
Process Mining the Credit Suisse Advisory Process

A Major Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:
Shannon Feeley

Ian Jacoway
Gina Rios

Advisors:
Randy Paffenroth

Stephan Sturm

Sponsor:
Souleymane Bah, Credit Suisse

Date: April 27, 2017

1

Contents

1 Introduction 5

2 Background 6

2.1 Event Log . 6

2.2 Process Model . 6

2.3 Advisory Process . 7

2.4 Process Mining . 9

2.5 Inductive Miner . 11

2.5.1 Introduction . 11

2.5.2 Directly-Follows Graphs 12

2.5.3 Process Trees . 13

2.5.4 Overview of Inductive Miner 16

2.5.5 Inductive Miner: In-Depth Explanation 19

3 Methodology 29

3.1 Identifying a Data Set . 29

3.2 Formatting the Data . 30

3.3 Analysis in ProM . 31

3.4 Analysis with the Advisory Process Team 32

4 Results 32

5 Conclusion 352

Abstract

Our Major Qualifying Project is to show the business benefits of process
mining, and our sponsor is Credit Suisse. Credit Suisse uses many different
processes for its employees to onboard, advise, and manage its clients. Each
activity that an employee completes in the process is logged in the form of
an event. An event consists of a timestamp, a case ID, and an activity. A
collection of events that are part of the same process is called an event log.
Event logs can be analyzed, or "mined," to discover a process model. The
derivation of a process model is called "process mining." Through the use of
process mining, a company can compare the process model to the intended
business model to identify deviations. We consult with the Credit Suisse
team in charge of the advisory process to compare the process model de-
rived from the advisory process data to their intended business model of the
advisory process. The advisory process is Credit Suisse’s five step process
to assist their clients in creating investment portfolios. We are able to iden-
tify deviations from the intended model and suggest methods of reducing
operational costs by eliminating redundant tasks and points of congestion to
increase productivity.

3

There has been information redacted from this report to comply with the
nondisclosure agreement with Credit Suisse. Information used in this report is
Credit Suisse proprietary information.

4

1 Introduction

Credit Suisse is a leading wealth manager and bank. The bank focuses
on several audiences, such as shareholders and clients. Credit Suisse uses many
different processes for its employees to onboard, advise, and manage its clients
[1].

Each activity that an employee completes in a process is logged in the form
of an event. An event consists of a timestamp, a case ID, and an activity. A case is
the collection of all the events that correspond to the same case ID. A sequence of
activities forms a process. An example of a process is applying to college: there is
an ordered set of activities that high school students must perform when they apply
to college, such as writing personal statements, taking the SATs, and submitting
SAT scores. Joe is applying to college, so he is a case in the process. An example
event is 5:00 p.m., Joe, Submitting SAT Scores. The timestamp is 5:00 p.m.; the
case ID is Joe; and the activity is Submitting SAT Scores. A collection of events
from multiple cases that are part of the same process is called an event log. Event
logs can be analyzed, or "mined," to discover a process model. A process model
of the college application process shows the ordered steps students take in their
application process, such as sending SAT Scores, submitting their personal state-
ment, and requesting their letters of recommendation. Creating a process model is
called "process mining." Through the use of process mining, a company can com-
pare the process model to the intended business model to identify deviations from
the intended model. Process mining also allows businesses to reduce operational
costs by identifying and eliminating redundant tasks and points of congestion to
increase productivity. For example, Credit Suisse can compare the process model
derived from the advisory process data to their intended business model of the
advisory process [2].

Process mining is an area of data science that utilizes computer science
and mathematics to analyze processes based on data contained in event logs [2].
Our goal is to show that process mining can be used to reduce Credit Suisse’s op-
erational costs. We use Credit Suisse’s advisory process (the five-step process that
employees utilize to assist clients in developing investment portfolios) to demon-
strate the business value of process mining. The logs specific to the advisory
process are gathered and analyzed. Through the use of a process mining tool, we
derive a process model based upon a specified algorithm (the inductive miner).

5

The resulting process model is then used to make recommendations based on de-
viations from the intended business model and points of congestion found in the
analysis, which demonstrates the business value of process mining.

2 Background

The following sections present the building blocks of process mining. We
begin with the definition of an event log and then define process mining and its
benefits. We also explain Credit Suisse’s Advisory Process. This information
provides the reader with necessary information to understand our project

2.1 Event Log

A timestamp, a case ID, and an activity form an event [2]. For example,
one event could be 05:00, Bob, Wake Up. The timestamp is 05:00; the case ID is
Bob; and the activity is Wake Up. A case is the collection of all the events that
correspond to the same case ID. All of the events that correspond to Bob form a
case. A collection of events from multiple cases that are part of the same process
are called an event log. See figure 1.

2.2 Process Model

A sequence of activities form a process [2]. A person’s morning routine,
as seen in the event log example in Figure 1, is an example of a process. The
morning routine process for Bob is "Wake Up," "Shower," "Brush Teeth," then
"Leave." We discover a process model by analyzing the event logs of these activ-
ities. A process model combines all of the cases in an event log to represent the
mainstream behavior of the event log as a single process.

Continuing our example from Figure 1, we construct a process model
based on the activities of each individual as they get ready in the morning. The
process model begins with every individual starting with the "Wake Up" activity.

6

Figure 1: An example of an event log of three people getting ready in the morning
including a time, an activity, and a case ID. Each person’s morning routine is
shown in the table.

Next, the individual has a choice; they can choose to "Eat" or they can choose to
"Shower" and "Brush Teeth". If the individual chooses to "Shower" and "Brush
Teeth", then both activities must be completed (in any order) before they can move
on to "Leave". Finally, the individual exits the process model with the "Leave" ac-
tivity, as depicted in Figure 2.

2.3 Advisory Process

The Advisory Process is a protocol that Credit Suisse employees utilize
when assisting clients in developing their investment portfolios. There are five
steps to Credit Suisse’s advisory process. The first step is called "Needs Analysis",
which is the assessment of a client’s personal and financial situation. The second
step is called "Financial Concept", which is the creation of an overview of the
client’s personal assets. The third step is called "Client Profile", which is the
discussion of the client’s willingness and ability to take on risk. The fourth step
is called "Strategy", which is the presentation of potential financial strategies to

7

Figure 2: An example of a process model mined from the example event log in
Figure 1. In the model, we see all cases start with the activity "Wake Up". Then,
the cases move to the first split in the process, where they must choose to "Eat"
or to "Shower" and "Brush Teeth". If the case chooses to "Shower" and "Brush
Teeth", then both activities must be completed before the case can move on to
"Leave" and complete the process. Finally, the case completes the process with
the "Leave" activity.

8

the client. The final step is called "Implementation", which is the continuous
maintenance and review of the client’s portfolio and strategy [3]. See Figure 3 for
an illustration of the advisory process.

When Credit Suisse employees execute any activity on their laptops, the
activity name, the timestamp, and the user identification is logged in the Credit
Suisse system. The logs specific to the advisory process are what we used for our
case study.

Figure 3: An illustration of the advisory process and definitions of the process’
five steps.

2.4 Process Mining

Process mining utilizes computer science and mathematics in order to an-
alyze processes based on data contained in event logs. The goal of process mining
is to answer questions about operational processes. For example, what happened

9

in the past and why, what will happen in the future, how can a company better
control its processes, and how can a process be redesigned to improve perfor-
mance [2]. Process mining uses three types of techniques to create and analyze
process models from event logs. The three types of techniques are discovery, con-
formance checking, and enhancement. A discovery technique uses the event logs
to create a model without any additional information. In other words, it represents
the process strictly from the data. A conformance checking technique compares
a process model to what actually occurs in the event logs. This technique deter-
mines whether or not the process model derived from the event logs matches the
anticipated business model. Conformance checking determines where any devia-
tions exist between the anticipated business model and the process model derived
from the event logs. The goal of enhancement is to improve a process. There are
two types of enhancement: repair and extension. Repair changes the model to
better represent what occurs in reality. Extension adds perspective to the process
model. An example of extension is including timestamps in log data, which ex-
tends the model to show frequencies and potential bottlenecks. We mostly focus
on conformance checking to see if the data matches the intended business model
[2] [4].

Process mining is usually done by computer programs, such as ProM.
ProM is a free, open-source process mining tool. It allows users to import event
logs and view statistics about the event log, such as the frequency of activities.
Then, the user can run various algorithms on the event log to produce process
models, such as the inductive miner which is described in the following section
[5].

It is important for organizations to allocate resources efficiently, and pro-
cess mining can be useful in finding inefficiencies. Process mining identifies bot-
tlenecks and redundant tasks, which companies can eliminate in order to reduce
operational costs and increase productivity. In addition, process mining docu-
ments business processes, which are used in conformance checking. Conformance
checking enables businesses to identify deviations from their intended business
model [2].

10

2.5 Inductive Miner

We use the inductive miner implemented in ProM to analyze the advisory
process event logs. We choose to use the inductive miner because the algorithm
is sound, meaning the algorithm works well with real life data and the results
have provable correctness. The algorithm only uses the data to create the model,
so it is not influenced by any outside information or biases. The inductive miner
algorithm is also able to accurately represent the mainstream behavior of real data,
which makes it easy to identify deviations from the general population’s behavior.
The following sections explain the inductive miner algorithm.

2.5.1 Introduction

The Inductive Miner is an algorithm in ProM that aims to represent main-
stream behavior of a process. The Inductive Miner algorithm recursively splits
the event log into sublogs until each activity is isolated. It first creates a directly-
follows graph according to the procedure in Section 2.5.2. The directly follows
graph is a directed graph, where each vertex corresponds to an activity and each
directed edge/arc implies that the activity of the vertex where the edge begins oc-
curs before the activity of the vertex where the edge ends. For example, if there is
a directed edge from activity A to activity B, then activity A occurs before activity
B.

After the directly-follows graph is created, the algorithm makes cuts to the graph.
A cut partitions the set of vertices in a graph into distinct subsets. There are four
different types of cuts, each corresponding to one of the four operators that can
be present in a process tree: →, ×, ∧, and 	 (see Section 2.5.3 for more on
process trees). The process operators explain the relationship between activities.
For example, if one event always precedes another they are connected by the→
operator. Therefore, the type of cut explains the relationship between activities.
To give another example, if the algorithm splits activities using the ∧ cut, then
those activities are connected by the ∧ operator.

For each cut, the algorithm looks for exclusive choice cuts (×), then sequence
cuts (→), then parallel choice cuts (∧), and finally redo loop cuts (). It contin-
ues to make cuts until each activity is isolated. Once each activity is isolated, we

11

know how the activities are related by the operators used to cut the graph. We then
can create a process tree, which is described in detail in the following sections [2].

2.5.2 Directly-Follows Graphs

Directly-follows graphs delineate start activities, end activities, and activ-
ities which directly follow each other. Each vertex in the directly-follows graph
corresponds to an activity in the event log. Each directed edge/arc indicates that
the activity of the vertex the edge starts at occurs before the activity of the vertex
that the edge ends at.

An event log, L, is a multi-set over the set of finite sequences over A , L
∈B(A *) where A is the set of all activities, A * is the set of all finite sequences
over A, a multi-set is a set that allows for multiple occurrences of the same ele-
ment, and B(A *) is the set of all multi-sets over A * . For an event log L:

• AL = {a ∈ σ , σ ∈ L} is the set of activities in L.

• 7→L= {(a,b) ∈ AL×AL | a >L b} is the set of activities which directly
follow each other. This means that there exists a case in the event log L
where "a" is executed before "b". >L is a transitive relation between "a"
and "b" that signifies "a" occurs directly before "b". We write a 7→+

L b if
there is a path from a to b.

• f irst(σ) denotes the set of start activities. A start activity is any activity that
occurs first in a case.

• Astart
L = {a∈AL | ∃σ∈L a∈ f irst(σ)} is the set of start activities. This means

that there exists a case in the event log L where "a" is the first activity in the
case.

• last(σ) denotes the set of end activities, which are any activities that occur
last in a case.

• Aend
L = {a ∈ AL | ∃σ∈L a ∈ last(σ)} is the set of end activities. This means

there exists a case in the event log L where "a" is the last activity in the case.

12

The directly-follows graph of L is the quadruple G(L)= (AL, 7→L,Astart
L ,Aend

L).
For example, suppose L = ((A,B,C,D),(A,C,B,D),(A,E,D)).

• AL = {A,B,C,D,E}

• 7→L= {(A,B),(A,C),(A,E),(B,C),(B,D),(C,D),(C,B),(E,D)}

• Astart
L = {A}

• Aend
L = {D}

We know that A is our only start activity, so our graph begins with A. Next,
we look at 7→L to see which activities follow A. Activities B, C, and E follow A,
so we construct the graph in step 1 of Figure 4. Then, we see which activities
follow activity B by looking at 7→L. Activity C and activity D follow activity B,
so we update our graph shown in step 2 of Figure 4. We continue to repeat the
process until all of the pairs in the 7→L are represented on the graph. See step 3 in
Figure 4 for the completed directly follows graph [2].

2.5.3 Process Trees

Process trees are a way to represent or encode a process. Process trees
make it easier to decide where loops or processes occur. A tree is a connected
graph with no cycles. There are four operators that can be used in process trees;
they are →, ×, ∧, and 	. Process trees are read from left to right. The entire
leftmost branch is read, beginning with its leftmost child until the entire branch
has been read. Then, the branch to its right is read in the same manner until the
last branch. The sequential composition operator (→) implies the activities are
executed, from left to right (see Figure 5).

The exclusive choice operator (×) implies a choice between activities where
only one is executed (see Figure 6). The parallel composition operator (∧) implies
that the activities can be executed at the same time or directly following each other
and that all activities must be completed before moving to the next phase of the
diagram (see Figure 7). If activity A, activity B, and activity C are related by the

13

Step 1:

A

B

C

E
Step 2:

A

B

C

E

D

Step 3:

A

B

C

E

D

Figure 4: An illustration the creation of a directly follows graph.

→

BA C

Figure 5: An example of the use of the sequential operator. This process tree
shows that activity A occurs, then activity B, and then activity C. In other words,
the activities occur from left to right.

14

×

BA C

Figure 6: An example of the use of the choice operator. This process tree shows
that either activity A, activity B, or activity C occurs.

∧

CA B

Figure 7: An example of the use of the parallel composition operator. This process
tree shows that activity A, activity B, and activity C can be executed at the same
time or directly following each other and both activities must be completed before
moving to the next phase of the diagram.

15

parallel composition operator, then A, B, and C all occur, but can occur in any or-
der. For example, A can occur directly before B and then B occurs directly before
C, or B can occur directly before A and then A occurs directly before C.

The redo loop operator () requires a tree with at least two events. There
is one "do" event and the rest are "redo" events. The "do" event alternates with the
"redo" events, and the process starts and ends with the "do" event (see figure 8).
If activity A is the "do" event and activity B and activity C are the "redo" events,
an example sequence of events is (A, B, A, C, A, B, A, C, A) [2].

	

BA C

Figure 8: An example of the use of the redo operator. This process tree shows that
activity A must occur once. Then, we are either finished or we execute activity B
or activity C. If we choose to execute activity B or activity C, then we have to ex-
ecute activity A again. We can continuously repeat this process until we are done.
Some examples of logs generated by the redo operator are (A), (A,B,A,C,A), or
(A,B,A).

A large example of a process tree where all of the operators are used is
shown in figure 9.

2.5.4 Overview of Inductive Miner

The inductive miner algorithm splits the event log into sublogs. It cre-
ates a directly-follows graph from the event logs according to Section 2.5.2. The
directly follows graph is a directed graph, where each vertex corresponds to an
activity and each directed edge/arc implies that the activity of the vertex where
the edge begins occurs before the activity of the vertex where the edge ends.

After the directly-follows graph is created, the algorithm makes cuts to the graph.
A cut partitions the set of vertices into distinct sets. There are four different types

16

→

A 	

→

∧

×

B C

D

E

F

×

G H

start A

B

C

D E

F

G

H

end

Figure 9: The top figure corresponds to a particular process tree and the bottom
figure corresponds to a process map. The process map shows that the process
begins with activity A, then proceeds to complete activity D and has a choice of
completing activity B or activity C. Once B or C is completed and D is completed,
activity E is completed. Then, the process can either go to activity F, activity G, or
activity H. If it completes activity H or activity G, then the process is completed.
If it completes activity F, then activity D must be completed and activity B or
activity C must be completed. The process continues until the end is reached. The
process tree shows the same process.

17

of cuts, each corresponding to one of the four operators that can be present in a
process tree: →, ×, ∧, and 	. The process operators explain the relationship
between activities. If one activity always precedes another they are connected by
the→ operator. If either activity A or activity B occurs, they are connected by the
exclusive choice operator. If both activity A and activity B must occur, then they
are connected by the parallel composition operator. If activity A can be redone
after completing activity B, then they are connected by the redo-loop operator.
Therefore, the type of cut explains the relationship between activities.

For each cut, the algorithm looks for exclusive choice cuts (×), then sequence
cuts (→), then parallel choice cuts (∧), and finally redo-loop cuts (). The exclu-
sive choice cut is a cut that splits the graph into sets such that there are no arcs
going from one set to the other. The sequence cut cuts the graph so that every el-
ement in one set comes before every element in the next set. Thus, every element
in the previous set occurs before every element in the current set. The parallel
choice cut cuts the graph so that every activity in one set is connected to every
activity in the other set. The redo loop cut cuts the graph so that one set contains
all of the start, or "do", activities and the other sets contain the "redo" activities.
The "do" activities start and end the redo loop. The "redo" activities follow an end
activity and precede a start activity from the first set.

When deciding which cut to make, the algorithm first looks for a non-trivial ex-
clusive choice cut. Non-trivial means the cut splits the graph into at least two sets.
If it finds a non-trivial exclusive choice cut, then it finds and applies a maximal
exclusive choice cut. A maximal cut is a cut where no other cut splits the graph
into more sets. The maximal cut is a unique cut because if there were multiple
distinct maximal cuts, we can take their union to create a cut that partitions the set
of vertices into more sets than each of the maximal cuts. This would contradict
that those cuts were maximal. Therefore, there is a unique maximal cut. If there
are no remaining non-trivial exclusive choice cuts, then the algorithm locates a
non-trivial sequence cut and makes a maximal cut. At each step, the algorithm al-
ways checks for non-trivial exclusive choice cuts, then non-trivial sequence cuts,
then non-trivial parallel choice cuts, and then non-trivial redo loop cuts.

The algorithm continues to make cuts until each activity is isolated. Once each
activity is isolated, we know how the activities are related by the operators used to
cut the graph. We then can create a process tree from the cut information. From
the process tree, we can create a process map as a representation of the process [2].

18

2.5.5 Inductive Miner: In-Depth Explanation

The inductive miner algorithm begins with an event log. See Figure 10
for the example log we will use in this section. This example log is sorted by
Case ID. First, the directly-follows graph is constructed from the event log. Each
activity is a node in the graph, and there is a directed edge from activity A to
activity B if activity B occurs directly after activity A somewhere in the event log.
Throughout this section we will refer to a more complex version of our original
morning routine example (Figure 1). The complex morning routine example’s
event log is shown in Figure 10. For this example, the activities "Wake Up", "Do
Hair", "Shower", "Get Dressed", "Brush Teeth", "Leave", "Do Make Up", and
"Eat" are all individual nodes in the directly-follows graph. There is an edge from
"Wake Up" to "Do Hair" because Jill wakes up and then does her hair. See Figure
11 for the directly-follows graph of the event log in Figure 10.

After the creation of the directly-follows graph, the algorithm repeatedly
divides the set of nodes into distinct subsets until each subset only consists of one
node. The inductive miner chooses how to divide the set by how each node inter-
acts with the other nodes in the directly-follows graph. There are four different
types of interactions. Each type of interaction can be classified as an operator on a
process tree. The operators are exclusive choice, sequential composition, parallel
composition, and the re-do loop. Each division of the set of nodes into subsets is
called a cut [2].

Definition (Cut). Let L be an event log with a directly-follows graph G(L) and the
set of all activities in the event log AL. An n-ary cut of G(L) is a partition of AL
into pairwise disjoint sets A1, A2, ..., An such that:

• AL = ∪i∈{1,...,n}Ai and

• For every i, j ∈ {1, ...,n}, i 6= j, Ai∩A j = /0

A cut is written as (
⊕
, A1, ..., An) where

⊕
∈ {→, ×, ∧, 	}

There are four different types of cuts, which are illustrated in Figures 12,
13, 14, and 15. A sequence cut splits the set of nodes based on the directly-
follows relation. If there is a path from activity A to activity B, but no path

19

Figure 10: Example of an event log of three people getting ready in the morning.

20

Figure 11: Directly-follows graph created from the event log in Figure 10.

21

from activity B to activity A, then the sequence cut assigns those activities to
different subsets. A path is a sequence of edges that are connected. In our
morning routine example in Figure 11, "Wake Up" is followed by "Do Hair",
"Brush Teeth", and "Eat", but "Wake Up" does not follow "Do Hair", "Brush
Teeth", or "Eat". Thus, the inductive miner assigns the node "Wake Up" to a
different subset than "Do Hair", "Brush Teeth", and "Eat". After this sequence
cut is made, the set of nodes is split into the sets A1 = {”Wake U p”} and A2 =
{”Do Hair”, ”Brush Teeth”, ”Do Make U p”, ”Get Dressed”,”Shower”, ”Eat”,
”Leave”} [2].

Definition (Sequence Cut). A sequence cut is a cut (→, A1, ..., An) such that
for all i,j in {1, ...,n} and for all a in Ai and b in A j with i < j, we have (a 7→+

L
b)and(b 67→+

L a).

An exclusive-choice cut splits nodes into different subsets if they are not
connected by an edge. In our morning routine example, "Eat" and "Brush Teeth"
are not connected by an edge, so an exclusive choice cut assigns "Eat" and "Brush
Teeth" to different subsets. Since "Eat" and "Brush Teeth" are split by the exclu-
sive choice cut in the morning routine event log, a person either brushes their teeth
or eats.

Definition (Exclusive Choice Cut). An exclusive choice cut is a cut (×, A1, ..., An)
such that for every i, j ∈ {1, ...,n}, for every a∈Ai, and for every b∈A j with i 6= j,
we have a 67→L b.

A parallel cut splits activities that occur in parallel. In other words, if ac-
tivity A is split from activity B by a parallel cut, then when activity A occurs in the
event log activity B follows, and when activity B occurs in the event log, activity
A follows. Both activities must be executed before moving on to the next activity
in the model. In order to execute this kind of cut, each newly created subset must
contain a start and an end event to ensure that the activities are related by the par-
allel composition operator and not the redo-loop operator. In our morning routine
example, a parallel cut splits "Do Hair" and "Brush Teeth" because in the event
log, if the person chooses to brush their teeth or do their hair, they always also do
their hair or brush their teeth respectively [2].

Definition (Parallel Cut). A parallel cut is a cut (∧, A1, ..., An) such that

22

• For every i ∈ {1, ...,n} (Ai∩Astart
L 6= /0)∧ (Ai∩Aend

L 6= /0)
where Astart

L is the set of start events and Aend
L is the set of end events, and

• For every i, j ∈ {1, ...,n}, for every a ∈ Ai, and for every b ∈ A j with i 6= j
and we have a 7→L b .

A redo-loop cut corresponds to the redo-loop operator. The cut splits the
"do" activity and each of its "redo" activities into separate subsets. Recall that the
"do" activity is the activity executed first and last in the redo loop, and the "redo"
activities are the activities that can be executed in order to redo the "do" activity.
In order to execute a redo-loop cut, all of the start and end events, along with
the "do" event must be in the same subset. Every event in the subsequent subsets
should have an edge between a start event and an end event in the first subset.
There should be no edges between these subsequent subsets. In other words, there
should only be edges between the first subset and all of the subsequent subsets.
In our morning routine example, the "Do Hair" activity is the "do" activity, and
the "redo" activities are "Do Make Up", "Get Dressed", and "Shower". After the
execution of a redo-loop cut, "Do Hair" is in the first subset, and "Do Make Up",
"Get Dressed", and "Shower" are each in their own subsequent subsets [2].

Definition (Redo-loop Cut). A redo loop cut is a cut (, A1, ..., An) such that all
of the following hold true:

• n≥ 2,

• Astart
L ∪Aend

L ⊆ A1,

• {a ∈ A1|∃i∈{2,...,n}∃b∈Aia 7→
+
L b} ⊆ Aend

L ,

• {a ∈ A1|∃i∈{2,...,n}∃b∈Aib 7→
+
L a} ⊆ Astart

L ,

• For all i, j ∈ {2, ...,n}, f or all a ∈ Ai, f or all b ∈ A j, i 6= j⇒ a 67→L b,

• For all i ∈ {2, ...,n}, f or all b ∈ Ai, ∃a∈Aend
L

a 7→L b =⇒ for all a′ ∈
Aend

L a′→L b, and

• For all i ∈ {2, ...,n}, f or all b ∈ Ai, ∃a∈Astart
L

b 7→L a =⇒ f or all a′ ∈
Astart

L b→L a′.

23

The algorithm prioritizes each type of cut in the following order: exclusive
choice cuts, sequence cuts, parallel cuts, and then redo-loop cuts. Therefore, each
time the algorithm attempts to make a cut, it first looks for an exclusive choice
cut. The algorithm always makes the maximal cut, which means it makes the cut
that will divide the set into the most subsets. As previously stated, the maximal
cut is a unique cut. It continues to search for and make cuts until each activity is
in its own subset. Once each activity is in its own subset, we know how all of the
activities are related. Since each cut corresponds to a process operator, the cuts
the algorithm makes to separate activities explains how the activities are related.
Once we know which operators connect the activities, we are able to use the type
of cuts necessary to split the graph to create a process tree. For example, we know
that a sequence cut corresponds to the sequential operator. A sequence cut splits
"Wake-Up" from the rest of the activities. Therefore, we know that "Wake-Up"
occurs before all of the other activities. We repeatedly use the cut information to
create the process tree of the event log [2].

We will now revisit our complex morning routine example from Figure 10
and perform the Inductive Miner. First, we create the directly-follows graph in
Figure 11. Then, we use this graph to make cuts. See Figures 12, 13, 14, and 15
for illustrations of all of the cuts. There are no exclusive choice cuts in the graph,
so we look for a sequence cut. We find that we can make a sequence cut such that
A1 = {”Wake U p”}, A2 = {”Do Make U p”, ”Get Dressed”, ”Shower”, ”Do Hair”,
”Brush Teeth”, ”Eat”, ”Leave”}. Now, we look for a maximal sequence cut, and
we find that it is A1 = {”Wake U p”}, A2 = {”Leave”}, and A3 = {”Do Make U p”,
”Get Dressed”, ”Shower”, ”Do Hair”, ”Brush Teeth”, ”Eat”}. This is the max-
imal cut because it splits AL into the greatest number of subsets. This cut is shown
in Figure 12. Now, A1 and A2 only consist of single activities, so we only need to
look at splitting A3 into more subsets [2].

We first look for a maximal exclusive choice cut, and we find that A3 has an
exclusive choice cut that splits A2 into 2 subsets. We check that this is the maximal
cut, and it is. Now, we have A1 = {”Wake U p”}, A2 = {”Leave”}, A3 = {”Eat”},
and A4 = {”Brush Teeth”, ”Do Hair”, ”Do Make U p”, ”Get Dressed”,
”Shower”}. Now, A1, A2, and A3 only consist of isolated activities, so we only
need to make further cuts to A4. This cut is shown in Figure 13 [2].

Next, we look for cuts in A4. There are no exclusive choice cuts or se-
quence cuts, so we look for a parallel cut. It appears as though the following

24

Figure 12: The first cut made to the directly-follows graph in the morning routine
example from the inductive miner algorithm. It is a sequence cut.

Figure 13: The second cut made to the directly-follows graph in the morning
routine example from the inductive miner algorithm. It is an exclusive choice cut.

25

split could be a parallel cut that splits A4 into A4 = {”Brush Teeth”} and A5 =
{”Do Hair”, ”Get Dressed”, ”Do Make U p”, ”Get Dressed”, ”Shower”}. We
check the requirements. It meets the first requirement because Astart

L = {”Do Hair”,
”Brush Teeth”} and Aend

L = {”Do Hair”, ”Brush Teeth”}. So, (A4 ∩Astart
L) =

{”Brush Teeth”} 6= /0 and (A5∩Astart
L) = {”Do Hair”} 6= /0. Also, (A4∩Aend

L) =
{”Brush Teeth”} 6= /0 and (A5 ∩ Aend

L) = {”Do Hair”} 6= /0. The cut does not
meet the second requirement of for every i, j ∈ {1, ...,n}, for every a ∈ Ai, and
for every b ∈ A j with i 6= j a 7→L b because every element in A5 is not directly
followed by every element in A4. Therefore, we look for a redo loop cut. We
find a maximal redo loop cut that splits A4 into 4 subsets. A4 = {”Shower”}, A5 =
{”Do Make U p”}, A6 = {”GetDressed”}, and A7 = {”Do Hair”, ”Brush Teeth”}.
It meets the requirements for a redo-loop because:

• n = 5≥ 2,

• Astart
L ∪Aend

L = {”Brush Teeth”, ”Do Hair”} ⊆ A7,

• {a ∈ A7 | ∃ i ∈ {4, 5, 6} ∃ b ∈ Ai a 7→+
L b} ⊆ Aend

L ,
There is a path from ”Do Hair” and a path from ”Brush Teeth” to an ele-
ment in A4, A5, and A6.

• {a ∈ A7 | ∃i ∈ {4, 5, 6} ∃b ∈ Ai b 7→+
L a} ⊆ Astart

L ,
There is a path from an element in A4, A5, and A6 to ”Do Hair” and to
”Brush Teeth”.

• For all i, j ∈ {4,5,6}, f or all a ∈ Ai, f or all b ∈ A j, i 6= j⇒ a 67→L b,
There are no edges between elements in A4, A5, and A6.

• For all i ∈ {4,5,6}, f or all b ∈ Ai, ∃ a ∈ Aend
L

a 7→L b =⇒ f or all a′ ∈
Aend

L a′→L b,
Each element in A4, A5, and A6 is preceded by an end event.

• For all i ∈ {4,5,6}, f or all b ∈ Ai ∃ a ∈ Astart
L

b 7→L a =⇒ f or all a′ ∈
Astart

L b→L a′.
Each element in A4, A5, and A6 is followed by a start event.

The redo-loop cut is shown in Figure 14 as cut 3. Since A4, A5, and A6 all consist
of isolated events, we now only need to focus on A7 [2].

26

Figure 14: The third cut made to the directly-follows graph in the morning routine
example from the inductive miner algorithm. It is a redo-loop cut.

There are no exclusive choice cuts or sequence cuts, so we look for a par-
allel cut. We find the parallel cut A7 = {”Do Hair”} and A8 = {”Brush Teeth”}.
This meets the first requirement of the parallel cut because Astart

L = Aend
L =

{”Brush Teeth”, ”Do Hair”}, (A7 ∩Aend
L) = (A7 ∩Astart

L) = {”Do Hair”} 6= /0,
and (A8 ∩Aend

L) = (A8 ∩Astart
L) = {”Brush Teeth”} 6= /0. This meets the second

requirement because every element in A7 is directly followed by every element in
A8 and vice versa. This parallel cut is shown in Figure 15. After this cut, each
activity is isolated in its own subset, and we are done cutting the graph [2].

Each cut tells us how the activities are related, so we are able to construct
the process tree in Figure 16. The first cut we made told us that "Wake Up"
occurs first then the events in the middle of the directly-follows graph, and then
"Leave". This is demonstrated in the process tree by the sequential operator as the
top node, "Wake Up" as its leftmost child, "Leave" as its rightmost child, and all
other events in the middle. Next, we have the exclusive choice cut, which is shown
as the sequential operator node’s middle child. This cut separated "Eat" from the
rest of the nodes, which is shown by "Eat" being the only child on the right of the
exclusive choice operator. This process continues to build the process tree of our
event log. Once each cut is represented in the process tree, the algorithm finishes
[2].

27

Figure 15: The fourth cut made to the directly-follows graph in the morning rou-
tine example from the inductive miner algorithm. It is a parallel cut.

→

W ×

→

	

H D S M

T

E

L

Figure 16: The process tree developed from the cuts made by the inductive miner
algorithm to the directly-follows graph, as shown in Figures 12, 13, 14, and 15.
The "Wake Up" activity is represented by the W square. "Eat" is represented by the
E square. "Brush Teeth" is represented by the T square. "Do Hair" is represented
by the H square. "Get Dressed" is represented by the D square. "Shower" is
represented by the S square. "Do Make Up" is represented by the M square.
"Leave" is represented by the L square.

28

3 Methodology

Information from this section has been redacted due to the containment of
Credit Suisse proprietary information. We model Credit Suisse’s advisory process
from the user click data. Credit Suisse has five steps that its employees follow for
the advisory process: "Needs Analysis", "Financial Concept", "Client Profile",
"Strategy", and "Implementation", so we check that the user data confirms the
conformance to that predefined five-step model. We format the data so that they
can be imported to ProM using Python, import the data to ProM, run the Inductive
Miner algorithm on the event logs, and analyze the outputted model.

3.1 Identifying a Data Set

In order to begin process mining, we must have a clearly defined data set.
This data set must represent a process. If there is no underlying process, then the
output from the model will be invalid because the model will display steps in a
process that does not exist. A partial model can be derived from event logs that
only consist of part of the process. This partial model is still valid, but it is missing
some activities. In order to get valid results, we must narrow the scope of the data
to only include one process but also have a large enough scope that includes every
activity in the process.

Credit Suisse records every click a user makes in its applications. For
example, when an employee clicks a link, the Credit Suisse system logs that em-
ployee ID, a description of the click, and the time. Our data set is user click data.
User click data for every event consists of a timestamp, a description of the click,
an anonymous identifier of the user, and other fields. We refer to the description
of the click as the name of the click. We are only concerned with the timestamp,
the name of the click, and the identifier of the user. This identifier is only used
to construct cases, no client or employee identifying information was used. The
name of the click is the activity and the anonymous identifier of the user is the case
ID. An example of click data is 10:00, Needs Analysis, 0001, where the timestamp
is 10:00, the click name is Needs Analysis, and the identifier is 0001. The click
names correspond to steps in the advisory process, so we can use them to derive
a process model. The click data includes other extraneous information, such as

29

location information, that we discard. The click data also includes click names
that are not related to the advisory process that must be discarded for our analysis.
Thus, we must format the data.

3.2 Formatting the Data

The raw log files contain more information than we need and their format
is not compatible with ProM. We use a Python script to write the necessary fields
to a new file in CSV format. CSV stands for Comma Separated Values, so each
field is separated by a comma. ProM accepts a CSV file with the field names
separated by commas at the top, and then the data listed below. Each line in the
file corresponds to a specific event. In order to perform the analysis, each event
must consist of an identifier for each login session, a timestamp, and an activity
description.

In our raw data file, each line refers to an event, and the fields are delin-
eated by spaces. See example in figure 17.

Figure 17: A sample of how the raw data is formatted.

Our analysis only requires the timestamp, the case ID, and the activity.
The company and computer are extraneous fields. Notice that some fields, like
the company, can contain spaces. Within our file, fields are separated by spaces.
Words within fields are separated by spaces as well. This complicates the data
extraction. We handle this by looking at each line of the event log individually.
We use the Python split line method to turn the line into a list, where the start and
end of an item in the list is denoted by a space. For example, if we use the split
line method on the first line in Figure 17, our list would be [07/Feb/2016:16:05:49-
0800], computer=Mac, identifier=112345, company=[Credit, Suisse], activity=login.
We refer to the previous list as list1. If we use the split line method for line 2 in
Figure 17, our list would be [07/Feb/2016:16:05:53-0800], computer=PC, identi-
fier=112346, company=[Bank, of, America], activity=logoff. We refer to this list

30

as list2. The lengths of these lists are different due to the use of spaces within
fields. Therefore, the fields occur at different places in our lists. In Python, the
items in a list can be accessed according to their location in the list. For example,
list1[5] is activity=login, while list2[6] is activity=logoff. If our fields were all in
the same location of their respective list, we could simply access each entry ac-
cording to their number. Another problem with this format is that fields could be
split between two different entries in the list. However, all of our required fields
do not contain spaces, so we do not need to address this problem.

Since the fields we need to extract are located in different spots in the
each line’s list, we use the string comparison to search for each field name within
the list. Once the field name is located, we remove the field name and put the
contents of the field in a new list. For example, if we search list1 for the substring
"identifier=", we find the entry identifier=112345. Following this, the string is
partitioned to include just the relevant information; say perhaps we were only
interested in the "123", we find and remove the characters before the "123" and
after. Then, we put the resulting "123" into the new list. We continue to find our
next field in the list and add the contents of the field to the list. We repeat this
until all of our fields have been located and added to the list. Finally, we write the
list to the CSV file and repeat the process with the next line in the raw data file.
After this has been completed for each line, we have correctly formatted our data
to import into ProM.

3.3 Analysis in ProM

Once the data is formatted as a CSV, we can import the data into ProM.
From there we decide which algorithm to use to create our process model. We
choose to use the inductive miner because the algorithm is sound and known for
working well on real life data. The inductive miner also identifies deviations from
the process model and includes statistics, such as the time it takes to complete
an activity. All of these capabilities can help to improve efficiency and eliminate
redundancy in the advisory process [5]. The inductive miner also documents the
mainstream behavior of a process, which is what Credit Suisse requested.

31

3.4 Analysis with the Advisory Process Team

After our initial analysis in ProM, we approach the advisory process team
to gain insight on what our model showed compared to what they expected. We
show the bottlenecks and deviations in the advisory process to the advisory team
in search of known explanations. If there are no known explanations, the advisory
team uses the information to improve the process and identifies areas in the model
for us to analyze further. If all deviations are explained, we have confirmed that
the advisory process runs the way it is expected.

4 Results

Information in this section is redacted due to the containment of Credit
Suisse proprietary information. Our original data set consisted of one week of
click data from all of the clicks in the application. Initially we expected to derive
an overall process model for how users interact with the application. However, it
is not possible to derive a process model from something that does not include a
process to begin with. The clicks represent what each user does while they are
logged in to the system. Every user behaves differently, thus the combined event
logs produced a nonsensical model where each activity could loop back to itself
or any other activity in the diagram. We realized that we must narrow our scope
with a new script focusing on only the events involved in a single process. We
choose to focus on the advisory process.

Upon executing our second parsing script, we are able to visualize a spe-
cific subset of the log data focusing on Credit Suisse’s advisory process. The
Inductive Miner creates a process model based on the log data, which is shown
in Figure 18. From the resulting diagram, we identify the bottlenecks in their
process, as well as less used applications. Each edge in the diagram shows the
number of times it is traversed, so edges with fewer traversals are used less fre-
quently. The model outputs the time to complete each activity, so the user can
determine the activities that consume the most time. For example, the "Service
Profile" activity takes much longer than any other activity, and the relations activ-
ity only occurs 54 times. There were no deviations in the model, which implies
that users are behaving similarly.

32

After consulting with the advisory team, we realized we needed to analyze
a longer time frame. The original data set did not have a long enough time frame,
thus did not include a significant initial event of the advisory process, a question-
naire that the client fills out. The second set was of a longer time frame and did
include the missing initial event from the first set. See Figure 19 for the second
data set’s process model.

Figure 18: The process model for 1 week of user click data derived from the
inductive miner algorithm.

In each model, we see a start point (represented by a green dot) and an end
point (represented by a red dot), with the steps of the process in between. Each
model includes the number of times an edge is traveled in between activities. The
thicker, darker lined edges are the edges that are most traveled in the process.
Each node in the models represents an activity in the advisory process. Figure 19
includes circles which represent splits in the process. The circles with an X are
an "or" split, which means the process can choose one of the edges to follow that
is connected to the "or" split. The circles without an X are "and" splits, where all
paths connected to the "and" split must be followed.

33

Figure 19: The process model for 2 weeks of user click data derived from the
inductive miner algorithm. The activity circled in red is the activity that did not
appear in our original model. This shows that we did not have the correct time
span for our original model.

34

5 Conclusion

Our project successfully demonstrated that process mining can be used to
reduce a business’ operational costs by identifying redundant tasks and bottle-
necks in their processes. For example, we found that the "Service Profile" activity
was significantly slower than other activities. We used user click data to cre-
ate a process model and identify deviations and inefficiencies in Credit Suisse’s
advisory process. In the future, we recommend that Credit Suisse uses process
mining to create process models and determine usage statistics and capabilities
for other processes within their organization, such as the Loan Approval process.
By utilizing process mining on their processes, Credit Suisse will gain a better
understanding of how their processes actually run and can make their processes
more efficient by eliminating any redundant tasks and bottlenecks.

In order to optimally analyze individual processes, we recommend Credit
Suisse to look at data over long periods of time. We analyzed two sets of data for
our study of the advisory process, one for one week of click data and the other
for two weeks. The model of our second data set included an activity that did not
appear in the model of the first data set because some activities are executed at the
end of the year and some are executed at the end of the quarter. From the process
perspective, both graphs are similar, but they are formatted differently in Figures
18 and 19. If Credit Suisse creates process models from data sets for long periods
of time, then their resulting process models will be more accurate and will include
information that may be left out from a data set of smaller scope.

We also recommend consulting with the advisory team for more insight
into the advisory process. They may be aware of certain bottlenecks in the process,
such as the "Service Profile" activity which takes much longer than any other
activity, and have an explanation for why it takes so much time to complete. We
recommend consulting with the team in charge of every other process that Credit
Suisse chooses to model in order to gain a better understanding of the process and
the process model.

35

References

[1] Credit Suisse, “Our company.” Retrieved from: https://www.credit-
suisse.com/ch/en/about-us/our-company.html.

[2] W. van der Aalst, Process Mining Data Science in Action. Springer-Verlag
Berlin Heidelberg, 2016.

[3] Credit Suisse, “Advisory process.” Retrieved from: https://www.credit-
suisse.com/nl/en/private-banking/advisory-process.html.

[4] W. van der Aalst, “Process mining: Data science in action.” Coursera [On-
line Course], 2016. Retrieved from: https://www.coursera.org/learn/process-
mining/home/welcome.

[5] J. Buijs, “Introduction to process mining with prom.” Fu-
ture Learn [Online Course], 2016. Retrieved from:
https://www.futurelearn.com/courses/process-mining.

36

	Introduction
	Background
	Event Log
	Process Model
	Advisory Process
	Process Mining
	Inductive Miner
	Introduction
	Directly-Follows Graphs
	Process Trees
	Overview of Inductive Miner
	Inductive Miner: In-Depth Explanation

	Methodology
	Identifying a Data Set
	Formatting the Data
	Analysis in ProM
	Analysis with the Advisory Process Team

	Results
	Conclusion

