

A Major Qualifying Project submitted to

the faculty of Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

 Degree of Bachelor of Science in Computer Science

Submitted by:

Thomas Finelli and Yo Karita

Professor Mohamed Y. Eltabakh, Project Advisor

December 15, 2016

Semantic Search in
Relational Databases

1

1 Abstract

Most relational databases are accessed and managed by a form of Structured Query

Language (SQL). For new users, learning SQL takes time and can be complex. This project

investigates using natural language as the initial input for searching a relational database.

The natural language query is converted into one or more valid SQL queries which can be

executed on a database. This system takes advantage of an ontology and an ontology-to-

database mapping. Ontologies allow relationships between natural language, resulting in a

deeper understanding. The ontology-to-database mapping aids in connecting ontology

keywords directly with parts of the database schema.

2

Table of Contents
1 Abstract ... 1

2 Introduction ... 4

2.1 Project Goal .. 4

3 Background .. 6

3.1 Ontology .. 6

3.2 Ontology to Database Mapping .. 7

3.3 Summary ... 8

4 Methodology: Setting Up the Database, Ontology, and Database-to-Ontology Mapping 9

4.1 Database Overview ... 9

4.2 Database Tables .. 11

4.3 Database Views ... 12

4.4 Population of the Database ... 14

4.4.1 Grouped and Related Data ... 14

4.5 Join Condition Overview .. 16

4.6 Ontology Overview .. 16

4.7 Ontology to Database Mapping ... 17

4.7.1 Ontology Keyword ... 18

4.7.2 Ontology Component .. 18

4.7.3 Tables ... 19

4.7.4 Expression .. 19

4.7.5 Probability .. 19

4.7.6 Mapping Examples .. 19

5 Methodology: Transforming a Natural Language Query into Valid SQL Queries 21

5.1 Parsing and Tokenizing the User’s Natural Language Query .. 21

3

5.2 Returning the Mappings for a Tokenized Query .. 22

5.3 Determining the Tables .. 22

5.3.1 Calculating the Frequency and Probability for the Tables 23

5.4 Determining the Expressions... 24

5.4.1 Single Table .. 24

5.4.2 Multiple Tables ... 25

Keywords with Multiple Expressions .. 26

5.5 Combining the Partial SQL Queries ... 27

5.6 Ranking the Queries .. 28

5.7 SQL Generation Process Summary .. 28

6 Results and Discussion ... 30

6.1 User Interface ... 30

6.1.1 Connecting to the PostgreSQL Database ... 30

6.1.2 Selecting the Ontology ... 30

6.1.3 Entering a Natural Language Query and Setting the Threshold 31

6.1.4 Choosing a SQL Query .. 32

6.1.5 SQL Query Results ... 33

6.2 Comparing User Natural Language Queries and their SQL Results with User

Intentions ... 34

7 Conclusion ... 37

8 Recommendations ... 38

8.1 Improving the Customizability of Keyword Probability ... 38

8.2 Expansion of Ontology .. 38

9 References ... 40

4

2 Introduction

Relational databases are commonly used to store all different types of data. In order

to interact with a relational database, some defined, structured language must be used.

One of the most commonly used languages for database management is Structured Query

Language (SQL).

If a user wants to input, retrieve, or change the data in SQL based relational

database, then they must use the Structured Query Language. Learning and understanding

SQL takes time and it can be complex. Interacting with a database would be much simpler

if the user could type in what they wanted using keywords from a natural language rather

than SQL.

There are, however, some challenges that arise when using a natural language. One

is that natural languages can be ambiguous. Another is that the user may not know the

exact schema of the database, and as a result, they may use other similar terms in their

natural language query (NLQ). It can be challenging to make the connection between the

user’s similar terms and the particular terms used in the database schema.

The literature discusses some approaches that can be used to help bridge the user’s

keywords and the database schema’s keywords (Saha, et al., 2016). One is by utilizing an

ontology and an ontology-to-database mapping. An ontology can be defined as: “a model

for describing the world that consists of a set of types, properties, and relationship types"

(Garshol, 2004). In other words, ontologies can be used to connect objects together

through relationships. An ontology-to-database mapping relates keywords in the ontology

directly to the database schema. These mappings usually refer to a particular database

table name or a table’s column name. Overall, these two concepts can be used to better

understand the user’s NLQ.

2.1 Project Goal

The main goal of this project is to design a system that is capable of transforming a

user’s NLQ into one or more valid SQL queries by using a semantic based approach which

utilizes an ontology and ontology-to-database mapping. As mentioned, the system will a

list of SQL queries for a single user NLQ. Each of these returned SQL queries will have a

5

respective probability value. This probability value indicates a theoretical correctness, that

is, how likely the system generated SQL query coincides with the user’s NLQ. From here

the user would be able to manually select the SQL query that is closest to what they

intended from the list of generated SQL queries. The selected SQL query would then be

executed on the database, and the query results are displayed in table format.

In order to test our system we needed to create a database, and then populate it

with tables and data. We arbitrarily chose to create a database containing travel data,

however, a database containing nearly any type of data would also work. There are four

types of travel data that are the main focuses of the database: flights, hotels, tours, and car

rentals. The database also contains customer data which is linked to one of the travel data

type by a reservation (e.g. a customer reserves a hotel room or books a flights).

6

3 Background

The two most important components of the NLQ to SQL system are the ontology and

the ontology to database mapping. The ontology sets the scope on which keywords are

searchable and the mapping connections these keywords directly to the database.

3.1 Ontology

An ontology can be defined as a structural way of relating objects or classes and their

properties to other objects or classes and their properties. As described in our definition of

an ontology, there are four ontology components that we focus on: objects, classes,

properties, and relationships.

 Objects represents things, which can be physical or abstract; these are the basic

building blocks of an ontology

 Classes are a generic concept which Objects may belong to

 Properties are attributes that an Object or Class may have

 Relationships connect one object to another through some commonality

It is important to note that these particular words used to describe an ontology can vary

from one person’s definition to another. However, the overall principals remain fairly

constant between definitions.

Ontologies typically have an overlying topic which sets the scope of the ontology. An

example of a simple animal ontology can be found in Figure 1. In the figure, the classes are:

animal, carnivore, and herbivore; the objects are: lion, antelope, and plant; the properties

are: gender; and the relationships are: eats and is a. Note that the distinction between an

object and a class can vary depending on context. For example if the example ontology was

more detailed, then “Congo lion” could be added as an object of “Lion”, which transitions

“Lion” into a class.

7

There are many different ways to implement an ontology. One of the most common

standards is the Web Ontology Language (OWL) (Bechhofer, et al., 2014). This standard

has its own particular definitions for an ontology class, property, and object; which are

similar to what we previously described. It also defines a language that can be used to

generate relationships which then result in an ontology. For our system, we adopt a

simplified version of the OWL standards. Specifically, we currently only utilize objects

(also known as individuals in OWL), classes, and the “is a” relationship.

3.2 Ontology to Database Mapping

An ontology to database mapping can be used to connect words in the ontology to

particular part of the database schema. The mapping essentially allows the ontology to be

independent of the database schema (Saha, et al., 2016). This is useful because it means

that this approach can work with existing databases, and no major modifications need to be

made to the schema. It also allows for the ontology to be as simple or detailed as desired.

For example, in a detailed ontology, multiple different ontology keywords (which may be

synonymous) can map to the same part of the schema. Figure 2 illustrates the concept of

mapping. Essentially, the ontology keywords can map to specific tables or columns in the

database schema.

Figure 1: A simple example ontology about animals. Rectangular boxes represent classes and objects.
Hexagons represent attributes. Labeled arrows represent relationships. This diagram was adapted from a

diagram by (White, 2005)

8

3.3 Summary

An ontology can be quite useful when analyzing natural language. Its use of

relationships enables traversal from one concept or object to another, and thus it can

provide a deeper understanding of natural language. Additionally, the ontology to database

mapping is crucial for determining how the NLQ relates to the database schema.

Figure 2: The ontology to database mapping process.

9

4 Methodology: Setting Up the Database, Ontology, and

Database-to-Ontology Mapping

An overview of the entire system’s process is illustrated in Figure 3. This part of the

methodology describes the setup for the database, ontology, and ontology-to-database

mapping (i.e. the tools shown on the far right side of Figure 3). The system steps numbered

1 through 7 on Figure 3 will be discussed later on in a subsequent methodology section.

4.1 Database Overview

Before running the semantic search process, a database must be created and

populated with data. Nearly any kind of data would work, but for this project we chose to

use travel data. There are four types of travel data that are the main focuses of the

database: flights, hotels, tours, and car rentals. The database also contains customer data

which is linked to one of the travel data type by a reservation (e.g. a customer reserves a

hotel room or books a flights). The database schema is shown in Figure 4.

Figure 3: Process flow diagram for the system. The numbered steps (1-7) demonstrate how a user query is
transformed into a SQL query. The system interacts with the external database and files (far right).

10

The database was designed to be viewed from a historical prospective. More

specifically, when a user searches the database, they are looking at trips, vacations, and

reservations that were made in the past by other customers or users.

PostgreSQL was chosen as the database management system. The primary reason

for using PostgreSQL is due to its free and open source codebase, which allows for

modifications if desired. It is also widely used and has sufficient documentation. The

official PostgreSQL website mentions a study which showed that 30% of tech companies

Figure 4: The travel database schema. Arrows represent foreign key relationships.

11

used PostgreSQL for their core applications in 2012 (PostgreSQL: PostgreSQL Press FAQ,

n.d.).

4.2 Database Tables

There are four main tables related to travel: flight, hotel, car rental, and tour.

Additionally, there is one table that contains customer information. For example it has

customers’ names and addresses. Each of the 4 travel type tables has corresponding

reservation table (i.e. flight_reservation, hotel_reservation, car_reservation, and

tour_reservation). Each of these reservation tables have two foreign key relationships.

One of the foreign keys connects to the reservations tables’ respective travel type (e.g.

flight, hotel, car rental, and tour), and the other foreign key connects the reservation to a

customer ID in the customer table. A summary of the database tables can be found in Table

1, Table 2, Table 3, Table 4, and Table 5.

Database Table Description

flight Flight information such as the destination airport, the airline, and

cost of the flight, and the date on which the flight departs

flight_reservation Connects a particular flight with a customer through its foreign keys

airport Information about the airport such as the name and location (city,

country, etc.)

airline Information about the airline such as the name and location (city,

country, etc.)

Database Table Description

car Contains data about different types of cars such as make, model,

color, etc.

car_reservation Connects a particular car and car_rental_company with a

customer through its foreign keys

Table 1: Descriptions of tables related to flights

Table 2: Descriptions of tables related to cars

12

car_rental_company Information about the car rental company such as its name and

location

Database Table Description

hotel Information about the hotel such as its name, location, and rating

hotel_reservation Connects a particular hotel and room with a customer through its

foreign keys

room Contains information about a hotel room such as the type of room

and room number

Database Table Description

tour_reservation Connects a particular tour_company with a customer through its

foreign keys

tour_company Information about the tour company such as its name and location

(city, country, etc.)

Database Table Description

customer Contains customer information such as customers’ name and

address

4.3 Database Views

When performing a search it is desirable to connect the tables that have foreign key

relationships for the majority of cases. For example, when searching for “flight to boston”

the user most likely wants to see lots of information such the date of the flight, the origin

and destination airports, etc. However, this information is distributed in multiple different

Table 3: Descriptions of tables related to hotels

Table 4: Descriptions of tables related to tours

Table 5: Descriptions of tables related to customers

13

tables. For example, the date of the flight is located in the flight table, but the airport

information is located in the airport table.

Most searches will require aggregating data from multiple tables. Since this will be

a common occurrence, we utilize database views. We created 5 different database views,

each of which represents a SQL query that joins similar tables. The views and their column

names are presented in Figure 5 and a summary of each view and description of the tables

joined are presented in Table 6.

View Name Description

car_reservation_view Joins car and car_rental_company through car_reservation

flight_airport_view Joins flight and airport using both the airport source and

destination

flight_reservation_view Joins flight_airport_view and flight_reservation

hotel_reservation_view Joins hotel and room through hotel_reservation

tour_reservation_view Joins tour_reservation and tour_company

Figure 5: Schema for database views

Table 6: Descriptions of database views

14

4.4 Population of the Database

Prior to performing a semantic search, the database needs to be populated with data.

The goal was to do this in a quick manner and with fairly realistic data. Lists of popular or

common data were created for many of the table columns. For example, a list the most

common street names in the U.S. was created for use in addresses. Then one entry from the

list is selected and used to generate a complete address. The address is used, in

combination with other data, to create a single row which is inserted into one of the

database tables. The generic process is as follows:

1. Gather lists of common data (e.g. street names, car brands, airports, etc.)

2. Randomly select an entry from one of the lists

3. Use the entry to generate a complete set of data which can then be inserted into one

of the database’s tables

This process is quick and automatic. It eliminates the time and effort cost of manually

generating data. The majority of the data that is used in the database was generated in this

fashion.

4.4.1 Grouped and Related Data

Some data only makes sense when grouped together. For example location data

such as city, state, and zip code need to be generate as a group. To illustrate this concept,

let us examine 3 lists of data: cities, states, and zip codes (Figure 6). It makes sense that

Worcester, Massachusetts 01609 goes together as it is a real, valid location. In contrast, if

we were to randomly select data from each list we could come up with something like

Worcester, Colorado 98101 which does not make sense as there is no city named

Worcester in the state of Colorado, and the specified zip code does not match the correct

city. For more examples see Table 7.

15

Location Valid Description

Worcester, Massachusetts

01609

O Real, valid location

Worcester, Colorado 98101 X There is no city named Worcester in the state of

Colorado, and the specified zip code does not

match the correct city

Seattle, Washington 01609 X The city and state match, but the zip code

belongs to a different city

As a solution, some of the data is generated in a grouped manner. Individual classes

were created in the Java code, such as Location and Airport. These classes can return a

grouping of data which can be used alongside other data to generate a realistic entry in a

database table.

Note that street names and street numbers can also be considered grouped data.

However, the smallest, most precise piece of location data that our ontology supports is the

city. Therefore we ignore grouped data for anything smaller (e.g. street name, street

number, zip code), and we do use grouped location data for location scales that are equal to

a city and above (e.g. city, state, country). This scope is defined by the ontology and can be

changed if the ontology is also changed.

City

• Worcester

• Seattle

• Denver

State

• Massachusetts

• Washington

• Colorado

Zip Code

• 01609

• 98101

• 80123

Figure 6: Example lists of cities, states, and zip codes.

Table 7: Examples of combined data, where each data piece was randomly chosen from one of the lists.

16

4.5 Join Condition Overview

In order to combine data from multiple database tables some join condition must be

specified in the resulting SQL query. We have created a spreadsheet which contains all of

the join conditions for each of the tables. We currently only use one join condition for each

of the table pairings, but this can be changed if desired. A screen capture of the join

condition spreadsheet can be found in Figure 7.

4.6 Ontology Overview

In order for our system to function the database needs to be supplemented with an

ontology. Therefore, an ontology was created with keywords that can be associated with

travel data in the database. The ontology also sets the scope for valid keywords. In other

words, only keywords that can be found in the ontology are searchable in our system. Any

other words are discarded from the process.

The ontology was created in JSON file format. The system reads in the ontology file

and creates a tree like structure in memory, making the ontology searchable. The ontology

contains the following major categories: generic trip keywords (e.g. vacation, hotel, flight,

etc.); locations (e.g. city, country, etc.); time (e.g. months, seasons, etc.); cost (e.g. cheap);

and operators (e.g. less than, more than, etc.). An excerpt of ontology location data can be

found in Figure 8.

Figure 7: The join condition table. The field for the join condition is specified in the “Identifier” column.
This specifies what the join condition should be when combining different tables.

17

The ontology supports parent-child relationships, as demonstrated by the “children”

fields in Figure 8. Some keywords may be synonymous; these words are kept together in a

comma separated array (see [“international”, “foreign”] in Figure 8).

4.7 Ontology to Database Mapping

A mapping from the ontology to the database was created in order to connect the

two together. For every keyword in the ontology, we created a mapping entry which then

refers to database tables and tables’ columns. The ontology to database mapping exists as a

table with five columns: ontology keyword, ontology component, tables, expression, and

probability. Each of these columns is described in detail in the following sections. An

excerpt of the mapping can be seen in Figure 9.

Figure 8: Excerpt of the ontology file which is encoded in JSON format. This excerpt specifically shows
location keywords and their respective relationships. The rest of the ontology follows this format.

18

Some examples of mappings are provided at the end of this section.

4.7.1 Ontology Keyword

First, each keyword in the ontology is put into the mapping. When performing a

lookup on the mapping the keyword is what is typically searched for, and the other

columns in the mapping are returned as a result.

4.7.2 Ontology Component

This component is based on the Ontology Web Language (OWL) specification types.

There are two types that are utilized: class and individual. We define class as a node that

has children, and individual that has no children. The ontology component column is not

currently utilized in the SQL generation process. However, it may be useful in future work.

Figure 9: Excerpt of the ontology to database mapping. This mapping exists in a tab separated
spreadsheet (.tsv) format. Each ontology keyword has an ontology component, tables, expression, and
probability.

19

4.7.3 Tables

This column consists of all the possible database tables or views that the ontology

word may reference. The entry for tables may be listed as null if there is no direct

connection between the ontology keyword and a database table. This is frequently null for

class ontology components as they tend to be generic. If the table field is null, then the

expression also must be null. Additionally, if the table field is null, then this is equivalent to

the ontology keyword not existing in the mapping, thus it technically could be omitted from

the mapping completely. We have opted to include all the ontology keywords in the

mapping, even if they will have null values for table, to be complete.

4.7.4 Expression

The expression is the direct connection between the ontology keyword and the

database column. It is the same as the WHERE clause in a standard SQL query. This may be

null if the ontology keyword does not directly reference a column in one of the database

tables. The expression is frequently null for class ontology components as they tend to be

generic.

4.7.5 Probability

The probability value is the base likeliness for a particular ontology keyword’s

expression. For example, the ontology keyword “New York” can refer to the state or the

city, so different base probabilities can be assigned to each of these meanings separately.

Currently, probabilities are set to 100% if there is only one expression or meaning for a

keyword. Otherwise, for multiple expressions (and thus multiple mapping entries), the

probabilities must sum to 100%. The actual value for individual mappings when there are

multiple expressions can be set to any desired value, as long as they sum to 100%.

4.7.6 Mapping Examples

Some examples are provided in Table 8 to illustrate the process of creating a

mapping. The first example in the table is the ontology keyword “Denver”. Denver refers

to a location, specifically the city located in the state of Colorado. All of the major views

(flight, hotel, car, tour) have locations, and more specifically they each have a column

named “city” in them, so we can list all of these views as valid tables. Next is the expression

20

which lists the WHERE clause. Again, all of the views have a “city” column, so the

expression can refer to this directly. In the next example “hotel” is the ontology keyword.

In this case, the only view that makes sense is the “Hotel_Reservation_View”, because no

other views contain data about hotels. Lastly the expression has to be null, since hotel is a

generic ontology keyword and does not directly refer to any of the view/table columns.

Ontology

keyword

Tables Expression

Denver Flight_Reservation_View,

Hotel_Reservation_View,

Car_Reservation_View,

Tour_Reservation_View

*.city = ‘denver’

hotel Hotel_Reservation_View null

Table 8: Examples of ontology to database mappings.

21

5 Methodology: Transforming a Natural Language Query into

Valid SQL Queries

An overview of the entire system’s process is illustrated again in Figure 10. This

part of the methodology describes the process for transforming a user’s natural language

query into multiple valid SQL queries (i.e. the steps listed as numbers 1 through 7 in Figure

10).

5.1 Parsing and Tokenizing the User’s Natural Language Query

The first step is to read in and parse the user’s natural language query. Initially the

NLQ is tokenized based on spaces. Next each word is looked up in the ontology. If a word

cannot be found in the ontology, then the system will try again using the original word plus

the following word (i.e. for phrases with two words). At this point any words in the NLQ

Figure 10: Process flow diagram for the system. The numbered steps (1-7) demonstrate how a user query
is transformed into a SQL query. The system interacts with the external database and files (far right).

22

that cannot be found in the ontology are discarded. An illustration of this process can be

found in Figure 11 using the NLQ “hotel in Denver during October”.

The next step is to look up the valid keywords (i.e. those that could be found in the

ontology) in the ontology to database mapping.

5.2 Returning the Mappings for a Tokenized Query

The mapping lookup process is performed on each of the tokenized ontology

phrases. Recall that the tokenized ontology phrase is typically a single word (e.g. hotel,

flight, Denver, Asia) but may be two words (e.g. New York). Each tokenized phrase will

have a mapping returned, resulting in a list of mappings. This list of mappings is used in

determining which tables and expressions need to be included in the generated SQL query.

5.3 Determining the Tables

In order to generate a SQL query we must first determine which database tables the

user needs to access to fulfil their query. In essence this phase is about determining the

FROM clause in a SQL query. To do this we examine the list of mappings that is generated

from the tokenized ontology phrases. From the list of mappings we calculate the total

frequency for each of tables that appears in the mappings.

From this frequency we can attempt to determine which tables the user will want

data from. It is possible that the highest frequency table is not always what the user wants.

Figure 11: Example of tokenizing a user query, and then performing a search in the ontology for each
token. If the token is found in the ontology, then the result is shown as “true”. Otherwise, the result is

“false”. Words that are not found in the ontology are discarded.

23

Therefore, we will provide multiple SQL queries which utilize different combinations of

tables. This gives the user multiple options to choose from.

5.3.1 Calculating the Frequency and Probability for the Tables

We use the table frequency as an indication of table probability, that is, how likely it

is that the user wants data from a particular table. For example, if the user inputs the query

“hotel in Denver” the following mapping for tables is returned: hotel 

Hotel_Reservation_View; in  null; Denver  Hotel_Reservation_View,

Flight_Reservation_View, Car_Reservation_View, Tour_Reservation_View. Since

Hotel_Reservation_View appears twice, it has a frequency value of 2; the other 3 views have

a frequency value of 1. This frequency calculation is illustrated in Table 9.

Table Mapping Mapping keyword frequency Sum

hotel in Denver

Hotel_Reservation_View 1 0 1 2

Flight_Reservation_View 0 0 1 1

Car_Reservation_View 0 0 1 1

Tour_Reservation_View 0 0 1 1

Based on the frequency calculation we see that the user probably wants data from

the hotel table, so this will be the highest ranked result. As previously mentioned, in most

situations we return multiple SQL queries in case the highest ranked result is not what the

user wants. To solve this we combine the highest ranked table(s) with the other tables and

return each of these combinations as a possible SQL query interpretation. These resulting

combinations are considered secondary results, and will be ranked with lower probability

values when displayed to the user.

The combination process is illustrated in Figure 12 using the previously mentioned

example query.

Table 9: An example frequency calculation for the user query “hotel in Denver”. Each token is looked up in
the ontology to database mapping, and the resulting set of tables is tallied. Whichever view(s) is/are have

the highest frequency are defined as base set (i.e. the set of tables/views that the user is most likely
interested in).

24

Each of these combinations results in a unique set of tables, which in turn results in

a unique SQL FROM clause. These FROM clauses will be combined with an expression (i.e.

the WHERE clause), which is discussed in a subsequent section, to form a full SQL query.

5.4 Determining the Expressions

Each of the mappings generated from the tokenized ontology phrases may also have

an expression associated with it. How the expressions are handled depends whether the

user needs data from a single table or for multiple tables.

5.4.1 Single Table

Handling the expressions when only using a single table is fairly simple. The

expressions are just combined together with SQL “AND”. Take the example user query as

“hotel in Denver during October” which results in the following expression mapping: hotel

null; in  null; Denver *.city = ‘Denver’; October  EXTRACT(MONTH FROM *.date) =

10.

In this case there are two expressions, which are combined to form *.city = ‘Denver’

AND EXTRACT(MONTH FROM *.date) = 10. If there was only one expression, there would

be no AND necessary; and if there are more expressions, then additional ANDs would be

appended along with each additional expression. Lastly the * in the resulting expression is

replaced with the table name that is being queried. Afterwards, the expression can be

Figure 12: An example of the combination process. The base table(s) (bold outline) is combined with each
of the remaining tables to form four sets of table combinations.

25

directly substituted into the WHERE clause in a SQL query. This example is illustrated in

Figure 13.

5.4.2 Multiple Tables

When dealing with multiple tables, the WHERE clause in a SQL query must contain

at least one expression that acts as a join condition. We specify the join conditions for

tables in a separate file which is in a tab separated spreadsheet (.tsv) format. Currently, the

join condition is the same for all table combinations, but this can be modified if desired.

For our setup we use the following combined expression as a join condition (from the join

condition spreadsheet file):

𝑊𝐻𝐸𝑅𝐸 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 = 𝑇𝑎𝑏𝑙𝑒_𝑖. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑

𝐴𝑁𝐷 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑑𝑎𝑡𝑒 = 𝑇𝑎𝑏𝑙𝑒_𝑖. 𝑑𝑎𝑡𝑒

Where Table_base is arbitrarily chosen to be one of the tables and Table_i is some

other table that is not the base table. This join condition is repeated for any additional

tables (i.e. beyond two tables), where Table_i is replaced with each of the non-base tables.

For example, if there were three tables involved, then the join condition would look as

follows:

𝑊𝐻𝐸𝑅𝐸 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 = 𝑇𝑎𝑏𝑙𝑒_𝑖. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑

𝐴𝑁𝐷 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑑𝑎𝑡𝑒 = 𝑇𝑎𝑏𝑙𝑒_𝑖. 𝑑𝑎𝑡𝑒

Figure 13: Expression look up process for the example user query "hotel in Denver during October”.
Keywords that do not have an expression result in “null”. Each individual expression is combined with SQL
“AND” in order to form a final combined expression.

26

𝐴𝑁𝐷 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑 = 𝑇𝑎𝑏𝑙𝑒_𝑗. 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑖𝑑

𝐴𝑁𝐷 𝑇𝑎𝑏𝑙𝑒_𝑏𝑎𝑠𝑒. 𝑑𝑎𝑡𝑒 = 𝑇𝑎𝑏𝑙𝑒_𝑗. 𝑑𝑎𝑡𝑒

This example condition uses the three tables: Table_base, Table_i, and Table_j. If

there were four tables, the condition would be append with Table_k and so on.

At this point the join condition is determined. However, we still need to examine the

expressions returned for each of the mappings. The procedure for the mapping

expressions with multiple tables is almost the same as the Single Table expression process.

Refer to the Single Table expression section for details. The only difference is that the

Single Table expression process needs to be repeated for each of the involved tables. In

particular, the final step in the Single Table expression process is to replace the * in the

mapping expression with the table name; this replacement operation needs to be done for

each of the involved tables when dealing with multiple table. An example for the *

replacement process is shown in Figure 14. This figure uses the same example query

provided in the Single Table expression process. This example uses two tables:

Hotel_Reservation_View and Flight_Reservation_View.

Keywords with Multiple Expressions

 There are some keywords which may have multiple mappings. Each of these

mappings can map to a different expression. For example the keyword “New York” maps to

the expression *.city = ‘New York’ and to the expression *.state = ‘New York’.

Figure 14: An example of the * replacement process when multiple tables are involved. In this example
there are two tables: Hotel_Reservation_View and Flight_Reservation_View. The * in the original

expression is replaced with each of these table names.

27

In this case, each partially generated SQL query (i.e. the FROM clause, which is

discussed in the previous section) is duplicated for each unique expression, and the

respective expression is appended to the query. An example illustrating this is shown in

Figure 15.

5.5 Combining the Partial SQL Queries

To form full SQL queries we need to combine the FROM clauses (the sets of tables

generated from Determining the Tables) with the WHERE clauses (the sets of expression

from Determining the Expression).

For each table combination in the set of tables, we match each expression in the set

of expressions. This process forms complete SQL queries. To illustrate this process, a

pseudo code algorithm is presented:

𝑓𝑢𝑙𝑙_𝑠𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 = {∅}

for 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 in 𝑡𝑎𝑏𝑙𝑒𝑠_𝑠𝑒𝑡:

 for 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 in 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠_𝑠𝑒𝑡:

Figure 15: An example of the combination process when there are multiple sets of tables and multiple
expressions. The green boxes represent unique sets of tables, and the blue boxes represent unique
expressions. The white boxes are the resulting WHERE clauses generated by combining tables and

expressions.

28

 𝑓𝑢𝑙𝑙_𝑠𝑞𝑙_𝑞𝑢𝑒𝑟𝑖𝑒𝑠. 𝑎𝑑𝑑(𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

5.6 Ranking the Queries

The queries are ranked in order from most likely to match the user’s NLQ intention

to least likely. This is done by relative weighting. There are two relative weights: one for

the tables (the FROM clause) and one for the expression (the WHERE clause). The tables

use a simple ranking based on the frequency calculation which is mentioned in the

Determining the Tables section. The expression ranking is determined from the probability

value found in the ontology to database mapping. These two rankings are combined to

form an overall SQL query ranking which is eventually presented to the user.

5.7 SQL Generation Process Summary

The following is a summary of the entire SQL generation process. To see the same

summary in graphical form, see Figure 10, located at the beginning of this Methodology

section.

1. User enters a natural language query (NLQ)

2. User query is tokenized using the ontology; words that cannot be found in the

ontology are discarded

3. Mapping look up on each valid token; if there is no mapping for the token, check the

ontology node’s children

4. Using the mappings for each token, determine which table(s) the user wants based

on frequency and use this in the FROM clause

a. This set of tables with the highest frequency is defined as the base set and is

also defined to be most likely what the user intended

b. Form new sets of tables by combining the base set of tables with each of the

remaining tables; these sets will be secondary results with lower

probabilities. Each of these resulting sets results in a unique SQL query.

Calculate a probability value for each of these unique queries.

5. Using the mappings for each token, combine the expressions and use this as the

WHERE clause

29

a. If the base set of table(s) has more than one table, generate the join condition

and append this to the WHERE clause

b. If there are multiple mappings for a token (e.g. “new york”), then create a

separate query for each set of mappings; its respective probability value will

be used in the ranking of each query. Calculate an overall expression

probability value for each of the unique queries.

6. Calculated a combined ranking/probability value for each resulting query; one of

the probability values comes from the set of tables and the other comes from the set

of expressions

7. Return a list of SQL queries to the user along with each of the queries’ respective

probability values

30

6 Results and Discussion

In this section we present the UI that was developed, and we discuss the correctness

and accuracy of some example user queries.

6.1 User Interface

A user interfaced was created so that the user can run their queries. However,

before the user enters a query they must connect to the database and select the ontology

file. We walk through each of these steps in the following subsections.

6.1.1 Connecting to the PostgreSQL Database

The system prompts the user to enter information about which PostgreSQL (PSQL)

database the tool should connect to. The user must enter the: server address, PSQL user

name, PSQL password, and the database name.

6.1.2 Selecting the Ontology

Next the user must select the ontology file which should be in JSON format. The

structure for the file should follow the example file. Specifically, each JSON object should

have a “name” and “children” property. This was discussed previously in the Ontology

Overview section. Examples of the UI windows for choosing the ontology file can be found

in Figure 17 and Figure 18.

Figure 16: Connect to database screen. User must enter a server address, PSQL user name, PSQL
password, and the database name to connect to.

31

If the JSON file could not be read in properly, then an error message will be

displayed.

6.1.3 Entering a Natural Language Query and Setting the Threshold

Here the user can type in a query using natural language. Recall that the system

only supports keywords in the ontology. Keywords that cannot be found in the ontology

Figure 17: Select the ontology screen. The ontology should be a JSON formatted file.

Figure 18: File selector screen. User can pick the ontology file.

32

are discarded. The user can also set a threshold which is a percent value, in order to filter

out low probability queries. The search window is shown in Figure 19.

6.1.4 Choosing a SQL Query

Based on the user’s NLQ, multiple SQL queries are returned with a relative

ranking/probability. The user can choose which SQL query that they want to execute.

Using the same query as before, “hotel in New York”, an example SQL selection screen for a

50% threshold can be found in Figure 20, and the same query but with a threshold of 0%

can be found in Figure 21.

Figure 19: User can enter a natural language query in the text box. A threshold can also be set to filter out
results that have low probabilities.

Figure 20: SQL selection screen for “hotel in New York” query. User can select which of the queries that
they want to execute. This selection is based on a 50% threshold.

33

6.1.5 SQL Query Results

Lastly, the results from the SQL query are displayed to the user in a table format.

Note that the database may not have any entries for certain queries, thus no results may be

displayed. For example, the query “hotel in California during winter” displays 0 results.

However if we leave out “winter”, then the more generic query “hotel in California” displays

3 results.

An example of the result window is shown in Figure 22.

Figure 21: SQL selection screen for “hotel in New York” query. User can select which of the queries that
they want to execute. This selection is based on a 0% threshold.

Figure 22: An example result window for the query “hotel in US”. The results are displayed in table format,
which reflects the database table format.

34

6.2 Comparing User Natural Language Queries and their SQL Results with

User Intentions

In this section we will provide some example user queries, and we explain why each

query would or would not match the user’s intentions based on their natural language

query. The examples can be found in Table 10.

Query Understood

user’s

intent?

Description

flight O Returns all customer trips that involve a

flight

hotel in California O Returns all customer trips that involve a

hotel in California

car rental in

Massachusetts during

winter

O Returns all customer trips that involve a car

rental in Massachusetts during the winter

time

trip to Africa O Returns all customer trips to Africa. Since

the user entered the generic term “trip” (as

opposed to “hotel”, “flight”, etc.) the user will

get customer trips that involve hotels,

flights, car rentals, and/or tours.

flight to Panama X Panama is not in the ontology, therefore the

keyword will be ignored. This results in the

limited query “flight” which will return all

customer trips involving a flight.

Table 10: Comparison of example natural language queries with user intent. This table explains whether
the system, as currently designed, would understand the user’s intent. O indicates that the system would

understand the user’s intent and X indicates that the system would not understand the user’s intent. --
indicates that the user’s intentions are unclear.

35

hotel in Brazil or Peru X Currently, the ontology does not understand

the keyword “or”. By default, all expressions

are combined using “AND”. Therefore, the

resulting query will result in hotels that are

located in both Brazil and Peru, which

returns 0 results. As opposed to the

expected result of hotels in Brazil or Peru.

sightseeing in New York X There is no keyword “sightseeing” in the

ontology, and there is no table in the

database that contains information about

sightseeing. Therefore this word is

discarded. Thus, the user will see all types

of customer trips to New York.

flight from Worcester X The ontology does not understand the

keyword “from”. Therefore it is discard, and

the query is simplified to “flight from

Worcester”. When looking at flights, the

system currently assumes that user is

looking for flights to a particular

destination. Therefore, this query returns

flights that are to Worcester rather than

from Worcester. The notion of to and from

could be implemented in future iterations of

the project.

36

trip to Canada during

winter in June

-- The user specified that they are looking for

trips during winter in June. June is not

during the winter time, therefore this query

will always return 0 results. This is because

the resulting expression will “AND” together

the winter months with June, which have no

overlap. However, this query’s error is

mostly the user’s fault since it does not

make much sense even from a natural

language point of view.

37

7 Conclusion

We were successful in creating a tool which transforms a natural language user

query into valid SQL queries. The tool uses a simplified ontology which defines the system

understandable keywords. The ontology also enables “is a” (i.e. parent-child) relationships

between keywords for a better understanding of the natural language. The ontology to

database mapping enables the tool to understand how ontology keywords are directly

related to the database schema. Using these two concepts, the tool is able to determine the

relevant database tables, column names, and expressions. From here, SQL queries are

generated along with respective probabilities.

Additionally, we believe that the tool is scalable in multiple aspects. For example,

new keywords can easily be added to the system. The keyword simply needs to be inserted

into the ontology, and then a new ontology to database mapping entry needs to be added.

The tool was also designed to be useable independent of the database schema. If the

schema changes, then a new mapping needs to be created, but ideally the tool itself should

not need to change. However, the tool has not been tested on other schemas due to time

constraints, so it is possible that it may need some refinement in this aspect.

38

8 Recommendations

This section discusses possible improvements or additional features that could be

added to the system/tool.

8.1 Improving the Customizability of Keyword Probability

The keyword based probability value is contained within the ontology to database

mapping. Currently, the keyword probability is defined for a set of tables, as shown in the

top portion in Figure 23. However, the probably could be redefined for each table that it

maps to, as shown in the bottom portion of Figure 23.

This change allows the probability to be customized for each of the keyword’s

related tables. Additionally, this probability value could be modified historically based on

the type of travel that a user tends to associate with a particular keyword. For example, if

the vast majority of users tend to search for “flights to California” (as opposed to hotels,

tours, etc.), then the probability value for the California to flight mapping can be increased.

8.2 Expansion of Ontology

The system currently uses a simplified version of the OWL standards for the

ontology. Specifically, our version of the ontology only uses “is a” relationships, objects,

and classes. However, ontologies are capable of more, such as complex relationships and

attributes. For example, ontology creators can define their own relationships between

nodes. See the “eats” relationship from the animal ontology in Figure 1 for a simple

example. Additionally, values for attributes can be assigned to ontology objects and

Figure 23: An example of splitting the probability value. This split means that the probability can be
associated with each table independently, allowing for a higher level of customization.

39

classes. See the OWL Web Ontology Reference Guide for more details on the capabilities of

OWL ontologies: https://www.w3.org/TR/owl-ref/.

If the ontology were to be expanded with more detail and increased complexity,

then this would enable the system to take advantage of more properties and relationships,

and thus, it could provide even more accurate results.

Some specific ideas for ontology keyword expansion are presented in Table 10; note

the queries where the system did not understand the user’s intent.

https://www.w3.org/TR/owl-ref/

40

9 References

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider,

P. F., & Stein, L. A. (2014, February 10). OWL Web Ontology Language. Retrieved

from W3: https://www.w3.org/TR/owl-ref/

DB-Engines Ranking. (2016, December). Retrieved from DB-Engines: http://db-

engines.com/en/ranking

Garshol, L. M. (2004, October 26). Metadata? Thesauri? Taxonomies? Topic Maps! Retrieved

from Ontopia: http://www.ontopia.net/topicmaps/materials/tm-vs-

thesauri.html#N773

PostgreSQL: PostgreSQL Press FAQ. (n.d.). Retrieved from PostgreSQL:

https://www.postgresql.org/about/press/faq/

Saha, D., Floratou, A., Sankaranarayanan, K., Minhas, U. F., Mittal, A. R., & Ozcan, F. (2016).

ATHENA: An Ontology-Driven System for Natural Language Querying over

Relational Data Stores. VLDB, 1209-1220.

White, S. (2005, August). Better computational descriptions of science. Retrieved from

Scientific Computing World: https://www.scientific-computing.com/feature/better-

computational-descriptions-science

