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Abstract

As we know the most popular inference methods for order restricted model are

likelihood inference. In such models, the Maximum Likelihood Estimation (MLE)

and Likelihood Ratio Testing (LRT) appear some suspect behaviour and unsatis-

factory. In this thesis, I review the articles that focused in the behaviour of the

Likelihood methods on Order restricted models. For those situations, an alternative

method is preferred. However, likelihood inference is satisfactory for simple order

cone restriction. But it is unsatisfactory when the restrictions are of the tree order,

umbrella order, star-shaped and stochastic order types.

Keywords: Preservation, Reversal, Convex cones, Projection, Likelihood Method-

ology, Cone order, Cone Order Monotonicity, Simple Order, Tree Order, Stochastic

Order.
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Chapter 1

Intorduction

Inference had been a significant hurdle in understanding the behaviour of a pa-

rameter or properties of a population, where analysing a drawing sample from a

population to have an estimate or conclusions about the population properties or pa-

rameter. Generally, the likelihood methodology has been based inferences for order

restricted models. The primary reference for this thesis is Cohen and Kemperman

and Sackrowitz (2000). In most of the cases, the maximum likelihood estimation

(MLE) is the primary approach used in parameter estimation and the likelihood

ratio test (LRT) for hypotheses tests.

There are many research papers on Likelihood inference on Restricted mod-

els. Peiris and Bhattacharya (2016) discus the restricted inference of a regression

model with two predictors when parameters β1 and β2 have sign constrains. Re-

stricted inferences on regression with circular data have been discussed by Peiris and

Kim (2016). In this paper they have used the technique invented by Mukerjee and

Tu (1995) on two regression models called Circular-Linear regression and Linear-

Circular regression. Moreover, Chaudhuri and Perlman (2003) investigates where

the LRT is cone order monotonic (COM) or not, which is an important property
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for reverse the cone order or preserve it. Cohen et.al., (1995) considers the normal

models where the alternative hypothesis test always on order restricted model, and

provide conditions where the class of tests are completed and unbiased.

In this work likelihood methods have been tested on the cones for different or-

der restricted models such as the simple order, umbrella, tree, star and stochastic

orders. The purpose of the study is identifying situations where the likelihood esti-

mation techniques can provide sufficient information and the advantages that could

be received by it. Secondly, this study also focus on determining the drawback, or

it is lack of effectiveness in other situations or modelling techniques. The implica-

tions of the practical application of likelihood testing method were, therefore, to be

investigated in detail.

It is found through the overview and comprehensive understanding of the like-

lihood methodology in the detailed examples, that if the results of the method are

not in favour of initially proposed or tested hypothesis, then it would be much bet-

ter to go for an alternative option. The term reversal is therefore introduced in

the paper which refers to going with the exact opposite after testing of any hypo-

thetical situation. The results, however, revealed that there is need of some critical

explanation.

By considering the constraints of the system the equation and inequalities are

formed. The procedure is tested on two different kinds of violations observed. The

first is the reverse of the order in which the inequalities completely fail under the

given situation or parameters for testing. Secondly, the violation on estimator, which

is less critical,is neither reversal but also neither preserves the order.

Such a behaviour is usually a consequence of restricting the parameter space.

Also, unwanted behaviour of the likelihood inferences is possible in many order re-

stricted models. In chapter 2, I present some basic and necessary mathematical and
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statistical knowledge. In addition, examples are given to shows what type of issue

will arise. This thesis will cover a simple introduction to Order Restricted hypothe-

sis tests in chapter 3, and the relation between projection and their properties with

the notation of preservation and reserves at in chapter 4. The results of preserva-

tion and reserves at likelihood inferences are in chapter 5. Chapter 6 contains some

applications of likelihood methods for order restricted models.
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Chapter 2

Overview and Basics

Before embarking on developing formal discussion, an overview of some related basic

and necessary mathematical and statistical knowledge is introduced here.

2.1 Basics

The following are some basic definitions of the terms in order restricted inference

and Linear Algebra.

1. Convex cone :

A convex cone is a subset of vectors ζ ∈ Rk that if x, y ∈ ζ , than β1x+β2y ∈ ζ

for all β1 ≥ 0 , β2 ≥ 0. The closed of convex cone is induces pre-ordering ≥ζ

such that x ≤ζ y if and only if y − x ∈ ζ. A cone ζ pointed if x ∈ ζ and

−x ∈ ζ implies x = 0.

2. Dual of convex cone :

Consider the cone ζ is a closed convex cone ζ ⊆ Rk, and x, y ∈ ζ , then

λ1x+ λ2y for all λ1 ≥ 0n, λ2 ≥ 0.
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Then the positive dual of ζ is

ζ∗ = {θ ∈ Rk : 〈x, θ〉 ≥ 0, for all x ∈ ζ}, (2.1)

And the negative dual (polar dual) for the cone ζ is

ζ̂ = {θ ∈ Rk : 〈x, θ〉 ≤ 0, for all x ∈ ζ}, (2.2)

where 〈. , . 〉 is the inner product. For closed convex cone ζ the dual of the dual

is (ζ∗)∗ = ζ.

3. Orthocomplement :

Let W be a subspace from Rk, then W⊥ is the set of vectors which are or-

thogonal to all elements of W . That is, the inner product for all elements on

W with W⊥ equal zero.

< w, x >= 0,

where w ∈ W and x ∈ W⊥.

So

W⊥ = {x ∈ Rk :< w, x >}. (2.3)

4. Linear Span:

Leaner span is the set of all linear combinations of vectors in a vectors space.

Let ~S ∈ Rk be a vector space, and s1, s2, ....sk ∈ ~S then

span(~S) = {
k∑
i=0

λisi | λi ∈ R}. (2.4)

5. Polyhedral cone:

5



A Polyhedron is an intersection of half-spaces in Rk it is generated by a set of

vectors such as

ζ = {θ ∈ Rk; θ =
∑
i=1

λiθi | λi ≥ 0}, (2.5)

Also a bounded polyhedron is a convex hull of a set of points.

6. Types of Order Restricted Cones:

• Simple Order cone: The simple order cone is one of the most common

cone which had been used in different practices. Order restriction on

the parameter space µ, where we test µ1 ≥ µ2.... ≥ µk as the cone

ζ = {µ ∈ Rk : µ1 ≥ µ2.... ≥ µk}. This can be expressed as matrix form

ζ = {µ ∈ Rk : Bµ ≥ 0}, (2.6)

where

Bm×k =



1 −1 0 0 .... 0

0 1 −1 0 .... 0

...

0 0 0 .... 1 −1


.

• Tree Order cone: The tree order cone is another important cone for

comparing difference treatments group to an control or stander group.

Th cone for it is ζ = {µ : µ1 ≥ µk, µ2 ≥ µk....µk−1 ≥ µk} ,and as matrix

form

ζ = {µ ∈ Rk : Bµ ≥ 0}, (2.7)
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where

Bm×k =



1 0 0 ... 0 −1

0 1 0 ... 0 −1

...

0 0 0 ... 1 −1


.

• Umbrella order Cone: The umbrella order cone restricted the param-

eter space µ , where the test take the form µ1 ≤ µ2 ≤ ... ≤ µm ≥ µm+1 ≥

... ≥ µk}. Then the coneζ can be express as

ζ = {µ ∈ Rk : Bµ ≥ 0}, (2.8)

where

Bm×k =



−1 1 0 0 ... ... 0

0 −1 1 ... ... 0 0

...

0 ... −1 1 ... 0 0

0 ... 0 1 −1 ... 0

...

0 0 0 ... ... 1 −1



.

• Stochastic Order cone : This type of cone consider a two independent

random vectors which follow the multinomial distribution with (ni, k, pi)

X1= (X11, X12, ..., X1k) and X2= (X21, X22, ..., X2k). Now our interest to

test if the distribution of X2 is stochastically greater than or equal to X1
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such as
∑k−1

i=1 p1i ≤
∑k−1

i=1 p2i. This can be expressed in matrix form

ζ = {θ ∈ Rk : Bθ ≥ 0}, (2.9)

where

θ =

 p11 p12 ... p1(k−1)

p21 p22 ... p2(k−1)

 , (2.10)

and

B(k−1)×2(k−1) =



1 0 ... 0 −1 ... 0

1 1 ... 0 −1 −1... 0

...

1 1 ... 1 −1 ... −1


.

It is clear that ζ the parameter space is not a cone because the pji’s are

bounded. See Cohen et.al.,(1998)

• Star-Shaped Cone: there are two type of cone under it, the lower star-

shaped cone take the form µ : µ1 ≥ (µ1+µ2)
2
≥ .... ≥ (µ1+µ2+....+µk)

k
and the

upper star-shaped cone will be µ : µ1 ≤ (µ1+µ2)
2
≤ .... ≤ (µ1+µ2+....+µk)

k
.

The polyhedral cone for the lower star-shaped will be

ζ = {µ : Bµ ≥ 0}, (2.11)
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where

B(k−1)×2(k−1) =



1 −1 ... ... 0 0

1 1 −2 ... ... 0

...

1 1 ... 1 ... −(k − 1)


.

2.2 Likelihood Methodology

The maximum likelihood method is used in wide range of statistical analyses. Like-

lihood functions has a fundamental role in frequentest inference, specificity methods

of parameter estimating.

2.2.1 Maximum likelihood estimator (MLE)

The most traditional and fundamental way of parameter estimations in statistics

is maximum likelihood estimation. Let X1, X2, ....., Xn be random sample from

a population with density function fXi
(x|θ). The likelihood function is the joint

density function regarded as a function of the parameter θ. That is

L(θ|X) =
n∏
i=1

f(Xi|θ). (2.12)

Then the maximum likelihood estimator (MLE) of θ is the value of θ which maximize

the likelihood function . So

θ̂(X) = argmax
θ

(L(θ|X)), (2.13)

Maximizing the log likelihood function instead of the likelihood function is a most

common technique in maximum likelihood estimation.
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2.2.2 Likelihood ratio test (LRT)

likelihood ratio test is widely applicable in hypothesis testing. Let Θ denote the

entire parameter space and consider the hypotheses

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ0
c. (2.14)

Then the likelihood ratio test is

λ(x) =
supΘ0

L(θ|X)

supΘ L(θ|X)
, (2.15)

with critical region C = {X : λ(x) ≥ c} . The p-value of the test is

p-value = sup
θ∈Θ0

P (λ(x) ≥ c). (2.16)

In most of the applications the asymptotic distribution of −2 ln(λ(x)) is used and

−2 lnλ(x) ∼ χ2
d, (2.17)

where χ2
d the chi-square distribution with degree of freedom d and d = dim(Θ) −

dim(Θ0).

10



2.3 Suspect Behaviour of Likelihood Methodol-

ogy

In order restricted inference, most often, the likelihood methodology is used. That

is, most often, the parameter estimation done by the maximum likelihood estimation

and the hypothesis tests done by likelihood ratio test. In some situations, the like-

lihood methodology is less satisfactory or have suspect behaviours. Here I give two

examples, one for maximum likelihood estimation and the other one for likelihood

ratio test when they are unsatisfactory.

2.3.1 Example for hypothesis test:

This example has been illustrated in Cohen and Sackrowitz (1998). Considering an

experiment to comparing between a treatment and a control. Conduct 2 × 3 table

where the columns are the responses which are ordered and categorical. 2-sample

points were considering which presented in table 2.1 and 2.2, where the second table

(table 2.2) has been created from table 2.1 keeping the marginal totals fixed.

Table 2.1: sample point 1
Same Some improvement Cured Total

Control 5 11 1 17
Tretment 3 8 4 15

Total 8 19 5

Table 2.2: sample point 2
Same Some improvement Cured Total

Control 0 16 1 17
Tretment 8 3 4 15

Total 8 19 5

Assuming that the observation following an independent multinomial distribu-
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tion with probabilities Pc = (p1c, p2c, p3c) and Pt = (p1t, p2t, p3t). The hypothesis

test is

H0 : the two groups are the same vs. H1 : the treatment is batter. (2.18)

That is, the distribution of the treatment is stochastically larger than that of the

control
∑m

k=1 pkt ≥
∑m

k=1 pkc. From these two sample point, we expect that the

p-value for the sample point 1 from table 2.1 should be lower than that for the other

sample point . But LRT statistic from table 2.1 is 2.777 (see chapter 3 section 3.1.2

for more details ) and the condition p-value for fixed margins (for more details see

Agresti and Coull (1998))is 0.169, and for the table 2.2 LRT statistic is 22.65 and

the p-value is 0.019. This contradict what we expect and suggest that LRT may be

less satisfactory for this problem. In this example we can say that The LRT give a

reversal results.

2.3.2 Example for parameter estimation:

A company is interested to increase SAT scores of student and developed two pro-

grams for that. They want to know are the two programs effected and increase

the SAT score. Three samples were taken with equal sample size for two treatment

groups and a control group and determined the mean for each group (X̄T1 , X̄T2 , X̄C).

The hypothesis test

H0 : µT1 = µT2 = µC vs. H1 : µT1 ≥ µc and µT2 ≥ µC . (2.19)

Sample means are assumed to have normal distributed with equal variance σ2

n
= 144.

From these three samples, it is natural to expect that the p-value for S1, p-value for
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S2 and p-value for S3 are in increasing order. But the p-value of the LRT correspond-

ing to S1, S2 and S3 are 0.134,0.083 and 0.44 respectively, so only S3 is significant.

This is also contradict the naturally expect and show that likelihood ratio test is

less satisfactory for this problem two. Furthermore, The MLE’s for S1, S2, S3 are

present in table 2.4, are suggests that only S3 has the stronger indication about the

treatments than S1 and S2. This is also contradict the naturally expect and show

that likelihood methodology is less satisfactory for this problem two.

Table 2.3: The mean average for each group
X̄T1 X̄T2 X̄C

S1 1124 1110 1096
S2 1124 1096 1096
S3 1124 1089 1096

Table 2.4: The MLE’s for each sample
µ̂T1 µ̂T2 µ̂ µ̂T1 − µ̂C µ̂T2 − µ̂C

S1 1124 1110 1096 28 14
S2 1124 1096 1096 28 0
S3 1124 1092.5 1092.5 31.5 0
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Chapter 3

Order Restricted Hypothesis Test

Suppose our interest is testing means (or any location parameters) for different

groups or treatments or populations. Generally, we have n independent samples

from n different populations with means µ1, µ2, ....., µn . Topically, the test

H0 : µ1 = µ2 = ... = µn vs. Ha : not all equal , (3.1)

The F−test in analysis of variance (ANOVA) and the nonparametric methods based

on ranks are the stander methods. On the other hand, some times we may interest

to test which treatment is better or worst than others. Consider the alternative

hypotheses

Ha : µ1 ≤ µ2 ≤ µ3 or Ha : µ1 ≤ µ2 and µ1 ≥ µ3, (3.2)

as examples. Here we need to consider an alternative method for the analysis. In this

chapter, I provide some general and basics approaches for these statistical inference

problems. There are two main types of test problems. For the convenience they

are called type A and type B problems. Type A problem has ordered alternative
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hypothesis. That is, this type has the order restricted parameter space for the

alternative hypothesis. H0 : θ = 0 vs. Ha : θ ≥ 0 , and H0 : Bθ = 0 vs. Ha : B1θ ≥ 0

where B1 and B are matrices, are some examples for type A problems. Type B

problems has ordered null hypothesis. Here the restriction are on the null hypothesis.

For example , H0 : θ ≥ 0 vs. Ha : θ 6≥ 0 , and H0 : θ ≥ 0 and θb = 0 vs. Ha : θ ∈ Rk,

where θ = (θa, θb)
T . Also, combination of type A and type B problems exist. In this

section, I focus on type A problems and their results.

3.1 Ordered Alternative Hypothesis

Here let’s consider comparing k treatments and assume that we have k sample from

those population with sample size ni. Suppose observation xij ∼ N(µ, σ2) where

i = 1, ..., k and j = 1, .., ni . Suppose we want to test

H0 : µ1 = µ2 = ...µk vs. H1 : µi − µj ≥ 0, (3.3)

where i, j = 1, 2, ..., k. The standard F test statistics is

F = (k − 1)−1{RSS(H0)−RSS(Ha)}/S2, (3.4)

where S2 is the mean square error, and the Residual Sum of Squares under H0 is

RSS(H0) =
k∑
i=1

ni∑
j=1

(yij − ȳ)2,

The MLE for µi is ȳi. Under 3.3 the standard F-test do not have a good power

because it does not take the additional information with the restriction µi ≥ µj into
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account. An alternative test can be obtained from F-statistic

F̄ = {RSS(H0)−RSS(H1)}/S2, (3.5)

where RSS(H1) =
∑k

i=1

∑ni

j=1(yij − µ̃i)2, and the MLE’s for µ under restriction is

µ̃, S2 = v−1
∑k

i=1

∑ni

j=1(yij− ȳi)2 , where v = n1 +n2 + ...+nk−k. Here the p-value

of F̄ can be estimated by simulation. For more details See M. Silvapulle and P. Sen

(2005).

On the other way, Testing the formula in 3.3 allows only pairwise contrasts, and can

be rewriting the hypothesis in matrix form H0 : Bµ = 0 Vs. H1 : Bµ ≥ 0 where

Bm×k matrix such as



1 −1 0 0 .... 0

0 1 −1 0 .... 0

...

0 0 0 0 .... 1 −1


.

This case called simple order and it can be expressed as ζ = {µ : Bµ ≥ 0} .

Let’s y1, y2, ...yk follow density function

f(yi, θi, φi) = exp{yiθi − b(θi)
a(φi)

+ c(yi;φi)}, (3.6)

where θ, φ are scalars, a(.) ≥ 0 and b(.), c(.) are some functions.

Then the loglikelihood function is

L(θ, φ) =
k∑
i=1

ni{ȳiθi − b(θi)}
a(φi)

+H(y;φ), (3.7)
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where H a function does not depend on θ. Let’s (θ̂, φ̂) the unrestricted MLE and

(θ̃, φ̃) denote the MLE under order restrict, then θ̃ = θ(µ̃). That is µ̂ = ȳ and µ̃ is

equal to the isotonic regression of µ̂, therefore µ̃ can be obtained as follows

µ̃ = min
µB≥0

∑
(ȳi − µi)2ni. (3.8)

3.1.1 Isotonic regression

Isotonic Regression is a way to fit a free-form line to observations under the condition

of monotonic increasing. Further, the Isotonic Regression is illustrated the statistical

inference on the means under order restricted. Let’s Y1, Y2, ...Yk and consider the

simple order cone in the alternative hypothesis (µ1 ≥ µ2 ≥ ... ≥ µk), where Yi =

µi + εi, then it involves finding a weighted least-squares such as

min
(µ1≥µ2≥...≥µk)

k∑
i=1

wi(Yi − µ̂i)2, (3.9)

where wi ≥ 0 are giving weights. express in matrix form as

min (Y − µ̂)TW (Y − µ̂), (3.10)

where Y = (Y1, Y2, .., Yk)
T , µ̂ = (µ̂1, .., µ̂k)

T and W = diag(w1, w2, .., wk) .

This problem can be solved by using the pool adjacent violators algorithm (PAVA).

The figure 3.1 shows an example of comparing the isotonic regression to a linear

regression, on the same dataset, where the isotonic regression is non-decreasing line

and it is more flexible than the linear regression.
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Figure 3.1: comparison of Isotonic regression and Linear regression

3.1.2 Examples in two dimension

Here I use an example illustrated in M. Silvapulle and P. Sen (2005). Let X =

(X1, X2)T ∼ N(θ, I) and want to test of H0 : θ = 0 against Ha : Bθ where B2×2 =

(1, 4|1,−2). Now let ζ = {θ : Bθ ≥ 0} is a closed convex cone , and ζ̂ be the polar

cone of ζ as in (2.2). That is ζ̂ = {α : 〈α, θ〉 ≤ 0 | where θ ∈ ζ}.

Figure 3.2: The MLE θ̃ of θ where θ lie in ζ

From the figure 3.2 we can see that ζ = S1 and ζ̂ = S3. Now let u, v are the

vectors parallel to the boundary of the cone ζ. Since the restricted MLE are the
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projections of X into cone ζ [P (X|ζ)],

θ̃ =



X X ∈ S1,

(uTX)u X ∈ S2,

0 X ∈ S3,

(vTX)v X ∈ S4.

(3.11)

Then

LRT = ||X||2 − ||X − θ̃||2 = ||θ̃||2, (3.12)

under the null distribution of LRT

Pr(LRT ≤ c) =
4∑
i=1

Pr(LRT ≤ c|X ∈ Si)Pr(X ∈ Si). (3.13)

Further

Pr(LRT ≤ c |X ∈ S1) = Pr(X2
1 +X2

2 ≤ c)

= Pr(χ2
2 ≤ c),

where χ2
2 is the chi-square distribution with degrees of freedom 2. Following the
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same argument, LRT can be obtained as

LRT =



X2
1 +X2

2 X ∈ S1 ∼ χ2
2,

(uTX)2 X ∈ S2 ∼ χ2
1,

0 X ∈ S3 ∼ χ2
0,

(vTX)2 X ∈ S4 ∼ χ2
1.

(3.14)

Pr(LRT ≤ c|H0) = qPr(χ2
0 ≤ c) + 0.5Pr(χ2

1 ≤ c) + (0.5− q)Pr(χ2
2 ≤ c), (3.15)

where

q = (2π)−1 cos−1[bT1 b2/{(bT1 b1)(bT2 b2)}1/2],

and b1, b2 are the first tow rows of the matrix Bm×k. The critical region{LRT ≥ c}

is shows in figure 3.3.

Figure 3.3: the critical region for LRT is to the upper-right region bounded by
PQRS

As we can see from 3.14 the null distribution of LRT is a weighted chi-square

distributions, which called chi-bar-square distribution χ̄2
v with degrres of freedom v

. The main difficulty of using asymptotic tests based on the chi-bar squared is the
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computation of the weights associated with the various numbers of degrees of free-

dom. Analytical solutions are only available if the number of inequality restrictions

is smaller than 5. However, several methods have been developed to approximate

the weights of the chi-bar-squared distribution. Rather than using an asymptotic

approach to obtain the p value associated with the LRT statistic, it can also be

estimated using parametric bootstrapping. It is well-known that bootstrapping

methods can be used to obtain an empirical approximation of the distribution of a

test statistic when its asymptotic distribution is complicated or unknown.

3.1.3 LRT for Type A Problems

In the previous section, for 2-dimensional cases were introduced and example were

provided. Some higher dimensional example are introduced here. Suppose X ∼

N(θ, V ) where V is known and the test is

H0 : Bθ = 0 vs. Ha : Bθ ≥ 0 , (3.16)

where B is a matrix of the order r × p, and the chi-bar-square distribution χ̄2

statistic is giving by

LRTA = XTV −1X −min
θ∈ζ

(X − θ)TV −1(X − θ). (3.17)

Then the null distribution is give by

pr(LRTA ≤ c|H0) =
r∑
i=0

(r, BV BT )pr(χi)
2 ≤ c). (3.18)
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Then the p-value (critical value) of LRTA with t is the observed value of LRTA

p-value = pr(LRTA ≥ t | H0) = pr(LRTA ≥ t | θ = 0) (3.19)
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Chapter 4

Preservation Property of

Projections

4.1 Properties of Projection

This section provide some important properties of projections which effect the re-

verse or preserver property.

Let ζ to be a close convex cone and a subset of Rk where x, y ∈ ζ, then λ1x+λ2y ∈

ζ for all λ1, λ2 ≥ 0 . A preordering ≤ζ in the cone ζ define as: x ≤ζ y if and only if

x− y ∈ ζ. A cone ζ to be a pointed cone if x ∈ ζ and −x ∈ ζ. Another important

property is Cone Order Monotone with respect to the cone ζ (COM[ζ]), let function

F (x) : Rk → R if whenever x ≤ζ y then F (x) ≤ F (y) , see Robertson and Wegman

(1978).

The positive dual ζ∗ of a convex closed cone as 2.1 , and let’s Ω be the linear span

of ζ∗. Where H is the orthocomplement of Ω in 2.3. As result, an x ∈ Rk can be

writing as x = xΩ + xH , where that mean xH is the projection of x into H and xΩ

is the projection of x into Ω.

23



Now define a cone ` as

` = ζ ∩ Ω, (4.1)

because Ω is liner subspace and ζ is a closed convex cone that imply ` is a closed

convex cone. Additionally, where H ⊂ ζ , x ∈ H implies x ∈ (ζ∗)∗ = ζ , and ` is

pointed closed convex cone .

Lemma 4.1: ζ = ` ⊕ H , every vector in ζ can be uniquely writing as a liner

combinations of vectors from ` and H.

Lemma 4.2: ζ ⊆ ζ∗ ⊕H if and only if ` ⊆ ζ∗.

Next defined P (x|ζ) as the unique point of projection x in to ζ in Rk. Rewriting

the theorem 8.2.7 of RWD(1988)as:

Lemma 4.3 : let x, u ∈ Rk, and ζ a closed convex cone in Rk. then u = P (x|ζ) if

and only if u ∈ ζ and

〈x− u, u〉 = 0, (4.2)

and

〈x− u, f〉 ≤ 0, for allf ∈ ζ.

Using Lemma 4.1 we get

P (x|ζ) = P (xΩ|`) + xH , (4.3)

where

xΩ ≤` yΩ, if and only if x ≤ζ y, (4.4)
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from 4.3 and 4.4 we get

P (xΩ|`) ≤` P (yΩ|`), if and only if P (x|ζ) ≤ζ P (y|ζ). (4.5)

At this point we can defined the property of preservation and reversal for the

projections.

Definition 4.1 : For any pair x, y ∈ Rk such that x ≤ζ y , there is P (x|ζ) ≤ζ P (y|ζ).

Then P (.|ζ) have preservation property w.r.t cone ζ if and only if P (.|`) has the

preservation property w.r.t cone `.

4.2 Result on Projections

Definition 4.2 : if exist x, y ∈ Rk such that x ≤ζ y and P (x|ζ) ≥ζ P (y|ζ) the

projection P (.|ζ) have a reverse property w.r.t cone ζ .

Theorem 4.1 : The projection P(.|ζ) has reversal property w.r.t cone ζ if and only

if ` 6⊆ ζ∗.

Considering the definition of a polyhedral cone in 2.5 can be as :

ζ = {θ ∈ Rk : 〈bi, θ〉 ≥ 0, i = 1, 2...,m} = {θ ∈ Rk : Bθ ≥ 0}, (4.6)

where bi are the rows of the matrix Bm×k, And the bi’s are the generators of ζ∗, such

as ζ∗ = {x ∈ Rk : x =
∑

i=1
mλibi|λi ≥ 0}.

Theorem 4.2 : Let ζ be a closed convex cone in Rk , and suppose the projection

P (.|ζ) has the preservation property w.r.t cone ζ, then ζ is a polyhedral cone.

This theorem shows that the projection has the preservation property only when ζ

is a polyhedral cone. The following theorem shows when ζ a polyhedral cone should

have a preservation property.
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Theorem 4.3 : A projection P (.|ζ) has a preservation property w.r.t ζ , where ζ

a polyhedral cone, if and only

〈bi, bj〉 ≤ 0 ; i 6= j, where i, j = 1, 2, 3, ...,m. (4.7)

From definition 4.1 that projection on the cone ζ have preservation property if and

only if P (.|`) has the preservation property w.r.t cone `. And following 4.1, since

ζ a polyhedral cone as 4.6, also ` is a pointed polyhedral cone. Let a set of non-

redundant generator of ` knows as {a1, a2, ...., ap} where(aj ∈ ` ⊂ Ω),

〈ai, aj〉 ≥ 0 ; where i, j = 1, 2, ..., p. (4.8)

Following theorem 4.1 and the property 4.8 hold that imply that ` ⊆ ζ∗ , then the

projections P (.|ζ) does not have a reverse property. Furthermore, from theorem 4.3

, if the inner product of all the generators of the cone ζ∗ lower or equal zero 4.7 hold

that implies the generator of the cone ` will be larger than zero 4.8, and we can say

that the projections have a preservation property. However,the other way if 4.8 hold

not implies 4.7. On other words, that the preservation 4.7 as strong preservation

but 4.8 the shorting of reverse as weak preservation.

A very helpful concept related to preservation property is Linear independents of

the rows of Bm×k which are the generators of the dual cone ζ∗ .

Theorem 4.4 : let bi’s any set of vectors and 〈bi, bj〉 ≤ 0, for all i 6= j, where

i, j = 1, 2, ...,m , in addition any of the condition below hold. if bi’s are the gen-

erators of pointed polyhedral cone. Or the exists of w such that 〈bi, w〉 ≥ 0,all

i = 1, 2, ...,m. If all bi’s in the same open half space. Then bi’s are linearly indepen-

dent.

26



This theorem help to define which cones may have a preservation property such

as contrast cones with m = (k − 1) row and linearly independent. Under order

restricted model most comment cones used are pairwise contrast cone, which mean

the cone in the forms 4.6 with
〈
~1, bi

〉
= 0 and only have two element non-zero in

each rows and columns , and there is a few cones of this class which there projection

P (.|ζ) have the preservation property. this led to the following corollary.

Corollary 4.1 : where ζ = ` ⊕ H is a pairwise contrast cone and H is one di-

mensional. if P (.|ζ) have preserve the order w.r.t cone ζ, then ζ is a simple order

cone, which is the only cone who P (.|ζ) preserves order, ζ = {µ ∈ Rk : µj1 ≥ µj2 ≥

.... ≥ µjk} for the arrangement (j1, j2, ..., jk).

That mean when the cone ζ is a pairwise contrast cone with H one dimensional,

which is the orthocomplement of the span of the linear independent bi’s, the only

cone with preserves order is the simple order cone.
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Chapter 5

Likelihood Inferences and

Preservations Property

The reverse and preserves property on projection are related to the statistical models

special under order restricted model where the MLE’s are the projection. Now

let’s X1, X2, ..., Xk are independent variable with Xi have density function f(x|θ).

Consider the exponential family, where the parameter space of µ is the common

order restricted models.

fXi
(xi|µi) = exp[q1(µi)xi + q2(µi)], (5.1)

where µi is the most popular order restrict parameter space. The linear restriction

on the mean µ take the form

〈bi, µ〉 ≥ 0 , where bi ∈ Rk and i = 1, 2, ...,m. (5.2)

Let y ≥ x with the means ȳ, x̄ such that 〈bi, ȳ〉 ≥ 〈bi, x̄〉 for all i = 1, ....,m. Under

this expression it can be said it is preserved order.

28



In terms of µi the cone ζ is a pairwise contrast cone then the projections P (.|ζ)

are the MLE’s for µ. See theorem (1.5.2) in Robertson et.al., (RWD) (1988) .

That means the result on projections, if it having the requirements for preservation

property or reversal will apply to the MLE’s too.

Another concern is arise when the LRT for the hypothesis test H0 : Bµ vs. H1 :

Bµ ≥ 0 where B as the forms in 4.6 is not COM [`]. In this case a lack of COM [`]

for the LRT may leed to unsatisfied or undesirable. Such an example present in the

introduction. As a result, it is clear that there is an association between the reversal

property and lack of COM [`].

Now consider ζ as in 4.6 and the projection P (X|ζ) is the MLE M(X) of µ, thus

P (X|ζ) = M(X). And B(k−1)×k is a pairwise contrast matrix, Where Tasting the

hypothesis

H0 : Bµ = 0 vs. H1 −H0 , where H1 : Bµ ≥ 0. (5.3)

Here note that, under H0, the set of µ’s satisfy is equal to the orthocomplement

H, where H in this case is a linear combination of the vector 1= (1, 1, ..., 1). Next

assume that the LRT for testing Bµ = 0 vs. Bµ ≥ 0 has T =
∑
Xi = t a fixed

value which is a unique minimum sample points at x = (x̄1).

Remark: If the theorem 4.2 or ` 6⊆ ζ∗ are not hold, that imply almost of the sample

space will have a reverse property.

Which means there are a pair xi ≤ζ xj when i 6= j, such as M(xi) >ζ M(xj).

Moreover, the LRT statistic at the point xi and M(xi) will be equal or larger than

the LRT statistic at the point xj and M(xj), this is implies that the LRT may not

be a COM[`].

Theorem 5.1: Suppose the cone ζ as in 4.6 and B(k−1)×k is pairwise contrast.
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Consider that MLE has a reverse property. And the LRT for the test in 5.3 is not

a COM[ ` ] when for each T =
∑
Xi = t the LRT for the test Bµ = 0 vs. Bµ 6= 0

has a unique minimum point through all sample points at x = (x̄1) .

Theorem 5.2: Considering the exponential family density function in 5.1 , when

qi(µi) is increasing function of µ then the cone ζ in 4.6 is a pairwise contrast cone.

If ` ⊆ ζ∗ then any test is COM [ζ∗] will be a COM [ ` ] also.

In this thesis I have provided a comprehensive understanding of the proper iden-

tification of situation where the likelihood ratio testing and maximum likelihood

estimation techniques would be usable. Also the situations where the estimation

tools can reveal some useful results can also provide the strong intuitions and re-

duce the ambiguities to reduce the uncertainty to maximum level to go with the

most appropriate options.
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Chapter 6

Applications

This chapter includes applications to the most frequently used models of order

restricted inference. Here applying the result and the theorem of the last two chapter

to different cones such as simple order cone, tree order cone, umbrella order cone

and stochastic order cone.

Simple order cone:

Simple order cone is the most common cone us in many different practise. Now

consider the mean parameters of the model 5.1 and the polyhedral cone ζ = {µ ∈

Rk : µ1 ≥ µ2 ≥ µ3 ≥ µ4} , where the sample size are equal. The MLE M(X) of

µ are P (X|ζ). As an example, here let k = 4 so µ = (µ1 µ2 µ3 µ4)′. Then the

condition 4.7 and 4.8 are applied for this cone model, where

B3×4 =


1 −1 0 0

0 1 −1 0

0 0 1 −1

 .
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The inner product for the B matrix is < bi, bj >= −2 ≤ 0 where i 6= j = 1, 2, 3, 4.

Since 4.8 is hold that means that ` ⊆ ζ∗, which implies that theorem 5.2, the LRT

is COM[`]. As a result, the simple order cone have the preservation property for

MLE and that implies that the LRT is COM[`]. Generally, for any number of k the

simple order cone as 2.6 always have a preservation property.

Tree order cone:

Tree order cone is one of the basic models used in comparing treatments with control.

Let Assume that X ′s follows the exponential family as in 5.1 and with equal sample

size, and the cone is ζ = {µ : µ1 ≥ µ4, µ2 ≥ µ4, µ3 ≥ µ4}. Now let k = 4, and apply

the condition 4.7 and 4.8

B3×4 =


1 0 0 −1

0 1 0 −1

0 0 1 −1

 .

The inner product for the all rows of B matrix is < bi, bj >= 1 ≥ 0 where i 6= j =

1, 2, 3, 4, which imply that the condition 4.7 of preservation property not hold , and

by theorem 4.1 that ` 6⊆ ζ∗ =⇒ ζ 6⊆ H ⊕ ζ∗ that means that the MLE have reversal

property. Also, LRT is not COM[`] by theorem 5.1 where the statistic of LRT

minimized when t =
∑
xi. Here the tree order cone always have reversal property

because for all the rows of the matrix B, the inner products are large than zero and

that violate the condition of preserving property.
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Umbrella order cone:

As in the previous case I assumed the family model as in 5.1 with equal sample size.

Let k = 5 where the cone ζ = {µ1 ≤ µ2 ≤ µ3 ≥ µ4 ≥ µ5}.

B4×5 =



−1 1 0 0 0

0 −1 1 0 0

0 0 1 −1 0

0 0 0 1 −1


.

now applying the condition of preservation property 4.7 The inner product of B

matrix is < b2, b3 >= 1 ≥ 0 where all other rows are less than zero which led to

` ⊆ ζ∗ does not hold. That mean reversal property for MLE’s occur and LRT is

not COM[`]. See Cohen and Sackrowitz (1996b). For any number of k the umbrella

order as 2.8 will reverse the MLE’s and LRT not COM[`], because there exists

< bm − 1, bm >= 1 ≥ 0 which contradict with proservation condition.

Stochastic order cone:

under the same assumption as previous cases, and the conditional parameter spas

as 2.9. Here, as it clear, the parameter space is not a cone that means the MLE

are not the projections, which imply that the condition of preservation and reversal

can not be applied. Since we can not prove that MLE has preservation property we

can focus on LRT is COM[`]or not. First, find the generators of the cone `. Assume

that ζ = {µ : Bµ ≥ 0} where the matrix B(k−1)×k, and the row of the matrix BH
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are the basis of the Orthocomplement H of Ω. The matrix is

B
(k−1)×2(k−1)
H =



1 0 0 ... 1 0 ... 0

0 1 ... 0 0 1 ... 0

...

0 0 ... 1 0 0 ... 1


,

where the generator of the cone ` is the inverse of the matrix

 B

BH

. See Cohen

and Sackrowitz (1998), which COM[`] called concordant monotone, and it is not

easy to prove. As it shows previously in the example 2.3.1 the condition p-value

for the LRT of the two sample point are not COM[`] although they are COM[ζ∗],

so a recommend a test with COM[`] is the Wilcoxon Mann Whitney [WMW] test

where is a conditionally with large value. A better test recommended is the COM[`]

Fisher test is concordant monotone, where it is sensitive to most stochastic order

cone, similar power of the conditional p-value properties where WMW are satisfying

and superior.

Unequal sample size:

Here we presenting the same result on preservation property under different samples

size. Suppose we have four different random samples (k = 4) with samples size are

n = (20, 10, 25, 8), the MLE’s of µi is X̄i =
∑ni

i=1Xji where j = 1, 2, 3, 4. Then the

MLE’s are the weighted projection of X̄ = (X̄1, X̄2, X̄3, X̄4) on to ζ. Here treat X̄

as normally distributed with mean vector µ and covariance matrix (D2)−1 to help

find the projection. Now under the consider Y = DX̄ where Y ∼ N(Dµ, I), also

34



consider the polyhedral cone

ζY = {µ : BD−1µ ≥ 0}, (6.1)

where D is the diagonal matrix of covariance matrix with
√
ni. Which implies the

MLE’s of Dµ is P (DX̄|ζY )

M(X̄) = D−1P (DX̄|ζY ). (6.2)

Now let’s apply the above result on the different cone order.

1. simple order cone: Under the assumption of the model 5.1 and the poly-

hedral cone in 6.1 . The matrix By = BD−1

B3×4
y =


1√
n1

−1√
n2

0 0

0 1√
n2

−1√
n3

0

0 0 1√
n3

−1√
n4

 =


0.2236068 −0.3162278 0.000 0.000

0.000 0.3162278 −0.200 0.000

0.000 0.000 0.200 −0.3535534

 .

Then By is satisfy the conditions of Theorem 4.3, that preservation property of

MLE hold and that led the LRT are COM[`]. In fact having different sample

sizes do not effect preservation property in simple order cone.

2. Tree order cone: under the same assumption, from 2.7 and 6.1 we get

B3×4
y =


1√
n1

0 0 −1√
n2

0 1√
n2

0 −1√
n3

0 0 1√
n3

−1√
n4

 =


0.2236068 0.0000000 0.00 −0.3535534

0.000 0.3162278 0.00 −0.3535534

0.000 0.000 0.200 −0.3535534

 .

So in the light of theorem 4.3 the preservation property for MLE’s not hold

which imply that LRT are not COM[`]
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3. Umbrella order cone: under the same assumptions, and from 2.8 and 6.1.

Where the alternative test is µ1 ≤ µ2 ≤ µ3 ≥ µ4, then the matrix By given by

B3×4
y =


−1√
n1

1√
n2

0 0

0 −1√
n2

1√
n3

0

0 0 1√
n3

−1√
n4

 .

Under the condition 4.7 and 4,8 it is clear that preservation property not hold

for any set of ni’s which imply that LRT not COM[`].

The main conclusions that can be deduced from the study are follows. The maxi-

mum likelihood estimation technique would always preserve its property under the

simple order cone (or simple order restrictions) and it is only for simple order cones.

For the tree or umbrella order cones, the likelihood inference technique reverse the

order. But for the other type of cones such as matrix and star-shaped the LRT

might or might not preserve (or reverse), relying on the size of the samples and the

corresponding distribution. When the likelihood methodology is less satisfactory,

alternative methods can be used. Cone ordered monotonic Fisher test and Wilcoxon

Mann Whitney (WMW) test (see Cohen and Sackrowitz, 1998) are some options.

When the restriction is simple tree order, under some conditions, transforming poly-

hedral cone to a circular cone is also an option (see Pincus, 1975).
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Appendix A

R code for the property of preserving

k<− sample ( x=c ( 1 : 2 0 ) ) [ 1 ] #no . o f column

#1− s imple order cone

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : ( k−1)){

d [ i , i ]<−1

d [ i , i +1]=−1

}

d

# pre s r e r v a t i on and r e v a r s a l proper ty

Q<−rep (NA, time=k−1)

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−2)) {

i f ( i != j )

v<−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v
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}

B<−matrix (Q,nrow=k−2,ncol=1,byrow=TRUE)

B

#other ways to proo f p r e s e r va t i on

dt=t (d)

t=d %∗% dt

t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#2 t r e e order cone

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : ( k−1)){

d [ i , i ]<−1

d [ i , k]=−1

}

d

# pre s r e r v a t i on and r e v a r s a l proper ty

Q<−rep (NA, time=k−1)

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−1)) {

i f ( i != j )

v<−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v

}
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B<−matrix (Q,nrow=k−1,ncol=1,byrow=TRUE)

B

#other ways

dt=t (d)

t=d %∗% dt

t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#3 Umbrel la cone :

m<−sample ( x=c ( 1 : k ) ) [ 1 ]

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : (m)){

d [ i , i ]<−1

d [ i , i +1]=−1

}

for ( i in (m+1):(k−1))

{

d [ i , i ]=−1

d [ i , i +1]<−1

}

d

# pre s r e r v a t i on and r e v a r s a l proper ty

Q<−rep (NA, time=k−1)
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for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−1)) {

i f ( i != j )

v<−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v

}

v=(d [m, ] %∗% d [m+1 , ])

v

B<−matrix (Q,nrow=k−1,ncol=1,byrow=TRUE)

B

#other ways

dt=t (d)

t=d %∗% dt

t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# 4. S t o c ha s t i c Order cone :

d <− matrix ( 0 , ( k−1) ,2∗(k−1))

for ( i in 1 : ( k−1)){

for ( r in 1 : i ){

d [ i , r ]<−1

}
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}

d

for ( i in 1 : ( k−1)){

for ( r in k : ( i +(k−1))){

d [ i , r ]=−1

}

}

d

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#4. Star Shaped cone :

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k ) ) {

j=i+1

d [ i , j ]=−( i )

}

}

d

for ( i in 1 : ( k−1)){

for ( r in 1 : i ){

d [ i , r ]<−1

}

}

d
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### ##

## unequal sample s i z e s :

k<−4 # no . f o r row or column

n<−c (20 ,10 ,25 ,8 ) # d i f f e r e n t samples s i z e

#1− s imple order :

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : ( k−1)){

d [ i , i ]<−1/sqrt (n [ i ] )

d [ i , i +1]=−1/sqrt (n [ i +1])

}

d

Q<−rep (NA, time=k−1)

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−1)) {

i f ( i != j )

v<−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v

}

v=(d [m, ] %∗% d [m+1 , ])

v
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B<−matrix (Q,nrow=k−1,ncol=1,byrow=TRUE)

B

#other ways

dt=t (d)

t=d %∗% dt

t

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#2 t r e e order cone

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : ( k−1)){

d [ i , i ]<−1/sqrt (n [ i ] )

d [ i , k]=−1/sqrt (n [ k ] )

}

d

Q<−rep (NA, time=k−1)

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−1)) {

i f ( i != j )

v<−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v

}

B<−matrix (Q,nrow=k−1,ncol=1,byrow=TRUE)

B
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#other ways

dt=t (d)

t=d %∗% dt

t

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#3 Umbrel la cone :

m<−sample ( x=c ( 1 : k ) ) [ 1 ]

m=3

n<−rep (NA, time=k )

for ( i in 1 : k ){

p r e f s <− sample ( x=c ( 1 : 1 0 0 ) )

n [ i ] <− p r e f s [ 1 ]

}

n=c (15 ,24 ,30 ,13 ,18 )

k=4

m=3

d <− matrix ( 0 , ( k−1) ,k )

for ( i in 1 : (m)){

d [ i , i ]<−1/sqrt (n [ i ] )

d [ i , i +1]=−1/sqrt (n [ i +1])

}

for ( i in (m+1):(k−1))

{

d [ i , i ]=−1/sqrt (n [ i ] )
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d [ i , i +1]=1/sqrt (n [ i +1])

}

d

Q<−rep (NA, time=k−1)

for ( i in 1 : ( k−1)){

for ( j in 1 : ( k−1)) {

i f ( i != j )

v <−(d [ i , ] %∗% d [ j , ] )

}

Q[ i ]<−v

}

B<−matrix (Q,nrow=k−1,ncol=1,byrow=TRUE)

B

v=(d [m, ] %∗% d [m+1 , ])

v

#other ways

dt=t (d)

t= d %∗% dt

t
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