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Abstract 

Though Cavalieri is well known for the Method of Indivisibles, the ideas underlying this 

method are generally not. We explore Cavalieri's methods with links to Euclidian theory, 

Messrs. Galileo and Torricelli and show how his method differs from those using 

infinitesimals. Finally, we a recreate a classic proof using techniques borrowed from 

Cavalieri's method. 
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GABRIEL'S HORN: Indivisibles, Paradoxical Solids and Other Ponderables from the Cabinet of 
Curiosities in 17th  Century Mathematics. 

Detail from: Ole Worm, Museum Wormianum [Worm's Museum], Leiden, 1655. Rare Books Division. 

"Learned gentlemen should build a goodly, huge cabinet, wherein whatsoever the hand 
of man by exquisite art or engine has made rare in stuff, form or motion; whatsoever 
singularity, chance, and the shuffle of things hath produced; whatsoever Nature has 
wrought in things that want life and may be kept; shall be sorted and included." 

Francis Bacon 
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1 Outline 

1.1 The Galileo Code 

In Two New Sciences a dialogue published 

toward the end of his life in 1638, Galileo addressed the 

philosophical problem of mathematical infinity. 

Essentially taking the Aristotelian position, Simplicio 

says the following to Salviati: 

Simplicio; "From this [the problems posed by the 
Galileo Galilei 

mathematics of indivisibles] immediately arises a 	 ©History of Science Collections, 
1564-1642 

University of Oklahoma Libraries 

doubt that seems to me unresolvable. It is that we 

certainly do find lines of which one may say that one is greater than another; 

each containing an infinite number of points, we are forced to 

admit that, within one and the same class, we may have 

something greater than infinity, because the infinity of points in 

the long line is greater than the infinity of points in the short line. 

Bonaventura 
Francesco Cavalieri 

1598 - 1647 
Archivio Fotografio 

dei Civici Musei, 
Milano 

This assigning to an infinite quantity a value greater than infinity 

is quite beyond my comprehension." 

1 
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These remarks were specifically addressed to one, Bonaventura Cavalieri, father of the 

Method of Indivisibles; a new means of finding areas and volumes of figures. 

Correspondence between the two reveals that Cavalieri had sought desperately to win 

Galileo's approval for his new method. 1  It never came. 

Salviati's reply to Simplicio's comments on infinities, (arguably Galileo's own position 

on the matter), goes as follows: 

Salviati; "This is one of the difficulties which arise when we attempt, with our 

finite minds, to discuss the infinite, assigning to it those properties which we 

give to the finite and limited; but this I think is wrong, for we cannot speak of 

infinite quantities as being the one greater or less than or equal to another." 2  

By the early 1600's Galileo had began to show signs of a modern attitude 

toward the infinite, when he proposed, (using Salviati as his mouthpiece), that: "infinity 

should obey a different arithmetic than finite numbers." That Galileo may have been 

overly cautious in putting forward his views on the topic is understandable. He no 

doubt was keenly aware of Giordano Bruno's own fate at the hand of the Inquisition. 3  

1  Cavalieri corresponded with many mathematicians and scientists of his day, including Galileo, 
Mersenne, Renieri, Rocca, Torricelli and Viviani. His correspondence with Galileo includes at least 112 
letters. Of Cavalieri, Galileo is reportedly to have written; "few, if any, since Archimedes, have delved as 
far and as deep into the science of geometry." 

2  Two New Sciences; Galileo Galilei translated by Stillman Drake pp.39 

3 Bruno, a dabbler in astronomy and developer of a rather complex system of mnemonics, had argued the 
case that the universe was infinite and that the stars were distant suns. This ruffled the feathers of Church 
authorities, who held quite the opposite view. For his troubles, Bruno was tortured for nine years in an 
attempt to make him recant his heretical views. Stubborn to the end, he was burned at the stake in 1600. 
Having once taught briefly at the University of Padua in 1591, Bruno had ambitions for a permanant 
position, but the chair he sought went instead to Galileo Galilei. Bruno was denounced to the Inquisition 
a year later. 
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The dialogue neatly encapsulates the era in which Cavalieri worked; sandwiched 

between a revival of ancient Greek methods and the birth of modern notions of 

infinitesimals, with which Newton and Leibniz were to develop the calculus a half 

century later. While Newton and Leibniz made use of arguments based upon intuitive 

notions of infinitesimals which were appealing and produced correct results, their 

arguments were not mathematically rigorous. Lack of rigor was something Cavalieri 

felt he could ill afford, as any novel method would most certainly suffer the arrows of 

critical attack if it could not be demonstrated using accepted first principles. 

If you ask any first year college student what is their most troublesome course, 

the answer most likely; "Calculus." The basic idea of the calculus is actually quite 

simple; though quite counterintuitive to minds cultivated by experience with discreet 

numbers and finite sets. Essentially the calculus involves doing mathematics on sets of 

things which are allowed to become both, infinitely large in number and infinitely small 

in size, such that some combination of the two remains finite and meaningful. Students 

who resist such fancies find themselves in good company. 

Up to the 17 th  century infinities and infinitesimals had no proper place in 

mathematical discourse. Within the mathematical principle set for by Euclid, 

infinitesimals cannot be "parts" of the mathematical object they belong to- because 

comparability and the quality of "being a part," go together. Thus, when Cavalieri 

developed his method of `indivisibles', (not to be confused with infinitesimals) he 
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allowed himself only the sort of indivisibles that classical geometry and philosophical 

tradition knew of. 

Though Cavalieri is well known for the method of indivisibles, the ideas 

underlying this method are generally little known. This almost paradoxical situation is 

mainly caused by the fact that authors dealing with the general development of analysis 

in the 17th  century take Cavalieri as a natural starting point, but do not discuss his rather 

special method in detail, because their aim is to trace 

the ideas about infinitesimals. In fact, Cavalieri's 

notions were utterly misrepresented by the second half 

of the 17th  century, and Torricelli4-one of Cavalieri's 

keenest followers- may have been particularly to 

blame for this misrepresentation. Examples showing 

how the word "indivisible" was misused in the second 

half of the 17th  century could easily be multiplied as 

other projected their own ideas into Cavalieri's theory. 

Evangelista Torricelli 
1608-1647 

We propose to show that Cavalieri's method was not an early form of 

integration as most modern authors mistakenly describe it. Far from being unconcerned 

4 
Evangelista Torricelli: Italian mathematician and physicist, born at Faenza, 15 October, 1608; held a 

three month post as assistant and secretary to Galileo, before the old master died. Torricelli would later 
be appointed to succeed Galileo as the court mathematician to Grand Duke Ferdinando II of Tuscany. 
Despite all his mathematics, Torricelli is best known today as the inventor of the barometer; conceived 
after pumpmakers of the Grand Duke attempting to raise water to a height of more than forty feet, found 
that thirty-two feet was the limit to which it would rise with their suction pump- with no explanation as to 
why. 
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with lack of rigor, Cavalieri attempted to demonstrate his method followed accepted 

principals of his time, largely inherited from Greek sources. We shall recreate, using 

Cavalieri methods, the ancient proof that the ratio of a cylinder to a cone of the same 

base and equal altitude is 3:1. Cavalieri sought Galileo's approval for his new method. 

Indeed he delayed publication of his discovery for over eight years pursuant to this 

effort. Instead, Galileo submitted veiled criticism in novel form- the "Paradox of The 

Soup Dish;" which we shall present. Finally we show that Evangelista Torricelli made 

his own contributions to the method of indivisibles. We include his counterintuitive 

demonstration concerning a certain solid of rotation; today know as "Gabriel's Horn." 

All three men are inextricably linked to this little known period of pre- 

infinitesimal methods of the early 17 th  century which would be eclipsed by more 

powerful and popular methods within three decades. 

1.2 Our program: 

In deciding on the order by which material should be presented, it seemed only 

fitting to give pride of place to Galileo and in particular a rather cleverly crafted 

demonstration he inserted into Two New Sciences, meant to draw attention to the perils 

of using the "method of indivisibles" in geometry. 

We shall then go from the more familiar to the unfamiliar using the following outline: 
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1) We shall first provide a proof (using the integral calculus) of what has been 

referred to as Gabriel's Horn, a rather counterintuitive figure discovered by 

Torricelli. 

2) Introduce the Eudoxian: The Method of Exhaustion: (The method of the 

Ancients; Including a classic demonstration proving that the ratio of a cylinder 

to inscribed cone is 3:1.) 

3) Introduce background material for Cavalieri's Geometry of Indivisibles; 

developed as a means to counter the limitations of the Method of Exhaustion. 

4) Introduce Cavalieri's Omnes Concept. 

5) Apply the Method of Indivisibles to show the ratio of a cylinder to inscribed 

cone is 3:1. 

6) Then coming full circle, reproduce Torricelli's own demonstration using his 

version of "indivisibles" to show that a certain solid of revolution though 

infinite in length has surprisingly, only a finite volume. 



A 

D 

B 

E 

C 

F 

2 Galileo: The Paradox of the Soup Dish 

(2.1) In Two New Sciences, Galileo presents a demonstration which shows, in the 

words of Salviati; "how a single point can be understood to be equal to a line." 

The demonstration goes as follows: 

7 

"Take a semicircle c}AFB whose center is C, and around it the rectangular 

parallelogram OADEB; from the center to points D and E draw the straight 

lines CD and CE. Next imagine the whole figure rotated around the fixed radius 

CF, perpendicular to the straight lines AB and DE. It is manifest that the 

cylinder will be described by the rectangle ADEB, a hemisphere by the 

semicircle vAFB, and a cone by the triangle ACDE. We now suppose the 

hemisphere removed, leaving [intact] the cone and those remains of the 

cylinder which in shape resemble a soup dish, for which reason we shall call it 

by that name." 

After proving that the volume of the soup dish to be equal to that of the cone, Galileo 

continues on to the main point of the demonstration with the following; 
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"In the diagram drawn, angle IPC being a right angel, the square of the radius 

IC is equal to the two squares of the sides IP and PC." 

(IC)2  = (IP)2  + (PC) 2 [#1] 

"But the radius IC is equal to AC, and this to GP; and GP is equal to PH." 

IC AC = GP (a) 

PC = PH 	 (b) 

"Therefore the square of the line GP is equal to the two squares IP and PH, and 

four times the former equals four times the latter; ... 

Then substitute the results of (a) and (b) into [#1] yields: 

(GP)2  = (IP) 2  + (PH)2  

or equivalently 

4(GP)2  = 4(IP)2  + 4(PH) 2 	 [#2] 

We note that by construction; 

(A) GN = 2(GP) = (GN) 2  =4(GN)2  

(B) 10 = 2(IP) = (10) 2  = 4(IP)2  

(C) HL = 2 (PH) (HL)2  = 4(PH) 2  

"...that is, the square of the diameter GN is equal to the two squares IO and 

HL." 

(GN)2= (10)2  + (HL)2  

"And since circles are to each other as the squares of their diameters,... 



Area OD :  Area Od = D2 : d2  

(Where "OD " shall denote the circular 

area of diameter D.) 

"the circle of diameter GN will be equal to the two circles of diameter 10 and 

HL," 

Area OGN=[Area 0/0 + Area OHL ] 

"...hence, removing the common circle whose diameter is 10, the remaining 

circle GN will be equal to the circle whose diameter if HL." 

Area 0111,1 Area OGN — Area Oio ] 

But, it should be notice that, this is also equal to the base of the ring whose outside 

diameter is GN and whose inside diameter is IO. 

Thus, since the bases of ring and the cone are equal in area and since, by construction, 

the two figures have equal altitudes, then it follows that the volume of the ring is equal 

to the volume of the cone. 

9 



Since the line segment GN is purely arbitrary, Galileo argues that the volume of the 

ring to that of cone is always equal. Thus in diminishing the figures, (always equal), 

they tend to end, one in a single point and the other in a ring of any size. 

"Now, during the diminution of the two solids, their equality was maintained 

right up to the end; hence it seems consistent to say that the highest and last 

boundaries of the reductions are still equal, rather that one is infinitely greater 

than the other, and so it appears that the circumference of an immense circle 

may be called equal to a single point!" 

10 

Galileo had sent the paradox along to Cavalieri, to caution him regarding the perils 

of using the "method of indivisibles" in geometry. Whether Galileo inserted the 

paradox as a conclusion to be accepted or simply meant to provoke careful thought, is 

unclear. Presumably the paradox had a double meaning here: to illustrate the nature of 

mathematical definitions, and to show the pitfalls of analogy in transferring the word 

"equal" from entities of n dimensions to their supposed counterparts of n-1 dimensions. 

The error here is assuming that once the equality between the solid figures has been 

established, that equality is maintained between the diminishing figures, even when the 

solids cease to be; That is, when the solid ring degenerate into a circle and the cone into 

a point. Indeed, Galileo seems fully aware of this. His only quandary; how one goes 



about charactering the precise point at which "diminution of the two solids" results in 

the "solids" ceasing to be solids, and the equality between the resultant figures no 

longer applies. 

11 
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3 Background: Torricelli's Remarkable Solid of 
Rotation 

One standard example from almost any current calculus text is the so-called 

Gabriel's Horns . The example usually appears in the section on techniques of 

integration or improper integrals and is often one of the "challenging" problems at the 

end of the exercises. It is placed there, perhaps, as an example to show students how 

intuition can be fooled when infinite regions are considered. 

A 

dl 

In 1641 Evangelista Torricelli discovered that a certain solid of infinite length, 

which he called the "acute hyperbolic solid," had rather remarkable and 

counterintuitive properties. The object seemed so paradoxical and astonishing that it not 

only created considerable interest within mathematical and philosophical circles of the 

time, Torricelli himself, could scarcely believe the results. 

5  See, for example, page 539 in Calculus: Early Transcendentals Version by C. H Edwards and D.E. 
Penney, 6 th  edition, Prentice Hall, (2003). 
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Nowadays, we can obtain the figure which is commonly, although perhaps 

inappropriately known as Gabriel's Horn, by taking the graph of y =— 1 
 , with the 

domain x and rotating it about the x-axis. The figure's modern-day moniker refers to 

the archangel Gabriel, who according to tradition serves as the messenger between the 

divine world and that of man; thus linking together the finite realm with that of the 

infinite. 6  While Torricelli made his discovery using methods which predated the 

invention of calculus and were somewhat laborious, today we can calculate the volume 

and surface area of the figure using simple integration techniques. In fact the figure is 

often a topic of demonstration for second semester calculus students. 

The surface of the figure can be calculated as follows; 

S = 1.27ty + (dy / dx)'` dx 

cc 1 	 r > 	 ydx = 2R-  dx = hm[27-t- ln(x)I1  
1 	 1 

= lim[27z-  ln(n)] = +oo 
n—>. 

While that of its volume is found by; 

00 

_ 

V = Pry' dx 

00 

= 	
I
, 	 dx = lim 

n—>co 
1 

=  

 n 
— 	

= 740 — (— 
x 

6  In the New Testament, Gabriel is the angel who reveals to Zacharias that John the Baptist will be born 
to Elizabeth and who visits Mary to reveal that she will give birth to Jesus. According to later legend, he 
is the unidentified angel in the Book of Revelation who blows the horn announcing the Judgment Day. 
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Hence, Torricelli's geometric figure, though infinite in length and infinite in surface has, 

surprisingly, only a finite volume. This leads to the rather paradoxical consequence that 

while Gabriel's horn can be filled up with 7t cubic units of paint, an infinite number of 

square units of paint are needed to cover its surface. Or proposed another way; one 

could fill the horn with paint, but not have enough to paint the outside! 

Although Gabriel's horn is an engaging example for second semester calculus, 

the beauty of the paradox is often obscured by the integral estimate that most students 

find spurious at best; simply there must be some trick that remains hidden from view, 

as the results run counter to common experience. 



4 Eudoxus: The Method of Exhaustion 
(Introducing background material for Cavalieri's Geometry of Indivisibles) 

The procedure attributed to Eudoxus, which came to be called the Method of 

Exhaustion in the 17th century, is based upon the following proposition, (as given by 

Euclid.) 

Proposition 1, Book XII of the Elements; 

"Two unequal magnitudes being set out, if from the greater there be subtracted 

a magnitude greater than its half, and from that is left a magnitude greater its 

half and from this process be repeated continually, there will be left some 

magnitude which will be less than the lesser magnitude set out." 

In other words, given two unequal magnitudes A and B, [Proposition 1], allows us to 

subdivide the greater into 2"  parts, for some n, such that each of the 2' parts is less than 

the smaller given magnitude. 

The process indicates that the magnitude remaining can be made as small as one 

pleased; however, the Greek mathematicians never considered the process as being 

literally carried out to an infinite number of steps; which we shall illustrate with the 

following example. 

Using the Method of Exhaustion, we will seek to prove Proposition 10, from 

Eudoxus, which concerns the ratio of a cylinder to that of an inscribed cone of the same 

height and same base. 

15 
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Proposition 10, Book XII of the Elements; 

"Every cone is the third part of the cylinder that has the same base and equal height." 

Proof. 

We take for granted that any pyramid is the third part of the prism which has the 

same base with it and equal height. (Elements XII. Proposition 7) 

Step 1. Given a cylinder it is always possible to inscribe in it a prism, with a 

sufficiently large number of sides such that the difference between the cylinder and the 

prism is less than any arbitrary chosen magnitude. 

Consider, in fact, inscribed in the cylinder a square-prism; it is bigger that half the 

cylinder (This is readily apparent, if we notice that the area of the inscribed square is 

1/2 that of the circumscribed square.) Therefore the remainder R 1  

between the cylinder and the prism is less than half the inscribed 



C 
	

E 

C 

cylinder. 
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Now, if we divide in half the arc subtended by the side of the 

square and denote the resulting point by C, the triangle ACB will be bigger 

than half the segment ACB; therefore every triangular prism built on the 

triangle and inscribed in the cylinder is bigger than half the portion of the 

cylinder on ABC. So subtracting from the cylinder the octagon prism, we 

get a difference R2  < 
1 
- R, . And continuing in this fashion, inscribe prisms 
2 

with polygonal bases having 4.22 , 4.2 3 , ... sides, by Proposition 1 we get a 

prism (Pr, with 4.2" sides) such that the difference with the cylinder is smaller than any 

pre-assigned magnitude, however small. 

Step 2. Similarly, given a cone it is always possible to inscribe in it a pyramid 

with sufficiently large number of sides such that the difference between it and the cone 

is less than any pre-assigned magnitude, however small. 

Step 3. (This is the double reductio ad absurdum.) Let 0, V be the volume of the 

cylinder and cone respectively. If, for the sake of argument, the volume of the cylinder 

does not equal three parts the cone, i.e., 0 # 3 V than either 0>3 V or 0<3 V V. We shall 

show that both cases lead to a contradiction. 



Case I 
Volume 

(cylinder) 
> 3 Volume 6 

(cone) 
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Assume: 0 > 3 V. 

Inscribe in the cylinder successive prisms so that we get a prism- Pn  such that the 

difference from the cylinder is less than the difference 0-3 V, 

That is 

(0 — Pn )<(0 — 3 V) 

Volume 
(cylinder) 

Volume 
(cylinder) 

3 Volume 6 
(cone) 

or equivalently, 

0> Pn >3V 
	

(i) 

Volume 
(cylinder) 

> Volume 
(pnsm) 

> 	 3 Volume 
(cone) 

But by Euclid's Proposition 7, we know that prism- Pi, is triple of the pyramid- P„ 

with the same base and height, inscribed in the cone and this pyramid is less than V. 

That is, 

= 3fin  < 3V 

Volume 
(pnsm) 

3 Volume 
(pyramid) 

< 	 3 Volume 
(cone) 

But this can not be, since it contradicts the results of our initial assumption (i). 
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Thus, it is not the case that 0 > 3 V. 

Volume 
	

3 Volume 
(cylinder) 

Case II 

Assume: 0 < 3 V, or equivalently V> 0/3. 

Let us inscribe in the cone, successive pyramids until we get a pyramid- P n  that differs 

from the cone by less than (V— 
1 

— 0). 
3 

That is, 

1 
(V— P n )<(V— 3 0) 

Volume 
(cone) 

Volume 
- (pyramid) 

Volume 
(cone) 

1 Volume - 3 	 (cylinder) 

Then it follows, 

V> P n > —0. 
3 

Volume A 	 > Volume 
(Pyramid) 

> 1 Volume 3 	 (cylinder) 

Now, by Euclid's Proposition 7, P n  is one-third of a prism with the same base and 

height; and this prism is less than the cylinder. 

That is, 

1 	 1 
Pn= 

3 
—Pn< 

 - 0 

Volume 
(pyramid) 

= 1 Volume 
3 	 (prism) 

< 1 Volume B 3 	 (cylinder) 



20 

But this can not be, since it contradicts the results of our initial assumption (ii). 

Thus, it is not the case that 0 < 3 V. 

Since neither 0 > 3 V nor 0 < 3 V was found to be true, the conclusion from both cases 

is that 0 can only be equal to 3 V. 

The method of exhaustion, although equivalent in many respects to the type of 

argument now employed in proving the existence of a limit in differential and integral 

calculus, does not represent the point of view involved in the passage to the limit. The 

Greek method of exhaustion, dealing as it did with continuous magnitude, was wholly 

geometrical, for there was at the time no knowledge of an arithmetic continuum, The 

inscribed prism could be made to approach the cylinder as nearly as desired, but it 

could never become the cylinder, for this would imply an end to the process of 

subdividing the sides. However, under the method of exhaustion it was not necessary 

that the two should ever coincide. By an argument based upon the reductio as absurdum, 

it could be shown that a ratio greater or less than that of equality was inconsistent with 

the principle that the difference could be made as small as desired. Thus Eudoxus 

avoided such unclear concepts as a prism with an infinite number of sides which 

ultimately coincided with the cylinder. 

4.1 More Exhaustion: 

(Introducing background material for Cavalieri's Geometry of Indivisibles) 

(4.1.1) The method of Exhaustion was rigorous, but its reliance upon a proof by 

contradiction laid it open to criticism in the mathematical community of the 16 th  and 

17th  century. In many circles, proofs by contradiction were considered inferior to direct 

proofs, on account of their lack of causality. This view certainly had historic 
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precedence, as no less than Aristotle had explicitly asserted that direct proofs were 

superior to proofs by contradiction on grounds that they clearly gave the sense of how 

the results had been obtained, making them, arguably, more scientific :7  

By the beginning of the 17th  century several attempts had been made to develop 

geometry along a more direct approach that would overcome both the complexities of 

and objections to the Exhaustion method. However, it was Cavalier's geometry of 

indivisibles, presented in his Geometria indivisibilius continuorum nova quadam 

ratione promota, 8  that received the most mathematical and philosophical attention. 

Geometria's topic, the quadrature and cubature of figures was of great interest to 

mathematicians of the 17 th  century; and the scarcity of publications on the subject only 

served to enhance its status. Though, it's questionable the number of mathematicians 

who actually studied the text in detail; its almost 700 pages are so difficult to follow 

that Maximilien Marie9  suggested that if a prize existed for the most unreadable book, it 

should be awarded to Cavalieri for Geometria. Nevertheless, the book remained well 

known. Fortunately for us today, the task of studying Cavalier's method is made much 

easier by two excellent works on the subject, Andersen (1985) and Giusti (1980). 

(4.1.2) In the preface to Geometria, Cavalieri recounts that he had 

been led to his method of indivisibles by reflecting on the surprising 

fact that solids generated around an axis from plane figures did not 

have the same ratio as that of the generating figures. When one considers a square and a 

7  Posterior Analytics 1.7 
Geometry, advanced in a new way by the indivisibles of the continua 

9  Histoire des sciences mathematiques et physiques physiques. Gauthier-Villard, Paris, 1883-1888 
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right triangle whose legs are the base and the height of the square and whose 

hypotenuse is the diagonal of the square, the ratio of the square to the triangle is 2:1. 

However, if we rotate the square and the triangle around the height of the square, we 

obtain a cylinder and a cone whose ratio is 3:1. After some wrong attempts at 

investigating this phenomenon, Cavalieri hit upon the key idea of his method: 

"Having thus considered the above mentioned cylinder and the cone, I found 

what I call in Book II, all the planes of the cylinder, to have the same ratio to all 

the planes of the cone as that of the cylinder to the cone." 1°  

While Cavalier's method of indivisibles was developed as a means for of 

quadrature and cubature of figures, the method per say, was not employed to calculate 

areas and volumes. Rather, Cavalieri would seek to determine areas and volumes by 

forming a ratio between figures. The strategy was simple; if ones aim was to determine 

the area or volume of some figure of interest, one would attempt to place it in ratio with 

some "nice" figure; namely, a figure whose area or volume was easily known — like a 

parallelogram. 

Though, Cavalieri's method was new, its foundation was not. Keenly aware that 

any novel approach to quadrature and cubature of figures would suffer the arrows of 

critical attack, Cavalieri felt compelled to justify his method conformed to classic 

10 Geometria indivisibilius continuorum nova quadam ratione promota. Cavalieri B. Bononiae (1635) 
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Greek notions of mathematics. In particular, Cavalieri meant to form a ratio and for that 

he needed to call upon Eudoxian theory of magnitudes. 

(4.1.3) Eudoxus of Cnidus (408?-355? B.C.), introduced the concept of magnitudes in 

response to a crisis in Greek mathematics that occurred during the latter half of the 6th 

 century BC. Prior to this time, Pythagorean doctrine held sway over ancient Greek 

mathematics. That the Pythagoreans, (originating in the 6th  century B.C.), had distinct 

cult-like overtones is well known; as well as their motto "all is number." The claim that 

all phenomenon in the universe could be reduced to numbers or their ratios is attributed 

to them; by number, the Pythagoreans meant "whole" numbers. Further, a ratio between 

two whole numbers, such as a:b, was not a fraction and therefore another number, as in 

modern times. It was a relationship between two numbers, or possibly better put, 

simply an ordered pair. This is not to say that actual fractions expressing parts of a 

monetary unit or measure were not employed during the Classic Greek period; they 

were in fact a part of everyday life. But these fractions were employed in commerce 

and the trades by the slave class and non-citizens, thus placing them outside the pale of 

Greek mathematics proper and learned freemen who dismissed the practical arts in 

favor of the higher truths that only the philosophies could offer. 

(4.1.4) Two factions were said to be proportional (a:b = c:d), if a is either some integral 

part or integral multiple of b, just as c is to d. This 

discrete view of numbers was also applied to geometric 

lengths, areas and volumes. In particular, it was believed 

F1 	 F2  
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by the Pythagoreans that any two line segments were commensurable, that is, were 

multiples of a common unit. On this assumption, the theory of integer ratios and 

proportions readily extended so as to apply to lengths and areas of simple figures such 

as line segments and rectangles. 

For example, the ratio of the lengths of the two line segments // : /2  is equal to 

the ratio 2:3 of integers, while the ratio of the area of the two rectangular figures 

F1  : F2 is equal to 4:6. Thus we can talk about proportions // : l2  = F1 : F2 = 2:3 

Following this logic, area relationships for simple geometric figures with 

commeasurable dimensions, are easily established. 

For example, given two rectangular figures F 1  and F2 with commensurable 

bases b 1  and b2  and equal heights h, the ratio F 1 :F2  of their areas is equal to the 

ratio b i :b, of their bases. For if b i=m•c and b,=n•c, (where m and n are integers), 

the figure F1  consists of m sub-rectangles with base c and height h, while figure 

F2 consists of n such sub-rectangles. Hence F1 :F2=m:n=b1:b2. 

C —c--c c c H 

F2 
3 	 n 

F1 
 

2 3 	 m     

h       h 

b1 b2 
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(4.1.5) During the latter part of the 5 th  century B.C., the Pythagorean were 

startled and disturbed to discover that there exists pairs of line segments, such 

as the edge and diagonal of a square, that are not commensurable; that is they 

cannot be subdivided as integral multiples of segments of the same length. Hence the 

ratio of the lengths could not be expresses by the ratio of two integers. 

These ratios (incommensurables) are expressed in modern mathematics by 

irrational numbers, but the Pythagoreans could not accept such numbers as they 

challenged fundamental doctrine; posing a problem that was central in Greek 

mathematics, namely the relationship between the discreet and the continuous. The 

Pythagoreans had identified number with geometry. However, the existence of 

incommensurable ratios shattered this identification, making the theory of integral 

proportions useless for the comparison of ratios of geometric quantities and thereby 

invalidating those geometric proofs that had utilized proportionality concepts. 11  

(4.1.6) This crisis in the foundations of geometry was resolved by Eudoxus by 

introducing the concept of magnitudes. Although it is not easy to determine exactly 

what was meant by magnitude, as there never seems to have been any explicit 

axiomatization of the properties that they should satisfy; clearly the idea originated 

from intuitive notions of extension. Magnitudes where categorized into "kinds" such as 

line segments, angles, areas, volumes, weights and time, which could vary continuously. 

This was opposite of the Greek concept of number, which following the Pythagorean 

school, could jump from one value to another. 

li 
Legend has it that the Pythagorean philosopher Hippasus (ca. 500 BC) used geometric methods to 

demonstrate the irrationality of-12, while at sea and, upon notifying his comrades of his great discovery, 
was immediately thrown overboard by the fanatic Pythagoreans. -So much for academic freedom. 
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What Eudoxus accomplished was to avoid irrationals as numbers. Moreover, 

after the concept of magnitude was accepted, Greek mathematicians did not attempt to 

identify number with geometric quantities; thus, they avoided giving numeric values to 

length of lines, sizes of angles and other magnitudes as well as ratios of magnitudes. 

The question; "What is the area of a circle?" would have no meaning to the Greek 

geometers. But the question; "What is the ratio of the areas of two circles?" would be a 

legitimate one, and the answer would be expressed geometrically; "The same as that of 

the squares constructed on the diameters of the circles." 

The unfortunate consequence of Euclid's scheme, though, was to force a sharp 

distinction between number and geometry, for only the latter could handle 

incommensurable ratios; driving mathematician into the ranks of the geometers as 

geometry became the basis of almost all rigorous mathematics for the next two 

thousand years. 

In Book V of Euclid's, The Elements, (Based upon Eudoxus' work), the 

following definitions are of particular interest to the discussion of Cavalieri. 

Definition 3. 

"A ratio is a sort of relation in respect to size between two magnitudes of the 

same kind. " 

Definition 4. 

"Magnitudes are said to have a ratio to one another, which are capable, when 

multiplied, of exceeding one another." 

The meaning of definition 4, is that the magnitudes a and b have a ratio if some integral 

multiple n of a exceeds b and some integral multiple of b exceeds a. Apparently, the 
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definition excludes the concept that the infinitely small quantity which is not zero, 

called the infinitesimal. Euclid's definition does not allow a ratio between two 

magnitudes if one is so small that some finite multiple of it does not exceed the other. 

The definition also excludes infinitely large magnitudes because then; no finite multiple 

of the smaller one will exceed the larger. 

Further, Greek assumptions concerning magnitudes implied that when any two 

magnitudes, A and B, of the same kind, are given then: 

1) A and B can be ordered so that one of the following holds: 

A>B or A=B or A<B 

2) A and B can be added; the result denoted by A+B, is magnitude of the same kind as A 

and B. 

3) If A>B then B can be subtracted from A, forming the magnitude A—B of the same 

kind as A and B. 

4) A and B can form a ration [A: B]. 

The above information should give us sufficient background to continue with 

the discussion of Cavalieri. 
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5 Cavalieri: The Omnes Concept 
(5.1) On page 8 of Geometria, Cavalieri introduces some preliminary concepts he 

would later draw upon for his central definition of "all the lines." 

"Given a closed plane figure, 

ABCD and a direction RS, called 

regula; the figure will have two 

tangents, 12  AE and CG, parallel 

to the regula; moreover any line 

parallel to the regula situated between the two tangents for example BD, will 

intersect the figure line the segments, whereas any line parallel to the regula 

outside the tangents will have no points in common with the figure." 

(5.2) "All the lines,"-the first of Cavalier's omnes concepts 

12  Here Cavalieri's idea of tangent differs from the modern notion; "I say that a straight line touches a 
curve situated in the same plane as the line when it meets the curve either in a point or along a line and 
when the curve is either completely to the one side of the meeting line [in the case when the meeting is a 
point] or has no parts to the other side of it [on the case when the meeting is a point] or has no parts to the 
other side of it; in the case when the meeting is a line segment]." 
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In Book II of Geometria, Cavalieri introduces his concept of "all the lines" (Omnes 

lineae). 13  He explains the concept as follows; 

"Let ABC be any plane figure, and EO and BC two opposite tangents of the 

plane figure, however drawn. Consider then two mutually parallel planes, 

indefinitely extended, drawn through EO, BC of which the one that, for example 

passes through EO is moved toward the plane passing through BC, always 

keeping parallel to it until it coincides with it. Thus, the intersections of this 

moving plane, or fluent, and the figure ABC, which are produced in the overall 

motion, taken all together, I call: all the lines of the figure ABC (some of which 

are the LH, PF, BC) taken with reference to one of those, such as BC: of 

rectilinear transit, (recti transitus), when the planes intersect the figure ABC at 

right angles; of oblique transit when they intersect it obliquely, (obliqui 

transitus)." 

recti transitus  obliqui transitus 

In other words, single lines can be thought of being formed by the intersection of the 

moving plane to that of the given figure. When the lines are taken as a collection they 

are called "all the lines;" also referred to as the indivisibles of the figure. Further, 

Cavalieri divides collections of lines into types, dependent upon how they are 

"generated' by the moving plane. When the moving plane is perpendicular to the given 

13  Omnes lineae talis figurae, sumptae regula una earundem 
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figure, "all the lines" are referred to as recti transitus. However, when the moving 

plane is inclined to the given figure, "all the lines: are to be referred to as obliqui 

transitus. Cavalieri did not make much use of "all the lines" obliqui transitus and will 

not enter our discussion of his method. 

We shall adopt the notation "OF(/)Bc" denote the concept of "all the lines" of the 

figure F with reference to the regula BC ("0" stands for omnes). Also, when the regula 

is obvious or when its inclusion adds little to the discussion, we will routinely drop the 

subscript. Also, unless otherwise stated "all the lines" should be regarded as recti 

transitus. 

In regards to the conceptual origins of Cavalier's "all the lines," it is quite 

possible that he was inspired by intuitive notions of infinitesimals. It is known he 

sought analogies between that of a figure to its collection of indivisibles to that of cloth 

composed of thread and a book assembled from pages. 14  However, in order to provide a 

solid foundation for his method, he had to suppress any intuitive notions of 

infinitesimals and keep within the Greek tradition by excluding infinities from proofs. 15  

(5.3) To deal with solid figures he introduced "all the planes;" where he imagined the 

one plane moving towards the other, remaining parallel to it. "All the planes" of solid 

figures, taken with one of the planes as regula, consists of the intersections between the 

solid and the moving plane. 

14• 	 • 
" it is manifest that we can conceive of plane figures in the form of cloth woven out of parallel threads, 

and solids in the form of books , which are built out of parallel pages." Exercitatones Geometrica Sex 
(Cavalieri 1647, pp3-4)] 

1 ' "But the treads in cloth and pages in a book are always finite and have some thickness, while in this 
method an indefinite number of lines in plane figures (or planes in solids) are to be supposed, without 
any thickness" Exercitatones Geometrica Sex (Cavalieri 1647, pp.3-4)] 
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Os(p) 

Cavalier made two key assumptions concerning his omnes concept. 

1) That each planar figure has an associated collection of lines called, "all the 

lines." 

Similarly, each solid figure has an associated collection of planes called, "all the 

planes." 

In more contemporary language we might refer to this as a "transformation" or 

"mapping. 

That is, 

each planar figure "maps" to its collection of lines 

B 	 C 

and, 

F —> OF(/), 

each solid figure "maps" to its collection of planes 

0, (1) 

s —> os(p). 
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However, Cavalieri never laid out any rules which this transformation should follow; 

and questions concerning the composition of a continuum, most certainly, would have 

ruled out any explicit "point for point" type of mapping. Nonetheless, he remained 

content with asserting that this association between figures and their collections of lines 

and collections of planes, existed. 

2) That OF(/)- "all the lines," and Os(p)- "all the planes," are magnitudes in the 

Eudoxian sense, which are capable of being put in a ratio. 

Moreover, since Cavalier's aim was to exploit collections of lines, (and 

collections of planes), to obtain information about their associated figures, he 

incorporates these two assumptions into his first fundamental theorem. 

(5.4) Theorem 11.3 

Fl : F2 0  F, 	 ° F, (1) 
	

(1) 

F, 	 F2  

0, (1) 	 OF (1) 

: S2  = 0s, (p) 0s, (P) 
	

(2)   

D (p) 
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(Here we assume that the lines of F1 and F2 are taken with the respect to 

same regula. Likewise, for S1 and S2.) 

While the statements above looks innocent enough, two major problems present 

themselves. 

A) Collections of lines would seem to be composed of an indefinite number of lines; 

therefore, the existence of a ratio between two such collections, which conformed to the 

Eudoxian theory of magnitudes, would seem problematic. After all, Eudoxian theory 

apparently excluded infinitesimals as magnitudes capable of being put in a ratio. 

B) Since Cavalieri believed the use of infinitesimals must be rejected over foundational 

concerns, one assumes that any formal theory of indivisibles must be embraced as 

the mathematical equivalent to Atomism. But, if following accepted Aristotelian 

doctrine, continuous divisibility of the continuum is assumed, where does this place 

indivisibles and the composition of the geometric figures they are associated with? 

16 

In response to the first concern, Cavalieri explained that it was not the number of lines 

in a collection which is used in a comparison, but; 

"the magnitude which is equal to being, congruent with it, the space occupied 

by the lines." 17  

16  Cavalieri never seems to have taken a definite position over whether indivisibles actually compose the 
figures they were associated with. His hesitation is evident in a letter to Galileo dated June 28, 1639; "I 
did not dare to affirm that the composition is composed of indivisibles, but showed that between the 
continua there is the same proportion as between the collection of indivisibles." 
Galileo Galilei Opere, vol 18 p.67 

17  Geometria, pp. 111: magnitudinem, quae adaequatur spatio ab eisdem lineis occupato, cum illi 
congruat. 
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In other words, though a collection of lines might be infinite with respect to the number 

of lines, it is finite with respect to extension in space. 

As to the second concern, Cavalieri left open the following two possibilities; 

• If one conceives of the continuum to be compose of indivisibles, then a given 

plane figure and the "magnitude of all the lines" will be one in the same thing. 

• However, if one assumes a continuous divisibility, then it can be readily 

maintained that magnitude of the individual lines consists only in terms of 

lengths, but when taken as a collection as in "all the lines", the lines must be 

considered at their actual positions. Thus, the magnitude of the collection is 

limited by the same limits as those of the given figure. 

Further, Cavalieri was to argue, if the indivisibles do not make up the continuum, then 

the plane figure consists of "all the lines" plus something else (aliquid aliud.) Then the 

space occupied by "all the lines" is limited and the collections of lines can be added, 

subtracted and ordered. Hence, by Eudoxian theory, a ratio between two collections of 

lines is established. 

(5.5) Other omnes concepts... 

Cavalieri introduced a variety of improvised concepts to be used for the 

quadrature and cubature of figures. 
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In addition to "all the lines" of planar figures, Cavalieri introduced the concept of "all 

the similar planes" of planar figures. Of particular interest to the discussion are "all the 

squares" and "all the circles" of plane figures. The symbols " q/ " and " 0/ "shall 

denote the square and the circular disk on line 1, respectively. 

OF( 0 

That is, each planar figure "maps" to its collection of squares. 

F —> 0 F(Ol), 

That is, each planar figure "maps" to its collection of circular disks. 

(5.6) The ut-unum principle 

Cavalieri employed the following property regarding his omnes concept, which 

we shall refer to as the ut-unum principle. 

"As one antecedent is to one consequence so are all the consequents "18  

For plane figures the principle is illustrated as follows: 

F , 	 F 2 

A 
	

M 	 E 

18  Geometria, pp. 116: ut unum antecedentium ad unum consequentium, ita esse omnia antecedentia ad 
omnia consequential. 
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If two figures, F1  and F2 have their bases situated on the same line, have equal altitudes, 

and if each pair of corresponding line segments, / I  (= BR) and 1? (= RD) in 0 Fi  (0 and 

0 F2  (1) respectively, are in the same ratio, then 0 F1  (1) and 0 F,  (1) are also in that ratio. 

Thus: 

11:12= AM:ME 
	

(3) 

(for all corresponding 4/  and 12 in figures F1  and F2 respectively.) 

Then: 

0 Fi  (0 :0 F2  (0 = AM:ME 	 (4) 

(5.7) Theorem II. 23 (generalized ut-unum principle); 

Cavalieri generalized the ut-unum principle, so that it came to mean that "0" 

could be applied to relations between line segments, in which a certain consistency was 

maintained. 

For example, consider the following 

figures F1  and F2. Assume that for each 1 1 

(=BR) and corresponding 12 (=RD) that, 1 1 = 

2.12  for any arbitrary segment BD. Then the 

Generalized ut-unum principle asserts that the 

following relations hold: 

OAA4c (0 = 20mcF(0 

and 

OAMC (q0 = 40mcF(q0 



(5.8) Theorem (II.4) (often referred to as Cavalieri's principle.) 

Using the ut-unum principle and Theorem 11.3 he proved the following: 

"If two planar figures have equal altitudes, and if sections made by lines 

parallel to the bases and at equal distances from them are always in the same 

ratio, then the plane figures also are in this ratio." 19  

Thus if two plane figures like F1  =ACM and F2=MCE have the property that for each 

line BD parallel to base AE the sections BR and RD, in F1  and F2 respectively, satisfy 

the relation: 

38 

Then: 

BR : RD = AM : ME 

F1 : F2 = AM : ME  
M 
	

E 

(5.9) Postulate H.1 

"All the planes of congruent figures are congruent." 

F2 0 Fi  (1) 0 r, (1) 
	

(7) 

Cavalieri offered the following explanation on what he meant by congruent collections 

of lines. 

19  Geometria, pp. 115 



39 

"When two congruent figures, F1  and F2, are placed so that they coincide, then 

each line in 0 F  (1) will coincide with exactly one line in 0 F,  (1) (and visa versa), 

the collections of lines are called congruent." 20  

A 	 A' 	 A 	 A' 

F2 
	

OF, ( 1) 

C 	 B' 	 C' 	 B 	 C 	 B' 	 C' 

A A ' A 	 A'                                                 

F2 0,(1) 	 0,(1)                                                                                                                             

B 	 B'        
A A' 	 A                                                             

F, 2 OF,(l)                                                                                                                           

B Cc' B 	 C 

Although explicitly stated, congruency between collections of lines seems not to have 

played a great role in Cavalier's theory; thus in applying Postulate II.1, he use only the 

implication 

F2 0  Fi  (0 = ° F2 (0 

	

(8) 

Cavalier's presumption that collections of lines constitute a Eudoxian magnitude 

meant that collections could be added, subtracted, ordered and be put in a ratio. The 

properties of addition and ordering were extended to his omnes concept as follows; 

F, +F2 	 0 F  (1) = 0 Fi  (1) + 0 F2  (1) 
	

(9) 

20 Exercitationes , pp.200 
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and 

F1>F1 0 F, (1) > 0  F2 (1) 

	

(10) 

Moreover, since it was crucial to Cavalier's method that the final property, concerning 

Eudoxian magnitudes' ability to be put in a ratio, be extended his omnes concept, he 

found it necessary to prove the following theorem. 

(5.10) Theorem II.1 

"Collections of lines are magnitudes that have a ratio to each other." 21  

Cavalieri's aim was to show that collections of lines fulfilled Definition V.4 of 

Euclid's Elements. 

Proof: 

Let 0 Fi (1) and 0 O . (1) be the collections of lines of two plane figures, 

F1  = GOQ 

and 

A 

F2       

F2 = EA G 

21  Geometria pp.13 
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If collections of lines were indeed Eudoxian magnitudes, which meant that Cavalieri 

had to show that they can be multiplied to exceed one another. That is, he had to show 

that there exists some n and m such that 

o Fjo+o,; (0+... 00) 1>f oF2 0±0F2 (0+...0F2 (01 

n times 	 m times 

Case 1: 	 AR = OP 

A 

He supposed that the altitudes AR and OP of the two 

figures are equal. 

By arguing that each // (= NS) in 0 Fi  (1) can be 

multiplied to exceed the corresponding /2  (= LM) in 0 F2  (0 he concluded that a multiple 

of 0 F. (1) greater that 0 F2  (1) exists. 

That is, for each /, and corresponding 1 2  in 0 Fi  (/) and 0 F2  (1) respectively, there 

exist some n Z such that 

n ( 1 ) > 1 2  , 

/2, 
/2  2 

12, 



Further, there exists some n = .n; such that 

n 0 ,, (1) > 0 F,  (1) 

Case 2: 	 AR # OP 

Assume, with no lack of generality, that AR> OP. 

Cavalieri split the altitude- AR into parts equal to OP and a remaining part which was 

not greater than OP.  

R 

For the sake of simplicity he assumed that AR = CR + AC 

(where CR = OP and AC < OP ). 

Through point C he drew a line CO parallel to EG and moved the figure- BAD into 

figure- HFE. 

I ------- 	
I / 

B 

7 

H 
	

E 	 R 

42 
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As in the first part of the proof, he concluded the existence of a multiple of OGOQ(l) 

which is greater that OEBDG(0 + OHFE(l) and hence greater than OEA G(l) he used the fact 

that each 11(= NS) in 0G0Q(/) can be multiplied to exceed the sum of the 

corresponding 

l2 (= LM) in OEBDG(l) and l3  (= YT in OHFE(0 

That is n (1 )> 1 

then there exists some n = max  n; such that: 

nO Fi  (1) > [OEBDG(l) OHFE(1)] = O F2  (1) 

Using (9) we can simplify the above expression to: 

nO Fi  (1) > 0 F2  (1) 

(5.11) Theorem 11.2 

= F2 	 0,i  (1) = 0 F., (1) 	 (11) 
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A very important element in the foundation of Cavalier's method, where he asserts that 

figures of equal area imply that the magnitudes of their collections are also equal. 

Proof: 

Cavalieri let the figures F 1  be described by AEB and figure F2 by ADC, and 

assumed the figures have equal areas, that is AEB = ADC. 

His aim is to show that OAEB(0 = ()ADA. 

F2 

Cavalieri used superposition for this, by first placing the 
A 

figures so that they had the area ADB in common. He 

then placed the residual of one figure over the other and continued the process "until all 

the residual parts have been placed over each other." 

Since the two figures are split up into congruent parts, and these parts, by Theorem II.1, 

have equal collections of lines, then the figures also have equal collections of lines. 

(5.12) Theorem II.11 

Pi 	 hi 
1 	 / Pi / h2 

 	 J 

bi 	 b2 

Assume P 1  and P2 are two parallelograms with 	
A 	  

altitudes h1 and h2  and bases b 1  and b2, then: 
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O il  (q0 : O p2  (q0 = qb] : qb2)•(hi:h2) 
	

(12)  

(The regula being parallel to the bases.) 

To achieve this result Cavalieri first considered the case where h 1 =h2  

0,,(ql) 	 0,2(Ell) 

All corresponding squares in the collections of squares of the two parallelograms are in 

constant ratio Elbj: qb2 since their altitudes are equal. 

Then through the generalized ut-unum principle 

0 pi  (DO AB: 0 p2 G11) AB = (11b I : Elb 2) 
	

(13) 

Then considering the case where h/#117 and qbi= qb2 

1 

	

I 	 p, 

	

I 	 i i 

	  
Pi 	 A 172 
	 / J         

0,2 (110 

Cavalieri then appealed to Book V, definition 5 of the Elements, which states: 
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"Magnitudes are said to be in the same ratio, the first to the second and the third 

to the fourth, when, if any equimultiples whatever are taken of the first and third, 

and any equimultiples whatever of the second and fourth, the former 

equimultiples alike exceed, are alike equal to, or alike fall short of, the latter 

equimultiples respectively taken in corresponding order." 

This definition says that A:B = C:D if when for all whole numbers "n" and "m" it is the 

case that if nA is greater, equal, or less than mB, then mC is greater, equal, or less than 

nD, respectively, that is: 

A:B = C:D 	 if for every whole numbers "n" and "m" it follows; 

mA>nBmC<nD 

mA = nB mC = nD 

mA<nBmC<nD 

Concerning the parallelograms P 1  and P2, Cavalieri presumed that following; 

nhl > mh2 	 = 	 nO pi (110AB> m0 p,(110AB 

nhl < mh2 	 nO P  (q1)AB < MO p2  (q 1)AB 

nh j  = mh2 	 = 	 nO Pl  (q l)AB = MO p2  (q l)AB 



Thus, by Euclid's definition 5 

Op, (q l)AB : O P2  (/)AB =(///: h7) 	 (14) 

The required relation (12) then follows from a combination of (13) and (14). 
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(5.13) Theorem 11.5 

Theorems 11.5 of Geometria states that 

when F1  and F2 are similar plane figures 

with altitudes h 1  and h 2  and "bases" b/ and b2 then 

F1 :F2  = (h,:h2) -(h i:h2) = (hi:h2) •(b, :b2) 

("bases" here mean "horizontal altitude" of auxiliary figures - to be 

introduced) 

For the proof Cavalier's 

relied upon the ut-unum 

principle along with an 

auxiliary figure with base b /  

and altitude h2. To obtain this, 

he transformed the figures F1   
F2       

A 2     
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and F2 in two steps into figures H 1  and H2. 

Step 1: 

First he constructed figure Gi with the same altitude- h i  as Fi , (i = 1,2) such that each 

" 1" (= T;  U; ) in 0 Gi  (1)A C was defined by having its one endpoint at B,C; and by being 

equal to the line segment, or to the sum of the line segments, of the corresponding "1" 

in 0 ,,(1)Ac. 

That is: 

T;  U;= P,Q,+ 

Since by construction, O F  (1)AG  and O G, (1)AG are equal, then Theorem 11.2 implies the 

following: 

F1 =G 1  and F2=G2  (1.1) 

Step 2: 

Cavalieri then transformed the figure G, into Hi  with altitude h i  and base bi, (i =1, 2) by 

the same process as before, but now considering the collections of lines with respect to 

the regula BD: 

Thus "1" (= KiZ,) in 0 „ (1) BD was defined by having the endpoint- Z, on the segment 

E,D, and by having segment ZiK, equal to its corresponding segment Xi 
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Since, by construction, 0 G,(1)BD= H  (l)BD, then (Theorem 11.2) implies that; Hi= 

Combining the results above with those of (1.1), it follows: 

Fi = G I  = H1  and F2= G2 = H2 (2.1) 

The advantage of using the figures H1  and H2 instead of Fi  and F2 is that each line- " / " 

of O Hi  (1), both with respect to the regula AC and the regula BC, is a line segment 

having one endpoint on an axis, and not a sum of arbitrarily situated line segments. 

Step 3: 

Cavalieri was then able to 

construct auxiliary figure H3 with 

base E 1 D 1  = h 1  and altitude  
Z,     

C3D 1 = h,, by imposing the condition that for each 1' 3  (=YZ1 ) in 0 ,3 (1)1D, to each 

corresponding 	 / (= K1  Z1 ) in 0 H, (1)BD, be defined by the relation; 

— hi:h2; 

Thus: 

K1 Z1 :YZ 1  = C 1 D 1  :C2D2  = h,:h2  (3.1) 



Since the above relation is true for all K 1  Z 1  and YZ 1  of figures H1  and H3 respectably, 

using Cavalieri's principle (Proposition 11.4), it follows that 

1-1 1 :H3  = 	 (3.2) 

Step 4: 

13 

Next Cavalieri sought to prove that for 

each pair of corresponding 13 (= YN) in 

O H 3 (1)AC and /2  (— K2L2) in O H2 (0ACthe 

following relation held; 

13 :12  =11 1 :112. 
Z, 

b2        

He noticed that similar figures F 1  and F2 imply that H1  and H2 are also similar. 

He let; N_Di (of H 3  )— L2D2 (of H 

and denoted line segments: 

/3= YN and 17= K21, 2 

By construction, the point Y is determined by the relation; 

YN=K 1 L 1  
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and 

K1  Z1 : YZ1  = hi:h2 *The last equality from (3.1) 

Since K 1 Z1  = L T D )  and YZ 1  = L2D2, Cavalieri concluded that; 

: L2D2 = h i :h2  ( 4.1) 

Noting that 13 =1(-11.1 and /2  =K2L2 ; the results- (4.1) means that the line segments /3 and 

/2  are similarly situated in the similar figures H1  and H2. 

Thus: 13 12  =1/,:h, 

Applying Cavalieri's principle (Theorem 11.4) to the above ratio, it follows that; 

H3:H2=h i :h, (4.2) 

Using previous results; Fi =1/1  and F2=H2 (2.1) 

H1:H3=h 1:h (3.2) 

H3:H2=111:h? (4.2) 

Then; 



F1 :F2  =H1 :H2  =(H1 :H2)•(H3 :H3 ) —(111:H3).(H3:112) =(h1:h2)•(hr:h2) 

Further, since F1  and F2 are similar figures then, by construction, G 1  and G2 are also 

similar figures. 

This implies that; (h i :h2) = (b i :b2) and it follows that; 

F 1 :F 2  =(h 1:h2).(b 1:b 2) 
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This is exactly what we wanted to prove. 
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6 The Method of Indivisibles Applied: 

(6.1) Using the tools available to us now, (plus two other theorems to be introduced 

shortly), we can now outline how one can obtain, through the method of indivisibles, 

the result that a cone and a cylinder with the same base and equal height are in ratio to 

each other as 3:1. 

We first establish a theorem about triangles and parallelograms. 

Theorem 24. 

"Given any parallelogram and a diagonal in it, all the squares of the 

parallelogram are three times the squares of any of the triangles formed by the 

above mentioned diagonal, with a common reference one side of the sides of the 

parallelogram. ,22 
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Proof: Let CIACGE be a parallelogram with diagonal 

CE. 

The claim is that, with reference to EG 

OAcGEGOEG — 30EGEGOEG, 

where the triangle; ACGE can be replaced by the 

triangle; AAEC. 

For the remainder of the demonstration the segment EG as regula will be 

understood, but omitted from print for simplicity. 

22  Geometria, pp. 78 



Step 1:  

Let B and F be the midpoints of line segments AC and EG, respectively. 

Similarly, let D and H be the midpoints of AE and CG, respectively. 

For any arbitrary RV parallel to EG and intersecting BF and CE in the points S and T, 

the following can be shown: 

RT = (AC : AE).(RE) 

TV = AC — RT = AC — (AC : AE)•RE 

RS = 1I2AC 

TS= 1/2 AC — TV 

= 1/2 AC — [AC — (AC : AE)•RE] 

= (AC : AE)•RE — 1I2AC 

Then: 

qRT + ETV = (RT)2  + (TV)2  

= (AC : AE)-(AC : AE).(RE).(RE) + [AC — (AC : AE).RE] • [AC — (AC : AE).RE] 

= 2 {(AC : AE)•(AC : AE)•(RE)•(RE) — (A C)-(AC).(RE : AE) + 1/2 (AC). (AC)} 

= 2 {(AC : A E)2  .(RE)2  - (A C)2 •(RE : AE) + 1/2 (AC)2 } 
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and; 

IRS + El TS = (RS)2  + (TV 

=1/4 (AC).(AC) + [(AC : AE).(AC :AE)•RE - 1/2 AC]•[(AC : AE).(AC : AE).RE -1/2 AC] 

= (AC : AE)- (AC : AE).(RE)- (RE) - (AC)-(AC)-( RE : AE) +1/2 (AC).(AC) 

= (AC : AE)2  •(RE) 2  - (AC)2  .(RE :AE) + 1/2 (AC)2  
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Combining the results from above, yields:          

R -s T     

ORT + EITV = 21:IRS + 2EITS (i) 
A B C A B       

(for any arbitrary RV parallel to EG) 

Where "I" denotes the square on 

E 	 F 	 G 	 E 
	

F 
	

G 

the line segment. 

Cavalier's generalized ut—unum principle- Theorem 11.23, states that "0" can be 

applied to (i), resulting in: 



OACE( 1111) = OcEG(1110 (1.2a) 	 and 	 OmEF( 	 = OBcm( /) (1.2b)  

..512111121=,                                         

M                      

E   E 	 G F           
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By using the assumption that congruent figures have equal collection of squares, then 

since, AACE ACEG and AMEF ABCM, we may state the following: 

(Where 	 denotes 

congruency) 

Step 2:  

Since figures ACEG and AMEF are similar triangles, then: 

CG : MF = EG : EF 

Also, by construction: 

CG = 2MF and EG = 2EF 

Then, we may state the following: 

OcEG(01) : OmEF(E1) 

= CG.(EG)2  : MF•(EF)2 



8 1 
..41111012= 

OcEG(LI/) : OmEF(111/) = 8: 1 	 (2.1) 
C 	 C 

E F 
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=2MF•(EG)2  : MF-(EF)2  

= 2(2EF) 2  : (EF)2  

= 8 : 1 

Or equivalently; 

OcEG(0 ) : [OBcm(111) + OmEADIA 

= OcEG(El) : 20mEADD since OmE471) = OBcm(E0 

= (CG)(EG)2  : 2(MF)(EF)2  

= 2(2EF)2  : 2(EF)2  = 8 :2 

= 4 : 1 



Step 3:  

Using (1.1) and substituting in the results of (1.2a) we have: 

OAcE(01)+ OcEG(E1)= 20ABFE(E1) + 2[OBCM(Ll) + OmEAE1)] (1.1) 

1.2a 

OcEGGO OcEGGIO = 20ABFEGO 2[OBCMGO OMEFGO] 

20cEGGO = 2OABFE(LIl) 2 [OBCMGO OMEPCO] 

Or simply; 
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We can now use the ratio (2.2) and substitute in the results of (3.1). 

OcEG(110 : [OBcm(Ei + OmEF(II/)] = 4 : 1 (2.2) 

3.1 

[OABFE(E1) + OBcmG0 + OmMEN [ 19BcmG + ONIEF(EN = 4 : 1 

Or equivalently; 

[OABFE(E/) + OBcm(E1/) + OmEFGO] = 4[0Bcm(11) + OmEF(00] 

This simplifies to: 



Step 4:  

Applying Theorem 11.11 to the following ratio: 

OACGE( 	 OABFE( 1 0 

=(IEG : DEF) • (CG : CG) 

= (E G)2  : (EF)2  

= (2EF)2  : (EF)2 	 *Since by construction EG = 2EF 

= 4 : 1 
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OACGEGO 0 ABFE( 111) = 4: 1 (4.1) 

C 	 B 

4 : 1    

E F 
	

E 	 G 	 E F 	 E 	 G 	 E F 



Using (4.1) and substituting in the results from (3.2). 

OAcGE(E0 : OABFE(IJ) (4.1) 

4 3.2 

OAcGE(LI1I) 3{0Bcm(110 OmMEN = 4 : 1 

Or equivalently; 
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0 ACGE( 110 30CEGGO (5.1)   

o   
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Step 5:  

Finally, we may state the following; substituting in the results of (3.1), (3.2) and (4.2): 

O^   OCEGGO 

4 3.1 

0,4cGEGi) [OABFEGO OBCM(E0 + OMMEN 

U 3.2 

OAcGE(E1 1) : 13 [0B04(11) + OmEA-01 + [ OBciviG1) + OmEAEMI 

OAccel) : 4 [ 	 + OmEAEO] 

4 4.2 

12{0gcmG10 + OmEALIN : 4[ 	 + OMEFON 

Or equivalently: 

= 3 : 1 

This is exactly what we wanted to prove. 
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7 The Crowing Jewel of Cavalieri's Geometry: 

Finally we appeal to Theorem 33 to finish the proof This theorem is arguably 

the crowning jewel of Cavalier's geometry of indivisibles as it allows him to make 

powerful generalizations concerning cubatures that the ancients had only proved for 

specific cases. 

Namely, it allowed him to use collections of planes to discover the volume of their 

associated solid figure. 

That is, (surprisingly) Cavalier's method of indivisibles employed collections of objects 

which are of one dimension less than the objects to be discerned. 

(7.1) Theorem 33. 

"Given any two plane figures, and taking an arbitrary regula in each one of them. 

Arbitrary solids, mutually similar, generated by the same figures according to 

the same references will be to each other as all the squares of the same figures 

taken with respect to the common referents." 23  

Although Cavalieri never explicitly states it, one can safely assume that he meant for 

the figures to posses equal altitudes, (in reference to the same regula), as a requirement 

of the theorem. 

23 Geometria, pp.102 
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Also, Cavalier's reference to "mutually similar solids" deserves a 

little explanation. A (single) solid figure is said to be "similar" when all its 

cross sections, taken with respect to the same regula, are all similar figures. 

Standard examples are pyramids, cones, cylinders and spheres. 

Further, when two solids are found to have mutually similar cross sections, (taken with 

respect to the same regula), then the solids are referred to as "mutually similar." 

We will prove Theorem 33 with reference to a cylinder and a cone, keeping in 

mind that Cavalieri proved the result for arbitrary figures. In our case we can think of 

the cylinder and the cone as generated by a parallelogram and a triangle, respectively. 

We take the solids, S i  and S2 to be the cylinder and the cone, respectively, and figures 

F1  and F2 to be their generating planar figures — a parallelogram and the triangle. We 

take Si  and S2 will be mutually similar by choosing the regula such that all the cross 

sections of the solid figures will be circular disks. 

Using the above notation, Theorem 33 makes the claim that, in the case of two mutually 

similar solids, (S i  and S2), the ratio between the solids is only a function of the squares 

of Fl  and F2. That is, it does not depend on the actual profile of the cross sections. 

Thus; 
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: S2 =0 Fi 	 : 0 F,  ( 

The above result is established by making use of theorem 11.15 and the ut-unum 

principle. 

Proof: 

Let line segment EG be the base of the 

cylinder as well as that of the cone. Also, let 

C 1  and C, be circular disks on the base EG of 

the cylinder and the cone respectably. 

Let DH and MH be arbitrary line segments, (parallel to the regula AB), on the cylinder 

and the cone respectively, with similar circular disks C '1 and C '2 on DH and MH 

respectively. 

Taking the cone separately: 

Consider the square on EG— "LEG" and the square on MH- 

It should be seen that (EG)2  : (MH) 2  = EEG : 

Now consider the circular disks C 1  and C2 on EG and MH, respectively. By theorem 

11.15, C2 and C '2 stand in ratio as (EG)2  is to (MH)2 . Thus 

C2 : C ' 2 =qEG : qMH 

Or, with some slight rearrangement 

C2 : EEG = C : 1MH 

But since DH is arbitrary, we can now use the ut-unum principle. Thus, it follows; 



0 (CI) 0 s, (p) 

S 
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: EEG = 0 F  (00 0  Fi  ( 

(Where "Os  (CA" and "OF (q/)" denote "all the circles" and "all 

the squares," respectively, of the figure— F.) 

Now, considering the cylinder and using similar arguments as before 

C2 : C '2 = EEG : qMH 

Or with rearrangement 

C2 EEG = C : qMH 

But again, DH is arbitrary, so we can use the ut-unum principle to obtain 

C2 	 = 0 F, (01) : 0 F,  GO 

Now, since by construction Ci=C2 , then; 

O F  (C) : O F 	 = 0 F,  (OZ) : 0 F2  GO 

Taking the results obtained by the cylinder and the cone we obtain 

O FF (01): 0 F2  (00 = O F  ( 1) : O F2 (q1) 	 (i) 

But it can be shown that 0 F1  (0 - "all the circles" of figure F1  is congruent to 

0 s, (p) —"all the circular planes" of solid S I . Likewise, 0 F,  (CD 0 to 0 c , (p). 

That is   F   

0 pi  (01) 0 s.(p) 

2 
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(Were S I  and S2 are the cylinder and the cone, respectively, while F i  and F2 are their 

generating planar figures.) 

Thus: 

: S2  = 0 s (P) : 0 s.,(p)= 0 F  (®l): 0 F  (®l) 

or using the results of (i), then 

S : S2 - 0  Fi 	 : 0 F2  

This is what we sought to prove. 

Moerover, since we found that; 

O F ( 0 : O F, ( /) = 3:1 

Then it follows that; 

S I  : S2 = 3:1 

That is, we have just proven that the ratio between a cylinder and an inscribed cone 

with the same bases and altitudes is 3 : 1. 



8 Torricelli's Exercise 

Before proceeding to his main proof, Torricelli provided a "warm-up" exercise 

to illustrate his use of "curved indivisibles." 24  The proof is that of the Archimedean 

proposition concerning the measure of a circular disk, which states that the area of a 

circle is equal to the area of a right triangle whose legs are equal to the radius and the 

circumference of the circle. Torricelli's approach is novel in its stated use of curved 

indivisibles, thought it is unclear whether he was aware of a similar proof offered by 

Gerard of Brussels which dated back to the l 3 th  century. 

Warm-up exercise: 

Draw the circle OBDB with radius AB. Consider an arbitrary chosen point Ion 

the radius AB. Let one leg of the right triangle ABC equal the circumference OBDB, 

and the other leg equal to the radius AB. If one produces a second circle with center A 

and radius AI one obtains the following proportions: 

0 

B 

Circumference OBDB : circumference 0/0/ = AB : AI 

=BC:IL 

24  De solido hyperbolico acuto, in Opera Geometrica, Torricelli (1644) 
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Hence, circumference OBDB : BC = circumference 0/0/ : IL 

But, since by construction the circumference OBDB = BC. 

Then, as a consequence, circumference OIOI = IL 

Since this is true for any arbitrarily chosen point I on the radius AB, Torricelli 

concluded: 

"all peripheries taken together are equal to all the straight lines taken together. 

That is, the circle OBDB will be equal to the triangle ZIABC." 25  

These "peripheries" and "lines" were what Torricelli identified as the indivisibles of the 

figures; the techniques of which were largely adopted from Cavalier's theory of 

indivisibles, though Torricelli would adapt the theory in significant ways: 

First; he would enhance the range of application of the technique by introducing the use 

of curved indivisibles. Second; Torricelli would grant his indivisibles a thickness; a 

move that Cavalieri was reluctant to make. Third; in contrast to Cavalieri's approach, 

which took the geometric figure and its associated indivisibles as two separate 

magnitudes, Torricelli's would make a simple identification of the figure and its 

characterizing indivisibles. 

Therefore, considering the warm-up exercise, the idea of Torricelli's proof is 

rather simple. Conceptually, the circular disk can be thought to be composed of the 

collection of curved indivisibles (of the type 0/0/) and the triangle composed of the 

collection of linear indivisibles (of the type IL). Any arbitrarily chosen point I can be 

seen to determines a unique pair of individuals; that is it associates a curved indivisible 

25  De infinitis parabolis, in Opera Geometrica, Torricelli (1644) 
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from the circular disk to an indivisible from the triangle and assigns the pair a location. 

Moreover, it is clear that for each I on the radius AB, all such pairs are similarly placed. 

By appealing to what we can intuitively reason about collections of lines and that of 

nested circles, Torricelli concludes that since the collections of indivisibles of the two 

figures are equal, by the fundamental principle of the theory of indivisibles, (namely 

Cavalieri's Theorem 11.2), the areas of the two figures will be equal as well. 

Demonstration of the paradoxical solid: 

8.1 Return to Gabriel's Horn: Proof by Indivisibles 

This example was introduced in Section 2.1 and analyzed there as a "standard" 

Calculus exercise for today's student. The construction that follows is the original 

construction by Torricelli and is built on five preliminary lemmas. Although none of 

these lemmas makes use of indivisibles, they do defined geometric relationships that 

Torricelli draws upon for his demonstration. 



P A N 

B 

N 
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First Lemma: 

Given a hyperbole with asymptote AB, if the figure is 

made to rotate about the axis AB one obtains the "acute 

hyperbolic solid" which is infinitely long in the 

direction of B  
1 
A 

B  

Consider then, within the solid defined in this way a 
XY = a 2  

rectangle passing through AB, for example, the rectangle 

POMN. Let AS be the semi-axis of the hyperbole. In this 

way, one demonstrates that the square constructed on AS 

has the same area as every rectangle POMN. 

Second Lemma: 

It is shown that all the cylinders inscribed in the 
= a 2  

acute solid around the common axis AB are 

isoperimetric (i.e. the lateral surfaces are equal) 

Third Lemma: 

It is shown that all these isoperimetric cylinders have volume proportional to 

the diameter of their base. 



Fourth Lemma: 

It is shown that the lateral surface of each cylinder POMN is 1/4 of 0 

 the surface of the sphere whose radius is the semi-axis AS. 

Fifth Lemma: 

It is shown that the lateral surface of each cylinder 

POMN described in the acute solid as in the 

previous figure. Is equivalent to the circular disk of 

radius AS. 

Theorem: 

It is shown that the infinitely long solid made up of the acute 

hyperbolic solid EBD and its cylindrical base FEDC, is 

equivalent to the cylinder ACGH of height CA and whose 

base is HA=2AS. 

Proof: The proof follows along in a similar manner as 

Torricelli's warm-up exercise. The infinitely long solid 

can be thought to be composed of a collection of 

cylindrical indivisibles, (that is, lateral surfaces of the 

type POMN); and the cylinder ACIH can be thought to 
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be composed of planar indivisibles, (circular planes with diameter AH). 

Any arbitrarily chosen point N determines a unique pair of indivisibles, 

(associating an indivisible from the infinitely long solid to an 

indivisible from the cylinder ACIN), by placing them in space. 

Moreover, for each N on the segment AC all such pairs are 

similarly placed. 

By lemma 5, each lateral surface of type POMN is 

equal in area to a circular disk of radius AS; also, by 

construction, it can be seen that AH=2AS. Thus, each curved 

indivisible of the infinite solid is equal to each planar 

indivisible of the cylinder. 

Therefore, Torricelli reasoned, since the collections of indivisibles of the two 

figures are equal, by the fundamental principle of the theory of indivisibles, the 

volumes of the two figures will be equal as well. Hence the infinitely long solid is equal 

is equal to the finite cylinder whose base is the circle with diameter AH and whose 

height is AC. 

Since his proof was based upon the idea that the infinitely long solid was 

composed of the collection of cylindrical indivisibles, Torricelli understood that this 

required the filling of the solid with the lateral surfaces of the inscribed cylinders, even 

in the case where the innermost cylinder degenerates into an infinitely straight line. 

Thus, he took for granted the assertion of lemma five- that an equality between the 

inscribed cylinders and the circular disk (of radius AS) held even in this case, that is at 
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N=A. Indeed, Torricelli's comments published as De infinitis parabolis, indicate his 

position; 

"What Galileo says of a point is equal to a line is true, and in our hyperbolic 

solid it is true that an infinitely long axis is equal to a circle. "26  

The reference here is to the "soup dish' paradox presented by Galileo in the Two 

New Sciences. It is surprising that Torricelli should cite the paradox to support his 

assumption, since prior to its publication, Galileo sent it to Bonaventura Cavalieri as a 

cautionary example concerning the perils of using the "method of indivisibles" in 

geometry. That Torricelli took the results of the paradox as a validation of his 

assumptions clearly goes against the Galileo's intentions. 

Torricelli declared himself satisfied that the proof was compeer and stood by 

itself. However, concerned over its public reception led him to comment; 

"I consider the previous theorem sufficiently clear in itself and more than 

adequately confirmed by the examples proposed at the beginning s of the book. 

However, in order to satisfy also the reader who is scarcely a friend of 

indivisibles, I shall repeat its demonstration at the end of the work with the 

usual demonstrative method s of ancient Geometers which, although longer, in 

my opinion is not for that more certain." 

26 De solido hyperbolico acuto. Opera Geometrica, Torricelli (1644) 
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Here Torricelli offers a proof by the method of exhaustion for those who did not favor 

indivisibles. Considering the criticism the method of indivisibles received from certain 

circles ever since its first introduction by Cavalieri back in ---, in addition to the novel 

contributions that Torricelli had made, no doubt he felt safer publishing both proofs. 

Proof by Exhaustion: 

Sixth Lemma: 

Consider the solid described by the rotation of the figure 

MNCD around the axis AB. The hollow solid described is equal in 

volume to the cylinders whose height is NC and whose base is the 

circle with diameter NL = 2AS. This is true for any arbitrary chosen 

point N on AC different from A. 

That is; 

Hollow solid FEOMDC = cylinder LNCI 

Seventh Lemma: 

Consider the cylinder-POMN generated by the 

rotation of the rectangle ANMA' around AB. The 

volume of this cylinder is half the volume of the 

cylinder whose height is AN and whose base is the 

circle with diameter AH = 2AS. This is also hold true 

B 
A'  

H L 



for any arbitrarily chosen point N on AC different from A. 
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That is; 

POMN = 1/2 ANHL 

We shall denote the infinitely long solid, described in the 

theorem, by H. Also, the cylinder HACI shall be denoted 

as C. To prove the volume of H equaled the volume of C, 

Torricelli proceeded, (as was usual for the method), by 

contradiction. 

Part I: 

Figure H 

Figure C 

Assume H < C. Then the volume of H is equal to only a portion of C; let us say 

it is equal to the cylinder LNCI, for all points N on the segment AC, such that AT#A. 

That is; 

H = LNCI 
	

(i) 

If we extended the line segment NL to meet the hyperbola 

at point M, then the solid generated by the rotation of the 

figure MNCD around the axis AB, (which we will denote as 

T), is by lemma 6, equal to the cylinder LNCI; and this is 

true for any point N on AC different from A. 

That is; 

B 
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T = LNCI 

But, it can be seen that, for all N on AC, such that NM, the hollow solid- T is only a 

part of the figure H, 

then it follows that 

T = LNCI <H, 

and this contradicts the result of our initial assumption, i.e., (i). 

Thus, it can not be true that H < C. 

Part II: 

Assume then that H > C. 

Since the volume of C is finite, it must be equal to some finite part of H, let us 

say for example, FEOMDC; which we shall denote as W. That is; 

W = C. 	 (ii) 

Figure W 

Where W is the sum of the 

hollow solid T, (generated by 

the rotation of the figure 

MNCD), and the cylinder Z, 

(obtained by the rotation of the 

rectangle ANMA'.) 

By Lemma 6, T=LNCI and by Lemma 7 Z = 

B 
I A' 
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1/2(ANHL). Hence, 

W = Z + T = 1/2(ANHL) + LNCI < ANHL + LNCI 

However, by definition C = HACI = (ANHL + LNCI). Then, it follows; 

W < C. 

But, this contradicts the results of our initial assumption, i.e., (ii). Thus, it can not be 

true that H > C. 

Since neither H < C, nor H > C was found to be true, the conclusion from both 

cases is that H can only equal C. 

9 Summary and Concluding Remarks 

In summary, what should we say about the Method of Indivisibles and the 

teachings of Cavalieri? 

Cavalieri can be considered a starting point in the foundation of the theory of 

indivisibles during the first half of the 17 th  century. That his name was cited by so many 

who where to develop or used indivisibles over the course of the following decades, 

ensured that the name "Cavalieri" would become almost synonymous with the method 

of indivisibles. However, it seems that only Cavalieri tried to provide indivisibles with 

a genuine theory clearly founded on classical Greek definitions. Indeed, he strived to 

grant his new method a certainty "classical legitimacy" by anchoring it to the Euclidian 
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theory of proportions. But, while Cavalieri tried to remain faithful to the canons of 

Greek geometry and show them proper respect in the course of his proofs, he also 

introduced mathematical objects completely foreign to the Classic tradition, namely "all 

the lines" and "all the planes." The difference in approach between that of classic 

geometry to that of his new method is rather striking. Consider, for example, the proof 

that the ratio of a cylinder to its inscribed cone is 3:1. Proof by exhaustion relies solely 

on an argument based upon reductio ad absurdum. In effect, what it shows us is that the 

cylinder cannot be greater than three times its inscribed cone, nor can it be less; 

otherwise a logical contradiction would ensue. It tells us nothing about the causes of the 

mathematical relationship; it simply shows that it cannot be otherwise. Cavalieri, on the 

other hand, looked to the relation between the two figures and tried to discover why the 

two figures are in a certain ratio to each other, not to logically prove that they could not 

be otherwise. By associating each figure with its corresponding omnia plana, "all the 

planes," Cavalieri determines a ratio through a connection with this "new kind" of 

magnitude. 

Torricelli and later authors, such as Wallis and Leibniz, would build upon 

Cavalieri's methods; however they would do so with a basic misunderstanding, 

believing that Cavalieri considered a continuous magnitude as the sum of its 

indivisibles. 

To the contrary, Cavalieri preferred to take no definite position concerning the 

composition of the continuum and remained neutral over the issue of whether 

indivisibles were elements which actually composed the geometric figures they were 

associated with. After all, there was no need for Cavalieri to take a stand. All he needed 
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to do was compare magnitudes; through the use of indivisibles he could do so and avoid 

the issue entirely. In a letter to Galileo, Cavalieri describes the essence of his method: 

"I did not dare to affirm that the composition is composed of indivisibles, but showed 

that between the continua there is the same proportion as between the collection of 

indivisibles."27  His refusal to take a stand on the matter must be stressed against almost 

all those "second-hand" versions of Cavalieri's theory which were to follow. Never in 

his works does he consider a volume as a sum, a surface as a collection of lines, nor 

does he describe a line as an aggregate of points. 

However, unlike Cavalieri, Galileo sought to examine the nature of the 

continuum. For this, Galileo's most favored tool was the paradox. By starting with 

familiar geometrical relations, he pushed them to their incomprehensible limit. In the 

words of Galileo, though Salviati; "that the infinite is inherently incomprehensible to us, 

as indivisibles are likewise; so just think what they will be when taken together!"28  

While Galileo appreciated the difficulties with concepts and methods of infinitesimal 

mathematics, he never seemed to reach a decision on how to deal with them. 

Perhaps this explains why, it was Cavalieri who wrote a book about indivisibles 

and why Galileo did not. 

While the content of Geometria in general was very little known, the mere fact 

that the book existed stimulated investigation into new methods and a reworking 

original notions Cavalieri had set forth; And, whereas Cavalieri was reluctant to break 

completely with Greek tradition, others were not so reticent. Perhaps it was Torricelli, 

more than anyone who was responsible for popularizing the method of indivisibles. By 

27  Galileo Galilei Opere, vol 18 p.76 
28  Two New Sciences; Galileo Galilei translated by Stillman Drake pp38 
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introducing the use of curved indivisibles he would enhance the methods range of 

application. However in popularizing indivisibles, he may have been most to blame for 

the misrepresentation of Cavalieri work. Torricelli would grant his indivisibles a 

thickness; a move that Cavalieri was not prepared to make. Moreover, in contrast to 

Cavalieri's approach, which took the geometric figure and its associated indivisibles as 

two separate magnitudes, Torricelli's would make a simple identification of the figure 

and its characterizing indivisibles. 

In short, we may see Cavalieri's indivisibles as a transition from the Greek 

method of exhaustion to the development of infinitesimal methods that would 

eventually lead to the development of Integral Calculus. However, it is only through 

familiarity with Cavalieri's concepts and techniques that it is possible to understand 

how elaborate and special his method was. 
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