because in this
way the distance between the electrodes can be better controlled. The length of the tip of each
electrode is 10 mm. The diameter of each monopolar electrode is 50um and the distance
between two electrodes is 200um. The positions of monopolars are placed as figure (0). There
are six possible combinations of the differential voltage between monopolar electrodes which
can be regards as six bipolar electrodes and only three of them which are independent were

picked.

50 pum

200 um

Figure (0)

For single channel EMGlab.net data, the electrode type was set as concentric and the

length of the tip of the electrode was 10 mm.

4. MVC contraction level and pulse per second (PPS).
In order to use simulator to best mimic the contraction level of the real data, complexity is

used to measure the contraction level. The complexity of data mainly measured by pulses per
second (PPS). PPS of each subject was pre-computed manually which was a more reliable way
to get exact number. The standard is that for each normal pulse with amplitude more than the
max peak amplitude of background noise will be counted one pulse. For the case of
superimposition, when the duration of one pattern which contains two consecutive pulses is
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more than 3ms, it will be counted as two pulses. And if the duration of one pattern which
contains three consecutive pulses is more than 6ms, it will be counted as three pulses and so on
so forth. For the case of multichannel, we will take a comprehensive consideration of all three
channrels. If one spike is identified in each channel, it will be counted as one pulse else won’t.
For the stable period selected for decomposition was 5s, which was not long enough and varied

from subject to subject, we only counted the spikes of the stable period to get PPS.

The PPS of each MVC level in UMass data were: 10%-100.1, 20%-119.3 and 50%-211.8.
The standard deviations of each level MVVC data were: 10%-49.8, 20%-46.4 and 50%-54.6.

The PPS of multichannel simulation data were: 10%-99.2, 20%-120.7, and 50%-215.9.

The standard deviations of multichannel simulation data were: 10%-21.3, 20%-25.5 and

50%-59.4.

The average PPS of EMGIlab.net database was 61.8 with standard deviation of 19.8.
The average PPS of single channel simulator was 62.56 with standard deviation of 12.3.
5. Noise
In order to get a best simulated effect, awhite Gaussian noise was added on differential signals. The value of

noise was measured on Signal-to-Noise Ratio SNR based on signal power:

Powery;
SNR = 20 * lOngTﬂgal

noise

2.2 Decomposition

Before decomposition, each signal was high-pass filtered in order to improve the accuracy of
results. For UMass multi-channel data, the process of high-pass filter had been done at machine level
and since some low frequency background noise existed, a 1-order zero-phase Butterworth high-pass
filter with 100Hz cut off frequency was used. For EMGIlab.net database the single channel signal was
processed by a first high-pass filter with 2 Hz cut off and low-pass with 10 kHz cut off. We then used a

500 Hz 1-order zero-phase Butterworth high-pass filter to keep both good SNR and distinguishability.
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Each signal channel signal was decomposed separately by three algorithms and each multi-channel
signal by MTL and FuzzyExpert. All three algorithms automatically detected spikes of motor units and
found out their discharges in the signal. Then, some sophisticated methods were used to align spikes and
resolve superimpositions. In order to compare different algorithms under the same circumstance, the
results of three algorithms after decomposition were saved as a uniform format, including discharging

time, motor unit ID number and channel for each spike in the signal saved as annotation file (.eaf file).

The parameters of FuzzyExpert should be set carefully or the computing time would be long and
inefficient. Most of the parameters can be chosen as default settings. We modified some key ones as
below: a) passes =10; b) Min Template to Fill = 0.2; ¢) Max MU Combo for super-position: 3 for 1st

and 2nd pass, 5 for 3rd pass and 6 for the rest. The parameters setting of one pass was show as Figure

).

) DecompGUI =EIECE X |
Fuzzy Expert ‘
— Settings File
4 ~Pass- .
Directory Click Browse to Choose a Settings File
Browse S 3 15 &
File
Add Delete
Settings File Passes: 0
Use All Settings Passes
— Event Representation Template Fi to Clusters- Filling Holes
Allowable STD Cluster Memory 20 Bad Limit | 0.25 MexMissedto ] 4
Membership Level .
ResampleBy 1 |/ 1 Cluster Memory Time = 10 for Assignment Mo =i g’" 0.2
IFl_Density 12
- Firing Statistics- — Superposition Resolution — Merging Clusters
. .. @ Yes &
Use in Decision 5 Likelihood Threshold = 0.5 Rare Occurence | 10 — Panel-
0
Max IFl | 0.15 nLikelytoTry =~ 8 Delta Doublets = 0 1
Decompose events
Doublet IF| | 0.025 Max MU Combe | 5 Percent Doublets | 0.1 1 to| 393
IFL.CV | 05 Error Limit. | 0.02 Merge Threshold = 0.4
Start ‘ Cancel ‘

Right Click on Parameter Text to Display Parameter Description
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2.3 Decomposition comparison

The results of three different algorithms for each signal were not compared in one group
assessment. Instead, a series of comparisons were made between pairs ofalgorithms in order to make the
results more sensible and easier to follow. If only one algorithm detects a particular MU while another
not, then it is basically a smaller unitand it can be ignored safely. Two comparison scenarios were built
on both accuracy comparison for simulated data and agreement comparison for real data. First, between
a known correct truth annotation from simulated data and a test annotation from the result of one of
three algorithms, the truth annotation was taken as a standard in this case. Our goal is to portray how
well the test annotation replicates the truth annotation. Second, between two annotations of which
neither is considered as a standard. In this case, we wish to determine how well the two algorithms
agree. The information in neither file should hold neither more nor less weight in determining the
comparison outcome. Truth-test terminology will be used in the first scenario. For agreement
comparison, the annotation of first algorithm will be taken as the truth and the annotation of second
algorithm will be taken as the test. The main steps for truth-test comparison will include: (For agreement
comparison, repeat the below computation and just pick first annotation as reference instead of truth

annotation.)

1. Associate annotations with time offsets.

For truth-test comparison, loop over the test annotations. For each truth discharging time, find a
closest test discharging time within time offset 1ms. After associating discharging times, some
discharging times in truth annotation may have no test discharging time associated with them within
1ms offset. Record these discharging times without associated as not found (NF). Similarity, there
are some discharging times without associated existing in test annotation. Record these discharging

times as not included (NI).

2. Combine discharging times with motor unit 1D number
After truth-test pairs were found, it is time to judge whether those pairs are correct with motor unit ID number. For
each spike, we have both discharging time and motor unit ID number. If a truth-test pair has a same discharging
time within 1ms offset but has different motor unit ID numbers, it recorded as false positives (FP). Only if both
discharging time and motor unit 1D number were matched, a pair recorded as true positive (TP).
3. Form Confusion Matrix
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2.4

Now that truth and test motor unit 1Ds have been matched, a matrix was built to show the final results intuitively.
The matrix was shown as figure (2):

TEST File Notor Unit Numbers

TRUTH 1 2 3 4 5 & T 8 9 10 NF
1 T 9% a a a a a a a a a a
2 a 0 BT a a a a a a a 2
3 a a a a a 0 B4 a a a a
4 a a a a a a a a 0 Tl# a
5 a a a a a a 0 99 a a a
& a a a a a a a 0 Tl# a a
T 0 Tix a a a a a a a a a
8 a a a a 0 B35 a a a a 2
9 a a 0 54 4 1 a a a a 26

10 a a a 0 45% a a a a a 8
NI a a 1 21 10 1 a a a a

Figure (2): 1. The first column is the truth motor unit 1D number and the first row is the test motor unit 1D number.
2. The last column is the quantity of spikes not found by test annotation (NF) for each truth motor unit and the last
row is the quantity of spikes not included by truth motor unit (NI) for each test motor unit. 3. The rest of the matrix
shows the matched conditions of each motor unit. The digits with asteroid are the quantity of true positives (TP) for
all truth-test motor unit pairs. The digits without asteroid show the quantity of false positives (FP) for all truth-test
motor unit pairs. It is quite easy to find out all NF, NI, TP and FP for each truth motor unit. For example, Number 9
motor unit of true annotation has 26 NFs 21NIs, 54 TPs which match with Number 4 motor unit of test annotation
and 5 FPs which include 4 FPs classified as Number 5 motor unit and 1 FP classified as Number 6 motor unit from
test annotation.

Evaluation of the final accuracy and agreement.

After confusion matrix was built, several important parameters can be computed in order to evaluate the
performance of algorithms for each motor unit.

a. The overall accuracy unit can be computed as:
TP
Accuracy = 4o b T NF + NI
b. The overall sensitivity can be computed as:
o TP +FP
Sensitivity = TP+ FP+ TF
C. The overall positive predictivity can be computed as:
Predictivity = TP+ FP

For agreement evaluation, the overall agreement for each motor unit is similar to overall accuracy, and other two
parameters are no longer usable.

Analysis of comparison results

In order to get a better description of decomposition results, PPS, signal-to-noise ratio (SNR) and similarity unit
were used in this paper.

24.1 PPS

PPS is defined in 2.1.2.4. Since PPS is in term of the whole signal, it is associated with total accuracy or agreement.
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2.4.2 SNR

SNR is defined as the peak to peak amplitude (maximum subtract minimum for each spike) of each motor unit
divided by the rms of the whole signal amplitude. Since SNR is evaluated separately for each motor unit, it is
associated with accuracy or agreement of single motor unit.

Considering about the condition of superimposition, we cannot simply average the SNR of all spikes for each
motor unit. Therefore, some strategies were needed to compute the SNR of each motor unit carefully, especially for
real data which has no truth result. The main steps for calculating the SNR of a certain motor unit without truth
includes:

Find out the matched I1Ds of annotations from two annotations for each motor unit.

Calculate peak to peak amplitude of all spikes. Since real data has no truth result, we need to calculate peak to peak
amplitude according to two different annotations separately in terms of matched IDs. After getting all values of
peak-to-peak amplitude, we will plot them in a histogram for each annotation shown as figure (3). We can get a
statistic distribution of peak-to-peak amplitude.

the distribution of each MUS

0 200 400 600 800 1000 1200 1400 1600 1800
P2P Amplitude

Figure (3): histogram of distribution of SNR for a certain motor unit
Since spikes without superimposition should have a dominant quantity and superimposition should always have
different peak to peak amplitudes, the highest bar which means more amplitude distributed will be considered as
the peak to peak amplitude of this certain motor unit. By averaging the peak-to-peak amplitude of the dominant bar
for each annotation, then the mean of peak-to-peak amplitude of two annotations is computed. If it is multichannel,
the average of the three is computed to get an overall SNR.
Calculate the RMS of the whole signal, the get the SNR of this motor unit by divided by RMS.

For simulated data with truth annotation, test annotation was no longer considered. Therefore,
calculating the mean value of the peak-to-peak amplitude separately according to two annotations in
terms of matched IDs was not needed. We only need to do the similar steps according to truth

annotation.

2.4.3 Dissimilarity
Iftwo kinds of motor units in the same signal are quite similar to each other, this will definitely
influence the final result even if they have a relatively large SNR. Therefore, dissimilarity was
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introduced to study its influence on agreement or accuracy. Dissimilarity is defined as:

”mki —m,’;i ”

Dissimilarity = Y

, Where denominator is the RMS of the whole signal, m,; is kth motor unit in channel i, m}; is
the most similar motor unit to m,; and the nominator is the norm of the difference of m,; and mj;.
For dissimilarity measurement, it is still based on each motor unit.

2.44 CDI

A revised measurement called composite decomposability index (CDI) was also introduced by

Kevin Mcgill and Florestal to quantify the difficulty of decomposition. CDI is defined as:

min {|[m ||, llm,; —mill}
RMS

CDI =

, Where denominator is the RMS of the whole signal, and the nominator contains norms of two
parts that only smaller one will be selected. m,; is kth motor unit in channel i, mj; is the most

similar motor unitto m,;.

3. Result
3.1 Multi-channel UMass result

3.1.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit

Since the UMass data were recorded by hospital, the true annotations were unknown. So, we only

built agreement to reflect the results. Figure (4) shows the results of agreement versus SNR for each

motor unit. Each point indicates a pair of trains for each matched motor unit. In this paper, Matlab curve

fitting toolbox was used to try to fit all points. The mathematical expression of the blue curve can be

expressed as:

Agreement = —Ax e B*SNR 4 ¢
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A is used to adjust the range of Y axis. A larger A reflects the agreement may reach a quite low

level with the same B.

B indicates the relationship between SNR and relationship. A larger B means the agreement can

reach a high level with a smaller SNR.

C is an offset to make the range of Y axis from 0 to 100%. In general, C is always equal to 100.

imassS0_agree
4

@) (b) ©

Figure (4): The figure shows the relationship between agreement and SNR as the MVC level rises.
(@ The number of matched motor units identified for each subject ranged from 3 to 10. The total
matched number was 78 pairs. The SNR for MVVC 10% data was mostly from 1 to 15. The agreement
mostly ranged from 40% to 90% for a small motor unit with SNR under 5. For motor unit with SNR
from 5 to 10, the agreement can almost reach over 80%. When SNR is larger than 10, the agreement in
general can be up to 90% or even 100%. The exponential expression for MVC 10% is Agreement =
—102.9 x ¢70465*SNR 4 100, which means an estimating agreement can be evaluated by a given SNR.
The RMSE of the fitting model is 12.56. (b) The number of matched motor units identified for each
subject ranged from 3 to 11. The total matched number was 90 pairs. The agreement becomes lower as
MVC contraction level increases. In this case, the agreement is from 30% to 90% for some smaller
motor units with SNR less than 5. The agreement can reach 80% to 100% with SNR between 5 and 15,
and more points in the domain 90% to 100% when SNR larger than 10. The agreement will reach 95 or
even 100% as SNR increases to 15 or more. The exponential expression for MVC 20%

is Agreement = —58.02 x ¢~0-2314*SNR 4 100. The RMSE is 15.26. (c)The number of matched motor



units identified for each subject ranged from 4 to 9. The total matched number was 81 pairs. The
agreement drops sharply and the number of matched motor units decreases instead as MVC contraction
level increases to a high level. This is because almost cases may be the case of superimposition although
the number of motor units should increase theoretically. In this case, the agreement is from 20% to 90%
for motor units with SNR less than 10. The agreement can reach 60% to 90% with SNR between 10 and
15. The agreement will reach 90% or more as SNR increases to 15 or more. The exponential expression
for MVC 50% is Agreement = —89.74 x ¢~ 01598*SNR 4 100 with a RMSE of 19.15. We can see
clearly the slope of the function goes down as the MVC level goes up, i.e. the more complicated the data

is the lower agreement two algorithms will achieve.
The detailed analyses of other figures are shown in table (see Appendix part).

The result of dissimilarity and CDI is similar to SNR. An exponential function can be also used to
try to all points (shown in Appendix). The general expression of similarity and SNR fitting expression is
the same as SNR. The figures of dissimilarity are shown as below (more specific analyses are shown in

appendix part):

agree
Umass20_agree

Figure (5): dissimilarity VS agreement with different MVC levels

«««««

_ 34



Figure (6): CDI VS agreement with different MVC levels

A one-way Anova was introduced to analyze the statistic result of agreement for each motor unit

with different MVVC level. The link of this method introduction can be found at:

http ://vault. hanover.edu/~altermattw/methods/stats/anova/one-way2b.html.

The Anova result is shown as table 1.

Group name Anova result
MVC10%, MVC20%, MVC50% F (2, 246) = 33.04777,p =
1.94%108
MVC10%, MVC20% F (1,166) = 4.13840, p = 0.043512
MVC20%, MVC50% F (1, 169) = 33.76966, p =
3.02*10°8
MVC10%, MVC50% F (1, 157) = 54.8418, p = 7.51*10°
12

Table 1: one-way Anova result of agreement for each motor unit with different MVC levels

3.1.2 Results of complexity versus agreement for each trial

SNR and similarity measurement is for single motor unit of each trial. Then, we developed
complexity (mainly based on the PPS and the number of motor units identified of each trial) versus
agreement to measure the overall agreement for each trial. Each point indicates the average of agreement
of all motor units for each trial. Since we have 3 contraction levels and 12 subjects for each level, 36

points were shown in figure (7).


http://vault.hanover.edu/~altermattw/methods/stats/anova/one-way2b.html
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Figure (7): The overall agreement versus complexity measurement for each trial. The blue circles

are the 10%MVC, the red triangles are the 20%MVC and the green asteroids are the 50%MVC. It also
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indicates that the higher complexity will arrive at a lower agreement.

The Anova result of complexity versus agreement for each trial with different MVC level is shown

as table 2.

Group name

Anova result

MVC10%, MVC20%, MVVC50%

F (2, 33)= 2152, p = 1.04*10°

MVC10%, MVC20%

F (1,22) = 1.2488, p = 0.27584

MVC20%, MVC50%

F (1, 22) = 20.67718, p = 1.59%10°
4

MVC10%, MVC50%

F (1, 22) = 31.64667, p = 1.18*10
5

Table 2: one-way Anova result of complexity versus agreement for each trial with different MVC

3.2 multi-channel simulated data result

For simulated data, we can not only compute the agreement between the two algorithms in a similar

way as the real data but also we can calculate each algorithm’s accuracy based on the true annotation of

levels




the simulator. In addition, we plot the relationship between accuracy and agreement for simulated data.

It can be used as a reference to evaluate the accuracy by agreement when decomposing real data.
3.2.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit

First, the results of SNR, dissimilarity and CDI versus agreement are shown as figure (8). For
MVC10%, the number of matched motor units identified for each subject ranged from 7 to 10 and the
total matched number was 103 pairs. For MVVC20%, the number of matched motor units identified for
each subject ranged from 7 to 13 and the total matched number was 110 pairs. For MVC50%, the

number of matched motor units identified for each subject ranged from 7 to 12 and the total matched

number was 120 pairs.
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Figure (8): The relationship between SNR (dissimilarity, CDI) and agreement of the simulated data

with different contraction level was computed the same way as the UMass data.

The Anova result of agreement for each trial with different MVC level is shown as table 3.

Group name Anova result
MVC10%, MVC20%, MVC50% F (2, 400) = 13.97501, p =

1.36*10°°

MVC10%, MVC20% F (1,235) = 3.994058, p =
0.046813

MVC20%, MVC50% F (1, 291) = 9.842108, p =
0.00188

MVC10%, MVC50% F (1, 274) = 25.41835, p = 8.4*10°

7

Table 3: one-way Anova result of agreement for each trial with different MVC levels

3.2.2 Results of SNR, dissimilarity and CDI versus accuracy of two algorithms for each motor unit

Second, since the simulated data has true annotation, accuracy of simulated data for each algorithm

can be calculated.

For MVVC10%, the number of motor units matching with truth identified by Fuzzy Expert or Mtl for
each subject both ranged from 7 to 10, and the total matched number was 108 pairs for Fuzzy Expert and



104 pairs for Mtl. For MVC20%, the number of matched motor units identified by Fuzzy Expert for
each subject ranged from 7 to 13 and from 7 to 15 by Mtl, and the total matched number was 117 pairs
for Fuzzy Expert and 114 pairs for Mtl. For MVVC20%, the number of matched motor units identified by
Fuzzy Expert or Mtl for each subject ranged from 7 to 14 and from4 to 15 by Mtl, and the total matched
number was 133 pairs for Fuzzy Expert and 132 pairs for Mtl.
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Figure (9): shows the accuracy versus SNR (dissimilarity, CDI) for two different algorithms. The
decomposition result was compared with truth annotation and if the motor units is not found it will be
judged as a miss and mark as zero in the plot. For SNR, in the low contraction level, MTL has a better
performnace——accuracy above 80% for 10%MVC and above 70% for 20%MVC, while FuzzyExpert
is above 50% for 10%MVC and above 40% for 20%MVC. Both algorithms have similar accuracy range
of 40% to 100% for the case of high contraction level of 50%MVC. However MTL is more likely to
miss some templets with larger SNR. For dissimilarity and CDI, the result is similar to SNR and can be

easily gotten from figures.

The Anova results of accuracy of two algorithms for each motor unit with different MVC level are

shown as table 4 and table 5.

Group name Anova result
MVC10%, MVC20%, MVC50% F (2, 400) = 9.26936, p = 1.16*10°
4
MVC10%, MVC20% F (1,235) = 5.52475, p = 0.01958
MVC20%, MVC50% F (1, 291) = 4.34973, p = 0.03787
MVC10%, MVC50% F (1, 274)= 1756522, p =
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3.75*10™

Table 4: one-way Anova result of accuracy of Fuzzy Expert for each motor unit with different

MVC levels
Group name Anova result
MVC10%, MVC20%, MVC50% F (2, 400) = 11.51291, p =
1.38*10°
MVC10%, MVC20% F (1,235) = 3.543954, p =
0.060998
MVC20%, MVC50% F (1,291)=7.989511, p =
0.005031
MVC10%, MVC50% F (1, 274) = 20.28175, p =
9.90*10°

Table 5: one-way Anova result of accuracy of Mtl for each motor unit with different MVC levels

3.2.3 Relationship between agreement and accuracy of two algorithms for each motor unit

s %

Figure (10): shows the cross relationship of two algorithms’ agreement against accuracy. Triangles

present for the accuracy of MTL, circles present for the accuracy of FuzzyExpert. Each agreement on x-

axis will map to two different accuracy values on y-axis. The zone in the top right corner indicates that

the more two algorithms agree with each other the higher accuracy they will achieve of the

decomposition.
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3.2.4 Results of complexity versus agreement for each trial
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Figure(11): shows the accuracy versus complexity. MTL has a more consentrated range of high
accuracy of above 80% over all MVC level while FuzzyExpert ranges from 70% to 95%. The blue

circles are the 10%MVC, the red triangles are the 20%MVC and the green asteroids are the 50%MVC.

The Anova result of complexity versus agreement of two algorithms for each trial with different

MVC lewvels is shown as table 6 and 7.

Group name

Anova result

MVC10%, MVC20%, MVC50%

F (2, 33) = 8.485675, p =
0.001063

MVC10%, MVC20%

F (1,22) = 3.852877, p = 0.062428

MVC20%, MVC50%

F (1, 22)=3.737978, p =
0.066159

MVC10%, MVC50%

F (1, 22) = 22.63882, p = 9.48*10°
5

Table 6: one-way Anova result of complexity versus accuracy of Fuzzy Expert for each trial with

different MVVC levels

Group name

Anova result

MVC10%, MVC20%, MVVC50%

F (2, 33) = 5.444128, p =
0.009052

L,




MVC10%, MVC20% F (1,22) = 4.166531, p = 0.053405

MVC20%, MVC50% F (1, 22) = 3.63428, p = 0.069422
MVC10%, MVC50% F (1, 22) = 7.443184, p = 1.23*10°
2

Table 7: one-way Anova result of complexity versus accuracy of Mtl for each trial with different

MVC levels

3.3 single channel Emglab data result

For single channel data, comparisons were made between pairs of algorithms (Emglab VS Fuzzy
Expert, Emglab VS Mtl and Mtl VS Fuzzy Expert). Only one contraction level (moderate level) was

used for testing.

3.3.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit
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Figure (12): The figures show the results of different pairs of two algorithms. First row is the result
of SNR, dissimilarity and CDI versus agreement about Emglab-FuzzyExpert (EF) pair. Second row is
the result about Emglab-Mtl (EM) pair. Third row is the result about Mtl-Fuzzy (MF) pair. Similarly, the
relationship between agreement and SNR (dissimilarity, CDI) can be analyzed for different pairs from
figures. For EF pair, the number of matched motor units identified for each subject ranged from 4 to 8
and the total matched number was 52 pairs. For EM pair, the number of matched motor units identified
for each subject ranged from 3 to 10 and the total matched number was 63 pairs. For MF pair, the
number of matched motor units identified for each subject ranged from 4 to 9 and the total matched

number was 51 pairs.

The Anova result of agreement for each algorithm pair is shown as table 8.

Group name Anova result
EF pair, EM pair, MF pair F (2,163)=0.732179,p =
0.482435

Table 8: one-way Anova result of agreement for each algorithm pair

3.3.2 Results of complexity versus agreement for each trial (Since the trials of single channel of

Nikolic data are limited, complexity measurement can be omitted).
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Figure (13) shows the result oftotal 10 trials of overall agreement versus complexity. For each trial,
we have three results of pairs, so total 10 points were shown in each figure. A tendency that agreement
decreases as complexity increases was shown in the figure. Since only one contraction level was tested
and the range of complexity is relatively small comparing with multi-channel data, this kind of tendency

is not obvious enough.

The Anova result of complexity versus agreement of three algorithm pairs for each trial is shown as

table 9.
Group name Anova result
EF pair, EM pair, MF pair F (2,27)=0.338457,p =
0.715851

Table 9: The Anova result of complexity versus agreement of three algorithm pairs

3.4 single channel simulated data result

A group of simulated data was generated to evaluate the accuracy of three algorithms. Similar to
what we have done in 3.2. Since we have three algorithms for single channel data, the results of three
pairs of comparison were shown as below. And a relationship between agreement and accuracy was also

shown to reflect the reliability of agreement for real data without true annotations.

3.4.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit with different

algorithm pairs.
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Figure (14): The relationship between SNR (dissimilarity, CDI) and agreement of the simulated
data with different algorithm pairs. First row is the result of SNR, dissimilarity and CDI versus
agreement about EF pair. Second row is the result about EM pair. Third row is the result about MF pair.
Similarly, the relationship between agreement and SNR (dissimilarity, CDI) can be analyzed for
different pairs from figures. For EF pair, the number of matched motor units identified for each subject
ranged from 6 to 8 and the total matched number was 68 pairs. For EM pair, the number of matched
motor units identified for each subject ranged from 6 to 9 and the total matched number was 73 pairs.
For MF pair, the number of matched motor units identified for each subject ranged from 6 to 8 and the

total matched number was 68 pairs.
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The Anova result of agreement for each algorithm pair is shown as table 10.

Group name Anova result

EF pair, EM pair, MF pair F (2, 216) = 7.995563, p =
0.000447

EM pair, MF pair F (1, 144) = 14.53662, p =
0.000203

EF pair, EM pair F (1, 144)=15.37151,p =
0.000136

EF pair, MF pair F (1, 144) = 0.008002, p =
0.928844

Table 10: one-way Anova result of agreement for each algorithm pair

3.4.2 Results of SNR, dissimilarity and CDI versus accuracy for each motor unit with different

algorithms.

Second, since the simulated data has true annotation, accuracy of simulated data for each algorithm

can be calculated.
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Figure (15): The relationship between accuracy and SNR (dissimilarity, CDI) can be analyzed for
each algorithm. First row is the result of SNR, dissimilarity and CDI versus accuracy about Emglab
algorithm. Second row is the result about Mtl algorithm. Third row is the result about Fuzzy Expert
algorithm. Similarly, the relationship between accuracy and SNR (dissimilarity, CDI) can be analyzed
for different algorithms from figures. For Emglab, the number of matched motor units identified for
each subject ranged from 6 to 9 and the total matched number was 73 pairs. For Mtl, the number of
matched motor units identified for each subject ranged from 6 to 9 and the total matched number was 73
pairs. For Fuzzy Expert, the number of matched motor units identified for each subject ranged from 6 to

8 and the total matched number was 68 pairs.

The Anova result of accuracy is shown as table 11.

Group name Anova result
Emglab, Fuzzy Expert, Mtl F (2,216) =17.23247,p =
1.14*107
Emglab, Fuzzy Expert F (1, 144) = 20.82178,p =
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1.07*10

Emglab, Mtl F (1, 144) = 0.655483, p =
0.419495
Fuzzy Expert, Mtl F (1, 144) = 16.38691, p = 8.4*10°

5

Table 11: one-way Anova result of accuracy for each algorithm

3.2.3 Relationship between agreement and accuracy of three algorithm pairs for each motor unit
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Figure (16) shows the cross relationship of two algorithms’ agreement against accuracy. Red
triangles present for the accuracy of MTL, circles present for the accuracy of FuzzyExpert and asteroids
present for the accuracy of Emglab. When the agreement reaches 90%, the accuracy of two algorithms
also can be 90% or more. Especially for MTL-Emglab pair (figure b), two algorithms often have a high

agreement with high accuracy.

3.2.4 Results of complexity versus accuracy for each trial (Since the trials of single channel of

simulated data are limited, complexity measurement can be omitted).

ety EMGiab Accuracy VS Complexity Ml Accuracy VS Complexity FuzzyExpert
100 ]
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Figure (17) shows the result of total 10 trials of overall accuracy versus complexity for each

algorithm.

The Anova result of complexity versus accuracy of three algorithms for each trial is shown as table

11.

Group name

Anova result

Emglab, Mtl, Fuzzy Expert

F (2, 27) = 11.22016, p =
0.000284

Emglab, Mtl F (1,18) = 0.535726, p = 0.473632
Mtl, Fuzzy Expert F (1, 18) =13.87775,p =
0.001549
Emglab, Fuzzy Expert F (1, 18) = 10.56945, p =
0.004435

Table 11: The Anova result of complexity versus accuracy of three algorithms

4. Discussion
1. High-pass filter

Various cut-off frequency settings of the high-pass filter may influence the result of the
decomposition a lot. For the recording with less background noise, the high frequency (500Hz or
1000Hz) will provide a better performance. Since the multi-channel UMass data have already done the
filtering on the hardware level, only a 100Hz high-pass filter is applied to eliminate the low frequency

off-set.
2. comment ondifferent algorithms

Basically, the MTL has a better performance on multi-channel. Especially for the simulated data,

the majority of the low level complexity (10% MVC and 20%MVC) decomposition results can achieve



100% accuracy. However, at the high contraction level it tends to miss some templates with high SNR.
In the other hand, the FuzzyExpert has more sensitivity but sometime will detect too many small motor

units. Different passes and parameters can be changed may have a big influence on the computing time,

which careful setting should be considered.

3. single channel data performance

EMGIlab Auto Decomp and MTL agree with each other well which have an agreement over 80%.

4. Confusion issue (merging)

One motor unit in one algorithm may map to several in the other algorithm due to the background
noise and various key parameters like jitter and difference tolerance. One-to-two is a more general case
and we currently don’t have an efficient solution but only merge the separated motor units manually, i.e.

find each motor units in the compare matrix, combine them into one and re-compute the agreement

between the two new motor units.
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5. Appendix

All tables are a detailed analysis of figures in result part.

Table 1 and 2 are for UMass data. 3 to 8 are for multi-channel simulated data. Table

9 is for EMGlab.net data. Table 10 and 11are for single simulated data.

data fitting a b
UMass MVC10% SNR vs. Agreement -102.9 0.465
UMass MVC20% SNR vs. Agreement -58.02 0.2314
UMass MVC50% SNR vs. Agreement -89.74 0.1598

Table 1 (corresponding to figure 4): The result of SNR VS Agreement of Multi-channel UMass data

data fitting a b

UMass MVC10% Dissimilarity VS. -106.9 0.275
Agreement

UMass MVC20% Dissimilarity VS. -59.52 0.1598
Agreement

UMass MVC50% Dissimilarity VS. -88.85 0.1139
Agreement

Table 2 (corresponding to figure 5): The result of Dissimilarity VS Agreement of Multi-channel UMass data

RMSE

12.56

15.26

19.15

RMSE

113

14.93

194



data

UMass MVC10%

UMass MVC20%

UMass MVC50%

fitting

cdi vs. Agreement

cdi vs. Agreement

cdi vs. Agreement

-114.2

-59.75

-88.85

0.2916

0.1609

0.1139

Table 3 (corresponding to figure 6): The result of cdi VS Agreement of Multi-channel UMass data

data

Simulator MVC10%

Simulator MVC10%

Simulator MVC10%

Simulator MVC10%

Simulator MVC10%

Simulator MVC10%

Simulator MVC10%

fitting

SNR vs. Accuracy

(Fuzzy)

SNR vs. Accuracy

(MTL)

SNR vs. Agreement

Dissimilarity VS.

Accuracy (Fuzzy)

Dissimilarity vS.

Accuracy (MTL)

Dissimilarity VS.

Agreement

cdi vs.  Accuracy

-104.5

-459.1

-77.69

-111.7

-39.57

-85.16

-107.4

0.7428

2.57

0.5741

04971

03171

04218

0.4914

RMSE

10.77

14.79

194

RMSE

11.06

20.22

10.66

10.89

22.01

10.33

11.19



Simulator MVC10%

Simulator MVC10%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

Simulator MVC20%

(Fuzzy)

cdi  vs.  Accuracy

(MTL)

cdi vs. Agreement

SNR vs. Accuracy

(Fuzzy)

SNR vs. Accuracy

(MTL)

SNR vs. Agreement

Dissimilarity VS.

Accuracy (Fuzzy)

Dissimilarity VS.

Accuracy (MTL)

Dissimilarity vS.
Agreement

cdi vs.  Accuracy
(Fuzzy)

cdi vs.  Accuracy
(MTL)

cdi vs. Agreement

54—

-52.83

-85.06

-127.7

-241.7

-96.44

-111

-99.65

-94.03

-1151

-112.9

-94.73

0.4219

0.4217

0.6927

1.458

0.5534

0.4816

0.5658

0.481

0.5075

0.6489

0.4845

21.65

10.34

17.88

18.72

11.09

19.59

24.18

10.46

19.2

23.65

10.33



Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

Simulator MVC50%

SNR vs. Accuracy

(Fuzzy)

SNR vs. Accuracy

(MTL)

SNR vs. Agreement

Dissimilarity VS.

Accuracy (Fuzzy)

Dissimilarity VS.

Accuracy (MTL)

Dissimilarity vS.
Agreement

cdi  vs.  Accuracy
(Fuzzy)

cdi vs.  Accuracy
(MTL)

cdi vs. Agreement

-127.7

-241.7

-44.29

-163.5

-1804

-51.83

-170.8

-2284

-51.83

0.6927

1.458

0.226

0.4925

0.6459

0.2488

0.5187

0.7903

0.2488

Table 4 (corresponding to figure 8): The result of Multi-channel Simulated data

17.88

18.72

14.79

23.36

33.38

14.38

2445

325

14.38



data

Nikolic MTL s.

Fuzzy

Nikolic MTL ws.

Fuzzy

Nikolic MTL ws.

Fuzzy

Nikolic MTL ws.

EMGlab

Nikolic MTL ws.

EMGlab

Nikolic MTL s.

EMGlab

Nikolic EMGlab vs.

Fuzzy

Nikolic EMGlab vs.

Fuzzy

Nikolic EMGlab vs.

Fuzzy

fitting

SNR vs. Agreement

Dissimilarity vs.

Agreement

cdi vs. Agreement

SNR vs. Agreement

Dissimilarity vS.

Agreement

cdi vs. Agreement

SNR vs. Agreement

Dissimilarity vS.

Agreement

cdi vs. Agreement

-88.61

-116.8

-114.8

-64.57

-69.56

-72.04

-116

-157.8

-153.8

0.3008

0.3122

0.3077

0.236

0.2114

0.2216

0.3282

0.3485

0.3417

Table 5(corresponding to figure 11): The result of EMGlab.net single-channel data

RMSE

11.2

8.636

8.521

14.69

13.74

13.33

13.52

10.94

10.82



data

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

fitting

SNR vs. Accuracy

(Fuzzy)

Dissimilarity vs.

Accuracy (Fuzzy)

cdi  vs.  Accuracy

(Fuzzy)

SNR vs. Accuracy

(MTL)

Dissimilarity VS.

Accuracy (MTL)

cdi vs.  Accuracy

(MTL)

SNR vs. Accuracy

(EMGlab)

Dissimilarity VS.

Accuracy (EMGlab)

cdi vs.  Accuracy

(EMGlab)

57—

-28.5

-51.88

-54.83

-9.611

-11.51

-11.5

-44.79

-10.87

-10.92

0.1197

0.1834

0.1929

0.2334

0.2051

0.2118

0.6674

0.1414

0.1459

RMSE

14.68

13.33

12.92

4.638

4.519

4.545

9.424

9.762

9.765



Simulator  Single

MTL vs. Fuzzy

Simulator  Single

MTL vs. Fuzzy

Simulator  Single

MTL vs. Fuzzy

Simulator  Single

MTL vs. EMGlab

Simulator  Single

MTL vs. EMGlab

Simulator  Single

MTL vs. EMGlab

Simulator  Single

EMGlab vs. Fuzzy

Simulator  Single

EMGlab vs. Fuzzy

Simulator  Single

EMGlab vs. Fuzzy

SNR vs. Agreement

Dissimilarity VS,

Agreement

cdi vs. Agreement

SNR vs. Agreement

Dissimilarity vS.

Agreement

cdi vs. Agreement

SNR vs. Agreement

Dissimilarity VS.

Agreement

cdi vs. Agreement

-31.59 0.121
-54.85 0.1758
-57.77 0.1853
-21.34 0.2324
-17.37 0.1457
-17.32 0.1495
-27.99 0.09753
-46.14 0.1457
-49.48 0.1577

Table 6 (corresponding to figure 13): The result of Emblab.net single-channel data

15.02

13.46

13.05

9.79

9.988

10.01

15.56

14.48

14.11



data

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

Simulator Single

fitting

SNR vs. Accuracy

(Fuzzy)

Dissimilarity vs.

Accuracy (Fuzzy)

cdi  vs.  Accuracy

(Fuzzy)

SNR vs. Accuracy

(MTLD)

Dissimilarity vS.

Accuracy (MTL)

cdi  vs.  Accuracy

(MTL)

SNR vs. Accuracy

(EMGlab)

Dissimilarity vS.

Accuracy (EMGlab)

cdi vs.  Accuracy

(EMGlab)
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-28.5

-51.88

-54.83

-9.611

-11.51

-11.5

-44.79

-10.87

-10.92

Table 7 (corresponding to figure 14): The result of single-channel simulated data

0.1197

0.1834

0.1929

0.2334

0.2051

0.2118

0.6674

0.1414

0.1459

RMSE

14.68

13.33

12.92

4.638

4.519

4.545

9.424

9.762

9.765



