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Abstract 

High quality automated electromyogram (EMG) decomposition algorithms are necessary to insure 

the reliability of clinical and scientific information derived from them. In this work, we used 

experimental and simulated data to analyze the decomposition performance of three publicly available 

algorithms—EMGLAB [McGill et al., 2005] (single-channel data only), Fuzzy Expert [Erim and Lin, 

2008] and Montreal [Florestal et al., 2009]. Comparison data consisted of quadrifilar needle EMG from 

the tibialis anterior of 12 subjects (young and elderly) at three contraction levels (10, 20 and 50% 

MVC), single-channel clinical EMG from the biceps brachii of 10 subjects, and matched simulation data 

for both electrode types. Performance was assessed via agreement between pairs of algorithms for 

experimental data and accuracy with respect to the known decomposition for simulated data. For the 

quadrifilar data, median agreements between the Montreal and Fuzzy Expert algorithms at 10, 20 and 

50% MVC were 95.7, 86.4 and 64.8%, respectively. For the single-channel data, median agreements 

between pairs of algorithms were 94.9% (Montreal vs. Fuzzy Expert) and 100% (EMGLAB vs. either 

Montreal or Fuzzy Expert). Accuracy on the simulated data exceeded this performance. 

Agreement/accuracy was strongly related to trial Complexity, as was motor unit signal to noise ratio, 

Dissimilarity and Decomposability Index. When agreement was high between algorithm pairs applied to 

the simulated data, so was the individual accuracy of each algorithm.  
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CHAPTER 1—INTRODUCTION 

 

Contribution: This whole project is a team project. Coauthors Christie, Clancy and McGill of the 

two enclosed papers provided experimental data and the three EMG decomposition algorithms (via the 

MATLAB toolbox “EMGlab”). I mainly focused on running different algorithms on experimental data 

and simulated data and also generated the simulator EMG signal. Lejin Li, my research partner, mainly 

focused on result fitting and analysis. Most of the work, in fact, was finished together under the direction 

of Dr. Clancy. Yejin and I wrote the entire Appendix, which details the research methods and results.  

Dr. Clancy drafted the journal paper based on this report. Yejin and I drafted the conference paper based 

on our report and an early draft of the journal paper.  Drs. McGill, Christie and Bonato advised the 

project remotely and edited the conference and journal manuscripts.  Dr. MGill is the primary author of 

one of the decomposition algorithms and Dr. Christie had previously collected one of the data sets.  Dr. 

Bonato provided an additional data set that was not included in the final project.  

Main contents of thesis: During my Master’s study, my major is electrical and computer 

engineering and the field I focus on is biomedical signal processing. All study and research are under the 

instruction from my advisor Dr. Edward Clancy. Human tissues can generate very weak voltages; a goal 

of biomedical signal processing is to collect and analyze such weak signals. Most of my work is related 

with electromyogram (EMG) signal processing. The electromyogram is the electrical activity of human 

skeletal muscles and has several important functions for diagnosing and treating muscle diseases. This 

thesis mainly focuses on the performance and reliability of EMG signal decomposition results. 

EMG signal generation: Our muscle consists of many small units called motor units  (MU). The 

motor unit includes two parts—one is the motor nerve and another is innervated muscle fibers (see 

Figure 1). When a muscle contracts, individual motor units in our muscles electrically discharge (see 

Figure 2). An electrical “motor unit action potential (MUAP)” can be recorded. The average frequency 

of discharging is called the firing rate. If one motor unit is activated, its initial firing rate is about 4–10 
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pulses/sec. When force increases, the firing rates can increase up to 20 pulses/sec, or higher. EMG signal 

recordings are the sum of voltages due to each active motor unit. Typically, many motor units can be 

active at the same time.  Firing times are generally uncorrelated in time within one motor unit and 

uncorrelated across motor units. Since different motor units generate signals with different shapes and 

each (healthy) motor unit generates similar shapes each excitation, EMG signal decomposition becomes 

possible and useful. The purpose of EMG signal decomposition is to separate the composite interference 

pattern into its constituent motor unit (MU) firing times, permitting the evaluation and study of 

individual MU firing patterns and action potential shapes (see Figure 3). 

                            

Figure (1): the structure of the motor unit             Figure (2): record EMG signal generated by motor unit 

 

Figure (3): schema of EMG signal decomposition 
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EMG data collection: Since the signal from our body is always very weak and with high 

background noise, we need to collect and process raw EMG signals carefully. The data used in this 

paper come from two parts: experimental data and simulated data: 

1. For experimental data, we used both multi-channel data previously acquired at the University of 

Massachusetts (UMass) and single channel data available from EMGlab.net. 

For the UMass data, recordings were acquired from a total of 16 subjects covering a variety of ages 

(classified as young and old), genders and  contraction levels—10%, 20% and 50% of maximum 

voluntary contraction (MVC). Three channels data of EMG data were simultaneously acquired using a 

quadrifilar needle electrode and multi-channel decomposition was utilized. Exclusion criteria were first 

applied for all data, based on the level of noise and duration of stable activity. Finally 12 subjects——7 

young (3 males and 4 females) and 5 old (2 males and 3 females) were retained as the usable recordings 

for further processing.  

For EMGlab.net data, we had available the N2001 database of clinical signals which consisted of 

various subject groups such as one normal control group, one group of patients with myopathy and one 

group of ALS patients. We only used data from the normal control group for our single channel 

decomposition. Our sample group consisted of 10 normal subjects aged from 21 to 37 years old, 4 

females and 6 males. Each subject had 15 recordings at low-level contraction and another 15 at 

moderate level. Since the low level recordings were at a very low contraction level and too easy to 

analyze, we only chose one moderate level data recording from each subject according to background 

noise and complexity.  
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Figure (4): two different types of needles -concentric (single-channel) needle (left) and quadrifilar 

needle (right). 

2. A physiologically based simulation of clinical EMG signals had been developed and was 

publically available. We designed the simulated data to be similar to the UMass data for multi-channel 

analysis and similar to the EMGlab.net data for single channel analysis.  

The application of decomposition: Decomposition is useful in a wide range of clinical and 

scientific studies of the neuromuscular system. The number of motor units for a normal muscle in 

general does not change. And the shape of a healthy motor unit action potential of a muscle also does 

not change (always similar, but not exact), excluding changes due to fatigue.  (Fatigue was avoided 

when data for this study were collected.) However, if a muscle is diseased (example.g., myopathic 

diseases), the number of motor units can be reduced and the average diameter of the fibers in motor 

units can decrease. Disease will change the structure of motor units so that the shapes of motor unit  

action potentials detected and recorded will change. Not only muscle diseases, but also other effects, 

such as age and fatigue can cause a similar change in action potential shape. Thus, if we can decompose 

the original EMG signals into different motor units and characterize the changes of these motor units, 

corresponding diagnosis and treatment can be implemented. For most decomposition-based studies, an 

automated algorithm is utilized to perform most of the decomposition, with expert manual editing often 

completed thereafter. Methods for automated decomposition were pioneered by DeLuca and colleagues  

[11]. Since that time, a number of other significant approaches and variations have been developed and 

refined. 
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General algorithm for EMG decomposition: Since signals generated from our human body are 

weak and acquired in the presence of high background noise, we need to process raw signals carefully 

before we decompose. When and EMG signal is acquired, amplification and filtering are common and 

efficient ways to eliminate background noise and to enlarge the power of the weak signal. All such work 

is called preprocessing. However all parameters of the preprocessing should be chosen in a very careful 

way since too much filtering may not lead to an expected high SNR (Signal-to-Noise Ratio). Another 

challenge is that different motor units are usually active at the same time. This will cause 

superimposition in the recorded signal. How to deal with superimposition and how to separate the 

interference signal into several small motor units is the most challenging issue of decomposition. The 

core concept of most decomposition algorithms is to classify different motor units into clusters based on 

templates. Like all other algorithms, there is always a trade-off between the performance and the 

computing time. In this project, different settings such as firing rates statistics and possible combinations 

(possible number of concurrently active motor units considered when resolving a superimposition) had a 

great impact on the computing time especially for the Fuzzy Expert algorithm of Erim and Lin.  

The primary steps to a classical decomposition algorithm are: pre-processing, detection, clustering 

and superimposition resolution [1–3, 11]. As noted above, the primary preprocessing step is the 

application of a highpass filter.  The goal of this filter is to accentuate the differences between motor 

unit spikes, which primarily are found in the higher frequencies.  For detection, a simple threshold 

detector is most common.  If the threshold is set too high, motor unit spikes can be missed; if the 

threshold is set too low, noise spikes can be detected. Clustering is then used to associate the various 

spikes with motor units. Generally, spikes are only clustered if their shape sufficiently matches the 

template shape, so as to limit clustering of noise spikes.  In addition, every superimposed spike tends to 

have a different shape.  Thus, the general clustering stage tends to purposely not desire to classify 

superimposed shapes.  Many algorithms perform clustering in multiple passes.  During the first pass, the 

most similar spikes are clustered, after which robust templates are formed.  During subsequent passes, 

the templates are improved as more units are added.  Finally, superimposition resolution is performed on 

the unclustered spikes. Several techniques are possible.  The simplest technique is an exhaustive search 
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method of trying all combinations of two or more templates at all possible relative time displacements.  

Unfortunately, this technique tends to be prohibitively time intensive, particularly when testing 

superimpositions of three or more templates.  Note that most algorithms will not classify all detected 

spikes. Many variants to this classical algorithm have been developed.  

In this project, three of the major decomposition algorithms are now publically available within the 

MATLAB software environment—the McGill algorithm [1], the Fuzzy Expert algorithm [2] and the 

Montreal (MTL) algorithm [3]. In addition, a detailed indwelling EMG simulator is also publically 

available [4]. Hence, we cross-compared the performance of these three algorithms utilizing a variety of 

experimental and simulated EMG needle data.  

Before decomposition, each signal was high-pass filtered in order to improve the accuracy of 

results. The reason to use a high-pass filter is that the signal information at frequencies less than 500 Hz 

to 1000 Hz tends to look rather similar for all motor units.  But, the higher frequency content is more 

discriminable. When the shapes of different motor units are different, decomposition algorithms can 

distinguish them much more easily. Therefore, we eliminate the lower frequency portion of the signal. 

However, after we filter this low frequency part, the spikes of the motor units become smaller, which 

decreases the SNR. Thus, we need to choose a suitable cut-off frequency between 500 Hz and 1000 Hz 

carefully to keep both good SNR and distinguishability. For the UMass multi-channel data, an analog 

high-pass filter (1000 Hz) had been applied before digitizing/ Since some residual low frequency 

background noise existed, a 1st-order zero-phase Butterworth digital high-pass filter with 100 Hz cut off 

frequency was used. For the EMGlab.net database, the single channel signal was processed in analog 

hardware (prior to sampling) by a first-order high-pass filter with 2 Hz cut off and low-pass filter with 

10 kHz cut off. We then used a 500 Hz first-order zero-phase Butterworth high-pass digital filter.  

Each single channel signal was decomposed separately by three algorithms and each multi-channel 

signal by MTL (Montreal) and Fuzzy Expert. All three algorithms automatically detected spikes of 

motor units and established their discharge times in the signal. In order to compare different algorithms 

under the same circumstance, the results of these algorithms after decomposition were saved in a 
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uniform format, including discharging time, motor unit ID number and channel for each spike in the 

signal in an annotation file (.eaf file).  

The parameters of Fuzzy Expert should be set carefully or the computing time would be long and 

inefficient. Most of the parameters can be chosen as default settings. We modified some key parameters 

as below: a) passes =10; b) Min Template to Fill = 0.2; c) Max MU Combo for super-position: 3 for 1st 

and 2nd pass, 5 for 3rd pass and 6 for the rest.  

The performance of automated decomposition algorithms  (emphasis of thesis): The 

performance of automated decomposition algorithms has primarily been evaluated in a few manners [5]. 

First, “reference” or “truth” annotations have been achieved via manual expert editing of an 

experimental data set [3], [4], [6], [7]. This technique can be extremely time consuming (e.g., one hour 

per second of data for Fuzzy Expert) and its own accuracy is difficult to assess. Nonetheless, assessment 

on experimental data guarantees signal conditions representative of actual use. Second, some 

experimental data sets have been evaluated manually, but the evaluation has been limited to clinical 

classification of each MU as normal vs. abnormal [8], [9]. This manual evaluation is much more time 

efficient, but does not quantitatively assess the intermediate algorithm steps of spike detection and spike 

classification. Third, EMG signals have been simulated [3], [7], [8], [10]–[12]. In this case, the truth 

annotations are known to be correct. However, even highly detailed simulations cannot guarantee all of 

the complexities of an actual signal. Fourth, a few studies have recorded EMG from multiple indwelling 

needles, each of which is decomposed [7], [13]–[15]. Some of the MUs recorded from the distinct 

electrodes are common. Agreement in their firing times is strong evidence of correct detection and 

classification of those firings. Recent studies have also compared indwelling decomposition to that 

accomplished by surface EMG arrays [16]–[18]. Most commonly, a combination of evidence—

experimental and simulation—is used to evaluate an algorithm, as each evaluation technique has its own 

strengths and weaknesses. 

To date, very little direct comparison has been made between the performances of various 

automated algorithms [19]. Such comparison is important, since the reported performance of an 
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algorithm is a strong function of the data used for evaluation. Recordings are known to be more difficult 

to decompose, for example, when: more spikes occur per second, distinct MUs exhibit similar shape, the 

signal-to-noise ratio (SNR) is low, MU shapes change over time and firing times are irregular [7]. 

Hence, direct comparison between reported algorithm accuracies is confounded. In addition, further 

support is given to the efficacy of decomposition, in general, if multiple algorithms are able to arrive at 

common solutions.  

For experimental data and simulated data, we developed comparison based on agreement among 

different algorithms and accuracy based on truth annotations, respectively. We also computed four 

measures of decomposition difficulty.  High agreement and accuracy versus these measures would 

reflect the reliability of the automated decomposition algorithms.  Details of the difficulty measures—

SNR, DI, Dissimilarity and Complexity—are provided in the journal paper draft (below).  

The remainder of this thesis is structured as follows. Chapter 2 is the conference paper draft 

accepted to the 2013 IEEE 39th Annual Northeast Bioengineering Conference [20], which only presents 

the cross-comparison between the two multi-channel EMG decomposition algorithms based on DI, due 

to the page limitation. Chapter 3 is the draft of the journal paper, which includes a broader range of the 

work including both multi-channel and single channel comparison using all three decomposition 

algorithms. Appendix is the report regarding EMG decomposition, which presents all the detailed 

information, such as intermediate steps of the processing results and unmodified figures.  
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Appendix A: Informal Report Regarding EMG Decomposition 
1. Introduction 

The most important thing we need to consider about EMG decomposition is to evaluate the 

performance of decomposition algorithms. The purpose of this paper is to compare the accuracy of 

different EMG signal decomposition algorithms——MTL, FuzzyExpert and Emglab. Three algorithms 

were tested on single channel. Only MTL and FuzzyExpert were used on multi-channel decomposition, 

since Emglab only can decompose one channel signal. Two main approaches to evaluate the 

performance have been proposed in this paper: 

1. For the real data which have no accurate results, we built agreement to reflect the performance between the two 

instead. 

2. Simulated data can be used as a reference. The huge advantage of simulated data is that it has truth annotation and 

accuracy can be computed. Besides, agreement was also computed in order to set up a relationship between 

agreement and accuracy. This can help evaluate accuracy from the agreement of real data. 

 

2. Method 

2.1 EMG signal recording 

The data used in this paper come from two parts: real data recorded in the hospital and simulated 

data generated by the simulator: 

1. For real data, we used both Multi-channel data from UMass and single channel data from EMGlab.net. 

For UMass data, a total number of 16 subjects covered a variety of age (classified as young and 

old), gender and MVC contraction level (including 10%, 20% and 50%) were three channel data and 

used as multi-channel decomposition. An excluding criteria was first applied for all data which 

based on the level of noise and duration of stable activity. Finally 12 subjects——7 young including 

3 males and 4 females and 5 old including 2 males and 3 females were judged as the usable 

recording for further processing. The data were recorded simultaneously using three bipolar 

electrodes called quadrifilar (? based on Anita’s Email) and the ADC resolution is 16-bit. 
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For EMGlab.net data, we used N2001 database of clinical signals which consisted of a various 

groups such as one normal control group, one group of patients with myopathy and one group of 

ALS patients. Here we only used the normal control group for our single channel decomposition. 

The group consisted of 10 normal subjects aged from 21 to 37 years old, 4 females and 6 males. 

Each subject had 15 recordings at low-level contraction and another 15 at moderate level. Since the 

low level recordings were just above the threshold and too easy to analyze, we only chose one 

moderate level data from each subject according to background noise and complexity. The data was 

sampled at 23437.5 Hz and 16-bit ADC. The electrode type was concentric needle and the muscle 

type was biceps brachii.  

 

2. A physiologically based simulation of clinical EMG signals had been developed. We want the simulated data we 

generate are similar to UMass data for multi-channel and EMGlab.net data for single channel. The sampling rate of 

both data was 31250 Hz and ADC resolution is 16-bit. There are different key parameters for simulator setting such 

as:  

1. Jitter 

The shape of a same motor unit from different firing times often has some difference. Jitter is used to measure 

this kind of diversity. 

2. Muscle setting 

Muscle setting includes number of motor units in muscle, muscle fiber density, muscle 

fiber area and motor unit diameter. Most of the parameters here were used default setting which 

was calculated by the average human main muscle activity. 

3. Electrode type and position 

There are different electrode types can be selected: concentric, monopolar and bipolar.  
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For multi-channel UMass data, the electrode type is bipolar which basically consists of 

two adjacent monopolar electrodes and records the d ifferential voltage between the two but 

here we used one pair of monopolar electrodes to mimic each bipolar electrode because in this 

way the distance between the electrodes can be better controlled. The length of the tip of each 

electrode is 10 mm. The diameter of each monopolar electrode is 50μm and the distance 

between two electrodes is 200μm. The positions of monopolars are placed as figure (0). There 

are six possible combinations of the differential voltage between monopolar electrodes which 

can be regards as six bipolar electrodes and only three of them which are independent were 

picked.  

 

Figure (0) 

For single channel EMGlab.net data, the electrode type was set as concentric and the 

length of the tip of the electrode was 10 mm. 

4. MVC contraction level and pulse per second (PPS).  

In order to use simulator to best mimic the contraction level of the real data, complexity is 

used to measure the contraction level. The complexity of data mainly measured by pulses per 

second (PPS). PPS of each subject was pre-computed manually which was a more reliable way 

to get exact number. The standard is that for each normal pulse with amplitude more than the 

max peak amplitude of background noise will be counted one pulse. For the case of 

superimposition, when the duration of one pattern which conta ins two consecutive pulses is 
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more than 3ms, it will be counted as two pulses. And if the duration of one pattern which 

contains three consecutive pulses is more than 6ms, it will be counted as three pulses and so on 

so forth. For the case of multichannel, we will take a comprehensive consideration of all three 

channels. If one spike is identified in each channel, it will be counted as one pulse else won’t. 

For the stable period selected for decomposition was 5s, which was not long enough and varied 

from subject to subject, we only counted the spikes of the stable period to get PPS.  

The PPS of each MVC level in UMass data were: 10%-100.1, 20%-119.3 and 50%-211.8. 

The standard deviations of each level MVC data were: 10%-49.8, 20%-46.4 and 50%-54.6.  

The PPS of multichannel simulation data were: 10%-99.2, 20%-120.7, and 50%-215.9. 

The standard deviations of multichannel simulation data were: 10%-21.3, 20%-25.5 and 

50%-59.4. 

The average PPS of EMGlab.net database was 61.8 with standard deviation of 19.8. 

The average PPS of single channel simulator was 62.56 with standard deviation of 12.3. 

5. Noise 

In order to get a best simulated effect, a white Gaussian noise was added on differential signals. The value of 

noise was measured on Signal-to-Noise Ratio SNR based on signal power: 

            

          

          
 

 

2.2 Decomposition 

Before decomposition, each signal was high-pass filtered in order to improve the accuracy of 

results. For UMass multi-channel data, the process of high-pass filter had been done at machine level 

and since some low frequency background noise existed, a 1-order zero-phase Butterworth high-pass 

filter with 100Hz cut off frequency was used. For EMGlab.net database the single channel signal was 

processed by a first high-pass filter with 2 Hz cut off and low-pass with 10 kHz cut off. We then used a 

500 Hz 1-order zero-phase Butterworth high-pass filter to keep both good SNR and distinguishability.  
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Each signal channel signal was decomposed separately by three algorithms and each multi-channel 

signal by MTL and FuzzyExpert. All three algorithms automatically detected spikes of motor units and 

found out their discharges in the signal. Then, some sophisticated methods were used to align spikes and 

resolve superimpositions. In order to compare different algorithms under the same circumstance, the 

results of three algorithms after decomposition were saved as a uniform format, including discharging 

time, motor unit ID number and channel for each spike in the signal saved as annotation file (.eaf file). 

The parameters of FuzzyExpert should be set carefully or the computing time would be long and 

inefficient. Most of the parameters can be chosen as default settings. We modified some key ones as 

below: a) passes =10; b) Min Template to Fill = 0.2; c) Max MU Combo for super-position: 3 for 1st 

and 2nd pass, 5 for 3rd pass and 6 for the rest. The parameters setting of one pass was show as Figure 

(1). 

 

 

Figure (1): parameters of the FuzzyExpert 
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2.3 Decomposition comparison 

The results of three different algorithms for each signal were not compared in one group 

assessment. Instead, a series of comparisons were made between pairs of algorithms in order to make the 

results more sensible and easier to follow. If only one algorithm detects a particular MU while another 

not, then it is basically a smaller unit and it can be ignored safely. Two comparison scenarios were built 

on both accuracy comparison for simulated data and agreement comparison for real data. First, between 

a known correct truth annotation from simulated data and a test annotation from the result of one of 

three algorithms, the truth annotation was taken as a standard in this case. Our goal is to portray how 

well the test annotation replicates the truth annotation. Second, between two annotations of which 

neither is considered as a standard. In this case, we wish to determine how well the two algorithms 

agree. The information in neither file should hold neither more nor less weight in determining the 

comparison outcome. Truth-test terminology will be used in the first scenario. For agreement 

comparison, the annotation of first algorithm will be taken as the truth and the annotation of second 

algorithm will be taken as the test. The main steps for truth-test comparison will include: (For agreement 

comparison, repeat the below computation and just pick first annotation as reference instead of truth 

annotation.) 

1. Associate annotations with time offsets. 

For truth-test comparison, loop over the test annotations. For each truth discharging time, find a 

closest test discharging time within time offset 1ms. After associating discharging times, some 

discharging times in truth annotation may have no test discharging time associated with them within 

1ms offset. Record these discharging times without associated as not found (NF). Similarity, there 

are some discharging times without associated existing in test annotation. Record these discharging 

times as not included (NI). 

2. Combine discharging times with motor unit ID number 

After truth-test pairs were found, it is time to judge whether those pairs are correct with motor unit ID number. For 

each spike, we have both discharging time and motor unit ID number. If a truth-test pair has a same discharging 

time within 1ms offset but has different motor unit ID numbers, it recorded as false positives (FP). Only if both 

discharging time and motor unit ID number were matched, a pair recorded as true positive (TP). 

3. Form Confusion Matrix 
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Now that truth and test motor unit IDs have been matched, a matrix was built to show the final results intuitively. 

The matrix was shown as figure (2): 

 

Figure (2): 1. The first column is the truth motor unit ID number and the first row is the test motor unit ID number. 

2. The last column is the quantity of spikes not found by test annotation (NF) for each truth motor unit and the last 

row is the quantity of spikes not included by truth motor unit (NI) for each test motor unit. 3. The rest of the matrix 

shows the matched conditions of each motor unit. The digits with asteroid are the quantity of true positives (TP) for 

all truth-test motor unit pairs. The digits without asteroid show the quantity of false positives (FP) for all truth-test 

motor unit pairs. It is quite easy to find out all NF, NI, TP and FP for each truth motor unit. For example, Number 9 

motor unit of true annotation has 26 NFs 21NIs, 54 TPs which match with Number 4 motor unit of test annotation 

and 5 FPs which include 4 FPs classified as Number 5 motor unit and 1 FP classified as Number 6 motor unit from 

test annotation. 

4. Evaluation of the final accuracy and agreement. 

After confusion matrix was built, several important parameters can be computed in order to evaluate the 

performance of algorithms for each motor unit.  

a. The overall accuracy unit can be computed as: 

          
  

           
 

b. The overall sensitivity can be computed as: 

             
     

        
 

c. The overall positive predictivity can be computed as: 

              
  

     
 

For agreement evaluation, the overall agreement for each motor unit is similar to overall accuracy, and other two 

parameters are no longer usable. 

 

2.4 Analys is of comparison results 

In order to get a better description of decomposition results, PPS, signal-to-noise ratio (SNR) and similarity unit 

were used in this paper.  

2.4.1 PPS 

PPS is defined in 2.1.2.4. Since PPS is in term of the whole signal, it is associated with total accuracy or agreement.  
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2.4.2 SNR 

SNR is defined as the peak to peak amplitude (maximum subtract minimum for each spike) of each motor unit 

divided by the rms of the whole signal amplitude. Since SNR is evaluated separately for each motor unit, it is 

associated with accuracy or agreement of single motor unit. 

Considering about the condition of superimposition, we cannot simply average the SNR of all spikes for each 

motor unit. Therefore, some strategies were needed to compute the SNR of each motor unit carefully, especially for 

real data which has no truth result. The main steps for calculating the SNR of a certain motor unit without truth 

includes : 

1. Find out the matched IDs of annotations from two annotations for each motor unit.  

2. Calculate peak to peak amplitude of all spikes. Since real data has no truth result, we need to calculate peak to peak 

amplitude according to two different annotations separately in terms of matched IDs. After getting all values of 

peak-to-peak amplitude, we will plot them in a histogram for each annotation shown as figure (3). We can get a 

statistic distribution of peak-to-peak amplitude.  

 

Figure (3): histogram of distribution of SNR for a certain motor unit 

3. Since spikes without superimposition should have a dominant quantity and superimposition should always have 

different peak to peak amplitudes, the highest bar which means more amplitude distributed will be considered as 

the peak to peak amplitude of this certain motor unit. By averaging the peak-to-peak amplitude of the dominant bar 

for each annotation, then the mean of peak-to-peak amplitude of two annotations is computed. If it is multichannel, 

the average of the three is computed to get an overall SNR. 

4. Calculate the RMS of the whole signal, the get the SNR of this motor unit by divided by RMS. 

For simulated data with truth annotation, test annotation was no longer considered. Therefore, 

calculating the mean value of the peak-to-peak amplitude separately according to two annotations in 

terms of matched IDs was not needed. We only need to do the similar steps according to truth 

annotation. 

2.4.3 Dissimilarity 

If two kinds of motor units in the same signal are quite similar to each other, this will definitely 

influence the final result even if they have a relatively large SNR. Therefore, dissimilar ity was 
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introduced to study its influence on agreement or accuracy. Dissimilarity is defined as: 

               
        

  

   
 

, where denominator is the RMS of the whole signal,     is kth motor unit in channel i,    
  is 

the most similar motor unit to     and the nominator is the norm of the difference of     and    
 . 

For dissimilarity measurement, it is still based on each motor unit.  

2.4.4 CDI 

A revised measurement called composite decomposability index (CDI) was also introduced by 

Kevin Mcgill and Florestal to quantify the difficulty of decomposition. CDI is defined as:  

     
                   

   

   
 

, where denominator is the RMS of the whole signal, and the nominator contains norms of two 

parts that only smaller one will be selected.     is kth motor unit in channel i,    
  is the most 

similar motor unit to    . 

 

3. Result 

3.1 Multi-channel UMass result 

3.1.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit  

Since the UMass data were recorded by hospital, the true annotations were unknown. So, we only 

built agreement to reflect the results. Figure (4) shows the results of agreement versus SNR for each 

motor unit. Each point indicates a pair of trains for each matched motor unit. In this paper, Matlab curve 

fitting toolbox was used to try to fit all points. The mathematical expression of the blue curve can be 

expressed as: 
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A is used to adjust the range of Y axis. A larger A reflects the agreement may reach a quite low 

level with the same B. 

B indicates the relationship between SNR and relationship. A larger B means the agreement can 

reach a high level with a smaller SNR. 

C is an offset to make the range of Y axis from 0 to 100%. In general, C is always equal to 100.  

 

                         (a)                                              (b)                                              (c)  

Figure (4): The figure shows the relationship between agreement and SNR as the MVC level rises. 

(a) The number of matched motor units identified for each subject ranged from 3 to 10. The total 

matched number was 78 pairs. The SNR for MVC 10% data was mostly from 1 to 15. The agreement 

mostly ranged from 40% to 90% for a small motor unit with SNR under 5. For motor unit with SNR 

from 5 to 10, the agreement can almost reach over 80%. When SNR is larger than 10, the agreement in 

general can be up to 90% or even 100%. The exponential expression for MVC 10% is           

                      , which means an estimating agreement can be evaluated by a given SNR. 

The RMSE of the fitting model is 12.56. (b) The number of matched motor units identified for each 

subject ranged from 3 to 11. The total matched number was 90 pairs. The agreement becomes lower as 

MVC contraction level increases. In this case, the agreement is from 30% to 90% for some smaller 

motor units with SNR less than 5. The agreement can reach 80% to 100% with SNR between 5 and 15, 

and more points in the domain 90% to 100% when SNR larger than 10. The agreement will reach 95 or 

even 100% as SNR increases to 15 or more. The exponential expression for MVC 20% 

is                                  . The RMSE is 15.26. (c)The number of matched motor 
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units identified for each subject ranged from 4 to 9. The total matched number was 81 pairs. The 

agreement drops sharply and the number of matched motor units decreases instead as MVC contraction 

level increases to a high level. This is because almost cases may be the case of superimposition although 

the number of motor units should increase theoretically. In this case, the agreement is from 20% to 90% 

for motor units with SNR less than 10. The agreement can reach 60% to 90% with SNR between 10 and 

15. The agreement will reach 90% or more as SNR increases to 15 or more. The exponential expression 

for MVC 50% is                                    with a RMSE of 19.15. We can see 

clearly the slope of the function goes down as the MVC level goes up, i.e. the more complicated the data 

is the lower agreement two algorithms will achieve. 

The detailed analyses of other figures are shown in table (see Appendix part).  

The result of dissimilarity and CDI is similar to SNR. An exponential function can be also used to 

try to all points (shown in Appendix). The general expression of similarity and SNR fitting expression is 

the same as SNR. The figures of dissimilarity are shown as below (more specific analyses are shown in 

appendix part): 

 

Figure (5): dissimilarity VS agreement with different MVC levels 
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Figure (6): CDI VS agreement with different MVC levels  

A one-way Anova was introduced to analyze the statistic result of agreement for each motor unit 

with different MVC level. The link of this method introduction can be found at: 

http://vault.hanover.edu/~altermattw/methods/stats/anova/one-way2b.html. 

The Anova result is shown as table 1.  

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 246) = 33.04777, p = 

1.94*10-13 

MVC10%, MVC20% F (1,166) = 4.13840, p = 0.043512 

MVC20%, MVC50% F (1, 169) = 33.76966, p = 

3.02*10-8 

MVC10%, MVC50% F (1, 157) = 54.8418, p = 7.51*10-

12 

Table 1: one-way Anova result of agreement for each motor unit with different MVC levels  

 

3.1.2 Results of complexity versus agreement for each trial 

SNR and similarity measurement is for single motor unit of each trial. Then, we developed 

complexity (mainly based on the PPS and the number of motor units identified of each trial) versus 

agreement to measure the overall agreement for each trial. Each point indicates the average of agreement 

of all motor units for each trial. Since we have 3 contraction levels and 12 subjects for each level, 36 

points were shown in figure (7).  

http://vault.hanover.edu/~altermattw/methods/stats/anova/one-way2b.html
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Figure (7): The overall agreement versus complexity measurement for each trial. The blue circles 

are the 10%MVC, the red triangles are the 20%MVC and the green asteroids are the 50%MVC. It also 

indicates that the higher complexity will arrive at a lower agreement. 

The Anova result of complexity versus agreement for each trial with different MVC level is shown 

as table 2. 

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 33) = 21.52, p = 1.04*10-6 

MVC10%, MVC20% F (1,22) = 1.2488, p = 0.27584 

MVC20%, MVC50% F (1, 22) = 20.67718, p = 1.59*10-

4 

MVC10%, MVC50% F (1, 22) = 31.64667, p = 1.18*10-

5 

Table 2: one-way Anova result of complexity versus agreement for each trial with different MVC 

levels 

 

3.2 multi-channel simulated data result 

For simulated data, we can not only compute the agreement between the two algorithms in a similar 

way as the real data but also we can calculate each algorithm’s accuracy based on the true annotation of 
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the simulator. In addition, we plot the relationship between accuracy and agreement for simulated data. 

It can be used as a reference to evaluate the accuracy by agreement when decomposing real data.  

3.2.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit  

First, the results of SNR, dissimilarity and CDI versus agreement are shown as figure (8). For 

MVC10%, the number of matched motor units identified for each subject ranged from 7 to 10 and the 

total matched number was 103 pairs. For MVC20%, the number of matched motor units identified for 

each subject ranged from 7 to 13 and the total matched number was 110 pairs. For MVC50%, the 

number of matched motor units identified for each subject ranged from 7 to 12 and the total matched 

number was 120 pairs. 
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Figure (8): The relationship between SNR (dissimilarity, CDI) and agreement of the simulated data 

with different contraction level was computed the same way as the UMass data.  

The Anova result of agreement for each trial with different MVC level is shown as table 3.  

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 400) = 13.97501, p = 

1.36*10-6 

MVC10%, MVC20% F (1,235) = 3.994058, p = 

0.046813 

MVC20%, MVC50% F (1, 291) = 9.842108, p = 

0.00188 

MVC10%, MVC50% F (1, 274) = 25.41835, p = 8.4*10-

7 

Table 3: one-way Anova result of agreement for each trial with different MVC levels  

 

3.2.2 Results of SNR, dissimilarity and CDI versus accuracy of two algorithms for each motor unit  

Second, since the simulated data has true annotation, accuracy of simulated data for each algorithm 

can be calculated. 

For MVC10%, the number of motor units matching with truth identified by Fuzzy Expert or Mtl for 

each subject both ranged from 7 to 10, and the total matched number was 108 pairs for Fuzzy Expert and 
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104 pairs for Mtl. For MVC20%, the number of matched motor units identified by Fuzzy Expert for 

each subject ranged from 7 to 13 and from 7 to 15 by Mtl, and the total matched number was 117 pairs 

for Fuzzy Expert and 114 pairs for Mtl. For MVC20%, the number of matched motor units identified by 

Fuzzy Expert or Mtl for each subject ranged from 7 to 14 and from 4 to 15 by Mtl, and the total matched 

number was 133 pairs for Fuzzy Expert and 132 pairs for Mtl.  
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Figure (9): shows the accuracy versus SNR (dissimilarity, CDI) for two different algorithms. The 

decomposition result was compared with truth annotation and if the motor units is not found it will be 

judged as a miss and mark as zero in the plot. For SNR, in the low contraction level, MTL has a better 

performnace——accuracy above 80% for 10%MVC and above 70% for 20%MVC, while FuzzyExpert 

is above 50% for 10%MVC and above 40% for 20%MVC. Both algorithms have similar accuracy range 

of 40% to 100% for the case of high contraction level of 50%MVC. However MTL is more likely to 

miss some templets with larger SNR. For dissimilarity and CDI, the result is similar to SNR and can be 

easily gotten from figures. 

The Anova results of accuracy of two algorithms for each motor unit with different MVC level are 

shown as table 4 and table 5. 

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 400) = 9.26936, p = 1.16*10-

4 

MVC10%, MVC20% F (1,235) = 5.52475, p = 0.01958 

MVC20%, MVC50% F (1, 291) = 4.34973, p = 0.03787 

MVC10%, MVC50% F (1, 274) = 17.56522, p = 
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3.75*10-5 

Table 4: one-way Anova result of accuracy of Fuzzy Expert for each motor unit with different 

MVC levels 

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 400) = 11.51291, p = 

1.38*10-5 

MVC10%, MVC20% F (1,235) = 3.543954, p = 

0.060998 

MVC20%, MVC50% F (1, 291) = 7.989511, p = 

0.005031 

MVC10%, MVC50% F (1, 274) = 20.28175, p = 

9.90*10-6 

Table 5: one-way Anova result of accuracy of Mtl for each motor unit with different MVC levels  

 

3.2.3 Relationship between agreement and accuracy of two algorithms for each motor unit  

 

Figure (10): shows the cross relationship of two algorithms’ agreement against accuracy. Triangles 

present for the accuracy of MTL, circles present for the accuracy of FuzzyExpert. Each agreement on x-

axis will map to two different accuracy values on y-axis. The zone in the top right corner indicates that 

the more two algorithms agree with each other the higher accuracy they will achieve of the 

decomposition. 
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3.2.4 Results of complexity versus agreement for each trial 

  

Figure(11): shows the accuracy versus complexity. MTL has a more consentrated range of high 

accuracy of above 80% over all MVC level while FuzzyExpert ranges from 70% to 95%. The blue 

circles are the 10%MVC, the red triangles are the 20%MVC and the green asteroids are the 50%MVC. 

The Anova result of complexity versus agreement of two algorithms for each trial with different 

MVC levels is shown as table 6 and 7.  

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 33) = 8.485675, p = 

0.001063 

MVC10%, MVC20% F (1,22) = 3.852877, p = 0.062428 

MVC20%, MVC50% F (1, 22) = 3.737978, p = 

0.066159 

MVC10%, MVC50% F (1, 22) = 22.63882, p = 9.48*10-

5 

Table 6: one-way Anova result of complexity versus accuracy of Fuzzy Expert for each trial with 

different MVC levels 

Group name Anova result 

MVC10%, MVC20%, MVC50% F (2, 33) = 5.444128, p = 

0.009052 
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MVC10%, MVC20% F (1,22) = 4.166531, p = 0.053405 

MVC20%, MVC50% F (1, 22) = 3.63428, p = 0.069422 

MVC10%, MVC50% F (1, 22) = 7.443184, p = 1.23*10-

2 

Table 7: one-way Anova result of complexity versus accuracy of Mtl for each trial with different 

MVC levels 

 

3.3 single channel Emglab data result 

For single channel data, comparisons were made between pairs of algorithms (Emglab VS Fuzzy 

Expert, Emglab VS Mtl and Mtl VS Fuzzy Expert). Only one contraction level (moderate level) was 

used for testing.  

3.3.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit  
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Figure (12): The figures show the results of different pairs of two algorithms. First row is the result 

of SNR, dissimilarity and CDI versus agreement about Emglab-FuzzyExpert (EF) pair. Second row is 

the result about Emglab-Mtl (EM) pair. Third row is the result about Mtl-Fuzzy (MF) pair. Similarly, the 

relationship between agreement and SNR (dissimilarity, CDI) can be analyzed for different pairs from 

figures. For EF pair, the number of matched motor units identified for each subject ranged from 4 to 8 

and the total matched number was 52 pairs. For EM pair, the number of matched motor units identified 

for each subject ranged from 3 to 10 and the total matched number was 63 pairs. For MF pair, the 

number of matched motor units identified for each subject ranged from 4 to 9 and the total matched 

number was 51 pairs. 

 

The Anova result of agreement for each algorithm pair is shown as table 8.  

Group name Anova result 

EF pair, EM pair, MF pair F (2, 163) = 0.732179, p = 

0.482435 

Table 8: one-way Anova result of agreement for each algorithm pair 

 

3.3.2 Results of complexity versus agreement for each trial (Since the trials of single channel of 

Nikolic data are limited, complexity measurement can be omitted).  
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Figure (13) shows the result of total 10 trials of overall agreement versus complexity. For each trial, 

we have three results of pairs, so total 10 points were shown in each figure. A tendency that agreement 

decreases as complexity increases was shown in the figure. Since only one contraction level was tested 

and the range of complexity is relatively small comparing with multi-channel data, this kind of tendency 

is not obvious enough. 

The Anova result of complexity versus agreement of three algorithm pairs for each trial is shown as 

table 9. 

Group name Anova result 

EF pair, EM pair, MF pair F (2, 27) = 0.338457, p = 

0.715851 

Table 9: The Anova result of complexity versus agreement of three algorithm pairs 

 

3.4 single channel simulated data result 

A group of simulated data was generated to evaluate the accuracy of three algorithms. Similar to 

what we have done in 3.2. Since we have three algorithms for single channel data, the results of three 

pairs of comparison were shown as below. And a relationship between agreement and accuracy was also 

shown to reflect the reliability of agreement for real data without true annotations.  

3.4.1 Results of SNR, dissimilarity and CDI versus agreement for each motor unit with different 

algorithm pairs. 
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Figure (14): The relationship between SNR (dissimilarity, CDI) and agreement of the simulated 

data with different algorithm pairs. First row is the result of SNR, dissimilarity and CDI versus 

agreement about EF pair. Second row is the result about EM pair. Third row is the result about MF pair. 

Similarly, the relationship between agreement and SNR (dissimilarity, CDI) can be analyzed for 

different pairs from figures. For EF pair, the number of matched motor units identified for each subject 

ranged from 6 to 8 and the total matched number was 68 pairs. For EM pair, the number of matched 

motor units identified for each subject ranged from 6 to 9 and the total matched number was 73 pairs. 

For MF pair, the number of matched motor units identified for each subject ranged from 6 to 8 and the 

total matched number was 68 pairs.  
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The Anova result of agreement for each algorithm pair is shown as table 10. 

Group name Anova result 

EF pair, EM pair, MF pair F (2, 216) = 7.995563, p = 

0.000447 

EM pair, MF pair F (1, 144) = 14.53662, p = 

0.000203 

EF pair, EM pair F (1, 144) = 15.37151, p = 

0.000136 

EF pair, MF pair F (1, 144) = 0.008002, p = 

0.928844 

Table 10: one-way Anova result of agreement for each algorithm pair 

 

3.4.2 Results of SNR, dissimilarity and CDI versus accuracy for each motor unit with different 

algorithms. 

Second, since the simulated data has true annotation, accuracy of simulated data for each algorithm 

can be calculated. 
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Figure (15):  The relationship between accuracy and SNR (dissimilarity, CDI) can be analyzed for 

each algorithm. First row is the result of SNR, dissimilarity and CDI versus accuracy about Emglab  

algorithm. Second row is the result about Mtl algorithm. Third row is the result about Fuzzy Expert 

algorithm. Similarly, the relationship between accuracy and SNR (dissimilarity, CDI) can be analyzed 

for different algorithms from figures. For Emglab, the number of matched motor units identified for 

each subject ranged from 6 to 9 and the total matched number was 73 pairs. For Mtl, the number of 

matched motor units identified for each subject ranged from 6 to 9 and the total matched number was 73 

pairs. For Fuzzy Expert, the number of matched motor units identified for each subject ranged from 6 to 

8 and the total matched number was 68 pairs.  

The Anova result of accuracy is shown as table 11.  

Group name Anova result 

Emglab, Fuzzy Expert, Mtl F (2, 216) = 17.23247, p = 

1.14*10-7 

Emglab, Fuzzy Expert F (1, 144) = 20.82178, p = 
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1.07*10-5 

Emglab, Mtl F (1, 144) = 0.655483, p = 

0.419495 

Fuzzy Expert, Mtl F (1, 144) = 16.38691, p = 8.4*10-

5 

Table 11: one-way Anova result of accuracy for each algorithm 

3.2.3 Relationship between agreement and accuracy of three algorithm pairs for each motor unit  

 

Figure (16) shows the cross relationship of two algorithms’ agreement against accuracy. Red 

triangles present for the accuracy of MTL, circles present for the accuracy of FuzzyExpert and asteroids 

present for the accuracy of Emglab. When the agreement reaches 90%, the accuracy of two algorithms 

also can be 90% or more. Especially for MTL-Emglab pair (figure b), two algorithms often have a high 

agreement with high accuracy. 

 

3.2.4 Results of complexity versus accuracy for each trial (Since the trials of single channel of 

simulated data are limited, complexity measurement can be omitted).  
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Figure (17) shows the result of total 10 trials of overall accuracy versus complexity for each 

algorithm. 

The Anova result of complexity versus accuracy of three algorithms for each trial is shown as table 

11. 

Group name Anova result 

Emglab, Mtl, Fuzzy Expert F (2, 27) = 11.22016, p = 

0.000284 

Emglab, Mtl F (1,18) = 0.535726, p = 0.473632 

Mtl, Fuzzy Expert F (1, 18) = 13.87775, p = 

0.001549 

Emglab, Fuzzy Expert F (1, 18) = 10.56945, p = 

0.004435 

Table 11: The Anova result of complexity versus accuracy of three algorithms 

 

4. Discussion 

1、High-pass filter  

Various cut-off frequency settings of the high-pass filter may influence the result of the 

decomposition a lot. For the recording with less background noise, the high frequency (500Hz or 

1000Hz) will provide a better performance. Since the multi-channel UMass data have already done the 

filtering on the hardware level, only a 100Hz high-pass filter is applied to eliminate the low frequency 

off-set. 

2、comment on different algorithms 

Basically, the MTL has a better performance on multi-channel. Especially for the simulated data, 

the majority of the low level complexity (10% MVC and 20%MVC) decomposition results can achieve 



 

—51— 

100% accuracy. However, at the high contraction level it tends to miss some templates with high SNR. 

In the other hand, the FuzzyExpert has more sensitivity but sometime will detect too many small motor 

units. Different passes and parameters can be changed may have a big influence on the computing time, 

which careful setting should be considered.  

3、single channel data performance 

EMGlab Auto Decomp and MTL agree with each other well which have an agreement over 80%.  

4、Confusion issue (merging) 

One motor unit in one algorithm may map to several in the other algorithm due to the background 

noise and various key parameters like jitter and difference tolerance. One-to-two is a more general case 

and we currently don’t have an efficient solution but only merge the separated motor units manually, i.e. 

find each motor units in the compare matrix, combine them into one and re-compute the agreement 

between the two new motor units.  
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5. Appendix 

All tables are a detailed analysis of figures in result part.  

Table 1 and 2 are for UMass data. 3 to 8 are for multi-channel simulated data. Table 

9 is for EMGlab.net data. Table 10 and 11are for single simulated data.  

 

data fitting a b RMSE 

UMass MVC10% SNR vs. Agreement -102.9 0.465 12.56 

UMass MVC20% SNR vs. Agreement -58.02 0.2314 15.26 

UMass MVC50% SNR vs. Agreement -89.74 0.1598 19.15 

 

Table 1 (corresponding to figure 4): The result of SNR VS Agreement of Multi-channel UMass data 

 

data fitting a b RMSE 

UMass MVC10% Dissimilarity vs. 

Agreement 

-106.9 0.275 11.3 

UMass MVC20% Dissimilarity vs. 

Agreement 

-59.52 0.1598 14.93 

UMass MVC50% Dissimilarity vs. 

Agreement 

-88.85 0.1139 19.4 

 

Table 2 (corresponding to figure 5): The result of Dissimilarity VS Agreement of Multi-channel UMass data 
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data fitting a b RMSE 

UMass MVC10% cdi vs. Agreement -114.2 0.2916 10.77 

UMass MVC20% cdi vs. Agreement -59.75 0.1609 14.79 

UMass MVC50% cdi vs. Agreement -88.85 0.1139 19.4 

 

Table 3 (corresponding to figure 6): The result of cdi VS Agreement of Multi-channel UMass data 

 

data fitting a b RMSE 

Simulator MVC10% SNR vs. Accuracy 

(Fuzzy) 

-104.5 0.7428 11.06 

Simulator MVC10% SNR vs. Accuracy 

(MTL) 

-459.1 2.57 20.22 

Simulator MVC10% SNR vs. Agreement -77.69 0.5741 10.66 

Simulator MVC10% Dissimilarity vs. 

Accuracy (Fuzzy) 

-111.7 0.4971 10.89 

Simulator MVC10% Dissimilarity vs. 

Accuracy (MTL) 

-39.57 0.3171 22.01 

Simulator MVC10% Dissimilarity vs. 

Agreement 

-85.16 0.4218 10.33 

Simulator MVC10% cdi vs. Accuracy -107.4 0.4914 11.19 
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(Fuzzy) 

Simulator MVC10% cdi vs. Accuracy 

(MTL) 

-52.83 0.4219 21.65 

Simulator MVC10% cdi vs. Agreement -85.06 0.4217 10.34 

Simulator MVC20% SNR vs. Accuracy 

(Fuzzy) 

-127.7 0.6927 17.88 

Simulator MVC20% SNR vs. Accuracy 

(MTL) 

-241.7 1.458 18.72 

Simulator MVC20% SNR vs. Agreement -96.44 0.5534 11.09 

Simulator MVC20% Dissimilarity vs. 

Accuracy (Fuzzy) 

-111 0.4816 19.59 

Simulator MVC20% Dissimilarity vs. 

Accuracy (MTL) 

-99.65 0.5658 24.18 

Simulator MVC20% Dissimilarity vs. 

Agreement 

-94.03 0.481 10.46 

Simulator MVC20% cdi vs. Accuracy 

(Fuzzy) 

-115.1 0.5075 19.2 

Simulator MVC20% cdi vs. Accuracy 

(MTL) 

-112.9 0.6489 23.65 

Simulator MVC20% cdi vs. Agreement -94.73 0.4845 10.33 
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Simulator MVC50% SNR vs. Accuracy 

(Fuzzy) 

-127.7 0.6927 17.88 

Simulator MVC50% SNR vs. Accuracy 

(MTL) 

-241.7 1.458 18.72 

Simulator MVC50% SNR vs. Agreement -44.29 0.226 14.79 

Simulator MVC50% Dissimilarity vs. 

Accuracy (Fuzzy) 

-163.5 0.4925 23.36 

Simulator MVC50% Dissimilarity vs. 

Accuracy (MTL) 

-180.4 0.6459 33.38 

Simulator MVC50% Dissimilarity vs. 

Agreement 

-51.83 0.2488 14.38 

Simulator MVC50% cdi vs. Accuracy 

(Fuzzy) 

-170.8 0.5187 24.45 

Simulator MVC50% cdi vs. Accuracy 

(MTL) 

-228.4 0.7903 32.5 

Simulator MVC50% cdi vs. Agreement -51.83 0.2488 14.38 

 

Table 4 (corresponding to figure 8): The result of Multi-channel Simulated data 
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data fitting a b RMSE 

Nikolic MTL vs. 

Fuzzy 

SNR vs. Agreement -88.61 0.3008 11.2 

Nikolic MTL vs. 

Fuzzy 

Dissimilarity vs. 

Agreement 

-116.8 0.3122 8.636 

Nikolic MTL vs. 

Fuzzy 

cdi vs. Agreement -114.8 0.3077 8.521 

Nikolic MTL vs. 

EMGlab 

SNR vs. Agreement -64.57 0.236 14.69 

Nikolic MTL vs. 

EMGlab 

Dissimilarity vs. 

Agreement 

-69.56 0.2114 13.74 

Nikolic MTL vs. 

EMGlab 

cdi vs. Agreement -72.04 0.2216 13.33 

Nikolic EMGlab vs. 

Fuzzy 

SNR vs. Agreement -116 0.3282 13.52 

Nikolic EMGlab vs. 

Fuzzy 

Dissimilarity vs. 

Agreement 

-157.8 0.3485 10.94 

Nikolic EMGlab vs. 

Fuzzy 

cdi vs. Agreement -153.8 0.3417 10.82 

 

Table 5(corresponding to figure 11): The result of EMGlab.net single-channel data 
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data fitting a b RMSE 

Simulator Single SNR vs. Accuracy 

(Fuzzy) 

-28.5 0.1197 14.68 

Simulator Single Dissimilarity vs. 

Accuracy (Fuzzy) 

-51.88 0.1834 13.33 

Simulator Single cdi vs. Accuracy 

(Fuzzy) 

-54.83 0.1929 12.92 

Simulator Single SNR vs. Accuracy 

(MTL) 

-9.611 0.2334 4.638 

Simulator Single Dissimilarity vs. 

Accuracy (MTL) 

-11.51 0.2051 4.519 

Simulator Single cdi vs. Accuracy 

(MTL) 

-11.5 0.2118 4.545 

Simulator Single SNR vs. Accuracy 

(EMGlab) 

-44.79 0.6674 9.424 

Simulator Single Dissimilarity vs. 

Accuracy (EMGlab) 

-10.87 0.1414 9.762 

Simulator Single cdi vs. Accuracy 

(EMGlab) 

-10.92 0.1459 9.765 
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Simulator Single 

MTL vs. Fuzzy 

SNR vs. Agreement -31.59 0.121 15.02 

Simulator Single 

MTL vs. Fuzzy 

Dissimilarity vs. 

Agreement 

-54.85 0.1758 13.46 

Simulator Single 

MTL vs. Fuzzy 

cdi vs. Agreement -57.77 0.1853 13.05 

Simulator Single 

MTL vs. EMGlab 

SNR vs. Agreement -21.34 0.2324 9.79 

Simulator Single 

MTL vs. EMGlab 

Dissimilarity vs. 

Agreement 

-17.37 0.1457 9.988 

Simulator Single 

MTL vs. EMGlab 

cdi vs. Agreement -17.32 0.1495 10.01 

Simulator Single 

EMGlab vs. Fuzzy 

SNR vs. Agreement -27.99 0.09753 15.56 

Simulator Single 

EMGlab vs. Fuzzy 

Dissimilarity vs. 

Agreement 

-46.14 0.1457 14.48 

Simulator Single 

EMGlab vs. Fuzzy 

cdi vs. Agreement -49.48 0.1577 14.11 

 

Table 6 (corresponding to figure 13): The result of Emblab.net single-channel data 
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data fitting a b RMSE 

Simulator Single SNR vs. Accuracy 

(Fuzzy) 

-28.5 0.1197 14.68 

Simulator Single Dissimilarity vs. 

Accuracy (Fuzzy) 

-51.88 0.1834 13.33 

Simulator Single cdi vs. Accuracy 

(Fuzzy) 

-54.83 0.1929 12.92 

Simulator Single SNR vs. Accuracy 

(MTL) 

-9.611 0.2334 4.638 

Simulator Single Dissimilarity vs. 

Accuracy (MTL) 

-11.51 0.2051 4.519 

Simulator Single cdi vs. Accuracy 

(MTL) 

-11.5 0.2118 4.545 

Simulator Single SNR vs. Accuracy 

(EMGlab) 

-44.79 0.6674 9.424 

Simulator Single Dissimilarity vs. 

Accuracy (EMGlab) 

-10.87 0.1414 9.762 

Simulator Single cdi vs. Accuracy 

(EMGlab) 

-10.92 0.1459 9.765 

 

Table 7 (corresponding to figure 14): The result of single-channel simulated data 


