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Abstract

Gaining a deep understanding of large codebases is difficult and time-consuming. In this
report, we present Explorant, a novel trace-based code exploration tool. Explorant allows
developers to quickly create state diagrams of other people’s code to visualize how major
components of the program fit together. It does this without sacrificing the in-depth analysis
capabilities of traditional tools by incorporating debuggers and source code viewers. Explo-
rant creates tight experimentation-driven feedback loops that enable new ways of reading
and quickly understanding code.
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1 Introduction

Brooks’s law famously states that “adding manpower to a late software project
makes it even later”[l]. He attributes this to what he calls the ramp-up problem[2] wherein
by adding a new developer you impose a burden on the rest of the team to educate them over
the span of multiple months. Our industry experience lines up with this observation. We
are deeply familiar with the standard first-week meetings with mentors drawing diagrams on
whiteboards while the new developer rapidly takes notes. The new developer is then subject
to multiple weeks wherein they are paranoid that they have misunderstood the stack or that
some part of the stack was described wrong as they add new code. Our research shows that
it often takes developers between three and nine months until they are fully ramped up [3].
We use the term onboarding to describe this multi-month process of becoming an expert in

an existing codebase.

In this report, we present Explorant, a code exploration tool designed to enhance
and parallelize the onboarding experience. Explorant allows a developer to quickly under-
stand and relate different components of a codebase based on the execution of a trace. With
Explorant, senior engineers can annotate their code to produce diagrams that the new engi-
neer can use as a stepping stone for further exploration. We achieve this by integrating state
diagrams, source code, RR [4], and GDB [5] into a single cohesive tool that enables users to

seamlessly delve into specific code paths or gain a broad overview of the entire program.



2 Background

To understand the details of how Explorant works, we will provide context on cer-
tain aspects of the stack that are particularly important for understanding its functionality.
Namely, we describe how debuggers help with code understanding, what a state diagram is,

and how RR [4] works.

2.1 Debuggers and Breakpoints

Debuggers are an essential tool for software developers, as they allow us to pause
the execution of a program and inspect its state at any given moment. This is useful for
detecting and fixing bugs, as well as for understanding how the program works. GDB
[6] is one of the most widely known debuggers for statically compiled languages (i.e. not
interpreted languages like Javascript). GDB allows a developer to step through a program
line by line to see the exact execution path. A developer normally uses a tool like GDB
when they know a little bit about how a program works but they are looking to solidify their

knowledge and dive deeper.

One of the most important things debuggers can do is set software-breakpoints.
These work by replacing the first byte of an instruction with Oxcc, also known as INT3
[6]. When this instruction is executed, the CPU throws an EXCEPTION_BREAKPOINT which
calls the debugger’s exception handler. This allows the debugger to fix the first byte of
the instruction and modify the instruction pointer register to act as if the instruction had
never been run. At this point, the debugger has full access to the program’s memory and
the developer can do things like examine memory addresses and data structures. Explorant

utilizes this technique to allow the developer to open GDB at any specific instance in time.



2.2 State Machines and Diagrams

Process book

Book returned

Check out

Apply late fee

rite off book

Book returned

Apply late fee

Figure 2.1: Simple state diagram of a library bookkeeping system

State diagrams are directed graphs that help programmers condense lots of compli-
cated domain knowledge into a small number of states. These diagrams show how the states

of a program relate to each other [[7]. State diagrams are particularly useful for onboarding



new developers, as they provide a high-level overview of the program’s flow without requiring

a deep understanding of the code [2, [7].

Each node in a state diagram represents a unique state of the program and each
edge represents an action that can occur to transition states. For example, in figure @, a
book in the checked out state can be returned, the person can be reminded, or the person

can get a late fee.

Finite state machines (FSMs) are visually similar to state diagrams but they apply
the node transitions with more rigor [8, p 55]. FSMs specify all of the conditions that
lead to a transition and have no concept of global state. They are a very limited concept
of computation. Explorant does not directly generate FSMs however it uses graph mining

techniques to estimate what an FSM of a given program could look like (See section )

Explorant does not use traditional state diagrams as we do not have the ability to
intelligently label edges. All of the state diagrams that Explorant can generate are unlabeled
(this may change in the future). However, using techniques described in the graph simpli-
fication (@) section, we are still able to ensure that the graph is both understandable and

usable.

2.3 ELF / DWARF

The ELF (Executable and Linkable Format)[9] is a file format used by many Unix-
like operating systems to specify the layout of object files and executables. These files contain
a wealth of information about the compiled code, including symbols, debugging information,

and other metadata.

One component of ELF files is DWARF (Debugging With Attributed Record
Formats)[[10], which is a data format that specifies the layout of debugging information.
DWARF data is embedded in ELF files and can be accessed by debuggers, such as GDB, to



Attribute Description

DW__AT_external Whether the function was defined in this program (ex: printf is external)
DW AT name The name of the subprogram

DW_ AT decl file The path to the souce file where this function was defined

DW_ AT decl line Line in the source file where this function was defined

DW AT decl column | Column in the source file where this function was defined

DW__AT_ type Return type of the function

DW_AT low_pc The starting address of the subprogram

DW__AT high pc The ending address of the subprogram

DW__AT prototyped Specifies whether the subprogram has a prototype

Table 2.1: A table of attributes for a DW__TAG_ subprogram DIE.

provide valuable information about the execution of a program.

DWARF data is organized into structures called DIEs (Debugging Information
Entries), which are composed of key value pairs for the structures in the original source file.
Some common DIE tags include DW_TAG_variable for variables, DW_TAG_subprogram for
functions, and DW_TAG_compile_unit for compilation units. You can see table El! to see all

of the information that goes into one of these DIE entries for a function.

By parsing out these DIE tags, Explorant can access valuable information about the
symbols in a program, allowing us to provide useful features such as the ability to correlate

lines of code with addresses and figure out which function a particular line is a part of.

2.4 RR Record and Replay Framework

Explorant uses RR [4] extensively and would not be possible without it. The RR
record and replay framework is a powerful extension to GDB that enables the user to continue
backwards as well as forwards while debugging [4]. This allows user to easily and quickly
reproduce the conditions that led to a bug. This is particularly useful when debugging rare
or timing-sensitive bugs like race conditions where GDB might prevent the bug from ever

occurring in the first place.
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Figure 2.2: Diagram showing how RR intercepts calls into the kernel and records them

One key aspect of RR is its focus on capturing nondeterministic input rather than
the whole trace [4]. In this case, nondeterministic inputs are the events that could cause
a program’s output to vary from run to run. This includes things like syscall inputs and
outputs, process-switching timings, or even some non-deterministic instructions. By captur-
ing and replaying these inputs, RR avoids having to walk through and instrument the vast
majority of executed instructions. RR uses a wide variety of tools including the ptrace API
[11] to attach middleware, overwriting the vDSO (virtual dynamic shared object), limiting
a program to a single core, and other more specific techniques in order to accomplish record

and replay.

To intercept many simple system calls, RR can simply overwrite the vDSO which
is a user-space code-segment that the kernel exports for code “that does not necessarily have
to run in kernel space” [12]. However some code can directly execute syscalls in assembly.
As such, “when the tracee makes a system call, RR is notified via a ptrace trap and it
tries to rewrite the system-call instruction to call into [their] interception library” [13, p. §].
A diagram of this modification can be seen in figure El] A similar process happens during
replay and all of the nondeterministic calls are replaced with lookups to get the deterministic

input from the recording.

In order to efficiently continue-backwards, RR utilizes a checkpointing system. The
checkpointing system works by forking the process to cheaply copy the address space [13,
p. 15]. This is efficient because “fork is (mostly) ’copy-on-write’ and is very well optimized

on Linux, so creating a checkpoint typically takes less than ten milliseconds” [[13, p. 15].



This allows RR to quickly and easily restore the program to the state it was in at the time

of the checkpoint. Then it can continue-forwards until it reaches the desired location.

The default interface to RR is a GDB server using the GDB remote serial protocol
[14]. However, this is not a performant solution for a programmatic interface that might be
doing queries across the entire execution of a program. As such, we developed librr, a Rust
library to interact with the C++ internals and provide nice abstractions such as reading

registers, writing bytes in memory, setting breakpoints, etc.



3 Understanding Code Onboarding

In order to design Explorant as well as possible, we conducted a case study wherein
we spent a week studying and understanding a code base while recording our observations
about our onboarding process. The codebase that we chose was the glibc [15] memory
allocator, commonly referred to by its most used function, malloc. malloc uses a wide
array of complicated datatypes, intricate macros, and C-style memory optimizations. The
goal of this case study was to use only the codebase itself and no video lectures or online
explanations. This was done so that we might arrive at a better understanding of what
it is like to onboard with codebases that have less documentation. However, we will use
many detailed source code comments in malloc as a stand-in for internal documentation or

a mentor who knows the codebase well.

To tackle our malloc case study, we first researched tools for code onboarding.
Almost all resources we could find online recommended the same advice: read the source
code (with tools that provide features like jumping to definitions and collapsing modules),
write some simple code to explore the behavior of the underlying system, step through the
code with a debugger while keeping notes and building diagrams, and repeat. [16, 2|. This

strategy worked well for us during our case study.

From our study, we made the following observations:

1. GDB is perfect for examining a single function execution in high detail, however, it fails
at helping the programmer easily understand how functions fit together. In order to
understand how functions fit together, we had to set many breakpoints. This allowed
us to gain an in-depth understanding of a few functions however it did not always help

with the larger picture. We also found that GDB showed large amounts of information



that was mentally taxing to wade through and not very useful (like error handling

code).

2. malloc’s comments are extremely detailed and any changes that are made to malloc
will require a great deal of attention to the documentation that is scattered around
the source code. We didn’t find any instances of incorrect comments but we noticed
how certain data structures and ideas were referenced in comments throughout the
program, yet they were only defined in a single location. We can easily envision how
documentation that is separate from the implementation could become outdated and

be hard to maintain.

3. Manually writing down a lot of the internals of malloc was tiresome and distracting.
This custom documentation was very useful to have because we referenced it later,
though it interrupted our flow of thought and we found that we often wrote down

many inconsequential implementation details that were unimportant.

4. Jumping around the source code with definitions and code collapsing was critical to
keep the amount of information in our “working-memory” focused on understanding

an individual task.

5. After having completed our exploration, we thought we had a fairly deep understanding
of malloc. However, once we started describing certain high-level interactions, we
realized that we had misunderstood how multiple key components related to each other.
By diving deep into certain areas, we had convinced ourselves that we understood the

whole codebase at a similar depth which was clearly wrong.

Most importantly, this case study validated our suspicion that there is room to

improve this time-consuming and laborious process.



4 Design

Our experiment with malloc and the experience we gained laid the foundation for
the design of Explorant. Specifically, our experiment showed us the importance of building a
temporal map that relates different segments of the codebase. When we were working with
malloc, this map was created in our heads and on paper, however, Explorant was designed
to help translate from important locations in the code to a readable state diagram of the

program. To do this, we built a system that works on events organized inside modules.

4.1 Events

Explorant uses Events as a core building block. Events are similar to states in a
FSM (Section ) however they are slightly more basic and less assuming. A real state
in a FSM represents a unique global state of the program, though we do not have enough
information to create such states without a much deeper understanding of the code. As
such, we limit ourselves to discussing events. Each event can be effectively thought of as a
breakpoint (though they are not implemented that way. See section B) As the developer
adds events on various lines throughout the program, we are able to create diagrams that

relate these events and allow a developer to rapidly explore a trace in the form of a graph.

We envision that these events can serve as a form of accurate documentation that
senior engineers can easily provide to junior engineers. We did this by allowing there to be

two ways to define events: the first is through adding a source code annotation like:

int main(){

// [[{type:"event", name:"::entry"}]]

10



printf("Hi!")

return O;

The other option is to have the person who is exploring save all of their events to a JSON
file which stays separate from the codebase but can easily be imported and exported from

Explorant to allow for different profiles or investigation paths within the same codebase.

4.2 Modules

To achieve greater organization and categorization, we developed a module sys-
tem. This system allows for the creation of namespaces, similar to popular programming
languages. For example, instead of naming two “entry” points of functions as funcl_entry
and func2_entry, we can define a module with a unique name and a single parent, such as
add being a child of util. In this case, the entry point of add can be specified as add: :entry

and the entry point of another function like print can be specified as print: :entry.

This might look like the following in code:

#include <stdio.h>
// [[{type:"module", name:"util"}]]
// [[{type:"module", name:"print", parent module:"util"}]]

// [[{type:"module", name:"add", parent _module:"util"}]]

int increment(int a){
// Define a start event that gets expanded into ::util::add::entry
// [[{type:"event", name:"add::entry"1}]]

a = atl;

11



return a;

+

void print num(int a){
// Define a start event that gets expanded into ::util::print::entry
// [[{type:"event", name:"print::entry"}]]

printf("val: %d\n", a);

int main(){
// [[{type:"event", name:"::entry"1}]]
int a = increment(2);
print_num(a);
// [[{type:"event", name:"::exiting after printing the num"}]]

return O;

As you can see in figure El!, this sample code generated a simple graph containing
multiple entry nodes all grouped into multiple different modules. This example is very
contrived however it demonstrates multiple aspects of the module system. We can also see
in figure how these modules can be collapsed to simplify and hide complexity in the

graph.

We recommend keeping the number of modules to a minimum to prevent compli-
cated and difficult-to-understand graphs. With many modules, our layout engine (Graphviz
[17]) is more constrained during graph layout and this can cause the creation of many extra
extremely long edges. However, careful placement of a few modules can make the graph

much more legible and easily navigable.

12



exiting after printing the num

Figure 4.1: Graph of simple module system

count to 10 count to 7

Figure 4.2: A collapsed module for a different program
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4.3 Major components of the UX

In this section, we will delve into the real implementation of major components of
the software in order to provide concrete examples of how we solved many of the issues we
encountered during our case study. Figure @ shows the completed user interface that is
actively examining a trace. In this figure, we can see that we have selected the print event
and all of the components have been updated to highlight the event and show information

about that event.

Explorant

nnnnnnnnnnnnnnnnnn

Type:
" oo

sssss

Figure 4.3: Image of the UI for Explorant

4.3.1 Graph Viewer

One of the most important components in Explorant is the graph viewer. The graph
viewer describes the relationships between events across the entire execution of a trace. The
graph viewer tries to convey as much information as possible. Some of the most important

of these techniques are:

14



count_to

count to 10

@ count to 7

Display unreachable events: B

Rerender graph on updates:

Figure 4.4: Image of the graph visualizer

o The currently selected event is highlighted and all of its incoming and exiting nodes

are colored.
o The size of the edges are determined based on how probable that edge is to be traversed.
« Events are grouped into modules (described in section @)

o Unreachable (Un-run) events can be toggled to only show the happy path that was

actually executed during the trace.

» Hovering over an event shows what function it was defined in

You can see examples of these techniques in figure Q including the highlighted node print,
the module count_to, the varying sized edges, and program’s entry and exit nodes, INTIAL

and TERMINAL.

15



4.4 Source Viewer

/home/zack/Tools/MQP/Explorant/examples/simple/simple.c

#include <sys/time.h>
#tinclude <stdio.h=

/f [[{type:"module", name:"count_to"}]]

void count to(int num){
/ [[{type:"event”, name:"count_to::init"}]]
(int 1 num; i+ ){
1L name: "count_to::print"}]]

printf("i

int main() {
printf("s
ount to 10"}]]

/1 [[{typ t", n " ount to 10"}]]
printf("Count

count_t P

£ [L{t vent™, name:"::count to 7"}]]

printf("Fi d Program\n");

Figure 4.5: Image of the source viewing component

Another critical design choice we made was to ensure that it is easy for the de-
veloper to relate the high-level state diagram to the source code easily. We addressed this
by envisioning a simple source code viewer that contains features like syntax highlighting
while also coloring the line with the currently selected event in red. This allows developers
to easily move back and forth between the source code and the graph. The source viewer
also can be right-clicked to allow the developer to add new events to the graph in real-time.

You can see figure @ to see how this was implemented.

16



4.5 Event Adding

MName:

name

Module:

Type:

Ewvent ~

Line Location:
8

Add Node

[— |

Figure 4.6: Image of the event adding component

Our case study helped highlight how important real-time feedback and experimen-
tation was to the onboarding experience. To ensure Explorant offered this kind of tight
feedback loop, we allow the developer to add new events after a trace has already been
recorded. We can leverage RR to replay the trace as if the new event had been there the
whole time. This ensures that the developer has a tight feedback loop that does not en-
tail recompiling and rerunning a program every time they want to experiment and add to
the graph. Figure @ shows this component and how it allows the user to define events,

determine what module they reside in, and what line they pertain to.

4.6 Execution Explorer

The last and perhaps most important constraint we considered when designing the
UX of Explorant was the ability to dive deep when necessary. A debugger like GDB is
capable of providing the developer with the means to get a very close look at a particular

moment in time. As such, we allow the developer to see a list of every time an event was

17



Click one of the instances below to start a gdb server at
that location:

Frametime Addr instance in frame

1037 1

o0 1039 1
1041 1
1043 n,

Figure 4.7: Image of the execution explorer component

reached and when it occurred relative to the start of the program, and if they click on the
particular instance of the event, it opens up gdb at that exact location. You can see figure
@ to see an image of how this was implemented. Note the timeline which shows all of the
times the event was reached (with blue dots). The timeline also stacks some of these events

because they occur so close together in time.

4.7 Graph Generation

Even with this GUI, A naive Explorant Event -> Graph Node mapping did not
create understandable graphs. As such, we applied multiple filters to simplify the graphs for
the developer. Without these filters, the graphs were rendered as giant nests of events, with
each event having many edges in different parts of the codebase. The methods we employed
were: a FSM miner (see section @), a module system (see section @), and node-grouping

techniques to simplify them.

4.7.1 Synoptic

The primary tool we leveraged to simplify the graph was Synoptic [1§], a fi-
nite state machine (FSM) miner. Developed by the University of Washington, Synoptic

is described in their paper “Leveraging Existing Instrumentation to Automatically Infer

18



Invariant-Constrained Models” [19]. Synoptic accepts a series of events that it uses to re-
fine the graph. First, it creates a compact model where each node exists only once and is
connected to all of the nodes that directly followed or preceded it. Then Synoptic mines
invariants from the graph. In this context, an invariant is a statement such as “x is always

bR A4

followed by y”, “x always precedes y”, or “x is never followed by y.”

By mining invariants, Synoptic is able to refine the graph and separate nodes that
are used for multiple purposes (like printf) into multiple copies of the same node that
represent different execution paths. This results in graphs with many more nodes but each
node follows a clear and unique execution path. Consider the graph in figure @ where you
can see how synoptic was able to break apart print and init in count_to into two separate
sets of nodes depending on whether or not they were called from count to 10 or count to

7

4.7.2 Grouping Strictly Sequential Nodes

Grouping nodes that are strictly sequential also significantly simplified the graphs
Explorant built. We define strictly sequential nodes A and B as having the only edge out
of A directed to B and the only edge into B coming from A. Similarly, a set of nodes
(A, B, C) is strictly sequential if A and B are strictly sequential and B and C are also
strictly sequential. This technique is particularly useful for Synoptic graph simplification
because Synoptic produces a large number of nodes and this helps to constrain and visually
separate the graph. These groups are drawn with a dotted border. We created figure @ to
show the effect of sequential grouping. These are two photos of the same graph, one with
grouping enabled, and the other with it disabled. In this case, the grouping allows the user
to quickly see the relationships between nodes that were otherwise hidden due to how they

were displayed in the image on the left.
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Figure 4.8: Off/On comparison showing strictly sequential grouping

4.8 Design Limitations
This design has a few major limitations that are worth examining:

JIT compilation / self-modifying code JITs [20] do not expose a standard method to
access their location in the source code in the same way that static compilers provide
DWARF data. This means that it is currently not feasible to instrument an arbitrary
JIT compiler or code that it is running. Unfortunately, this means that many common

languages like Java, Javascript, and Python will not work with Explorant.

Macro heavy code Macros hide a lot of information that DWARF data is unable to pro-
cess as the macro is expanded in many locations and does not always translate to code

very well.

Long-running programs Because we must run the whole trace every time we rebuild the
graph (in case an address was executed in a spot we didn’t expect), working with long-
running programs is difficult and painful. We could address this by either allowing
the user to only analyze a certain time range within the trace or we could employ a
much more advanced strategy where we instrument all function calls and then build

heatmaps for where a new event could have been run and then only rerun those time

20



segments. In either case, the current design does not allow for efficient manipulation

of long-living programs.

Optimization levels If a program is compiled with high optimization levels (like O3 in
GCC [21]) then functions can be inlined, loops can be unrolled, the DWARF data
becomes harder to parse, and every line is no longer guaranteed to have assembly
instructions associated with it. As such, this design means that the user must be sure
to compile the program without optimization. This is particularly important because
some programs like glibc cannot be compiled without optimization (glibc requires at
least O2 [22]), meaning that sometimes annotations inside of malloc do not behave as

we expect them to.

Browser dependent The frontend is rendered in a browser (see section @) While this
enables a fast development cycle, it also means that the final UI is much slower and

heavier than a native app.
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5 Efficient Address Recording

To understand the flow of a program, we need to record the path that it takes. For
statically compiled binaries, this is equivalent to recording the locations in memory where the
CPU is executing instructions. One way to determine this path is to set software breakpoints

at various addresses and then continue until the CPU hits one of these breakpoints (See
section El])

However, when we began our analysis of librr, we quickly noticed that singlestep-
ping and continuing (interrupting the process) incurs a heavy performance penalty. Early
measurements indicated overhead on the order of 25 — 100us per software breakpoint. This
resulted in a 100-1000x performance penalty depending on the workload. This is unaccept-
able for anything but the simplest of programs. As a result, we decided to use a more
complicated technique called code stomping to force the underlying program to store its

location in the program without using software breakpoints.

5.1 Naive Implementation

To have the program record its own location, we created two new memory regions:

the address-segment and the trampoline-segment.

The trampoline segment stores code that acts as a recorder for the addresses that
are reached. The address-segment acts as the space that the code in the trampoline-segment
can use to store the instrumented addresses. To instrument an address, we simply replace

the instruction at that address with a jump to an entry in the trampoline-segment.

The address-segment looks like the following:

22



Reserved (40 RSP Storage points to top of stack
bytes)
Addr n top of stack
Recorded bty w=]
Addresses Stack Addr 1.2
Addr 0 base of stack

Figure 5.1: Naive efficient address recording stack layout

5.1.1 Address-segment diagram

5.1.2 Sample trampoline-segment entry

{instruction that was stomped}

XCHG rsp (beginning the address-segment)

PUSH (address of instruction that was skipped)
XCHG rsp (beginning of the address-segment)

JMP (address to go to next instruction in the main program)

5.1.3 Limitations

1. This has no protection against overflowing the stack in the address-segment

2. You can only place trampolines on instructions that are 5+ bytes

23



3. Yon can only place trampolines on instructions that do not alter program flow (for

now)

5.2 Stack overflow protection

One problem with this implementation is that it wastes stack space and is risky
because if the stack overflows, the user will get a segfault that is difficult to debug. There-
fore, we also developed another implementation that includes stack overflow protection. This
implementation uses a special byte that is overwritten whenever the stack grows into the re-
served space, triggering a software breakpoint and an interrupt that allows the main program

to reset the stack.

Key pieces of information:

e No instructions can increment the x86 retired branch counter as otherwise there will
be diversions from the recording. This means that we cannot just compare RSP with

some value and then interrupt.

o The INT3 (Oxcc) instruction triggers an interrupt that the CPU and kernel use to alert

the debugger that a software breakpoint was reached.

o The NOP (0x90) instruction is the same size as INT3 (1 byte)

5.2.1 Address-segment diagram
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RSP Storage points to top of stack

Reserved (40 RAX Storage
bytes)

Dverflow Detection Byte intial: 0x90 (NOP)

Oxcceeccecc Canary to trip overflow byte
Addr n top of stack
Recorded
Addresses Stack bicldhe =l
Addr n-2
Addr 0 base of stack

Figure 5.2: Naive efficient address recording stack layout

5.2.2 Sample trampoline-segment entry

{instruction that was stomped}

XCHG rsp (beginning of the address-segment)

XCHG rax (beginning of the address-segment + 8)

PUSH (address of instruction that was skipped)

PUSH Oxcccccccc

POP <- subtracts from RSP without clearing the memory in front of it
MOV AL (overflow detection byte)

MOV (RIP+1) AL
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NOP <- instruction that will be overwritten by overflow detection byte
XCHG rsp (beginning of the address-segment)
XCHG rax (beginning of the address-segment + 8)

JMP (address to go to next instruction in the main program)

5.2.3 Limitations

1. This requires the trampoline segments to have more than twice as many instructions
2. You can only place trampolines on instructions that are 5+ bytes

3. Yon can only place trampolines on instructions that do not alter program flow (for

now)

5.3 Final Implementation

After some experimentation, we determined that it was easiest to simply use the
naive implementation and give the address-segment a large (256Mib) buffer. We then clear
this stack every time a new "frametime” event triggers, which happens on average every
40,000, 000 instructions [23, Scheduler.h:72]. This allows us to process on the order of 10°
instructions per second (at peak theoretical throughput with no saving overhead). We have
not conducted in-depth benchmarks on this because this system has completely eliminated

the problem of address recording speed.
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6 Conclusions and Future Work

In this report, we presented Explorant, a novel onboarding and code exploration

tool. Explorant was designed to improve many of the issues that we encountered in our case

study of malloc and we think that it has succeeded at its mission and more.

As time goes on, we hope that Explorant will continue to develop and address some

of its main weaknesses. While many of the limitations brought up in section @ cannot be

fixed (like JIT support), a number of them can. The areas we think are ripe for future work

are:

A user study evaluating the effectiveness of this tool and its usefulness

The ability to compare multiple traces at once and build a combined graph from all of

them.

The ability to drag around nodes and add custom edges and labels within the graph

so that the graphs can serve as official documentation

Fixing difficultiies with long running executions using complex function call heatmaps

or simply limiting the execution to a smaller range (perhaps both)

Automaic segmentation of events based off of filesystem hierarchies rather than mod-
ules. We think this would be particularly useful for codebases with a large number of

disjoint files.

Possible automatic event definition based on some criteria from the trace that contain

the fewest nodes but capture the most important flow paths.

We strongly believe this tool can serve as a critical resource not only for new
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developers understanding a codebase, but also for senior engineers who can add Explorant
annotations and have the junior engineers explore on their own. We will continue supporting
Explorant and we hope others embrace and extend our work to realize the next generation

of code exploration.
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Appendices
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A Frontend

We spent a significant amount of time designing the user interaction for our appli-
cation. We considered multiple platforms such as a GDB or Ghidra[24] plugin or even just
a terminal application. However, we eventually decided on a more GUI-focused application
that would give us more creative freedom to address many of our design goals. This section

details many of the decisions we made and the capabilities afforded by those decisions.

As Rust developers, we originally designed and planned for a Rust-native GUI
library like Druid[25] however as time went by, we rapidly realized that unfortunately, the
ecosystem is not ready yet. Many packages that we required for our project did not exist

and we would have had to create them.

As such, we decided on a web-based frontend that communicates over standard
POST requests. This had many unforeseen benefits like the creation of a well-designed split
between frontend and backend logic as well as creating an async-first architecture which is
important for a responsive frontend that might be waiting on computations that take a long

time in the backend (like re-running a trace).

The separated networked architecture also enables us to support remote debugging
without major ergonomic impacts. This is because the backend and frontend can communi-
cate over the network, allowing future users to debug and troubleshoot issues without being

in the same physical location as the application.

In addition, splitting the frontend and backend gave us more flexibility in designing
the frontend. We were able to focus on creating a user-friendly and intuitive interface without

worrying about the underlying logic and functionality of the application.

However, this architecture also has some drawbacks. It significantly increased the
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overall complexity and overhead of the project by adding a new language to the project and
a whole new build infrastructure for that code. It also introduces more dependencies for
the project, which can potentially cause issues. Overall, while the benefits of a separated
architecture are significant, given the chance, we think it would still be better to rewrite to

a native-first application later on.
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