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Abstract

Soft snake robots have unique advantages in traversing through cluttered and
confined environments because they are equipped with highly flexible body struc-
tures, deformable materials, and high sensitivity almost in any part of their body.
These advantages have resulted in great expectations for the snake robots in many
difficult applications, including social rescuing, cave exploration and medical oper-
ations, etc. However, planning and control of such types of robots remains a chal-
lenging problem, as these robots have infinitely many degrees of freedom (DoFs) in
their body links, and soft actuators with hard-to-identify dynamics.

By taking inspiration from the cerebral and spinal control of rhythmic behaviors
in natural animals, we in this thesis develop bio-inspired locomotion controllers that
allow the robot to freely sense and explore the environment, and flexibly maneuver
its locomotion modes with embodied intelligence in a planar workspace. These
controllers are based on the concept of Central Pattern Generators (CPGs), which
are a series of mathematical models that describe spinal neural circuits’ activities
that generate the rhythmic patterns for animals’ organ contraction and locomotion.

Among the popular CPGs in bio-inspired robot control, the Matsuoka oscillator
is well-known for generating high-fidelity rhythmic neural oscillation patterns for
robot locomotion gaits in mimicking animal behaviors. However, its nonlinearity
makes it harder to analyze the system state properties and gradually becomes less
popular in robotics locomotion studies. During my study on the learning-based lo-
comotion of soft robot snakes, we found that the rhythmic patterns in the Matsuoka
oscillator can be easily learned and maneuvered by a model-free RL algorithm. On
the basis of Matsuoka’s theory, we further justified that the oscillation features of
the Matsuoka oscillator, including oscillation bias, frequency, and amplitude have a
clear relation with the specific coefficients of the Matsuoka oscillator, and therefore
can be efficiently controlled by the RL agent. Such a mechanism allows the proposed
control framework to easily learn flexible steering and speed control of the soft snake
robot when tracking dynamically changing goals. However, as we tried to incorpo-
rate the sensory feedback mechanism in the Matsuoka CPG system to realize the
contact-aware locomotion of our soft snake robot, we encountered a problem such
that the conventional feedback approach could bring significant overshoot and delay
to the oscillation patterns of the Matsuoka oscillator, and therefore impede the per-
formance of the whole RL-CPG control scheme during the contact-aware locomotion
of the robot. To solve this issue, we develop a novel sensory feedback mechanism
for the Matsuoka CPG network. This mechanism allows the Matsuoka CPG sys-
tem to work like a “spine cord” in the whole contact-aware control scheme, which
simultaneously takes the stimuli including tonic input signals from the “brain” (a
goal-tracking locomotion controller) and sensory feedback signals from the “reflex
arc” (the contact reactive controller), and generates rhythmic signals to actuate



the soft snake robot to slither through densely allocated obstacles. In the design
of the “reflex arc”, we develop two distinctive types of reactive controllers – 1) a
reinforcement learning (RL) sensor regulator that learns to manipulate the sensory
feedback inputs of the CPG system, and 2) a local reflexive sensor-CPG network
that directly connects sensor readings and the CPG’s feedback inputs in a specific
topology. These two reactive controllers respectively facilitate two different contact-
aware locomotion control schemes.

In summary, the original contribution of this thesis can be organized in two folds:

• In theory, we have first analyzed and proved the Matsuoka CPG’s steering
maneuverability to allow an organic composition of the RL module and CPG
module to form an efficient learning-based locomotion controller, which is also
tested to be generalizable to other robotic platforms. In addition, we have
developed free-response oscillation constraints (FOC) of the Matsuoka CPG
system for sim-to-real transfer. Last but not least, we have completed the
development of the sensory feedback mechanism in Matsuoka CPG system.
Such a mechanism is combined with two feedback reactive controllers based
on two different theories (hybrid control and local reflexive controller) to realize
contact-aware locomotion of the soft snake robot.

• In practice, we design and build three generations of soft snake robots to
optimize their performance and expand their functionality. The optimality
and robustness of the proposed control design are validated in both simu-
lated and real soft snake robots, along with a sufficient comparison to other
methods (including other RL and conventional Matsuoka CPG systems). The
contact-aware locomotion control schemes are tested and evaluated in both
simulated and real soft snake robots, showing promising performance in the
contact-aware locomotion tasks. Our experimental results have validated the
advantages of the Matsuoka CPG system for bio-inspired robot controller de-
sign.

Overall, our series work is based on the theory and application of the Matsuoka
oscillator, including the discussion and derivation of the special properties of the
CPG system. The contribution covers hardware design and manufacturing, control
scheme design (including locomotion control and sensory feedback control), and
experiment design and implementation (including simulation and reality). It makes
a significant breakthrough in the research of bio-inspired robot control.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Why Study Snake Robot?

Figure 1.1: (a) Eelume snake robot for deep sea exploration and excavation. (b)
Snake robot for space missions [56]. (c) Pipe inspection snake robot [30]. (d) Surgical
soft snake robot [93].

Snake robots have been a hot topic in robotics studies. Due to the high flex-
ibility and abundant gait types of biological snakes, they are adaptable to almost
all unstructured solid or liquid terrains. They can climb, glide, slither, swim, and
even turn into a manipulator in certain scenarios. This also results in great expecta-
tions for the snake robots in many difficult tasks. Although there have been a huge
number of snake robots developed in the past decades, our knowledge of how snake
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robots can be controlled efficiently remains limited. Moreover, the performance of
artificial snakes is not even close to the natural snakes outside the labs. As a result,
making the snake robots move and sense as good as biological snakes has become
an eagerly desired goal for robotics researchers at the current stage.

Soft snake robots have unique advantages in traversing through cluttered and
confined environments because they have highly flexible body structures and de-
formable materials. In particular, soft robotic snakes have the unique potential that
any part of their body, if properly controlled, could adapt to and reduce the impact
from collisions, or even benefit from the propulsion force generated by the contacts
with obstacles. Based on these advantages, contact-aware soft snake robots can be
potentially applied to several scenarios, including search-and-rescue [24], pipe in-
spection [49] and medical surgery [93], etc (see Fig. 1.1). However, planning and
control of such types of robots remains a challenging problem, as these robots have
infinitely many degrees of freedom (DoFs) in their body links, and soft actuators
with hard-to-identify dynamics. In my dissertation study, I aim to find out a new
solution for the soft snake robot locomotion which allows the robot to freely sense
and explore the environment, and flexibly maneuver its locomotion modes to track
targets with embodied intelligence in planar workspace.

1.1.2 Existing Snake Robot Locomotion Controllers in 2-
Dimensional Space

The study of snake robot locomotion control has developed multiple different so-
lutions in the past decades. Most contributions can be mainly categorized into
model-based and model-free approaches. In particular, the existing contact-aware
locomotion controller, as a class of hybrid model-based controllers, will be intro-
duced individually.

Figure 1.2: Model-based control scheme for rigid snake robot locomotion [41].

Model-based approaches: Basically, the model-based control of snake robots
originated from the idea of modeling the kinematic and dynamic features of a snake
robot and developing the path following controllers accordingly. For rigid snake
robots, in Pettersen’s work [41], a classic controller is proposed based on cascaded
systems theory, which stabilizes the snake robot to follow several desired (planned)
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paths in the planar workspace. For soft snake robots, a typical solution is proposed
by a series of work in the Soft Robotics Lab at WPI [45–48]. Several approaches
including approximated kinematic modeling (curvature sensing) [45] and feedback
torque control (in joint space) [46] have been proposed to simplify the dynamic or
kinematic modeling and control of the soft snake robots. Based on the approximated
models, an iterative learning controller is developed with a gait correction technique
(based on curvature feedback) for the soft snake robot to track the planned bounded
trajectories [47]. In general, stability guarantee and interpretable dynamics are the
most important advantages of the model-based approaches in certain scenarios with
pre-planned paths and known environmental dynamics. However, if we want to ap-
ply the soft snake robot to more complicated scenarios, the model-based approaches
could face the following limitations:

• Most of the controllers are dependent on pre-planned trajectories.

• Referring to sinusoidal joint trajectories, most of the model-based controllers
cannot generate flexible gait patterns and even more natural gait transitions.

• The model-based controllers usually have difficulty in tracking dynamically
changing targets, especially targets in totally different turning directions, that
require a drastic switch of locomotion modes.

• The model-based approaches are usually not generalizable. Modification or
change of the robot hardware would require redesign of the controllers, in-
cluding re-calibration of the kinematic or dynamic model and re-tuning of the
control coefficients.

• Model-based approaches have difficulty in handling the actuation delay and
irregular deformation caused by the soft actuators.

Model-free approaches: Aiming to improve the problems in model-based meth-
ods, people refer to model-free approaches for solutions. Essentially, model-free
controllers take a complex dynamical model (like a soft snake robot) as a black
box (for example, a neural network) fitting problem, and optimize the control over
such black box dynamics through learning-based algorithms. Recent work has pro-
posed model-free methods for the control of rigid robotic systems. J. Hwangbo
et al. [25] proposed an end-to-end quadruped locomotion control framework that
achieves decent sim-to-real performance with multiple locomotion patterns. Q. Wu,
et al.proposed an efficient sinusoidal constraint for a learning-based controller of a
bipedal robot, which reduced the learning complexity. Sartoretti et al. [72] proposed
a decentralized approach, where each actuator of an articulated rigid snake robot
is controlled independently by a neural network (NN) controller learned with an
end-to-end RL algorithm. In [6], a spiking neural net (SNN) under the regulation of
reward-modulated spike-timing-dependent plasticity (R-STDP) is employed to map
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visual information into desired oscillating patterns to locomote a rigid snake robot
chasing a red ball. Z. Bing, et al. [5] proposed another design of a learning-based
framework to realize reliable sim-to-real performance for the locomotion task of a
rigid snake robot.

Figure 1.3: Model-free control scheme for rigid snake robot locomotion [5].

However, using vanilla reinforcement learning (RL) as an end-to-end robot loco-
motion controller faces several limitations:

• It always requires additional reward functions as the task objectives increase
(e.g. gait patterns and constraints in locomotion), which means high data
complexity for the training process.

• It is hard to adjust a converged learned policy. Techniques including trans-
fer learning, and imitation learning are needed when the task objectives are
changed and therefore increase the computation load of this approach (e.g.
zero-shot sim-to-real transferring is a big challenge for end-to-end robot con-
trollers).

• For robot locomotion control, it is usually hard to achieve gait smoothness, gait
patterns, and gait stability with simple reward functions or penalty constraints
through a long training process.

Contact-aware serpentine locomotion: During the serpentine locomotion of
a snake robot, collisions are unavoidable as long as the obstacles are dense enough.
This fact led to a special class of study based on the contact-free locomotion con-
trol of snake robots – the contact-aware locomotion control methods. So far, the
solutions to the snake robots’ contact-aware locomotion [19,35,71] are mainly stud-
ied and implemented on rigid snake robots and most of the control methods are
model-based.
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Figure 1.4: Hybrid control scheme with jam detection for obstacle-aided locomotion
of a rigid snake robot [39].

Figure 1.5: Local reflexive control method for obstacle-aided locomotion of a rigid
snake robot [34].

Transeth et al. [89, 90] first defined this property as the obstacle-aided locomo-
tion, wherein the snake robot actively employs external objects to generate propul-
sion forces during the locomotion. Their pioneer work proposed a two-module task
framework of obstacle-aided locomotion with (a) a path planner that searches for
a trajectory with more active contact chance for the rigid snake robot, and (b) a
motion controller that controls the snake robot’s real-time body movements to op-
timally utilize the contacts between the robot and the environment and generate
desired propulsion force for the locomotion. In [22,39,40], a hybrid controller is de-
veloped, where a contact event is treated individually by a reactive controller that
maximizes the total propulsion force at the contacting moment. This controller has
been applied to a rigid snake robot and showed its reliability in maintaining benefi-
cial propulsion force. Kano et al. [31, 34] proposed local reflexive mechanisms that
interrogate the contact status between the snake robot and the obstacles to deter-
mine whether the contact is beneficial to the locomotion. In this approach, only a
segment of the robot links neighboring to the link in contact react to the sensory
feedback. On the basis of the local reflexive control method, a Tegotae heuristic
scoring function is established by [32, 33, 35], for selecting which kind of reaction
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should be applied to the contacting link of the robot given certain situations includ-
ing the snake robot’s shape and contacting part of the robot. From the bio-inspired
perspective, inspired by the entrainment properties of the neural oscillators that
allow the systems’ output to be synchronized with the sensory feedback, several
studies [19, 85] introduce CPG systems to the control loop of the snake robots to
process the sensory feedback signals during locomotion. However, in most existing
work the locomotion control inputs of the feedback CPG systems are usually con-
stant or rather simple sinusoidal trajectories due to the difficulty of coordinating
multiple complex signals through a CPG system. Conducting both intelligent loco-
motion control and sensory feedback control on the CPG-driven snake robot system
is still a promising but rarely explored research topic.

So far, the results on contact-aware locomotion control for soft snake robots
are scarce. Although a few model-free soft robot controllers [57] perform well in
simulation by assuming fully proprioceptive observations, it would be appealing to
enable such a capability for soft snake robots in the real world and incorporate
sensory feedback into the intelligent control system. This is mainly because moving
from rigid snake robots to soft snake robots faces many challenges:

• Due to the continuum of the soft actuators, it is infeasible to construct accu-
rate kinematic/dynamic models for a soft snake robot, rendering model-based
control ineffective or inapplicable.

• The pneumatic actuators in soft snake robots have nonlinear, delayed, and
stochastic dynamical response given inputs, making it difficult to achieve fast
responses through model-based control compared to rigid snake robots.

• It is hard to embed a tactile sensor in the soft material since the contact-free
deformation of the soft body may interfere with the sensory data. As a result,
the tactile sensors cannot be densely placed on the soft robot.

• Equipping tactile sensors could introduce more contact friction due to the
material of the sensors, or cause more contact jamming due to the bumped
shape of the sensors.

• In the scenario when a soft snake robot is traversing among unknown obstacles,
the tactile sensory inputs are usually discrete and unpredictable impulses,
which can result in overshoots, latency, and signal interference to a feedback
control system.
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Figure 1.6: CPGs in a nature creature (recorded from the stomatogastric ganglion
of the lobster Homarus americanus) [50].

1.2 A Sketch of the Proposed Method

1.2.1 Central Pattern Generators (CPGs) in Robot Loco-
motion Control

Why study CPGs: In nature, a lot of animals know how to locomote right
after birth (as shown in Fig. 1.7), because they are equipped with a complete set
of neural circuits that can display subconscious motion behaviors independently.
Central Pattern Generator (CPG) is a mathematical model of such neural circuits
(especially in the spinal cord of vertebrate animals) that can generate rhythmic and
nonrhythmic activities for organ contractions and body movements in animals. Such
activities can be activated, modulated, and reset by neuronal signals mainly from two
directions: bottom-up ascendant feedback information from afferent sensory neurons
or top-down descendant signals from high-level modules including mesencephalic
locomotor region (MLR) [27] and motor cortex [67,99].

In literature, bio-inspired control methods have been studied for the control de-
sign of rigid robots’ locomotion, including legged [17, 18, 58, 60, 88] and serpentine
locomotion [4, 6, 11, 12, 69, 94]. The conventional idea is to use CPG systems to
generate motion patterns mimicking animals’ behaviors and then track these tra-
jectories with a closed-loop controller. In [27], the authors developed a trajectory
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Figure 1.7: A baby deer picks up locomotion skills quickly after birth.

generator for a rigid salamander robot using Kuramoto CPGs and used low-level
PD controllers to track the desired motion trajectories generated by the oscillator.
Ryu et al. [69] established the velocity control CPG by adapting its frequency pa-
rameter with additional linear dynamics. In [94], the authors introduced a control
loop that adjusts the oscillation patterns including frequency, amplitude, and phase
of the oscillation to adapt to the changes in the terrain. Their results show the
advantage of the Hopf oscillator on the direct access to the oscillation patterns for
different locomotion purposes. In [97], the Matsuoka oscillator is combined with the
amplitude modulation method to realize the steering control of a rigid snake robot.
However, these approaches have not provided a way to maneuver the oscillation
patterns intelligently.

Generally speaking, CPG models have the following special properties that are
beneficial for robotic motion control:

• Filtering properties: Most CPGs are nonlinear dynamical systems with fil-
tering properties, which lead to smooth output signals for slithering locomotion
control.

• Embedded stability properties: Most CPG systems have stability prop-
erties that allow them to generate stable oscillation outputs and more regular
gait patterns without the need for additional inputs.

• Tunable oscillation patterns: The oscillation patterns of most CPG sys-
tems are tunable through their specific input coefficients or parameters. This
allows more natural gait transitions during the locomotion.

• Synchronizable reflex arc: Most CPG systems have feedback synchroniza-
tion properties that are compatible with closed-loop feedback controllers.
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Figure 1.8: (a) CPGs for the locomotion of a salamander robot. (b) CPG output
patterns or gait transition of the salamander robot [27].

Such properties bring the inspiration that if we integrate the CPG system into
the model-free controller for soft snake robot locomotion, could the special properties
of the CPG system help reduce the issues brought by the limitations of vanilla RL
controllers?

1.2.2 Learning-based CPG Control Schemes for Robot Lo-
comotion

Figure 1.9: Human infant learns to locomote [23].
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The idea of combining the learning-based method and CPG systems to form a
bio-inspired locomotion controller is not a fresh concept in robotics studies. The
biological studies have provided the evidence [23] on how natural creatures learn to
coordinate with their CPG system to steer the voluntary neural oscillations after
birth (as shown in Fig. 1.9). Inspired by the biological observations, T. Mori et al.
[58] first proposed a hierarchical learning architecture that uses an RL controller
to manipulate the input coefficients of a CPG system and output rhythmic control
commands to drive bipedal locomotion in a simulator. Tran et al. [88] employed a Q-
learning selector to make decisions on switching among different CPG patterns in a
disturbance recovery task during bipedal locomotion. In [3], the authors proposed a
CPG-RL method that directly learns the neural oscillator’s intrinsic amplitude and
frequency and coordinates the decoupled oscillator network to control the legged
locomotion of a quadruped robot. Another recent work [8] embedded the CPG
network in the policy network of an RL controller and updated the hyperparameters
in the CPG system with backpropagation to optimize the overall control performance
of a simulated legged robot.

Figure 1.10: An example of CPG-RL control scheme for legged robot locomotion [3].

To the best of our knowledge, none of the investigated work in the literature has
realized tracking of a randomly generated target and traversing densely distributed
obstacles with a soft snake robot system. Besides the uniqueness of the application,
the novelty of my work originates from the exploration of the control mechanism and
theoretical analysis behind this bio-inspired control framework to leverage promising
performance on the soft snake robot and other generalized platforms. To be specific,
the mechanism study can be described by several important problems to solve in
this study

• Question 1: How to select a proper CPG system that is more controllable in
its dynamical properties for an RL controller?

• Question 2: How to build the connection between the RL module and CPG
module?

• Question 3: Where to introduce sensory feedback in the RL-CPG framework,
and how to translate the feedback signals for the target module?
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1.3 Major Contribution

In this dissertation, we developed two main axes of research:
In the first part, we aim to answer Question 1 and Question 2 in the last

section.

Why study Matsuoka CPGs? Compared to other neural oscillators used in
[3,6,72], the Matsuoka oscillator has the following special properties that are highly
suitable to be combined with learning-based controllers

• It is in the class of half-center [7] oscillator model that describes mutually in-
hibiting mechanisms in a pair of neurons. Such mechanism produces alternate
activities of flexors and extensors, which can be used to directly control a pair
of actuators mimicking antagonistic muscles;

• It has clear boundary conditions for the parameters such that the neurons can
generate free-response oscillation when satisfying the boundary condition [52];

• On the basis of free-response oscillation, the entrainment property [53,54] al-
lows the intelligent controller to autonomously regulate the oscillation pattern
of the system with forced-response oscillation input;

• It is a piece-wise linear system with local linearity in certain quadrants.

Figure 1.11: Schematic view of learning-based CPG controller.

Based on the fundamental properties of the Matsuoka oscillator, we showed that
several dynamic properties of the Matsuoka oscillator can be leveraged in designing
the interconnection between RL and CPG. We have proved that the steering control
can be realized by modulating both the amplitudes bias and duty cycles of the neural
stimuli inputs of the CPG network, and the velocity control can be realized by tuning
the oscillating frequencies of the CPG net. These findings enable us to flexibly
control the slithering locomotion with a CPG network given state feedback from the
soft snake robot and the control objective. As a result, a bio-inspired learning-based
control framework is developed for soft snake robots with two key components: To
achieve intelligent and robust goal-tracking with changing goals, we use model-free
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RL [74,81] to map the feedback of soft actuators and the goal location, into control
commands of a CPG network. The CPG network consists of coupled Matsuoka
oscillators [51]. The Matsuoka CPG network acts as a low-level motion controller to
generate actuation inputs directly to the soft snake robots for achieving smooth and
diverse motion patterns. The two networks form a variant of cascade control with
only one outer loop, as illustrated in Fig. 1.11. To better exhibit the performance
of the control design, we build a soft snake robot based on a previous design [45]
and upgrade the hardware design to realize a robust and modularized platform. A
soft snake robot simulator with high fidelity is then designed and testified for the
training of the control policy.

Figure 1.12: Schematic view of (a) learning reflexive PPOC-CPG, and (b) local
reflexive PPOC-CPG controllers.

In the second part, we aim to answerQuestion 3 in the last section. We propose
an integrated approach including hardware design to enable contact sensing, as well
as control design to enable contact-aware locomotion in a soft robot snake. In
the hardware design, we build a group of magnetic-based tactile sensors (inspired
by [92]) with scale-like cover mimicking Scale Sensilla [13] on the scales of real
animal snakes. This structure significantly improves the sensitivity of the sensors,
while making the contact friction lower and damage-free. In the controller design,
we developed two control schemes, presented in Fig. 1.12. Both control schemes
are composed of three major components: 1) a reinforcement learning (RL) goal-
tacking controller, 2) a CPG system with feedback input, and 3) a sensory reactive
controller. In the RL controller part, each control scheme includes a Deep neural
network (DNN) controller that learns to maneuver the tonic input signals of the CPG
system to steer the soft snake robot toward the target based on the observations
including position, posture, and previous actions of the soft snake robot [44]. In
the CPG system part, a novel sensory feedback mechanism of the Matsuoka CPG
system is proposed. Through theoretical analysis, we reveal the desired properties
of the Matsuoka oscillator’s feedback mechanism in reducing the overshoot and
interference of the feedback control signals compared to the conventional sensory
feedback design in the Matsuoka oscillator [19,85].

In the design of sensory reactive control, we design two different controllers that
take inspiration from [39] (see Fig. 1.12a) and [34] (see Fig. 1.12b). Firstly, to enable
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learning-based contact-aware locomotion, an event-triggered neural network (NN)
regulator is implemented to manipulate the sensory feedback signals of the modified
Matsuoka CPG system. Secondly, we incorporate the local feedback mechanism into
the Matsuoka CPG network through the design of sensor-CPG network connections
(see Fig. 1.12b). In this way, the CPG network generates reactive signals to the
contact inputs locally and independently. Each of the two methods has its own
specialties: although the AF-learning method is computationally expensive, it can
achieve great performance through training. On the other hand, although the local
reflexive method has a fixed heuristic rule, it is lightweight and more robust because
of its local reactive property. As a result, the investigation and comparison of the
above two different contact reactive control designs are necessary to comprehensively
verify the advantages of the sensory feedback mechanism in the AF form Matsuoka
oscillator for the soft snake robot’s contact-aware locomotion.

In summary, the original contribution of this dissertation includes

1. Theoretical analysis of Matsuoka CPG’s steering maneuverability:
We analyze the property of the biased oscillation in the Matsuoka oscillator.
Using describing function analysis, we show that when the tonic inputs of the
Matsuoka oscillator are bounded and satisfy certain constraints, the bias of
the output signal becomes linearly related to the tonic inputs. This feature
makes the steering control of the snake robot easier to learn for an RL agent.

2. Theoretical analysis of Free-response oscillation constraints (FOC)
of the Matsuoka CPG system for sim-to-real transfer: We investigate
the transient property of the Matsuoka Oscillator from free-response oscilla-
tion to forced-response oscillation. Using this property, we introduce a fixed
free-response tonic input signal to help regulate the amplitude and oscillation
frequency of the forced tonic inputs that are generated by the RL policy. The
new approach is referred to as Free-response Oscillation Constrained Proximal
Policy Optimization Option-Critics with Central Pattern Generator (FOC-
PPOC-CPG). This approach improves the transferability of the RL control
policy learned in the simulation to the real robot.

3. Development of sensory feedback Matsuoka CPG system for contact-
aware locomotion: We develop a novel feedback mechanism of the Matsuoka
oscillator to process both the locomotion control signals and the tactile sensory
feedback signals during the contact-aware locomotion of the soft snake robot.
Through theoretical analysis, we reveal the desired advantages of the Mat-
suoka oscillator’s feedback mechanism in reducing the overshoot, time latency,
and interference of the feedback control signals compared to the conventional
sensory feedback design in the Matsuoka oscillator [19, 85].

4. Design of contact reactive controllers: Based on our modification of the
Matsuoka oscillator, we designed two different contact reactive controllers (hy-
brid learning controller in Fig. 1.2a and local reflexive controller in Fig. 1.2b)
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for the modified Matsuoka CPG system to work along with the learning-based
goal-tracking module developed in our previous work [44]. These lead to two
different control schemes for the contact-aware locomotion of the soft snake
robot under the obstacle-based goal-tracking tasks. Each method has its own
unique disadvantages and advantages: the learning-based reactive controller
is computationally expensive but can iteratively learn to improve its perfor-
mance. The local reflexive method is lightweight and more robust because of
its local reactive property but is heuristic with a fixed policy.

Figure 1.13: Three generations of soft snake robot hardware.

5. Hardware designs and manufacturing: Our soft snake robot platform
has experienced three generations of development. The electronic design has
evolved from a centralized design with a single micro-computation unit and
sensor-free to a decentralized design with multiple independent computation
and communication modules that allow multiple sensor plugins. The snake
body structure has also been optimized to allow easier 3D printing production,
assembling, and maintenance. To realize tactile perception in contact-aware
locomotion, we design a group of magnetic-based tactile sensors (inspired by
[92]) with scale-like cover mimicking Scale Sensilla [13] on the scales of real
animal snakes. This structure can cover a larger sensing area with a small
number of sensors. As a result, it improves the sensitivity to contacts with
sparsely deployed sensors on the soft snake robot. In addition, the smoothness
of the covering material and the scale-like structure reduce the contact friction
and collision damage on the tactile sensors during contact-aware locomotion.

6. Comprehensive sim-to-real experiments and analysis: We added new
experiments comparing the learning efficiency and adaptability of the pol-
icy between the proposed method and vanilla Proximal Policy Optimization
(PPO) [74]. Based on the experimental results for both simulation and reality,
we show that our soft snake robot equipped with a properly designed “verte-
brate” (the CPG system) can be more easily controlled by the RL agent. Our
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approach also achieves more reliable locomotion performance under various
goal-reaching locomotion tasks that are unseen during the training process.

7. Highlighting the importance of theoretical study in the bio-inspired
control design: Beyond the proposed control framework on a soft snake
robot, our theoretical contribution has reemphasized the importance of study-
ing dynamical properties of the CPG system in the RL-CPG controller design.
This approach has provided a reference methodology for people who want to
apply any learning-based CPG controller to robot platforms.

Figure 1.14: The organization of this dissertation study.

Outline: The dissertation paper is organized as Fig. 1.14 shows. In Chapter 2, I
will introduce the properties of popular CPG systems and the background of model-
free RL, both are combined to consist the foundations of the control method used
in this study. In Chapter 3, a learning-based RL-CPG controller for soft snake lo-
comotion will be introduced, including its design, related thoughts and properties
in theory, and the experimental results that show the advantages of the proposed
method. In Chapter 4, I upgrade the control framework to the contact-aware sce-
nario, by introducing sensory feedback – the “reflex arc” to the Matsuoka CPG sys-
tem to leverage the capability of the locomotion controller to traverse the densely
distributed obstacle-based environment smoothly. Chapter 5 discusses and summa-
rizes the strengths and weaknesses of the proposed work, and makes a To-do list
for the possible future work to improve the performance of the current approaches.
Chapter 6 provides all the data and derivations for the theories in this work.
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Chapter 2

Preliminaries

2.1 Neural Oscillator Models for Robot Control

2.1.1 Kuramoto Oscillator

Different from other neural oscillators, the Kuramoto oscillator totally ignored the
shape of oscillation, while only focusing on the phase and synchronization property
of coupled oscillator networks. Given the governing equation

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi),

where K is the coupling strength, and N is the population of the network, and ωi
is the natural frequency of ith oscillator sampled from some symmetric distribution,
like Gaussian. According to the mean field states of a swarm of points running on
a unit circle under polar coordination, with the following math description

reiψ =
1

N

N∑
j=1

eiθj ,

where ψ is the average phase, and radius r(t) measures the coherence of the pop-
ulation (can be taken as a vector field with the same norm, evenly distributed
individuals will mostly get canceled out from nearly opposite directions). Equating
the imaginary part yields

r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi).
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And therefore the governing equation becomes

θ̇i = ωi +Kr sin(ψ − θi) i = 1, ..., N.

This shows the very obvious mean-field character of the model, which summarizes
the property of the system with statistical property with only two parameters de-
spite the complicated interaction among a large number of nodes in the network.
The early idea of statistical synchronization comes from mean-field approximation
in physics. It was first discovered by Winfree and later carried forward by the
Kuramoto model for its extraordinarily clear synchronization mechanism.

A special Kuramoto-type neural oscillator is the phase-amplitude oscillator ap-
plied to a rigid snake robot and a salamander robot in [27, 28]. Established by Jan
Ijspeert, the oscillation for a single joint is as follows

ϕ̇i = ωi +
∑
j

(ωijrj sin(ϕj − ϕi − φij))

r̈i = ar(
ar
4
(Ri − ri)− ṙi)

ẍi = ax(
ax
4
(Xi − xi)− ẋi)

θi = xi + ri cos(ϕi).

Where θi is the oscillating set-point (in radians) extracted from the oscillator.
ϕi, ri, xi are phase, amplitude, and offset (state variables). ωi, Xi, Ri are the de-
sired frequency, amplitude, and offset (control parameters). ωij and ϕij are coupling
weights and phase biases (influence of oscillator acted j on i). ar and ax are constant
positive gains. Asymptotically convergence property of this oscillator shows a limit
cycle converging to

xi → Xi

ri → Ri

θi(t) → Xi +Ri cos(ωit+ ϕ0).

given the initial phase conditions of all oscillators.
The advantages and disadvantages of the Kuramoto oscillator when it is used

for robotics applications are listed as follows:

Advantages

• It provides explicit control parameters for the controllers to modulate the
oscillation patterns.

• Its stability properties provide robustness to transient perturbations.

17



• All control parameters can be abruptly varied without breaking the smooth-
ness of θ (no discontinuities and jerks, a critically damped system).

• Feedback terms can be added to the state equations to maintain entrainment
between control oscillations and mechanical movements.

• Never needs resetting while the control parameters are modified.

Disadvantages

• The nonlinearity increases the difficulty of analyzing the system.

• Fixed sinusoidal limit cycle behavior and limited oscillation patterns.

• Large modulation dimension increases control coefficients geometrically as the
size of the network grows.

2.1.2 Hopf Oscillator

The dynamics of the Hopf oscillator are governed by the following differential equa-
tions

ẋ = (µ− r2)x− ωy + ϵF

ẏ = (µ− r2)y + ωx,

where r =
√
x2 + y2, µ > 0 governs the amplitude of the oscillations and ω stands

for the intrinsic/inner frequency of the oscillator. This means that without pertur-
bations (when ϵ = 0), the system is oscillating at ω rad·s−1. The oscillator is coupled
with a periodic force F . When the force is zero, the system has an asymptotically
stable harmonic limit cycle with radius

√
µ and frequency ω. As the limit cycle of

the Hopf oscillator is structurally stable, small perturbations around its limit cycle
(ϵ > 0) do not change the general behavior of the system. It means that the limit
cycle will still exist, only its form and time scale will change. Structural stability
assures that this change is close to identity.

Rewriting the system in polar coordinates, set x = r cosϕ, y = r sinϕ, then the
original system can be transformed into

ṙ = (µ− r2)r + ϵF cosϕ

ϕ̇ = ω − ϵ

r
F sinϕ

ω̇ = −ϵF sinϕ.

An important concept here is phase-lock/entrainment, which means that the os-
cillations synchronize with the frequency of the periodic input. Stronger coupling
strength enlarges the entrainment basin.
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Frequency adaptation mechanism The general form of a Hopf oscillator, per-
turbed by a periodic signal F , can be described as

ẋ = fx(x, y, ω) + ϵF

ẏ = fy(x, y, ω),

with ω some parameter that has a monotonic relation with the frequency of the
oscillations (not necessarily linear). The learning rule introduced in [66] to this
parameter is

ω̇ = ±ϵF y√
x2 + y2

.

The sign depends on the rotating direction of the limit cycle in the (x, y) phase space.
This adaptation rule generally works for various oscillators with ω converging to the
value such that the frequency component of the oscillator matches the one from the
input F .

The advantages and disadvantages of the Hopf oscillator when it is used for
robotics applications are listed as follows:

Advantages

• It provides explicit control parameters for the controllers to modulate the
oscillation patterns.

• Its stability properties provide robustness to transient perturbations.

• Input adjustable.

• All control parameters can be abruptly varied without breaking the smooth-
ness of θ (no discontinuities and jerks, a critically damped system).

• Feedback terms can be added to the state equations to maintain entrainment
between control oscillations and mechanical movements.

• Never needs resetting while the control parameters are modified.

Disadvantages

• The nonlinearity increases the difficulty of analyzing the system.

• Large modulation dimension increases control coefficients geometrically as the
size of the network grows.
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2.1.3 Matsuoka Oscillator

The Matsuoka Oscillator is a biologically inspired muscle contraction model that
can be found in most animals. Every Matsuoka Oscillator unit contains a flexor and
an extensor. The basic structure is presented in the following figure.

The rhythmic pattern of alternating bursts of flexor and extensor activities is
produced by two symmetrically organized excitatory neural populations that drive
alternating activity of flexor and extensor motorneurons and reciprocally inhibit
each other via inhibitory interneurons.

Studies of fictive locomotion in decerebrate, immobilized cat preparations pro-
vided additional evidence for a symmetrical, halfcenter organization of the spinal
locomotor CPG as well as for a critical role of reciprocal inhibition for generation
and shaping of the locomotor pattern [38, 55, 68, 98]. At the same time, the spe-
cific intrinsic neural mechanisms involved in the generation of locomotor oscillations
remain largely unknown.

The system formulation is
u̇ei
v̇ei
˙
ufi
˙
vfi

 =
1

fk


− 1
τr

− β
τr

− 1
τr
1(ufi > 0) 0

− 1
τa
1(uei > 0) − 1

τa
0 0

− 1
τr
1(uei > 0) 0 − 1

τr
− β
τr

0 0 − 1
τa
1(ufi > 0) − 1

τa



uei
vei
ufi
vfi

+


sei
τr

0
sfi
τr

0

 .
The stability of the Matsuoka Oscillator has been studied in both frequency

domain [53] and time domain [1, 51] as a piece-wise linear dynamic system. The
discussion of stability depends on the results of the two indicators and several coef-
ficients of the system. Two tables are provided to show the equilibrium point values
under different cases.

1(x1 > 0) 1(x2 > 0) x∗1 x∗2 v∗1 v∗2
T T c

β+γ+1
c

β+γ+1
c

β+γ+1
c

β+γ+1

T F c
β+1

cβ−γ+1
β+1

c
β+1

0

F T cβ−γ+1
β+1

c
β+1

0 c
β+1

F F c c 0 0

Table 2.1: Equilibrium points for free vibrations by different indicator values.

Advantages

• Almost linear except the terms include the activation function.

• All control parameters can be abruptly varied without breaking the smooth-
ness of θ (no discontinuities and jerks, property of critically damped system).
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1(x1 > 0) 1(x2 > 0) x∗1 x∗2 v∗1 v∗2
T T c

β+γ+1
− 1+β

(1+β)2−γ2D
c

β+γ+1
+ γ

(1+β)2−γ2D
c

β+γ+1
− 1+β

(1+β)2−γ2D
c

β+γ+1
+ γ

(1+β)2−γ2D

T F c−D
β+1

c(β−γ+1)+γD
β+1

c−D
β+1

0

F T cβ−γ+1
β+1

−D c
β+1

0 c
β+1

F F c−D c 0 0

Table 2.2: Equilibrium points for forced vibrations (with constant input g = D) by
different indicator values.

• The tonic input can accept even random processes within a certain range while
maintaining the oscillation.

• Theoretically allows feedback terms to be added, but no strong guarantee for
the convergence, which is rather a bounded result.

Disadvantages

• No globally closed-form solution, but piecewise solutions can be concluded
respectively based on different situations.

• Not all of the controlled parameters are directly mapped to the sinusoidal wave
coefficients, need some computations to find out the freq, phase, amplitude,
and offset properties (especially the phase).

2.1.4 Summary

In general, the special features of the widely used CPG systems in robot motion
control can be summarized as Table 2.3 shows,

Table 2.3: CPG Comparison

CPG System Matsuoka Oscillator Kuramoto Oscillator Hopf Oscillator
Primary Structure Symmetric Unidirectionary Unidirectionary

Linearity Piecewise-linear Nonlinear Nonlinear
Closed Form Solution No Yes Yes

Boundedness BIBO Bounded Bounded
Periodicity Bifurcate Inherent Structurally stable
Wave Shape Input adjustable Sinusoidal Input adjustable

Oscillation Pattern Control Implicit explicit partially explicit
Feedback States Unlimited Specific Specific

Coupling State Phase Frequency
Entrainment Yes Yes Yes
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2.2 Hierarchical Reinforcement Learning

2.2.1 Model-free RL

Policy Gradient

Policy gradient methods are a well-known group of RL techniques that are based on
optimizing parameterized policies about the expected long-term cumulative reward
through gradient descent [82]. The goal of policy gradient reinforcement learning is
to maximize the expected return reward of a system, such that:

θ∗ = argmax
θ
Eτ∼πθ(τ)[

∑
t

r(st, at)]

Where r(·) is defined as a reward function on state action pair st, at at time t. θ
is the parameter set for the function approximation method on trajectory distribu-
tion πθ(τ) calculated by policy πθ(a|s) and stochastic state transition probability
Pr(s′|s, a). The objective can be further expanded as:

J(θ) = Eτ∼πθ(τ)[
∑
t

r(st, at)] =

∫
πθ(τ)r(τ)dτ

The gradient of J(θ) then can be derived by:

∇θJ(θ) =

∫
∇θπθ(τ)r(τ)dτ =

∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ = Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

Such gradient can be applied to update the parameters of simple function ap-
proximators or backpropagate to the hidden parameters of a neural network. The
formulation improves the learning performance by directly updating the policy, how-
ever, it also brings up some issues both in application and theory:

• high variance among sampled trajectories

• only converges to the local optimal solution

• the efficiency of convergence highly depends on the design of step size

Importance sampling is the first approach to mitigate the high variance and
low-efficiency problem. The idea of importance sampling is to sample over an inten-
tionally chosen distribution with a higher chance of getting the important data that
might not be easily sampled from the correct distribution. Therefore, the estimator
variance is reduced while keeping the expectation unbiased:

Ex∼p(x)[f(x)] =

∫
p(x)f(x)dx =

∫
p(x)

q(x)
q(x)f(x)dx = Ex∼q(x)[

p(x)

q(x)
f(x)]
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Taking the importance sampling, the new gradient follows the following form by
chain rule:

∇θJ(θ) = Eτ∼θold [
∇θπθ
πθold

r(τ)] = Eτ∼θold [∇θ log πθ|θoldr(τ)]

Proximal Policy Optimization (PPO)

As a typical on-policy RL method using the policy gradient technique, the general
goal of PPO [75] is maximizing the expected return of a system, which can be
represented as:

θ∗ = argmax
θ
Eτ∼πθ(τ)[

∑
t

r(st, at)]

Where r(·) is defined as a reward function on state action pair st, at at time t. θ
is the parameter set for the function approximation method on trajectory distribu-
tion πθ(τ) calculated by policy πθ(a|s) and stochastic state transition probability
Pr(s′|s, a). The objective can be further expanded as:

J(θ) = Eτ∼πθ(τ)[
∑
t

r(st, at)] =

∫
πθ(τ)r(τ)dτ

The gradient of J(θ) then can be derived by:

∇θJ(θ) =

∫
∇θπθ(τ)r(τ)dτ =

∫
πθ(τ)∇θ log πθ(τ)r(τ)dτ = Eτ∼πθ(τ)[∇θ log πθ(τ)r(τ)]

Such gradient can be applied to update the parameters of simple function ap-
proximators, or backpropagate to the hidden parameters of a neural network.

Let ratiot(θ) denote the ratio between new policy and old policy πθ(at|st)
πθold (at|st)

, PPO

modifies the importance sampling policy gradient loss function directly by adding
a lower bound with clipped importance ratios, such that the modified loss function
becomes:

LCLIP (θ) = Êt[min(ratiot(θ)Ât, clip(ratiot(θ), 1− ϵ, 1 + ϵ)Ât)]

where the clip function is used to keep the policy ratio within the range of 1± ϵ.

2.2.2 Option-Critics

The option framework [84] is one among the various fundamental frameworks and
paradigms within Hierarchical RL. An option is a temporarily extended macro-
action, with a series of micro-actions within that form the policy leading to sub-goals
(Fig. 2.1a). This makes the RL more convenient in large-scale task space because
an RL agent can now learn a policy over options rather than over primitive actions
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Figure 2.1: (a) Options for finding sub-goals in the four-room scenario, learning, re-
membering and using policies to reach those sub-goals [84].(b) Option-critic frame-
work as a hierarchical version of actor-critic [2].

available in the environment, and avoid reward sparsity by abstracting the problem
with a hierarchy.

The option-critic approach [2] is a combination of the option framework and
actor-critic RL (PPO). In the option-critic framework (Fig. 2.1b), the low-level
primitive actions are computed at every time step. The high-level option changes
infrequently as the robot does not change velocity very often for smoothness of the
macro-actions. Specifically, each option is defined by ⟨I, πy : S → {y}×dom(a), βy⟩
where I = S is a set of initial states. By letting I = S, the macro actions are allowed
to be changed at any state in the system. Variable y is a value of macro actions
and βy : S → [0, 1] is the termination function such that βy(s) is the probability of
changing from the macro state to another macro state. The detailed implementation
and derivations of this approach can be found in [2].
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Chapter 3

Learning-based RL-CPG
Controller for Soft Snake Robot
Locomotion

Intelligent control of soft robots is challenging due to the nonlinear and difficult-
to-model dynamics. One promising model-free approach for soft robot control is
reinforcement learning (RL). However, model-free RL methods tend to be com-
putationally expensive and data-inefficient and may not yield natural and smooth
locomotion patterns for soft robots. In this chapter, we develop a bio-inspired design
of a learning-based goal-tracking controller for a soft snake robot. The controller
is composed of two modules: An RL module for learning goal-tracking behaviors
given the unmodeled and stochastic dynamics of the robot, and a central pattern
generator (CPG) with the Matsuoka oscillators for generating stable and diverse
locomotion patterns. We theoretically investigate the maneuverability of Matsuoka
CPG’s oscillation bias, frequency, and amplitude for steering control, velocity con-
trol, and sim-to-real adaptation of the soft snake robot. Based on this analysis, we
proposed a composition of RL and CPG modules such that the RL module regulates
the tonic inputs to the CPG system given state feedback from the robot, and the
output of the CPG module is then transformed into pressure inputs to pneumatic
actuators of the soft snake robot. This design allows the RL agent to naturally learn
to entrain the desired locomotion patterns determined by the CPG maneuverability.
We validated the optimality and robustness of the control design in both simulation
and real experiments, and performed extensive comparisons with state-of-art RL
methods to demonstrate the benefit of our bio-inspired control design.

3.1 System Overview of the Soft Snake Robot

As shown in Fig. 3.1, our soft snake robot is a subtype of WPI-SRS series robot
[47]. It consists of 4 pneumatically actuated soft links. The soft links are made of
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Figure 3.1: Mechatronics design of the soft snake robot.

Figure 3.2: Illustrating the input-output connection of the PPOC-CPG net.

Ecoflex™ 00-30 silicone rubber. Each soft link of the robot has two air chambers
mimicking antagonistic muscle (detailed structure of the soft body can be found
in [46, 47]). The links are connected through rigid bodies enclosing the electronic
components that are necessary to control the snake robot. Each rigid body contains
an ESP32 module (powered by a Lithium-polymer battery) for control command
communication and a pair of SMC-S070C-SCG solenoid valves that control the
inflation and deflation of the air chambers. Only one chamber on each link is active
(pressurized) at a time. In addition, the rigid body components have a pair of
one-direction wheels to model the anisotropic friction of real snakes.

The configuration of the robot’s coordinate is shown in Figure 3.3. At time t,
state h(t) ∈ R2 is the planar Cartesian position of the center of mass (COM) of the
snake’s head, ρg(t) ∈ R2 is the planar displacement vector pointing from snake’s
head COM to the goal position, dg(t) ∈ R is the distance traveled along the head-to-
goal-direction from the initial head COM position, v(t) ∈ R2 is the instantaneous
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Figure 3.3: Notation of the state space configuration of the robot.

planar velocity vector of the snake’s head COM, θg(t) is the angle between vector
ρg(t) and vector v(t), and the locomotion speed vg(t) ∈ R is the length of the
projection of v(t) on the head-to-goal-direction. According to [45], the bending

curvature of each body link at time t is computed by κi(t) =
δi(t)
li(t)

, for i = 1, . . . , 4,

where δi(t) and li(t) are the relative bending angle and the length of the middle line
of the i-th soft body link.

3.2 Simulator

Figure 3.4: (a) Single soft link with no pressure applied. (b) 8 psi applied on left
chamber. (c) Full assembly of the robotic snake with four links. (d) Snake in
simulation.

To allow paralleled learning and simulated verification, we developed a physics-
based simulator that models the inflation and deflation of the air chamber and the
resulting deformation of the soft bodies with tetrahedral finite elements. The simu-
lator runs in real time using GPU. We use the simulator for learning the locomotion
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controller in the soft snake robot, and then apply the learned controller to the real
robot.

3.2.1 Dynamic Modeling

The continuous equations of motion for the multiphysics simulator are derived from
Lagrangian mechanics, and are given in general form by the following,

Mq̈− f(q, q̇)− JTb λb − JTnλn − JTf λf = 0

cb(q,p) + Eλb = 0

0 ≤ cn(q) ⊥ λn ≥ 0

∀i ∈ A, DT
i q̇+

|DT
i q̇|

|λf,i|
λf,i = 0

∀i ∈ A, 0 ≤ |DT
i q̇| ⊥ µiλn,i − |λf,i| ≥ 0

∀i ∈ I, λf,i = 0.

These equations describe the motion of a generic dynamics system with frictional
contact forces. The state of the system is described by a vector of generalized
coordinates q ∈ Rnd with nd DOFs, determined by the number of particles and
rigid bodies on the system. The inertial properties of the system are represented by
the mass-matrix M ∈ Rnd×nd , with f(q, q̇) a generalized force function that includes
external and gyroscopic forces. The vector cb(q) is a set of bilateral constraints of
length nb, with λb the associated Lagrange multipliers. Elastic energy potentials
are defined in terms of compliant constraints, here E ∈ Rnb×nb is a block-diagonal
compliance, or inverse stiffness matrix as described by Servin et al. [76]. The target
pressures are grouped into the vector p, which are parameters to the actuation
constraints described in section 3.2.4. The contact and frictional forces are based on
Coulomb’s model, which defines an admissible cone of contact forces [80]. Here cn(q)
are unilateral contact constraints, with nc the number of contacts in the system, and
λn,i and µi the normal force Lagrange multiplier and friction coefficient for the ith
contact respectively. The frictional forces for a contact are parameterized by λf,i,
with a corresponding basis Di that defines the surface tangent plane at the contact
point. The active contact set is defined as A = {i ∈ (1, · · · , nc) | µiλn,i > 0}, with
inactive contacts I being its complement. The constraint Jacobians Jb,Jn contain
the gradient of bilateral and normal constraint functions with respect to q, and we
define the set of frictional basis vectors as the matrix Jf = [D1, · · · ,Dnc ]

T .

3.2.2 Particles

Each deformable link is modeled as a collection of particles connected by constraints.
This is a flexible representation that allows fine-grained control over different sections
of the soft body, while being efficient enough for real-time simulation. A particle
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with index i adds three additional DOFs to the system,

qi =
[
x y z

]T
. (3.1)

Assuming a lumped mass model, each particle is assigned a fraction of the connected
tetrahedral elements mass (Section 3.2.4). The mass-block for the particle is then
given by Mi = m13, where m is the particle mass, and 13 is the 3-dimensional
identity matrix.

Figure 3.5: Rigid links and wheels are described by the translation of the body’s
center of mass from the origin x and, it’s orientation expressed as a quaternion θ.

3.2.3 Rigid Bodies

We describe the state of a rigid body with index i using a maximal coordinate
representation consisting of the position of the body’s center of mass, xi ∈ R3, and
its orientation expressed as a quaternion θi = [θ1, θ2, θ3, θ4]

T ∈ R4. We group these

components so the state sub-block for a single rigid body is qi =
[
xTi θTi

]T
.

3.2.4 Constraints

Actuation Constraints

To perform actuation we constrain particles together through equations of the form,

cdist(q, p) = |qi − qj| − rϵ(p) = 0, (3.2)

where qi and qj are particle positions, and r is a rest length to maintain between
them. The target pressure p induces a strain ϵ(p) that adjusts the rest length
and causes contraction or expansion. Assuming that deformation is linear with
stress, and that it occurs primarily along the chamber’s main axis, the amount of
expansion/contraction is given by the following relation between material stiffness
determined by the Young’s Modulus (Y ) and pressure p,

ϵ(p) = 1 + p/Y. (3.3)
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Furthermore, we use distance constraints with constant rest length to model the
structural stiffness in the deformable chamber.

Tetrahedral Finite-Elements

In addition to distance constraints, tetrahedral finite-elements are used to model the
solid chamber material. Assuming a constant strain element and a linear isotropic
constitutive model, each tetrahedron defines a 6-dimensional constraint vector,

ctetra(q) + Etetraλ = 0, (3.4)

where ctetra(q) = [ϵxx ϵyy ϵzz ϵyz ϵxz ϵxy]
T is the vector of corotational strains in

Voigt notation, and Etetra is the constant element compliance matrix, given by

Etetra =
1

Ve Y


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

 .

where Ve is the element volume, Y and ν are the material Young’s modulus and
Poisson’s ratio, respectively.

Rigid Body to Particle Attachment

In order to connect soft links to rigid bodies, an attachment constraint between a
particle and a point on a rigid body is defined as follows,

cattach(q) = qx +R(qθ)r− qp = 0. (3.5)

This is a vector-valued function that adds three separate constraints, one for each
x, y, z axis respectively. Here qx,qθ are the rigid body position and orientation
respectively, and qp is the particle position. R(qθ) is the rotation matrix obtained
from the body’s orientation, and r is the attachment point expressed in the body’s
local frame.

Rigid Body Joints and Contact

Along with the deformable sections, we model the articulated carriage as rigid bod-
ies, with wheels connected to the main frame using hinge joints as described by [77].
Contact between the wheels and the ground is modeled by non-interpenetration
constraints of the form:

cn(q) = nT [a(q)− b(q)] ≥ 0, (3.6)
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where n ∈ R3 is the contact plane normal, a and b are points on a rigid or deformable
body. Frictional forces are included using a Coulomb model derived from a principle
of maximum dissipation that limits the contact forces to a cone. We refer the readers
to the survey paper by Stewart [79] for more detail.

3.2.5 Time-Stepping

The simulation is advanced in time with a first-order implicit time-discretization of
the equations of motion similar to the method in [87]. An implicit discretization is
chosen as it allows taking large time-steps and avoids constraint drift. At each time-
step, the nonlinear system of equations resulting from the implicit discretization is
solved using Newton’s method. To solve the complementarity conditions associated
with contact we use a non-smooth reformulation based on the Fischer-Burmeister
function as described in [59]. Each Newton iteration requires the solution of a
sparse-matrix equation of the form[

JM−1JT + E
]
∆λ = b. (3.7)

Where J = [JTb JTn JTf ]
T is the matrix of constraint Jacobians, E is a block-diagonal

compliance matrix that includes the tetrahedral compliance matrices, and b includes
the constraint function residuals evaluated at the current Newton iterate. This is
a positive semi-definite system that we solve using the Preconditioned Conjugate
Residual method (PCR) [70]. This is an iterative Krylov method similar to Con-
jugate Gradient (CG) but with smooth error reduction, making it better suited for
real-time applications with a fixed computational budget. Like CG, the primary
computation cost of PCR is the performing sparse matrix-vector multiplications.
However, these multiplications are highly parallelizable, and can be done efficiently
by assembling J,M,E,b on the GPU in compressed row-storage (CSR) format, and
performing the multiplication with optimized kernels [61]. In our simulator we use
a simple diagonal Jacobi preconditioner since it is trivial to parallelize.

3.2.6 Construction of Soft Robotic Snake in Simulation

The soft links of the snake robot are made of Ecoflex™ 00-30 silicone rubber which
has material parameters Y = 66.243KPa, and ν = 0.4999 [15]. We construct a
triangular mesh of the surface and tetrahedralize it using TetGen [78]. The link
mesh was created with evenly distributed particles, we do not explicitly represent
the cavity with tetrahedral elements. The mesh was carefully constructed to provide
a radially symmetrical tetrahedron structure, as seen in Fig. 3.6.

Since the inextensible layer in the center of the link has a deformation threshold
that is beyond the range of forces to be applied on the soft links, it is acceptable to
model it as a non-deformable constraint between particles along the center plane.
Similarly, the radial constraint on the chambers are defined as a set of inter-particle
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Figure 3.6: (a) Front and top view of chamber with constraints between particles
on link. (b) Soft link mesh. (c) Constraints displayed on simulation (best seen in
digital format).

constraints over coplanar particles along the link. Although it would be possible
to drive each link’s expansion using surface pressure forces directly, the other con-
straints in the link allow us to simply control the chamber volume using constraints
between particles along the primary axis of expansion.

Only one chamber on the link is active (i.e. pressurized) at a time, so this set of
actuation constraints only applies to the expanding chamber. Figure 3.6 displays the
constraints overlaid on the link. The link mesh was subdivided in 13 cross-sections
along its length, in order to allow real-time computation, while maintaining good
accuracy on the material deformation.

The links are then connected to each other through the rigid bodies that contain
the electronics necessary to control the snake robot. In addition, the rigid bodies
are attached to the wheels via. hinge joints. The wheels provide contact with the
floor and model the anisotropic friction that a real snake has from its scales.

Type Quantity
Rigid Bodies 15
Particles 1504
Distance Constraints 1460
Tetrahedral Finite Elements 4536
Rigid Joints 10
Particle Attachments 217

Table 3.1: size of the structure for one simulated snake

The type and number of all DoFs, and constraints in the simulated snake are
displayed in Table 3.1.

Open-Loop Control

The snake assembly consists of four links attached together, as seen in Fig. 3.4. An
undulating motion that propels the snake is given by the control equation 3.8, which
outputs the pressure for the link i.

ai ≡ min(1,max(−1, (sin(ωt+ αi) + ϕ))A. (3.8)
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If ai is positive, the link will inflate one chamber of the link, while if ai is negative,
it will inflate the other. The parameters ω, α, ϕ, and A are the base oscillation
frequency, measured in Hz, the phase shift between links (radians), the offset value
for the motion ([−1, 1], scalar), and the oscillation amplitude ([0, pmax], Pa), respec-
tively. The oscillation frequency dictates how fast the actuators will switch direction,
and the phase delay between links is what generates the wave pattern that propels
the snake forward. These parameters set the base undulating motion. By changing
the offset ϕ, applied to all links, the controller will inflate one side for longer than
the other. This results in the snake propelling itself more to the opposite direction
than the chambers that are more inflated, making the trajectory of the center of
mass moves with a curvature radius determined by this offset and the friction with
the ground. Finally, the amplitude A limits the maximum pressure during the oscil-
lation, thereby controlling the snake’s speed. The parameters that make the snake
move forward depend on the physical properties of the snake, such as weight, length,
friction coefficient with the floor, and were determined experimentally in [62]. This
controller is an open-loop method, which generates the forward motion and allows
to make turns, but no feedback is given if the trajectory is deviating from the desired
trajectory.

The pressure delivery is not instantaneous but limited by the maximum airflow
allowed by the valves. Assuming the pressure source can reliably maintain a constant
output pressure ps, the air flow v to the chamber is given by [95],

v2 =
2

ρ
(pt − ps), (3.9)

where ρ is the air density and pt is the pressure in the chamber. This means the
pressure update is proportional to the square of the difference between the current
pressure and the desired pressure. The pressure update for inflation in each step is
then defined based on the difference ∆pi, in Eq. 3.10.

∆pi =
ai(t+ h)− pi(t)

ps
, (3.10)

The deflation releases pressure in the atmosphere while keeping its own pressure
relatively constant due to the change of volume. Therefore, the deflation ratio should
be close to linear up to a threshold Tp when it is proportional to the over-pressure
with a damping,

pi(t+ h) =

{
pi(t) + ps∆pi

2ki is inflating

pi(t)−min(pi(t)kd, Tp) is deflating
(3.11)

where ki, kd ∈ (0, 1] are the inflation damping parameters, and are tuned accord-
ing to the experimental data.
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3.3 Design of Matsuoka CPG Network for the

Soft Snake Robot Locomotion

In this section, we introduce our CPG network design consisting of interconnected
Matsuoka oscillators [52,53].

Figure 3.7: An overview of the maneuverability of Serpentine locomotion with the
Matsuoka oscillator.

Primitive Matsuoka CPG: A primitive Matsuoka CPG consists of a pair of
mutually inhibited neuron models. The dynamical model of the primitive Matsuoka
CPG is given as follows:

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + uei + c,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ufi + c,

Kfτaẏ
f
i = zfi − yfi ,

(3.12)

where the subscripts e and f represent variables related to the extensor neuron and
flexor neuron, respectively. The tuple (xqi , y

q
i ), q ∈ {e, f} represents the activation

state and self-inhibitory state of i-th neuron respectively, zqi = g(xqi ) = max(0, xqi )
1

is the output of i-th neuron, b ∈ R is a weight parameter, uei , u
f
i are the forced tonic

inputs to the oscillator, and Kf ∈ R is the frequency ratio. The set of parameters
in the system includes the discharge rate τr ∈ R, the adaptation rate τa ∈ R,
the mutual inhibition weights between flexor and extensor a ∈ R, the inhibition
weight wji ∈ R representing the coupling strength with the neighboring primitive

1The maximum function is noted as g(·) = max(0, ·) in this thesis work.
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oscillator, and the free-response oscillation tonic input c ∈ R (c = 0 in our previous
work [42]). In our system, all coupled signals including xqi , y

q
i and zqi (q ∈ {e, f})

are inhibiting signals (negatively weighted), and only the tonic inputs are activating
signals (positively weighted). In the current system, we have N = 4 primitive
Matsuoka CPGs. For simplicity, we introduce a vector

u = [ue1, u
f
1 , u

e
2, u

f
2 , u

e
3, u

f
3 , u

e
4, u

f
4 ]
T (3.13)

to represent all tonic inputs to the CPG net.
Structure of the Matsuoka CPG Network for the Soft Snake Robot: Ex-
tending from a primitive Matsuoka CPG system to the multi-linked snake robot,
we construct a CPG network shown on the right of Fig. 3.2. The network includes
four linearly coupled primitive Matsuoka oscillators. It is an inverted, double-sized
version of Network VIII introduced in Matsuoka’s paper [52]. The network includes
four pairs of nodes. Each pair of nodes (e.g., the two nodes colored green/yellow)
in a row represents a primitive Matsuoka CPG (3.12). The edges correspond to
the coupling relations among the nodes. In this graph, all the edges with hollowed
endpoints are positive activating signals, while the others with solid endpoints are
negative inhibiting signals. The oscillators are numbered 1 to 4 from head to tail
of the robot. In order to build the connection between the CPG network and robot
actuators, we define the output of the i-th primitive Matsuoka CPG as

ψi = aψzi = aψ(z
e
i − zfi ), (3.14)

where aψ is a ratio coefficient of zi. Given the Bounded Input Bounded Output
(BIBO) stability of the Matsuoka CPG net [51], the outputs ψ = [ψ1, ψ2, ψ3, ψ4]

T

from the primitive oscillators can be limited within [−1, 1] by adjusting the ratio
aψ. We let ψi = 1 for the full inflation of the i-th extensor actuator and zero
inflation of the i-th flexor actuator, and vice versa for ψi = −1. The actual pressure
input to the i-th chamber is λi · ψi, where λi is the maximal pressure input of
each actuator. The primitive oscillator with green nodes controls the oscillation of
the head joint. This head oscillator also contributes as a rhythm initiator in the
oscillating system, followed by the rest parts oscillating with different phase delays
in sequence. Figure 3.2 shows all activating signals to the CPG network.
Configuring the Matsuoka CPGNetwork: To determine the hyper-parameters
in the CPG network that generate a more efficient locomotion pattern, we employed
a genetic programming (GP) algorithm similar to [29]. In this step, all tonic inputs
are assigned with value 1 for the simplicity of fitness evaluation.

We define the fitness function–the optimization criteria–in GP as F (vg,T , θg,T , dg,T ) =
a1|vg,T | − a2|θg,T | + a3|dg,T |, where g indicates a fixed goal initiated in the heading
direction of the snake robot, T indicates the terminating time of fitness evaluation
for each trial, and all coefficients a1, a2, a3 ∈ R+ are constants2.

2In experiments, the following parameters are used: a1 = 40.0, a2 = 100.0, a3 = 50.0, and
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To achieve stable and synchronized oscillations of the whole system, the following
constraint must be satisfied [51]:

(τa − τr)
2 < 4τrτab, (3.15)

where τa, τr, b > 0. To satisfy this constraint, we can set the value of b much greater
than both τr and τa, or make the absolute difference |τr − τa| sufficiently small.

In other words, this fitness function is a weighted sum over the robot’s instanta-
neous speed, deviation angle, and total traveled distance on a fixed straight line at
the terminating time T . In this scenario, a better-fitted configuration is supposed
to maintain oscillating locomotion and reaches faster locomotion speed |vg,T | along
the original heading direction at time T . In addition, the locomotion pattern is
required to have a smaller deviation between the robot’s heading direction and the
goal direction (with a small |θg|), and with overall a longer traveled distance along
the robot’s heading direction (|dg|).

The desired parameter configuration found by GP is given in Table. 6.1 in Ap-
pendix 6.1.

3.4 Maneuverability Analysis and Design of the

Learning-based Controller with the Matsuoka

CPG Network

When provided with equally constant tonic inputs, the designed Matsuoka CPG
system can generate stable oscillation patterns to efficiently drive the soft snake
robot slithering forward. However, a single CPG network cannot achieve intelligent
locomotion and goal-tracking behaviors with potentially time-varying goals. For an
intelligent controller, the free turning and accelerating (or decelerating) behaviors
are the fundamental skills to realize autonomous locomotion in the goal-tracking
tasks. In this work, we denote these two maneuverability demands as – steering
control and velocity control (see Fig. 3.7). The later parts will focus on investigating
the properties of the Matsuoka CPG system to prove that it is controllable from both
steering and velocity control perspectives. We design a proper connection between
RL actions and controllable coefficients of the Matsuoka CPG system so that both
steering and velocity control of the snake robot can be efficiently learned by the RL
agent.

For steering control, we prove that the bias of tonic inputs is linearly proportional
to the bias of the CPG output in both amplitude and duty cycle dimensions. This
property inspires a rule that transforms the action outputs of the RL policy into the
tonic inputs of the CPG system.

Next, we excavate two mechanisms that are helpful for velocity control. First,

T = 6.4 sec.
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we show that the frequency ratio coefficient Kf allows the RL agent to tune the
locomotion velocity by directly adjusting the oscillation frequency. Second, by in-
troducing the free-response oscillation constraint, we provide a way to adjust the
converging amplitude of the oscillation driven by the RL agent. With experiments,
we show that the free-response oscillation constraint is very helpful for reducing
performance drop in the sim-to-real problem.

Figure 3.8: Relation between oscillation bias and extensor tonic input ue when
setting different a values to obtain (a) Kn = 0.19 (b) Kn = 0.39 (a) Kn = 0.53 (b)
Kn = 0.66 (a) Kn = 0.79.

3.4.1 Steering control with imbalanced tonic inputs

Most existing methods based on CPG realize steering by either directly adding a
displacement [27] to the output of the CPG system, or using a secondary system
such as an artificial neural network to compose the weighted outputs from multiple
CPG systems [58]. In this section, we present a different approach based on the
maneuverability of the Matsuoka oscillator–tuning tonic inputs to realize the biased
wave patterns of CPG outputs for steering the slithering locomotion of the soft snake
robot3.

3The fact that the biased wave output of the Matsuoka CPG system could cause the turning
behavior of the snake robot comes from a previous work [97], which shows that the steering angle
of a slithering snake robot on the planner ground can be linearly controlled by the bias of the
oscillatory output of the Matsuoka oscillator as the command signal of joint actuators.
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For the RL controller to steer our snake robot smoothly through the Matsuoka
CPG system, we need to find a clever way to make the steering dynamics easy
to learn for the RL algorithm. In other words, the relation between tonic inputs
and the output bias of each primitive Matsuoka oscillator in the CPG network
needs to be simple and clear. In the original design of the Matsuoka oscillator,
the flexor and extensor tonic inputs are independent of each other. This setting
not only increase the dimension of action space for the RL agent but also makes
the relationship between tonic inputs and the output bias more complicated. To
simplify this problem, we first introduce a new relation defined as complementation
to reform the relation between ue and uf .

Definition 1. (Complementation) For two real signals u(t) and v(t), and a known
bounded range D : [a, b] where D ⊆ R, we say u(t) and v(t) are complementary to
each other in range D when u(t), v(t) ∈ D for all t ∈ R+ and u(t) + v(t) ≡ b− a.

Another important definition for this section is a relation between two periodic
signals named entrainment based on the related theory in [53,54].

Definition 2. (Entrainment) Given a neural oscillator system with its natural fre-
quency ωn > 0. If the neural oscillator’s output is synchronized to the coupled input
with frequency ω, then this system is entrained with the coupled input signal. The
relation between the neural oscillator’s output and the coupled input signal is called
entrainment. If the two signals are perfectly entrained, they are supposed to have
the same oscillation amplitude and bias in addition to the synchronized oscillation
frequency.

From our previous work [42], we have observed in experiment that the steering
bias of a primitive Matsuoka oscillator is proportional to the amplitude of ue when
ue and uf are complementary within the range [0, 1]. This key observation inspires
us a dimension reduction technique to the input space of the CPG net: Instead
of controlling uei , u

f
i for i = 1, . . . , n for a n-link snake robot, we only need to

control uei for i = 1, . . . , n and let ufi = 1 − uei . As the tonic inputs have to be
positive in Matsuoka oscillators, we define a four dimensional action vector α =
[α1, α2, α3, α4]

T ∈ R4 and map α to tonic input vector u as follows,

uei =
1

1 + e−αi
, and ufi = 1− uei , for i = 1, . . . , 4. (3.16)

This mapping bounds the tonic input within [0, 1]. The reduced input dimension
enables a more efficient policy search in RL.

Based on this design, we show that there are certain combinations of tonic inputs
in a Matsuoka oscillator that are capable of generating imbalanced output trajec-
tories and therefore result in the turning behavior of the robot. We present three
possible cases of the forced tonic inputs that could maneuver the turning behavior
of the snake robot:
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1. The two tonic inputs are different constants.

2. The two tonic inputs are wave functions with imbalanced duty cycles.

3. The two tonic inputs are wave functions with imbalanced duty cycles, and
both wave functions are added by different constant offsets.

It is noted that the third case is a linear combination of the first two. As a re-
sult, as long as the first two cases are proved to share the same property, the third
one naturally holds. Next, we provide the frequency domain analysis of the Mat-
suoka oscillator to explain why the first two cases of tonic inputs enable imbalanced
oscillation for the turning behavior.
Steering with biased amplitude of constant tonic inputs: To show that
a pair of constant tonic inputs with different bias values can result in a biased
oscillating output trajectory, we need to find out the relation between the bias of
the output z and the bias of tonic inputs, when the tonic inputs are constant and
complementary in [0, 1]. In this situation, a primitive Matsuoka oscillator needs to
be a zero damping harmonic system to maintain limit cycle oscillation. When the
system has zero damping, the ratio between the amplitudes of state xq and output
zq for q ∈ {e, f}, referred to as Kn, is obtained from a second-order linear ordinary
differential equation ((6.8) in Appendix 6.2.3) derived from (3.12):

Kn =
τr + τa
τaa

, (3.17)

where τr and τa are the discharge rate and the adaptation rate in (3.12), and pa-
rameter a is the mutual inhibition weight between flexor and extensor of a primitive
Matsuoka oscillator. The derivation of (3.17) can be found in Appendix 6.2.3.

When the Matsuoka oscillator’s output only consists of free-response oscillation,
we can establish the following relation between the output bias(z) and the tonic
input bias(u).

Proposition 1. If a primitive Matsuoka oscillator satisfies the following three con-
ditions: 1) the dynamical model of the primitive Matsuoka oscillator is harmonic,
2) the tonic inputs ue and uf are constants and complementary to each other,
3) states xe and xf are perfectly entrained, then the oscillation bias of outputs z
and the bias of inputs u satisfies the following linear relationship,

bias(z) =
Kn

(b− a)Kn + 1
bias(u), (3.18)

where z = ze−zf , u = ue−uf , and the coefficient Kn satisfies Kn = (τr+τa)/(τaa).

Proof. See Appendix 6.3.1.

Equation (3.18) suggests that there is a linear relationship between bias(u) and
bias(z) in a primitive Matsuoka oscillator. We further validate this conclusion

39



through the numerical simulation of a single primitive Matsuoka oscillator. We
calculate the mean oscillation bias (numerical average4) of the simulated state out-
put z and compare it with the estimated bias based on (3.18) (linear reference).
Figure 3.8 shows the curve of bias(z) varies with bias(u) ∈ [−1, 1] in a primitive
Matsuoka oscillator.

Figure 3.9: Relation between oscillation amplitude and duty cycle bias.

Figure 3.8 and theoretical analysis (see Appendix 6.3.2) show that for bias(u) ∈
( 2a
a+b+1

− 1, 1 − 2a
a+b+1

), the linear relationship mentioned in Proposition 1 is appli-
cable to the data of bias(z) and bias(u) collected by simulating the original Mat-
suoka system in (3.12). It is also observed that the applicable range of bias(u) for
Proposition 1 to hold increases with Kn. As shown in Fig. 3.9, when bias(u) ∈
[−1, 2a

a+b+1
−1]∪ [1− 2a

a+b+1
, 1], the original Matsuoka system stops oscillating, which

means the system stays at a set point equilibrium. In this case, bias(z) and bias(u)
follow another linear relationship,

bias(z) =


bias(u)−(1+2c)

2(1+b)
, if bias(u) ∈ [−1, 2a

a+b+1
− 1]

bias(u)+(1+2c)
2(1+b)

, if bias(u) ∈ [1− 2a
a+b+1

, 1].
(3.19)

The derivation of the above relationship is provided in Appendix 6.3.2.
In the next paragraph, we show that there is also a linear relationship between

bias(z) and bias(u) of the Matsuoka oscillator when ue and uf are periodical signals
with biased duty cycles.
Steering with the biased duty cycle of periodic tonic inputs: We show a
different approach to control the steering of the snake robot given that both uei and
ufi are square wave functions and are complementary to each other.

Proposition 2. If a primitive Matsuoka oscillator satisfies the following three con-
ditions: 1) the dynamical model of the primitive Matsuoka oscillator is harmonic,

4Based on Fourier series analysis, given a continuous real-valued P -periodic function z(t), the
constant term of its Fourier series has the form 1

P

∫
P
z(t)dt.
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2) the tonic inputs ue and uf are square wave signals and are complementary to each
other, 3) ue is entrained with ze, and uf is entrained with zf , then the oscillation
bias of z and the bias of u satisfies the following linear relationship,

bias(z) =
1 + 2m

b− a+ 2
bias(u), (3.20)

where z = ze − zf , u = ue − uf , and

m =
1

π

1

2Kn − 1 + 2
π
(a+ b) sin−1(Kn)

is a constant coefficient (r indicates amplitude of state x).

Proof. See Appendix 6.3.3.

Figure 3.10: Relation between bias(z) and bias(u) for the tonic inputs satisfying
Proposition 2.

The simulated results also supports Proposition 2 when the Matsuoka system is
taking periodic tonic inputs with biased duty cycles. Figure 3.10 shows that with
various Kn values, the linear relationship in (3.20) fits well with the curve between
bias(u) and bias(z) collected by simulating the original Matsuoka system in (3.12).

Combining the conclusions in Proposition 1 and Proposition 2, we make the
following remark,

Remark 1. If a primitive Matsuoka oscillator has periodical tonic input signals ue

and uf that are complementary to each other, with imbalanced duty cycles and both
wave functions are added by different constant offsets, then bias(z) is linearly related
to the bias(u), where z = ze − zf , u = ue − uf .

Proposition 1 and 2 show that the oscillation bias of the Matsuoka CPG system
is easy to maneuver through the biased tonic input signals. Since the oscillation bias
is the key to steering in the snake’s slithering locomotion, these two propositions
provide us insight to the design of RL module so as to improve the efficiency in
learning the steering behavior of the snake robot.
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3.4.2 Velocity control with frequency modulation

Figure 3.11: Relating oscillating frequency and amplitude to the average linear
velocity of serpentine locomotion.

Generally, the linear velocity of serpentine locomotion is affected by the snake’s
oscillation amplitude and frequency. In this subsection, we show that the amplitude
and frequency can be controlled by two coefficients of the Matsuoka CPG system to
change the locomotion velocity of the soft snake robot.

First, the following relation between the frequency ratio Kf and the natural
frequency ω̂i of the i-th oscillator is established in [53, (5),(6)],

ω̂i ∝
1√
Kf

, i ∈ {1, 2, 3, 4}. (3.21)

Second, the oscillating amplitude Âi of the i-th oscillator is linearly proportional
to the amplitude of free-response oscillation tonic input c when c > 0 and uei , u

f
i are

constants [53], that is,
Âi ∝ c, i ∈ {1, 2, 3, 4}. (3.22)

Equations (3.21) and (3.22) show that the frequency and amplitude of the Mat-
suoka CPG system are independently influenced by the frequency ratio Kf and the
free-response oscillation tonic inputs c. Therefore, these two coefficients can be con-
sidered major factors for the Matsuoka CPG system to control the velocity of the
soft snake robot’s locomotion. In Fig. 3.11, we collect 2500 uniform samples within
the region c ∈ [0.4, 0.8], and Kf ∈ [0.45, 1.05] and record the velocities generated in
the simulator. We observe that with a fixed c, the average velocity increase mono-
tonically with the frequency ratio Kf . We also observe that with the same Kf , the
change of c does not affect the locomotion velocity significantly. While with differ-
ent values of c, the efficiency of Kf in affecting the locomotion velocity is different.
This means that we can mainly use Kf to adjust the locomotion velocity, but the
value of c needs to be carefully selected. Given this analysis, we use Kf to control
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the velocity of the robot. It is noted that the frequency ratio Kf only influences
the strength but not the direction of the vector field of the Matsuoka CPG system.
Thus, modulating Kf would not affect the stability of the whole CPG system.

3.4.3 Modulating forced-response oscillation amplitude with
free-response oscillation tonic input constraint

(3.22) shows that the free-response oscillation tonic input c could affect the output
amplitude of the Matsuoka oscillator when ue and uf are constants. We further
discover that a positive value of the free response tonic input c could set a threshold
for the amplitude of the force-response tonic inputs ue and uf , such that they need to
pass this amplitude threshold in order to control the oscillation of the CPG system.
In the experiment section, we show that this property of c can significantly improve
the sim-to-real performance of our control framework.

In our previous work [42], when c = 0, there is no free-response oscillation in
the system. When a Matsuoka oscillator has no free-response oscillation pattern,
its output oscillation amplitude and bias are only controlled by the forced input
signal given by the control tonic inputs ue and uf . When the inertia in the sim-
ulated learning environment is high and the contact friction force is low, the RL
agent learns to generate the forced-response oscillation tonic inputs with very small
amplitude to keep a more stable heading direction during the locomotion. However,
if we need the RL control policy to be able to initiate the CPG oscillation with
an increased amplitude on the real robot (e.g. for traversing a terrain with higher
friction resistance), the learned policy would not meet the requirement.

When c ̸= 0, we conclude that in the Matsuoka oscillator, the amplitude Au of
the force-response tonic inputs ue and uf must satisfy the inequality Au > A0 to
completely entrain with the output z (A0 is the entrainment threshold for ue and
uf to synchronize the output z of the Matsuoka oscillator [54]). The equation of A0

is given as follows

A0(c, ω) =
c√

τ2aω
2+1

τrτa|ω2
n−ω2|

c+1
An

, (3.23)

where An > 0 is the free-response oscillation amplitude and

ωn =
1

τaKf

√
(τr + τa)b

τra
− 1

is the free-response oscillation frequency [53]. The detailed derivation of A0 is pro-
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vided in Appendix 6.2.4. According to [53, (30)], we have

A0(c, ω) ≈
c√

τ2aω
2+1

τrτa|ω2
n−ω2|(2Kn − 1 + 2

π
(a+ b) sin−1(Kn))

. (3.24)

In (3.24), if c = 0, A0 ≡ 0. In this case, there is no limiting threshold for the
control policy to entrain the CPG output z with ue, uf . When ω is fixed and c > 0,
then the threshold A0 > 0 and A0 increases with c. Notice that Au > A0 must be
satisfied for the free-response oscillation of the Matsuoka system be attenuated by
the system damping. This also means the force-response tonic inputs ue, uf entrain
the CPG output z. In this scenario, the control policy needs to increase Au to control
the CPG system effectively. It is also noted that A0 → 0 as ω → ωn, therefore there
are two ways for the RL agent to realize the entrainment status: one is keeping the
oscillation frequency ω close to the free-response oscillation frequency ωn, and the
other is increasing the value of Au to make Au > A0. Therefore, the combination of
the two directions can encourage the intelligent controller to produce force-response
tonic inputs that can not only approach desired oscillating amplitude, but also
pursue frequency resonance with the original CPG system. Based on this special
property of the Matsuoka oscillator, we propose a new method – FOC-PPOC-CPG
to enforce better entrainment between RL control signals and the CPG states.

According to the relation between A0 and c, we can use c to keep the oscillation
amplitude of the Matsuoka oscillator at different levels. One previous work [91]
has shown that the oscillation amplitude of the Matsuoka oscillator can be used
to improve the slithering locomotion velocity of a rigid snake robot in different
environments with different friction coefficients. Hence, we can use c to adapt the
body undulation amplitude of the soft snake robot to different environments with
various contact properties. With this approach, we can improve the sim-to-real
performance of an RL snake controller by tuning its signal amplitude, instead of
relying on the environment-based methods such as domain randomization [86] or
other data augmentation techniques, which are computationally expensive.

In the later part of this chapter, our experiment results (see Section 3.6.5) verify
the merit of c in improving the sim-to-real performance of our snake locomotion
controller.

3.4.4 The Neural Network Controller

We have now determined the encoded input vector of the CPG net to be vector α
(tonic inputs) and frequency ratio Kf . This input vector of the CPG is the output
vector of the NN controller. The input to the NN controller is the state feedback
of the robot, given by s = [||ρg||, vg, θg, θ̇g, κ1, κ2, κ3, κ4]T ∈ R8 (see Fig. 3.3). Next,
we present the design of the NN controller.

The key insight for the design of the NN controller is that the robot needs not
to change velocity very often for smooth locomotion. This means the updates for
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tonic inputs and the frequency ratio can be set to be at two different time scales.
With this insight, we adopt a hierarchical reinforcement learning method called the
option framework [65, 83] to learn the optimal controller. The controller uses the
tonic inputs as low-level primitive actions and frequency ratio as high-level options
of the CPG net. The low-level primitive actions are computed at every time step.
The high-level option changes infrequently. Specifically, each option is defined by
⟨I, πy : S → {y} × R4), βy⟩ where I = S is a set of initial states, and πy is the
intra-option policy. By letting I = S, we allow the frequency ratio to be changed
at any state in the system. Variable y ∈ [0, 1] is a value of frequency ratio, and
βy : S → [0, 1] is the termination function such that βy(s) is the probability of
changing from the current frequency ratio to another frequency ratio.

The options share the same NN for their intro-option policies and the same
NN for termination functions. However, these NNs for intro-option policies take
different frequency ratios. The set of parameters to be learned by policy search
include parameters for intra-option policy function approximation, parameters for
termination function approximation, and parameters for high-level policy function
approximation (for determining the next option/frequency ratio). Proximal Policy
Optimization Option-Critics (PPOC) in the OpenAI Baselines [14] is employed as
the policy search in the RL module.

Let us now review the control architecture in Figure 3.2. We have a Multi-
layer perceptron (MLP) neural network with two hidden layers to approximate the
optimal control policy that controls the inputs of the CPG net in (3.12). The
output layer of MLP is composed of action α (green nodes), option in terms of
frequency ratio (pink node), and the terminating probability (blue node) for that
option. The input of NN consists of a state vector (yellow nodes) and its output
from the last time step. The purpose of this design is to let the actor network learn
the unknown dynamics of the system by tracking the past actions in one or multiple
steps [25,58,64]. Given the Bounded Input Bounded Output (BIBO) stability of the
Matsuoka CPG net [51] and that of the soft snake robots, we ensure that the closed-
loop robot system with the FOC-PPOC-CPG controller is BIBO stable. Combining
with (3.16) which enforces a limited range for all tonic inputs, this control scheme
is guaranteed to generate bounded inputs, which lead to bounded outputs in the
system.

3.5 Curriculum and Reward Design for Efficient

Learning-based Control

In this section, we introduce the design of the curriculum and reward function for
efficiently learning a goal-tracking controller given the proposed FOC-PPOC-CPG
scheme.
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3.5.1 Task curriculum

Figure 3.12: Task difficulty upgrade from level i − 1 to level i. As the curriculum
level increases, goals are sampled at a narrower distance and wider angle, and the
acceptance area gets smaller.

Curriculum teaching [36] is used to accelerate motor skills learning given complex
goal-tracking tasks. We design the curriculum such that the agent starts with easy-
to-reach goals at level 0. As the level increases, the agent learns to perform more
challenging goal-tracking tasks.

The curriculum levels are designed as follows: At the task-level, i, the center
of the goal is sampled from the 2D space based on the current location and head
direction of the robot. For each sampled goal, we say the robot reaches the goal if
it is ri distance away from the goal. The sampling distribution is uniform in the fan
area determined by the range of angle θi and distance bound [ρli, ρ

u
i ] in the polar

coordinate given by the predefined curriculum.
As shown in Fig. 3.12, when the task-level increases, we have ri < ri−1, θi > θi−1,

ρui > ρui−1, and ρ
u
i − ρli < ρui−1 − ρli−1. This means that the robot has to be closer

to the goal in order to succeed and receive a terminal reward, the goal is sampled
in a range further from the initial position of the robot. We select discrete sets
of {ri}, {θi}, [ρli, ρui ] and determine a curriculum table. A detailed example of the
learning curriculum is given in Table 6.2. We train the robot in simulation starting
from level 0. The task-level is increased to level i + 1 from level i if the controller
reaches the desired success rate σi, for example, σi = 0.9 indicates at least 90
successful completions of goal-reaching tasks out of n = 100 trials at level i.

3.5.2 Reward design

The design of the reward function is to guide the robot to the set point goals. We
consider building the artificial potential field [10] such that the robot is attracted by
the goal g. We use a simple conical potential field for each goal. For any position
represented by coordinate x in Cartesian space, let vector eg = xg − x, the norm
||eg|| indicates the distance between the position of the robot’s head and the goal.
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The constant attracting force at x becomes

fg(x) =
eg

||eg||
.

Given the single goal-tracking scenario without obstacles, we have the potential field
reward for goal-tracking as

U(x) =
vs · fg(x)
||eg||

,

where vs is the velocity vector of the soft snake robot.
Combining with the definition of goal-reaching tasks and their corresponding

level setups, the reward at every time step is defined as

R(vg, θg) = cvvg + cgU + cg cos θg

i∑
k=0

1

rk
I(||ρg|| < rk), (3.25)

where cv, cg ∈ R+ are constant weights, vg is the length of the projection of the
snake’s head COM velocity v on the head-to-goal-direction, ρg is the linear dis-
placement vector between the head COM of the robot and the goal position, θg is
the angle between vector v to vector ρg in Fig. 3.3, rk defines the goal range in
task-level k, for k = 0, . . . , i, and I(ρg < rk) is an indicator function that outputs
one if the robot head is within the goal range for task-level k.

This reward trades off two objectives. The first term, weighted by cv, encourages
high locomotion velocity toward the goal. The second term, weighted by cg, rewards
the learner based on the position of the robot to the goal, and the level of the
curriculum the learner has achieved for the goal-reaching task. For every task, if the
robot hasn’t entered the goal range, it receives a potential field reward only. When
the robot enters the goal range in task-level i, it receives a summation of rewards
1/rk for all k ≤ i (the closer to the goal the higher this summation), shaped by the
approaching angle θg (the closer the angle to zero, the higher the reward).

If the agent reaches the goal defined by the current task-level, a new goal is
randomly sampled in the current or next level (if the current level is completed).
There are two failing situations, where the desired goal is re-sampled and updated.
The first situation is starving, which happens when the robot stops moving for a
certain amount of time, referred to as the starvation time. The second case is missing
the goal, which happens when the robot keeps heading in the wrong direction as
opposed to moving towards the goal (vg(t) being negative) for a certain amount of
time.

3.6 Experimental Evaluation

In this section, we evaluate the proposed method in both simulation and real envi-
ronments. We first introduce the experimental setup to explain how the data of the
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Figure 3.13: The currently used motion capture system for goal-tracking tasks.

robot is collected during locomotion, as well as the training configuration for the RL
algorithm. Then we compare the properties of control signals between our method
and the vanilla PPO as locomotion controllers for goal-reaching tasks in simulation.
In the comparison analysis, we highlight the performance drop of each method from
simulation to real to extrapolate the advantage of our method. Last, we further test
and analyze the sim-to-real robustness in difficult goal-reaching tasks that are never
seen at the training stage, and the real robot performance against disturbance.

3.6.1 Experimental Setup

Environment Sensing and Data Collection: The states of the real snake robot
are captured by a single web camera hanging on the ceiling of the experiment room.
The robot body detection is realized by using Aruco – a library in OpenCV for QR
codes detection and localization [20]. These QR codes are printed and attached to
the rigid bodies of the snake robot and the goal position. Figure 3.13 shows the ex-
periment setup for the real snake robot goal-reaching tasks. Once the QR codes on
the robot bodies and the goal(s) are detected, their pixel-wise coordinate vectors are
calculated with distortion corrected. Given the camera calibration information, we
can translate the pixel data of all QR codes into the real world 2D coordinates, and
then transform it into positional information and the body posture of the robot. The
control policy function running on the desktop computer receives the observation
states, generates the control commands and passes them through WiFi communi-
cation. The ESP32 chips on the snake bodies translate the commands into Pulse
Width Modulation (PWM) signals to activate or deactivate the valves [21, 46] on
the snake robot.
Reinforcement Learning Configuration: We use a four-layered NN with 128×
128 hidden layer neurons as a general configuration for the actor and critic networks
of all RL methods mentioned in this section. The back-propagation of the critic net
was done with Adam Optimizer and a step size of 5 × 10−4. For data collection
of each trial trajectory, the starvation time for the failing condition is 60 ms. The
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missing goal criterion is triggered whenever vg(t) (the velocity on the goal-direction,
see Fig. 3.3) stays negative for over 60 time steps. In order to compensate for
the mismatch between the simulation and the real environment, most notably the
friction coefficients, we employ a domain randomization technique [86], in which a
subset of physical parameters are sampled from several uniform distributions. The
range of distributions of domain randomization (DR) parameters used for training
are in Table 6.3 (see Appendix 6.1).

For PPOC-CPG and FOC-PPOC-CPG, we first train the policy net with fixed
options (at this moment, the termination probability is always 0, and a fixed fre-
quency ratio Kf = 1.0 is used). When both the task-level and the reward cannot
increase anymore, we allow the learning algorithm to change the option, i.e., pick
a different frequency ratio Kf along with termination function β, and keep training
the policy until the highest level in the curriculum is passed.

In the PPOC-CPG method, the value of the free-response tonic input c is equiv-
alently considered zero since it is not formally introduced in the previous control
design [42]. According to the definition of A0 ((3.23)), the amplitudes of both ue

and uf need to be greater than A0 in order to dominate in controlling the outputs of
the Matsuoka CPG system. The value of A0 should not be greater than the upper
bound of ue and uf , which is 1 defined by (3.16). Among a group of candidates rang-
ing from 0.25 to 2, we choose c = 0.75 as our free-response oscillation constraint for
the FOC-PPOC-CPG controller. This value is valid for our system because when
we set c = 0.75 and all other coefficients of the CPG network (Table 6.1) to (3.23),
the result shows A0 ∈ [0.24, 0.34] ⊂ [0, 1], with ω ∈ [3.77, 5.02]. It is noted that
the range of ω here is calculated from multiple sampled sequences of ue and uf

recorded in the real snake goal-reaching tasks. Since we are testing the sim-to-real
performance, all methods involved in this comparison are trained in the simulator
for sufficiently long iterations (12500 episodes) to ensure convergence. Each method
is trained 10 times with different random seeds and the controller with the best
performance is selected to be tested on the real robot. All curriculum parameters
(Table 6.2) and domain randomization parameters (Table 6.3) are fixed for all three
methods involved.

The whole training process of each method runs on 4 simulated soft snake robots
in parallel on a workstation equipped with an Intel Core i7-9700K, 32GB of RAM,
and one NVIDIA RTX2080 Super GPU.

3.6.2 Verification of steering property of PPOC-CPG

We use a simulated experiment to show that our FOC-PPOC-CPG control policy has
learned the turning behavior with the biased tonic input signal, and the Matsuoka
CPG system can linearly map the biased tonic input to the biased actuation signal as
Proposition 1 and Proposition 2 predicted. In the experiment, we test the converged
FOC-PPOC-CPG policy on multiple set-point goals placed in certain directions
(−90◦,−70◦,−60◦,−45◦,−30◦) with a fixed distance (1 meter), which approximately
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Figure 3.14: (a) Bias input and output of the RL-driven CPG node for different
turning angles (mean values connected). (b) Linear relation between input and
output bias of the RL-driven CPG node during locomotion.

represent the desired turning angles of the locomotion tasks. For each goal position,
we carry out 5 trials and record the tonic inputs data and CPG output data of
the head CPG node of the soft snake robot. The reason for choosing the head
node is because this node’s behavior best reflects the desired steering direction of
the RL agent. Figure 3.14a shows a violin plot of the tonic input bias and the
CPG output bias for different turning angles (the bias signals are calculated by
(6.38)). It is observed from Fig. 3.14a that both bias signals are monotonically
related to the desired turning angle (initial goal-direction). Figure 3.14b shows the
linear regression result based on all data points. We can observe a clear linear
relationship between bias(z) and bias(u) of the head CPG node (with the coefficient
of determination equal to 0.978, a value closer to 1 indicate higher linearity). This
result provides stronger support for Proposition 1 and Proposition 2.

3.6.3 Control signal comparison between PPOC-CPG and
vanilla PPO

First, we compare PPOC-CPG and vanilla PPO in terms of the smoothness of
the control input learned in simulation. We train both PPOC-CPG and vanilla
PPO in the same environment until convergence. Figure 3.15 shows segments of the
control signal ψ1 generated by the vanilla PPO controller and PPOC-CPG controller
controlling the simulated soft snake robot in a straight line goal-tracking task. From
Fig. 3.15a it is observed that the signal generated by the vanilla PPO policy oscillates
at a relatively higher frequency (about 10Hz on average) with irregular oscillation
patterns. Such kind of control signals are not feasible for the actuators in reality.
This is because the inflation and deflation of soft air chambers on the snake robot
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Figure 3.15: Sample actuation signal ψ1 for the first link generated by (a) vanilla
PPO and (b) PPOC-CPG from time step 0 to time step 300. Followed by phase
plane portraits of ψ1 (c) by vanilla PPO from time step 0 to 300, (d) by PPOC-
CPG from time step 0 to 300, (e) by vanilla PPO from time step 400 to 700, (f) by
PPOC-CPG from time step 400 to 700.

have a certain delay so that the soft pneumatic actuators are not able to track
fast oscillating signals. On the other end, the curve in Fig. 3.15b shows that the
agent trained with PPOC-CPG can converge to a stable limit cycle trajectory at a
relatively lower but more natural frequency (1.6Hz) for serpentine locomotion. Our
approach shows its advantage of being able to generate smoother oscillatory control
signals even when the inputs to the CPG system are discontinuous. Fig. 3.15 also
compares the phase plane portraits recorded at different time stages of the two
learning methods. From Fig. 3.15c and Fig. 3.15e, we observe that the oscillating
signal generated by vanilla PPO policy performs irregular oscillation in the first 300
time steps, and cannot converge to a stable limit cycle when it evolves to time step
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700. While in Fig. 3.15d and Fig. 3.15f, despite a little deviation from the first 300
time steps, the outputs of the CPG network eventually converge to a stable limit
cycle within 700 time steps. This experiment shows that the CPG system is capable
of stabilizing the oscillation pattern in simple locomotion tasks for the soft snake
robot.

3.6.4 Comparison of our reward design and a sparse reward
function

Figure 3.16: Learning process of FOC-PPOC-CPG with dense reward and sparse
reward.

We compare the learning process of the revised reward function with our previous
one that only rewards the agent for goal reaching events [42] (for each case we record
5 learning trials). In average, the agent with dense reward is able to reach and
converge to level-12, while the agent with sparse reward only converges to level-8
(see Table 6.2). The calculated results in Fig. 3.16 show that the system trained
with dense reward function outperforms that with a sparse reward design.

In the next section (Section 3.6.5), these methods are compared in the real robot
to demonstrate the advantage of the proposed PPOC-CPG control.

Table 3.2: Performance Comparison of Different Approaches.

Metrics Vanilla PPO PPOC-CPG FOC-PPOC-
CPG

Simulated average speed (m/s) 0.14 0.137 0.135
Simulated success rate 0.95 0.99 0.98
Real average speed (m/s) 0.027 (↓ 80.7%) 0.063 (↓ 54%) 0.121 (↓ 11%)
Real success rate 0.5 (↓ 42.1%) 0.82 (↓ 17.1%) 0.9(↓ 8.1%)
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Figure 3.17: Sample comparison of trajectories generated by Vanilla PPO policy,
PPOC-CPG policy, and FOC-PPOC-CPG policy in reality.

3.6.5 Sim-to-real Performance of FOC-PPOC-CPG

Performance comparison with original PPOC-CPG and Vanilla PPO

Since FOC-PPOC-CPG is designed for improving the sim-to-real transfer learning
performance of the PPOC-CPG method, we first compare the sim-to-real perfor-
mance of the FOC-PPOC-CPG with the original PPOC-CPG and Vanilla PPO in
single goal-reaching tasks. For the real robot tests, all three controllers trained by
the simulator are directly applied without further training. We test the controllers
by setting goals in three directions (mid, left and right) with fixed angles, distances,
and an accuracy radius of r = 0.175 meters. Each direction takes 10 trials for all
three methods in both simulation and reality.

To evaluate the sim-to-real performance, we calculate the average locomotion
speed (vg) and the success rate for goal-reaching tasks collected from both simula-
tion and real experiments. According to Section 3.4.3, the contact resistance forces
in the simulator are smaller than in the real environment, when applying the RL
control policy learned in the simulator directly to the real robot, the performance
of the real robot is often worse than the simulated agent. In the rows of real robot
evaluations in Table 3.2, we use down-arrows and percentage values to show the
extent of performance drop compared to the simulating performance with the same
method. From Table 3.2, it is observed that although the Vanilla PPO controller
learns the best locomotion speed in the simulator at the cost of goal-reaching accu-
racy, its locomotion pattern cannot fit the real robot well. The real robot experiences
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Figure 3.18: Sample way-point trajectories followed by improved PPOC-CPG con-
troller in simulation and real in (a) zigzag and (b) square.

a drastic drop in performance on both locomotion speed (80.7%) and success rate
(42.1%). For the original PPOC-CPG, though it has achieved an overall better per-
formance than Vanilla PPO, its sim-to-real performance drop is still relatively high,
with a 54% of speed drop and 17% of accuracy drop. After adding the free-response
oscillation constraint to the CPG system, the new policy reaches almost the same
performance as the original PPOC-CPG in the simulator. In Section 3.4.3 we have
shown that the free-response oscillation tonic input c > 0 could help maintain the
oscillation amplitude of the control signal of FOC-PPOC-CPG during the learning
process. It is noticed that the maintained amplitude of the control signals does not
improve the locomotion speed and goal-reaching accuracy at the training stage in
the simulation. However, when the learned policy of FOC-PPOC-CPG is applied
to the real robot without further training, it performs significantly better than the
previous two methods in both locomotion speed and success rate.

Figure 3.17 shows a more intuitive result by comparing sample trajectories of the
above three methods in different goal-reaching tasks performed on the real robot.
The trajectories show that the robot controlled by Vanilla PPO policy moves much
slower than the other two. And it moves in a less symmetric way for the left and right
turning tasks. While the original PPOC-CPG and FOC-PPOC-CPG show similar
symmetry properties in the trajectory shapes, the difference is that the controller
trained with FOC-PPOC-CPG moves almost twice as fast as that trained with
PPOC-CPG. This comparison is presented in the video5 “PPO Learning methods
comparison.mp4”.

Since PPO is an on-policy RL algorithm and has been established for many
years, we also use a more up-to-date off-policy RL algorithm – Twin Delayed Deep
Deterministic policy gradient (TD3) [9] to replace the role of PPO in our framework,
and train it with a shorter learning period (2000 episodes) to verify the generality of
our approach. The results and a brief discussion can be viewed in Appendix 6.4.3.

5All videos in this chapter can be viewed from http://shorturl.at/cgms1
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Figure 3.19: Disturbance recovery for goal-reaching task followed by FOC-PPOC-
CPG controller in real experiments. The presented sub-figures are: (a) x-y plane
trajectory, (b) control signals for the actuators, and (c) video snapshot of recorded
robot motion.

Performance in reaching unseen goals

We also investigate the sim-to-real performance of FOC-PPOC-CPG in harder goal-
reaching tasks. Figure 3.18 compares the head trajectories in Cartesian space for two
different setups of way-point goals. The testing trajectories include a square turning
trajectory for testing consecutive sharp turning in the same direction (Fig. 3.18b),
and a zigzag trajectory for testing continuous sharp turning in opposite directions
(Fig. 3.18a). Both way-point goal series have sharper turning angles than the high-
est level in the training curriculum in Table 6.2. Video “Half square trajectory
sim2real.mp4” and “Zigzag trajectory sim2real.mp4” provide the dynamic view of
Fig. 3.18a and Fig. 3.18b respectively. From the example videos, it is observed that
in both trajectories, the speed drop of the real robot is still around 10%, which
is not worse than single goal-reaching tasks in Table 3.2. It is noted that in both
Fig. 3.18a and Fig. 3.18b, it takes the real robot longer distances to make the sharp
turning. This is also due to the larger ground resistance forces in reality.

Robustness to External disturbance

We also test the FOC-PPOC-CPG controller’s ability to keep tracking the desired
target when the robot is disturbed by an external pushing force. Figure 3.19a and
video “Disturbance recovery.mp4” shows an example trajectory of a disturbed goal-
reaching task. It is observed from Fig. 3.19b that the FOC-PPOC-CPG controller
reacts accordingly to its situation during the locomotion. When the deviation be-
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tween the robot’s head and the goal is relatively smaller before the disturbance
(before 4.1s), the robot gently oscillates and adjusts its turning direction gradually
towards the goal-direction. At around 9.04s, when the robot is pushed away from
its desired direction, one can observe a clear redirection to the left-hand side of the
robot’s heading direction. The FOC-PPOC-CPG is able to adjust and make sharp
turning to return to the correct direction and still reach the goal without wasting
too much time on the recovery.

3.7 Conclusion

this chapter develops a bio-inspired controller for learning agile serpentine loco-
motion with a CPG net mimicking the central nervous system of natural snakes.
The contribution of this chapter is two-fold: First, we investigate the properties
of the Matsuoka oscillator for achieving diverse locomotion skills in a soft snake
robot. Second, we construct a FOC-PPOC-CPG net that uses a CPG net to ac-
tuate the soft snake robot, and a neural network to efficiently learn a closed-loop
near-optimal control policy that utilizes different oscillation patterns in the CPG
net. This learning-based control scheme shows promising results in goal-reaching
tasks in soft snake robots.

This control scheme can be applicable to a range of bio-mimic motion control for
robotic systems and may require different designs of the CPG network given insights
from the corresponding biological systems. We have been investigating the generality
of the proposed control scheme on different robotic systems and obtained promising
early results. The next chapter will be focusing on introducing sensory inputs into
the CPG system, which enables reactive responses to contact forces with the external
environment and generates an obstacle-aided locomotion controller for the soft snake
robot. It is also interesting to investigate distributed control designs that can scale
to high-dimensional soft snake robot or other biomimic robotic systems.
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Chapter 4

Integrating Contact-aware
Feedback CPG System for
Learning-based Soft Snake Robot
Locomotion Controllers

This chapter aims to solve the contact-aware locomotion problem of a soft snake
robot by developing bio-inspired contact-aware locomotion controllers. To provide
effective contact information for the controllers, we develop a scale-covered sen-
sor structure mimicking natural snakes’ scale sensilla. In the design of the control
framework, our core contribution is the development of a novel sensory feedback
mechanism for the Matsuoka central pattern generator (CPG) network. This mech-
anism allows the Matsuoka CPG system to work like a “spine cord” in the whole
contact-aware control scheme, which simultaneously takes the stimuli including tonic
input signals from the “brain” (a goal-tracking locomotion controller) and sensory
feedback signals from the “reflex arc” (the contact reactive controller), and gen-
erates rhythmic signals to actuate the soft snake robot to slither through densely
allocated obstacles. In the “reflex arc” design, we develop two distinctive types of
reactive controllers – 1) a reinforcement learning (RL) sensor regulator that learns
to manipulate the sensory feedback inputs of the CPG system, and 2) a local re-
flexive sensor-CPG network that directly connects sensor readings and the CPG’s
feedback inputs in a specific topology. Combining with the locomotion controller
and the Matsuoka CPG system, these two reactive controllers facilitate two different
contact-aware locomotion control schemes. The two control schemes are tested and
evaluated in both simulated and real soft snake robots, showing promising perfor-
mance in the contact-aware locomotion tasks. The experimental results also validate
the advantages of the modified Matsuoka CPG system with a new sensory feedback
mechanism for bio-inspired robot controller design.
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4.1 Hardware Design for Contact-aware Soft Robotic

Snake Locomotion

Figure 4.1: (a) Soft robotic snake (soft snake robot) in reality. (b) The 3D model of
rigid head (left) and (c) rigid body (right). (d) Signal communication flow of soft
snake robot circuit. (e) Example of sensor-CPG connection model for one link of an
soft snake robot.

4.1.1 Design of a Contact Sensor

Figure 4.2: Electronic design of touch sensor.

In contact-aware robot locomotion, the tactile sensors are expected to detect
the contact force timely. Other desired properties can be low-cost, small-sized,
durable, accurate, deformable, and customizable. With these requirements in mind,
we choose a magnetic field soft tactile sensor based on [92]. As shown in Fig. 4.2, the
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major component of the soft tactile sensor is comprised of a small magnet cylinder
disk (with 2 mm diameter and a height of 1 mm) and a Melexis MLX90393 Hall
effect module (3mm× 3mm× 0.8mm, QFN-16 package) separated by a hemisphere
shaped elastomer (made of Ecoflex™ 00-30 silicone rubber). The magnet piece is
sealed in the elastomer through moulding of the silicone first and then the elastomer
is glued to the top of the hall sensor on the printed circuit board (PCB). The
detailed fabrication steps are similar to [92]. The working principle of this tactile
sensor is based on detection of the presence and magnitude of a magnetic field using
the Hall effect. The magnetic field varies when the elastomer deforms and causes
positional changes of the small magnet disk inside the elastomer. These changes can
be detected and calculated by the hall sensor. The data collected by the hall sensor
is sent to the mother board via Inter-Integrated Circuit (I2C) bus.

According to [92, (12),(13),(14)], the three direction forces of the tactile sensor
are calculated by
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Where Fz is normal magnetic force, Fr is shear magnetic force which can be de-
composed to Fx and Fy. Parameters Bz and Br are the normal and shear magnetic
intensity. Br can be decomposed to Bx and By. Czj and Crj are the j-th coefficients
of best fitting polynomials of Fz and Fr calculated by moving least squares (MLS)
method, and n is the order of the polynomial in the MLS method.

For the proposed control design, the accuracy of the force direction is not a strict
requirement due to the scale structure. We thus focus on the detection of contact
events and simplify measure the magnitude of the force using

F =
√
F 2
x + F 2

y + F 2
z . (4.1)

Furthermore, we introduce a sigmoid function to normalize the sensory value of the
soft tactile sensor, such that

σ(F ) =
1

1− exp−a|F | , (4.2)

where a ∈ R is a positive constant.
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4.1.2 Deployment of Scale Sensors

The soft snake robot consists 4 pneumatically actuated soft links (L1∼L4 in Fig. 4.1(a))
[21,42,44]. The links are connected by 5 rigid bodies (B1∼B4 in Fig. 4.1(a)) enclos-
ing the electronic components that are necessary to control the snake robot. Only
one chamber on each link is active (pressurized) at a time. The mechanical design of
the soft pneumatic actuators is discussed in [46]. In this chapter, we install elastic
one-direction wheels on the rigid part of the soft snake robot to realize anisotropic
friction property (component 3 in Fig. 4.1(c), the contribution of the elastic one-
direction wheels on improving the energy efficiency of contact-aware locomotion of
the soft snake robot can be found in Appendix 6.4.4.

There are in total 12 tactile sensors installed on the robot. As shown in Fig. 4.1(a),(b),(c),
the components marked number 2 are the installation positions of the tactile sen-
sors. On top of each tactile sensor, the components marked number 1 are the scales.
Each scale is made of two layers of materials – an acrylic layer attached by a steel
plate layer. The scales are designed for three major purposes:

• To significantly increase the contact sensitivity and effective sensing area of
the snake robot (contact area expand about 20 times, according to Fig. 4.1(c)).

• To reduce friction resistance on the contact surface (friction coefficient reduced
from 1.7 of dry silicone to around 0.3 of polished acrylic board).

• To protect the silicone tactile node from frequent collisions.

Figure 4.3: Tactile sensor+scale structure (top) versus its approximation in simula-
tion (bottom).

In order to simulate the robot for reinforcement learning and sim-to-real trans-
fer of the learned controller, we developed a physics-based high-fidelity simulator
that models the inflation and deflation of the air chamber and the resulting defor-
mation of the soft bodies with tetrahedral finite elements [21]. To simplify tactile
sensing function of the scale structure in simulation, we use two hemisphere elastic
force fields to model the tactile sensor node+scale structure in reality (as shown
in Fig. 4.3). The elastic force fields have equilibrium positions (where elastic force
equals zero) everywhere on the surface of the hemispheres and has no friction on the
hemispheres. The tactile readings are modeled by the elastic forces when an object’s
distance is smaller than the radius of any simulated tactile node. In the simulation,
the reading of the two hemisphere force fields are added together to simulate the
contact force signal of one tactile sensor in the real robot.
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Inspired by a previous study on obstacle-aided locomotion of rigid snake robots
[40], we approximate the total contact force acted on each rigid body Bi based on
the inputs sampled from the force sensors. For simplicity, we reduce the element
of the sensory force representation by subtracting the two inputs from a pair of
diagonal sensors. Therefore, for the i-th rigid body (counted from the head as 1st
rigid body), we have

Ni =

{
N e
i1 +N e

i2 −N f
i1 −N f

i2, i = 1

N e
i −N f

i , i = 2, 3, 4, 5.
(4.3)

According to (4.2), let F e
i , F

f
i represent the magnitude of contact force detected

from the left and right sensor respectively on the i-th rigid body of the soft snake
robot, then N e

i = σ(F e
i ), and N f

i = σ(F f
i ) (left, right in reference to the heading

direction of the soft snake robot). The head joint is a special case since it has two
pairs of sensors installed. The collection of contact forces in the soft snake robot
from head to tail forms a vector

N = [N1, N2, N3, N4, N5]
T .

When the robot is in contact with an obstacle, the contact force N q
i = N on

each tactile scale occurs as shown in Fig. 4.1c. However, due to the smoothness of
the scale and reduction of φ (the angle between the scale and the rigid body) during
the contact, the Nt component of N q

i on the tangent direction of the scale is small.
As a result, we assume |Nt| to be always smaller than the maximum torque of the
torsion spring, so that τ and Nt are in balance. Therefore, Nt is neglected in the
simulator and we take N q

i ≈ Nn for simplicity.

4.2 Modified Matsuoka Oscillator with Sensory

Feedback

In order to effectively integrate the tactile information into the contact-aware loco-
motion framework of soft snake robot, we study the effect of an additional variable
on the Matsuoka oscillator for handling the feedback force signals from the tactile
sensors. In this section, we analyze the properties of our method and the conven-
tional approach [19,85] from theoretical perspective.

In our previous work [44], we presented a control scheme that employs sensor-
free Matsuoka oscillators to generate undulating control signals as actuation inputs
for the soft snake robot to perform Serpentine locomotion. The original Matsuoka
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oscillator is a piece-wise linear dynamical system, which has the following form:

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + uei + c,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ufi + c,

Kfτaẏ
f
i = zfi − yfi ,

(4.4)

where the subscripts e and f represent variables related to extensor neuron and
flexor neuron, respectively. The tuple (xqi , y

q
i ), q ∈ {e, f} represents the activation

state (or membrane potential) and self-inhibitory state (or adaptation state [51,53])
of i-th neuron respectively, zqi = max(0, xqi ) is the output of i-th neuron. Tonic
inputs uei , u

f
i are the major coefficients that can be controlled to affect the output

bias and amplitude of the Matsuoka oscillator. The frequency ratio Kf ∈ R can
be manipulated to affect the natural oscillation frequency of the system. The free-
response input introduced in [44] is denoted as parameter c in the equation, which
is used for amplifying free-response oscillation of the CPG system. The remaining
parameters are all constant weights. In system (4.4), all coupled signals including
xqi , y

q
i and zqi (q ∈ {e, f}) are inhibiting signals (negatively weighted), and only the

tonic inputs are activating signals (positively weighted).
Based on the form of original Matsuoka oscillator, the question is how to integrate

sensory feedback to the Matsuoka CPG system to affect its outputs efficiently?
A conventional approach is to directly add positive force feedback (as activation

signals) to the membrane potential state equations (ẋei , ẋ
f
i ) of the original Matsuoka

oscillator [85, (5)]. Such form of feedback Matsuoka oscillator has been used in
some snake robot locomotion studies [19,85], where the tonic inputs (for locomotion
control) of the CPG systems in these applications are mostly constant or regular
sinusoidal waves. We summarize the dynamic equations of the conventional feedback
Matsuoka oscillator as follows:
Membrane Potential Feedback Form Matsuoka Oscillator:

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + uei + bpei + c,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ufi + bpfi + c,

Kfτaẏ
f
i = zfi − yfi ,

(4.5)
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Figure 4.4: Scheme of modified Matsuoka oscillator with different allocation of feed-
back signals: (a) the conventionally used form (we name as MPF) Matsuoka oscil-
lator and (b) the Adaptation feedback (AF) form Matsuoka oscillator proposed by
us in this work.

where the sensory force feedback signals are represented by pei and p
f
i . As shown in

Fig. 4.4a, the reason of naming “membrane potential feedback form” (MPF) to this
type of Matsuoka oscillator is because that the sensory feedback signals are directly
added to the membrane potential states as activation (positive) signals.

However, we have a concern about the above conventional form. In the case
when the tonic inputs are complicated wave signals and the sensory feedback are
irregular signals, these two types of inputs may intervene each other, and therefore
fail to effectively present the impact of sensory feedback to the system output.

In [73], the authors mentioned the addition of the CPG state coupling terms not
only to the fast dynamic states’ equations (potential membrane ẋei , ẋ

f
i ) but also to

the slow dynamic states’ equations (adaptation states ẏei , ẏ
f
i ) of the Matsuoka os-

cillator with opposite signs to improve the dynamic impact of the coupling signals.
Given the inspiration, we consider whether it is possible to add sensory feedback
signals which are external impulse signals to the adaptation states of the Matsuoka
oscillator? And should the feedback signals be activating or inhibiting in the adap-
tation state? Could this modification resolve our previous concerns? Why people
didn’t try this direction in their contact-aware locomotion studies? After in-depth
theoretical analysis and experimental comparison, we construct a novel branch of
feedback mechanism in the Matsuoka oscillator as follows.
Adaptation Feedback Form Matsuoka Oscillator:

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + uei + c,

Kfτaẏ
e
i = zei − yei − pei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ufi + c,

Kfτaẏ
f
i = zfi − yfi − pfi ,

(4.6)

63



In this design, the tonic inputs uei , u
f
i as well as the free oscillation tonic input c are

still added to the potential membrane states (xei , x
f
i ) as fast dynamic inputs, while

the sensory feedback pei and pfi are added to the equations of adaptation states
(yei , y

f
i ) of Matsuoka oscillator as slow dynamic feedback inputs (see Fig. 4.4b). In

this work, we name this version of the Matsuoka oscillator as the adaptation feedback
(AF) form Matsuoka oscillator.

To explore the feasibility of AF form Matsuoka oscillator, and find out the ad-
vantage of the AF form design, we discuss the difference between AF and MPF
form of Matsuoka oscillator when the sensory feedback signals are variables. The
discussion is organized by the following derivations:

Considering AF form Matsuoka oscillator described in system (4.6) and MPF
form Matsuoka oscillator method described in system (4.5).

First, we set xi = xei − xfi , yi = yei − yfi , zi = zei − zfi , ui = uei − ufi , pi = pei − pfi .
By taking subtraction between flexor and extensor in (4.6) and neglect phase related
coupling terms from other primitive CPGs, we have

Kfτr
d

dt
xi = −xi + azi − byi + ui (4.7)

Kfτa
d

dt
yi = zi − yi − pi.

Similarly, (4.5) can be simplified to

Kfτr
d

dt
xi = −xi + azi − byi + ui + bpi (4.8)

Kfτa
d

dt
yi = zi − yi.

If xei and x
f
i satisfy the perfect entrainment assumption [53], we have zF i

= K(rx)xF i
,

where rx is the amplitude bias of xi, and K(·) is the amplitude coefficient function of
xF i

[44, (B.4)]. The subscript F i indicates the fundamental sinusoidal and constant
component in Fourier expansion of the corresponding variable. Without loss of
generality, let Kf = 1, Eq. (4.7) can be further simplified to

τr
d

dt
xF i

+ xF i
= aK(rx)xF i

− byF i
+ uF i

(4.9)

τa
d

dt
yF i

+ yF i
= K(rx)xF i

− pi.

And (4.8) can be further simplified to

τr
d

dt
xF i

+ xF i
= aK(rx)xF i

− byF i
+ uF i

+ bpi (4.10)

τa
d

dt
yF i

+ yF i
= K(rx)xF i

.
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Next, an ordinary differential equation can be obtained by merging the two
equations in (4.9) as,

τrτa
d2

dt2
xF i

+ (τr + τa − τaaK(rx))
d

dt
xF i

(4.11)

+ ((b− a)K(rx) + 1)xF i
= τa

d

dt
uF i

+ uF i
+ bpi.

And merging the two equations in (4.10) yields

τrτa
d2

dt2
xF i

+ (τr + τa − τaaK(rx))
d

dt
xF i

(4.12)

+ ((b− a)K(rx) + 1)xF i
= τa

d

dt
uF i

+ uF i
+ bpi + τabṗi.

From the right hand side of (4.12) and (4.11), the derivation (4.12) of MPF form
Matsuoka oscillator has an additional free term τabṗi comparing to the derivation
(4.11) of the AF form Matsuoka oscillator. According to the superpositivity of
solutions of the second order ordinary differential equation (ODE), when pi is a
variable with complex wave form (e.g. collision force signals), the interference of
τabṗi will be relatively large. Concluding the above discussion yields the following
remark.

Remark 2. For the two types of feedback Matsuoka system (AF form and MPF
form) satisfying perfect entrainment condition [53], when the feedback inputs pei , p

f
i

are variables, the MPF form has an additional input disturbance caused by ṗi, which
could bring overshoot and delay to the system. Thus, the feedback inputs of AF
form Matsuoka oscillator is more effective than the feedback inputs of MPF form
Matsuoka oscillator.

The result of a simple comparison test in Fig. 4.5 further shows the disturbance
caused by τabṗi in MPF form Matsuoka oscillator. In this test we input the same
section of sensor signal (in orange) to both a primitive AF and a primitive MPF
Matsuoka oscillator. The tonic inputs are kept constant for both form of CPGs.
From the MPF output curve, much larger overshoots comparing to the AF form
output are observed every time when a significant contact signal is detected. In
every recovery phase after the sensory input vanishes, the output signal of MPF form
Matsuoka oscillator also gets delayed before recovering to the normal oscillation,
while this problem is not observed in the output of AF form Matsuoka oscillator.
These observations verify the conclusion in Remark 2.

It is also worth noted that, in the AF form Matsuoka oscillator, the sensory
feedback signals should be inhibiting instead of activating. The detailed illustration
of this design can be found in Appendix 6.3.5.

Next, in the AF form Matsuoka oscillator, in order to compare the impact of
tonic inputs uei , u

f
i and sensory feedback inputs pei , p

f
i to the output amplitude bias,

65



Figure 4.5: Output of AF form and MPF form Matsuoka oscillator given sensory
feedback data.

we introduce the following proposition,

Proposition 3. If an AF form Matsuoka oscillator satisfies the following condi-
tions: 1) the dynamical model of the primitive Matsuoka oscillator is harmonic,
2) the tonic inputs uei and ufi are square wave signals and are complementary to
each other, 3) the sensory feedback signals pei and pfi are square wave signals and
are complementary to each other. 4) uei is entrained with zei , and u

f
i is entrained

with zfi , then the oscillation bias of zi and the bias of ui satisfies the following
relationship,

bias(zi) =
1 + 2m

b− a+ 2
bias(ui) +

b

b− a+ 2
bias(pi), (4.13)

where zi = zei − zfi , ui = uei − ufi , p = pei − pfi , and

m =
1

π

1

2Kn − 1 + 2
π
(a+ b) sin−1(Kn)

is a constant coefficient (ri indicates amplitude of state xi).

Proof. (See Appendix 6.3.4.)

Proposition 3 shows that in the AF form Matsuoka oscillator, there exists a
binary linear relationship between the bias of ui, pi and the bias of zi. Because
the range of ui and pi are both limited within [0, 1], the impact of pi is larger than
ui when the coefficient of bias(pi) is larger than the coefficient of bias(ui). In this
chapter, the constant parameters of the Matsuoka oscillator are configured according
to Table 6.1. Under this condition, we have b >> 1 + 2m. The above discussion
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indicates that when contacts occur, bias(pi) makes major contribution to the output
bias bias(zi).

Overall, the properties of AF form Matsuoka oscillator shows its flexible and
accurate capability of reacting to the contact events. Based on this, we are able to
further develop contact-aware controllers for the soft snake robot locomotion.

4.3 Design of Controllers

In literature of obstacle-aided snake robot locomotion control, there are two ways
to combine sensory feedback with the locomotion controller. One, referred to as
learning-based hybrid control, is the event-triggered hybrid control [39] that utilizes
an individual event-triggered controller to optimizes the control command together
with the main locomotion controller only when the contacts happen. Even when only
a single part of the robot body is in contact, the event-triggered controller will send
control command to the whole system. Another method, referred to as learning-
based reflex control, is to use local reflexive method [34] to setup distributed rules
for the snake links such that only a few neighboring links will react to the sensory
feedback, and such reactions are independent to the main locomotion controller.
Both directions have their advantages. Although learning-based reflex control is
computationally expensive, it can achieve great performance through training. On
the other hand, the local reflexive method is light-weighted and distributed. Thus, it
provides more flexibility to the controller design as well as robustness to the damage
of the robot actuators.

Combining the above two directions with AF form Matsuoka CPG system re-
spectively, we propose two different control methods: the AF-learning method and
the AF-local method.

4.3.1 Event-triggered learning-based sensory reactive con-
troller with AF Form CPG System

In the narrative of this chapter, the extensor and flexor in the CPG system are
assigned with left and right side of the snake robot respectively (taking heading
direction of the robot for reference).

In the AF-learning method, we introduce the concept of hybrid control to model-
free learning-based control framework, which is composed of two controllers in the
contact-aware goal tracking task of soft snake robot – including an RL controller
for goal tracking locomotion named C1, and an event-triggered RL controller for
contact reactive control named R2, which only outputs actuator signals when the
contact event-triggering condition is satisfied. The scheme of the controller is shown
in Fig. 4.6.

We use a goal tracking controller developed in our previous work [44], called
Free-response Oscillation Constrained Proximal Policy Optimization Option-Critics
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Figure 4.6: AF-learning control scheme.

with Central Pattern Generator (FOC-PPOC-CPG), as the C1 controller. The C1
controller takes fully proprioceptive observations of the soft snake robot’s dynamic
states and outputs control commands through manipulating the tonic inputs of the
CPG network as low-level primitive actions and frequency ratio of the CPG network
as high-level options.

For R2 controller, we define the contact event-triggering condition as follows: At
each time step, given the contact force vector f and contact detection threshold ϵ.
The event-triggering condition for the contact-aware scenario is ||f || > ϵ. When the
event-triggering condition is satisfied, R2 is triggered to join the manipulation of
the CPG system.

Although it is not necessary for R2 to use the same learning algorithm as C1,
for simplicity we also train R2 with PPOC-CPG framework, which shares the same
reward function and AF form CPG system with C1, but with different observation
states and actions.

In the obstacle-based locomotion scenario, there are in total 19 observation states
for R2, denoted as ζ = {ζ1, ζ2, ..., ζ19}, where ζ1:4 represents the dynamic state of the
robot referenced on the goal position, ζ5:8 represents the real-time body curvature
of the 4 soft links, ζ9:14 contains actions in the last time step including the previous
option and the terminating probability, ζ15:19 contains the pre-processed contact
forces. Similar to C1, the actions of R2 are mapped to fit the sensory feedback
signals of the Matsuoka CPG network of soft snake robot. Next, we define a four
dimensional action vector a = [a1, a2, a3, a4]

T ∈ R4 and map a to sensory feedback
vector p as follows,

pei =
1

1 + e−ai
, and pfi = 1− pei , for i = 1, . . . , 4. (4.14)

This mapping bounds pei and p
f
i within [0, 1]. The sensory feedback input vector p
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for the 4-link snake robot is an eight-dimension vector,

p = [pe1, p
f
1 , p

e
2, p

f
2 , p

e
3, p

f
3 , p

e
4, p

f
4 ]
T .

The learning process of the whole control scheme (as shown in Fig. 1.12a) is: C1 is
first trained in obstacle-free environment in simulation. After C1 is converged, we
fix C1 as a regular controller for goal tracking purposes. C1 policy is always effective
regardless the triggering of the contact events. Then we train R2 in the environment
with randomly generated obstacle mazes in simulation until convergence. R2 is
effective only when the contact event-triggering condition is satisfied. According to
Remark 2 and Proposition 3, when the parameters of the AF form Matsuoka CPG
system satisfy Table 6.1, when R2 is effective, it will dominate the control of the
CPG system (contact-awareness over goal-awareness).

4.3.2 Local Reflexive Control of Contact-aware slithering
locomotion with AF Form CPG System

Figure 4.7: AF-local control scheme.

In this section, we describe a different learning-based controller, denoted as AF-
local because the local reflexive mechanism is based on AF form Matsuoka oscillator.
According to (4.13) and Proposition 3, if the parameters of an AF form Matsuoka
oscillator satisfy Table 6.1, we have b >> 1 + 2m, so that the sensory input pi will
play a major role to influence the tonic input ui when contact events are detected
by the tactile sensors.

We validated the property through experiments. As shown in Fig. 4.8e, Case I
describes a situation when there comes a pqi signal in only one side, the adaptation
variable yqi , (q ∈ e, f) on the same side is inhibited, and result in an activation of
the corresponding xqi (at the same time the opposite xqi state is inhibited). At this
moment, no matter what value of tonic input uei , u

f
i are given within their range
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Figure 4.8: (a)-(d) Local reflexive structure of modified Matsuoka CPG network,
and (e) Soft body actuation by the modified Matsuoka oscillator under contact.

uqi ∈ [0, 1] [44], the soft actuator will always bend towards the opposite direction of
the incoming pqi signal. Case II shows the case when both pei and p

f
i are inhibiting y

e
i

and yfi respectively, both xei and x
f
i will be strongly activated, leading to almost a

free-response oscillation output regardless the values of uei , u
f
i . According to Propo-

sition 3, the oscillation bias of the CPG output in Case II situation depends on
bias(pi), where pi = pei − pfi .

We take the inspiration of local reflexive mechanism from [34,35] such that only
the links that are close to a contact sensor may react to its contact events. Due to the
differences of structure (antagonistic actuators, partially tunable chambers) between
our pneumatically actuated snake robot and the real-time tunable spring actuated
snake model described in [34], we have our specific principles for constructing the
reflexive loop between the sensors and the sensory feedback inputs of the CPG
network (Fig. 4.8):

Figure 4.9: Example of reflexive mechanism on link L1.

• Since the head of the snake robot maneuvered by the goal-tracking controller
is always heading to the goal direction, it could be blocked by an obstacle on
the path to the target location if the head cannot properly react to the contact
and turn away from the obstacle. Thus the snake robot’s head should always
bend to the opposite direction to the major contact event, which means that
the ipsilateral chamber of L1 link to the contact side of B1’s sensor will be
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actuated. Figure 4.9 provides an example showing the reflexive behavior of L1
link when the head sensor on B1 touches an obstacle.

• As the rudder of steering and source of propulsion, the snake robot’s tail
should always push itself against the obstacles to keep oscillation with larger
amplitude. So the ipsilateral chamber of L4 link to the contact side of B5’s
sensor will be actuated. In addition, in a 4-link soft snake robot, the role
of the tail during slithering locomotion should be strengthened to generate
more propulsion. Therefore, we extend the impact of the tail sensors to the
actuators in L3 soft link.

Figure 4.10: Example of reflexive mechanism on L2 and L3 links.

• Beyond head and tail links, the other soft body links’ CPG nodes should refer
to their neighboring sensors to determine their reflexive behaviors accordingly.
To design the connection between CPG nodes of the body links and the cor-
responding sensors, we refer to the jamming case that mostly occurred in the
contact-aware locomotion of the soft snake robot. As shown in Fig. 4.10, when
B2, B3 and B4 rigid parts are in contact with the obstacles on the opposite
sides, the situation leads to a typical jamming scenario for our soft snake
robot in contact-aware locomotion. In this situation, the L3 link is supposed
to decrease its bending curvature to avoid jamming, while L2 should actu-
ate its ipsilateral chamber (extensor) to create more space for free oscillation
controlled by the goal-reaching controller.

Based on the above features and former experience on designing local reflexive
control rules [34], we design the topology of the sensor connection to each CPG
node in the soft snake robot’s “vertebrate” system. As shown in Fig. 4.8, the
sensory feedback signals pei , p

f
i are normalized when receiving non-zero inputs from

the connected tactile sensors. Before formulating pei , p
f
i , we first define set Di, i =

1, 2, 3, 4 as the set of sensor signals’ numbers connected to the i-th Matsuoka CPG
node. For example, for 3rd CPG node in Fig. 4.8(c), D3 = {3, 4, 5}. In addition, we
define the connection marker array J = [J1, J2, J3, J4, J5] = [−1,−1, 1, 1,−1]. The
value in J is assigned based on the way of connection between the sensors and the
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CPG network.

pei =
Σk∈Di

Ie(Nk)|Nk|
Σk∈Di

|Nk|+ δ+
, pfi =

Σk∈Di
If (Nk)|Nk|

Σk∈Di
|Nk|+ δ+

. (4.15)

where δ+ ∈ R+ is a small positive number to avoid division by zero, and

Ie(Nk) = max{0,−sgn(JkNk)}, If (Nk) = max{0, sgn(JkNk)}.

More specifically, the mechanism of (4.15) acting on the actuators of the soft
snake robot can be explained as follows:

• In L1 CPG node (Fig. 4.8a), the sensors are connected to the same side of
sensory feedback inputs pei , p

f
i of L1 CPG. When one side of B1 sensors are

in contact, the actuation of L1 link follows Case I, which bends toward the
opposite direction to the triggered sensors.

• In L2 CPG node (Fig. 4.8b), the sensors on B2 are connected to the same side
of sensory feedback inputs of L2 CPG, while the sensors on B3 are connected
to the opposite side of sensory feedback inputs of L2 CPG. When only B2 or
B3 sensor is triggered, or both B2 and B3 receives contact feedback from the
opposite side, L2 will behave in Case I. When B2 and B3 have contacts on the
same side, both ye2 and y

f
2 will be inhibited, leading to Case II behavior of L2.

• In L3 CPG node (Fig. 4.8c), the sensors on B3 and B4 are connected to the
opposite side of sensory feedback inputs of L3 CPG, while the B5 sensors are
connected to the same side of sensory feedback inputs of L3 CPG. Consider
single sensor triggered case, when only B3 or B4 or B5 sensor is triggered,
L3 will also behave in Case I. For two sensors triggered case: when only (B3
and B4) are triggered on the same side, or (B3 and B5) or (B4 and B5) are
triggered on the opposite side, L3 will behave in Case I; when only (B3 and
B4) are triggered on the opposite side, or (B3 and B5) or (B4 and B5) are
triggered on the identical side, L3 will behave in Case II. For three sensors
triggered case, when B3 and B4 are triggered on the same side opposite to the
contact side of B5, L3 will behave in Case I, otherwise L3 behave in Case II.

• In L4 CPG node (Fig. 4.8d), the B5 sensors are connected to the same side of
sensory feedback inputs of L4 CPG. When one side of B5 sensor is in contact,
the actuation of L4 link follows Case I, which bends toward the opposite
direction to the triggered sensors.

The overall work flow of AF-local is showed in Fig. 1.12b. The local reflexive
mechanism introduced in this section works independently and map the tactile sen-
sor data to the sensory feedback signals of CPG system. In the mean time, the tonic
input signals in the same CPG system are controlled by a C1 controller introduced
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in Section 4.3.1, which only focuses on the goal tracking control of the soft snake
robot.

In order to compare AF form Matsuoka CPG system with the conventional
MPF form Matsuoka CPG system, we also develop MPF-local and MPF-learning
controllers by replacing the AF form Matsuoka oscillator with MPF form Matsuoka
oscillator in the two control methods introduced in Section 4.3.2 and Section 4.3.1.
In Section 4.4, we will comprehensively compare the performance of the AF-local,
AF-learning, MPF-local, and MPF-learning methods.

4.3.3 Design of the shared reward function

We now present our design for the reward function shared by both locomotion and
contact-aware controllers. Our design will ensure that by maximizing the discounted
sum of reward, the learned controller can achieve efficient locomotion and accurate
set-point tracking.

To improve learning efficiency, we employ a potential field-based reward function.
Artificial potential field (APF) is widely applied in planning problems and potential
game theory [16,37,63] to accelerate the process of searching for the optimal strategy.
The potential field can be classified into two categories – the attracting field for
target reaching and the repulsive field for obstacle avoidance. The attracting field
function is defined as follows

Uatt(p) =
1

2
katt||p− pg||2,

where p is the coordinate of the agent and pg is the coordinate of the goal. Coef-
ficient katt is a positive constant indicating the strength of the attractive potential
field. Since the attracting gravity is always pointing toward the goal coordinate
from any position of the map, the value of gravity force should be negative. By
taking the negative gradient of Uatt, we have the attracting force function

Fatt(p) = −∇Uatt = −katt(p− pg).

The reward is designed to encourage the goal-reaching, guided by the artificial po-
tential field. We design the reward to be composed of two rewards:

R = ω1Rgoal + ω2Ratt, (4.16)

where ωi, i = 1, 2, 3 are constant weights. Rgoal is the termination reward for reaching
a circular accepting area centered at the goal.

Rgoal = cos θg

i∑
k=0

1

lk
1(ρg < lk).
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where θg is the deviation angle between the locomotion direction of the snake robot
and the direction of the goal, lk defines the radius of the accepting area in task-level
k, for k = 0, . . . , i. ρg = ||p − pg|| is the linear distance between the head of the
robot and the goal, and 1(ρg < lk) is an indicator function to determine whether
the robot’s head is within the accepting area of the goal. Ratt is the reward function
of the attracting potential field:

Ratt = v · Fatt(p),

where v is the velocity vector. The dot product between v and the potential field
vector represents the extent of the agent’s movement on following the potential-flow
in the task space. In this reward design, though the repulsive potential function
generates a cost for the contact, its combination with the other two reward terms
may encourage the contact especially when the contact force can aid the locomotion.
We discuss this aspect in the experimental validation.

4.4 Experiments

4.4.1 Signal Communication and Obstructed Environment
Setting

Figure 4.11: Experiment setup of the contact-aware goal tracking locomotion task
in reality.

Similar to our previous work [44], the two dimensional dynamic states of the
soft snake robot are captured and calculated by a web camera (works under 120
Hz) hanging on the ceiling of the experiment room. We use Aruco [20] to detect
and localize QR codes attached to every rigid body of the snake robot and the
goal position. Figure 4.11 shows the experiment setup for the real snake robot
goal-reaching tasks. In this chapter, we update two major parts of the experiment
settings:
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• In the signal communication part, each ESP32 chip collects contact sensor
information from local I2C and share the data with the head chip through
WiFi. In every time step, the head ESP32 chip packs all the sensor data
and send it back to the PC controller. The controller program running on
the desktop computer receives the observation states from the web camera
and the robot and generates the control commands and passes them to the
body ESP32 chips on the snake robot through WiFi communication. The
ESP32 chips on the snake bodies translate the commands into Pulse Width
Modulation (PWM) signals to activate or deactivate the valves [21,46] on the
snake robot. The hardware communication rate between the PC controller
and the snake robot is 30 Hz.

• In the environment setting, a number of tin cans filled with stones and sands
are placed in the experiment field as obstacles. Each vertical peg in Fig. 4.11
represents a cylinder tin can with a diameter of 100 millimeters (mm) and
height of 80 mm. The average weight of the obstacles are around 1.1 kg each,
and the weight of the soft snake robot is 0.7 kg (include batteries). It has
been tested to ensure that any collision caused by the soft snake robot will
not move the obstacles.

4.4.2 Simulated Training and Evaluation

Reinforcement Learning Configuration: In the simulated training part, the
fundamental configuration of NN is the same as [44] (four-layered with 128 × 128
hidden states). The goal-reaching controller C1 is a pre-trained module as is con-
figured in [44]. In this chapter, the contact-aware regulator R1 in AF-learning and
MPF-learning controllers is trained in a goal-reaching task with a randomly gener-
ated 6× 5 obstacle maze. During the training process of R1, the distance between
the robot and the goal is fixed to 1.5 meters. The deviation angle between the snake
robot and the goal is initially sampled from 0 ∼ 60 degrees with a uniform distribu-
tion. In the simulator, the distance between every two obstacles is sampled between
120 ∼ 180 mm. The coordinate of each obstacle is added by an additional clipped
standard Gaussian noise (ω ∼ N (0, 1), clipped by −0.01 < ω < 0.01). The method
of simulating contact sensors is introduced in Section 4.1.2. In order to compensate
for the mismatch between the simulation and the real environment, most notably
the friction coefficients, we employ a domain randomization technique [86], in which
a subset of physical parameters are sampled from several uniform distributions. The
range of distributions of domain randomization (DR) parameters used for training
are in Table 6.3 (see Appendix 6.1). The whole training process of each method
runs on 4 simulated soft snake robots (Rendered by Nvidia Flex) on a workstation
equipped with an Intel Core i7-9700K, 32GB of RAM, and one NVIDIA RTX2080
Super GPU.
Task specification: In the contact-aware locomotion task, the robot is required to
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traverse an array of obstacles and reach the randomly generated goals. Similar to
the real world setting in Fig. 4.11, there is also an accepting radius in the simulation
for each goal-reaching task, which means that the robot needs to be close enough
to the goal in order to succeed and receive a terminal reward. At each time step,
the robot also receives a reward from the potential field defined in Section 4.3.3. If
the agent reaches the accepting region of the current goal, a new goal is randomly
sampled. In the failing situation, when the robot is jammed by the obstacles for
a certain amount of time, the desired goal will be re-sampled and updated. The
starvation time threshold for failing condition is 900 ms. In addition, if the linear
velocity of the snake robot stays negative on the goal direction for over 360 time
steps (each time step is about 20 ms), the goal-reaching task is also judged as a
failure and trigger the re-sampling of the new task.

Figure 4.12: Flow chart of C1+ method. Different from C1, C1+ has contact
information in its observation states, and is further trained in the obstacle-based
environment.

Figure 4.13: Learning process and evaluation scores comparison of the proposed
method recorded in an obstacle-based training environment.
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Training Score Comparison: According to the above task specification, we train
the AF-learning, MPF-learning and C1+ method, and compare their training scores
with the evaluation scores of AF-local, MPF-local in the same environment. It is
noted that C1+ is the contact-aware version of C1 (see Fig. 4.12), which directly
operates the tonic inputs of the CPG network given the full observation ζ1:19 from the
environment. The C1 controller of all AF and MPF methods have been pre-trained
in the obstacle-free environment and converged for goal-reaching tasks at the same
level. The R2 controllers of AF-learning and MPF-learning methods are then trained
in the obstacle-based goal tracking tasks for 3000 episodes till convergence, during
which the NN parameters of their C1 controllers are fixed. The C1+ controller is
first trained in the contact free environment, then transferred to the obstacle-based
environment and is also trained for 3000 episodes.

From Fig. 4.13, it is observed that AF-learning method reaches the highest re-
ward and is the only learning method that keeps improving during the learning pro-
cess. Among the remaining methods, AF-local is the only method with an average
reward closed to the AF-learning method. This result already shows the advantage
of AF related method over the others. It is also noted that although MPF-local
method is evaluated slightly better than the C1+ method, MPF-learning method
cannot improve and converge to a higher score than its initial performance and end
up converging to the lowest reward level. According to Remark 2, the bad perfor-
mance of MPF-learning and MPF-local method is possibly due to the influence of
ṗei , ṗ

f
i in the MPF form Matsuoka oscillator, which makes the R2 RL controller more

difficult to operate the sensory feedback signals of the CPG system.

4.4.3 Performance analysis in real robot experiments

In this section, we compare the performance of all five methods (mentioned in Sec-
tion 4.4.2) in contact-aware soft snake robot locomotion tasks in the real world.
Furthermore, we test the performance of the top two methods in more challenging
obstacle-based environments.

Escaping experiment

In the real world contact-aware locomotion scenario, we design an escaping task
to distinguish the strength and weakness of the contact-aware controllers (listed in
Section 4.4.2).
Environment settings: The escaping task is designed for the following principles:

• The allocation of the obstacles should create narrow passage for the snake
robot, with more contact opportunity and sharper tuning angle to test the
overall capability of the controllers in escaping the jamming situations. In ad-
dition, the narrow space also limits the amplitude for regular body oscillation
of the snake robot.
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Figure 4.14: Statistics of escaping time of the proposed methods and the baseline.

• The obstacles should be allocated to obstruct the goal-reaching behavior. This
is to test the coordination of the goal-reaching module (C1 controller) and
contact reactive module (local reflexive or R2 method) in the compared con-
trollers.

• The allocation of the obstacles should include the situation where only latter
half links of the robot are stuck in the obstacles. This is for telling whether
the controller relies mostly on its head steering to escape from the obstacles.

• The obstacles should be placed more densely in reality to test the generality
of the compared controllers.

Based on the above principles, the obstacles in the escaping task are allocated as
shown in Fig. 4.15. In the escaping task, the distance between every two obstacles
are ranged from 85 mm to 150 mm. The robot is initially bending to its left, and
placed at a position where 4 rigid bodies are in contact with the obstacles from
different sides. The exit direction (left) of the obstacle region is intentionally set
opposite to the goal direction (right). The distance between the exit of the obstacle
region and the goal is 540 mm, which is close to the length of the snake robot.
Performance statistics: According to the free oscillation tonic input property
of coefficient c in [44, Appendix B-D], as the value of c increases, it can increase
the oscillation amplitude of the outputs of FOC-PPOC-CPG controller [44] and
therefore improve its sim-to-real adaptability in the locomotion tasks. However,
the value of c should not be larger since a higher free oscillation tonic input could
decrease the goal tracking accuracy. As a result we separate the experiment into
two groups with c = 0.2 and c = 0.5 respectively. For each value of c, we run five
trials for each control method.1

1Performance videos for each method in the escaping task with different c values are available
at: https://shorturl.at/huBR1.
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We record and compare the finishing time of the escaping task of each controller.
As shown in Fig. 4.14, AF-local and AF-learning methods outperform the other
methods in the escaping task in both speed and stability. The increase of c from 0.2
to 0.5 does not significantly improve the performance of both AF methods. The main
reason is that the sim-to-real adaptability of the AF methods is already good. MPF-
learning method’s average finishing time is shorter than MPF-local when c = 0.2,
but is less stable than MPF-local, with the task finishing time varying from 42
seconds to 120 seconds. When c = 0.5, MPF-local method outperforms MPF-
learning in both speed and stability. C1+ method cannot reach the goal in every
trial when c = 0.2. However, with the increase of c to 0.5, the adaptability of C1+
controller is also improved so that it succeeds in a few of the trials. It is noted
that, although MPF-learning converges to a lower reward level than C1+ method
during the learning process (Fig. 4.13), its adaptability to the harder unseen task (in
sim-to-real) is better than C1+ method. Generally, the results in Fig. 4.14 further
verify the advantages of AF feedback Matsuoka oscillator predicted by Remark 2
and Proposition 3.

Figure 4.15: Sample screenshots of performance of the AF-local method in a goal
oriented escaping task from the obstacles. Each pair of pictures shows the local
reactive behavior of the soft snake robot before and after contacts.

Case analysis: We can further compare the sample trajectories of contact feed-
back signals and control commands for different control methods to analyze the
special features of AF-local and AF-learning method (Fig. 4.16 and Fig. 4.17. It is
noted that in the joint space figures, the positive and negative values are related to
the extensor and flexor of the CPG system, as well as left and right of the snake
body respectively.

First, we investigate the trajectory sample of AF-local method in the escaping
task on the basis of AF-local mechanisms illustrated by Fig. 4.8. As shown in
Fig. 4.16, we highlight four time intervals of the trajectory that present typical local
reflexive control in the AF-local controller (the robot’s body postures before and
after contacts at intervals (a)∼(d) are captured by Fig. 4.15a∼Fig. 4.15d). Here we
select time intervals (a) and (c) for discussion. At time interval (a) of Fig. 4.16,
both CPG nodes at L3 and L4 are first influenced by the contact from the N f

5
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Figure 4.16: Recorded sensory input and CPG output of each body link of the soft
snake robot controlled by the AF-local method in the goal-oriented escaping task.

Figure 4.17: Recorded sensory input and CPG output of each body link of the soft
snake robot controlled by the MPF-local method in the goal-oriented escaping task.

(N5 < 0), so the flexors of CPG nodes in L3 and L4 are activated to open the right
valves of L3 and L4, which results in both links bend to the left in Fig. 4.15a. Then
L3’s CPG output is influenced by N f

3 , which will deactivate L3’s CPG flexor and
activates L3’s CPG extensor. At time interval (c) of Fig. 4.16, CPG node at L2
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influenced by the superposition of N e
3 and N f

2 , and is supposed to activate its flexor
to open the right valve of L2, which results in L2 bend leftward in Fig. 4.15c. Due
to the whole snake robot’s tendency of turning right toward the target position, the
amplitude of L2’s CPG output signal is smaller than expected. The CPG node at
L3 is influenced by the superposition of N e

3 and N f
5 , which also causes L3’s flexor

activated to bend to the left side. The CPG node at L4 is influenced by N f
5 , which

activates L4’s flexor and bend L4 soft chamber to the left. From the above behavior
of the CPG outputs, we can verify that the experiment results match the local
reflexive mechanism illustrated in Fig. 4.8.

Figure 4.18: Recorded sensor feedback control signals, tonic input signals and CPG
outputs of the soft snake robot controlled by MPF-learning method in the goal-
oriented escaping task.

Similarly, from the sampled trajectories of MPF-local method in Fig. 4.17, we
can conclude that the sensory inputs and the CPG outputs for all body links satisfy
the local reflexive mechanism determined by Fig. 4.8. However, when comparing
Fig. 4.17 to the AF-local behavior in Fig. 4.16, the MPF-local controller produces
significantly large overshoots even when the contact signals are small. The recovery
delay is also more frequently observed in the trajectories of MPF-method, such that
the MPF-local controller always takes longer time to recover to its goal-reaching
oscillation after the contact signals disappear. These observations further verifies
Remark 2 and its derivations, that the first order derivative term ṗi will seriously
interfere with the control of MPF form CPG system when the contact feedback
signals are densely emerging, and therefore hinder the performance of contact-aware
locomotion.2

The issue of the output wave response can also be observed in MPF-learning
(Fig. 4.18). With more chaotic sensory feedback signals from the RL event-based

2The locomotion performance of MPF-local method can be observed in videos https://

shorturl.at/fAGJN and https://shorturl.at/AORW9.
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Figure 4.19: Recorded sensor feedback control signals, tonic input signals and CPG
outputs of the soft snake robot controlled by AF-learning method in the goal-
oriented escaping task.

Figure 4.20: Recorded sensor feedback control signals, tonic input signals and CPG
outputs of the soft snake robot controlled by C1+ method in the goal-oriented
escaping task.

controller R2, the CPG outputs also shows disturbed behaviors, which significantly
slow down the locomotion in the escaping task. It is worth noting that, due to the
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black-box property of learning-based method, both AF-learning and MPF-learning
methods send more complex sensory feedback signals to their CPG systems. How-
ever, we can still observe clear and coordinated oscillation in the sample of AF-
learning trajectory in Fig. 4.19. This is also because AF series methods are free
from the disturbances of the ṗi term.

As shown in Fig. 4.20, C1+ method fails to learn to react to the sensory inputs.
When the target moving direction of the robot is blocked by the obstacles, C1+
controller cannot pull the soft snake robot out from the jam and skirt the obstacles.

In conclusion, the results and analyses in the escaping tasks show strong evi-
dence of the advantage of AF-local and AF-learning controllers in the contact-aware
locomotion of soft snake robot.

General performance of AF series methods in difficult contact-aware lo-
comotion tasks

Figure 4.21: Sample way-point trajectories followed by (a) AF-local controller in
square trajectory, (b) AF-learning controller in square trajectory, (c) AF-local con-
troller in triangle trajectory and (d) AF-learning controller in triangle trajectory.
The distribution of reactive signals along the trajectory to the CPG-controlled ac-
tuators from head joint of the robot are visualized.

In this section, we apply the two methods with the best performance in the
escaping task to a more complicated environment with multiple targets to traverse
in a dense obstacle array, with a lot of detours.
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Due to the randomness of contacts in such complicated goal tracking tasks in the
obstacle maze, it is harder for any methods to concentrate around certain trajecto-
ries. Without pre-planning of the path, it is possible for the same control method
to traverse the target goals in different paths. The paths with fast and slow per-
formances for each task (square and triangle) are shown in video “square.mp4” and
“triangle.mp4” 3.

In Fig. 4.21, we plot the recorded paths of AF-local and AF-learning methods
traversing three targets allocated in square shape and triangle shape respectively
in 2 dimension space. The color map on the paths show the reactive commands
of L1 actuator sent by both control methods. Both methods have achieved decent
performance in the harder tasks.

4.5 Conclusion

This chapter establishes a novel framework for the contact-aware intelligent loco-
motion control of a soft snake robot. This framework is an organic integration of
hardware design, feedback mechanism study through bio-inspired CPG system and
implementation of sensory feedback control schemes. The proposed approaches are
able to achieve promising performance in both simulation and real robot in several
contact-aware locomotion tasks with densely allocated obstacles. Our novel method
tackles jointly contact sensing and contact reacting controls in the contact-aware
locomotion control of the soft snake robot. Our work brings inspiration for both
distributed reflexive method and learning-based control method and forms the basis
to design and control soft snake robots that can pass through environments with
unpredictable and dense obstacles.

3The videos are available athttps://shorturl.at/huBR1
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Chapter 5

Final Conclusion

Before closing this thesis, I would like to review my understanding and contribution
to the learning-based Matsuoka CPG system as a bio-inspired robot locomotion
controller from a theoretical perspective.

5.1 Significance of the Original Contribution

Theoretical analysis of Matsuoka CPG’s steering maneuverability: (Chap-
ter 3) The highlight of this approach is that we reasonably related the special prop-
erties of Matsuoka CPG’s tonic input to the actions of any RL agent. What we
have achieved here has refreshed a preconception in bio-inspired controller research
that “The neural oscillators with implicit manipulator on oscillation patterns (in-
cluding Matsuoka oscillator) are too complex and usually harder to control than
the neural oscillators with explicit controllable phase coefficients”. Standing on the
shoulder of Doctor Matsuoka, our analysis has leveraged several important proper-
ties of the Matsuoka oscillator for steering and speed control of robot locomotion
tasks. These properties bridge the gap between implicit oscillation patterns and
control variables of the Matsuoka CPGs. We also highlight the significance of the
CPG maneuverability study in bio-inspired controller development.

Theoretical analysis of free-response oscillation constraint (FOC) of the
Matsuoka CPG system for sim-to-real transfer: (Chapter 3) We investi-
gate the transient property of the Matsuoka Oscillator from free-response oscillation
to forced-response oscillation. From the motion control perspective, this property
forces the RL controller to learn to either increase the oscillation amplitude of tonic
inputs or adjust the oscillation frequency to synchronize the natural frequency of the
CPG system properly to acquire better control of the robot. This is beneficial for
the sim-to-real transferring because the key is to adapt to the changes of ground fric-
tion through adjustment of locomotion patterns. More interestingly, this approach
opens up a new track for the learning process of an RL agent. Different from the
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reward shaping approaches or imitation learning that uses gradient descent to guide
the evolution of the RL agent, the neural oscillator requires the RL agent to learn
the entrainment with its natural oscillation patterns to own the control dominance
of the CPG system.

Development of sensory feedback Matsuoka CPG system for contact-
aware locomotion: (Chapter 4) We develop a novel sensory feedback mechanism
of the Matsuoka central pattern generator (CPG) network. This mechanism allows
the Matsuoka CPG system to work like a “spine cord” in the whole contact-aware
control scheme, which simultaneously takes the top-down stimuli including tonic
input signals from the “brain” (a goal-tracking locomotion controller) and bottom-
up sensory feedback signals from the “reflex arc” (the contact reactive controller),
and generate rhythmic signals to effectively actuate the soft snake robot to slither
through densely allocated obstacles with sensitive and coordinated oscillation pat-
terns. Based on the in-depth understanding of the Matsuoka CPG system, our
approach has made a breakthrough in processing sensory feedback efficiently with
the Matsuoka oscillator.

5.2 Future Extensions

Although we have been investigating the generality of the proposed control scheme
on different robotic systems and obtained promising early results, it remains chal-
lenging to initialize the parameters of the Matsuoka CPGs for specific robots. More-
over, the parameter optimizer for the Matsuoka CPG system should be improved to
be computationally cheaper and updated online. It is also interesting to investigate
distributed control designs that can scale to high-dimensional soft snake robots or
other biomimetic robotic systems.

For the future study of contact-aware locomotion, the contact module and design
can be enhanced with the consideration of more advanced materials and structures
to improve contact sensitivity and locomotion efficiency for more challenging envi-
ronments (e.g. underwater contact or uneven and compliant terrains). The tactile
information and the locomotion gait can also be enriched by increasing the number
of body links of the snake robot. More investigation is also needed to understand
the influence of couplings among primitive AF form feedback Matsuoka oscillators
in the CPG network so that the variation of couplings can be utilized to improve
the performance of the contact-aware locomotion controller. In addition, one lim-
itation is that the proposed learning-based controller is mainly reactive and may
not learn to leverage obstacles to aid the locomotion without trajectory planning.
Such a behavior may be achieved by combining depth visual information and tac-
tile information of the obstacles to the deep reinforcement learning controller in the
PPOC-CPG framework.
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Chapter 6

Appendix

6.1 Data

This section includes the parameter configuration of the Matsuoka CPG network
and the hyper parameter setting of domain randomization for the experiment.

Table 6.1: Parameter Configuration of the Matsuoka CPG Net Controller for the
Soft Snake Robot.

Parameters Symbols Values
Amplitude ratio aψ 2.0935
∗Self-inhibition weight b 10.0355
∗Discharge rate τr 0.7696
∗Adaptation rate τa 1.7728
Period ratio Kf 1.0

Mutual inhibition weights ai 4.6062

Coupling weights wij 8.8669
wji 0.7844

6.2 Preliminary

6.2.1 Describing function analysis of the Matsuoka Oscilla-
tor

According to Fourier theory, we denote the main sinusoidal and constant component
in Fourier expansion of the vanilla state x(t) as

xF(t) = A cos(ωt) + d = A(cos(ωt) + r), (6.1)
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Table 6.2: Curriculum settings

Levels Distance range (m) Turning angles (◦) Goal radius (m)
1 1.2 ∼ 1.5 −10 ∼ 10 0.5
2 1.2 ∼ 1.5 −10 ∼ 10 0.4
3 1.2 ∼ 1.5 −15 ∼ 15 0.3
4 1.2 ∼ 1.5 −20 ∼ 20 0.25
5 1.2 ∼ 1.5 −30 ∼ 30 0.2
6 1.0 ∼ 1.5 −40 ∼ 40 0.18
7 1.0 ∼ 1.5 −45 ∼ 45 0.15
8 1.0 ∼ 1.5 −50 ∼ 50 0.12
9 0.9 ∼ 1.5 −60 ∼ 60 0.09
10 0.9 ∼ 1.5 −60 ∼ 70 0.06
11 0.9 ∼ 1.5 −70 ∼ 70 0.05
12 0.8 ∼ 1.5 −80 ∼ 80 0.05

Table 6.3: Domain randomization parameters

Parameter Low High
Ground friction coefficient 0.1 1.5
Wheel friction coefficient 0.05 0.10
Rigid body mass (kg) 0.035 0.075

Tail mass (kg) 0.065 0.085
Head mass (kg) 0.075 0.125

Max link pressure (psi) 5 12
Gravity angle (rad) -0.001 0.001

where r = d/A, r ∈ R is the ratio of bias to the amplitude of the signal. We
assume xF(t) only contains cosine term for simplicity. And because this chapter only
discusses amplitude and bias properties of the signals, such simplification will not
affect the following derivations. We use zF(t) = g(xF(t))−ϵ(t) = max (xF(t), 0)−ϵ(t)
to represent the main sinusoidal property of z(t) = g(x(t)) = max (x(t), 0). In a
single period [−π

ω
, π
ω
],

g(xF(t)) =

{
0 elsewhere

A(cos (ωt) + r) t ∈ [−arccos (−r)
ω

, arccos (−r)
ω

]
.

Using Fourier expansion, the output state zF(t) can also be expressed as:

g(xF(t)) = g(A(cos(ωt) + r))

= Ag(cos(ωt) + r)

= A(K(r) cos(ωt) + L(r)) + ϵ(t)

= zF(t) + ϵ(t) (n ≥ 1), (6.2)
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such that zF(t) = A(K(r) cos(ωt) + L(r)), where

K(r) =


0 (r < −1)
1
π
(r
√
1− r2 − cos−1(r)) + 1 (−1 ≤ r ≤ 1)

1 (r > 1),

(6.3)

and

L(r) =


0 (r < −1)
1
π
(
√
1− r2 − r cos−1(r)) + r (−1 ≤ r ≤ 1)

r (r > 1).

(6.4)

The derivation of K(r) and L(r) are based on Fourier series analysis (see Appendix
6.2.2). Both K(r) and L(r) are constrained by −1 ≤ r ≤ 1 for xF(t) to be non-
negative in the period [−π

ω
, π
ω
].

Function ϵ(t) is the summation of all remaining high frequency terms in the
Fourier expansion of zF(t).

When t ∈ [−arccos (−r)
ω

, arccos (−r)
ω

], zF(t) = xF(t), we have

ϵ(t) = xF(t)− A{K(r) cos (ωt) + L(r)}

= −A
π
{(r

√
1− r2 − arccos r) cos (ωt) +

√
1− r2 − r arccos r}.

When t ∈ [−π
ω
,−arccos (−r)

ω
] ∪ [arccos (−r)

ω
, π
ω
], zF(t) = 0, we have

ϵ(t) = 0− A{K(r) cos (ωt) + L(r)}

= −A{[ 1
π
(r
√
1− r2 − arccos r) + 1] cos (ωt)− 1

π
(
√
1− r2 − r arccos r)− r}.

Then we can numerically calculate the bound of ϵ(t) for certain A and ω. For
instance, if A = 1 and ω = 1, we have

ϵ(t) ∈ [0, 0.2055] when t ∈ [−arccos (−r)
ω

,
arccos (−r)

ω
]

ϵ(t) ∈ [−2.0009, 0] when t ∈ [−π
ω
,−arccos (−r)

ω
] ∪ [

arccos (−r)
ω

,
π

ω
].
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6.2.2 Calculation of K(r) and L(r)

Given xF(t) = A(cos (ωt) + r) as an even function, the general Fourier expansion of
zF(t) = g(xF(t)) is:

zF(t) =
1

2
a0 +

∞∑
n=1

an cos(nωt) =
1

2
a0 + a1 cos(ωt) + ϵ(t). (6.5)

where

a0 =
1

π

∫ π

−π
g(A(cos (ωt) + r))dt

a1 =
1

π

∫ π

−π
g(A(cos (ωt) + r)) cos(ωt)dt.

In this case, both the bias a0 and the amplitude a1 become functions of r.
Combining with (6.2), we use AK(r) to represent a1 and AL(r) to represent a0,
which are calculated as follows:

K(r) =
a1
A

=
ω

π

∫ π/ω

−π/ω
g((cos(ωτ) + r)) cos(ωτ)dτ.

Let t = ωτ , we have

K(r) =
1

π

∫ π

−π
g((cos(t) + r)) cos(t)dt

=
1

π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r) cos(t)dt

=
1

π
(r
√
1− r2 − cos−1(r)) + 1 (−1 ≤ r ≤ 1),

and

L(r) =
a0
A

=
1

π

∫ π

−π
g(cos(t) + r)dt

=
1

π

∫ cos−1(−r)

− cos−1(−r)
(cos(t) + r)dt

=
1

π
(
√
1− r2 − r cos−1(r)) + r (−1 ≤ r ≤ 1).

6.2.3 Derivation of Kn

Based on (3.12), we first set xi(t) = xei (t) − xfi (t), yi(t) = yei (t) − yfi (t), zi(t) =
zei (t)− zfi (t), ui(t) = uei (t)− ufi (t). Then by taking subtraction between flexor and
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extensor in (3.12) and neglect phase related coupling terms from other primitive
CPGs, we have

Kfτr
d

dt
(xei − xfi ) = −(xei − xfi )− a(zfi − zei )− b(yei − yfi ) + (uei − ufi )

Kfτa
d

dt
(yei − yfi ) = (zei − zfi )− (yei − yfi ),

which can be simplified to

Kfτr
d

dt
xi = −xi + azi − byi + ui (6.6)

Kfτa
d

dt
yi = zi − yi.

If xei and x
f
i satisfy the perfect entrainment assumption, such that the amplitude

Axei = Axfi
= Ax, and the bias rxei = rxfi

= rx, and the phase delay between xei and

xfi is π
ω
(half of the period). Then we have zFi

= K(rx)xFi
. Similar to the notation

in Appendix 6.2.1, the marker Fi indicates the fundamental sinusoidal and constant
component in Fourier expansion of the corresponding variable. Let Kf = 1, (6.6)
can be further simplified to

τr
d

dt
xFi

+ xFi
= aK(rx)xFi

− byFi
+ uFi

(6.7)

τa
d

dt
yFi

+ yFi
= K(rx)xFi

.

Next, an ordinary differential equation can be obtained by merging the two equations
in (6.7) as,

τrτa
d2

dt2
xFi

+ (τr + τa − τaaK(rx))
d

dt
xFi

+ ((b− a)K(rx) + 1)xFi
= τa

d

dt
uFi

+ uFi
.

(6.8)

When the system is harmonic, the coefficient of the first-order derivative of (6.8)
becomes zero, then

K(rx) =
τr + τa
τaa

≜ Kn. (6.9)

Coefficient Kn is a special case of K(rx) in the harmonic Matsuoka oscillator.
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6.2.4 Amplitude Threshold of Transition from Free Oscilla-
tion to Forced Entrainment

In order to extract the free-response oscillation component, let ũ = u− 1, c̃ = c+ 1
then (3.12) is equivalent to

Kfτrẋ
e
i = −xei − azfi − byei −

N∑
j=1

wjiy
e
j + ũei + c̃,

Kfτaẏ
e
i = zei − yei ,

Kfτrẋ
f
i = −xfi − azei − byfi −

N∑
j=1

wjiy
f
j + ũfi + c̃,

Kfτaẏ
f
i = zfi − yfi ,

(6.10)

Since uqi ∈ [0, 1] (for q ∈ {e, f}) and c ≥ 0, we have ũqi ∈ [−1, 0] (for q ∈ {e, f}),
and c̃ ≥ 1. Now c̃ becomes the only positive term in the primitive Matsuoka system
in (6.10). According to Matsuoka’s derivation in [53, (26)], from (6.10), the free-
response oscillation amplitude of the Matsuoka oscillator can be written as

An =
c̃

K−1(Kn) + (a+ b)L(K−1(Kn))
. (6.11)

Assume the fundamental harmonic component of the vanilla action signal αi
generated by RL policy has the form: αFi

= A cos (ωt).
Then substitute αFi

into (3.16), we have

ueFi
≈ 1

1 + e−A cos (ωt)
, ũeFi

≈ 1

1 + e−A cos (ωt)
− 1. (6.12)

Because the sigmoid function in ũeFi
is monotonically increasing with αFi

, the fre-
quency of ũeFi

is the same as the frequency of αFi
. The amplitude of ũeFi

is

Aũ =
maxt (ũ

e
Fi
(t))−mint (ũ

e
Fi
(t))

2
=

1

2

eA − 1

eA + 1
. (6.13)

And the bias of ũeFi
can be calculated as

rũ =
maxt (ũ

e
Fi
(t)) + mint (ũ

e
Fi
(t))

2
= −1

2
. (6.14)

It is noted that ũeFi
and ũfFi

are complementary to each other by Definition 1. Thus

ũeFi
and ũfFi

share the same amplitude and bias.
By taking time average of all variables in (6.10) and ignoring the coupling term

from other primitive Matsuoka oscillator nodes, we have the equation of the ampli-
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tude of the inner state xqFi
(q ∈ {e, f}) as

Ax[rx + (a+ b)L(rx)] = c̃+ rũ = c̃− 1

2
. (6.15)

Next, since (6.10) can be reduced to

τr
d

dt
xFi

+ xFi
= aK(rx)xFi

− byFi
+ ũFi

(6.16)

τa
d

dt
yFi

+ yFi
= K(rx)xFi

,

where ũFi
= ũeFi

− ũfFi
. We derive the describing function from ũFi

(t) to xFi
(t).

Applying the Laplace transform to (6.16), we have

G(s, A) =
1

τrs+ 1−K(rx)(a− b
τas+1

)
(6.17)

=
τas+ 1

1 + (τrτaω2
n − 1)K(rx)

Kn
+ τrτas2 + (Kn −K(rx))τaas

.

More precisely, the frequency transfer function is

G(ω,A) =
jτaω + 1

1 + (τrτaω2
n − 1)K(rx)

Kn
− τrτaω2 + j(Kn −K(rx))τaaω

(6.18)

where ωn = 1
τa

√
(τa+τr)b
τra

− 1. Because the gain from ũFi
(t) to xFi

(t) is |G(ω,A)|, the
amplitude of xFi

(t) is given by |G(ω,A)|Au. Since the amplitude of xFi
(t) is twice

of Ax, and the amplitude of uFi
(t) is twice of Au, we have the relation between Ax

and Au expressed as

Ax = |G(ω,A)|Aũ = |G(ω,A)|Au. (6.19)

Given (6.8), (τr + τa − τaaK(rx)) is the coefficient of first-order differential vari-
able, also known as damping coefficient. When K(rx) = Kn = τr+τa

τaa
, the original

oscillation system is harmonic. For the damped oscillation system, the damping
coefficient should be positive such that K(rx) < Kn, or equivalently,

K(rx)
Kn

< 1. In
this situation, there will be only forced-response oscillation, and all free-response
oscillations diminish due to the positive damping. From (6.3) and (6.4) we know
both K(r) and L(r) are monotonic, and therefore K−1(r) and L−1(r) are monotonic
as well. When K(rx) < Kn,

An =
c̃

K−1(Kn) + (a+ b)L(K−1(Kn))
<

c̃

rx + (a+ b)L(rx)
, (6.20)
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that is

rx + (a+ b)L(rx) <
c̃

An
. (6.21)

From the other end, let Kx ≜ K(rx), we have

Ax = |G(ω,A)|Au (6.22)

=
Au

√
τ 2aω

2 + 1√
[1 + (τrτaω2

n − 1)Kx

Kn
− τrτaω2]2 + (Kn −Kx)2τ 2aa

2ω2

≜
Au

√
τ 2aω

2 + 1√
[1 + (τrτaω2

n − 1)U − τrτaω2]2 +K2
n(1− U)2τ 2aa

2ω2
,

where U ≜ K(rx)
Kn

, and U ⊆ (0, 1]. Next, define a function Q(U) as

Q(U) ≜ [(τrτaω
2
n − 1)U − (τrτaω

2 − 1)]2 +K2
n(1− U)2τ 2aa

2ω2. (6.23)

When ω > ωn and τrτaω
2
n − 1 > 0, or ω < ωn and τrτaω

2
n − 1 < 0,

Qmin(U) = Q(1) = τ 2r τ
2
a (ω

2 − ω2
n)

2. (6.24)

Thus when U ⊆ (0, 1] is satisfied, we have

Ax < Au

√
τ 2aω

2 + 1

τrτa|ω2 − ω2
n|
. (6.25)

Combining (6.25), (6.21) and (6.15), we have

Au

√
τ 2aω

2 + 1

τrτa|ω2
n − ω2|

c̃

An
> c̃− 1

2
> c̃− 1. (6.26)

Thus we have

Au >
c̃− 1√
τ2aω

2+1

τrτa|ω2
n−ω2|

c̃
An

=
c√

τ2aω
2+1

τrτa|ω2
n−ω2|

c+1
An

≜ A0(c, ω). (6.27)

Substitute An in the above equation with its approximation in [53, (30)], we have

A0(c, ω) ≈
c√

τ2aω
2+1

τrτa|ω2
n−ω2|(2Kn − 1 + 2

π
(a+ b) sin−1(Kn))

(6.28)

Since c ≥ 0, when ω is fixed, A0 linearly increases with c.
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6.3 Theory

6.3.1 Proof of Proposition 1

Proof. As seen in (6.8), when uei and ufi of the i−th oscillator satisfy constant
constraints in Problem 1, the tonic inputs become time-invariant, such that d

dt
ui(t) =

0. If the oscillation is harmonic (K(rx) = Kn), then (6.8) can be rewritten as

τrτa
d2

dt2
xi + (τr + τa − τaaKn)

d

dt
xi + ((b− a)Kn + 1)xi = 2uei − 1, (6.29)

Then the above equation can be interpreted as a non-homogeneous spring-damper
system with a constant load. By setting x̃i ≜ xi − (2uei − 1)/((b − a)Kn + 1), and
substitute xi with x̃i in (6.29), we can obtain its homogeneous form as:

τrτa
d2

dt2
x̃i + (τr + τa − τaaKn)

d

dt
x̃i + ((b− a)Kn + 1)x̃i = 0. (6.30)

Here x̃i is the unbiased variable of xi, and thus the bias of xi naturally becomes

bias(xi) =
2uei − 1

(b− a)Kn + 1
=

1

(b− a)Kn + 1
bias(ui). (6.31)

Since zi and xi are entrained (Definition 2), zi = zei − zfi = g(xei ) − g(xfi ) = Knxi,
we have

bias(zi) = Knbias(xi) =
Kn

(b− a)Kn + 1
bias(ui). (6.32)

6.3.2 Applicable range of Proposition 1

Let xei < 0, xfi > 0, from (3.12), we have

zei = max(xei , 0) = 0, zfi = max(xfi , 0) = xfi .

Thus
zi = zei − zfi = −xfi .

Since uei and u
f
i are constants in Proposition 1, we have

xei + axfi = uei + c (6.33)

xfi + bxfi = ufi + c. (6.34)

Let ui = uei − ufi , xi = xei − xfi , the above two equations can be reduced to

ui = xei + (1 + b− a)zi. (6.35)
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According to Definition 1, uei + ufi = 1, then we have

uei =
1 + ui

2
, ufi =

1− ui
2

.

Substitute xfi in (6.33) with (6.34), and then substitute uei , u
f
i with ui, we have

xei =
1 + b+ a

2(1 + b)
ui +

1 + b− a

1 + b
(
1

2
+ c). (6.36)

Substitute the above equation of xei to (6.35) to obtain

ui =
1 + b+ a

2(1 + b)
ui +

1 + b− a

1 + b
+ (1 + b− a)zi,

which can be rearranged to

zi =
1

2(1 + b)
ui −

1

1 + b
(
1

2
+ c), (c ≥ 0).

Similarly, for the case when xei < 0, xfi > 0, we have

zi =
1

2(1 + b)
ui +

1

1 + b
(
1

2
+ c), (c ≥ 0).

Since zi and ui are both constants, bias(zi) = zi and bias(ui) = ui. In summary, we
have

bias(zi) =

{
1

2(1+b)
bias(ui)− 1

1+b
(1
2
+ c) (xei < 0, xfi > 0)

1
2(1+b)

bias(ui) +
1

1+b
(1
2
+ c) (xei > 0, xfi < 0).

(6.37)

The derivation in this section shows that, when the value of uei and ufi causes
the Matsuoka system fall into a quadrant such that xeix

f
i < 0, the system converges

to a set point equilibrium. At this moment the conclusion in Proposition 1 is not
applicable to the system. The system should instead follow the relation described
in (6.37).

The boundary case is at xei = 0, xfi > 0 or xfi = 0, xei > 0. For xei = 0, xfi > 0,
substitute xei = 0 to (6.33) and (6.35), we can obtain the equation

bias(ui) = ui =
2a

a+ b+ 1
− 1.

Similarly when xfi > 0, xei = 0, we have

bias(ui) = ui = 1− 2a

a+ b+ 1
.
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6.3.3 Proof of Proposition 2

Proof. For simplicity we denote Aq ≜ Axqi and rq ≜ rxqi for q ∈ {e, f}. Instead of
looking into the relation between ui and zi, we focus on the bias between the two
states.

According to the perfect entrainment assumption [53] and Definition 2, let ui be
resonant to zi. We define the duty cycle of a wave function as D(·). Let the period
of zi be T = 2π (a different value of T would not affect the result of calculation),
based on the Fourier expansion, the bias of ui can be expressed as

bias(ui) =
1

T

∫ T/2

−T/2
ui(t)dt =

1

2π

∫ π

−π
ui(t)dt (6.38)

= 2
1

2π

∫ π

−π
uei (t)dt− 1 = 2D(uei )− 1.

Because the bias terms of xi and ui are time-invariant, from (6.6), we can extract
the bias component to form a new equation as follows

bias(xi) = a · bias(zi)− b · bias(yi) + bias(ui) (6.39)

bias(yi) = bias(zi).

Assume xi can be approximated by its main sinusoidal component and the period
of both xi and zi is represented by T . From (6.1) and (6.2) we have

bias(xi) =
1

T

∫ T/2

−T/2
xidt =

1

T

∫ T/2

−T/2
(xei − xfi )dt

=
1

T

∫ T/2

−T/2
Ae(cos(ωt) + re)− Af (cos(ωt) + rf )dt

= Aere − Afrf ,

bias(zi) =
1

T

∫ T/2

−T/2
zidt =

1

T

∫ T/2

−T/2
(zei − zfi )dt

=
1

T

∫ T/2

−T/2
(Ae(K(re)cos(ωt) + L(re))− Af (K(rf ) cos(ωt) + L(rf )))dt

= Ae(L(re)− 1

π
)− Af (L(rf )−

1

π
) +

1

π
(Ae − Af ).

Apply Taylor expansion on L(r) (Appendix 6.2.2) at r = 0, we have

L(r) =
1

π
+
r

2
+ o(r), r ∈ (−1, 1).
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Then we have

bias(zi) =
1

2
Aere − 1

2
Afrf +

1

π
(Ae − Af ) =

1

2
bias(xi) +

1

π
(Ae − Af ). (6.40)

According to [53], the amplitude Aq (for q ∈ {e, f}) has the form

Aq =
bias(uq) + c

rq + (a+ b)L(rq)
.

When the system is harmonic, according to [53, (30)], we have re = rf = K−1(Kn),
such that

Ae − Af =
bias(uei )− bias(ufi )

K−1(Kn) + (a+ b)L(K−1(Kn))
≈ bias(ui)

2Kn − 1 + 2
π
(a+ b) sin−1(Kn)

.

(6.41)

Let m = 1
π

1
2Kn−1+ 2

π
(a+b) sin−1(Kn)

, (6.47) can be rewritten as

bias(zi) =
1

2
bias(xi) +mbias(ui). (6.42)

Substitute bias(zi) in (6.39) with (6.50), we can obtain the pure relation between
bias(xi) and bias(ui) as

(1−m(b− a))bias(ui) = (
1

2
(b− a) + 1)bias(xi). (6.43)

In this case, the relation between bias(zi) and bias(ui) can be expressed as

bias(zi) =
1−m(b− a)

b− a+ 2
bias(ui) +mbias(ui) =

1 + 2m

b− a+ 2
bias(ui). (6.44)

6.3.4 Proof of Proposition 2

Proof. For simplicity we denote Aqi ≜ Axqi and rqi ≜ rxqi for q ∈ {e, f}. Instead of
looking into the relation between ui and zi, we focus on the bias between the two
states.

According to the perfect entrainment assumption [53] and [44, Definition 1], let
ui be resonant to zi. We define the duty cycle of a wave function as D(·). Let the
period of zi be T = 2π (a different value of T would not affect the result of the
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calculation), based on the Fourier expansion, the bias of ui can be expressed as

bias(ui) =
1

T

∫ T/2

−T/2
ui(t)dt =

1

2π

∫ π

−π
ui(t)dt (6.45)

= 2
1

2π

∫ π

−π
uei (t)dt− 1 = 2D(uei )− 1.

Because the bias terms of xi and ui are time-invariant, we can extract the bias
component to form a new equation as follows

bias(xi) = a · bias(zi)− b · bias(yi) + bias(ui) (6.46)

bias(yi) = bias(zi)− bias(pi).

Assume xi can be approximated by its main sinusoidal component and the period
of both xi and zi is represented by T , we have

bias(xi) =
1

T

∫ T/2

−T/2
xidt =

1

T

∫ T/2

−T/2
(xei − xfi )dt

=
1

T

∫ T/2

−T/2
Aei (cos(ωt) + rei )− Afi (cos(ωt) + rfi )dt

= Aeir
e
i − Afi r

f
i ,

and

bias(zi) =
1

T

∫ T/2

−T/2
zidt =

1

T

∫ T/2

−T/2
(zei − zfi )dt

=
1

T

∫ T/2

−T/2
(Aei (K(rei )cos(ωt) + L(rei ))− Afi (K(rfi ) cos(ωt) + L(rfi )))dt

= Aei (L(r
e
i )−

1

π
)− Afi (L(r

f
i )−

1

π
) +

1

π
(Aei − Afi ).

Apply Taylor expansion on L(r) at r = 0, we have

L(r) =
1

π
+
r

2
+ o(r), r ∈ (−1, 1).

Then we have

bias(zi) =
1

2
Aeir

e
i −

1

2
Afi r

f
i +

1

π
(Aei − Afi ) =

1

2
bias(xi) +

1

π
(Aei − Afi ). (6.47)
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According to [53], the amplitude Aqi (for q ∈ {e, f}) has the form

Aqi =
bias(uqi ) + c

rqi + (a+ b)L(rqi )
.

When the system is harmonic, according to [53, (30)], we have

rei = rfi = K−1(Kn),

such that

Aei − Afi =
bias(uei )− bias(ufi )

K−1(Kn) + (a+ b)L(K−1(Kn))
(6.48)

≈ bias(ui)

2Kn − 1 + 2
π
(a+ b) sin−1(Kn)

. (6.49)

Let m = 1
π

1
2Kn−1+ 2

π
(a+b) sin−1(Kn)

, (6.47) can be rewritten as

bias(zi) =
1

2
bias(xi) +mbias(ui). (6.50)

Substitute bias(xi) in (6.46) with (6.50), we can obtain the pure relation between
bias(zi) and bias(ui), bias(pi) as

bias(zi) =
1 + 2m

b− a+ 2
bias(ui) +

b

b− a+ 2
bias(pi).

6.3.5 The Reason of Using Inhibiting Sensory Feedback In-
put in the AF form Matsuoka Oscillator

In the AF form Matsuoka oscillator, if the sensory feedback coefficients pei , p
f
i are

activating, then by changing the sign of pi term in Eq. (4.11), we have

τrτa
d2

dt2
xF i

+ (τr + τa − τaaK(rx))
d

dt
xF i

(6.51)

+ ((b− a)K(rx) + 1)xF i
= τa

d

dt
uF i

+ uF i
− bpi.
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Let m1 = τrτa, m2 = τr + τa − τaaK(rx) and m3 = (b− a)K(rx) + 1, ω2
0 = m3

m1
. We

have Eq. (6.51) simplified to

m1
d2

dt2
xF i

+m2
d

dt
xF i

+m3xF i
= τa

d

dt
uF i

+ uF i
− bpi. (6.52)

According to [44, Eq. (B.15), Eq. (B.16)],

uF i
≈ Au cos (ωt)−

1

2
, where Au =

1

2

eA − 1

eA + 1
.

Therefore we have

m1
d2

dt2
xF i

+m2
d

dt
xF i

+m3xF i
= −τaωAu sin (ωt) + Au cos (ωt)−

1

2
− bpi. (6.53)

During a contact segment, assume pi ≈ 1 and pi is a constant in this segment
(e.g. the first half period of a square wave). We consider the solutions of Eq. (6.53)
in the following two scenarios:

• When K(rx) <
τr+τa
τaa

, the particular solution is

x∗(t) = − τaωAu√
m2

1(ω
2
0 − ω2)2 +m2

2ω
2
cos (ωt+ θ1) (6.54)

+
Au√

m2
1(ω

2
0 − ω2)2 +m2

2ω
2
cos (ωt+ θ2)

−
1
2
+ b

m3

,

and the general solution is

x(t) = c1 exp (λ1t) + c2 exp (λ2t) + x∗(t) ≈ x∗(t),

where λ1, λ2 < 0 are the eigenvalues of Eq. (6.53).

• When K(rx) = Kn = τr+τa
τaa

and ω ̸= ω0, the system becomes harmonic. The
particular solution is

x∗(t) = − τaωAu
m1(ω2

0 − ω2)
sin (ωt) +

Au
m1(ω2

0 − ω2)
cos (ωt)−

1
2
+ b

m3

, (6.55)

and the general solution is

x(t) = c1 cos (ω0t) + c2 sin (ω0t) + x∗(t),

where the parameters c1, c2 are related to the initial condition of Eq. (6.53).
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When the snake robot is jammed by the obstacles, the oscillation frequency ω
will decrease, and therefore leads to the increase of ω2

0 − ω2. In this case, as long
as ω is small enough, in both harmonic and non-harmonic situations the solution of
Eq. (6.53) will be consistently negative. In the Matsuoka oscillator, a consistently
negative membrane potential will cause zi = 0. Then the output of the Matsuoka
oscillator becomes zero. Therefore the CPG node in contact will always stop oscil-
lating for a certain period of time, which extend the jamming period and harm the
locomotion performance in contact-aware scenario.

6.4 Implementations

6.4.1 Extension of the PPOC-CPG controller for a soft quadruped
robot

In this section, we use a demo to show that our approach can be easily generalized
to more tasks than the locomotion of a soft snake robot. Specifically, we show that
the same procedure of PPOC-CPG can be applied to designing controllers for a soft
quadruped robot (Fig. 6.1), demonstrating the universality of PPOC-CPG.

Figure 6.1: PPOC-CPG scheme for 2D soft quadruped robot locomotion control.

Figure 6.1 shows the basic scheme of PPOC-CPG framework [42] applied on a
2D soft quadruped robot (we call it soft turtle bot for simplicity). The Sigmoid
encoder function is defined by [43, Eq.(5)]. The CPG network includes 5 decoupled
primitive Matsuoka oscillators [43, Eq.(1)], with l0 being connected to the body
trunk joint, l1, l2 being related to the front legs, and l3, l4 related to the hind legs.

In [42, 43], it is concluded that for the proposed PPOC-CPG controller, the
oscillation patterns including frequency, amplitude and bias are all maneuverable to
the RL agent. To show the universality of the above conclusion, we train the same
controller with the soft quadruple robot for the random goal tracking task. The
fundamental configuration for this experiment is the same as the presented in [43].
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Table 6.4: Curriculum settings

Levels Distance range (m) Turning angles (◦) Goal radius (m)
1 0.9 ∼ 1.5 −10 ∼ 10 0.5
2 0.9 ∼ 1.5 −20 ∼ 20 0.45
3 0.9 ∼ 1.5 −30 ∼ 30 0.4
4 0.9 ∼ 1.5 −40 ∼ 40 0.35
5 0.9 ∼ 1.5 −40 ∼ 40 0.3
6 0.9 ∼ 1.5 −45 ∼ 45 0.3
7 0.9 ∼ 1.5 −45 ∼ 45 0.25

Figure 6.2: Learning process comparison, both methods are trained under the same
condition for 5 rounds.

The curriculum is adjusted accordingly for better convergence of the learning process
(see Table 6.2). The training result shows that our approach is able to converge
to the highest curriculum level with stable locomotion pattern (The goal tracking
performance video of PPOC-CPG on the soft turtle bot is available at: https:

//youtu.be/ByMreo7Re18). The success of PPOC-CPG controlled soft turtle bot
in random goal tracking demonstrates the maneuverability of our CPG system.
In addition, Fig. 6.2 shows that PPOC-CPG still outperforms the vanilla PPO in
learning soft quadruple robot locomotion. It takes less learning episodes to converge
and converges to a higher reward level.

Moreover, the same advantages of our approach on the soft snake robot can still
be easily observed on the control command of the soft quadruped robot. Fig. 6.3
compares the control commands sent to all 5 joints of the soft quadruped robot
by different controllers when they are approaching the same goal. The agent with
vanilla PPO controller converges to a control policy that generates gait pattern with
considerably high frequency and amplitude, which puts the real robot actuators
under high risk of being damaged in the sim-to-real tasks. On the other hand,
the PPOC-CPG controller is able to generate smoothier control commands, with
adjustable frequency and amplitude, which naturally fits the real robot actuator.
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Figure 6.3: Trajectory comparison, the left column are joint space control com-
mands, and the right are body motion snapshots of the 2D soft quadruped robot.

6.4.2 Extension of the PPO-CPG controller for a bipedal
robot (Cassie)

Figure 6.4: PPO-CPG scheme for Cassie robot locomotion control.

This section shows the application of PPO-CPG method on the Cassie robot.
Because the 3D bipedal robot is more vulnerable to unreliable dynamics while main-
taining self-balancing during locomotion tasks, and the consequence of changing
locomotion frequency of a bipedal robot may cause the change of locomotion gait
and therefore influence the self-balancing dynamics. As a result, we will use a fixed
locomotion frequency for simplicity in this study. Despite the frequency control, all
other features including amplitude-based velocity tuning and changing walking di-
rection with biased tonic inputs that have been implemented on the soft snake robot
in [42,43] are proved to be applicable to the 3D bipedal walking in this section.

Due to the complexity of bipedal locomotion, few modifications are applied to
the control scheme of PPO-CPG method. For the configuration of the CPG network,
we take the empirical parameters from [26], with additional primitive CPG nodes
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Figure 6.5: (a) Signal flow chart of each primitive joint action in the Cassie robot
controller case, where σ(·) is the sigmoid function, and α(·) is the motor neuron
function. (b) CPG network design for bipedal locomotion.

Figure 6.6: Performance comparison in straight line following task with target ve-
locity vx = 0.6m/s, vy = 0.0m/s.

for hip yaw and hip pitch connected to the network intuitively (the configuration of
the CPG network can be found in Table 6.1 and Fig. 6.5b). And we will show that
such kind of CPG network can be applied to the PPO-CPG scheme to realize stable
3D bipedal walking. An additional motor neuron is added to the whole scheme to
help the self-balancing control. For each action signal ai generated by the RL policy,
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Table 6.5: Parameter Configuration of the Matsuoka CPG Net Controller for Cassie
Robot.

Parameters Symbols Values
Amplitude ratio aψ 1.0
∗Self-inhibition weight b 2.5
∗Discharge rate (hip joints) τr1 0.1
∗Adaptation rate (hip joints) τa1 1.2
∗Discharge rate (other joints) τr2 0.05
∗Adaptation rate (other joints) τa2 0.6
Period ratio Kf 1.0

Mutual inhibition weights ai 2.0

Coupling weights wij 1.0
wji 1.0

we define our motor neuron function as follows

α(ai) = c1ai + c2ψi, (6.56)

where c1, c2 > 0 are constant coefficients, and ψi is the output of the i-th Matsuoka
CPG node.

Figure 6.7: Linear relation between input and output bias of the RL-driven CPG
node during Cassie’s locomotion. The performance video is available at: https:

//youtu.be/wODTrnln0Xw

Our method is tested in Mujoco simulator. The learning process is modified
from the configuration in [96]. With the same learning configuration of PPO in [96],
our method is trained for 2 million sampling episodes. Our method is able to reach
a higher performance score than the original method in straight line following task
(maintaining certain velocity on a fixed direction) – the claimed performance score
on tracking goal velocity vx = 0.6m/s, vy = 0.0m/s was around 0.6 [96] and our score
is 0.7, which indicates stronger ability of the agent in accurate direction keeping. The
difference of line keeping performance is also visually observable during locomotion.
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The upper part snapshot in Fig. 6.6 shows that the Cassie robot trained with vanilla
PPO approach [96] has significant deviation from the desired locomotion direction
after around 8-second walking in simulation, while the agent trained with PPO-
CPG (lower part in Fig. 6.6) is able to follow the desired direction in a longer
time. This is mainly because, although the walking pace can be determined by the
imitation reward, the compared approach with vanilla PPO [96] cannot specify the
desired body posture during locomotion, so that the hip yaw joints end up turning
in as the robot walks (the leg postures are highlighted by the green dashed lines
in Fig. 6.6), which causes the turning ability of the robot highly restricted. In our
approach, since the CPG system provides a fundamental rhythm for free oscillation
as a natural reference to the RL agent, the control policy converges to move in a
more appropriate range when driving hip yaw angles in straight walking tasks. The
comparison video is available at: https://youtu.be/Ql3cby06Ddo.

In addition to the body posture reason, the maneuverability of the Matsuoka
CPG system may also contribute to the direction following performance. Based on
what we have mentioned about the maneuverability of the Matsuoka CPG system
with biased tonic inputs in our previous work [42], we further verify that the same
property still holds for the PPO-CPG scheme on Cassie robot during bipedal loco-
motion. Figure 6.7 shows the linear relationship between bias(u) and bias(ψ) when
we add different bias values to the hip pitch joints’ tonic inputs. And this leads
to stable side walking without further training from the straight walking controller,
which shows the sensitivity of the Matsuoka CPG system to the biased directional
control command.

It is noted that steering with hip yaw requires more investigation on balancing
control, which is not studied yet in this document. We leave this case for future
study.

Figure 6.8: Amplitude control of the CPG network for velocity tuning of the Cassie
robot. The performance video is available at: https://youtu.be/_RHqiQrb2mM

Moreover, as Fig. 6.8 shows, our method allows a range of direct velocity tuning
through amplitude tuning of tonic inputs of the CPG system without harming the

107

https://youtu.be/Ql3cby06Ddo
https://youtu.be/_RHqiQrb2mM


performance of locomotion, while the compared method [96] require re-training of
the policy if the desired locomotion speed is changed on the same direction. In this
case, the reason of lower oscillation amplitude leading to higher locomotion speed
is because that the locomotion period (frequency) is fixed, so that the foot lifting
phase will occupy the time of swinging phase for the robot to step forward.

6.4.3 Experiment result with an off-policy method (TD3)
on the Soft Snake Robot

Table 6.6: Performance Comparison of Different Approaches (TD3 version).

Metrics Vanilla TD3 TD3-CPG FOC-TD3-CPG
Simulated average speed (m/s) 0.149 0.162 0.155
Simulated success rate 0.97 0.99 0.99
Real average speed (m/s) 0.023 (↓ 84.6%) 0.032 (↓ 80.2%) 0.045 (↓ 70.9%)
Real success rate 0.43 (↓ 55.6%) 0.76 (↓ 23.2%) 0.84(↓ 15.1%)

Figure 6.9: Sample comparison of trajectories generated by Vanilla TD3 policy,
TD3-CPG policy, and FOC-TD3-CPG policy in reality. The connection between
TD3 and CPG is the same as PPOC-CPG, and FOC also means “Free-response
Oscillation Constrained”.

Figure 6.9 and Table 6.6 show that a different RL algorithm can easily fit into
our framework and generate similar results as PPO did. This comparison is also
presented in the video “TD3 Learning methods comparison.mp4” 1.

1The video can be viewed from http://shorturl.at/cgms1
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6.4.4 Dynamic analysis of elastic pull-back wheels

This section analyzes and calculates the torque of the elastic pull-back wheels in the
scenario of snake robot locomotion.

Figure 6.10: Coordinate notation of the rigid bodies of the soft snake robot.

As shown in Fig. 6.10, let the 2D state representation in world coordination be
{x, y}, for the i-th rigid body, the local coordinate of the i-th rigid body is denoted
as: {xCi

, yCi
}, with θi being the angle between global coordinate axis and local

coordinate axis of the i-th rigid body. The position of the i-th rigid body can be
determined by {xCi

, yCi
, θi}. The length and width of each rigid body are set as 2b

and 2a.
From rigid body kinematics, the corresponding velocity of the left wheel in the

local heading direction xi of the i-th rigid body is

vxi,L = ẋCi
cos θi + ẏCi

sin θi − aθ̇i.

Respectively, we have the right wheel velocity

vxi,R = ẋCi
cos θi + ẏCi

sin θi + aθ̇i.

Thus the velocity of the selected wheel can be expressed as

vxi = v
(1+sgn(θi−θi+1))/2
xi,L

v
(1−sgn(θi−θi+1))/2
xi,R

, (θ6 = 0).

Figure 6.11: The time series illustration of energy charging phase and releasing
phase of the elastic torsion spring presents in turn.
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Figure 6.12: The driving gear illustration of energy charging phase and releasing
phase of the elastic torsion spring.

For the torsion spring torque calculation, as shown in Fig. 6.11, in every k-th
(k = 0, 1, 2, ...) contact event of the elastic torsion spring in the i-th rigid body,
when t ∈ (t1,k, t2,k), vxi(t) < 0, when t ∈ (t2,k−1, t1,k), vxi(t) > 0. We denote the
time interval satisfying vxi(t) < 0 as energy charging phase. While energy releasing
phase indicates the time interval when vxi(t) > 0. Since the transition of spring
energy is smooth, in between the two phases we have vxi(t1,k) = vxi(t2,k) = 0.

Assume the energy waste is negligible. As shown in Fig. 6.12, at the k-th charging
phase, the energy charging distance of the i-th rigid body is the distance of the
wheels pulled backward, gaining potential energy on the torsion spring, which can
be expressed as

Pi,k(t) = min

{
Mi,k−1(t1,k)

k0
−
∫ t

t1,k

vxi(h)dh, Pmax

}
, t ∈ (t1,k, t2,k).

Where k0 is the backward-forward ratio of the elastic pullback gearbox, and

Mi,k(t) = max

{
0, k0Pi,k(t2,k)−

∫ t

t2,k

vxi(h)dh

}
, t ∈ (t2,k, t1,k+1),Mi,0(t1,1) = 0.

In the above equation, Mi,k is the energy releasing distance of the i-th rigid body
at k-th releasing phase, which is the distance of the wheels rolling forward, driven
by the loaded torsion spring in the gearbox.

Let βi(t) = sgn(vxi(t)), we have

τi,k(t) =Mi,k(t)
1− (1−βi(t))|βi(t)|

2 · (k0Pi,k(t))
(1−βi(t))|βi(t)|

2 , for t ∈ [t1,k, t1,k+1].
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Therefore,

τi(t) =


τi,1(t) t ∈ (0, t1,1)
... ,

τi,k(t) t ∈ (t1,k, t1,k+1)
... .

τ (t) = [τ1(t), ..., τ5(t)]
T .

This model shows that the implementation of the elastic pull-back wheels can
improve the locomotion energy-efficient by transmitting the pull-back forces caused
by the obstacles to the positive torques that drives the soft snake robot forward.
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